Please use this identifier to cite or link to this item:

http://hdl.handle.net/10609/93026
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPuy, Arnald-
dc.contributor.authorLo Piano, Samuele-
dc.contributor.authorSaltelli, Andrea-
dc.contributor.otherUniversitat Oberta de Catalunya (UOC)-
dc.contributor.otherUniversity of Bergen-
dc.contributor.otherPrinceton University-
dc.contributor.otherUniversity of Reading-
dc.date.accessioned2019-04-10T14:37:55Z-
dc.date.available2019-04-10T14:37:55Z-
dc.date.issued2020-05-
dc.identifier.citationPuy, A., Lo Piano, S. & Saltelli, A. (2020). A sensitivity analysis of the PAWN sensitivity index. Environmental Modelling & Software, 127(). doi: 10.1016/j.envsoft.2020.104679-
dc.identifier.issn1364-8152MIAR
-
dc.identifier.urihttp://hdl.handle.net/10609/93026-
dc.description.abstractThe PAWN index is gaining traction among the modelling community as a moment-independent method to conduct global sensitivity analysis. However, it has been used so far without knowing how robust it is to its main design parameters, which need to be defined ab initio by the analyst: the size (N) and sampling (e) of the unconditional model output, the number of conditioning intervals (n) or the summary statistic (0). Here we fill this gap by running a sensitivity analysis of a PAWN-based sensitivity analysis. We show that PAWN is highly sensible to the setting of (N,n,e,0), and that such uncertainty creates non-negligible chances of PAWN producing non-robust results in a factor prioritization or factor screening contexts. Increasing the precision of PAWN is a complex affair due to the existence of important interactions between (N,n,e,0), which we found significant up to the third-order. Even in an ideal setting in which the optimum choice for (N,n,e,0) is known in advance, PAWN might not allow to distinguish a truly influential, non-additive model input from a truly non-influential model input.en
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherEnvironmental Modelling & Software-
dc.relation.ispartofEnvironmental Modelling & Software, 2020, 127()-
dc.relation.urihttps://doi.org/10.1016/j.envsoft.2020.104679-
dc.rightsCC BY-
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.subjectuncertainty analysisen
dc.subjectsensitivity analysisen
dc.subjectenvironmental modellingen
dc.subjectrisksen
dc.subjectanálisis de incertidumbrees
dc.subjectanàlisi d'incertesaca
dc.subjectanàlisi de sensibilitatca
dc.subjectanálisis de sensibilidades
dc.subjectmodelación ambientales
dc.subjectmodelació ambientalca
dc.subjectriscosca
dc.subjectriesgoses
dc.subject.lcshStatisticsen
dc.titleA sensitivity analysis of the PAWN sensitivity index-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.subject.lemacEstadísticaca
dc.subject.lcshesEstadísticaes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
dc.identifier.doi10.1016/j.envsoft.2020.104679-
dc.relation.projectIDinfo:eu-repo/grantAgreement/H2020/792178-
Appears in Collections:Articles
Articles

Files in This Item:
File Description SizeFormat 
Puy-EMS-2020-sensitivity.pdf868.22 kBAdobe PDFView/Open

This item is licensed under a Creative Commons License Creative Commons