Please use this identifier to cite or link to this item:

http://hdl.handle.net/10609/98826
Title: Predicción de errores en producción industrial de piezas mediante clasificación supervisada con desbalanceo de clases
Author: López Portillo, José Ahias
Director: Casas Roma, Jordi
Tutor: Hernández González, Jerónimo
Keywords: algorithms
machine learning
Issue Date: 9-Jun-2019
Publisher: Universitat Oberta de Catalunya (UOC)
Abstract: The objective of this work is to implement an automatic learning algorithm that allows the best classification on the set of information data collected by different sensors of the Bosch factory. The constant data set of a file with 980 dimensions and one million observations with a dichotomous classification. When carrying out different investigations of solutions for the processing of unbalanced data sets, 26 experiments with 2 sets of data of different sizes were implemented obtaining the best result with techniques of resampling and random forests.
Language: Spanish
URI: http://hdl.handle.net/10609/98826
Appears in Collections:Bachelor thesis, research projects, etc.

Share:
Export:
Files in This Item:
File Description SizeFormat 
jahiasTFM0619memoria.pdfMemoria del TFM1.4 MBAdobe PDFView/Open
jahiasTFM0619presentación.pdfPresentación del TFM467.29 kBAdobe PDFView/Open

This item is licensed under a Creative Commons License Creative Commons