
 Real Time Rendering Engine Real Time Rendering Engine
Real – Time GraphicsReal – Time Graphics

with a modern graphics approachwith a modern graphics approach

Flow Render EngineFlow Render Engine

Final ThesisFinal Thesis

Master's degree final projectMaster's degree final project
Master computing engineeringMaster computing engineering

High performance computing areaHigh performance computing area

 Xavier Figuera Alberich Xavier Figuera Alberich
December 2019December 2019
xfiguera@uoc.eduxfiguera@uoc.edu

Real Time Rendering EngineReal Time Rendering Engine
Real – Time GraphicsReal – Time Graphics

with a modern graphics approachwith a modern graphics approach

Flow Render EngineFlow Render Engine

Final ThesisFinal Thesis

Master's degree final projectMaster's degree final project
Master computing engineeringMaster computing engineering

High performance computing areaHigh performance computing area

 Xavier Figuera Alberich Xavier Figuera Alberich
December 2019December 2019
xfiguera@uoc.eduxfiguera@uoc.edu

http://www.flowrenderengine.com/

Tutors:Tutors:

Ester Arroyo GarriguezEster Arroyo Garriguez
Josep Jorba Esteve Josep Jorba Esteve

http://www.flowrenderengine.com/

Document license

This document, Real-time rendering engine, real-time graphics with a modern graphics approach, Flow
Render Engine, is licensed under a Creative Commons Attribution-NonComercial-ShareAlike 4.0
international licence.

You can receive a copy of the license in the following link:
https://creativecommons.org/licenses/by-nc-sa/4.0/

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/

Contents
1 Introduction.. 1

1.1 What is real time rendering?.. 1
1.2 What is a real-time rendering engine?... 3
1.3 Graphics Hardware... 4

1.3.1 Desktop GPUs... 6
1.3.2 Workstations GPUs.. 6
1.3.3 Mobile GPUs... 6

1.4 Graphics APIs... 6
1.4.1 OpenGL... 6
1.4.2 Direct3D... 7
1.4.3 Vulkan... 8

1.5 Graphic effects shaders.. 8
1.5.1 History of shaders.. 8
1.5.2 Modern shader languages... 10

1.6 Render engines today.. 10
1.6.1 Real-Time render engines.. 10

1.6.1.1 Ogre3D.. 10
1.6.1.2 Open Scene Graph (OSG).. 10
1.6.1.3 Irrlicht.. 11
1.6.1.4 Magnum.. 11
1.6.1.5 Horde3D.. 11

1.6.2 Ray-Tracing render engines.. 11
1.6.2.1 RenderMan.. 11
1.6.2.3 POV-Ray... 12

1.7 Project goals.. 12
1.8 Document structure... 13

2 Basics of real-time rendering.. 13
2.1 The rendering pipeline.. 13
2.2 GPU Programming.. 15

2.2.1 Vertex Shaders.. 16
2.2.2 Geometry Shaders... 16
2.2.3 Pixel Shaders... 16

2.3 Scene graph and spatial data structures.. 17
3 Engine architecture and features... 18

3.1 Introduction... 18
3.2 Engine architecture.. 19
3.2 Rendering interface approach... 20
3.3 Fluent interface approach... 21
3.4 Design patterns used.. 22

3.4.1 Decorator.. 22
3.4.2 Abstract Factory.. 22
3.4.3 Singleton... 22

3.5 Engine features... 22
4 Engine modules definition and implementation... 23

4.1 Core module... 23
4.1.1 Engine submodule... 24

4.1.1.1 Application context.. 24
4.1.1.2 Singleton template class.. 25

4.1.2 Math submodule.. 25
4.1.2.1 Basic functions... 25
4.1.2.2 Vectors... 26
4.1.2.3 Matrices.. 28

i

4.1.2.4 Vectors and matrices unit tests... 30
4.1.2.7 2D and 3D geometric primitives.. 33
4.1.2.8 Geometric transformations.. 34

4.1.2.8.1 Model Matrix.. 35
4.1.2.8.1.1 Translation... 35
4.1.2.8.1.2 Scaling.. 36
4.1.2.8.1.3 Rotation.. 38

4.1.2.8.2 Viewing Transformations... 40
4.1.2.8.2.1 Viewport transform.. 41
4.1.2.8.2.2 Projection matrix... 42

4.1.2.8.2.2.1 Orthographic Projection... 42
4.1.2.8.2.2.2 Perspective Projection...44

4.1.2.8.2.3 View matrix (lookAt).. 46
4.1.2.8.2.4 Rotation matrix (yawPitchRoll)..47

4.1.2.9 Transformations unit tests... 49
4.1.2.10 Normal calculation.. 50
4.1.2.11 Tangents and bi-tangents calculation for bump mapping...52

4.1.3 Platform sub-module... 56
4.1.4 Utility sub-module.. 57

4.1.4.1 Dynamically loaded C++ Objects.. 58
4.1.4.1.1 How does it work?.. 58
4.1.4.1.2 Implementation within the engine...61

4.1.4.2 File system.. 62
4.1.4.3 Log system... 63
4.1.4.4 Timer.. 63

4.2 Graphics module.. 63
4.2.1 Resources.. 65

4.2.1.1 Vertex Declaration.. 65
4.2.1.2 Vertex Format... 66
4.2.1.3 Vertex Element... 66
4.2.1.4 Buffers.. 68

4.2.1.4.1 Vertex Buffers... 69
4.2.1.4.2 Index Buffers... 71

4.2.1.5 Textures 2D.. 72
4.2.2 Utility.. 75

4.2.2.1 Managers.. 75
4.2.2.1.1 Buffer Managers... 76
4.2.2.1.2 Texture Manager.. 76
4.2.2.1.3 Shader Manager... 76
4.2.2.1.4 Render Effect Manager.. 76
4.2.2.1.5 Material Manager.. 77
4.2.2.1.6 Mesh Manager... 77

4.2.2.2 Model importers.. 77
4.2.2.2.1 Wavefront OBJ importer.. 77

4.2.3 Windowed application.. 86
4.2.3.1 Handling keyboard and mouse events...88

4.2.4 Scene Graph... 89
4.2.4.1 Renderable objects and meshes.. 91
4.2.4.2 Render Transaction... 92
4.2.4.3 Renderable object set and scene handler...93
4.2.4.4 Camera.. 94
4.2.4.5 Lighting... 97

4.2.4.5.1 Directional light... 101
4.2.4.5.2 Point light.. 102
4.2.4.5.3 Spot light... 103

4.2.4.6 Materials.. 105

ii

4.2.5 Renderer... 106
4.2.5.1 Render states.. 108

4.2.5.1.1 Wire frame state.. 109
4.2.5.1.2 Depth test state... 110

4.2.6 Effects.. 111
4.2.6.1 Shaders... 111

4.2.6.1.1 Shader parameters data... 114
4.2.6.1.2 Render pass.. 116
4.2.6.1.3 Render technique... 117

4.2.6.2 Local Effects... 118
4.2.6.2.1 Render effect.. 118
4.2.6.2.2 Renderable Effect... 120
4.2.6.2.3 Effects implemented within the engine..121

4.2.7 Data Types... 122
4.2.7.1 Transform class... 122
4.2.7.2 Color class.. 124

4.3 GraphicsOGL3 module.. 124
4.3.1 Reference to the OpenGL functions used... 125

5 Applications over the engine... 127
5.1 Applications implemented to test the engine...129

6 Summary... 129
6.1 Future Works.. 130

7 Bibliography and resources.. 131
7.1 Section 1... 131
7.2 Section 2... 132
7.3 Section 3... 132
7.4 Section 4... 133
7.5 Other resources.. 134

iii

Final thesis - Master’s degree computing engineering final project -
- Real-time rendering engine with a modern graphics approach -

Author: Xavier Figuera Alberich December 2019

1 Introduction

1.1 What is real time rendering?

The rendering concept, should be seen as an automatic process generation of a photorealistic or
non-photorealistic image of a geometric data source, this data source can come from different
sources, such as parsed files with a data export tool, these data represent a model to render, the
models can be in 3D or 2D, although in a real-time rendering, three-dimensional objects are
usually rendered.

On the other hand, the concept in real time in this case, should be understood as that the images
are generated online, and the generation rate is fast enough so that the sequence of images looks
like an animation that simulates something. This is the most highly interactive area of computer
graphics. The rendering cycle occurs at a speed fast enough so that the viewer does not see
individual images, but immerses himself in a dynamic process.

The rate at which images are displayed is measured in frames per second (FPS) or Hertz (Hz). At
around 6 FPS, a sense of interactivity starts to grow, 24 FPS might be acceptable and is certainly
real-time, but a higher rate is important for minimizing response time. Video games aim for 30, 60,
72, or higher FPS. From about 72 FPS and up, the human eye cannot detect any differences in
display rate. For this rates, the interactivity sense is total, so a good performance is to achieve 15
milliseconds of temporal delay between frames.

Not only speed is the only criterion in the real-time rendering concept, as has been said, real-time
rendering usually involves producing three-dimensional images, therefore, if interactivity is
combined with three-dimensional rendering, there are sufficient conditions for obtain real-time
rendering, but there is a third element that, if combined with the concepts explained, completes the
definition: the graphics accelerator hardware, see section 1.3 for more details.

This type of hardware dedicated to three-dimensional graphics has been available in professional
workstation for many years, but at the consumer level, the use of this hardware is relatively recent
and with the rapid evolution in this area, every computer, tablet, video game console and mobile
phone, actually comes with a built-in graphics card processor, this evolution in recent years in
graphics hardware has powered a widely research in the field of interactive computer graphics.
Some examples of real-time rendering performed with hardware accelerators over the years are
shown in figure 1.1,figure 1.2, figure 1.3 and figure 1.4.

Popular application areas of real-time rendering are video games, scientific computation
visualization systems, CAD systems, flight simulation, industry software simulation, virtual reality,
architecture, among others.

1

Final thesis - Master’s degree computing engineering final project -
- Real-time rendering engine with a modern graphics approach -

Author: Xavier Figuera Alberich December 2019

Figure 1.1. a shot from Final Fantasy: The Spirits Within film, Copyright by Square Company 2001 All rights reserved.

Figure 1.2. a shot from Toy Shop demo, Copyright by Natalya Tatarchuk, ATI Reseach Inc. 2005 All rights reserved.

2

Final thesis - Master’s degree computing engineering final project -
- Real-time rendering engine with a modern graphics approach -

Author: Xavier Figuera Alberich December 2019

1.2 What is a real-time rendering engine?

A real-time rendering engine should be seen as a middleware that plays a fundamental role in
different real-time or interactive graphics applications, such as video games, scientific computation
visualization systems, CAD systems, flight simulation, industrial software simulation, among others.

The engine takes 3D graphics primitives as input and generates real-time images as output. The
real-time concept in this case, should be understood as that the images are generated online and
the generation rate is fast enough so that the sequence images looks like an animation that
simulates something as described in section 1.1.

Middleware users are mainly application developers. For application developers, a rendering
engine is a software development kit. More precisely, a rendering engine consists of a set of
reusable modules, such as static or dynamic link libraries. By using these libraries, developers can
focus on the business logic of the application, without diverting attention to rather complicated
graphics rendering issues.

In most cases, a professional rendering engine, usually does rendering tasks better than the
programs written by application developers who are not computer graphics professionals.
Meanwhile, adopting a good rendering engine in application development projects, can reduce the
development period, since lots of complex works are done by the rendering engine and,
consequently, development costs and risks are alleviated.

There are various rendering engines, that are available as commercial packages and open-source
projects as well, in section 1.5 are presented some of them.

Figure 1.3. a shot from Metal Gear Solid 4: Guns Of The Patriots, Copyright Konami Digital Entertainment 2008 All rights reserved.

3

Final thesis - Master’s degree computing engineering final project -
- Real-time rendering engine with a modern graphics approach -

Author: Xavier Figuera Alberich December 2019

Figure 1.4. a shot from Gran Turismo Sport, Copyright Sony Interactive Entertainment and Polyphony Digital 2017 All rights reserved.

1.3 Graphics Hardware

The real-time rendering is available on consumer-level from 1996 when appear 3Dfx Voodoo 1
graphics accelerator[3DfxVd1] on market, before that, the graphic data management to generate
images had to be carried out by the CPU. From 1996 until now, the graphic accelerators has
evolved a lot in performance terms, and during this evolve many task has been moved from the
CPU to GPU (Graphics Processing Unit), the modern GPUs are a heterogeneous chip multi-
processor highly tuned for graphics. Nowadays the CPU is mainly used to prepare graphic data to
be sent to GPU and is responsible for user interaction.

This evolution drives to that nowadays exist a lot powerful commodity graphic hardware, where the
hardware target within the computer graphics field, is focused to synthesize or render 2D raster
images, from data that represent 3D scenes, these data contain information related with the scene
geometry, which are projected to 2D surface, simulating a camera, see section 4.1.2.8.2 Viewing
Transformations and section 4.2.4.4 camera, and to enhance the realism, lighting, materials and
textures are involved.

There are different graphics hardware architectures for different systems, such as personal
computers, video game consoles, tablets or mobile phones, in a modern personal computer
normally a graphic system is composed by a CPU and a graphic card with a GPU and memory,
and between them, there is a communication bus. As already mentioned, the CPU only processes
the graphic data in advance to transfer it, to the main memory and then they sent to the graphic
card video memory, trough data bus, in a modern personal computers, is used a PCI-Express
expansion bus for this task, in the older computers, the AGP expansion bus was used. After that,
the graphic data is efficiently processed by GPU through pipeline stages and finally the results are
displayed onto the screen, see section 2.1 the rendering pipeline.

4

Final thesis - Master’s degree computing engineering final project -
- Real-time rendering engine with a modern graphics approach -

Author: Xavier Figuera Alberich December 2019

However, the architecture described above, is not the only one, for example in a modern video
game consoles like Sony PlayStation 3 or 4 or Microsoft XBox 360 or Xbox One, the CPU can
communicate directly with the GPU without any additional communication bus. See[RTGraRenEn]
[PS4Arch][GEngArchPS4].

The smartphones GPUs are typically designed with limited power ceiling of less than 1 watt
[GProceUnits]. As a result, the mobile GPU usually has fewer cores, lower memory bandwidth, and
variant architecture when compared to the desktop GPUs.

A GPU inside a mobile device is typically integrated into the application processor system-on-a-
chip (SoC) which also consists of one or several CPUs, DSP, and other application-specific
accelerators, Instead of having its own graphics memory, an embedded GPU shares the system
bus with other computing cores to access the external memory and therefore has much lower
memory bandwidth than those of laptop and high-performance desktop systems[GProceUnits].

Mobile GPUs are usually designed with emphasis of lower power consumption rather than
performance. Reducing the traffic between the GPU and the memory is one of the key techniques
to reduce the power consumption in the architecture level design[GProceUnits].

For reducing this consumption, different techniques are implemented on-chip, mainly the
techniques are focused to avoid unnecessary memory access, to reduces system memory
transactions during the rendering process caches for pixel, texture and vertex are implemented this
provides better performance since cache access has less latency than off-chip memory
[iPackMan]. another technique used to reduce the memory number transactions, is store the
compressed data (e.g. compressed textures, vertex and frame buffers), for then to be
decompressed on-the-fly by GPU cores before processing[iPackMan].

Another interesting technique implemented is culling stage before rendering in a rendering pipeline
thus culling remain as fixed function like NVIDIA Tegra GPU, see[BHEG], traditional graphics
pipeline usually renders all the polygons including the occluded ones, and then culling technique
display the polygons according the depths of the polygons, thus minimize unnecessary memory
access and helps to lower the power consumption.

This scenario with different kinds of hardware, makes necessary that exists only one way to
communicate with different hardware from the programming perspective, the graphic APIs solve
this, see section 1.4, although in its early days, computer graphics had no standard programming
models, vendors provided a low-level interface to their hardware and each programmer or
development group create their own approach for create a screen display, obviously this is not very
efficient or portable.

At the beginning, the GPUs did not have much flexibility, because the pipeline are fixed see
section 2.1 the rendering pipeline, the GPUs have increased the power and flexibility, because
they have increased their programmability in pipeline stages, obviously, exists other factors that
has done evolve the GPUs as well. Today, not only rendering tasks are executed in a GPU,
another tasks can be executed on them, for example physics simulation or collision detection.

On the other hand, in the last years, the GPU computing power has been higher than advanced
multicore processors, for this reason, the GPU has become very popular for the general-purpose
computing algorithms and not just for graphics tasks like real-time rendering. The general purpose
computing over GPU is known as GPGPU (General-Purpose Computing on Graphics Processing
Unit), obviously this is another history, that is outside the scope of this work.

5

Final thesis - Master’s degree computing engineering final project -
- Real-time rendering engine with a modern graphics approach -

Author: Xavier Figuera Alberich December 2019

1.3.1 Desktop GPUs

The most popular desktop GPUs vendors have been along the years, Nvidia, ATI that was bought
by AMD in 2006, and Intel, obviously there are other vendors, but here, only a small reference are
made to the most popular. The most popular desktop GPUs are at the beginning, Riva series
following by GeForce series manufactured by Nvidia, ATI starts with Rage series and following by
Radeon series until nowadays. Intel has manufactured different generations of GPUs starts at the
first generation until nowadays with the generation 11.

1.3.2 Workstations GPUs

The workstation GPUs there are different series for each vendor, Nvidia has the Quadro series and
Tesla series mainly, in the case of AMD, has different series such as Fire, Radeon PRO series,
finally, Intel GPUs are shared with the same architecture between desktop and workstation GPUs
and are embedded within the CPU processor.

1.3.3 Mobile GPUs

The major SoCs and the mobile GPUs available in the market include Qualcomm’s SnapDragon
SoC with the Adreno 200 GPU[Qualcomm], TI’s OMAP3 SoC with the PowerVR SGX
530/535[TiOmap3], and Nvidia’s Tegra2 SoC with its own ultra-low-power(ULP) version of GeForce
GPU[BHEG].

For more information see the list of GPUs for different vendors[ListNvidia][ListAMD][ListIntel].

1.4 Graphics APIs

An Application Programming Interface (API) defines the way that applications interact with
components of a computer system. In case of the graphics APIs, this interface is typically
implemented by driver software that is written by graphics hardware vendors.

By having a standard API, applications can be written so that they work with many different kinds of
graphics hardware see section 1.3. For example, the same app will run on a determinate device,
no matter which vendor supplied its GPU design, because the graphics drivers for each type of
hardware expose the same API to the applications, although the underlying GPU hardware
architecture is very different.

The most popular graphics APIs, for many years have been OpenGL and Microsoft’s Direct3D,
which is part of DirectX, DirectX is more than just a graphics API. DirectX contains tools to deal
with sound, input, networking, and multimedia. Finally, recently appeared a new generation API
called Vulkan. The following sections explains these graphic APIs in more detail.

1.4.1 OpenGL

OpenGL was originally introduced by Silicon Graphics in 1992. It is important to highlight, that
OpenGL is not a stand-alone library, is only a specification and its implementation, it depends on
the platform where developing for, so, OpenGL makes no hardware support assumptions, the
specification only says what should be done, but does not say how it should happen, or how fast it
should work.

OpenGL has been supported by the most operating systems available until nowadays. This makes
it, the first choice for developing portable graphics applications, OpenGL is a pure state machine

6

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

that contains different switches working in a binary state (on/off). These states are used to build
dependency mapping, in the vendor driver, to manage resources and control them in an optimal
way, to yield maximum performance. Graphics hardware vendors and other graphics related
companies have organized themselves as the OpenGL Architecture Review Board (ARB), which
leads and defines the OpenGL interface specification. OpenGL, uses the extension concept for
early integration of new features provided by the graphics accelerators. Since 2006 OpenGL has
been managed by the non-profit technology consortium Khronos Group[khg].

In 2004 OpenGL 2.0 was introduced, in this version, the functionality in the graphics pipeline was
fixed, this means, there were a fixed operations set hard-wired in the graphics hardware, and it
was impossible to modify the graphics pipeline. However, in this version the shader objects were
introduced for the first time, that enabled to do changes in the graphics pipeline by the
programmers, through special programs called shaders, which were written in a special language
called OpenGL shading language (GLSL) see section 1.5.

In 2008 OpenGL 3.0 was introduced, in OpenGL 3.x the major drastic changes in the OpenGL
history has been made, from this version starts the modern manner to program computer graphics,
and is the approach used in this project.

Two profiles, the core profile and the compatibility profile exist in OpenGL 3.x. The core profile
basically contains all of the non-deprecated functionality, whereas the compatibility profile retains
deprecated functionality for backwards compatibility. The last OpenGL 3 version is 3.3, released in
2010. After, other versions has been appeared going through version 4 onwards, however, the
changes introduced are not as drastic. The current OpenGL version is 4.6 released in 2017, at the
time of writing this document.

In 2003 was released OpenGL ES 1.0, specially designed for embedded systems like smartphones
and tablets. OpenGL ES is a subset of widespread adopted OpenGL standard used in desktop
systems and video game consoles. This subset removes some redundancy from OpenGL API,
such as multiple methods that perform the same operation, the most useful method was adopted
and redundant methods was removed. At the same time, new features was introduced to address
specific constraints of handled devices focused for example to reduce the power consumption and
increase the shaders performance[OpenGLES].

1.4.2 Direct3D

Direct3D is OpenGL main competitor, and its follow-on Vulkan, nowadays Direct3D is developed by
Microsoft in cooperation with some graphics card vendors like NVIDIA or AMD, unlike OpenGL,
Direct3D works under Windows only, and new functionalities are exposed through API changes on
top of that, so Microsoft change the API several times. Otherwise, the new functionalities in
OpenGL are introduced firstly in ARB extensions, and later on are introduced in OpenGL core, for
this reason, the core changes slowly than Direct3D.

Direct3D dates back to 1995 when Microsoft was working on a new operating system called
Windows 95, in those times MS-DOS was the game programming platform, MS-DOS allowed
direct access any part of the system, such as graphic cards, mouse, keyboards and sound
devices, but Windows 95 restricted this access, so, it was needed a way to have access to this
devices thought Windows 95. In February 1995, Microsoft bought Render Morphics company,
which developed a 3D graphics API named Reality Lab which was used in medical imaging and
CAD software, then Microsoft starts to develop a 3D graphics engine for Windows 95. The first
version of Direct3D was released at June 2, 1996 shipped in DirectX 2.0. and then followed
DirectX 3.0 at September 26, 1996. DirectX is a collection of APIs for handling tasks related to

7

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

multimedia, such as video games among others, see DirectX version history[DirectXhis]. Since
DirectX 8 released in November 2000, Direct3D has superseded the Direct Draw framework and
also taken responsibility for the 2D graphics rendering as well. Microsoft strives to continually
update Direct3D to support the latest technology available on 3D graphics cards, actually the latest
DirectX version is 12.0, DirectX 12.0 is a new generation graphic API and is a direct competitor of
Vulkan. The language shaders used are HLSL (High-Level Shader Language) that developed by
Microsoft for Direct3D 9 API.

1.4.3 Vulkan

Released in 2016 by Khronos group[khg], Vulkan API is next-generation 3D graphics API like
DirectX12.0, however, exist competitors such as Microsoft’s DirectX 12 and Appel’s Metal,
nevertheless, DirectX is limited to its Windows variants and Metal to Mac (OS X and iOS). Vulkan
like OpenGL is cross-platform and supports almost all the available OS platforms, this list includes
Windows 7, 8, and 10, Linux, Tizen, SteamOS and Android.

The original Vulkan project, was designed and developed by AMD, based on their proprietary
Mantle API. Mantle displayed cutting-edge capabilities through several games, thereby testing its
revolutionary approach and fulfilling all the competitive demands of the industry. AMD made their
code open source and donated it to Khronos group[khg], that together other vendors made
collaborative efforts to release Vulkan.

Vulkan API has a new architecture, that takes full advantage of modern graphics processor units to
produce high-performance graphics and general-purpose algorithms calculation. As been said,
Vulkan is often referred to as the next generation graphics and compute API for modern GPUs. It is
an open standard, that aims to address the traditional APIs inefficiencies such as OpenGL, which
were designed for single-core processors and does not fit well to modern hardware[FixOpenGL].

Vulkan aversely, was designed with multi-threading support in mind, multiple threads work
asynchronously, feeding the GPU in an efficient manner. This is achieved in Vulkan by having no
global state, jointly with separating work generation from work submission, and no
synchronizations in the driver. The other Vulkan characteristic key, is that it provides a much lower-
level fine-grained control over the GPU, enabling developers to maximize performance across
many platforms[VulkanBench].

1.5 Graphic effects shaders

The shaders are used widely in several computer graphic applications, to produce a very wide
effects range. simple lighting models are generated with shaders and more complex uses, like alter
the hue, saturation brightness or contrast of an image, other effects can be image blurring, light
bloom, volumetric lighting, normal mapping for depth effects, bokeh, cel shading, posterization,
bump mapping, distortion, chroma keying (so-called "bluescreen/greenscreen" effects), edge
detection and motion detection, psychedelic effects, and many others.

1.5.1 History of shaders

The shaders are relatively recent phenomenon, but the history of effects on computer graphics
goes back to 1977 when “Star Wars Episode IV: A New Hope” was filmed, this movie did use some
computer graphics, mainly vector-based effects, even though what it did was well below the
capabilities of that time. Then in 1980, the computer division of Lucasfilm was created for image
processing in 2D and 3D graphics rendering by hardware[GraphicShaders].

8

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

In 1983 Lucasfilm separates the 2D and 3D into their own company and the 2D group was called
Pixar and this was sold to Steve Jobs in 1986. The 2D group created a hardware device called
Pixar Image Computer (PIC)[PIC] to perform image processing. The PIC used 4-way SIMD (single
instruction multiple data) operations to perform image processing on all four RGBA components
simultaneously, the actual OpenGL GLSL language, uses the evolution of the PIC SIMD
paradigm[GraphicShaders].

However, Pixar abandoned the project to focus on 3D rendering by hardware and created the
prototype REYES system hardware rendering[Reyes], at the end, the hardware idea was
abandoned, in favour of a general-purpose software solution, which became the package called
PhotoRealistic RenderMan (PRMan) rendering engine[GraphicShaders], this software is used by
Pixar for their own films among other things[RenderMan], however, RenderMan is not a real-time
rendering engine, see section 1.6.2 ray-tracing render engines.

It is important to highlight, that the modern shaders use, was introduced by Pixar with their
RenderMan interface specification in Version 3.0, originally published in May 1988. Before this, in
1984 Rob L. Cook from Pixar and co-creator of the RenderMan published “Shade Trees”
paper[ShadeTrees] in which he showed, how rendering process could be modified by user writing
a “scripts”, and inserting them in a suitable places in the rendering pipeline, this concept is still
valid today. This concept allowed to create a lot of effects without having to constantly be adding
new code permanently into the render. Quickly, this concept was used for commercial purposes, in
1985 this was used in the movie Young Sherlock Holmes, which created the Stained Glass Knight
shown in figure 1.5 and [sgk]. Other works was done until today, some of them are [slgh][rtps].

Figure 1.5. a shot from Stained Glass Knight, Young Sherlock Holmes movie, copyright Amblin entertainment/ILM/Paramount pictures
1985, All rights reserved.

9

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

1.5.2 Modern shader languages

By earlier 2000s, the graphic hardware had evolved enough for needed a flexible shading
capability that Rob L. Cook described in 1984 in his paper “Shade Trees”[ShadeTrees]. This fact,
carried out that the first implementations of modern shading languages appeared, this
implementations were Cg developed by NVIDIA[SysProgGrH][CgTutorial] and HLSL(High Level
Shader Language)[DirectX9intro] developed by Microsoft as part of its Direct3D graphics API, and
shortly after, GLSL (OpenGL Shading Language) was created by the OpenGL Architecture Review
Board (ARB) as part of OpenGL graphics API. Cg and HLSL were developed at the same time but
are separate products. All this languages, have the same functionality, vertex, geometry and
fragment or pixel shaders with a C-like language, and with them can be access to key data values
within the graphics pipeline.

1.6 Render engines today

In section 1.1 has been explained the concept of real-time rendering, but the rendering concept
can be split up into two main categories, real-time rendering treated in this project and pre-
rendering. The real-time rendering is also known as online rendering and pre-rendering as offline
rendering, offline rendering is used to create realistic images and movies where each frame can
take hours or days to complete. In this section, some of the current engines that use any of these
techniques will be listed, separated them by technique, in case of pre-rendering, some ray-tracing
engines will be cited, the engines, can be open-source or proprietary and some of them may be
are not only a pure real-time rendering engines, some of them can be game engines, since game
engines have a real-time rendering engine built-in.

Obviously a lot of engines exist nowadays, and is impossible to refer to all, therefore only some
them will be cited see[OffLineRenderersList] for offline rendering and[GameEngineList] for game
engines lists for more information.

1.6.1 Real-Time render engines

1.6.1.1 Ogre3D

Ogre (Object-Oriented Graphics Rendering Engine) is a real-time rendering engine, is not a game
engine the software only is real-time renderer, is written in C++ and the initial release was in
February 2005. Implements the following graphic APIs, Direct3D 9 and 11, OpenGL included ES2,
ES3 and OGL3+ and WebGL(Emscripten), is platform independent and support Windows all major
versions and WinRT, Linux, Mac OSX, Android and iOS. This software has been use in
professional video games development, the game torchlight of the Runic Games is an example of
this.

License: MIT
For more information: https://www.ogre3d.org/about/features

1.6.1.2 Open Scene Graph (OSG)

A powerful rendering middleware based on the theory of scene graph see section 4.2.4 scene
graph, is written in C++, OpenGL 1.0 to OpenGL 4.2 and OpenGL ES 1.1 and 2.0 are supported, is
cross platform running on small devices such as embedded graphics platforms to phones, tablets,
laptops and desktops and dedicated image generator clusters used in full scale simulators and
immersive 3D displays. This product is mainly used in the following fields: Visual simulation, virtual
and augmented reality, medical and scientific visualization, to education and games.

10

https://www.ogre3d.org/about/features

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

License: OpenSceneGraph Public License, is a relaxation of the Less GNU Public License (LGPL)
For more information: http://www.openscenegraph.org/index.php/about/features

1.6.1.3 Irrlicht

Is another real-time rendering engine, is written in C++ and the initial release was in 2003, is cross
platform and runs on Windows, Linux, OSX, Solaris/SPARC and have implemented several
graphics APIs: Direct3D 9.0, OpenGL1.2 to 4.x, the engine has its own software render layer
implemented as well.

License: zlib license
For more information: http://irrlicht.sourceforge.net/?page_id=45

1.6.1.4 Magnum

Lightweight and modular C++11/C++14 graphics middleware for games and data visualization.

License: MIT/Expat
For more information: https://doc.magnum.graphics/magnum/

1.6.1.5 Horde3D

Horde3D is a small open source 3D rendering engine. It is written in an effort to create a graphics
engine that offers the stunning visual effects expected in next-generation games, while at the same
time being as lightweight and conceptually clean as possible. This engine is supported by the
University of Augsburg. The engine only Implement OpenGL rendering API layer, hence is cross-
platform compatible written in C++.

License: Eclipse Public License v1.0 (EPL)
For more information: http://www.horde3d.org/features.html

There are others real-time rendering engines, although are not a pure real-time rendering engines,
since they are also game engines, some of them are, Urho3D, Godot, Unity, Unreal Engine,
cryEngine, so forth. Some of them are open-source and others are proprietary, for a non complete
game engine list, see[GameEngineList].

1.6.2 Ray-Tracing render engines

1.6.2.1 RenderMan

This framework has been developed by Pixar for the last 30 years, see section 1.5.1 and
[RenderMan]. RenderMan is a high performance renderer, is the state-of-the-art ray tracing
framework. Generates high-quality 2D images from 3D scene information typically created with a
3D design software such as Autodesk Maya, Katana or Houdini. This software send data to
RenderMan interface for rendering.

RenderMan has much in common with OpenGL, despite the two APIs being targeted to different
sets of users, OpenGL to real-time hardware-assisted rendering and RenderMan to photorealistic
off-line rendering with ray-tracing techniques. Both APIs take the form of a stack-based state
machine with conceptually immediate rendering of geometric primitives.

11

http://www.horde3d.org/features.html
https://doc.magnum.graphics/magnum/
http://irrlicht.sourceforge.net/?page_id=45
http://www.openscenegraph.org/index.php/about/features

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

Licence: Proprietary
For more information: https://rmanwiki.pixar.com/display/REN22/RenderMan

1.6.2.2 Mental-Ray

This engine was developed by mental images in Germany, the initial release was in 1989, in 2007
the company was acquired by NVIDIA and was rebranded as NVIDIA Advanced Rendering Center
(ARC). The company provides rendering and 3D modelling technology for entertainment,
computer-aided design, scientific visualization and architecture. However, Mental Ray has been
discontinued since 2017 by NVIDIA.

Like RenderMan works via plug-ins with a 3D design software such as Autodesk Maya, 3ds Max,
despite in this case, can works as stand-alone as well in remote or local machines.

Licence: Proprietary
For more information: http://www.nvidia-arc.com/index.php
 https://en.wikipedia.org/wiki/Mental_Images

1.6.2.3 POV-Ray

Is a ray-tracing engine which generates images from a text-based scene description, It was
originally based on DKBTrace[DKBT] programmed by Commodore Amiga. The initial release was
in 1991 and is a cross-platform engine written in C++. Pov-Ray is an open-source software.

Licence: AGPLv3.
For more information: https://www.povray.org/

There are other rendering engines such as, V-Ray, Arnold, LuxRenderer so forth. for a non
complete list see[OffLineRenderersList].

1.7 Project goals

The main objective of the project is to build a real-time rendering engine with a modern graphics
approach completely decoupled from the graphic API and cross-platform, to achieve this approach,
object-oriented programming and software engineering in general will be used, defining different
layers and an interface that will be implemented with a specific graphic API, in this way, the
implementation of the graphic API is decoupled from the rest of the engine.

So, the project is focuses on develop the initial pillars of a real-time rendering engine maintaining a
scalable structure so must be possible expand or add more features to the engine in the future
without changes the main engine structure. Due to implementing a rendering engine is a relatively
big and complex software project, this work aims to highlight the initial steps to build such software
from scratch from a point of view as simplified as possible.

Obviously there are good books and other documentation about this topic, but mostly are more
complex, however, should be consulted for more information. Throughout the project reference will
be made to any of this documentation, see section 7 bibliography and resources, and see section
3 engine architecture and features.

12

https://www.povray.org/
https://en.wikipedia.org/wiki/Mental_Images
http://www.nvidia-arc.com/index.php
https://rmanwiki.pixar.com/display/REN22/RenderMan

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

1.8 Document structure

The document is structured as follows, the section 1 introduces the real-time concept and the real-
time rendering engine, jointly with a graphics hardware review from the beginning, the section also
introduces the different graphics APIs, which can be used to program the different graphic
hardware present nowadays in a common manner. The history of the effects that is very related to
shaders programming is also discussed. Finally a small revision of some current real-time
rendering engines and ray-tracing engines is made, jointly with the project goals. The section 2
review the basics of real time rendering, such as the render pipeline, the GPU architecture and
how to program it. The section 3 exposes the engine architecture and their features, to finally
discuss in section 4 all the design and implementation of the engine. Section 5 shown with a
simple example, how a specific application that uses the engine should be structured. Section 6
discuss the project summary and future works and section 7 collect the bibliography and
documentation used for this project.

2 Basics of real-time rendering

2.1 The rendering pipeline

Real-time rendering engines perform different steps repeatedly, displaying rendered images at a
rate of 30, 50 or 60 frames per second to provide the illusion of motion, to get this, a 3D virtual
scene is described and a virtual camera is positioned and oriented to produce the desired view,
then various light sources are defined jointly with the visual properties of the surfaces with
materials and textures, finally all this is taken to the screen of the device making a rasterization of
triangles, all this can be seen like the steps of rendering. This rendering steps are implemented
using a software/hardware architecture known as a pipeline or rendering pipeline.

The pipeline is just an ordered chain of stages where each stage has specific purpose, operating
on a stream of input data items and producing a stream of output data. The pipeline has a parallel
architecture, so each stage can typically operate independently of the other stages. This
parallelization occurs both within each stage and globally. This implies that the pipeline speed is
determined by the slowest pipeline stage.

The render pipeline is accommodate by the GPU for rendering and describes what steps a
graphics system needs to perform to render a 3D scene to a 2D raster images onto display screen,
the steps to achieve the 2D images onto display screen depend on the software and hardware
used, so, the render pipeline refers to the state of the art methods used for rendering, and
consequently does not exist a universal render pipeline, each graphic APIs tends to unify similar
steps to abstract the underlying hardware, and the most of the render pipeline steps are
implemented in graphic accelerator hardware. Hence, the render pipeline has two different levels,
one is the software API level, such as OpenGL, Direct3D or Vulkan, that provide a logical
frameworks of how the 3D scene must be rendered, and the other is the real hardware
implementation level that it depends the underlying hardware in the system, so, the render pipeline
performance is strongly linked to the hardware architecture.

Here, is shown a conceptual stages of the render pipeline without reference to any specific graphic
API or specific hardware, to explain how the rendering pipeline transforms data to achieve a 2D
raster scene from a conceptual point of view.

13

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

Figure 2.1 depicts how the geometric data changes when it passes through the various stages of the rendering pipeline

The previous steps to the application stage are offline tools used to create the materials, textures,
models and scenes, that will be rendered by the engine. This tools can be different design
applications like Blender, Maya, 3ds Max, Gimp, Photoshop and so on.

The application stage is responsible to feed the geometry processing stage, discussed below, the
application stage occurs in CPU level and is possible to identify three main roles, the visible mesh
are identified and send to the GPU, hence only the visible mesh are rendered. The geometry are
send to the geometry stage via some API rendering call command like gl*Draw* in case of
OpenGL. Finally this stage makes a shader parameter and render states control, hence the
uniform parameters passed to the shader are configured by the application stage to ensure that
each geometry is rendered properly.

The geometry stage break down the mesh into individual vertices, which are processed largely in
parallel. This stage occurs in GPU and implements the following stages.

• Vertex shader, this stage is responsible for transformation and shading/lighting of
individual vertices, the lighting applied in this stage is called Gouraud shading. On modern
GPUs the vertex shader has full access to texture data. In this stage is applied the type of
projection, among others. This stage is programmable.

• Geometry shader, is optional stage programmable that operates on entire primitives such
as triangles, lines and points in homogeneous clip space.

• Stream output stage is present in some GPUs, and permit amazing visual effects to be
achieved without the aid of CPU, an example of this can be the hair rendering.

• Clipping stage, this stage clipping the primitives are partial or totally outside the visual
volume defined inside the frustum, the frustum is a shape in the form of a pyramid with a
cut off top. When the primitive is totally outside is discarded with frustum culling, when the
primitive are partially outside is clipped, identifying vertices that lie outside the frustum and
then finding the intersection of the triangle’s edges with the planes of the frustum. These

14

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

intersection points become new vertices that define one or more clipped triangles. This
stage is configurable.

• Screen mapping stage, scales and shifts the vertices from homogeneous clip space into
screen space. This stage is fixed and non-configurable.

• Triangle set-up stage, this stage is non-configurable and the rasterization hardware is
started for convert the triangles into fragments.

• Triangle traversal stage, each triangle is broken into fragments and usually each fragment
correspond to a pixel, but this depends the antialiasing techniques since multiple fragments
may be created per pixel. This stage is fixed and non-configurable.

• Early z-Test stage, in the older GPU designs the z-test was done along with alpha testing,
after pixel shader, but in modern approaches is done before pixel shader and this is the
reason that is called early z-test. This stage checks the depth of the fragment and is
discarded it, if it is being occluded by the pixel already in the frame buffer. This stage is
configurable.

• Pixel shader, this stage has different jobs, for example, apply the light in each fragment
run the per-pixel lighting called Phong shading, determine the fragment’s color, can also
discard transparent fragments. This stage is programmable.

• Raster Operation stage, this stage is configurable, mainly this stage converts triangles
into fragments that are shaded, passed through various tests (z-test, alpha test, stencil test,
so forth.) and finally blended into the frame buffer.

For more information, see[GengArchPipeLine].

2.2 GPU Programming

A GPU is designed specifically to work with a high degree of parallelism to perform data-parallel
computations on very large datasets. In recent years, all GPUs employ the general principles of
SIMT(single instruction multiple thread) parallelism in all architecture designs. The SIMT
classification was formulated by NVIDIA and has been added to Flynn’s taxonomy to refer to the
design of graphics processing units (GPUs). However, the design is not unique to NVIDIA GPUs,
other GPU vendors also apply SIMT, although the specifics of GPU designs vary from vendor to
vendor and from product line to product line in significant ways.

The SIMT is basically a combination of SIMD parallelism with vectorized ALUs with MIMD
parallelism. The parallelism within the GPU, occurs so that the elements are processed in any
order to obtain the final result.

The SIMD vectorization perform data-parallel computations, so, is possible to depict an example of
this with a two potentially very large arrays of input vectors, that they produce an output array
containing the scalar dot products of those vectors. See the following code snippet, this code has
been extracted from [GengArchGPUprog].

void DotArrays_ref(unsigned count, float r[], const float a[], const float b[])
{
 for(unsigned i = 0; i < count; i++) {

//treat each block of four floats as a
//single four-element vector
const unsigned j = i * 4;
r[i] = a[j+0]*b[j+0] //ax*bx
+ a[j+1]*b[j+1] //ay*by
+ a[j+2]*b[j+2] //az*bz
+ a[j+3]*b[j+3]; //aw*bw

 }
}

15

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

This code when it is executed with a SIMD parallelism, the computation performed by each
iteration of a loop is independent of the computations performed by the other iterations, so that the
computations occurs in any order instead of performing the computations one by one. So with a
SIMD approach, it is possible to make different computations simultaneously, so they if done, four,
eight or sixteen computations simultaneously, then we are reducing the iteration count by a factor
of four, eight or sixteen, respectively. This concept in a GPUs are carried to the extreme adding a
large number of computations simultaneously, thus if we had a GPU with 2048 lanes and the input
array in the code snippet example contained 2048 elements or fewer, would be possible literally
execute the entire loop in a single iteration.

A GPUs contains many of these SIMD units, instead of 2048 lanes, each SIMD unit has typically
eight or sixteen lanes, so, a modern GPU is capable of processing literally thousands of data
elements in parallel, hence, this architecture makes the GPUs very suitable to compute graphics
data, since a GPU must deal with millions of pixels when a pixel shader is applied or with hundreds
of thousands or even millions of 3D mesh vertices when the vertex shader or the geometric shader
comes into play, in each frame at 30 or 60 FPS. At the same time, modern GPUs also expose their
computational power for a general-purpose use, where one of the main pillars is the vectorization,
this phenomenon is known as GPGPU (General-Purpose Computing on Graphics Processing
Unit).

In the previous section it has been explained the GPU pipeline, and up to this point, it has been
explained the common architecture of GPUs nowadays, along its computational power, appropriate
to manage graphics data. Hence, the programmable shaders comes into play, when we want to
program a GPU for graphics, this programs modify the behaviour of the pipeline stages, see figure
2.1, the programmable stages concretely, and section 1.5.2 modern shader languages.

The following sections introduces the basics of the three types of shader programs, available in
modern graphic approaches, which have been illustrated in figure 2.1, mainly, a shader takes a
single element of input data and transforms it into zero or more elements of output data.

2.2.1 Vertex Shaders

The vertex shader is executed per each vertex, so a vertex shader can only access the vertex that
it is managing, so, fetching the data of another model vertex is not possible. At the vertex shader
input there is a vertex with its attributes, these are computed, to get a vertex transformed or
illuminate, if the lighting is computed within the vertex shader. Finally this type of shader can not
create new vertices.

2.2.2 Geometry Shaders

The geometry shader is capable of generate new primitives including new vertices, so this type of
shader generate new geometry, so that is possible to convert a determinate type of primitive into
another. At the geometry shader input there is a single n-vertex primitive, so n=1 will be a point,
n=2 will be a line segment, and n=3 will be a triangle. The output could be zero or more primitives,
thus it could convert points into two-triangle quads, or it could transform triangles into triangles but
optionally discard some triangles and so on.

2.2.3 Pixel Shaders

The pixel shaders are applied to each fragment, this fragment have been interpolated from the
three vertices of the triangle from which it came during the rasterization process. The output of a
pixel shader is the final pixel color that will be written into the frame buffer, it is worth pointing out

16

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

that a pixel shader is also capable of discarding fragments explicitly, where in which case it
produces no output.

2.3 Scene graph and spatial data structures

A rendering engine is a complex piece of software and there is no standard form of design.
However, there are some fundamental design philosophies that are largely linked to the design of
the underlying 3D hardware. A common and efficient approach is to use a layered architecture, as
will be seen in section 3.2 engine architecture. The layer that implement the graphic API
independent rendering interface provided by the underlying layer of the rendering engine is simply
focused on representing a collection of primitives efficiently, however, this layer does not take into
account that parts of the scene are visible, the visible parts of a scene are those that are inside the
camera frustum, the responsibility of determining which geometries are visible during the rendering
process, is the responsibility of the top layer, where they combine different techniques to analyse
which parts of the scene are visible during the rendering process, to achieve efficient rendering,
since rendering parts are not visible, it makes no sense since it is totally inefficient.

As seen in section 2.1 the rendering pipeline, in clipping stage, the render pipeline contains
configurable stages that allow an explicit sacrifice of all objects does not lie within the camera
frustum, this is known as frustum culling, however, this is not enough since making an explicit
sacrifice of all objects in complex scenes are usually an incredible waste of resources. This leads
to the need to have a data structure that manages all the geometry of the scene in an upper layer
that decides which objects are visible to send them to the lower layer to be rendered, thus
increasing the rendering efficiency put that only visible objects are rendered.

This data structure is known as a scene graph, with it, is possible to quickly and efficiently discard
large parts of geometry that are nowhere near the camera frustum prior to performing detailed
frustum culling. This structure is also used to order the geometry of the scene.

Normally, a scene graph in a real-time rendering engine is structured with a tree-like graph, using
spatial data structures. There are different types of spatial structures such as quadrupeds and
octrees, BSP trees, kd trees and spatial hashing techniques, this leads to different types of scene
graphs, the structure of data to be used will depend on the nature of the scenes to render.

17

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

3 Engine architecture and features

3.1 Introduction

The engine development approach is totally decoupled of the graphic API, this decoupling allows to
be able to implement the rendering behaviour with different existing graphic APIs, without
modifying anything of the common underlying layers, such as are Core layer and Graphics layer.
To get this, both the Core and Graphics layer mainly declares an interface that finally is
implemented in the GraphicsOGL3 layer with a determinate graphic API.

The graphic API implementation, has been done with OpenGL 3.3 only, due to the engine has a
modern graphics approach. Along the document, all will be written with the same approach, that is
to say, independent of the graphic API used, hence, no reference will be made to anything that is
specific to OpenGL, thus avoiding writing an OpenGL tutorial, since, this is not the objective of this
work. Nevertheless, in the section 4.3.1 the OpenGL functions used are referenced, however no
explanation will be made in this regard. The project target is to design a modular rendering engine
totally decoupled of the graphic API used in a simplest manner as possible, to get an engine with a
good scalability.

Obviously, the design shown in this project is not the only possible and only is the principle that
how can design a real-time rendering engine from scratch. The project, try to simplify the scenario
to the fullest without loosing a good scalability, and some techniques that will show here should be
improved to get a better efficiency as will seen later.

At the same time, the proposed engine, is not the only neither the better, simply is a possible
manner to front facing this kind of project from scratch, in a simplified way without losing scalability
being important to reach more efficiency in the future, and other people, sure they could be
contribute with a lot good ideas.

The project embraces different topics to get the completely product, mainly covers the essential
architecture of the engine to store and manage geometric data, the geometric transformations
needed to ordering the objects in a scene, jointly with the viewing transformations to build a
camera to handling a 3D viewing. A system effects is proposed working with GLSL 3.3 and an OBJ
file format parser. Finally the engine implements an own mathematical library.

All the real-time simulations such as games, or other graphics applications require a camera from
the point of view of which the 3D perspective scene is rendered. The engine implements two
camera models, perspective and orthographic, although it uses perspective projection camera
model by default.

The effects are an important feature in a real-time rendering engine, because they make the
rendered scenes more realistic and consequently closer to reality, although sometimes simply
make them more spectacular.

The effects involves different things related such as textures, materials and lighting model, all this
is implemented within the engine from an essential point of view, being scalable if applicable, is
worth pointing out, that in modern graphics approach all this is ruled via shaders, so the shaders
has an important role here, consequently the shader system proposed, supports the effects
implemented with GLSL3.3.

At the same time, due to the constant technological advances together with the constant changes
that often happen in a software project, becomes necessary mainly carefully architect the

18

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

rendering interface and obviously, this also affects the way of the new visual effects are added to
the engine, so that the impact of changes must be minimal and limited to a small section of the
engine when a new effect is added.

The mechanism proposed to manage the effects inside the engine is discussed in the section
4.2.6 effects, the mechanism proposed here is an adapted and simplified version of the
mechanism proposed by the Wild Magic 5.17 engine, see [geomTools], thought Wild Magic does
not works with GLSL and the mechanism proposed by the engine is much more complex. It is
important to highlight, that the mechanism implemented within the Wild Magic 5.17 is not
explained nowhere I know, although exists a book[3DGEArch], where is explained an older version
of the engine, but the effects system is quite different to the implemented in the Wild Magic 5.17,
so, this project document would be a document where is explained a simplified effect system
based on Wild Magic 5.17 simplified and adapted to GLSL (OpenGL Shading Language). At the
same time, this book[3DGEArch] has been useful as well, during all the project development as a
source of inspiration in some things, among other sources, see section 7 bibliography and
resources.

3.2 Engine architecture

This section introduces the real-time rendering engine architecture main parts, the project
approach seeks an implementation of a rendering engine with an essential structure with an object
orientation paradigm, the term essential in this case, must be understood as the initial pillars of the
engine. The figure 3.1 shows this essential structure. Due to this implementation target, some
render engine important components have been omitted initially, to simplify the implementation,
however, are not completely omitted since the basic components are implemented leaving it ready
for future works, so, they will be present along design and in the future they can be expanded with
minimal impact on the engine architecture, the engine implementation will be discussed in section
4 on this document.

Mainly, the parts that have been omitted are the scene graph and spatial data structures
management, these are used to organize the scene objects in a hierarchical way via tree-like
structure, with acyclic graphs usually to render scenes in efficient manner, since when rendering a
lot objects in graphical application in a complex scene a linear method like an array or a vector to
storage renderable objects becomes less useful.

However initially, a linear method with a vector to storage renderable objects are implemented in
conjunction with the assumption that all objects are visible initially, since neither geometry discard
techniques are implemented, this linear method should look like a render queue, that in the future,
will be replaced with a complete scene graph implementation, with the geometry discard
techniques corresponding to improve the rendering efficiency.

The engine is mainly organized with three layers or modules, see figure 3.1, each module has a
name that defines the global functionality in the engine, this modules are defined as follows: Core,
Graphics and GraphicsOGL3. This modules are related between them starting from bottom layer
to up layer, in this case the Core layer is related to Graphics layer and Graphics layer is related to
GraphicsOGL3 layer, and so, all the modules build the engine. Henceforth and during all this
project both terms module and layer will be used, referring to the same concept. The reason to split
the engine with modules pursue the goal to group the functionality of rendering engine by topics
and software level, at the same time, to get more definition granularity the modules are split in
submodules internally using name spaces.
Below is a brief description of each module that will be expanded in section 4 engine modules
definition and implementation.

19

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

The Core module, is the lowest software level of the engine, maintains the system functions a
general application framework and common utility functions like mathematics library especially
designed and implemented for this render engine, with the common functionalities for computer 3D
graphics, all is separated in submodules.

The Graphics module, is build on top of the Core module, is a platform-independent module that
defines different submodules with different data structures and mechanism to store and manage
the geometry data in computer memory, before being sent to the graphic card memory to be
rendered.

The GraphicsOGL3 module, implements the interface defined in the Graphics module, this
implementation builds the bridge between the rendering interface and OpenGL in this case, this
module is platform-dependent and could be implemented with different manner with other graphic
API like Vulkan or Direct3D as well, making different modules for each graphic API, but in this
project is implemented with a modern computer graphics paradigm with OpenGL 3.3 only.

Each module and submodule is defined as a name space, with the same name as the module and
submodule, and all name spaces are inside another name space called “Flwre::” this acronym
defines the rendering engine name “Flow Render Engine”.

3.2 Rendering interface approach

The rendering interface main goal, is to provide an easy-to-use entry for coding graphics both in
2D and 3D. This approach must to enable the developer should not bother about graphics API
specific details. Therefore the interface abstracts graphic device features in a graphics-API-
independent way.

The rendering interface itself, provides all common rendering operations like creating, vertex and
index buffers, textures, shaders, with a factory approach, finally this interface is implemented in the
GraphicsOGL3 module with the OpenGL graphic API, which can be loaded and switched at
runtime, therefore this module must be seen as a plug-in. The interface concept makes the
Graphics module completely independent from the underlying hardware and any graphics API like
OpenGL, Direct3D or Vulkan.

Concretely in this project the interface is implemented with OpenGL 3.3 only, however, the
interface approach leaves ready the engine to be implemented with other graphics APIs like Vulkan
or Direct3D, but in case to be implemented it, with Direct3D, the engine and the applications would
not be portable to other platforms for obvious reasons, since Direct3D is a graphic API for Microsoft
Windows only.

The following figure, depicts the structure discussed above, and how the applications use the
rendering engine in conceptual manner, the diagram shows GraphicsVK and GraphicsDX
modules, but this kept in grey color, due to not implemented in this project, however it shows for
better understanding.

20

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

Figure 3.1 depicts the engine architecture and how the application using the engine in conceptual manner.

3.3 Fluent interface approach

The fluent interface approach, is a method for designing object orientated APIs based on method
chaining to the purpose of making the source code more readable close to that of ordinary written
prose, this approach creates a domain-specific language within the interface implemented, see
[fluentInterface].

A fluent interface is implemented, using method chaining to implement method cascading in
languages that do not natively support cascading like C++, concretely by having each method
return a pointer to itself.

The engine is implemented with C++ with this approach, so, the API engine allows write code like
this:

triangle = new Flwre::Graphics::SceneGraph::PrimitiveMeshShapes();
triangle->Triangle().create();

instead of:

triangle = new Flwre::Graphics::SceneGraph::PrimitiveMeshShapes();
triangle->Triangle();
triangle->create();

However, the latter would also be valid, but the engine is implemented with fluent interface
approach, so more readable and elegant code is achieved.

21

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

3.4 Design patterns used

Design patterns in the context of software engineering solve specific design problems and make
object-oriented designs more flexible, elegant and ultimately reusable, since be reused solutions
that have worked in the past in different scenarios. See[dPatterns1][dPatterns2][dPatterns3] for
more details on the design patterns used in this project.

In the render engine development, have been used design patterns to solve some scenarios to
keep the code clean and focused on a singular purpose. A long this document is explained where
have been used it the following design patterns.

3.4.1 Decorator

A decorator is defined as an entity that encapsulates and hides the underlying complexity of
another entity by means of well-defined interfaces. Mainly a wrapper fulfils the need of a simplified
and specific programming interface. An example of this can be a C++ interface that acts as a
wrapper around a C-language interface. The decorators, in this project have been applied to the
managers see section 4.2.2.1 managers.

3.4.2 Abstract Factory

This pattern provides an interface for creating families of related or dependent objects without
specifying their concrete classes. To achieve this, an interface is provided known as abstract
factory, which can used by clients to create a determinate objects families related to abstract
factory type. To create this objects, the clients don’t know about concrete classes which gets
instantiated, so, the clients sees only the created object interfaces, abstract products. The concrete
factories implement the abstract factory interface, so, only the concrete factories know which
classes should instantiate, these are known as concrete products, see section 4.2.2.1 managers
to see how this pattern is applied to the engine.

3.4.3 Singleton

When one class instance is allowed within a system only, then the singleton pattern comes into
play. The singleton pattern ensures, that a class has only one instance and provides a unique
access point to the class. The main characteristics are: the class constructor is always declared as
a private to ensure no one else can make an instance of it. The pattern itself is responsible to
provide a global access point to its instance, to accomplish this, the class provide a method which
creates the global instance. This pattern is applied in different engine parts, see sections 4.2.2.1
managers.

3.5 Engine features

• Written in pure C++ and totally object oriented.
• API with fluent interface approach for more readable code.
• Real-Time 2D and 3D rendering using OpenGL 3.3 only.
• No third-party mathematics libraries used, own implementation mathematical library.
• Platform independent. Initially runs on Windows only.
• Builds on various compilers, such as MSVC and GCC 5.1+ under windows.
• Vertex and Fragment shader support written in GLSL 3.3, with a certain structure, which the

engine will recognize.
• Direct import mesh file format: Wavefront OBJ with own parser with triangulate faces

loaded supported only, no third-party libraries used.
22

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

• Direct textures import in several image file formats: JPG, PNG, TGA, BMP, PSD, GIF, HDR,
PIC via third-party library to import images, see[stdImage] std_image.

• Camera models supported: perspective and orthographic projection.
• Textures 2D supported.

◦ Single texturing and multi-texturing supported.
• Sky-boxes support.
• Local Effects.

◦ Lighting.
◦ Materials.
◦ Normal Maps.

4 Engine modules definition and implementation

This section presents the completely engine architecture and the modules definition in conjunction
with its implementation. Along the document will be explained the complete engine implementation,
showing the design and the modules implementation.

It is important to bright out that each module can be seen like a layer as well, and at the same time
each of them becomes in a system library if the engine layers are compiled as dynamic libraries
manner.

4.1 Core module

The Core module defined within the namespace Flwre::Core, works at the lowest software level of
the engine, this module defines different sub-modules to manage system functions as follows:

Submodule Short description
Engine Defines a common application context and singleton

template.

Math A set of headers that will define the engine math
library with the essential necessary mathematical
functions related with computer graphics.

Platform A set of headers that will define OS-dependent data
types and macros to define symbol visibility in the
dynamic shared objects (DSO) for different platforms.

Utility Defines timer, filesystem access, engine log and
dynamic loader mechanism to allows runtime
dynamic libraries loading.

The following sections exposes more deeply the sub-modules presented above.

23

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

4.1.1 Engine submodule

This sub-module defines a base application context abstract class and a singleton class template,
jointly are presented all components defined within the utility sub-module, see figure 4.1 UML
diagram. The utility sub-module will be explained is the section 4.1.4.

Figure 4.1 depicts the engine sub-module in an UML diagram with its associations in a simplified manner.

4.1.1.1 Application context

The engine is designed to handle a single application and the application context class defines the
low-level common pointers used in the application, this class contains the minimum support for all
applications types, so this class is the base class of the any application that it use the engine,
initially it contains a minimum but sufficient definition for the current implementation.

For the time being windowed applications for displaying the rendering results are supported only,
see section 4.2.3 windowed application sub-module, however with this approach could be
possible implement another applications type inside the engine, for example a console application
that do not requires a window for displaying results since the engine could has different tools
implemented.

The application context class is abstract and defines an interface with two pure virtual methods,
OnInitialize() and OnTerminate() without committing to a particular implementation since the
behaviour depends in certain manner to the type of application specialization and the behaviour
implemented in derived classes, so this methods are overrided in the application that use the
engine to initialize and terminate the resources used in the application itself and at the same time
also those of the engine as well, when the application is started see example in section 5
applications over the engine.

24

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

At the same time, has the common pointers to File System, Logging, Timer associations and
string variables to store application name, application path and application version.

4.1.1.2 Singleton template class

Defines a template for creating single-instance to global classes, in this way all classes derived of
singleton template, can be accessed from anywhere of the engine via public pointer to the
singleton instance, different engine components can be accessed with this technique, see figure
4.1 and section 4.2.2.1.1 buffer managers.

The following code snippet shows an example how to access the class TimerFlwre’s
showFrameRate() method with a singleton manner approach.

Flwre::Core::Utility::TimerFlwre::getSingletonPtr()->showFrameRate();

4.1.2 Math submodule

The name space Flwre::Core::Math holds the mathematics library, the library has been custom
designed for the engine, and it provides different linear algebra related types like vectors and
matrices jointly with the common functions to generate the common geometric and viewing
transformation matrices, since that the render engine is only implemented with OpenGL for the
moment, has been implemented a right-handed system in the transformation matrices only. The
library is designed with a template classes approach and is a C++ header-only library and thus
does not need to be compiled, basically the library is a set of headers.

The template implementation focusing allows to become independent of any particular data type,
so vector and matrix classes are molds with a generic methods implemented, so there is a single
definition for vectors and matrices and can be defined in this case with different kinds of numerical
data types like integers, floats and so on, for instance: vector<int>, vector<float>,
matrix4<float>, matrix4<int> among others are possible, see table 1.1.

4.1.2.1 Basic functions

The basic constants and functions implemented are:

◦
◦
◦

◦ Function to conversion radians into degrees:

▪

◦ Function to conversion degrees into radians:

▪

◦ and functions, with the names flmax and flmin.

The and functions are re-implemented to avoid the interferences created with windows
header file and its max min definition macros, reimplement the functions is not the better solution
but for the moment it stays like this.

25

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

4.1.2.2 Vectors

Vectors are of fundamental importance in any 3D engine, since are used to represent points in
space, such as the location of objects or the vertices of a triangle mesh for instance, although are
used as well to represent directions such as the orientation of the camera or the surface normals of
a triangle mesh as will be seen later.

The vectors are represented in various types in the computer graphics, usually are represented by
two-dimensional, three-dimensional, or four-dimensional components. Although more abstract
definitions are possible, here the definition is restricted to vectors defined by -components of real
or integer numbers mainly, where is typically 2, 3, or 4 as been explained above, see section
4.1.3 platform submodule table 1.1.

An -dimensional vector can be written as:

,

where the numbers are called the components of the vector . This is a conceptual definition of
a vector, but usually the components be labelled with the name of value types that contains, for
instance, the components of a three-dimensional point could be written as and . Down
below is explained how this scenario has been implemented within the engine.

The vectors are implemented with a hierarchical specialization, the base class vector implements
the common operations related with vectors and the specializations defines vectors with two-
dimensional, three-dimensional, or four-dimensional quantities of components with its related
operations, see UML diagram below.

26

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

Figure 4.2 depicts the vectors template classes with an UML diagram.

The vector base class implements the following operations:

• Constructors to build an empty vector and copying one vector to another vector passing it
as parameter.

• Data access method to retrieve the pointer where starts the array that represents the
vector, see getData method.

• Setters and getters for a given vector value position, see at and set methods.
• Addition method for a value in a given position in the vector, see add method.
• Basic arithmetic operations: product by a scalar jointly addition and subtraction with another

vector. Although in computer graphics the common operation is the product.
• Equality operators between vectors.

27

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

• Dot product, this is useful to find out the angle between two vectors and determine whether
two vectors are perpendicular.

• Vector normalization.
• Vector magnitude, see length method.
• Method to retrieve the number of elements that contains a given vector, a vector3 has three

elements and so on.

The specializations defines access methods wrapped in a conceptual names definition, so the
methods like x(), y(), z() and r(), g(), b() or s(), t(), setX(), setR(), setW() or w() which manipulate
homogenous coordinates can be found among others in different vector specializations classes.
However this is not the better scenario since some this methods are global and could be
implemented in the base class, but for the moment stays like this.

Finally in the vector3 specialization class the cross product is implemented and in the vector4 exist
methods to convert a vector4 to vector3 see xyz() and rgb() methods.

4.1.2.3 Matrices

In 3D graphics programming the matrices are very important, since in a 3D graphics engine
calculations can be performed in a multitude of different Cartesian coordinates spaces, so moving
from one coordinate space to another requires the use of transformation matrices, the
transformations are explained in section 4.1.2.8, and to begin with here is explained the matrix
container to be used within the engine to achieve the transform calculations.

An matrix is an array of numbers having rows an columns. If , then is said
that the matrix is square and to refer to a determinate entry of is written , where that
refers to at the -th row of the -th column. As an example, suppose that is a matrix, then
could be write:

The entries for which are called the main diagonal entries of the matrix. A square matrix
whose only non zero entries appear on the main diagonal is called a diagonal matrix, when there
are only ones on the main diagonal and zeros elsewhere of the matrix, then is called identity matrix

 or elementary matrix, this matrix is common used when we are working with transformations as
will seen later.

Down below is explained how this scenario has been implemented within the engine. The matrix
class template is implemented with the same approach as vector template class, however for the
moment matrix class temple is not specialized yet, in the section 4.1.2.8 will be specialized to
implement the common transformations matrices with matrices, see UML diagram below.

28

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

Figure 4.3 depicts the matrix template base class with an UML diagram.

The matrix base class implements the following operations:

• Constructors to build an empty matrix, an identity matrix and copying one matrix to another
matrix passing it as parameter.

• Data access methods to retrieve a pointer where starts the array that represents the matrix,
see getData method.

• Setters and getters for a given matrix value position by column and row, see at and set
methods.

• Addition method for a value in a given position in the matrix getting it by column and row,
see add method.

• Basic arithmetic operations: product by a vector or another matrix jointly addition and
subtraction with another matrix.

• Equality operators between matrices.
• Matrix assignment operator.
• Matrix transposed.

Although has been implemented different arithmetic operations, both in vectors and matrices is
important to highlight that the major common operation in graphical applications is the product or
multiplication.

Both the vector base class and the matrix base class, overloading the operator << in friend
manner, the insertion operator << is used to output streams and in this case is overloaded to
display the data contained in a determinate vector or matrix instance, this is used in the unit tests
for the data visualization on the standard output via cout stream object, defined to access to the
standard output.
The key word friend defines the operator outside the class scope, for this reason is not shown in
UML diagrams but has access all the class members, even if are private or protected, so can get

29

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

display the vector data or matrix data. The operator must be overloaded to recognize an ostream
on the left and a vector or matrix on the right.

See the code snippet example implemented in a vector template class:

/** @brief Print vector on standard output.
* @param o on the left
* @param reference to a vector on the right
* @return the vector send to the standard output
*/
inline friend std::ostream& operator<<(std::ostream& o, const Vector<T, size>& vector)
{
 std::cout.precision(9);
 o << "(";
 for (size_t pos = 0; pos != size; pos++) {
 if ((pos + 1) < size) {
 o << vector.at(pos) << ", ";

}
else {

 o << vector.at(pos);
}

 }
 o << ")" << std::endl;
 return o;
}

All methods in mathematical library, has been implemented with inline manner, to get more
efficiency when used in the engine, for more details see source code implemented.

4.1.2.4 Vectors and matrices unit tests

To verify the correct mathematical library behaviour, has been implemented some unit tests to
determine whether the library is fit for use. Basically the unit tests try different kind of calculations
with vectors and matrices that will be used later in the engine.

Below is shown the unit test for the vectors.

PS D:\Release> .\UnitTest_Vector.exe --log_level=all
Running 1 test case...
Entering test module "boost_test_macro_overview"
D:\nitTest_Vector.cpp(33): Entering test case "Unit_Test_Math_Library_FlowRenderEngine"

* Unit Test for Vector class template -- Math library Flow Render Engine -- author: Xavier Figuera - 22/10/2019 - : *
* Vector3 v1 = (1.0f, 2.0f, 3.0f) *
* Vector3 v2 = (2.0f, 2.0f, 3.0f) *
* Vector3 v3 = (1.0f, 2.0f, 3.0f) *
* Vector3 v8 = (4.0f, 6.0f, 8.0f) *
* Vector3 v9 = (2.0f, 4.0f, 6.0f) *

v0 = (8, 6)

v1 = (1, 2, 3)

v1.set(0, 14.0f) -- v1 = (14, 2, 3)

v1.add(1, 2.0f) -- v1 = (14, 4, 3)

v1.at(3) -- v1 = 3
v1[0] = 14
v2.set(0, v1[2]) = (3, 0, 0)

v1 = (14, 4, 3)

v3 = (1, 2, 3)

D:/UnitTest_Vector.cpp(85): error: in "Unit_Test_Math_Library_FlowRenderEngine": check v1 == v3 has failed
D:/UnitTest_Vector.cpp(86): info: check v1 != v3 has passed
D:/UnitTest_Vector.cpp(87): info: check v1 != v2 has passed
v1.set(0, 1.0f) and 1.set(1, 2.0f) -- v1 = (1, 2, 3)

D:/UnitTest_Vector.cpp(92): info: check v1 == v3 has passed

30

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

D:/UnitTest_Vector.cpp(93): error: in "Unit_Test_Math_Library_FlowRenderEngine": check v1 != v3 has failed
v1 = (1, 2, 3)

v4 = v1 * 5.0f -- v4 = (5, 10, 15)

v5 = v4 / 5.0f -- v5 = (1, 2, 3)

v6 = v5 + v5 -- v6 = (2, 4, 6)

v7 = v5 - v1 -- v7 = (0, 0, 0)

v4.length() = 18.7083

D:/UnitTest_Vector.cpp(110): error: in "Unit_Test_Math_Library_FlowRenderEngine": check v4.length() == sqrtf(pow(5.0f, 2) + pow(10
.0f, 2) + pow(15.0f, 2)) has failed
-v4 = (-5, -10, -15)

Normalized vector **********************************
v8 = (4, 6, 8)

v8.normalized() = (0.371390671, 0.557085991, 0.742781341)

v8 = (4, 6, 8)

v8.normalized().length() = 1
D:/UnitTest_Vector.cpp(122): error: in "Unit_Test_Math_Library_FlowRenderEngine": check v8.normalized().length() == 1.0f has faile
d
v8.normalize() = (0.371390671, 0.557085991, 0.742781341)

End normalized vector *******************************
Dot product ***
v1 = (1, 2, 3)

v9 = (2, 4, 6)

v1.dotProduct(v9) = 28
D:/UnitTest_Vector.cpp(136): info: check v1.dotProduct(v9) == 28.0f has passed
D:/UnitTest/UnitTest_Vector.cpp(137): error: in "Unit_Test_Math_Library_FlowRenderEngine": check v1.dotProduct(v9) == 28.5f has
failed
Dot product presicion
D:/UnitTest_Vector.cpp(139): error: in "Unit_Test_Math_Library_FlowRenderEngine": difference{0.00357144} between v1.dotProduct(v9)
{28} and 28.1f{28.1000004} exceeds 1e-009%
D:/UnitTest_Vector.cpp(140): error: in "Unit_Test_Math_Library_FlowRenderEngine": difference{3.56947e-005} between v1.dotProduct(v
9){28} and 28.001f{28.0009995} exceeds 1e-009%
D:/UnitTest_Vector.cpp(141): info: difference{} between v1.dotProduct(v9){28} and 28.000000001f{28} doesn't exceed 1e-009%
D:/UnitTest_Vector.cpp(142): info: difference{} between v1.dotProduct(v9){28} and 28.00000001f{28} doesn't exceed 1e-009%
D:/UnitTest_Vector.cpp(143): error: in "Unit_Test_Math_Library_FlowRenderEngine": difference{0.00357144} between v1.dotProduct(v9)
{28} and 28.1f{28.1000004} exceeds 1.19209e-007%
D:/UnitTest_Vector.cpp(144): info: difference{} between v1.dotProduct(v9){28} and 28.0000001f{28} doesn't exceed 1.19209e-007%
D:/UnitTest_Vector.cpp(145): error: in "Unit_Test_Math_Library_FlowRenderEngine": difference{6.81196e-008} between v1.dotProduct(v
9){28} and 28.000001f{28.0000019} exceeds 1.19209e-007%
D:/UnitTest_Vector.cpp(146): error: in "Unit_Test_Math_Library_FlowRenderEngine": difference{3.40598e-007} between v1.dotProduct(v
9){28} and 28.00001f{28.0000095} exceeds 1.19209e-007%
D:/UnitTest_Vector.cpp(147): error: in "Unit_Test_Math_Library_FlowRenderEngine": difference{3.54222e-006} between v1.dotProduct(v
9){28} and 28.0001f{28.0000992} exceeds 1.19209e-007%
Vector x = (1, 3, -5)

Vector y = (4, -2, -1)

x.dotProduct(y) = 3
D:/UnitTest_Vector.cpp(160): info: check x.dotProduct(y) == 3.0f has passed
Angle in radians between x and y vectors is 1.45991 radians
Angle in degrees between x and y vectors is 83.6468 degrees
End dot product **************************************
v1s.xAxis() = (1, 0, 0)

v1s.yAxis() = (0, 1, 0)

v1s.zAxis() = (0, 0, 1)

v1s.zAxis() = (0, 0, 0)

Angle between A = (1, 0, 0) and B = (0, 1, 0) are 90 degrees
D:/UnitTest_Vector.cpp(176): error: in "Unit_Test_Math_Library_FlowRenderEngine": check Flwre::Core::Math::RadiansIntoDegrees(v1s.
xAxis().angle(v1s.yAxis())) == 90.0f has failed
Angle between A = (1, 0, 0) and B = (0, 0, 1) are 90 degrees
D:/UnitTest_Vector.cpp(178): error: in "Unit_Test_Math_Library_FlowRenderEngine": check Flwre::Core::Math::RadiansIntoDegrees(v1s.
xAxis().angle(v1s.zAxis())) == 90.0f has failed
Angle between A = (1, 0, 0) and B = (0, 0, 1) are 1.5708 radians
D:/UnitTest_Vector.cpp(180): error: in "Unit_Test_Math_Library_FlowRenderEngine": check v1s.xAxis().angle(v1s.zAxis()) == 1.5708f
has failed
D:/UnitTest_Vector.cpp(181): error: in "Unit_Test_Math_Library_FlowRenderEngine": check v1s.xAxis().angle(v1s.zAxis()) == v1s.xAxi
s().angle(v1s.yAxis()) has failed

Cross product **********************************
a = (1, 2, 3)
b = (-7, -8, -6)

Cross product a=(1, 2, 3) b=(-7, -8, -6) c = a x b (12, -15, 6)

c = (12, -15, 6)

D:/UnitTest_Vector.cpp(193): info: check a.crossProduct(b) == c has passed

Cross product a=(3, -3, 1) b=(4, 9, 2) c = a x b (-15, -2, 39)

Orthogonal to the vectors 'a' and 'b' verification:
dot product a.c = 0
dot product b.c = 0
End Cross product ******************************
v1s4c = (0, 0, 0, 0)

v1s4c = (4, 4, 4, 0)

v2s4c = (4, 4, 35.5, 2)

D:/UnitTest_Vector.cpp(227): info: check v10 == v11 has passed

v10 = (4, 4, 35.5)

31

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

v11 = (4, 4, 35.5)

rgb() = (4, 4, 35.5)

v3s4 = (4, 4, 35.5, 2)

elements in v3s4 = 4
D:\TFM\src\Renderers\flowrenderenginepac2\Core\Math\UnitTest\UnitTest_Vector.cpp(33): Leaving test case
"Unit_Test_Math_Library_FlowRenderEngine"; testing time: 245ms
Leaving test module "boost_test_macro_overview"; testing time: 252ms

Below is shown the unit test for the matrices:

PS D:\Release> .\UnitTest_Matrix.exe --log_level=all
Running 1 test case...
Entering test module "boost_test_macro_overview"
D:\UnitTest_Matrix.cpp(29): Entering test case "Unit_Test_Math_Library_FlowRenderEngine"

**** Matrix 2x2 product ****
A =
[1 2
 3 4]
 B =
[5 6
 7 8]

A * B =
[19 22
 43 50]

A * B =
[19 22
 43 50]

D:/UnitTest_Matrix.cpp(100): info: check (A * B) == E has passed
D:/UnitTest_Matrix.cpp(101): error: in "Unit_Test_Math_Library_FlowRenderEngine": check (A * B) != E has failed
E =
[19 22
 43 50]

**** Matrix 2x2 transposed ****
(E)t =
[19 43
 22 50]

D:/UnitTest_Matrix.cpp(107): info: check E.transposed() == E.transposed() has passed

**** Matrix 3x3 product ****
D:/UnitTest_Matrix.cpp(161): info: check (F * G) == FxG has passed
F * G =
[46 52 61
 109 124 145
 172 196 229]

D:/UnitTest_Matrix.cpp(164): info: check (F * F) == (F * F) has passed
F * F =
[30 36 42
 66 81 96
 102 126 150]

**** Test with identity matrices ****
matrix2x2 identity created:
[1 0
 0 1]

_identityExpected2x2:
[1 0
 0 1]

D:/UnitTest_Matrix.cpp(185): info: check matrix2x2 == _identityExpected2x2 has passed
_identityFake2x2:
[1 0
 2 1]

D:/UnitTest_Matrix.cpp(187): error: in "Unit_Test_Math_Library_FlowRenderEngine": check matrix2x2 == _identityFake2x2 has failed
D:/UnitTest_Matrix.cpp(188): info: check matrix2x2 != _identityFake2x2 has passed
matrix3x3 identity created:
[1 0 0
 0 1 0
 0 0 1]

_identityExpected3x3:
[1 0 0
 0 1 0
 0 0 1]

D:/UnitTest/UnitTest_Matrix.cpp(209): info: check matrix3x3 == _identityExpected3x3 has passed
_identityFake3x3:
[1 0 1
 0 1 0
 2 0 1]

D:/UnitTest_Matrix.cpp(211): error: in "Unit_Test_Math_Library_FlowRenderEngine": check matrix3x3 == _identityFake3x3 has failed
D:/UnitTest_Matrix.cpp(212): info: check matrix3x3 != _identityFake3x3 has passed
matrix4x4 identity created:
[1 0 0 0
 0 1 0 0
 0 0 1 0
 0 0 0 1]

32

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

_identityExpected4x4:
[1 0 0 0
 0 1 0 0
 0 0 1 0
 0 0 0 1]

D:/UnitTest_Matrix.cpp(237): info: check matrix4x4 == _identityExpected4x4 has passed
identityFake4x4:
[1 0 1 0
 0 1 0 0
 4 0 1 0
 2 0 0 1]

D:/UnitTest_Matrix.cpp(239): error: in "Unit_Test_Math_Library_FlowRenderEngine": check matrix4x4 == _identityFake4x4 has failed
D:/UnitTest_Matrix.cpp(240): info: check matrix4x4 != _identityFake4x4 has passed
D:\UnitTest_Matrix.cpp(29): Leaving test case "Unit_Test_Math_Library_FlowRenderEngine"; testing time: 307ms
Leaving test module "boost_test_macro_overview"; testing time: 312ms

4.1.2.7 2D and 3D geometric primitives

The geometric primitives implemented within the engine, are on the one hand 2D primitives and its
meshes can be generated with procedural manner, this are defined in the methods declared in
PrimitiveMeshShapes class and the objects 2D defined are triangles, circles, ellipses, pentagons,
hexagons, octagons, quads among others, at the same time this class defines methods to
generate some surfaces of revolution in a three-dimensional space procedurally as well, the
surfaces of revolution are Torus and Sphere jointly with a cube.

Nevertheless, the explanation how the 2D objects and the surfaces of revolution are implemented
jointly with the mathematical concepts related are outside the scope of this project, see the code
implementation for more information and see[Torus][Sphere].

The following figure 4.4 shows the PrimitiveMeshShapes class and its class hierarchy with a
UML diagram.

Figure 4.4 depicts the PrimitiveMeshShapes class and its class hierarchy with an UML diagram.

33

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

4.1.2.8 Geometric transformations

Linear algebra is the basic notation for transforms and can be used to express many of the
operations required to arrange objects in 3D scene, allowing for instance to mount a camera for
handling 3D viewing and get the objects onto the screen. Geometric transformations like the
rotation, translation, scaling, and projection, can be accomplished with matrix multiplication and the
transformation matrices used to do this, are the subject of this section.

This notation actually simplifies the mathematical descriptions and manipulations of linear models
and its possible to solve systems of linear equations such as this:

 (4.1)

A 3D point can be transformed into using the definition 4.1. But
nevertheless, the linear transformations are also possible to express them as matrices, which
provide certain advantages for viewing the transform and for interfacing to various types of
computer graphics hardware, hence the definition 4.1 can be written in matrix form as follows.

 (4.2)

Nevertheless, the transformations inside the engine are represented with square matrices,
since they manipulate homogeneous coordinates, this coordinates introduce an extra coordinate
, which is usually set to a value of 1.0 basically. Homogeneous coordinates provides a compact
and elegant way to represent the transformations within a single mathematical entity and are
extension of Cartesian space adding an additional dimension to explain the projective space, so
Cartesian space is just one of many planes in the projective space, hence actually Euclidean
geometry is a subset of projective geometry, see[math3DCG][songho] for more information, this
concept will be expanded in the section 4.1.2.8.2.3 view matrix(lookAt). To extend the matrix of the
definition 4.2 to four dimensions and setting its fourth coordinate, which is coordinate as been
explained above, is needed construct a transformation matrix corresponding to the
matrix and the 3D translation shown in 4.2 definition as follows.

 (4.3)

This is only an example to explain how the transformations are represented and how are
manipulated inside the engine, translations and others transformations will be explained in the
following sub-sections more deeply.

The definition 4.3 stores 16 numbers arranged into 4 rows and 4 columns where generally this
numbers are stored as floats, is important to highlight that any graphics hardware is heavily tailor
made towards performing operations on 4 components vectors, hence making them also ideal for
computing matrices in this case the columns are the vectors , and . that they represents a
determinate coordinate system.

34

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

So within the engine has defined a new class template, that encapsulates the transformations, this
class is called Matrix4 and is specialized from matrix template base class and implements the
methods that generates the common transformations matrices such as translations, rotations,
scaling and projection matrices, all this is used within the engine to accomplish different targets as
will explained below, see figure 4.5 Matrix4 class template with an UML diagram.

Figure 4.5 depicts the matrix4 class template with an UML diagram.

4.1.2.8.1 Model Matrix

The model matrix is used to convert from local space to world space, the coordinate values stored
in the vertex buffers see section 4.2.1.4.1 vertex buffers, this data stored in the graphic card
buffers, defines a determinate mesh represented in local space coordinates. The world space are
the global coordinate system that determines where objects are in relation to each other in the
scene.

All vertices of a determinate mesh will be transformed by the same model matrix by the vertex
shader, to achieve this the model matrix can contain any combination of translation, rotation and
scale, then multiplying together this transform matrices is possible to build a model matrix to
translate, rotate and scale the objects to wherever is wanted into world space, see section 4.2.7.1
transform class and getLocalTransform method in the renderable object, see section 4.2.4.1
renderable object and meshes. In short, the model matrix helps to push the objects into the world
space.

In the following sub-sections are explained the geometric transformations mentioned above, such
as the translation, rotation and scale, in conjunction with the viewing transformations involved in
the camera location and the projection of the objects onto display screen.

4.1.2.8.1.1 Translation

The definition 4.1 constitutes a linear transformation from the coordinate system to a second
coordinate system , where the coordinates in this system are and can be expressed
as linear functions of coordinates in C, the definition 4.2 written this in matrix form.

35

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

The translation is used to move or translate an object by shifting all its points the same amount.
The transform form has been shown in definition 4.2, however this definition in homogeneous
coordinates just like is managed within the engine can be shown as follows.

 (4.4)

So, for example with the definition 4.4 could be possible translate the point of a mesh in
local space to a world space position defined by the translation to get the new point

, this represented in a 3D space coordinate system, could seen as follows in the
figure 4.6. The translation are implemented within the method translate in matrix4 class, see
figure 4.5. The following figure shows the translation in conceptual manner.

Figure 4.6 depicts an object translation in conceptual manner.

4.1.2.8.1.2 Scaling

To scale a vector by a factor of is needed simply calculate , then with three
dimensions, this operation can be expressed as the matrix product such as follows.

 (4.5)

36

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

This is called a uniform scale. But is also possible to scale a vector by different amounts along the
, and -axes, here the matrix defined in 4.5 definition, changes since whose diagonal entries

are not necessarily all equal, this is called non uniform scale and the matrix product can be
expressed as follows.

 (4.6)

The engine implements the uniform and non uniform scale and the matrix definition in
homogeneous coordinates just like is managed within the engine can be shown as follows.

 (4.7)

Where the variables are scale factors to define scaling matrix using a three
component vector , see methods scale with different signatures in figure 4.5.

The following figure 4.7 shows scaling in conceptual manner. (the object non translate only scale,
hence does not move from its original position when is scaled, although in the image below seems
to be translated but is only a conceptual manner to depicts it.)

Figure 4.7 depicts how an object is scaled in conceptual manner.

37

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

4.1.2.8.1.3 Rotation

The translations and scaling are relatively easy to understand, however rotations are a bit more
complicated. In 3D space an object is rotated about an axis, whether it be the , or -axis, or
some arbitrary axis, this rotations are called Euler rotations by the Swiss mathematician Leonhard
Euler (1707–1783).

To rotate a vertex about -axis the following matrix that perform this rotation through the
angle over -axis can be written as follows.

 (4.8)

and similarly the matrix and that perform rotations thought an angle about the and
-axes respectively and can be written as follows.

 (4.9)

 (4.10)

Then the matrix can be visualized as rotating a point on a plane parallel with the
-plane as depicts the figure 4.8.

Figure 4.8 depicts rotating the point P over the -axis to get the new point

Then the definition 4.8, 4.9 and 4.10 with homogenous coordinates can be written as follows.

38

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

 (4.11)

 (4.12)

 (4.13)

Then is possible combination the matrices shown above to rotate around , and -axes, first
rotating about then and finally -axis, however this scenario introduces a problem called
Gimbal lock, this is a major weaknesses of Euler angles, basically Gimbal lock occurs if during
rotation one of the three rotation axes is by accident aligned with another, thereby reducing by one
the number of available degrees of freedom. For more information about it, see[fundaComGra]
[MathComGra].

The definitive solution to prevent Gimbal locks is implement the rotations using
Quaternions[MathComGra1], however this will not implemented in this project. Here an
intermediate solution is implemented that does not completely prevent Gimbal locks although it
gets a lot harder that occurs this scenario.

The intermediate solution is rotate around an arbitrary unit axis called unit vector,
then instead of combining the rotation matrices shown in definition 4.11, 4.12 and 4.13, is used a
single matrix combining all matrices instead. The matrix that combine all rotation matrices can be
written in the following manner.

This matrix is implemented within the engine to rotate the objects. See method rotate in figure 4.5
matrix4 class template with an UML diagram depicts above. The following figure 4.9 shows the
rotation in conceptual manner.

39

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

Figure 4.9 depicts a rotation object about y-axis in conceptual manner.

4.1.2.8.2 Viewing Transformations

In the previous section 4.1.2.8 geometric transformations, and concretely in the section 4.1.2.8.1
model matrix and their sub-sections, has been discussed the geometric transforms as a tool to
organize geometric objects in a 3D scene, translating, rotating and scaling the objects. In a real-
time rendering engine, all this is visualized in a 2D view in screen space from a 3D world, to move
the objects between their 3D locations to their positions to a 2D view are used geometric
transformations as well, but in this case, these 3D mapping to 2D space are called viewing
transformations, and plays an important role in the object-order rendering, in which is need to
rapidly find the image-space location in 2D of each object in the 3D scene.

This viewing transformations express a determinate projection type like orthographic or perspective
projection, they projecting the 3D points in the scene in world space to a 2D points in the image
space, the 3D points are represented as coordinates in the canonical coordinate system
and the points in the screen space are expressed in units of pixels, all of this it depends of different
factors and this include the camera position and camera orientation, the type of projection jointly
the field of view and finally the resolution of the image set on the display screen.

By canonical term, it should be understood as NDC coordinates (normalized coordinate system)
which is what the graphic API expects to receive in the final stage in the sequence of
transformations before to be mapped to the screen space in device coordinates as pixels, see
figure 4.10 below.

40

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

Figure 4.10 depicts the sequence of transformations explained in the section 4.1.2.8 and sub-sections.

The figure 4.10 depicts the complete sequence of transformations needed to organize and project
the objects from local space to the screen space, in the following sections will be explained the
viewing transformations with separately manner, as the product of several simpler transformations,
the viewing transformations are marked in blue navy, the explanation is made in backwards
manner, namely from the viewport transform on the right to the viewing transform on the left,
though are applied in the direction as shown in the figure 4.10. It is worth pointing out, that not all
transformations are implemented within the engine, the transformations marked in red and navy
blue are implemented within the engine in the Matrix4 class within the mathematical library,
excepting the viewport transform and the perspective divide that are not implemented within the
engine, since are applied by the graphic API within the render pipeline, see[pipelineOGL3]
[persDivide] for more information. In the engine, the transformations implemented on it, are passed
to the vertex shader within the updateUniformsConstants method, see section 4.2.6.1.1 shader
parameter data.

4.1.2.8.2.1 Viewport transform

This transformation is not implemented within the engine but is explained to achieve better
compression of the projection process because it has an important role. This is implemented within
the render pipeline within the vertex post-processing stage, see[pipelineOGL3] section pipeline.

In fact this transformation is the simplest of all the explained in the following sections, at the same
time will be reused for any transformation applied previously before of this in any viewing condition.

This transformation is the last applied in the sequence of product operations of the viewing
transformations that explained here, so after this transformation the output is treated in other
stages within the render pipeline to finally to be drawn onto display screen.

To explain this, we imagine the geometry projected in a clip coordinates (clip space) with NDC
coordinates, containing the visible data where are contained all 3D points whose Cartesian
coordinates are normalized and are between and , that is then the
projection are made onto screen where there is to the left side of the screen, to
the right side of the screen, to the bottom of the screen, and to the top of the
screen see figure 4.10 clip space.

The matrix to transform from the 3D points in NDC coordinates to the device coordinates and
can be seen like this:

41

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

 (4.14)

The definition 4.14 ignores the -coordinate of the points in the NDC clip space due to a point of
distance along the projection direction does not affect where that point projects in the image.
Nevertheless, the viewport matrix in homogeneous coordinates has contemplate the -coordinate
since can be used to make closer surfaces hide more distant surfaces, see section 4.2.5.1.2 depth
test state (z-buffer algorithms). The following definition shows the viewport transform matrix .

 (4.15)

4.1.2.8.2.2 Projection matrix

The projection matrix takes the world coordinates from the eye coordinates and mapping to the
view plane or clip space, this space has been explained in the above section and stretches from

 to one each axes, then any object past those values will either be culled, if the entire object is
outside of this range, or clipped if part of the object is still be inside the values. This matrix is part
the projection process to do the projection of the 3D world defined via transformation matrices
(model matrix see section 4.1.2.8.1) and vertex coordinates, onto view plane or clip space, to
finally to be drawn onto display screen as explained in the section above viewport transformation.

The projection matrix give a sense of perspective to the scene depending how the projection matrix
values are calculated, basically this can be grouped into two basic types of calculation explained in
the two following subsections, this is an orthographic projection and perspective projection, see the
boxes Morth in brown and Mperspec in green in the figure 4.10 above.

This calculation flavours are implemented within the engine mathematical library, see ortho and
perspective methods, both are projection matrices, see figure 4.5 above.

4.1.2.8.2.2.1 Orthographic Projection

In orthographic projection the lines are parallel and perpendicular to the image plane, then the
resulting views are called orthographic since when using this perspective type each of the vertex
coordinates are directly mapped to clip space, without any perspective division since always
and so the perspective has no effect, this causes that objects farther away do not seem smaller.

This projection are often used for mechanical and architectural drawings because they keep
parallel lines parallel and is preserved the size and shape, hence not have vertices distorted by
perspective being more useful for mechanical and architectural drawings.

This perspective creates a cuboid parallel view volume area around the origin using the following
values to determine the maximum viewing.

 = left plane,
 = right plane,
 = bottom plane,
 = top plane,

42

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

 = near plane,
 = far plane.

then the orthographic matrix implemented within the engine is defined as follows.

 (4.16)

See ortho method in figure 4.5 above. It is worth pointing out, that this matrix depicts a right
handed coordinate system used in the engine, see[coordSys], for more information about it. In a
left-handed system, the matrix would be the same except column 2 row 2 that would be written in
positive the numerator.

The matrices combination (4.15) and (4.16) do the projection to the screen coordinates
 and ,(screen space) initially the -coordinate point is ignored unless it is used z-buffering

algorithms.

 (4.17)

The figure 4.11 shows the orthographic view volume:

Figure 4.11 depicts the cuboid view volume in an orthographic projection

43

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

4.1.2.8.2.2.2 Perspective Projection

Unlike the orthographic projection, the perspective projection lines are not parallel nor
perpendicular to the image plane adding perspective forshortening, then makes the objects get
bigger and smaller as they get closer and farther away from the viewpoint. This scenario makes
that parallel lines extending into the distance and appear to converge at their vanishing point.

This type of perspective is common used in 3D video games, though also used in other
applications that they want to simulate a projection close to reality.

The perspective projection matrix implemented within the engine is as follows.

 (4.18)

See perspective method in figure 4.5 above. The aspect is the screen width / screen height, fovy
is the vertical field of view, the angle of vision should be indicates in degrees, so the larger this
value more objects are visible.

The perspective-view or view frustum in this case is a pyramid as follows:

Figure 4.12 view frustum perspective projection.

But in really the perspective projection does not create the 3D effect in perspective, for that is
needed to do something called the perspective divide, this task is carried out by the graphic API,
and are involved the homogeneous coordinate adding an additional dimension to explain the
projective space inside the Cartesian space as explained in section 4.1.2.8 geometric
transformations, see[songho].

The perspective divide, occurs before the viewing transformation as can be seen in the figure
4.10, the projection matrix defined in 4.18 definition, sets things up so that after multiplying with it
the eye coordinates in view space, the coordinate will increase the further away the object is, the

44

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

graphical API will apply the perspective divide, so then the further away something is, the more it
will be pulled towards the center of the screen.

This explanation can be depicted in the following example of perspective divide.

Assuming this projection matrix that looks as follows.

 (4.19)

Then this matrix will transform eye coordinates as follows.

 (4.20)

Here in 4.20 definition in the result obtained marked in red, is possible to see how the projection
matrix sets up the coordinate, then the perspective divide realized by the graphic API does the
perspective effect as follows obtaining the NDC coordinates.

 (4.21)

Finally the viewport transformation do the projection to the device coordinates screen space
similarly that explained in 4.17 definition.

For more information about perspective divide see[persDivide1]

45

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

4.1.2.8.2.3 View matrix (lookAt)

The graphic APIs no has a camera, the camera is simulated by another transformation called
viewing transform, and is build with the view matrix, applying this transformation is possible to
move all objects in the scene, obtaining the illusion of a camera.

More concretely the viewing transform, generates a view space where all vertex coordinates are
seen from the perspective of the camera as the origin of the scene, so the view matrix transforms
all the world coordinates from the world space into view coordinates that are relative to the camera
direction and position. Hence this transformation is added to the sequence of transformations
depicted in the figure 4.10 concretely to the product of the viewport and projection transformations,
so that it converts the incoming points from world space to camera coordinates in view space
before they are projected.

To specify the camera position and orientation, can be used the following convention.

The eye position , the looking direction and the view-up vector . With these vectors is possible
to set up a coordinate system with three perpendicular unit axes with the position of the
camera as the origin . To build the coordinate system is possible to do the following.

 (4.22)

With these three perpendicular axes, is possible to create a matrix with this three axes plus a
translation vector with the position of the camera, so will be possible transform any vector to that
coordinate space by multiplying it with this matrix. This matrix is implemented within the engine
applying the explained above, within the method lookAt in the matrix4 class defined in figure 4.5
with a UML diagram.

The view matrix is as follows.

 (4.23)

So, is possible to view this transformation as first moving to the origin and then aligning to
. So, the are the direction cosines of the -axis, are the direction cosines

of the -axis, and finally are the direction cosines of the -axis.

46

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

4.1.2.8.2.4 Rotation matrix (yawPitchRoll)

The transform in the definition 4.23 relates points in world space to camera space (eye
coordinates), but another approach for locating the camera involves Euler angles, with them is
possible to define the frame of camera reference within the world space, but how as discussed in
the section 4.1.2.8.1.3 rotation, Euler angles suffer Gimbal locks. However if the camera is located
in world space using Euler angles, the transform relating world coordinates to camera coordinates
can be derived from the inverse operations discussed in the section 4.1.2.8.1.3 rotation,
concretely the definitions 4.11, 4.12 and 4.13.

The rotations defined there also can be known as , and , nevertheless, this angles
sometimes when are referred in technical papers or books are different, because a left-handed
system of axes is used rather than a right-handed system, then the vertical axis may be the -axis
or the -axis, consequently the matrices that represents the rotations are different, here the
Cartesian coordinate system represented is the right-handed system.

• is the angle of rotation about the -axis.
• is the angle of rotation about the -axis.
• is the angle of rotation about the -axis.

The inverse matrix rotations can be represented with the same matrices shown in definitions 4.11,
4.12 and 4.13 in the section 4.1.2.8.1.3 rotation, as the transposed of the original rows and
columns, where in this case firstly is replaced by , and in each rotation matrix and
is inverted, consequently the matrices can be represented as follows.

 To rotate about -axis

 (4.24)

To rotate about -axis

 (4.25)

To rotate about -axis

 (4.26)

Then this matrices can be represented by a single homogeneous matrix such as has been
implemented within the engine inside the yawPitchRoll method shown in the figure 4.5. Below is
shown the implemented matrix.

47

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

 (4.27)

where

With this matrix is possible position and orientated the camera as well within the world space,
where , and being the camera translation.

48

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

4.1.2.9 Transformations unit tests

To verify the correct transformation behaviour, has been implemented some unit tests to determine
whether the library is fit for use. Basically the unit tests first try the geometric transformations
explained above such as the translation, rotation and scale for later will be used in the engine.

Below is shown the unit tests for translation, scale and rotation.

D:\bin\Release> .\UnitTest_Matrix4.exe --log_level=all
Running 1 test case...
Entering test module "boost_test_macro_overview"
d:/unittest_matrix4.cpp(43): Entering test case "Unit_Test_Math_Library_FlowRenderEngine"
Translation ***
1 - identity matrix:
matrix4_1t =
[1 0 0 0
 0 1 0 0
 0 0 1 0
 0 0 0 1]

Translation - (x, y, z, w) = (2, 2, 0, 1)

matrix4_1t =
[1 0 0 2
 0 1 0 2
 0 0 1 0
 0 0 0 1]

Translation again - (x, y, z, w) = (2, 2, 0, 1)

matrix4_1t =
[1 0 0 4
 0 1 0 4
 0 0 1 0
 0 0 0 1]

Translation again - (x, y, z, w) = (1, 2, 3, 1)

matrix4_1t =
[1 0 0 5
 0 1 0 6
 0 0 1 3
 0 0 0 1]

Translation ***
Translation from origin - (x, y, z, w) = (1, 2, 3, 1)

 --> matrix4_2t =
[1 0 0 1
 0 1 0 2
 0 0 1 3
 0 0 0 1]

Testing equality
d:/unittest_matrix4.cpp(81): error: in "Unit_Test_Math_Library_FlowRenderEngine": check matrix4_1t == matrix4_2t has failed
d:/unittest_matrix4.cpp(82): info: check matrix4_1t == matrix4_1t has passed
d:/unittest_matrix4.cpp(83): info: check matrix4_1t != matrix4_2t has passed
d:/unittest_matrix4.cpp(84): error: in "Unit_Test_Math_Library_FlowRenderEngine": check matrix4_1t != matrix4_1t has failed
End Translation ***

Scaling ***
--> matrix_a uniform scale - (x, y, z, w) = (0.5, 0.5, 0.5, 1)

--> matrix_a =
[0.5 0 0 0
 0 0.5 0 0
 0 0 0.5 0
 0 0 0 1]

--> matrix_a uniform scale - (x, y, z, 1) = (2.0)
--> matrix_a =
[1 0 0 0
 0 1 0 0
 0 0 1 0
 0 0 0 1]

--> matrix_a non uniform scale - (x, y, z, w) = (1, 2, 3, 1)

--> matrix_a =
[1 0 0 0
 0 2 0 0
 0 0 3 0
 0 0 0 1]

--> matrix_a uniform scale - (x, y, z, 1) = (8.0)
--> matrix_a =
[8 0 0 0
 0 16 0 0
 0 0 24 0
 0 0 0 1]

End Scaling ***
Other testing ***
Test - 1 ***
--> matrix4_1t =
[1 0 0 5
 0 1 0 6
 0 0 1 3
 0 0 0 1]

49

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

--> matrix4_1t translated and scaled - (x, y, z, w) = (1, 2, 3, 1)

--> matrix4_1t =
[1 0 0 5
 0 2 0 6
 0 0 3 3
 0 0 0 1]

Test - 2 ***
--> Mt is translated twice from origin to (2, 2, 0, 1)

--> and Mt is translated again to (1, 2, 3, 1)

--> then Mt =
[1 0 0 5
 0 1 0 6
 0 0 1 3
 0 0 0 1]

--> Ms is non uniform scaled with (1, 2, 3, 1)

--> then Ms =
[1 0 0 0
 0 2 0 0
 0 0 3 0
 0 0 0 1]

--> then if Mt * Ms =
[1 0 0 5
 0 2 0 6
 0 0 3 3
 0 0 0 1]

End Other testing ***
Rotate ***
--> Mr is rotated 90 degrees with the arbitrary unit axis, the unit vector is (Rx,Ry,Rz) = (1, 0, 0)

MrExpected =
[1 0 0 0
 0 -4.37113883e-08 -1 0
 0 1 -4.37113883e-08 0
 0 0 0 1]

Result Mr =
[0.99999994 0 0 0
 0 -4.37113883e-08 -1 0
 0 1 -4.37113883e-08 0
 0 0 0 1]

d:/unittest_matrix4.cpp(170): info: check Mr == MrExpected has passed
End Rotate ***

D:\bin\Release>

As it can be seen in the table, the geometric transformations works correctly.

4.1.2.10 Normal calculation

In modern graphic approaches, the lighting calculations are made into the shaders, but in order to
be able to simulate the effects of light bouncing off to the meshes surfaces, is necessary
determinate the direction the surfaces facing in, to achieve this is necessary calculate the normal
of each mesh surface, the normal is a normalized direction vector pointing away from the surface.

Figure 4.13 normalized direction vector pointing away from the surface.

The normals are treated like vertex attributes, see section 4.2.1.3 vertex element. All meshes are
formed by polygons that are triangles, and is necessary calculate the surface normal per each
triangle of the mesh, to achieve this the cross product comes into play. For a given two vectors a

50

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

and b the cross product produces a vector that is orthogonal to both a and b, being the surface
normal of a triangle, see figure 4.13.

To calculate the normal, is needed takes one of the triangle’s vertices jointly with the other two
vertices are used to generate the normal via cross product, finally the surface normal are
normalized. The direction of the normal that pointing away from the surface is determined by the
order how the vertices are took, so the cross product of vectors a and b is the inverse of the cross
product of vectors b and a.

Figure 4.14 anti-clockwise vertex winding and clockwise vertex winding.

The left image shows anti-clockwise vertex winding and the right image shows the clockwise vertex
winding.

The normals calculation within the engine initially is implemented within a method called
generateNormals within the mesh class, so the normals must generated calling this method
manually, otherwise the mesh will not has normals calculated, and the light will no affect to the
meshes. Nevertheless the method implementation could be improved.

The explained above how the normal is calculated, when the mesh is indexed can not applied
since does not works, due to a single vertex is part of multiple faces and each of which faces is in a
wildly differing direction, so a given vertex can be part of different faces, in front of this situations a
common solution is to use the normalised sum of the normals for each face the vertex is used in,
with this the normals that get interpolated by the vertex shader gives as a result a normal that
approximately represents each surface.

Finally, to preserve the direction of the normals when a transformation is applied to a mesh since
obviously that is the vertex is transformed by the model matrix see section 4.1.2.8.1 consequently
the vertices normal should be transformed too, hence is needed a matrix to achieve this, that in
this case is not exactly the model matrix.

Depending the transformation type applied maybe enough use the upper section of the
model matrix, but in case that the transformation applied in a model matrix is a non uniform scale
this will not work, to solve this the common solution is apply the inverse transpose of the model
matrix, this will preserve the rotations in the model matrix inverting the scales and achieving a
normals in the correct direction.

Due to the matrix inversion is quite costly, if the model has a uniform scale, then using only the
model matrix is correct, otherwise if the model has a non uniform scale applied, a matrix model
inverse transpose is needed, but calculate the inverse transpose in the vertex shader all the time

51

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

with the GPU rather than in the CPU is a good general purpose solution, though is possible
calculate it in CPU too, but the engine does not have it implemented.

4.1.2.11 Tangents and bi-tangents calculation for bump mapping

The illumination at each pixel rendered is determined by the normal vector used during the
evaluation of the lighting formula, in the previous section, it has been discussed the calculation of
the normals of a surface to apply diffuse and specular lighting, but this is not enough to portray
reality. Surfaces are seldom completely flat, so it must be found a way to simulate the roughness of
a surfaces. To simulate this roughness, the bump mapping comes into play. The bump mapping is
way of storing the roughness of a surface.

Hence, with the bump maps is possible to represent more accurately the materials lighting adding
greater detail, closer them to the reality much more, a bump map stores a normal per texel, where
each of which points in a varying direction in accordance with the improprieties of the material that
they are simulating. using a texture map to distort the normal vector at each pixel. The following
figure shows the explained above.

Figure 4.15 on the left are depicted a surface with its normal, on the right a surface with normals derived from a bump map.

The bump maps are stored like any other texture, and the components of each normal vector are
encoded as a color, where each of them, storing a component of normalized direction vector.
With this scenario, it is possible to have a unique per-fragment normals. The following figure,
shows an example of a texture and the corresponding bump map, in the middle, in conjunction with
the obtained result.

Figure 4.16 depicts the original texture on the left, and in the middle the normal map, and finally on the right the result is shown.

It is possible to build a bump map with some image manipulation software like Gimp or Photoshop,
for a determinate texture. The bump mapping, is also known as normal mapping. The texture maps
which contains vector data, the values stored are expressed in the coordinate system of the texture

52

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

map itself, so that the geometric details are decoupled of any particular geometric, being possible
applies a geometric texture map to any triangle mesh, without having to account for the object-
space coordinate system used by its vertices.

The and axis in a coordinate system of a texture map are aligned to the horizontal and vertical
directions of the 2D image, the axis points upward out of the image plane, see figure 4.17 below.

Figure 4.17 shows the x and y axes are aligned to the texel image, and z axis point out the image plane.

In order to perform the bump mapping calculations within the shaders using the geometric
information stored in a texture map, is needed a way to transform between the coordinate system
of the texture map and model space. To accomplish this, a tangent space is needed. Each vertex
in a triangle mesh has a normal vector , hence, is needed to find a vector tangent , that is
perpendicular to vector , this is done by identifying the directions in model space that correspond
to the coordinate axes of the texture map, the directions within the model space are not constant
and vary in each triangle model belongs to, hence, for each triangle vertex, the and axis of the
texture map are aligned with the texture coordinates assigned to triangle vertex, and the axis
of the texture map, are aligned to the vertex normal of the triangle, because the axis in the
texture map points directly out of the plane, hence, the and axis of the texture map are tangent
to the surface in object space, since its directions goes to the same direction but they do not get
intersect, so that, is needed calculate average unit-length tangent vector for each vertex in a
triangle mesh, thus is created a smooth tangent field on the surface of a model.

Figure 4.18 depicts each vector at a vertex the tangent space is aligned to the tangent plane and normal vector. This image has been
extracted from [math3DCGBumpMap].

53

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

As described above, the and axis of the texture map are tangent to the surface in object space,
so the two tangent directions are perpendicular to each other all the time, but some times this not
be strictly true, hence, a second tangent direction is calculated, and is called the bi-tangent . All
this build a tangent space, where the three vectors , and form the basis of the tangent
frame at each vertex, and the coordinate space in which the , , and axes are aligned to these
directions is called tangent space.

The following explains the implementation that has been carried out within the engine of what has
been explained so far, from a mathematical point of view. To carry out the calculations, it is
necessary to use linear algebra again, it is needed to find a matrix at each vertex that
transforms vectors from object space in to tangent space, we know that the axis of tangent space
always is mapped to a normal vector of a vertex, then the tangent space is aligned such that the
axis corresponds to the s direction in the bump map, and the axis corresponds to the t direction
in the bump map.

Then if,

 represents a point inside the triangle.
 and are tangent vectors aligned to the texture map.
 is the position of one of the vertices of the triangle.

 are the texture coordinates at the vertex.
and, assuming that we have a triangle whose vertex positions are given by the points , and

 and whose corresponding the following texture coordinates are given by , ,
, it is possible to do the following calculations.

 (4.28)

then is needed to solve the following equations for and

 (4.29)

The definition xx.x can be seen as a linear system with six unknowns, this is possible to write in
matrix form as follows.

 (4.30)

To get the unnormalized and tangent vectors for the triangle whose vertices are , and
,is needed multiply both sides by the inverse of matrix.

 (4.31)

54

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

Results obtained with the definition 4.31, it allows to build the following matrix

 (4.32)

with this matrix is possible to go from tangent space to model space, so is possible transform
normals, extracted from the texture map into model space, however, it is usually done the
calculations in the other way around, so that, the transformations are done from model space to
tangent space within the shaders, keeping the extracted normal as-is, so all computations are done
in tangent space. To obtain this, the transposed matrix of definition 4.32 is necessary, such as
shows in the following definition.

 (4.33)

The transposed matrix is applied within the shaders, but it only works if the space that the matrix
represents defined in 4.32, is orthogonal, since the results obtained with the definition 4.31, are
usually not exactly perpendicular, this perpendicularity is build in function the bump mapping, then
the perpendicularity, it depends the texture mapping skewing. To solve the perpendicularity, we can
apply the Gram-Schmidt orthonormalization, so the tangent is perpendicular to the normal ,
then will be possible to apply the transposed matrix within the shaders, hence, the space
represented by the matrix defined in 4.32 must be orthogonal.

The orthogonalization is done with the Gram-Schmidt orthonormalization, such as follows.

 (4.34)

 and are almost perpendicular, hence, to fix it, is pushed down in the direction of by a
factor of dot(n, t)

Finally it is necessary to calculate, the handedness, in some cases in symmetric models the
coordinate UVs are oriented in the wrong way and has the wrong orientation, hence, to check
whether it must be inverted or not, is needed to do the cross product between and and must
have the same orientation than , so we need to check if dot(cross(n, t), b) > 0. If it’s false, just
needed invert .

 (4.35)

55

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

Then within the shaders, applying the definition matrix 4.33 the lighting calculations are applied to
simulate the roughness of the materials.

The exposed of this section and the implementation within the engine, has been based on the
following resources[math3DCGBumpMap][FGDevelopRendering], the implementation has been
adapted to the engine and to the mathematics library developed for this thesis.

4.1.3 Platform sub-module

The platform sub-module is defined as a name space called Flwre::Core::Platform, this
submodule is the lowest of library since harbour a collection of routines that are used frequently
enough that their interfaces must be exposed through a single header file called
“ResourcesFlwre.h”, this is useful in order to save the programmer time by not constantly having
add the various include files repeatedly, since this file exposes the inclusions for most of the
standard C/C++ libraries and the Standard Template Library (STL) containers used in the engine.
However, as explained below to use the STL library is not the better solution in a real-time
environments.

The Standard Template Library (STL) has been used mainly for obvious reasons of time, although
for better efficiency it would have been better develop an own library custom made for the engine,
since real-time applications sometimes have performance penalties because of the overhead of
STL, both in time and memory since the memory allocation patterns of STL, which are not
conducive to high-performance programming and tend to lead to memory fragmentation causing
cache misses, then this scenario makes unusable in real-time applications.

Any real-time application needs a lot knowledge about memory usage patterns, for this reason is
not suitable use a generic set of template containers due to they not have this knowledge, at the
same time it depends the hardware where they run for might not have STL support, for example on
a video game console, with limited or no virtual memory facilities unlike a computer and with an
exorbitant cache miss costs, is probably better off writing custom data structures that have
predictable and/or limited memory allocation patterns, although in reality the better solution is
writing custom structures anywhere, see[GEngArch].

The Standard Template Library (STL) is very popular but exists other third-party libraries which
provide these kinds of services too as shows below:

• STLPort is a portable and optimized implementation of STL, see[GEngArcha].
• Boost is a powerful data structures and algorithms library, STL style, see [GEngArchb].
• Loki is a powerful generic programming template library, in research and proof-of-concepts

way, see[GEngArchc].

This submodule defines a basic data-types as well as follows:

Type Description
Vector2i
Vector3i

These objects specifies two-dimensional vectors and
three-dimensional vectors with integer values.

Vector2{f | d}
Vector3{f | d}
Vector4{f | d}

These objects specifies a two-dimensional vectors and
three-dimensional vectors with single or double
precision floating point numbers respectively.

Matrix4 {f | d} Specifies a matrix single or double precision
floating point numbers, these matrices are all

56

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

organized in column-major fashion.
String String object contains single string encoded with the

UTF-8 universal character set
OfStream, IfStream, Ios, StringStream The objects are used to operate with files

FlTime Specifies a double precision time value milliseconds

Table 1.1 shown data types defined in “ResourcesFlwre.h” file in Flow Render Engine.

Sample code snippet from table 1.1, implemented in the ResourcesFlwre.h file.

namespace Flwre
{

namespace Core
{

namespace Platform
{

(…)
typedef Flwre::Core::Math::Vector2<int> Vector2i;
typedef Flwre::Core::Math::Vector3<int> Vector3i;

typedef Flwre::Core::Math::Vector2<float> Vector2f;
typedef Flwre::Core::Math::Vector3<float> Vector3f;
typedef Flwre::Core::Math::Vector4<float> Vector4f;
typedef Flwre::Core::Math::Matrix4<float> Matrix4f;

typedef Flwre::Core::Math::Vector2<double> Vector2d;
typedef Flwre::Core::Math::Vector3<double> Vector3d;
typedef Flwre::Core::Math::Vector4<double> Vector4d;
typedef Flwre::Core::Math::Matrix4<double> Matrix4d;

}
}

}

In this sub-module is also defined the control symbol visibility, when designing a software API, it is
necessary to keep in mind the need to handle the symbols for their correct visibility from other
modules or applications that linking with them, these symbols are useful for the linker to decide if
different modules (object files, shared dynamic libraries, executables) will share the same data or
code. Each platform makes its own management of this visibility, so it is necessary to define the
attributes for each platform, so that they are applied at compile time depending on the platform
where the engine is compiled, this is defined in this name space within the VisibilityMacros header
file with a macro for its proper management on each platforms, see[Visibility].

4.1.4 Utility sub-module

The utility sub-module is defined within the name space Flwre::Core::Utility, and contains often
needed classes like a dynamic loader libraries, file systems management access and log
management, finally a timer is implemented as well, all this is used inside the engine with different
targets, due to some this classes are accessed from anywhere of the engine, some of them are
instantiate as a singleton as been explained in section 3.4.3, 4.1.1.2 singleton template class, and
see figure 4.1. In the following sections each module is explained more widely.

57

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

4.1.4.1 Dynamically loaded C++ Objects

The loading libraries at runtime are used within the engine to manage certain modules as a plug-in.
In this case, the module that is treated as an add-on, loading it at runtime when the engine is
initialized is the GraphicsOGL3 module. Therefore with this technique it would be possible to
change the graphic API with which the engine renders at runtime between different
implementations such as Direct3D or Vulkan, if these modules were implemented, however in this
work this module is only implemented with OpenGL3.3 but the loading mechanism be leaves ready
for future works.
Obviously to change the rendering interface implementation between different graphical APIs
implementations at runtime, it is necessary stopping the rendering first and starting again with the
new layer is loaded.

In the C++ language does not exist support for dynamic loading libraries, there are, of course,
ways to get around the limitation, since C++ programs can call C functions, but this are non optimal
from a performance standpoint and error prone. To improve this limitation an object-oriented C++
wrapper has been made based on[DynLib], This has been adapted to the scenario of this project
and has been improved, since the rendering engine has a cross-platform approach and must work
on both systems Windows and Linux. However, the mechanism loading libraries at runtime does
not work the same manner between Windows and Linux, and because of this the container has
been adapted and improved to cover this scenario in this project.

4.1.4.1.1 How does it work?

The dynamic loading library dynamically load symbols from an object file. When a source file is
compiled, it is placed in an object file, which contains the functions, structures, and any other
entities that are a part of the compiled source. To allow other object files to link to a given object file
and call its functions and other things, each of the elements in an object file are associated with a
symbol, which acts as an id for looking up a determinate element.

In a compiled C program, the symbols in an object file directly correlate to the ASCII function name
for the function they represent. This makes dynamically linking to a shared library that was
compiled with C very easy. For example, if you want to call a function named loadObject(), the
symbol name would be loadObject. When the source being compiled is C++ instead, the principle
is the same, but the symbols are not as clear, the figure 4.19 shown this.

58

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

Figure 4.19 depicts symbol name functions compiled with c framed in red and functions compiled with C++ framed in green in the
flowrenderengineOGL3 library.

Clearly can be seen how the symbol names in C has the same name that the functions and
otherwise C++ symbol names not. This is due to symbols for a C program are simple because C
has no namespaces. Since names are all global, it makes sense to just use the function name for
the symbol. With C++, there are a number of different constructs that place scope on names, such
as namespaces and classes. This means that when a C++ compiler creates the symbol for a C++
function, it uses some sort of mangled form of the function name and namespace identifiers. To
compound the issue, there is no standard for what that mangled form will be. The result is that
there is no reliable way for C++ programs to load a symbol through the dynamic loading library
using only the symbol name.

To solve this issue, it is possible call functions compiled with C-style symbols from C++ functions.
C++ provides a mechanism for indicating that specific sections of C++ source code should be
compiled with C symbols, this is possible to achieve with the keyword “extern C”, so the sections
contained within an “extern C” block are loadable dynamically just as if they were in a library
compiled by a C compiler, even if they are mixed in with sections of code compiled with normal
mangled C++ symbols. Furthermore, an “extern C" section is otherwise compiled as C++. This
means that the code inside “extern C" functions have full access to C++-linked elements. In this
way, a C++ function can dynamically load a function with a C-linked symbol name, which can in
turn instantiate a C++ object and return a pointer to it. See the following code snippet , where there
is an implementation example of the explained above, is just an example is not the implementation
made within the engine thought the concept is the same.

// This is the main example program
#include <dlfcn.h>
int main(int argc, char** argv)
{
 // Open the libFlowRenderEngineOGL3 shared library
 void* library = dlopen("libFlowRenderEngineOGL3.so", RTLD_NOW);

59

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

 //Get the loadObject function, for loading objects
 void* loadObject = dlsym(library, "loadObject");
 //Get a new renderer object
 void* renderer_obj = (*loadObject)();
 Renderer* renderer = reinterpret_cast<Renderer*>(renderer_obj);
 //processes draw
 renderer->draw();
 //Get the deleteRenderer function and delete the filter
 void* deleteRenderer = dlsym(library, "deleteObject");
 (*deleteRenderer)(renderer_obj);
}
//renderer.cpp
// The superclass, known to the program that is doing the dynamic loading.
class Renderer
{
 public:
 virtual void draw() = 0;
};
//The RenderEngineOGL3 class can be compiled into a shared object
//library, along with library.cpp, and then loaded by the program.
class RenderEngineOGL3 : public Renderer
{
 public:
 virtual void draw()
 {
 /* Process render passes */
 }
};
//library.cpp
extern "C"
{
 // loadObject function creates new RenderEngineOGL3 object and returns it.
 void* loadObject(void)
 {
 return reinterpret_cast<void*>(new RenderEngineOGL3());
 }
 // The deleteObject function deletes the RenderEngineOGL3 that is passed
 // to it. This isn't a very safe function, since there's no
 // way to ensure that the object provided is indeed a RenderEngineOGL3.
 void deleteObject(void* obj)
 {
 delete reinterpret_cast<RenderEngineOGL3*>(obj);
 }
}

In Unix based systems like Linux or even though Android systems, to load a symbol from a shared
library file, applications first open the library, using the dlopen() function, then retrieve the desired
symbol with dlsym(). The dlopen() function takes a filename, which can be either a fully qualified
path name or a relative path in which case dlopen() searches for it in the normal places where one
looks for a library. A successful dlopen() call returns a void pointer handle, which can then be used
by dlsym() to load the symbol, with a "symbol" parameter containing the name of the desired
symbol. When dlsym() finds a symbol, it returns a function pointer that can be used to call the
loaded function.

In windows, run-time dynamic linking is carried out in different manner, since not POSIX-
compatible way is used and other different routines are used to operate with. Whereas that the
definition in Unix based systems is found in “dlfcn.h” file located in system headers directory that

60

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

by default is “/usr/include”, in windows this is found in windows SDK directory and its location it
depends the windows version used. See [dlfcn][dlopen][windlfcn] for more information in Linux and
Windows respectively.

Due to this rendering engine has a cross-compile approach, it becomes necessary an
implementation of dlfcn for Windows. To get this target, an implementation of wrapper around the
Windows functions has been integrated in project, to make programs written for POSIX that use
dlfcn work in Windows without any modifications, see [dlfcn-win32] for more details.

However, the use of dlopen() and dlsym() functions alone is not enough to achieve a safe and
robust approach, therefore it has been carried out the integration of a library that let deal with
loading and unloading dynamic objects in object-oriented fashion, combined with dlfcn wrapper
implementation for windows to get cross-platform approach.

The library seeks the following goals:

• Cross-platform approach via dlfcn wrapper for windows.
• Don not call any C function directly, everything is object-oriented.
• Loading given only the name in ASCII.
• Outside the loading library anything must deal with a void pointer or reinterpret_cast.
• Delete an object given only doing reference to that object.

4.1.4.1.2 Implementation within the engine

When the engine is used from an application, application context is initialized see section 4.1.1.1
application context and section 4.2.3 windowed application, in this process is loaded the
GraphicsOGL3 module at runtime as a plug-in, this module contains the interface implementation
declared in Graphics module with OpenGL3.3 to render objects, to achieve to load the
GraphicsOGL3 module, is used the mechanism explained in the section 4.1.4.1 dynamically
loaded C++ objects.

Three classes form the C++ wrapper container that let deal with loading and unloading dynamic
objects in object-oriented fashion.

Class name Description
DynamicObject Is a common base class for any derive class which wants to be loaded at

runtime, in this case the renderer class derives from it, defines a
deleteObject() function to destroy loaded class, so with this method
DynamicObject is deleted itself.

DynamicLibrary This a shared library that encapsulates the objects loading, through
newObject() function, hiding all of the low-level details to the rest of the
engine. This is created through the static DynamicLoader

DynamicLoader Load an object by name and creates a new DynamicLibrary to hold it, to
achieve this a DynamicLibrary is created through the static loadObjectFile()
function in DynamicLoader class.

A library loaded by DynamicLibrary has defined a loadObject() function within the keyword “extern
C”, for the reasons explained in above section. When the program calls newObject() on an
instance of DynamicLibrary, newObject() in turn calls loadObject() on the dynamically loaded
library, and passes it the name of the class to instantiate. The loadObject() function acts as a

61

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

simple factory for dynamic objects, and is responsible for determining which class to load based on
the class name it is given, at the same time, a DynamicLibrary has defined a deleteObject() to
delete it in the same conditions as well. See the code file in render engine implementation
“EngineGrahicsDllOGL3.cpp”, and the following figure 4.20 that shown a simplyfied UML diagram
the implementation explained in the next page.

Figure 4.20 shown the dynamic loader implementation to load the RendererOGL3 module at runtime.

4.1.4.2 File system

The engine requires a file handling due to needs to open or create files for data is either read,
written, or is appended. This class encapsulate all operations related file handling in a singleton
approach so can be accessed from anywhere of the engine see section 4.1.1.2 singleton template
class.

This class hides the particularities of file management implementation on different platforms,
Initially the class only implement a create file method and a system to find out the application path
where from is executed.

62

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

4.1.4.3 Log system

This class implements a basic system log for writing debug/log data to files, is a singleton
approach as well since is possible write info to log file from anywhere to the engine, see section
4.1.1.2. The system will define a three level type messages: normal messages, warning messages
and error messages.

Initially only the normal messages has been implemented, this messages are written in both
standard output and in a plane file text, at the same time, the messages printed for standard output
are represented in a console window, but in the future the messages will be rendered in window
context and the output text could be improved to a rich text as html or similar.

4.1.4.4 Timer

The real-time applications need to keep track of time, whether for sequencing purposes or for
simulation. Operating systems and CPUs have support for a clock, but initially direct access to this
clock cannot be done in a platform-independent manner, so the details must be encapsulated to
hide the engine layer dependencies, this class implements a methods to manage the time in a
cross-platform manner, to get this the chrono C++ library C++11 is used.

The chrono library was designed to be able to deal with the fact that clock access might be
different on different platforms and in turn offer an easy way to improve the time precision, since
due to the rapid evolution experienced by hardware, every time a higher resolution of time is
needed to handle processing times, this evolution in hardware is what caused years ago the
introduction of new types of time in the POSIX libraries.

Timer class implements several methods to manage the time, the mainly methods as described as
follows, firstly defines three methods to retrieve elapsed time, from the engine initialization or from
that the counter is reset in different time resolutions, these are getElapsedTimeInSeconds,
milliseconds and microseconds, this methods manage the elapsed time, which includes for
example input/output (I/O) operations, with these methods are the basis to calculate the engine
frame rate and the actual time when the engine is executed, the method updateFramesStates() is
called in each frame to calculate the frames per second that the engine is rendering, this method
calculates at the same time a frames average per second taking different samples, and store the
best and worst frames per second reached as well. Another important value stored in this class is
delta time, delta time is the elapsed time between the current frame and the last frame such as can
be retrieved with the method getDeltaTime(), delta time is used for variably updating scenery
based on the elapsed time since the last updated, then the movement will take the same amount of
real world time to move across the screen regardless of the frame rate update, whether the delay
be caused by lack of processing power or for a momentary workload.

Finally a getTime() method is implemented as well, to retrieve the actual time in hh:mm:ss.s
format and an internal reset() method to reset counters when the engine is started. The Timer
class has a singleton approach as well, so it is instantiated only one during engine execution and
can be accessed via singleton pointer like others engine classes explained above see section
4.1.1.2 and see figure 4.1.

4.2 Graphics module

This module is defined inside namespace Flwre::Graphics, like the Core module contains several
sub-modules defined in another namespaces inside Flwre::Graphics main namespace, so
maintains an organization. Is built on top the Core module, mainly defines all needed to manage

63

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

and organize the graphics data to send it to render, so offers an essential organization and
management for the graphic data. All this, firstly is carried out by the CPU while the graphic data
remain in the computer main memory, then this data is send to the graphic card memory to render
it.

At the same time, it propose mechanisms to be able to make more complex managements of the
graphic data in the future outside this project, see the managers or basic scene graph components.
However, for the moment it makes an essential management of the data as argued in the following
sections.

The essential concept must be understood as the initial pillars of the graphic data management for
later to be rendered, since advanced management techniques, such as the scene graph or
geometric discard techniques in function if an object is visible or not, will not be implemented,
leaving them for the future to simplify the scenario, nevertheless this will penalize the efficiency.

All of functionalities implemented in this layer are decoupled of the specific graphic API used in the
rendering process, hence this module or layer is platform-independent, to carried out this, an
interface is defined in this module and that is implemented in the underlying layer with a specific
graphic API, see see figure 3.1 engine architecture diagram.

Along the project, within this layer will be implemented different functionalities to get the target of
this project explained above. The following sub-modules depicted in the following table, shows the
main engine architecture defined in this module, these have the following definitions.

Submodule Short description
Resources It defines a common resources that is mainly buffers:

vertex and index buffers and the vertex structure
known inside the engine like vertex declaration.

Utility Managers It defines managers to handle the creation and
destruction of resources, this acts like a factory
resources.

 Importers Initially holds an importer for 3D models with
wavefront OBJ file format, that will be supported with
triangulate faces only.

 Window A classes set to defines the windowed application and
input events handling in the graphic level,
implemented with a determinate multi-platform
abstraction library at the same time defines the
common mechanism needed to manage rendering
objects within a window context.

SceneGraph Initially defines a linear method to access the scene
objects and implements the basic components to build
a complete scene graph implementation in the future
see section 4.2.4, at the same time it defines the
rendering handling of objects to feed renderer
interface.

Renderer It defines the rendering interface to draw.

Effects Shaders It provides the definition of the necessary classes to
apply effects to the renderable objects.

 LocalEffects It defines different local effect types supported by the
engine.

64

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

DataTypes Encapsulate different data types in a class definition
like the color and transformations initially.

4.2.1 Resources

This sub-module is defined inside the name space Flwre::Graphics::Resources, and defines a
data structures necessary to render objects and apply textures on them, to achieve this can be find
the classes to store the vertices definition and the buffers definition. The buffers are memory
allocated space that represents a fully typed data collection grouped into elements, that can be
used to store a wide variety of data that can be read by the graphics card. This data collection is
typed and organized in different ways.

Exists different buffer objects types, these are encapsulated in the engine with the buffer interface
definition and initially the buffer types supported by the engine are vertex and index buffers since
these are basic to render objects in a modern graphics scenario. The following sections show how
it has been implemented.

At the same time this sub-module maintains the interface definition to support texture mapping, the
engine initially only support 2D texture mapping.

4.2.1.1 Vertex Declaration

To rendering objects is necessary setting up several data related with the renderable objects,
mainly a renderable object is compound by geometrical data this data is represented by many
vertices, each vertex contains several data attributes to represent different information that is used
when the object is processed in the render pipeline, during the rendering process is necessary that
these data are allocated in a determinate memory space with a determinate structure inside the
graphic card, this memory spaces are defined as buffers.

The vertex declaration class defines the vertex structure for each mesh created in the engine, the
vertex structure holds the vertex attributes necessary to a certain mesh, this inside the engine is
known as vertex format.

To create and destroy vertex formats, in conjunction with vertex and index buffers is defined an
access by singleton pointer to the buffer managers base. The buffer manager base is part of the
interface defined in Graphics module. See figure 4.23 below and section 4.2.2.1.1 buffer
managers.

On the other hand, holds a binding with the buffers created for a determinate object, the engine
maintain a container set with all the buffers created any time during engine runtime, see section
4.2.2.1.1 Buffer managers, however is necessary maintain a relationship of which buffers belong to
a certain object.

Also holds the vertex attributes structure, see vertex format and vertex element in the next
sections, jointly how the data is represented inside the buffers, since the data inside the buffers
can be stored in different manners, for example in interleaved manner or without interleaving, see
section 4.2.1.4 buffers. Finally defines the primitive type, used for how the vertex stream should
be interpreted by the graphic card, and maintains the number of vertices that a given mesh has,
together with the number of indexes defined in case the mesh is indexed.
The figure 4.22 below shows the vertex declaration class in a conceptual way, in conjunction with
the explained in the next sections, the figure 4.23 shows an UML diagram of the figure 4.22.

65

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

4.2.1.2 Vertex Format

A vertex format contains a vertex elements list, this group of elements describes a determinate
vertex format, so vertex format defines the data structure for a vertex, at the same time defines
which type of data will be inside the vertex buffers, hence represents how many attributes defined
has a vertex.

A simple example of this list, could be the following vertex format:

Figure 4.21 shown a simple vertex format example

In this case the vertex format example, in the figure 4.21 defines a format with three elements, the
first element is position data, the second element is color data and the third are the texture
coordinates. Each of these elements are defined in a vertex element as explained in the next
section.

4.2.1.3 Vertex Element

Inside the engine the vertex attribute concept is represented with a vertex element, the meshes
has many vertices each of these vertices are formed with one or several vertex attributes
combination. Attributes defines different information related with vertex like position, color, texture
coordinate, normal data, tangent data, bi-tangent data and so on. see figure 4.21 for a simple
vertex format example with three vertex elements.

However, vertex element stores others related parameters on how the graphic card must read the
data, along the elements explained above when this data are stored inside a vertex buffer.

First defines the vertex semantics which indicates the attribute type of element, The figure 4.23
shows the initially defined vertex element semantics in the following enum definition
Flwre::Graphics::Resources::VertexElementSemantic, along the project other semantics will be
defined as needed to cover all engine development.

Jointly to the vertex semantics, the vertex element defines the vertex element type as the number
of components per each vertex element in the figure 4.21 example two elements has three
components X, Y, Z and R, G, B and the last element has two components S, T. then its
semantics are POSITION, COLOR and TEXTURE COORDINATE.

The figure 4.23 shows the initially defined vertex element type, in the following enum definition
Flwre::Graphics::Resources::VertexElementType.

The vertex element type, is used to calculate the strides inside the vertex buffers as will be seen
later, to achieve this inside each vertex element stores the offset value for each element. The offset
variable can contains different values depending if the type of vertex elements will be stored in the
vertex buffers in interleaved manner or not. if the vertex elements are stored in not interleaved way,
the offset value contains zero all the time, otherwise the offset value stores the position in bytes

66

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

where the element is positioned in the elements intercalation. see section 4.2.1.4.1 vertex buffers
for more deeply explanation.

The following figure 4.22 depicts the explained above in conceptual manner.

Figure 4.22 depicts vertex declaration class in conceptual manner

67

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

The following figure 4.23 depicts the explained above with an UML diagram.

Figure 4.23 shown the vertex declaration class and involved classes in an UML diagram

4.2.1.4 Buffers

The buffers defines a region of physical memory storage used to store data in temporarily manner
before it treated. The engine defines an interface called buffer as part of interface definition of this
Graphics module, this interface encapsulate the buffer types supported by the engine, see figure
4.24 below.

In this context, the buffers defines a memory space allocated in the graphic card to store initially
two type of data streams, vertex data such as defined in above sections and index data explained
below section, in the figure 4.24 can be seen how the buffer interface is specialized in a vertex
buffer and an index buffer to store this types of data streams. In the next sections will be explain
this buffer types supported by the engine.

Initially the interface defines a virtual method to write data to the graphic card buffers, this data is
passed as an array pointer from the computer main memory along with the array size in bytes, at
the same time, defines two virtual methods for bind and unbind the buffers inside the graphic card,
when a buffer or several buffers are binded the contained data stream is processed by the render
pipeline to render the objects, the rendering process can be made by one or several render
passes, being unbinded at the end of the render passes, see section 4.2.6.1.2 render pass. The
way to implement the data writing to the buffers or how to bind and unbind it, depends on the
graphic API used, so the vertex buffer class and index buffer class are specialized in
GraphicsOGL3 layer, where this behaviours are implemented in this case with OpenGL 3.3,
nevertheless this is not shown in the figure 4.24.

68

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

Figure 4.24 depicts the buffer interface definition with the corresponding buffers specialization in graphics layer

The enum Flwre::Graphics::Resources::Buffer::Usage definition, enumerate different manners
to use a determinate buffer, this is indicated at the buffer creation moment:

HBUFFERU_STATIC or HBUFFERU_WRITE_ONLY defines a buffer where the data is static all
the time, so no modifications in the contents buffer are made after the first writing, hence this buffer
will read many times during the rendering process.

HBUFFERU_DYNAMIC defines a buffer where the data is dynamic, so the contents will be
modified repeatedly and used many times in the rendering process.

4.2.1.4.1 Vertex Buffers

A vertex buffer contains vertex data used to define the objects geometrical data or its meshes, a
determinate mesh can be build by a lot of vertex of the order of thousands or more if the object is a
little complex, vertex buffers can be seen like a sequential vertices collection where each of them
can be includes position coordinates, color data, texture coordinate data, normal data and so on,
see section 4.2.1.2 vertex format.

The vertex buffers can store the vertex elements in different manners, normally a renderable object
can have one or several buffers assigned, depending if the data structure is defined in interleaved
way or is not defined in interleaved way. This concept has been explained above and is now more
widely exposed.

The interleaved manner is more efficient, because all vertex elements collection are stored in a
unique buffer, by contrast the not interleaved manner, uses a buffer for each collection of vertex
elements, so, if a vertex format has three vertex elements POSITION, COLOR and
TEXTURE_CORDS for instance, then with a not interleaved buffer, would be created three buffers.

Some not interleaved vertex buffer examples are for instance, one that only contains position data.
It can be visualized like the following illustration.

69

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

Figure 4.25 shown not interleaved buffer with position data, the stride is 12 bytes

Other examples of this, can be not interleaved buffers with color data or texture coordinates data
for example. It can be visualized like the following illustration:

Figure 4.26 shown not interleaved buffers with color data and another with texture coordinates data, the stride is 12 and 8 bytes
respectively

To read a vertex buffer the graphic card needs to know, how the data is distributed in the buffer or
buffers so the additional parameters are needed, some this parameters as the offset has been
defined in section 4.2.1.3 vertex element and figure 4.22. These parameters are explained below
more deeply.

The stride means the space in bytes to next vertex and the offset is the displacement in bytes to
the next element in a vertex when buffer is interleaved, otherwise offset is equal to zero all the

70

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

time. In an interleaved buffer the stride contains the sum of all offsets. See example below and
figure 4.27 and figures 4.22, 4.25, 4.26 as well.

 POSITION has 3 floats elements * 4 bytes = 12 bytes
 COLOR has 3 floats elements * 4 bytes = 12 bytes
 TEXTURE_COORDS has 2 floats * 4 bytes = 8 bytes
 32 bytes total.

If a vertex declaration has three elements as POSITION, COLOR and TEXTURE_COORDS, then
in an interleaved buffer the stride would be 32 bytes, since each component in a vertex element is
a float value and each float has 4 bytes size.

Figure 4.27 depicts an interleaved buffer example, the stride here is the displacement to next vertex element.

All data definition explained above is used in the GraphicsOGL3 layer to create vertex buffers with
a determinate distribution data in the graphic card with OpenGL 3.3, thus the card knows how must
be interpret the data stored in the vertex buffers when the objects are rendered.

Nevertheless, all this defined in this layer could be take and implemented with another graphic API,
defining another underlying layer as GraphicsVK for instance. see figure 3.1.

To see how this is implemented in Graphics layer see the create() method in the Mesh class.

4.2.1.4.2 Index Buffers

Index buffers contains integer offsets into vertex buffers and are used to render primitives more
efficiently, to get this, are reordered the vertex data and reuse existing data for multiple vertices to
avoiding data repetition. In other words, provides a mechanism to reference a vertex multiple
times in a single draw call, hence instead of just iterating through a list of vertices from beginning to
end in the vertex buffers, this mechanism can choose which vertex to draw using a series of index
values.

Mainly the indices stored in the index buffers, reduce the number of vertices required to form a
mesh geometry, but this mechanism also serves another potential purposes, in a scenario where is
wanted changed the color of vertex indexed mechanism allows to change a single color value,
otherwise to change the color value in a non-indexed array buffer is should be changed a lot color
elements of different vertices.
The indices helps to improve the performance, since in a modern graphics processing approach,
normally when the data is processed in the render pipeline, exist a vertex cache before the vertex

71

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

shader stage, then to storage the vertex elements comes form a vertex buffer and other cache
space before to store the results of the vertex processing, this scenario allows improving the
performance, since if a mesh geometry uses indices rather than duplicates each vertex is therefore
more likely to be in either the pre or post vertex cache, and so will be processed faster.

In conclusion, indices helps to improve the performance globally because is a mechanism that
space saver and time saver, allowing rendering faster. Index buffers are memory allocated in the
graphic card and store a list of unsigned shorts integers that tell to the graphic card, which vertex in
the vertex buffer is currently binded and must be draw.

4.2.1.5 Textures 2D

To improve visual realism the engine support texture mapping to apply images to the meshes,
initially the engine has a basic system to load textures, hence only supports 2D decompressed
textures. Although in this case practically all the work is done by the graphic API, is needed
configure some parameters to achieve the desired graphical results. To prepare the textures to be
send to the graphic card, has defined an abstract interface to load and set up the textures to finally
will be created on the graphic card. The texture class is abstract, due to the interface definition is
implemented within underlying layer GraphicsOGL3 with OpenGL 3.3 in this case. The figure 4.28
shows the interface defined within the engine.

A texture is an image that firstly is to be needed load it from any source to the main computer
memory, before send it to the graphics card memory.

It is important to highlight, that the modern graphics hardware support native texture compression,
allowing textures to take up far less memory and at the same time allows to manage any
dimension sizes textures, but for the moment this scenario is not implemented within the engine.

So textures are stored as bitmaps so the compressed file formats like PNG, JPEG among others
must be decompressed before being send to the graphics card memory, in this scenario is
important that the textures has dimensions that being powers of 2, for example 512 by 256 pixels is
a good choice. Obviously this must be improved in the future to support compressed textures
natively, jointly with the support to other textures types.

To load the images, the engine uses a third party library called std_image[stdImage]. Once a
texture is loaded into graphics memory, the texture coordinates comes into play, since through
them is possible to map a texture to a determinate mesh, since is needed to tell for each vertex of
the mesh which part of the texture belongs to, the textures coordinates are vector attributes, like
the position or color, see section 4.2.1.3 vertex element. In case the textures 2D, the texture
coordinates are represented with a two-component vector. The texture coordinates are normalized
and no matter how large the texture is, the texture coordinates always are beetwen 0.0 to 1.0
range.

The following UML diagram, shows the interface defined to manage the textures, the interface has
been defined with a fluent interface approach, see figure 4.28 below.

72

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

Figure 4.28 shows the interface defined to manage textures with the engine with an UML diagram.

The texture class interface defines different enumerations to manage different parameters related
with the textures management. First defines the texture types supported, then defines how the
textures are wrapping to the meshes, in conjunction with different filtering types, texture formats
and pixel formats.

The methods defined in the texture class, allows applies this parameters when a texture is loaded
and created, the create concept must seen as that the texture is created with different parameters
to finally to be send to the graphics card memory with the build method.

The interface defined in the figure 4.28 offers several methods to set up different parameters in a
texture, before to be build, its own name defines its utility, these are depicts in the following table.

method Description
 create For create a determinate texture type, only 2D textures initially.
 withFile For indicate the texture path and filename.
 withData For create a texture in procedural manner.
 withWrapping For assign a wrapping type.
 withFiltering For assign a filtering type.
 withTextureFormat For assign a format texture.
 withPixelFormat For assign pixel format type.
 withAnisotropicFiltering If this parameter is indicates anisotropic filtering is applied to the texture.

73

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

 build Send the data to the graphic card memory.

The table shows the methods defined to configure the textures with fluent interface approach.
Finally the bindTexture method is used during the rendering process to activate the texture unit
first, before binding the texture passing the texture unit number as a parameter.

The following code snippet, shows how a texture can be applied to a triangle, here the triangle is
defined manually rather than to use the ColoredsTriangle method defined in the
PrimitiveMeshShapes class, see figure 4.4.

1. Flwre::Graphics::Utility::Managers::TextureSharedPointer texture;
2.
3. (...)
4.
5. void HelloTexturedTriangle::CreateScene()
6. {
7. texture = Flwre::Graphics::Utility::Managers::ResourceManager::getSingleton().createTexture();
8. texture->create(Flwre::Graphics::Resources::Texture::TEXTURE_2D)
9. .withFile("./Textures/fabric.jpg")
10. .withWrapping(Flwre::Graphics::Resources::Texture::SampledWrapping::REPEAT)
11. .withFiltering(Flwre::Graphics::Resources::Texture::FilteringMin::FMIN_LINEAR,
12. Flwre::Graphics::Resources::Texture::FilteringMag::FMAG_LINEAR)
13. .build();
14.
15. triangleMesh = new Flwre::Graphics::SceneGraph::PrimitiveMeshShapes();
16. /*triangleMesh->ColoredTriangle(0.8f).create();*/
17.
18. // *** Defining a textured triangle manually ***
19. triangleMesh->setPrimitiveType(Flwre::Graphics::Resources::Primitives::PR_TRIANGLES);
20. triangleMesh->setVertexElementSemantic(Flwre::Graphics::Resources::VertexElementSemantic::VE_SEM_USAGE_POSITION);
21. triangleMesh->setVertexElementSemantic(Flwre::Graphics::Resources::VertexElementSemantic::VE_SEM_USAGE_TEXCOORD0);
22.
23. triangleMesh->setInterleaved(false);
24. triangleMesh->setNumVertices(3);
25. triangleMesh->setVertexAttributes(2);
26.
27. triangleMesh->setVertice(-0.7f, -0.7f, 0.0f);
28. triangleMesh->setVertice(0.7f, -0.7f, 0.0f);
29. triangleMesh->setVertice(0.0f, 0.7f, 0.0f);
30. triangleMesh->setArrayDataPtr(Flwre::Graphics::Resources::VertexElementSemantic::VE_SEM_USAGE_POSITION);
31.
32. triangleMesh->setTextureCoordsIndices(3);
33. triangleMesh->setTextureCoord(0.0f, 0.0f);
34. triangleMesh->setTextureCoord(1.0f, 0.0f);
35. triangleMesh->setTextureCoord(0.7f, 1.0f);
36. triangleMesh->setArrayDataPtr(Flwre::Graphics::Resources::VertexElementSemantic::VE_SEM_USAGE_TEXCOORD0);
37.
38. triangleMesh->create();
39.
40. texture2DEffect = new Flwre::Graphics::Effects::LocalEffects::Texture2DEffect();
41. texture2DEffect->getRenderTechnique(0)->getRenderPass(0)->getDepthStateTest()->setDepthTesting(false);
42. triangleMesh->setRenderableEffect(texture2DEffect->CreateRenderableEffect(texture));
43. getSceneHandler()->getRenderableObjectSet()->insertRenderableObject(triangleMesh);
44.
45. }

Code snippet 1.1 shows how a texture is created and applied, lines 7 to 13 and lines 40 to 42 respectively.

74

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

The figure 4.29 shows the apply result a fabric texture to the triangle.

Figure 4.29 depicts a textured triangle with fabric.

4.2.2 Utility

The name space Flwre::Graphics::Utility holds different submodules, on the one hand contains
the managers explained in the next section, and at the same time, holds the importers, this give
the ability to the engine to import 3D models from different geometry definition file formats. Initially
a OBJ 3D file format parser has been implemented only, this is collected in the section 4.2.2.2.1
OBJ importer.

4.2.2.1 Managers

Within the name space Flwre::Graphics::Utility::Managers has been implemented different kinds
of managers. Mainly, the managers defines a rendering interface part to create and manage
different resources in the engine, with a factory implementation fashion. All managers within the
engine are instantiated in singleton manner, because in all rendering process a unique manager
instance is needed for each resource or resource groups, see sections 3.4.3 singleton.

The managers are initialized when the render system is initialized within the engine when starts,
and are destroyed when the render system is finished.

In general, the managers defines an interface that offers the suited mechanism to manage different
engine resources, mainly maintains a control of the resources created and destroyed during the
rendering process, and they offers the needed tools to create and destroy different resources,

75

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

defining an interface for it. At the same time, the managers offers the mechanism to encapsulate
the destruction of all resources managed when the engine ends, hence the programmer that use
the API that offered by the engine, must not be worry about destroying them manually.

4.2.2.1.1 Buffer Managers

Buffer managers holds the mechanism to manage the buffers explained in the section 4.2.1.4
buffers, more concretely allows create and destroy vertex formats, vertex buffers and index buffers,
at the same time maintains a container with all buffers and formats created during the engine
execution, this scenario should allow eliminate a determinate object of the graphic card memory
but keep it in the computer main memory, being possible to send again to the graphic card, if would
be needed at runtime, obviously also expose the mechanisms to eliminate completely a
determinate object if this would be no longer necessary.

This is the mainly utility that managers harbor, nevertheless initially only are used to create and
destroy resources at the beginning and at the end engine execution.

4.2.2.1.2 Texture Manager

The texture manager is created within the resources manager, basically defines an interface to
create textures, from the applications that are implemented over the engine, see line 7 code
snippet 1.1 above, to achieve this an abstract createTexture method is defined in the managers
base class within Graphics module, and this is implemented in the underlying layer
GraphicsOGL3 module. At the same time, maintains a STL set container to keep pointers to
textures created, for later they can be destroyed when the rendering process finishes, with the
methods offered for this function, though when a texture is created, this is wrapped within a smart
pointer, so when the engine ends all textures are destroyed automatically without the need to
delete a concrete pointers.

The manager offers a couple of methods called deleteTexture and destroyTexture passing a
texture pointer as a parameter. The first method delete it only from the container and the second
delete it completely from the container and the graphic card.

At the same time, the manager holds methods to find and retrieve textures by name, this is useful
once the “.mtl” files are read within the engine by the OBJ parser, for later find and retrieve a
determinate texture for create it.

4.2.2.1.3 Shader Manager

The shader manager is exactly the same concept that the texture manager, applied to the shaders
an its parameters, except the shaders can not be retrieved by name. The manager only is used to
create and destroy shaders and to maintain a container to store the created shaders.

4.2.2.1.4 Render Effect Manager

Unlike the other managers, the render effect manager is entirely implemented in the Graphics
layer, so is completely platform independent, at the same time, the objective of this manager is a
little bit different than others explained above, since it does not create any resource. Basically this
managers has the responsibility to guarantee an orderly control of the storage of render effects and
its instances when are attached to the objects once created, for later, during the rendering process,
to manage the attached effects to the objects, due to can be changed at runtime. Finally with the

76

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

manager, is possible to get an orderly destruction of this resources when the rendering process
ends.

The destruction of all stored effect resources are centralized in this case in the same manager
when the own manager is destroyed when engine is shut down, however the manager offers
methods to delete a determinate effect or instance of it, passing the pointer of a determinate
instance effect as a parameter, being possible delete ones at runtime.

4.2.2.1.5 Material Manager

The material manager is implemented within the resource manager jointly the texture manager,
unlike the texture manager, the material manager not defines an interface due to is implemented
entirely inside the Graphics layer, since the materials are totally graphic API decoupled. Initially
the main idea is to offer a mechanism to maintain a materials inside an unordered map, for later
find and retrieve a determinate material by name, within the map container. To achieve this, the
manager offers methods to insert and retrieve the materials by name, and the corresponding
methods to remove a particular material.

The reason to use an unordered map, is basically in both cases in the texture and the material
managers, the need to keep count of the materials without that a sort is required, where the
access to a determinate element being sufficient.

4.2.2.1.6 Mesh Manager

The mesh manager has the same approach to the material manager, and is graphic API decoupled
as well.

4.2.2.2 Model importers

The engine needs to export complex geometric models made with other 3D design software like
Blender, Maya, 3D Studio Max, SoftImage among others, this software store the 3D models
designed with different 3D model formats

The engine needs to import complex geometric models made with other 3D design applications,
like Blender, Maya, 3D Studio Max, SoftImage among others, these programs store the 3D models
with different 3D model storage formats, being possible move the designed models to another
software or render engines, to render it. Exist some third-party libraries that can be integrated
within another applications to import these 3D model file in different formats, see[assimp], however
in this project initially an own OBJ importer has been developed and integrated within the engine.
The following section explains it.

4.2.2.2.1 Wavefront OBJ importer

The OBJ files stores geometry definition and other properties, this format initially was developed by
Wavefront Technologies in the early 80s. The format is open and along the years has been
adopted by other 3D graphics application vendors.

The engine implements an own OBJ importer, to load 3D models designed with any 3D modelling
software as been explained above, the OBJ parser is based on this other loader, see [OBJ-
Loader], but has been rewritten entirely, adapting it to the engine and improving it as well. However
initially the parser only able to parse triangulated meshes, so, the mesh stored in the OBJ file, must
be triangulated with any 3D modelling software like Blender, if the model does not come

77

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

triangulated in the OBJ file previously, at the same time, all geometry is loaded from the OBJ
loader to the graphic card without to be indexed.

In the following lines, a briefly OBJ file format explanation are made, for more information
see[OBJPaulBourke][OBJWikipedia]. A simple example has been taken to use for explain the main
OBJ file structure, obviously a real file with a complex model stored will be more dense and
provably with more parameters, that are not explained here, since only an essential explanation
are made, such as it has been said above.

An OBJ file looks more or less like this.

1. # Blender v2.79 (sub 0) OBJ File: 'Cube.blend'
2. # www.blender.org
3. mtllib Cube.mtl
4. o Cube
5. v 1.008434 -0.123181 -0.994194
6. v 1.008434 -0.123181 1.005806
7. v -0.991566 -0.123181 1.005806
8. v -0.991566 -0.123181 -0.994194
9. v 1.008434 1.876819 -0.994193
10. v 1.008433 1.876819 1.005807
11. v -0.991567 1.876819 1.005806
12. v -0.991566 1.876819 -0.994194
13. vt -0.002556 0.000000
14. vt 0.997444 1.000000
15. vt -0.002556 1.000000
16. vt 0.997444 0.000000
17. vt -0.002556 1.000000
18. vt -0.002556 0.000000
19. vt 0.997444 0.000000
20. vt -0.002556 1.000000
21. vt 0.997444 0.000000
22. vt -0.002556 1.000000
23. vt -0.002556 0.000000
24. vt -0.002556 0.000000
25. vt 0.997444 1.000000
26. vt 0.997444 0.000000
27. vt -0.002556 1.000000
28. vt 0.997444 0.000000
29. vt 0.997444 1.000000
30. vt 0.997444 1.000000
31. vt 0.997444 0.000000
32. vt 0.997444 1.000000
33. vn 0.0000 -1.0000 -0.0000
34. vn 0.0000 1.0000 0.0000
35. vn 1.0000 -0.0000 0.0000
36. vn -0.0000 -0.0000 1.0000
37. vn -1.0000 -0.0000 -0.0000
38. vn 0.0000 0.0000 -1.0000
39. g Cube_Cube_Material
40. usemtl Material
41. s off
42. f 1/1/1 3/2/1 4/3/1
43. f 8/4/2 6/5/2 5/6/2
44. f 5/7/3 2/8/3 1/1/3
45. f 6/9/4 3/10/4 2/11/4
46. f 3/12/5 8/13/5 4/3/5
47. f 1/14/6 8/15/6 5/6/6
48. f 1/1/1 2/16/1 3/2/1
49. f 8/4/2 7/17/2 6/5/2
50. f 5/7/3 6/18/3 2/8/3
51. f 6/9/4 7/17/4 3/10/4
52. f 3/12/5 7/19/5 8/13/5
53. f 1/14/6 4/20/6 8/15/6

This OBJ file contains the cube definition, a cube has been chosen, due to that its simple geometry
is suitable to explain the OBJ file structure, An OBJ file includes different type of data, the data type
is represented at the beginning of each line. The main data types are related with the vertex data,
and elements in this case.

78

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

From line 5 to 12 defines the geometric vertices (v), from line 13 to 32 defines the texture vertices
(vt) and from line 33 to 38 are defined the vertex normals (vn), all data are related with the vertex
data.

The lines between line 42 to 53 defines the object faces (f), the faces are object elements in a
polygonal geometry. The faces use reference numbers to identify the vertex data belongs to. This
reference numbers starts by 1, so this means that the first geometric vertex in the files is 1, the
second is 2, and so on, then in the example, the first geometric vertex is hosted in the line 5. This
can be applied with the all different vertex data such as the (vt) and (vn) as well, so the texture
coordinate (vt) starts by 1, and the vertex normal (vn) starts by 1 as well, these are hosted in the
lines 13 and 33 respectively.

The faces (f) may have a triplet of numbers that reference vertex data. These numbers are the
reference numbers for a geometric vertex (v), a texture vertex (vt), and a vertex normal (vn). So
each triplet of numbers references a group of vertices separated by slashes such as follows
v/vt/vn. The line 42 in the example above shows a three-sided face element with its vertex data for
each vertex. So the example can be read as follows.

1/1/1 refers to the first geometric vertex, line 5, to the first texture coordinate, line 13, and to the
first vertex normal, line 33, this triplet that refers to one vertex in a face, then the triplet 3/2/1 refers
to another vertex in the same face and so on.

It’s worth pointing out, that the example above has texture coordinates and vertex normal defined,
but is possible that a OBJ file format no has this vertex data defined, or has defined part of them
only, so, other combinations will be possible in function of the vertex data defined in the OBJ file.
Then will be possible to find the following scenario “f 1//1 3//1 4//1”, where the texture coordinates
are not informed, or the other possible scenario would be “f 1 3 4” where the texture coordinates
nor the vertex normal are not informed. Finally this scenario “f 1/1/1 3/2/1 4//1” will be illegal.

The lines that starts with “#” are comments, see lines 1 and 2. the line 4 indicates the object name,
a OBJ file can contains different objects in a unique file. The line 39 refers the group name for the
elements that follow it, it is possible to have multiple groups on one line, then the data that follows
belongs to all groups, however this does not supported by the OBJ importer implemented here.
The line 41 refers to group number but this is another syntax that noy is supported by the OBJ
importer.

The OBJ files has much more options, but not are supported with the OBJ importer implemented
here, since in this project has been implemented a basic OBJ importer.

The following table shows the parameters supported by the OBJ parser implemented.

Keyboard Description
Comment.
v Geometric vertices.
vt Texture Vertices.
vn Vertex normals.
o Object name.
g Group name, create a new mesh.
f Face, create a vertex.

mtllib Material library, specifies the material library file for the material
definitions.

79

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

usemtl Material name, specifies the material name for the element following it.

The following code snippet shows how to load a OBJ file with the engine.

(...)

objImporter = new Flwre::Graphics::OBJImporter();
objLoader->loadOBJfile("./Models/obj/cube.obj").build();
object = Flwre::Graphics::Utility::Managers::MeshManager::getSingleton().getMeshPtrByName("cube");
object->getLocalTransform()->setTranslate(Flwre::Core::Platform::Vector3f(2.0f, 4.0f, 3.0f));

(...)

For the moment, the OBJ importer must be instantiated and destroyed from the application,
however, the importer could be hosted within the engine as a singleton.

The line 40 in the OBJ file example above, specifies the material name for the element following it,
in this case the material name is “Material”. The line 3, specifies the material library file used,
though the OBJ definition can support different material library files, here one library is supported
only. In the following lines are explained the material library files “mtl” related with the OBJ files.

The OBJ format supports materials in a separate file with the “.mtl” extension, that means (Material
Template Library), this format also was defined by Wavefront Technologies. These files defines the
geometry surface shading properties, see materials section 4.2.4.6, the materials can be defined
in one or more files informed within the OBJ file, this use the syntax (mtllib), see line 3 in the
example OBJ file. The material library files, contain one or more material definitions, each of which
includes the color, textures, and reflection map of individual materials, these are applied to the
geometry surfaces in ASCII format equal OBJ files. For more information about the MTL material
format, see [MTLPaulBourke].

Although the standard is supported among different 3D modeling software, making it a useful
format for interchange of materials and is widely used, is outdated, due to the standard does not
support later computer graphics technologies, such as specular maps and parallax maps, though
the opened standard nature, allows added new features with a custom MTL file generator. Related
with the MTL files, the OBJ parser implemented within the engine, supports the essentials related
with this material libraries.

The following table shows the parameters supported by the OBJ parser implemented related with
the materials.

Keyboard Description
Ka Specifies the ambient reflectivity using RGB values.
Kd Specifies the diffuse reflectivity using RGB values.
Ks Statement specifies the specular reflectivity using RGB values.
Ke Statement specifies the emmissive coeficient using RGB values,

belongs to the extensions to MTL to support new techniques for realistic
rendering. See [][].

d or Tr Specifies the dissolve factor for the current material.
Tf Statement specifies the transmission filter using RGB values.
Ns Specifies the specular exponent for the current material.
Ni Specifies the optical density for the surface. This is also known as

index of refraction.
illum The "illum" statement specifies the illumination model to use in the

80

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

material. Illumination models are mathematical equations that represent
various material lighting and shading effects.

"illum_#" can be a number from 0 to 10. The illumination models are
summarized below.

 Illumination Properties that are turned on in the

 model Property Editor

 0 Color on and Ambient off
 1 Color on and Ambient on
 2 Highlight on
 3 Reflection on and Ray trace on
 4 Transparency: Glass on
 Reflection: Ray trace on
 5 Reflection: Fresnel on and Ray trace on
 6 Transparency: Refraction on
 Reflection: Fresnel off and Ray trace on
 7 Transparency: Refraction on
 Reflection: Fresnel on and Ray trace on
 8 Reflection on and Ray trace off
 9 Transparency: Glass on
 Reflection: Ray trace off
 10 Casts shadows onto invisible surfaces

* The engine only store the value, but for the moment, it does nothing
with the value.

map_Ka Specifies that a color texture file or a color procedural texture file is
applied to the ambient reflectivity of the material.

map_Kd Specifies that a color texture file or color procedural texture file is
linked to the diffuse reflectivity of the material.

map_Ks Specifies that a color texture file or color procedural texture file is
linked to the specular reflectivity of the material.

map_Kn Specifies a normal textute file
map_Ns Specifies specularity texture.

map_Disp or disp Specifies displacement map.
map_d Specifies that a scalar texture file or scalar. procedural texture file is

linked to the dissolve of the material. During rendering, the map_d
value is multiplied by the d value.

map_Bump or bump Specifies bump map.

When the meshes are parsed, internally the meshes are created instantiating the meshes and are
stored within a container for later to be retrieved by name and to be send to the graphics card, the
materials related with OBJ files defined within the MTL files, are parsed and are treated in the
same manner, all of this management are carried out by the managers explained in section
4.2.2.1.5 material managers and section 4.2.2.1.6 mesh managers.

81

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

The following screenshots, shows some OBJ models imported and rendered by the engine.

Figure 4.29a. Classical chess, with Phong reflection and one directional light, rendered by Flow render engine.

82

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

Figure 4.29b. Classical chess wireframe, rendered by Flow render engine.

Figure 4.29c. Suzanne model low, medium and high poly, with diffuse shading, rendered by Flow render engine.

Figure 4.29d. Suzanne model low, medium and high poly, wireframe, rendered by Flow render engine.

83

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

Figure 4.29e, f. Sponza Crytek model, with diffuse shading, normal maps and two directional lights, rendered by Flow render engine.

84

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

Figure 4.29g, h. Sponza Crytek model, with diffuse shading, normal maps and two directional lights, rendered by Flow render engine.

85

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

4.2.3 Windowed application

The window sub-module is defined inside Flwre::Graphics::Window name space, inside this
name space is implemented the application context specialization explained in section 4.1.1.1
application context, the specialization defines the windowed type application, at the same time,
implements the features to manage the keyboard and mouse handle events, and holds a pointer to
the camera implementation, the camera is created when the window application context is
initialized, then this pointer is passed to the renderer, and here is used to access the camera
methods to move it with the keys and the mouse, during the rendering process, see section
4.2.4.4 camera.

Figure 4.30 depicts windowed application classes hierarchy with two different tool kits.

86

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

This design architecture must allows for example, to create applications with a console approach
simply derived from the base application context class and implemented the corresponding
behaviour. But for the moment, only implements a mechanism for working with windowed
applications.

The WindowedApplicationContext and GlfwApplicationContext classes implements a
windowed system.

Both classes implements the abstract class application context defined in Core layer. The reason
to implement the abstract interface application context between two classes, is to separate the
common window parameters together with the entry points to the renderer system, and the lineal
render queue implemented see section 4.2.5 renderer, of the concrete implementation of a
windowed system and the handling events system, with a multi-platform abstraction layer like
GLFW see GlfwApplicationContext class.

The reason to use a library like GLFW, is that OpenGL by itself does not provide any mechanisms
for creating the necessary rendering context or managing windows, manage user input events
even manage timing, although in this project timing is treated separately see section 4.1.4.4 Timer.

At the same time, the window creation is platform dependent; this means that is handled by a
platform-specific APIs and each operating system has the concrete APIs to get this, then this
scenario needs a common abstraction level, to simplify the window creation with the engine, since
the engine has a cross-platform approach, otherwise different implementations to create windows
and event handling for each platform would be needed, this is where GLFW comes into play again.

To hide this complexity, different libraries that act as a multi-platform abstraction layer, to hide the
windows creation complexity in different platforms, one of them has been seen above.

But nevertheless, the cross-platform engine design in conjunction with the multi-graphic API layer
implementation approach, get necessary a design structure allows the integration of different
libraries to be able to create windows, rendering context, and events handling, since maybe in a
determinate platform does not exist a determinate abstraction library to create windows or simply
maybe would be want implemented with a concrete operating system API directly, this approach
can view as a tool kit that support multi context windowed applications in compilation time.

For this reason in figure 4.30 shows the SDL2ApplicationContext class, since the explained
above allows a window system creation changeable at compilation time between different tool kits
to create windows, rendering contexts and manage events from the engine. The de-facto standard
toolkit in the engine is the GLFW library implemented in GlfwApplicationContext class, the figure
4.30 shows how could be implement another tool kit with SDL2 library, and following this approach
would be possible implements others tool kits, such as freeglut library for instance or even will be
implemented directly with a platform-specific API as WGL context in windows or GLX context in
Linux and so on.

The tool kit mechanism, offer a major portability to the engine, between different platforms and
different implementations of graphic APIs, since in future scenarios, an example of this, would be
that GLFW library supports OpenGL, OpenGL ES and Vulkan rendering context only, then if
wanted to implement a rendering layer with Direct3D, GLFW does not support it. Other libraries
like SDL2 supports Direct3D, so this mechanism offer a major flexibility to integrated a determinate
library to manage the windows creation, rendering contexts and manage events in a given
scenario.

87

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

Finally, the decision which library to compile at compilation time is defined in
SysWindowApplicationContext header via compilation directives.

More in detail, the WindowedApplicationContext implements the following:

A private method to load the render layer interface implementation when the engine is initialized,
thus maintain a pointer to render system loaded and has a method to retrieve this pointer, see
loadRenderLayerImplementation() method.

Stores a pointer and method to retrieve it, of the lineal render queue see SceneHandler, this class
stores another pointer to RenderableObjectSet class, which handles renderable objects array
see section 4.2.4.3 renderable object set, and scene handler, this is the minimal approach
implemented to manage the objects to be rendered in a scene in lineal manner.

At the same time defines two pure virtual methods StartRendering() that is implemented in each
window tool kit, and OnUpdate() method witch is declared in each application and implements the
behaviour that is executed in each frame from the applications, see section 5 applications over the
engine.

4.2.3.1 Handling keyboard and mouse events

In the same way that the window creation system, the keyboard and mouse handling is platform
dependent where the engine runs, so each operating system handles it differently and
consequently is programmed different manner as well over each platform, due to the engine has a
cross-platform approach, is necessary a common abstraction level to manage the keyboard and
the mouse in a common manner, then the responsibility of this work inside the engine is targeted to
the toolkit, that in this case, is the standard toolkit of the engine GLFW.

In common manner approach, the responsibility to manage the keyboard and the mouse will
targeted to the tool kits implemented inside the engine in this case here is GLFW as been said,
due to that is de-facto standard toolkit of the engine, but they could be others like SDL2, freeglut
and so on, if would be implemented within the engine, with the offered mechanism to allow change
the tool kits at compilation time such as explained in section 4.2.3 windowed application.

GLFW API offers an abstraction to manage input events, here it is not explained how this API
works to manage events, for information about how GLFW works see[GLFW] and the engine code
implementation, concretely the GlfwApplicationContext files.

The GlfwApplicationContext class is expanded with the following methods to manage the input
events see figure 4.30, the OnKeyDown method is involved with the keys press management
outside the rendering loop in callback way. The callbacks are defined in the method
setUpCallBacks and are set up when the window context is created when the engine starts.

The methods OnMouseMove, OnMouseButton and OnMouseScroll such as indicate its method
names, they manage all related with mouse events.

Related with the key events management, has been defined a method called isKeyPressed as
well, this method does not work in callback way and is called per each frame inside the render loop
instead, to manage the camera behaviours, walk, strafe and lift pressing the keys up, left, right and
down arrows keys for walk and strafe, plus Q and Z keys for lift see section 4.2.4.4 camera, at the
same time, that are updated the camera translations in each frame, the reason to implement it in

88

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

this way, is to get soft camera movements, when the keys are pressed, since via callbacks does
not get camera soft movements.

Finally defines a couple of methods, called isFullScreen and setFullScreen to set up the engine
in full screen mode pressing F11 key, to change between full screen mode and windowed mode.
The variables winxPos and winyPos maintain the window position coordinates on the display
screen.

Related with the applications programmed over the engine, the method OnKeyDown is overridden
on the applications if is necessary, to manage the desired keys on the application. For the moment,
this in the applications, must will be programmed directly with the mechanism that uses the API
used in the toolkit, however, obviously this should be encapsulated within the engine and offering a
common mechanism to the programmer that use the engine API, to program the desired keys with
a common interface definition, independent the toolkit that is being used, but for the moment this is
not implemented.

4.2.4 Scene Graph

Section 2.3 has been explained the utility of the scene graph, this section explains its utility with a
basic example to illustrate it, in a more practical way.

The real-time concept in this context, must be understood like that images are generated online
and the rate of generation is fast enough for the image sequence to be looked like animation that
simulates something, a real-time rendering engine must be able to render scenes with different
levels of complexity, without affecting its performance as the scenes becomes more complex, so,
how can a real-time rendering engine be scalable?

To answer this, some mechanism is necessary to keep in track of objects make up the scene for to
get high level performance and efficiency when rendering complex scenes, where exists a lot of
objects in movement, since a real-time rendering engine must be able to render scenes with
different levels of complexity, without affecting its performance as the scenes becomes more
complex, logically this will have a limit that will be determined by the amount of objects to render,
jointly with other factors such as the power of the underlying hardware used.

The mechanism to achieve this objective is known as scene graph, however, a scene graph is
combined with another techniques, like culling while keeping track of objects to increase the
rendering efficiency, since a scene graph manage nodes that encapsulate different information
types involved in the rendering process.

Getting further into matter, scene graphs consist of a number of scene nodes organized in a
hierarchical way via tree-like structure with acyclic graphs usually, each node has a parent node,
and a number of child nodes. Everything in a scene can be part of one large scene graph, so it's
common for a real-time rendering engine with scene graph implemented to have just a single root
scene node, containing everything in the current level as children.

A scene graph nodes can contain graphical information of objects including their transformations,
however, doesn't necessarily have to contain graphical information such as a mesh or
transformations, since they may be purely transitional, that is, nodes that group together and
translate a number of children, but they don't render anything themselves, or perhaps the node will
contain only state information, such as a group of sub-nodes that are rendered using a specific
shader, or some other specific rendering option set.

89

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

Related with culling mentioned above, while traversing the scene graph for rendering, bounding
volume of the objects contained in the visited nodes, will be tested against the viewing frustum
culling of the camera, and if the object that is contained inside the node is outside the camera
frustum, then the node and all its children will be culled and not traversed until are inside the
frustum again. This algorithm known as hierarchical view-frustum culling[ViSurAlgo], the overall
rendering performance can be increased. Nevertheless, the scene graph provides only a nodes
logical organization so spatial data structures are needed could provide better culling results.

To depict the explained above, in conjunction with the transformations in relation with the scene
graph, an example to illustrate this can be a car modelled in 3D, a car in 3D has separate meshes
for the chassis, wheels and so on, in this scenario, might think in how can we keep track of where
the wheels are in relation to the chassis?, this is a simple scenario, but as the scenes get more
complicated and starts adding in lots objects, keeping track of the relative positions of everything
starts becoming difficult. Here, is where the scene graph is useful too, due to tree-like structure
where each node has a parent node, and a number of child nodes, then the car example could be
represented by the following simple scene graph figure.

Figure 4.31 depicts the car example in a simple scene graph

Each node in the scene graph, contains information relating to its graphical representation, hence
the chassis scene node could maintain a pointer to a car body mesh, while the four wheel nodes
contain pointers to a single wheel mesh model, since there is no need to load the same mesh
multiple times.

At the same time, the nodes contains pointers to local transformation matrix transforms and the
local transformations holds information related with the positions, orientation including scaling of
the objects in the scene, the father-child relationship approach between nodes, in the scene graph,
brings the possibility of manage all transformation information in cascade way, hence is possible to
keep track of where the wheels are in relation to the chassis, to do an entirely car reorientation or
being able to size up the car becoming to a big car, if set the chassis scale to 10.0, for example,

90

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

then will automatically increase the size of its wheels due to the parent/child relationship of their
transformations.

A real-time rendering engine, is compound with many components and all of them are interrelated,
some of these engine components, are meshes, transformations, lights, materials, effects and so
on. This components at the end, must be well tuned to feed the rendering interface, achieving to
render objects with a determinate achievement like the illumination, effects or whatever.

A scene graph combined with spatial data structures, culling techniques, bounding volumes
objects, transformations, and the shaders for the effects as has been seen, is an important piece in
a real-time rendering engine, to get a good managing and good rendering performance in scalable
manner, however, this project is focused on build the essential pillars of a rendering engine, this
pillars are different necessary components interrelated of them that compound the real-time
rendering engine base and they must be well tuned, before implementing more complex
techniques, for this reason, has been preferred first focus on the basic components explained in
this project, before implementing spatial data structures, bounding volumes objects and the scene
graph management among others more complex techniques.

For this reason, the implementation of these techniques are outside of this project, temporarily has
been implemented a linear method with a vector to storage renderable objects instead, this should
look like a render queue that in the future will be replaced with a complete scene graph
implementation, although in a complex scenes this method becomes less useful for obvious
reasons explained above.

Although the fact of implementing it, in a linear way, provide the opportunity to experience how it
behaves and to compare it in the future with scene graph behaviour.

In the next sections, is explained how the simple linear method to storage renderable objects is
implemented, in conjunction with the mechanism to feed the rendering interface in each frame, at
the same time is discussed the classes that compound the renderable objects.

4.2.4.1 Renderable objects and meshes

The geometric data that represents each object is encapsulated in three classes, see UML
diagram in the figure 4.32. The main classes for definition a model or object are the renderable
object class and Mesh class, the primitives mesh shapes class is a mesh specialization and hides
the construction details for some both 2D and 3D geometric primitives objects. See section 4.1.2.7
2D and 3D geometric primitives.

All data related with model geometrical definition, is encapsulated by the class mesh, although a
model can be split in different sub-meshes, initially to simplify the scenario a monolithic mesh
definition has been made, in a unique class provisionally, but usually, the complex 3D models can
has different sub meshes so in the future this schema would be define a sub-mesh class too, for
increase the definition granularity to be closer to reality.

The data contained in mesh class is stored in the computer main memory, and holds entirely
information that defines all data related with geometrical objects, then this data is send to the
graphic card memory via the create method defined in the mesh class, with the fluent interface
approach is possible to do, the following command achieving more readable code.

circle->Circle(float posx, float posy, float radiusxy, ColorMeshShape &color).create();

91

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

The renderable object base class, holds initially a boolean variable flIsVisible that is true all the
time since provisionally is assumed that all objects are visible always, since are not implemented
culling techniques for the moment and therefore the objects are rendered in both cases although it
is not very efficient, jointly declares a virtual method to set up a render transaction when the object
is selected to be rendered, see section 4.2.4.2 render transactions and section 4.2.5 renderer.

The renderable object base class idea, is to hold pointers to information related with geometrical
data, see section 4.2.1.1 Vertex Declaration, jointly with the data related with effects and
transformations data mainly, thus is being possible share these last data with the same mesh. Due
to this, is possible to render a determinate mesh model instantiated repeatedly in a determinate
scene, with different positions and different effects applied in each object instance, but all instances
point to the same geometrical data stored in the graphic card, being referenced with the vertex
declaration, explained in the section 4.2.1.1.

The renderable object class, maintains a pointer to a determinate renderable effect instance, that
will be applied to the object during the rendering process, see section 4.2.6.2 local effects, and
maintains a pointer to the transform related with this object see section 4.2.7.1 transform class,
finally declares a boolean variable to indicate if object is cloned or not, to maintain an internal
control, if it is necessary to represent different objects, which maintain the same geometry with
different effects applied and different positions within a scene, then the object must be cloned from
the original created instance of the object, this is achieved by the method clone. At the same time,
another two methods are used, setRenderableEffect to attach an effect when is created, see
section 4.2.6.2.2 renderable effect, and in the same way, this base class implements a method
called getLocalTransform, for the object transform access, to set up the geometrical
transformations related to each object.

This data, later is possible to retrieve through the render transaction mechanism, during the
rendering process, to apply the effects to the objects and compute the geometrical transforms per
each object, see the following section 4.2.4.2 render transactions.

4.2.4.2 Render Transaction

The render transaction concept, has to be seen as a way to encapsulate all the necessary
information that will be applied to the mesh during the rendering process. The container class
encapsulates a pointer to a vertex declaration, a local geometric transform and a renderable effect
for each object, all these data are passed from the renderable object class, when is selected to be
rendered, so, during the rendering process the renderer knows what geometry should choose from
all those that exist stored within the graphic card memory, through the data stored within vertex
declaration pointer, in turn, also it knows what effect it should be applied to the object, in
conjunction with what local geometric transformation should be applied as well, to calculate the
model transform defined in figure 4.10 to position the object correctly into world space, see figure
4.32 below.

92

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

4.2.4.3 Renderable object set and scene handler

The following UML diagram shows the implemented structure.

Figure 4.32 shown all the explained above in sections 4.2.4.1, 4.2.4.2, 4.2.4.3 with a UML diagram.

93

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

The renderable object set and scene handler is the trivial solution to substitute scene graph
mechanism provisionally, since the scene graph not will be implemented in this project, see
section 4.2.4 scene graph, nevertheless, all described above in this section could be defined as
the beginning of the path to implement a scene graph.

Basically the renderable object set class, is a renderable objects pointers vector that defines a
linear method shaped like array to storage renderable objects, this should look like a render queue,
that in the future will be replaced with a complete scene graph implementation.

Finally, scene handler is class container with a pointer to renderable object set instance, with a
method to retrieve this pointer, but this could really be eliminated.

4.2.4.4 Camera

In really the camera is an illusion, build with different mathematical concepts, the camera projects a
portion of the world space at any one time during the rendering process, this portion of the world is
projected onto the view plane, the view plane is a rectangular region that contains the projected
data and is known as viewport, the viewport is what is drawn on the rectangular display screen.

There are different camera models that are given determined by the projection type, the most
common projection types are the perspective projection and orthographic projection, the engine by
default uses perspective projection, though is possible to change the camera model pressing the
F2 key to activate the orthographic projection, and F3 key to activate the perspective projection,
see projection matrix section 4.1.2.8.2.2 and its sub-sections.

The projection forms a view volume, all objects outside this view volume are not visible and
therefore not drawn, the process that determines which objects are not visible is called culling, the
objects that intersect the boundaries of the view volume are only partially visible, the visible portion
of an object is determined by intersecting it, with the view volume with a process called clipping.

The view volume is defined by 6-planes, see figure 4.11 and figure 4.12 that depicts the
orthographic view volume and perspective projection view volume or perspective-view frustum
respectively. The engine initially does not implement any type of culling like frustum culling to
determine if an object is inside or outside the view volume.

The camera is implemented in the name space Flwre::Graphics::SceneGraph, in the Graphics
module, the camera is totally decoupled from the graphic API, so the graphic API not has any
camera, and only receives the projection matrix and the view matrix, in the vertex shader, see
figure 4.10 and section 4.2.6.1.1 shader parameter data, and section 4.1.2.8 geometric
transforms and its sub-sections.

The camera model is defined as an eye point, and has a coordinate system associated it, such as
been defined in section 4.1.2.8.2.3 view matrix lookAt.

The coordinate system has the eye position , that indicates the camera position within the scene,
then also has the camera direction vector and the view up-vector called . The camera direction
vector is perpendicular to the view plane or clip space and the view up-vector is parallel to
opposing edges of the view port, finally exist another vector called right-vector called that is
perpendicular to the camera direction vector and the view up-vector, since can be chosen such as
been defined in 4.22 definition in the section section 4.1.2.8.2.3 view matrix lookAt. So, the set of
vectors defines the camera coordinate systems. See cameraUpdate method in camera
implementation.

94

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

The camera class, defines several attributes and methods needed to build a camera within the
engine, in the table below are briefly detailed.

Attribute name Description
flYaw, flPitch, flRoll Indicates the camera rotation in Euler angles with degrees, the pitch

rotate about -axis, yaw rotate about -axis and roll rotate about -axis.
flFov Indicates the field of view.

 flAspectRatio Indicates the aspect ratio.
 flzNear, flzFar Indicates where the view volume by the additional planes are truncated,

this variables defines the near and far planes position in the view
volume projection.

 flSpeed Indicates the speed camera displacement.
 flAngle Indicates the angle of field of view used in camera zoom.

 flUp, flRight, flLook Indicates the vectors explained above , where flUp is ,
flRight is and flLook is , this vectors are normalized.

flPosition A three-vector component that indicates the camera position obtained
from the translation vector flTranslation defined below.

flViewMatrix Maintains the view matrix, see section 4.1.2.8.2.3.
flProjectionMatrix Maintains the projection matrix, see section 4.1.2.8.2.2.
flRotationMatrix Maintains the rotation matrix, see section 4.1.2.8.2.4.

flTranslation A three-component vector to maintains the camera translation vector.
flInitSceneYaw, flInitScenePitch,

flInitSceneRoll,
flInitScenePosition

This variables maintain the initial camera configuration to be able to
return this initial position pressing F12 key during the rendering
process.

The camera supports perspective and orthographic projection as been explained, to set up this
projections internally, due to is possible to change the projection at runtime, the camera defines an
enumeration with the projection types supported. Pressing the F12 key is possible to initialize the
camera to initial position during the rendering process when is moved across the scene.

The camera in all scenes can be moved by arrow keys and rotate by mouse pressing left button
mouse, with the Q and Z keys is possible to lift the camera, and with the mouse scroll wheel, is
possible to do zoom.

Finally the method names defines their functionality, see the following UML diagram that shows the
completely camera definition.

95

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

Figure 4.33 depicts the complete camera definition within the engine.

For more information about the camera models and its implementations is possible to review
various materials, here are mentioned the following [3DGEArchCam][fundaComGraCam] but
obviously exists others.

96

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

4.2.4.5 Lighting

In a graphic system like a real-time rendering engine, the concept of lighting is important, due to if
the objects are drawn with textures and color solely, the rendering results lack realism, so, scenes
rendered will be incomplete without the presence of lights, for the same reason, that much of the
richness our own visual systems provides in the real world they are due to lighting.

Then a real-time rendering engine must support lighting and materials that the lights affect,
materials will be discussed in section 4.2.4.6. The standard graphics APIs support illumination
models that are simple approximations to true lighting, the model concept here is used due to in
fact is not possible to simulate exactly what nature does with the light, so, in the field of 3D
graphics the lighting is “modelled”, though in the concept of real-time the lighting models are
designed to the lighting calculations can be performed quickly. More realistic lighting can be found
in the graphic systems are not real-time, however, it is worth pointing out, that in the last years the
distance of lighting realism between the graphics systems, that are not real-time and those that
are, has been shortened due to the power increase of the graphic cards. Everything and so, the
systems that are not real-time continue to maintain more realism lighting.

Due to lighting in the real world is extremely complicated and depends on way too many factors,
nowadays is not possible to calculate it, with the “limited” processing graphic cards power,
therefore, as has been said, the graphic APIs are based in a simplified physic models of the light,
one of these models is known as Phong reflection model, being the most popular reflectance
model and simpler to implement, this model was created by the Vietnamese pioneer computer
graphics researcher Bui Tuong Phong(1942-1975)[tuongPhong]. This model are applied via
shaders in the modern graphics approaches, unlike old approaches where the model illumination
was implementing within the fixed function pipeline. With the using the shaders is possible to
implement a couple of illumination methods based on Phong reflection model, since the
illumination model can be implemented within the vertex shaders or within the fragment shaders, in
case to implement it per-vertex, the illumination is applied directly to the geometric vertices before
they are converted in fragments in the rasterization stage within the rendering pipeline, in this case
the method is called Gouraud shading and this model was the implemented within the fixed
function pipeline in the old graphics approaches, in case to implement it, within the fragment
shader the illumination is applied directly to the fragments, and in this case the method is called
Phong shading.

All illumination effects implemented within the engine uses the Phong shading only, within the
fragment shaders to improve the accuracy of results, since when the shading light equation is
evaluated within the vertex shader, causes a results not very realistic, due to normally the resulting
color value within the vertex shader is the resulting lighting color applied to a particular vertex only,
and the color values of the surrounding fragments are then the result of interpolated lighting colors,
and precisely due to this interpolation the lighting looks a bit off, than if is implemented with the
fragment shaders where it gives much smoother lighting results.

The following figure 4.34 shows the visual difference between Gouraud and Phong shading, the
scene on the left is rendered with Gouraud (per-vertex) shading, and on the right is the same
scene rendered using Phong (per-fragment) shading. Underneath the teapot is a partial plane,
drawn with a single quad. Note the difference in the specular highlight on the teapot, as well as the
variation in the color of the plane beneath the teapot, see[OGL4glsl] for more information.

97

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

Figure 4.34 shows the difference between Gouraud and Phong shading, this image is not rendered by Flow Render Engine, the image
has been extracted from [OGL4glsl]

The Phong equation has three components called ambient, diffuse and specular, this components
in fact are physical attributes of the lights that defines intensities like color values and in fact, can
be seen each one of them as the final color contribution in a determinate surface.

Then the three components are computed as a sum, and the result is the Phong reflection, hence
. But also, the lights sources has other

attributes as well like intensity and attenuation that they indicates decrease in energy as the lights
travels over some distance, this are multiplied to each Phong reflection component.

Jointly with the explained above, the materials has an important role with all of this, such will be
explained in the corresponding section 4.2.4.6.

The lights and has a the following behaviour, explained below.

The ambient light does not has origin nor direction and due to comes from light has been scattered
by the environment, the materials discussed in section 4.2.4.6 reflects some of this light due to the
quantity ambient indicated in the material that indicates the fraction of ambient light that is
reflected.

The diffuse lighting strikes in a surface, the most important property of diffuse light is its direction,
since in each point on the object surface the light arrives in some direction and then is scattered
equally in all directions at that point, a material has the color component diffuse that indicates how
much diffuse light is reflected.

The specular lighting generates specular highlights, this light strikes a surface as well, but its
reflection has a preferred direction generating the specular highlights. The specular material color
component specifies the fractional amount of reflectance. It is important to highlight, that specular
lighting is more a property of the object, rather than the light itself.

98

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

The behaviours explained above, has been represented in the following figure 4.35.

Figure 4.35 the different kind of lights behaviour an object front facing, [cubeImage].

In the 3D scenes created with a graphic system like a real-time rendering engine, usually does not
create ambient, diffuse or specular lights directly, light sources are used instead, this light sources
has been implemented within the engine distributing them with a hierarchical structure, because
the light sources comes in various types, although initially the idea was implement a unique class
called light that represents the lights, however, with this approach, not all data members made
sense for each light type. The following sections explains the properties per each light type and
shows how has been implemented within the engine, to introduce the complete lights hierarchy
structure which will be discussed in the following sections is shown the following simplified UML
diagram.

99

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

Figure 4.36 depicts the complete structure lights hierarchy within the engine.

As can be seen, the lighting with the different light types has been implemented within the
namespace called Flwre::Graphics::SceneGraph within the Graphics module, both the lighting
data stored and the materials data is totally platform independent, so no matters which the graphic
API used, with the manner how to storage this data.

The class called light maintains the common values for all light types, this includes the light name
jointly the components ambient diffuse and specular, since regardless of the type of light all lights
includes this components with its intensities and strength, all this values can be established and
retrieved through the corresponding setters and getters. Finally the light class, has an enumeration
where is defined the lights types supported by the engine, this is used internally when the lights are
instantiated, and could be used to do different light types checks, outside the lighting classes.

It is worth pointing out, that the lights classes structure defined in the figure 4.36 within the engine,
only maintains the definition values per each light defined in a determinate scene, but the light
equations are implemented within the fragment shaders for each effect where the lights are
involved, the engine during the rendering process, communicate to the fragment shaders and pass
these values to calculate the light equations per each pixel in each frame, and rendered the light
effects over the scene, see section 4.2.6.1.1 shader parameters data and concretely the
UpdateUniformsConstants method. To achieve the desired light effects over the surfaces, the
meshes must have the normals calculated, such as explained in the section 4.1.2.9 normal
calculation, otherwise the lighting will not affects to the meshes surface.

In the old graphics approaches, the number of lights on a scene was limited, in modern graphics
approaches, as the implemented in this engine, the number of lights are not limited by a
determinate number of lights if not by the graphic card power.

100

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

4.2.4.5.1 Directional light

A directional light could be seen like the sun in the real world, a directional light has a direction but
no specific origin, so that all light rays are parallel to each other, then its direction within the engine
is specified by a three component vector, that is used to set up the light direction in the scene
where the light is set up. Although in the real world, the sun has a determinate position, due to the
long distance where is located simply is disregard its position and take only the direction into
account. Finally, the directional light brightness remains the same regardless of the distance from
the lit object.

The DirectionalLight class is derived from the Light class and maintains a direction vector jointly
the methods to set up and retrieve it.

The following figure 4.37 shows the directional light in conceptual manner.

Figure 4.37 depicts the directional light in conceptual manner.

101

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

4.2.4.5.2 Point light

A point light source, unlike a directional light, has both an origin as well as a fading effect, which
grows stronger as objects move away from it, hence, a classic example for a point light is a light
bulb. In a point light the direction of light is constant across the scene, then the directional light
becomes dynamic due to in a point light, the light emanates in all directions equally, this causes
that the direction must be calculated per each object by taking vector from the object towards the
point light origin, for this reason this light type specifies an origin position rather than a direction like
the directional light.

The PointLight class is derived from Light class and maintains a three component vector position,
jointly the methods to set up and retrieve it, at the same time, maintains different values to set up
the lighting attenuation, such as constant attenuation, linear attenuation and the exponential
attenuation, jointly with the methods to set up and retrieve it as well.

The following figure 4.38 shows the point light in conceptual manner.

Figure 4.38 depicts the point light in conceptual manner.

102

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

4.2.4.5.3 Spot light

A good spot light example is a lantern, this light type is more complex than the other lights
explained above, essentially borrows components from both, for this reason the spot light class is
derived from directional light and point light class, see figure 4.36. This light has an origin position,
and is under the effect of attenuation as distance from target grows as the point light, and its light is
pointed at a specific direction as the directional light. The spot light adds the unique attribute of
shedding light only within a limited cone area that grows wider as light moves further away from its
origin, outside the cone, the spot light emits no light.

The SpotLight class maintains different methods to define the cone area diameter, jointly with a
method to on and off the spot light.

The following figure 4.39 shows the spot light in conceptual manner.

Figure 4.39 shows the spot light in conceptual manner.

103

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

Finally, the figure 4.40 shows the complete lighting structure with an UML diagram for greater
understanding to explained above.

Figure 4.40 shows a complete lighting structure implementation with an UML diagram.

In the section 4.1.2.9 normal calculation, has been explained the normals calculation, and how are
applied to the meshes in order to be able to simulate, how the rays of lights bouncing off over the
meshes surfaces in the scenes simulating a reality. if a mesh does not have its normals calculated
and applied on it, the illumination effects will not works.

104

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

4.2.4.6 Materials

Materials are used to enhance the realism in the rendered scenes jointly with the lighting and
texture mapping. The materials allows for objects simulate different types of materials of the real
life and are strongly related with the lighting such as will seen below.

In the real world, each object reacts differently in front of to the light depending the material it is
made, hence, steel objects are often shinier than a clay vase for example or a wooden table does
not react the same to light as a steel table, at the same time, each objects also responds differently
to specular highlights since some objects reflects more scattering than others. To simulate this
within a graphic system is necessary define material properties for each object.

The materials solely applied to an object no take effect, for the material take effect, is necessary
involves the lights, at least one, see section 4.2.4.5 lighting, and obviously are needed the vertex
normals calculated explained in section 4.1.2.9 normal calculation.

The materials are composed of various components called ambient, diffuse and specular, this
components will determine the ambient, diffuse and specular reflection of the objects in front of the
light, in fact, are color components that indicates how much per each component light is reflected,
hence, can be seen as attenuation factors per each RGB component for each light type. The
computation of this can be seen as follows.

Finally, the shininess component is related with specular component, and defines which specular
highlight scattering or radius the material has, and the emissive color component simulates the
light that the material itself generates, which is usually nothing, and this light not reflect with the
other objects. With this scenario is possible to simulate real-world materials in a rendered scenes.

The engine offers a basic system to store the materials properties explained above to apply it
manually to the objects. The materials also can be stored as part of a 3D model format.

The engine implements an essential OBJ parser, where the materials in the OBJ 3D file format are
stored in a separate material file, with the extension “.mtl”, this files are associated with the
wavefront “.obj” files. Hence, the OBJ parser internally will use this system to store the material
properties read from “.mtl” files for later to set up it, to the objects to get the final rendered results.

The materials are implemented within the namespace Flwre::Graphics::SceneGraph in the
Graphics module, this data is totally platform independent like the lighting, so no matters the
graphic API used, with the manner how to storage this data. To maintain the different parameters
involved in a material a unique class called material is defined such as depicts in the UML diagram
in the figure 4.41.

This class maintain different data members to define the components explained above, such as
emissive, ambient, diffuse, specular and shininess with a three-dimensional vector, at the same
time defines the setters and getters methods to manage this data. Although the components
initially are implemented with three-dimensional vector, it would have been better implements with
four-dimensional vector, to take into account the alpha component. However, this is implemented in
color data type see section 4.2.7.2 color class, since the idea was to implement the components

105

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

of the materials with the color data type instead three-dimensional vector, but for now it is left that
way.

The following UML class diagram, shows the material class with its attributes and methods, in a
simplified way, since the class has a lot attributes and methods defined, but here to simplify the
diagram, shown the basic components involved with the materials.

Figure 4.41 shows the Material class with a UML diagram, in a simplified way.

4.2.5 Renderer

This sub-module is defined in Flwre::Graphics::Renderer name space and holds the interface
definition for all common rendering operations, more concretely is the top-level entry point into the
engine drawing system. The interface is implemented in the underlying layer GraphicOGL3 with
OpenGL3.3, which can be loaded at runtime and could be switched between other modules
implemented with different graphics API at runtime as well, if would be implemented, see section
4.1.4.1 dynamically loaded C++ objects. The interface approach makes the Graphics module
completely independent from the underlying hardware and any graphic API.

Inside Flwre::Graphics::Renderer name space, can be find the render class, this is an abstract
class with the following definition.

106

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

Figure 4.42 depicts the abstract renderer class derived from Dynamic Object class

Notice that the renderer class, is derived from DynamicObject class, this is the mechanism that
allows to load and to switch the modules at runtime explained, see section 4.1.4.1 dynamically
loaded C++ objects.

The class holds a pointer flSceneHandler jointly a method to set up the pointer to access into the
render queue, see section 4.2.4.3 renderable object set and scene handler. The renderer access
to the effects mechanism exposed in section 4.2.6.2 local effects, to get it, a pointer to the effects
mechanism is encapsulated within the render transaction container, defined in the section 4.2.4.2
render transaction, see DrawObject method below, jointly with other data needed during the
rendering process for each object. So, the renderer own the mechanism to unpack all information
defined in render transaction for each object selected to be rendered, handling the graphic API
implemented in the underlying GraphicsOGL3 layer, to feeding the functions involved in handling
buffers, effects and objects drawing.

107

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

On the other hand, the renderer has another features, firstly maintains a pointer to camera system
implemented, see section 4.2.4.4 camera. And maintains different pointers to different render
states explained in section 4.2.5.1 render states, and finally maintains a pointer to render effect
manager see section 4.2.2.4 render effect manager.

When the renderer is initialized, the render subsystem is started, it is worth pointing out, that the
managers are initialized when render starts, all managers acts to graphic API renderer level,
except the render effects manager that acts in Graphics module level, for this reason the pointer
to render effects manager is declared in this level, nevertheless is instantiated in GraphicsOGL3
module for a subsequent orderly destruction of resources when render system is shuts down.

The method Draw is the top-level entry point into the drawing system, and starts the sequential
reading of lineal render queue implemented, see section 4.2.4.3 renderable object set and scene
handler, for the moment no culling techniques are implemented, so, all objects stored in this vector
are send to be rendered independently if the object is visible or not. At the same time, here would
begin a depth-first traversal of the scene hierarchy, in case the scene graph would be
implemented, then the lineal access method would be replaced, since this is not better suitable
scenario for obvious efficiency reasons, so, in the future will be replaced with a complete scene
graph implementation, jointly with culling techniques, see section 4.2.4 scene graph.

According renderable objects are accessed from Draw method the DrawObject method tells to the
renderer to draw its geometry, to achieve this, a render transaction is passed as a reference to the
method DrawObject see section 4.2.4.2 render transactions and the figure 4.42, for the moment
one render pass is supported per object only.

Finally, the Resize method is used to resize the viewport in case the window size was modified
during the rendering process, see section 4.2.3 windowed application, the ClearColorBuffers
methods sets the entire window to a given background color.

4.2.5.1 Render states

The render states defines information associated with the geometric data for the purposes of
drawing the objects, more concretely they configure some render pipeline stages that are
configurable, see section 2.1 the rendering pipeline, figure 2.1. the engine initially defines two
basic render states explained in the following sections, this states are unpacked in the rendering
process, from the render pass due to each render pass has associated the render states, or in
other words each render effect has different render states associated and configured in certain
manner, see section 4.2.6.2.1 render effect.

The renderer defines its own global render states configured by default, when the renderer is
initialized, at the same time each render effect when this is implemented see lines 53 and 54 of
code snippet 1.3 in texture2D effect implementation in section 4.2.6.2.1 render effect. On the other
hand, each effect can define their own render states, then when the render effect is applied to a
determinate object, the render states defined are applied in local manner during the rendering
process, otherwise if the render effect did not has a determinate render state defined, then the
global render state prevails.

All render states derived from the base class State, this class implements the common
functionalities used for the render states, initially implements the enumeration used for comparison
function used in different render states, although for the moment is only used in depth test state,
but in the future other render states could be implemented it, for example, Alpha test state and Cull

108

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

face state among others. The following sections explains the render states implemented and the
figure 4.43 shows with an UML diagram this implementation.

Figure 4.43 depicts the render states implemented with an UML diagram.

4.2.5.1.1 Wire frame state

The WireframeState class, is a simple class that offers the methods to manage the wire frame
state configuration, and defines the different rasterization modes such as the FL_FILL mode to
render the interior of the polygons filled, FL_LINE mode where the boundary edges of the polygon
are drawn as line segments, and finally FL_POINT where the polygon vertices that are marked as
the start of a boundary edge are drawn as points during the rendering process.

This state has been overridden to apply the different rasterization modes globally to the scene by
pressing F1 key during the engine development for debugging reasons. For this reason the
possible configurations defined in the render effects will be omitted, see setOverrideWireState
method in the renderer class in the figure 4.42.

109

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

4.2.5.1.2 Depth test state

The DepthTestState class, implements the mechanism to enable and disable the depth buffer. The
depth buffer is also know as z-buffering. When this buffer is enabled, prevents faces rendering to
the front while they are behind other faces using. To achieve this, this buffer stores the pixels depth
of the objects are rendered during rendering process, since many points of the 3D space may end
up projected to the same pixel on the 2D screen space, then the graphics system needs to keep
track of the actual depths of -axis in the 3D scene to determine which of those points is the visible
one.

To determine if a pixel is visible or not, the depth test is enabled by default and tests the depth
value of a new pixel against the content of the depth buffer storing others pixels depths, then
performs a depth testing, and if this test passes, the depth buffer is updated with the new depth
value otherwise if the depth test fails, the pixel is discarded.

It is important to highlight, that this test is realized in screen space after the fragment shader has
processed within the render pipeline, see Per-Sample Operations[pipelineOGL3].

The test is based on a function where is a determinate depth of pixel, while is
the depth stored in the depth buffer (z-buffering), can modify the comparison operators it
uses for the depth test, this allows to control when should pass or discard pixels and when to
update the depth buffer, setting different comparison operators.

The function accepts several comparison operators that are listed in the table below, at the
same time this operators has been implemented within an enumeration called
ComparisonFunctions shown in the figure 4.43 in the State class.

Function Description
 CF_NEVER The depth test never passes.

 CF_LESS The depth test, passes if the fragment's depth value is less than the stored
depth value, this is the option configured by default in the engine.

 CF_EQUAL The depth test, passes if the fragment's depth value is equal to the stored depth
value.

 CF_LEQUAL The depth test, passes if the fragment's depth value is less than or equal to the
stored depth value.

CF_GREATER The depth test, passes if the fragment's depth value is greater than the stored
depth value.

 CF_NOTEQUAL The depth test, passes if the fragment's depth value is not equal to the stored
depth value.

CF_GECUAL The depth test, passes if the fragment's depth value is greater than or equal to
the stored depth value.

CF_ALWAYS The depth test always passes.

The reason to implement the enumeration in the base State class, is due to the comparison
operators, can be used for others render states that will be implemented later such as alpha state
or stencil state.

110

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

4.2.6 Effects

A real-time rendering engine needs implement a solid effects system to avoid major changes in the
engine when a new effects are added to the engine. Solve this scenario is not has a trivial solution
to achieve a solid mechanism, and obviously there are different ways to solve it, and some better
than others.

Aside the possible mechanism that can be proposed within the engine to manage the effects, the
advances raised in the last years related with computer graphics field, and concretely together with
the increase of the GPUs power, the effects becomes to interesting and exiting field of work to
delve in new lines investigation and consequently appears new effect techniques along with the
existing techniques.

This drives that an engine must be frequently will be modified to fit a new effects features appeared
or simply because of the requirements in a determinate project maybe change, and the engine
does not support the new features that project demands, so, an engine needs a solid effects
system to front face this scenario with guarantees.

This scenario provides different manners to apply effects to the scenes, since each effect or effect
group them need different application techniques, to get the desired effect over the scenes or
objects or even combine effects over the scene totality, and at the same time different effects
applied to each objects.

Hence, a professional real-time rendering engine needs must supported different manners to apply
the effects, mainly the effects can be global effects or local effects, namely the global effects are
applied to everything that appears on to the scene, and the local effects are applied to a
determinate object or group of them, per each effect will exist a render technique which will own
one or several render passes to get the desired technique, see section 4.2.6.1.3 render technique
and section 4.2.6.1.2 render pass.

This project, as stated previously, intend to defines the essential pillars of a rendering engine,
simplifying to the maximum without losing a good scalability, for this reason here initially this
scenario has been simplified as well.

The engine offers a mechanism, where initially only the local effects are supported with a unique
render pass within a render technique, and a mechanism to apply the effects attaching them to the
objects. The following sections explain all this in more detail.

4.2.6.1 Shaders

In a modern computer graphics approach supported by the engine, the shaders are a very
important piece, since allows a programmable render pipeline leaving behind the old fixed pipeline
exposed in older computer graphics generations.

A basic shader management is implemented for the moment, a unique shader class is
implemented with the basic functions to load, compile, links and delete the shaders. The engine
supports vertex and fragment shaders, for this reason a good approach could be a hierarchy of
classes definition to depicts this structure with a base class called shader and couple of derived
classes called VertexShader and FrangmentShader, nevertheless to simplify the scenario
temporally a unique shader class is defined and implemented. The shader class is a pure abstract
class since is implemented in the GraphicsOGL3 module with OpenGL 3.3.

111

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

More concretely, to support shader programs by the engine, a subsystem that encapsulate the
shader programs and its parameters has been implemented, at the same time, this subsystem will
be useful in a scene graph management in case of being implemented in the future.

Exists different components that are effects related such as lights, materials, textures and so on,
such as explained in the previous sections, thus on the one hand, the shader class maintains
stored the number of components for a determinate effect, that is, the number of lights involved in
a shader, the number of textures and so on. Together with this, emerges the requirement to
maintain a constant communication with the shaders stages defined inside in the graphics pipeline,
see figure 2.1 in section 2.1, during the rendering process, once the shader is compiled and
linked. So the shader class exposes a mechanism to store uniform and attributes locations values,
for later, to be accessed them by name at a later stage, the later stage in this case is the rendering
process, since the engine needs to access to the locations of all of the shader's attributes and
uniforms respectively, defined within the shader program. This data is stored within the shader
class, with a STL library map container, and are mapped by a name, that correspond to a
determine location value within program object being possible to be accessed by name.

To achieve this, the shader class is expanded with new methods, see methods AddAtribute and
addUniform together with the overloaded access operators () [], and the setters and getters to
maintain the number of components stored per each shader, see figure 4.44 depicted below as
UML diagram.

The engine only supports shaders written with GLSL 3.3, and the shaders must be written with a
determinate structure so that the engine to parser it correctly, otherwise, the engine will not read
correctly the shaders and does not work. In like manner that nothing related with OpenGL3.3 not
will be explained, nothing related with GLSL 3.3 will be explained neither.

112

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

Figure 4.44 shown the abstract class Shader implemented in GraphicsOGL3 module with an UML diagram.

113

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

4.2.6.1.1 Shader parameters data

To complete this scenario, a new class has been created called shaderParametersData, this class
maintains a relation with a determinate shader instantiation, via a pointer to keeping the
parameters values by a given shader for a determinate render pass. This relation is created at the
time when is created a determinate render effect instantiation just like will see later, see section
4.2.6.2.2 renderable effect.

Figure 4.45 shown the abstract class ShaderParameterData with an UML diagram.

The figure 4.45 shows the UML diagram for this class, such as can be seen the class is abstract,
due to the complete implementation is performed in GraphicsOGL3 module, and involve the direct
graphic API manipulation. The class defines the setters to store the pointers to lights, materials,
textures and colors defined in a given render pass, all this data is defined in the Graphics level
module, so, are independent of graphic API used. However, is needed pass all this data to the
graphic card, so, this class defines a method called updateUniformsContants, this method is
entirely implemented in Graphics level module, although communicates to the underlying layer
GraphicsOGL3 to pass the values of stored components to the shader stages inside the render

114

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

pipeline, see figure 2.1 in section 2.1, which it involve the direct graphic API manipulation, to
achieve this defines an interface that is implemented in GraphicsOGL3 module, for a determinate
graphic API that in this case is OpenGL3.3. see the abstract methods defined in the figure 4.45
more in detail below.

virtual void setIntParameter(const int location, const int value) = 0;
virtual void setFloatParameter(const int location, const float value) = 0;
virtual void setVector3Parameter(const int location, const float x, const float y, const float z) = 0;
virtual void setVector3Parameter(const int location, const Flwre::Core::Platform::Vector3 &vector3) = 0;
virtual void setVector4Parameter(const int location, const Flwre::Core::Platform::Vector4 &vector4) = 0;
virtual void setMatrix3Parameter(const int location, const Flwre::Core::Platform::Matrix3 &matrix3) = 0;
virtual void setMatrix4Parameter(const int location, const Flwre::Core::Platform::Matrix4 &matrix4) = 0;

At the end, these methods pass the values of components defined in a determinate shader for a
concrete render pass in Graphics module, to the graphic card. The components data can be
different data types, for instance the direction of a light, that can be defined with a three component
vector, so it would be used the setVector3Parameter method defined above in code snippet 1.2 to
pass the vector data to the shader object within the render pipeline. Exist different methods
obviously, since the different components data can be stored with vectors, matrices, integers and
so on.

It's worth pointing out, that the method updateUniformsContants is executed in each render loop,
and updating all data defined above, but also updates, all the matrices involved in a geometric
transformations depicted in the figure 4.10, passing them to the vertex shader within rendering
pipeline, see section 4.1.2.8 geometric transformations and the figure 4.10.

115

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

4.2.6.1.2 Render pass

The render pass class is part of the class group to operate with effects within the engine, basically
the render pass class maintain a unique pointer to a given shader see section 4.2.6.1 shaders,
and maintain a unique pointer to different render states implemented within the engine, see
section 4.2.5.1 render states. The render passes are stored within a render technique, see
section 4.2.6.1.3 render technique, because a determinate render technique could has different
render passes.

Conceptually, a render pass can be seen as a single “draw call”, the term "draw call" means
exactly what it says: calling any graphic API function to draw, in OpenGL this functions has the
following form gl*Draw*, these commands cause that vertices to be rendered, and is where the
kick off the entire rendering pipeline, see render pass class with an UML diagram below.

Figure 4.46 depicts the render pass class with an UML diagram.

Thus during the rendering process, the render passes are unpacked and applied to the objects to
achieve a determinate effect in an object, since a given render pass is associated to a shader.

116

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

4.2.6.1.3 Render technique

There are many rendering techniques some may be more complex than others, is not the objective
of this project implements a complex rendering techniques, but nevertheless in this project a
mechanism is raised initially simplified that could be applied in more complex techniques in the
future if is tuned up. Below is shows the render technique class with an UML diagram.

Figure 4.47 shows the render technique class with an UML diagram.

A render technique defines a determinate rendering technique inside the engine, a render
technique can has one or different render passes see section 4.2.6.1.2 render pass. To achieve
this, holds a vector that maintain pointers to different render passes, and exposes methods to
insert and retrieve this render passes with an index, at the same time, offers a method to retrieve
the number of render passes stored for a determinate render technique, all of this, is stored when a
render effect is defined see section 4.2.6.2.1 render effect, and is unpacked during the rendering
process.

Thus a determinate render technique can be defined within a render effect by one or different
render passes, and each render pass, can involves a different shader. Thus in multi-pass
techniques, different render passes over the same mesh occurs, rendering the same object
multiple times, where each rendering does a separate computation that gets accumulated into the
final effect over the mesh, thus each object, can be rendered with a particular shader, and then this
is called a "pass" or "render pass".

It is worth remember here, that each render pass holds within it a shader pointer that is applied to a
determinate mesh in a given render pass, so, depending the technique defined within a render
effect this technique could have one or different render passes.

Nevertheless, to simplify the scenario, initially all render effects implemented within the engine has
a render technique with a unique render pass. The following sections exposes how the render
effects are implemented within the engine using all components defined above.

117

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

4.2.6.2 Local Effects

Mainly a local effect is an effect that is applied to a determinate object in a scene, the render effect
class introduced in the following section, initially is designed to define a local effect template within
the engine, so, with this mechanism is possible to implement different local effects as a templates,
for later to do an effect instantiation at runtime.

4.2.6.2.1 Render effect

The render effect class, encapsulates all the relevant information and semantics for producing a
desired visual result over a mesh, all components involved in a determinate effect separately way
has been exposed in the sections above. This class group all of this as a local effects base class,
so any local effect template defined within the engine should specialize this class. This works as an
effects factory at runtime within the engine, creating a renderable effects instances, see section
4.2.6.2.2 renderable effect. The following figure shows the render effect class with an UML
diagram.

Figure 4.48 depicts the render effect base class with an UML diagram.

The UML diagram depicts the class structure, as can be seen firstly, keeps the name of render
effect, maintains a pointer to shader program manager base, to be able create shaders within the
render effect, and maintains a pointer to the created shader. At the same time, defines a pointer to
the render pass and a pointer to the render technique, since at the end, a render effect has a
determinate render technique which encompasses all other defined components inside.

All this structure defined in the base class, allows build a determinate render effect with a this class
specialization, defining the shaders and the render passes involved in a render technique that they
composes a determinate rendering local effect.

The following UML diagram, shows a simple effect specialization to depict the explained above, at
the same time, is shown a simple render effect implementation in a code snippet to gain a better
explanation understanding.

118

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

Figure 4.49 depicts the Texture2D effect specialized from render effect base class.

The following code snippet shows the figure 4.49 implementation within the engine.

1. class FLOW_API RenderEffect
2. {
3. private:
4.
5. protected:
6.
7. Flwre::Core::Platform::String renderEffectName;
8. Flwre::Graphics::Utility::Managers::ShaderProgramManagerBase *ShaderProgManBase;
9. Flwre::Graphics::Utility::Managers::ShaderProgramSharedPointer flshaderProgramSharedPtr;
10.
11. Flwre::Graphics::Effects::Shaders::RenderPass *renderPass;
12. Flwre::Graphics::Effects::Shaders::RenderTechnique *renderTechnique;
13. std::vector<Flwre::Graphics::Effects::Shaders::RenderTechnique*> flRenderTechniques;
14.
15. public:
16.
17. RenderEffect();
18. virtual ~RenderEffect();
19.
20. void InsertRenderTechnique(Flwre::Graphics::Effects::Shaders::RenderTechnique* renderTechnique);
21. Flwre::Graphics::Effects::Shaders::RenderTechnique* getRenderTechnique(int renderTechniqueIndex);
22. };
23.
24. class FLOW_API Texture2DEffect : public Flwre::Graphics::Effects::LocalEffects::RenderEffect
25. {
26. private:
27. protected:
28. public:
29.
30. Texture2DEffect();
31. ~Texture2DEffect();
32.
33. Flwre::Graphics::RenderableEffect*
34. CreateRenderableEffect(Flwre::Graphics::Utility::Managers::TextureSharedPointer texture);

119

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

35. };
36.
37. Texture2DEffect::Texture2DEffect()
38. {
39. renderEffectName = "Textures2DEffect";
40.
41. flshaderProgramSharedPtr = ShaderProgManBase->createShaderProgram("texture2DEffect");
42. flshaderProgramSharedPtr->setShaders("Shaders/textureVertexShader.glsl", "Shaders/textureFragmentShader.glsl");
43.
44. flshaderProgramSharedPtr->setNumberTextures(1);
45. flshaderProgramSharedPtr->AddUniform("texture1");
46.
47. flshaderProgramSharedPtr->AddUniform("projection");
48. flshaderProgramSharedPtr->AddUniform("view");
49. flshaderProgramSharedPtr->AddUniform("model");
50.
51. renderPass = new Flwre::Graphics::Effects::Shaders::RenderPass();
52. renderPass->setShaderProgram(flshaderProgramSharedPtr);
53. renderPass->setDepthStateTest(new Flwre::Graphics::Effects::Shaders::DepthTestState());
54. renderPass->setWireFrameState(new Flwre::Graphics::Effects::Shaders::WireFrameState());
55.
56. renderTechnique = new Flwre::Graphics::Effects::Shaders::RenderTechnique();
57. renderTechnique->InsertRenderPass(renderPass);
58. this->InsertRenderTechnique(renderTechnique);
59. }
60.
61. Texture2DEffect::~Texture2DEffect()
62. {
63.
64. }
65.
66. Flwre::Graphics::RenderableEffect*

Texture2DEffect::CreateRenderableEffect(Flwre::Graphics::Utility::Managers::TextureSharedPointer texture)
67. {
68. Flwre::Graphics::RenderableEffect *flRenderableEffect = new Flwre::Graphics::RenderableEffect(this, 0);
69. flRenderableEffect->setTexture(0, 0, texture);
70.
71. return flRenderableEffect;
72. }

The CreateRenderableEffect method, see code line 66 above, acts as a factory creating
renderable effects instances, see section 4.2.6.2.2 and the getRenderTechnique method, see
code line 21, that retrieve the technique during the rendering process, when the render effect is
unpacked from a render transaction by the renderer, see section 4.2.4.2 render transaction. The
result obtained of apply the effect shown in code snippet 1.3 to a triangle mesh, can be seen in the
figure 4.29, hence, this effect serves to apply 2D textures to the meshes.

Although the render effect base class has defined a vector of render techniques pointers, see code
line 13, the engine only supports a unique render technique per render effect, this is set within the
code, and initially only a render pass has been implemented inside each local effect proposed in
this project.

The following section explains the mechanism to instantiate a render effect defined within the
engine, with the mechanism explained above in factory way at runtime, when the effect is attached
to a determinate object.

4.2.6.2.2 Renderable Effect

An effect instantiation within the engine is a renderable effect, this section explains how is created
an effect instantiation from the effect template implemented in the render effect base class, and its
specialized classes, such as seen above, in section 4.2.6.2.1 render effect.

The effects are created with the factory pattern at runtime, when the effect is attached to a
determinate object with the following command.

120

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

triangle->setRenderableEffect(texture2DEffect->CreateRenderableEffect(texture));

The method CreateRenderableEffect implemented in each render effect derived class with
different signatures depending the effect, acts as an effect instantiation factory, creating an effect,
to be attached to the object. The different signatures allows pass the components involved in a
determinate effect, in the example has been passed a unique texture, but depending the effect, the
components passed will be different, for instance could be a directional light, a point light and so
on, or even a combination of them, so depending the effect, the components passed will be
different.

A complete definition of a render effect has been shown in figure 4.49 texture2D effect, and the
code snippet 1.3, this is an effect template defined within the engine. The engine has other effect
templates defined such as will be seen in the following section, hence, with this mechanism is
possible add new effects to the engine modifying a small portion of the engine only.

When an effect instantiation is created with CreatedRenderableEffect method, this is attached to
the object via method setRenderableEffect, the method is defined in the renderable object class,
see section 4.2.4.1 renderable objects and meshes, if the object is cloned, firstly maintains the
same effect instance, unless is replaced by another effect, hence, if there are 100 objects cloned,
all objects has the same effect instantiation and hence, everything points to the same effect.

When CreateRenderableEffect method is invoked, an effect instantiation is created inside, during
the instantiation process, the render effect template is passed as a parameter, then the render
technique is unpacked, jointly with the render passes involved, and is created a shader
instantiation with the related parameters for each render pass defined in the render effect template,
see code snippet 1.3 line 68 and figure 4.49.

4.2.6.2.3 Effects implemented within the engine

This section explains the effects implemented within the engine with the system described in the
previous sections. Obviously, it would be possible implement many more to achieve other
visualization effect types, nevertheless, depending the effect implemented maybe the shaders
system parser of the engine should be adapted, see section 4.2.6.1 shaders and sub-sections,
and concretely the section 4.2.6.1.1 shader parameters data.

The following table shows and explains the effects implemented, the effect name is the class name
that implements it, and implements a determinate effect is shown in the table illustrate the effect
type that is.

Effect name Description
 DefaultEffect Applies a basic effect with colours no parameters are needed, the

colours are packaged within vertex elements. (vertex attributes),
and the object is unlit.

 UnlitColorEffect Applies a basic effect with a color, the color is passed as a
parameter and the object is unlit.

CheckerEffect Checker Effect can creates a checker texture created procedurally,
if is applied in a quad, it is possible to build a tiled surface, some
scenes has this effect applied to created the scene subsoil. It is
possible to pass as a parameter a texture as well.

Texture2DEffect Used to apply a unique texture passed as a parameter.
 DirectionalLightTextureDiffuseEffect This effect applies a directional light with a texture passed as a

121

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

parameters and calculate diffuse shading.
DirectionalLightMatDiffuseEffect This effect applies a directional light with a material passed as a

parameters and calculate diffuse shading.
DirectionalLightMatPhongEffect This effect applies a directional light with a material passed as a

parameters and calculate specular reflection.
PointLightTextureDiffuseEffect This effect applies a point light with a texture passed as a

parameters and calculate diffuse shading.
SpotLightTextureDiffuseEffect This effect applies a spot light with a texture passed as a

parameters and calculate diffuse shading.
SkyBoxEffect This effect applies a sky box effect.

NormalMapPhongEffect This effect applies a normal map with a phong reflection.

4.2.7 Data Types

The name space Flwre::Graphics::DataType, encapsulates the different data types
implementation within the engine, with the different classes definition within the Graphics module,
initially, defines a couple of data types explained in the following sections.

4.2.7.1 Transform class

The transform class encapsulates the model matrix, to be applied the geometrical transformations
to the objects, this matrix has been depicted in the figure 4.10 marked it in red, hence, the class
contains methods to encapsulate translations, rotations and uniform and non uniform scaling. So,
maintains the model matrix instance involved in each object, see section 4.1.2.8.1 model matrix.
Each renderable object keep a pointer to the transform instance built when the renderable object is
created, initially the transform class maintain an identity matrix, so, the objects initially if not
translated will be remain in the origin coordinates in the world space.

The method setTranslate, allows to translate an object passing as a parameter a three-component
vector that indicates the world space position where is wanted to go, the method setRotate serves
to rotate the objects passing as a parameters the angle to rotate in degrees and a three-
component vector which indicates about axes wants to rotate.

To scale the objects a couple of methods has been defined, setUniformScale to do the uniform
scaling passing a scalar as a parameter, and setScaling to do a non uniform scaling passing a
three-component vector as a parameter, this three component vector indicates the values with
different amounts along the , and -axes to scale such as been defined in definition 4.7 in the
section 4.1.2.8.1.2 scaling.

The following code snippets shows how to apply this translations to the objects.

Apply a translation to an object.

torus->getLocalTransform()->setTranslate(Flwre::Core::Platform::Vector3f(2.0f, 4.0f, -2.0f));

Apply a non uniform scaling to an object.

torus->getLocalTransform()->setNonUniformScale(Flwre::Core::Platform::Vector3f(6.0f, 4.0f, 2.0f));

Apply a uniform scaling to an object.

122

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

torus->getLocalTransform()->setUniformScale(8.0f);

Apply a rotation to an object.

torus->getLocalTransform()->setRotate(90.0f, Flwre::Core::Platform::Vector3f(1.0f, 0.0f, 0.0f));

It is worth pointing out, that if the methods are applied in cascade for a determinate object, in really
is being multiplying the model matrix with different geometrical transformations, to get the final
model matrix applied to the object during the rendering process. Nevertheless, but it is pretty
common to first scale the object, then rotate it and finally translate it.

As can be seen in the code snippets above, the vector passed as a parameter is a three-
dimensional vector, but this vector in really is a four-dimensional vector, since has a homogeneous
coordinate , but as this value is one all the time, then is encapsulated within the mathematical
library.

Finally the getModelMatrix method, retrieves a pointer to the model matrix to pass it to the vertex
shader, see updateUniformsContants method in the section 4.2.6.1.1 shader parameter data.

The following figure shows the transform class with an UML diagram.

Figure 4.50 shows the transform class with an UML diagram.

123

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

4.2.7.2 Color class

The color class encapsulates the color definition as a four-component vector, that represents the
RGBA components, at the same time, predefines a several basic colors encapsulated within
different methods, see UML diagram. So, initially the main idea is to represent a color entity within
the engine, the idea is that this data type should be implemented within any class that needs to
define colors, for example, the material class, nevertheless for the moment not it is integrated into
any class yet.

Figure 4.51 shows the color class with an UML diagram.

4.3 GraphicsOGL3 module

This module is defined within a namespace Flwre::GraphicsOGL3 and holds the interface
implementation defined in the Graphics module explained above in section 4.2 graphics module,
building the bridge between the rendering interface with a determinate graphic API, so this layer
becomes a platform dependent, and in this case, is implemented with OpenGL3.3, but could be
implemented with another graphic API as depicted in figure 3.1.

The engine has been designed to make this module interchangeable at runtime, see section
4.1.4.1 dynamically loaded C++ objects and section 4.2.5 renderer, between others graphic APIs
implementations, if they were implemented, for manage to change the rendering behaviour
between different graphics APIs at runtime, obviously the rendering must be stopped, swap the
layer and initialize the render again with new layer loaded.

When the engine starts, this layer due to is implemented with OpenGL, is responsible to load the
pointers to OpenGL functions, core as well as extensions at runtime, to get this, glad is used, see
[glad][OGLoadingLib]. The reason for using glad, is because OpenGL is not stand-alone library, is
a specification created by Silicon Graphics in 1992, so the specification implementation it depends
the platform where developing for, since each vendor might has been implemented the
specification in different manner in the graphic card driver for a specific hardware with a
determinate features supported, thus the location of most of its functions is not known at compile-

124

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

time and needs to be queried at run-time. Then it is the task of the developer to recover the
location of the functions and store them in function pointers for later use, the recovery of these
locations is specific to the operating system, and doing it manually is a cumbersome process, then
glad automates this process.

The next section 4.3.1 defines a reference to the OpenGL functions used in this project, the
functions are shown doing reference which section of this document they belongs to, but no more
explanation is made, for more deeply compression, see the official OpenGL documentation or
related tutorials.

4.3.1 Reference to the OpenGL functions used

//Vertex Buffer Section 4.2.1.4.1

glGenBuffers(1, &flBufferId);
glBindBuffer(GL_ARRAY_BUFFER, flBufferId);
glDeleteBuffers(1, &flBufferId);
glBindBuffer(GL_ARRAY_BUFFER, flBufferId);
glBindBuffer(GL_ARRAY_BUFFER, 0);
glBufferData(GL_ARRAY_BUFFER, sizeInBytes, pointerSource, getGLUsage(flUsage));

//Index Buffer Section 4.2.1.4.2

glGenBuffers(1, &flBufferId);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, flBufferId);
glDeleteBuffers(1, &flBufferId);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, flBufferId);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeInBytes, pointerSource, getGLUsage(flUsage));

//VAOs Section 4.2.1.2 and Section 4.2.5

glGenVertexArrays(1, &VAO);
glDeleteVertexArrays(1, &VAO);
glBindVertexArray(VAO);
glBindVertexArray(0);

//Retrieve strings describing the current GL connection Section 4.2.5

glGetString(GL_VENDOR);
glGetString(GL_RENDERER);
glGetString(GL_VERSION);
glGetString(GL_SHADING_LANGUAGE_VERSION);
glGetIntegerv(GL_NUM_EXTENSIONS, &numExtensions);
glGetStringi(GL_EXTENSIONS, i);

//Create and destroy generic vertex attribute array (define an array of generic vertex
attribute data) Section 4.2.5

glVertexAttribPointer(indexLocation,size,attributteType,GL_FALSE,stride,bufferDataPointer);
glEnableVertexAttribArray(indexLocation);

//Renderer Section 4.2.5

glDrawElements(primitiveType, indexCount, GL_UNSIGNED_INT, 0);
glDrawArrays(primitiveType, 0, vertexCount);

125

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

//View port Section 4.2.5

glGetIntegerv(GL_VIEWPORT, GL_VIEWPORTParameters);
glViewport(GL_VIEWPORTParameters[0], GL_VIEWPORTParameters[1], width, height);

//Clear buffers Section 4.2.5

glClearColor(0.0f, 0.0f, 0.0f, 0.0f);
glClear(GL_COLOR_BUFFER_BIT);
glClearColor(r, g, b, a);
glClear(GL_COLOR_BUFFER_BIT);

//Managing shaders Section 4.2.6.1

glCreateProgram();
glCreateShader(GL_VERTEX_SHADER);
glCreateShader(GL_FRAGMENT_SHADER);
glShaderSource(shaders[shaderType], 1, &shaderCode, NULL);
glCompileShader(shaders[shaderType]);
glAttachShader(id_program, shaders[shaderType]);
glLinkProgram(id_program);
glGetShaderiv(shader, GL_COMPILE_STATUS, &success);
glGetShaderiv(shader, GL_INFO_LOG_LENGTH, &maxLength);
glGetShaderInfoLog(shader, maxLength, NULL, &errorLog[0]);
glGetProgramiv(shader, GL_LINK_STATUS, &success);
glGetShaderiv(shader, GL_INFO_LOG_LENGTH, &maxLength);
glGetProgramInfoLog(shader, maxLength, NULL, &errorLog[0]);
glDeleteShader(shaders[shaderType]);
glUseProgram(id_program);
glUniform1i(glGetUniformLocation(id_program, name.c_str()), value);

//Shader Parameters Data Section 4.2.6.1.1

glUniform1i(location, value);
glUniform1f(location, value);
glUniform3f(location, x, y, z);
glUniform3fv(location, 1, vector3.data_ptr());
glUniform4fv(location, 1, vector4.data_ptr());
glUniformMatrix3fv(location, 1, GL_FALSE, matrix3.data_ptr());
glUniformMatrix4fv(location, 1, GL_FALSE, matrix4.data_ptr());

//Textures 2D Section 4.2.1.5

glGenTextures(1, &textureId);
glBindTexture(target, textureId);
glTexParameteri(target, GL_TEXTURE_WRAP_S, sampledWrappingParam);
glTexParameteri(target, GL_TEXTURE_WRAP_T, sampledWrappingParam);
glTexParameterfv(target, GL_TEXTURE_BORDER_COLOR, color);
glGetFloatv(GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT, &largest_supported_anisotropy);
glTexParameterf(GL_TEXTURE_2D,GL_TEXTURE_MAX_ANISOTROPY_EXT, largest_supported_anisotropy);
glTexParameteri(target, GL_TEXTURE_MIN_FILTER, filteringMinification);
glTexParameteri(target, GL_TEXTURE_MAG_FILTER, filteringMagnification);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_BASE_LEVEL, 0);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_LEVEL, 4);
glTexImage2D(target, mipmapLevel, textureFormatParam, width, height, 0, pixelFormatParam,
pixelTypeParam, dataImage);
glGenerateMipmap(target);
glActiveTexture(GL_TEXTURE0 + textureUnit);

126

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

glBindTexture(target, textureId);
glDeleteTextures(1, &textureId);

//View port Section 4.2.5, Handling keyboard and mouse events Section 4.2.3.1

glGetIntegerv(GL_VIEWPORT, GL_VIEWPORTParameters);
glViewport(GL_VIEWPORTParameters[0], GL_VIEWPORTParameters[1], width, height);

//Shaders Section 4.2.6.1

atrributeLocationList[attribute] = glGetAttribLocation(id_program, attribute.c_str());
uniformLocationList[uniform] = glGetUniformLocation(id_program, uniform.c_str());

//Render States Section 4.2.5.1

glEnable(GL_DEPTH_TEST);
glDepthFunc(compareFunc);
glDisable(GL_DEPTH_TEST);
glPolygonMode(GL_FRONT_AND_BACK, GL_FILL);
glPolygonMode(GL_FRONT_AND_BACK, GL_LINE);
glPolygonMode(GL_FRONT_AND_BACK, GL_POINT);

5 Applications over the engine

Any application that uses the engine to render objects needs to define a class derived from the tool
kit class, that has been exposed in section 4.2.3 windowed application, see the figure 4.30. The
class must override the following methods: OnInitialize(), OnTerminate() and OnUpdate(), see
code lines 16,17 and 18 in the code snippet above. But nevertheless, obviously the application
can defines many more methods if required.

The following code snippet shows the essential main structure that an application built over the
engine must have. The application example below, draws a triangle onto screen.

1. class HelloTriangle : public Flwre::Graphics::Window::Application
2. {
3. private:
4.

5. Flwre::Graphics::SceneGraph::PrimitiveMeshShapes* triangle;
6.

7. protected:
8.

9. void CreateScene();
10.

11. public:
12.

13. HelloTriangle();
14. ~HelloTriangle();
15.

16. bool OnInitialize() override;
17. void OnTerminate() override;
18. void OnUpdate() override;
19. };
20.

21. HelloTriangle::HelloTriangle() : Flwre::Graphics::Window::Application("Hello Triangle",
1024, 768)

127

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

22. {
23.

24. }
25.

26. HelloTriangle::~HelloTriangle()
27. {
28. OnTerminate();
29. }
30.

31. bool HelloTriangle::OnInitialize()
32. {
33. if (Flwre::Graphics::Window::Application::OnInitialize())
34. {
35. CreateScene();
36. }
37. return true;
38. }
39.

40. void HelloTriangle::CreateScene()
41. {
42. triangle = new Flwre::Graphics::SceneGraph::PrimitiveMeshShapes();
43. triangle->ColoredsTriangle().create();
44.

45. this->getSceneHandler()->getRenderableObjectSet()->insertRenderableObject(triangle);
46. }
47.

48. void HelloTriangle::OnTerminate()
49. {
50. delete triangle;
51. }
52.

53. void HelloTriangle::OnUpdate()
54. {
55. this->getActiveRenderer()->ClearColorBuffer(0.0f, 0.05f, 0.21f, 0.0f);
56. this->getActiveRenderer()->Draw();
57. }
58. FLOW_WINDOWED_APPLICATION_MAIN(HelloTriangle)

The methods OnInitialize() and OnTerminate() initializes and shuts down the engine and the
application, see code lines 31 to 38 and 48 to 51. for the moment, the triangle deletion is
implemented in the code line 50 but really this should be encapsulated within the engine.

In the createScene() method, all objects involved in a scene are defined and initialized, see code
lines 42 and 43, in this case, a unique coloureds triangle is initialized, then in the code line 45 the
triangle mesh (renderable object) is inserted in the linear render queue for later to be rendered.

The method OnUpdate() is executed during all rendering process, and is called in each frame,
inside the method has been implemented the minimal necessary to render the triangle, see code
lines 55 and 56.

The macro FLOW_WINDOWED_APPLICATION_MAIN in the line 58, encapsulates the
application main entry point, at the same time, holds the mechanism to be able to exchange
between different tool kits at compile time in transparently way, the macro must be defined in each
tool kit header as GlfwApplicationContext or SDL2ApplicationContext, in case of being
implemented. Finally, the macro must be present at the end in all applications.

128

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

5.1 Applications implemented to test the engine

To test the engine development has been implemented different scenes, see the
xfigueraTFM1219_Flwre_rendered_scenes_presentation.pdf, to see different screen shoots.

6 Summary

Along this thesis a real-time rendering engine has been exposed, the work has been focused to
show a possible manner to design a real-time rendering engine as simplest as possible with solid
foundations without losing a good scalability, but nevertheless, to achieve this simpler approach
the efficiency has been penalized in certain manner, since has been implemented the essential
pillars of the real-time render engine, nevertheless, the design allows to improve the efficiency
without major changes in the main engine structure.

Although third-party mathematics libraries implemented for computer graphics exist, the engine
implements an own mathematics library, the library is implemented with templates approach, this
allows use the library with different data types, the library implements all essential necessary
components used in computer graphics, like vectors, matrices, and geometric and projection
transformations. The implementation has been done as simplified as possible, being a good
starting point to learn how implement a mathematics library for computer graphics, however the
library could be improved.

The engine has been implemented in layered fashion way, with this approach is possible to
decouple the different level of responsibilities in each layer, a rendering interface via abstract
classes has been defined, so that has done a total decoupling between the common
responsibilities and the graphic API implementation with OpenGL 3.3, hence, with this approach is
possible to implement the rendering interface with other graphic APIs in an easy way, specializing
a common interface, and implementing it, with a specific graphic API.

A real-time rendering engine must be able to render scenes with different levels of complexity,
without affecting its performance as the scenes becomes more complex, to accomplish this target,
data structures are used which arranges the logical and often spatial representation of a graphical
scene using a scene graph and spatial data structures, combining them with culling techniques to
avoid to render geometry that is not visible.

However, to simplify the scenario, the engine not implements this techniques initially, in place, the
engine implements a lineal render queue stored in a vector, without any kind of technique to
determine if a geometry is visible or not, however has been explained and located on this thesis
the techniques used to achieve it.

Scene graph implementation together with spatial data structures and culling techniques would
improve the engine performance considerably, getting much more efficiency, the implementation of
this mechanisms within the engine structure proposed, it shouldn’t be hard extremely.

At the same time, although the engine supports indexed geometry, the OBJ importer build-in inside
the engine, does not support indexed geometry, so that this importer creates non-indexed arrays
that loading the vertices in directly mode without indexing it, this scenario works, but penalizes the
rendering efficiency. To improve the rendering performance when the models are imported via OBJ
importer, the importer should be improved to support the creation of indexed arrays when the
models are imported from OBJ files.

129

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

Obviously the proposed project is not the only neither the better, simply is a possible manner to
front facing this kind of project from scratch, from a simplified and solid point of view, and people
with more experience than me, surely they could contribute with good ideas.

The project encompass an essential knowledge about real-time rendering and computer graphics
field related, but due to the field extension, is impossible embrace more subject-matter in this
pages for obvious reasons of time and dimension. But nevertheless, this project can be a good
starting point, for the beginning of deeper challenges.

The rendering interface has been implemented with OpenGL3.3 only, to get a real-time rendering
engine with a modern graphic approach, however, the engine design, along the layered approach
allows to do an implementation with other graphic APIs like Direct3D or Vulkan in an easy way. At
the same time, the layer that implements the rendering interface, it has been implemented as a
plug-in, this allows to avoid the recompilation of the engine, in case to change the graphic API for
rendering, being possible change it at run-time.

The engine offers an API to handle graphics in easy way, is a software development kit and that
can be seen as a middleware, since it hides the complexity that exists in the real-time computer
graphics development, and the developers that use the engine, they can focus on the business
logic of the application, without diverting attention to rather complicated graphics rendering issues.

Finally, to deepen the concepts exposed in this thesis, is highly recommended to dive in the
resources shown in section 7 without which, this project would not have been possible, although in
certain manner and in some cases, they tends to be more complex resources to digest.

6.1 Future Works

Below shows some the possible improvements.

Firstly, the most important improvement is the implementation of a complete scene graph system,
along culling techniques, to improve the efficiency, for the time being, the engine render all the
geometry, whether it is visible or not with a lineal render queue that is stored in a vector.

Other possible improvements are listed below.

• OBJ importer improvement, geometry indexing support.
• Implementing the rendering interface with another graphic APIs, like Vulkan or Direct3D.
• Quaternions implementation.
• Support text rendering on screen.
• Implementation a GUI, rendered on the viewport or windowed.
• Support for geometric shaders.
• Improvements in shaders parsing, find out another techniques.
• Global effects implementation and support for different render passes.
• Write a complete API documentation with examples.

• Write mathematics library documentation.
• Write the rest of the API documentation.

• Works on Linux.
• Among others …

130

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

7 Bibliography and resources

7.1 Section 1

[3DfxVd1] Diamond Monster 3Dfx Voodoo 1
http://www.vgamuseum.info/index.php/news/item/548-diamond-monster-3d-3dfx-voodoo-1

[RTGraRenEn] Real-Time Graphics Rendering Engine, Prof. Hujun Bao, Dr. Wei Hua, Zhejiang University,
Hangzhou, China, Springer 2011, Pag 8, Fig 2.1, Fig 2.2 and Fig 2.3

[PS4Arch] https://en.wikipedia.org/wiki/Jaguar_(microarchitecture)
https://www.anandtech.com/show/6976/amds-jaguar-architecture-the-cpu-powering-xbox-one-playstation-4-
kabini-temash/4

[GEngArchPS4] Game Engine Architecture, third edition, 2015 CRC Press, Jason Gregory, Chapter 4
Parallelism and Concurrent Programming, section 4.3 Figure 4.18 Simplified view of PS4’s architecture.

[GProceUnits] - T. Akenine-Möller and J. Ström, “Graphics Processing Units for Handhelds,” Proceedings of
the IEEE, vol. 96, Issue 5, pp.779-789, 2008.

[iPackMan] - J.Ström and T. Akenine-Möller, “iPACKMAN: High-Quality, Low-Complexity Texture
Compression for Mobile Phones,” in Proc. Graph. Hardware, pp.63-70, 2005.

[BHEG] - Nvidia Corporation, “Bring High-End Graphics to Handheld Devices,” Nvidia white paper, 2011

[ListNvidia] https://en.wikipedia.org/wiki/List_of_Nvidia_graphics_processing_units

[ListAMD] https://en.wikipedia.org/wiki/List_of_AMD_graphics_processing_units

[ListIntel] https://en.wikipedia.org/wiki/List_of_Intel_graphics_processing_units

[TiOmap3] Texas Instruments Inc. OMAP3 family of multimedia application processors
 http://www.ti.com/lit/ml/swpt024b/swpt024b.pdf

[Qualcomm] Qualcomm Inc. http://www.qualcomm.com/snapdragon

[khg] https://www.khronos.org/
 https://en.wikipedia.org/wiki/Khronos_Group

[OpenGLES] https://www.khronos.org/opengles/ - https://en.wikipedia.org/wiki/OpenGL_ES

[DirectXhis] https://en.wikipedia.org/wiki/DirectX#Version_history

[FixOpenGL] A. Sampson, “Let’s Fix OpenGL,” 2nd Summit on Advances in Programming Languages
(SNAPL 2017), vol. 71, pp. –, 2017
http://drops.dagstuhl.de/opus/portals/lipics/index.php?semnr=16032
http://drops.dagstuhl.de/opus/volltexte/2017/7130/pdf/LIPIcs-SNAPL-2017-14.pdf

[VulkanBench] VComputeBench: A Vulkan Benchmark Suite for GPGPU on Mobile and Embedded GPUs
2018 IEEE International Symposium on Workload Characterization (IISWC)
Workload Characterization (IISWC), 2018 IEEE International Symposium on: 25-35 Sep, 2018

[GraphicShaders] - Graphics Shaders, Theory and Practice, 2nd edition, Mike Bailey, Steve Cunningham
CRC Press 2012.

[PIC] https://en.wikipedia.org/wiki/Pixar_Image_Computer

131

https://en.wikipedia.org/wiki/Pixar_Image_Computer
http://drops.dagstuhl.de/opus/volltexte/2017/7130/pdf/LIPIcs-SNAPL-2017-14.pdf
http://drops.dagstuhl.de/opus/portals/lipics/index.php?semnr=16032
https://en.wikipedia.org/wiki/DirectX#Version_history
https://en.wikipedia.org/wiki/OpenGL_ES
https://www.khronos.org/opengles/
https://en.wikipedia.org/wiki/Khronos_Group
https://www.khronos.org/
http://www.qualcomm.com/snapdragon
http://www.ti.com/lit/ml/swpt024b/swpt024b.pdf
http://www.ti.com/lit/ml/swpt024b/swpt024b.pdf
https://en.wikipedia.org/wiki/List_of_Intel_graphics_processing_units#Gen12
https://en.wikipedia.org/wiki/List_of_AMD_graphics_processing_units#Wonder_series
https://en.wikipedia.org/wiki/List_of_Nvidia_graphics_processing_units
https://www.anandtech.com/show/6976/amds-jaguar-architecture-the-cpu-powering-xbox-one-playstation-4-kabini-temash/4
https://www.anandtech.com/show/6976/amds-jaguar-architecture-the-cpu-powering-xbox-one-playstation-4-kabini-temash/4
https://en.wikipedia.org/wiki/Jaguar_(microarchitecture)
http://www.vgamuseum.info/index.php/news/item/548-diamond-monster-3d-3dfx-voodoo-1

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

[Reyes] https://en.wikipedia.org/wiki/Reyes_rendering

[RenderMan] https://renderman.pixar.com/product

[ShadeTrees] - Shade trees. Cook, Robert L. Conference | Proceedings of the 11th Annual Conference:
Computer Graphics SIGGRAPH '84, p223-231, 9p. https://graphics.pixar.com/library/ShadeTrees/paper.pdf

[sgk] https://www.ilm.com/vfx/young-sherlock-holmes/

[slgh] Marc Olano and Anselmo Lastra. “A Shading Language on Graphics Hardware: The PixelFlow
Shading Language.” In Proceedings of SIGGRAPH ’98, Computer Graphics Proceedings, Annual
Conference Series, edited by Michael Cohen, pp. 159–168. Reading, MA: Addison-Wesley, 1998

[rtps] - Kekoa Proudfoot, William Mark, Svetoslav Tzvetkov, and Pat Hanrahan. “A Real- Time Procedural
Shading System for Programmable Graphics Hardware.” In Proceedings of SIGGRAPH 2001, Computer
Graphics Proceedings, Annual Conference Series, edited by E. Fiume, pp. 159–170. Reading, MA: Addison-
Wesley, 2001

[SysProgGrH] William R. Mark, R. Steven Glanville, Kurt Akeley, and Mark J. Kilgard. “Cg: A System for
Programming Graphics Hardware in a C-like Language.” Proc. SIGGRAPH ’03, Transactions on Graphics
22:3 (2003), 896–907.

[CgTutorial] Randima Fernando and Mark Kilgard. The Cg Tutorial: The Definitive Guide to Programmable
Real-Time Graphics. Boston: Addison-Wesley Professional, 2003.
http://developer.download.nvidia.com/CgTutorial/cg_tutorial_chapter01.html

[DirextX9intro] Craig Peeper and Jason Mitchell. “Introduction to the DirectX 9 High-Level Shader
Language.” In ShaderX2: Shader Programming Tips and Tricks with DirectX 9.0, edited by Wolfgang Engel,
pp. 1–61. Plano, TX: Wordware Publishing, 2003.

[GameEngineList] Game engines list, https://en.wikipedia.org/wiki/List_of_game_engines

[OffLineRenderersList] Offline renderers list, https://en.wikipedia.org/wiki/List_of_3D_rendering_software

[DKBT] http://aminet.net/package/gfx/3d/DKBTrace

7.2 Section 2

[GEngArchPipeLine] Game Engine Architecture, third edition, 2015 CRC Press, Jason Gregory, Chapter 4
Parallelism and Concurrent Programming, Chapter 11.2 The Rendering Pipeline.

[GEngArchGPUprog] Game Engine Architecture, third edition, 2015 CRC Press, Jason Gregory, Chapter 4
Parallelism and Concurrent Programming, Chapter 4.11 introduction to GPGPU programming, pag 349.

7.3 Section 3

[geomTools] https://www.geometrictools.com/

[3DGEArch] 3D Game Engine Architecture Engineering Real-Time Applications with Wild Magic, David H.
Eberly Magic Software, Inc. Morgan Kaufmann Publishers, 2005 by ELSEVIER Inc.

[fluentInterface] https://en.wikipedia.org/wiki/Fluent_interface

[dPatterns1] http://www.blackwasp.co.uk/gofpatterns.aspx

132

http://www.blackwasp.co.uk/gofpatterns.aspx
https://en.wikipedia.org/wiki/Fluent_interface
https://www.geometrictools.com/
http://aminet.net/package/gfx/3d/DKBTrace
https://en.wikipedia.org/wiki/List_of_3D_rendering_software
https://en.wikipedia.org/wiki/List_of_game_engines
http://developer.download.nvidia.com/CgTutorial/cg_tutorial_chapter01.html
https://www.ilm.com/vfx/young-sherlock-holmes/
https://graphics.pixar.com/library/ShadeTrees/paper.pdf
https://renderman.pixar.com/product
https://en.wikipedia.org/wiki/Reyes_rendering
https://en.wikipedia.org/wiki/Reyes_rendering

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

[dPatterns2] Gamma E., Helm, R., Johnson, R., Vlissides J.: Design Patterns: Elements of Reusable Object
Oriented Software, Addison Wesley, 1995.

[dPatterns3] Head First Design Patterns O'Reilly Media, 2004 ISBN-13: 978-0596007126

[stdImage] https://github.com/nothings/stb

7.4 Section 4

[Torus] http://mathworld.wolfram.com/Torus.html

[Sphere] http://mathworld.wolfram.com/Sphere.html

[math3DCG] Mathematics for 3D Game Programming and Computer Graphics, Third Edition, Eric Lengyel,
Course Technology, a part of Cengage Learning, 2012 – Chapter 4 - Section 4.4.

[songho] http://www.songho.ca/math/homogeneous/homogeneous.html

[fundaComGra] Fundamentals of Computer Graphics third edition, Peter Shirley (NVIDIA Corp.), Steve
Marschner (Cornell University), et al. CRC Press 2009 Taylor & Francis Group. Pages 423 – 425 section
17.2.2 Interpolating Rotation.

[MathComGra] Mathematics for Computer Graphics, John Vince, Springer 2010. Page 80 Section 7.5 3D
Transforms, subsection 7.5.4 Gimbal Lock.

[MathComGra1] Mathematics for Computer Graphics, John Vince, Springer 2010. Page 99 Section 7.8
Rotation a Point About an Arbitrary Axis, subsection 7.8.2 Quaternions.

[pipelineOGL3] https://www.khronos.org/opengl/wiki/Rendering_Pipeline_Overview

[persDivide] https://www.khronos.org/opengl/wiki/Vertex_Post-Processing#Perspective_divide

[coordSys] https://docs.microsoft.com/en-us/windows/win32/direct3d9/coordinate-systems/

[persDivide1] https://www.learnopengles.com/tag/perspective-divide/

[math3DCGBumpMap] Mathematics for 3D Game Programming and Computer Graphics, Third Edition,
Eric Lengyel, Course Technology, a part of Cengage Learning, 2012 – Chapter 7 - Section 7.8.

[FGDevelopRendering] Foundations of Game Engine Development, Eric Lengyel, Published by Terathon
Software LLC, 2019 - http://foundationsofgameenginedev.com/#fged2
 http://foundationsofgameenginedev.com/FGED2-sample.pdf

[GEngArch] Game Engine Architecture, second edition, 2015 CRC Press, Jason Gregory, Chapter 1, section
1.6.4.1

[GEngArcha] STLPort - http://www.stlport.org/product.html

[GEngArchb] Boost - https://www.boost.org/

[GEngArchc] Loki - http://loki-lib.sourceforge.net/

[Visibility] https://gcc.gnu.org/wiki/Visibility

[DynLib] Dynamically Loaded C++ Objects William Nagel, 2005
 http://www.drdobbs.com/dynamically-loaded-c-objects/184401900

133

http://www.drdobbs.com/dynamically-loaded-c-objects/184401900
https://gcc.gnu.org/wiki/Visibility
http://loki-lib.sourceforge.net/
https://www.boost.org/
http://www.stlport.org/product.html
http://foundationsofgameenginedev.com/FGED2-sample.pdf
http://foundationsofgameenginedev.com/#fged2
https://www.learnopengles.com/tag/perspective-divide/
https://www.learnopengles.com/tag/perspective-divide/
https://docs.microsoft.com/en-us/windows/win32/direct3d9/coordinate-systems/
https://www.khronos.org/opengl/wiki/Vertex_Post-Processing#Perspective_divide
https://www.khronos.org/opengl/wiki/Rendering_Pipeline_Overview
http://www.songho.ca/math/homogeneous/homogeneous.html
http://mathworld.wolfram.com/Sphere.html
http://mathworld.wolfram.com/Torus.html
https://github.com/nothings/stb

 Final thesis - Master’s degree computing engineering final project -
 - Real-time rendering engine with a modern graphics approach -

 Author: Xavier Figuera Alberich December 2019

[dlfcn] https://pubs.opengroup.org/onlinepubs/7908799/xsh/dlfcn.h.html

[dlopen] https://www.tldp.org/HOWTO/pdf/C++-dlopen.pdf

[windlfcn] https://docs.microsoft.com/en-us/windows/win32/api/libloaderapi/

[dlfcn-win32] https://github.com/dlfcn-win32/dlfcn-win32

[stdImage] https://github.com/nothings/stb

[assimp] http://www.assimp.org/

[OBJ-Loader] https://github.com/Bly7/OBJ-Loader

[OBJPaulBourke] http://paulbourke.net/dataformats/obj/

[OBJWikipedia] https://en.wikipedia.org/wiki/Wavefront_.obj_file

[MTLPaulBourke] http://paulbourke.net/dataformats/mtl/

[GLFW] https://www.glfw.org/documentation.html

[ViSurAlgo] James H. Clark, Hierarchical Geometric Models for Visible Surface Algorithms,
Communications of the ACM, vol. 19, no. 10, 1976, pp.547–554.
https://dl.acm.org/citation.cfm?id=360354

[3DGEArchCam] 3D Game Engine Architecture Engineering Real-Time Applications with Wild Magic,
David H. Eberly Magic Software, Inc. Morgan Kaufmann Publishers, 2005 by ELSEVIER Inc. Page 259,
Section 3.5.1 Camera Models.

[fundaComGraCam] Fundamentals of Computer Graphics third edition, Peter Shirley (NVIDIA Corp.),
Steve Marschner (Cornell University), et al. CRC Press 2009 Taylor & Francis Group. Page 141, section 7
Viewing.

[tuongPhong] https://en.wikipedia.org/wiki/Phong_reflection_model

[OGL4glsl] OpenGL 4.0 Shaging Language Cookbook – Second Edition – David Wolff. 2013 Packt
Publishing.

[cubeImage] https://www.flickr.com/photos/racchio/218529117/

[pipelineOGL3] https://www.khronos.org/opengl/wiki/Rendering_Pipeline_Overview

[glad] https://glad.dav1d.de/ - https://github.com/Dav1dde/glad

[OGLoadingLib] https://www.khronos.org/opengl/wiki/OpenGL_Loading_Library

7.5 Other resources

https://www.ogre3d.org/

https://www.cg.tuwien.ac.at/research/publications/2007/bauchinger-2007-mre/
https://www.cg.tuwien.ac.at/research/publications/2007/bauchinger-2007-mre/bauchinger-2007-mre-Thesis.pdf
https://research.ncl.ac.uk/game/mastersdegree/graphicsforgames/
https://learnopengl.com/
http://ogldev.atspace.co.uk/
https://www.khronos.org/registry/OpenGL/index_gl.php

134

https://www.khronos.org/registry/OpenGL/index_gl.php
http://ogldev.atspace.co.uk/
https://learnopengl.com/
https://research.ncl.ac.uk/game/mastersdegree/graphicsforgames/
https://www.cg.tuwien.ac.at/research/publications/2007/bauchinger-2007-mre/bauchinger-2007-mre-Thesis.pdf
https://www.cg.tuwien.ac.at/research/publications/2007/bauchinger-2007-mre/
https://www.ogre3d.org/
https://www.khronos.org/opengl/wiki/OpenGL_Loading_Library
https://github.com/Dav1dde/glad
https://glad.dav1d.de/
https://www.flickr.com/photos/racchio/218529117/
https://www.flickr.com/photos/racchio/218529117/
https://en.wikipedia.org/wiki/Phong_reflection_model
https://www.glfw.org/documentation.html
http://paulbourke.net/dataformats/mtl/
https://en.wikipedia.org/wiki/Wavefront_.obj_file
http://paulbourke.net/dataformats/obj/
https://github.com/Bly7/OBJ-Loader
http://www.assimp.org/
https://github.com/nothings/stb
https://github.com/dlfcn-win32/dlfcn-win32
https://docs.microsoft.com/en-us/windows/win32/api/libloaderapi/
https://www.tldp.org/HOWTO/pdf/C++-dlopen.pdf
https://pubs.opengroup.org/onlinepubs/7908799/xsh/dlfcn.h.html

