

Citation for published version

Caballé, S. & Xhafa, F. (2013). Distributed-based Massive Processing of
Activity Logs for Efficient User Modeling in a Virtual Campus. Cluster
Computing, 16(4), 829-844.

DOI
https://doi.org/10.1007/s10586-013-0256-9

Document Version

This is the Accepted Manuscript version.
The version in the Universitat Oberta de Catalunya institutional repository,
O2 may differ from the final published version.

Copyright and Reuse

This manuscript version is made available under the terms
of the Creative Commons Attribution Non Commercial No Derivatives
licence (CC-BY-NC-ND)
http://creativecommons.org/licenses/by-nc-nd/3.0/es​, which permits
others to download it and share it with others as long as they credit you,
but they can’t change it in any way or use them commercially.

Enquiries

If you believe this document infringes copyright, please contact the
Research Team at: repositori@uoc.edu

Universitat Oberta de Catalunya Research archive

https://doi.org/10.1007/s10586-013-0256-9
http://creativecommons.org/licenses/by-nc-nd/3.0/es

Distributed-based massive processing of activity logs for efficient
user modeling in a Virtual Campus

Santi Caballé · Fatos Xhafa

Abstract This paper reports on a multi-fold approach for
the building of user models based on the identification of
navigation patterns in a virtual campus, allowing for adapt-
ing the campus’ usability to the actual learners’ needs, thus
resulting in a great stimulation of the learning experience.
However, user modeling in this context implies a constant
processing and analysis of user interaction data during long-
term learning activities, which produces huge amounts of
valuable data stored typically in server log files. Due to the
large or very large size of log files generated daily, the mas-
sive processing is a foremost step in extracting useful infor-
mation. To this end, this work studies, first, the viability of
processing large log data files of a real Virtual Campus us-
ing different distributed infrastructures. More precisely, we
study the time performance of massive processing of daily
log files implemented following the master-slave paradigm
and evaluated using Cluster Computing and PlanetLab plat-
forms. The study reveals the complexity and challenges of
massive processing in the big data era, such as the need
to carefully tune the log file processing in terms of chunk
log data size to be processed at slave nodes as well as the
bottleneck in processing in truly geographically distributed
infrastructures due to the overhead caused by the commu-
nication time among the master and slave nodes. Then, an
application of the massive processing approach resulting in
log data processed and stored in a well-structured format is

S. Caballé (�)
Open University of Catalonia, Rambla Poblenou, 156,
08018 Barcelona, Spain
e-mail: scaballe@uoc.edu

F. Xhafa
Technical University of Catalonia, c/ Jordi Girona, 1-3,
08034 Barcelona, Spain
e-mail: fatos@lsi.upc.edu

presented. We show how to extract knowledge from the log
data analysis by using the WEKA framework for data min-
ing purposes showing its usefulness to effectively build user
models in terms of identifying interesting navigation patters
of on-line learners. The study is motivated and conducted in
the context of the actual data logs of the Virtual Campus of
the Open University of Catalonia.

Keywords Massive processing · Log files · Cluster
computing · PlanetLab · Web mining usage · WEKA
framework · Navigation patterns · Virtual Campus

1 Introduction

User modeling [3] is a mature research field mostly involved
in the information technology context. It is mainly utilized
in software systems for inferring the users’ goals, skills,
knowledge, needs and preferences, thus achieving more ade-
quate adaptation and personalization on the basis of the user
activity pattern built. This inference process relies in turn
on being able to track the users’ actions when interacting
with the application such as the users’ choice of buttons and
menu items [10].

In this paper, we focus on and are interested in web-
based learning applications that support virtual campuses.
These applications, due to the high degree of user interac-
tion, take great advantage of the tracking-based techniques
of user modeling, such as providing broader and better sup-
port for the users of Web-based educational systems [10].
An important consideration in this context is the building
of learner models based on the identification of navigation
patterns, which allows for adapting the system’s usability to
the actual learners’ needs resulting in a great stimulation of
the learning experience. However, the information generated

This is a post-peer-review, pre-copyedit version of an article published in Cluster Computing, December 2013,
Volume 16, Issue 4, pp 829–844.
The final authenticated version is available online at: http://dx.doi.org/10.1007/s10586-013-0256-9

mailto:scaballe@uoc.edu
mailto:fatos@lsi.upc.edu

in web-based learning applications can be of a great vari-
ety of type and formats [22]. Moreover, these applications
are characterized by a high degree of user-user and user-
system interaction which stresses the amount of interaction
data generated.

The above features can be extracted to a large extent from
information kept in log data files of on-line web-based learn-
ing applications. As a matter of fact, log file data processing
and analysis of the information captured from the actions
performed by learners is a core function for the modeling of
the learner’s behavior during the learning process and of the
learning process itself as well [5]. It is clear that, the larger
the taxonomy of events captured in log data files, the richer
is the information and knowledge extracted due its process-
ing. It is thus of interest to persist in log files all possible in-
formation due to the events produced during user-to-system
and user-to-user interaction. Keeping all possible informa-
tion, however, comes to the price of (a) dealing with all sorts
of data log formats and (b) large amounts of data, which are
not human readable nor ready to be analyzed by statistical
or data mining techniques [14, 21].

Therefore, massive processing is a must to efficiently
process large amount of log data files. In fact, one can as
well use log data files as a basis for real time decision tak-
ing system, and thus, high performance data processing us-
ing large scale distributed systems are needful. In this paper
we present the implementation and evaluation of some mas-
sive processing techniques under different distributed infras-
tructures such as Cluster Computing [9] and PlanetLab [18].
The aim is to identify the limits of the size of the log files
for which these infrastructures are efficient solutions to such
processing.

The rest of the paper is organized as follows. In Sect. 2 we
describe the aims and background of our approach by first
presenting the Virtual Campus and its log data file system
as the real context of our study and then showing the prob-
lem of processing huge amounts of log data coming from
the user interaction in the Virtual Campus. In Sect. 3 we
describe the research methodology to validate our approach
and the evaluation results achieved from massive process-
ing of the log data files using different distributed infrastruc-
tures. Finally, in Sect. 4 we present a data mining application
that leverages our massive log data processing approach in
order to extract useful knowledge in form of navigation pat-
terns. We end the paper in Sect. 5 with some concluding
remarks and outlining future directions of research.

2 Aims and background

In this section we first describe the real context of learning
of our study and then present a description of the log data
files of our virtual campus. Finally, we present the problem
of massive processing of log files.

2.1 The Virtual Campus

The context of our study is the academic and administrative
activity at the Open University of Catalonia (UOC) [19],
which is sustained by a large web-based Virtual Campus
counting at the time of this writing on about 65,000 students,
lectures and tutors from everywhere who participate in some
of the 70 official degrees and other PhD and post-graduate
programs resulting in more than 3,000 on-line classrooms.

The on-line Web-based campus of the UOC is completely
virtualized. It is made up of individual and community vir-
tual areas such as mailbox, agenda, classrooms, library, sec-
retary’s office, and so on. See left column of Table 1 for
a complete list of the virtual areas of the UOC. Students
and other users (lecturers, tutors, administrative staff, etc.)
continuously browse these areas where they request for ser-
vices to satisfy their particular needs and interests. For in-
stance, students make intensive use of the mailbox area so
as to communicate with other students and lecturers as part
of their learning process.

2.2 Log data files of the Virtual Campus

All users’ requests in the Virtual Campus are chiefly pro-
cessed by a collection of Apache web servers [1] as well
as database servers and other secondary applications, all of
which are providing service to the whole community, thus
satisfying a large number of users. For load balance pur-
poses, all HTTP traffic is smartly distributed among the dif-
ferent Apache web servers available. Each web server stores
in a log file each user request received and the informa-
tion generated from processing it. Once a day (namely, at
01:00 a.m.), all web servers in a daily rotation merge their
logs producing a single very large log file containing the
whole user interaction with the campus performed in the last
24 hours.

For the purpose of registering the campus activity, log
files entries were set up with the purpose of capturing the
following information in several fields: (i) Who performed a
request (i.e. user’s IP address along with a session key that
uniquely identifies a user session); (ii) When the request was
processed (i.e. timestamp); (iii) What type of service was re-
quested (a URL string format description of the server appli-
cation providing the service requested along with the input
values); and (iv) Where (i.e. an absolute URL containing the
full path to the server application providing the service re-
quested).

The log files of the UOC’s Virtual Campus are made up
of millions of lines, each of which representing an opera-
tion performed by a particular user (student, teacher, staff
member,. . .) in the Virtual Campus. Among other informa-
tion, these lines register the IP address from which the user
accessed the campus, and the user name of the student, en-
suring greater privacy. As an example, following is a line

Table 1 Log Data Files Samples (in every row: Total number of log lines (top) and % of number of log lines (down)). Row with Indefinite log
lines refer to those log lines without relevant information

Area/Log LOG1 LOG2 LOG3 LOG4 LOG5 Avg (%)

TOTAL 2.7E+07 1.6E+07 2.6E+07 2.7E+07 2.4E+07 100 %

100 % 100 % 100 % 100 % 100 %

Login 2943646 1855002 2900904 3318269 2927306 11.64 %

11.02 % 11.28 % 11.35 % 12.40 % 12.15 %

My UOC 5691130 3635355 5561056 5602895 5160005 21.50 %

21.31 % 22.11 % 21.75 % 20.94 % 21.41 %

Services 64325 35994 58397 53584 38946 0.21 %

0.24 % 0.22 % 0.23 % 0.20 % 0.16 %

Community 184781 117051 179219 184895 164851 0.70 %

0.69 % 0.71 % 0.70 % 0.69 % 0.68 %

Rooms 3749263 2380543 3465224 3846491 3341856 14.06 %

14.04 % 14.48 % 13.55 % 14.37 % 13.87 %

Secretaria 347024 185218 335855 299620 259359 1.19 %

1.30 % 1.13 % 1.31 % 1.12 % 1.08 %

Tutoring 445202 264995 424024 420972 388788 1.62 %

1.67 % 1.61 % 1.66 % 1.57 % 1.61 %

Library 2272 16341 20474 21039 18101 0.07 %

0.01 % 0.10 % 0.08 % 0.08 % 0.08 %

Research 1173 283 931 892 1164 0.00 %

0.00 % 0.00 % 0.00 % 0.00 % 0.01 %

Intrauoc 23317 7550 24525 23058 17661 0.08 %

0.09 % 0.05 % 0.10 % 0.09 % 0.07 %

News 167480 88739 153551 138785 118298 0.45 %

0.63 % 0.54 % 0.06 % 0.52 % 0.49 %

Bolonia Space 48 18 48 56 14 0.00 %

0.00 % 0.00 % 0.00 % 0.00 % 0.00 %

Inbox (New) 421305 196709 407673 34511 314802 1.39 %

1.58 % 1.20 % 1.59 % 1.29 % 1.31 %

Inbox (New) 2982332 1763556 279633 2976493 2649881 10.99 %

11.17 % 10.72 % 10.94 % 11.12 % 11.00 %

Agenda 635494 387673 611917 651428 575066 2.39 %

2.38 % 2.36 % 2.39 % 2.43 % 2.39 %

My Profile 22203 16818 21836 22627 20599 0.07 %

0.08 % 0.10 % 0.09 % 0.09 % 0.02 %

Groupwork 3631 1932 3769 3745 3460 0.01 %

0.01 % 0.01 % 0.02 % 0.01 % 0.01 %

Service attention 720 229 662 675 567 0.00 %

0.00 % 0.00 % 0.00 % 0.00 % 0.00 %

Favorites 177 112 184 212 205 0.00 %

0.00 % 0.00 % 0.00 % 0.00 % 0.00 %

Search 54534 42542 51514 67740 56991 0.23 %

0.20 % 0.26 % 0.20 % 0.25 % 0.24 %

Accessibility 872 509 2833 3025 1721 0.01 %

0.00 % 0.00 % 0.01 % 0.01 % 0.01 %

Preferences 20955 12545 2833 36392 25327 0.22 %

0.79 % 0.08 % 0.01 % 0.13 % 0.11 %

Logoff 7785 4491 7212 6527 6173 0.03 %

0.03 % 0.03 % 0.03 % 0.02 % 0.03 %

Indefinite log lines 8935395 5431082 8536732 8735702 8012468 33.13 %

33.36 % 33.025 % 33.385 % 32.644 % 33.242 %

that is part of a real log data file of the Virtual Campus (note
the IP address has been anonymized for privacy):

[13/Mar/2012:00:15:42 +0100]
xxx.xxx.xxx.xxx "POST /tren/trenacc
HTTP/1.1" 200
"https://cv.uoc.edu/tren/trenacc"
"Mozilla/5.0 (Windows NT 6.1; WOW64)
AppleWebKit/535.11 (KHTML, like Gecko)
Chrome/17.0.963.78 Safari/535.11" 14943 157

It should be noted that the example is a simplified line,
usually the URLs listed in the log files are accompanied by
numerous parameters.

The size of these log files keeps growing, due, on the one
hand, to the increase in the number of users of the virtual
campus, and on the other hand, to the variety of event infor-
mation kept in the log data files. Currently a typical daily log
file size may be up to 15–20 GB (about more than 50 % in-
crease in log data files size of 5 years before [7]). This great
amount of information is first pre-processed using filtering
techniques in order to remove a lot of futile, non relevant in-
formation (e.g. information coming from automatic control
processes, the uploading of graphical and format elements,
etc.). However, after this pre-processing, about 1.5–2.0 GB a
day of potentially useful information corresponding to about
5,000,000 of log entries in average still remains.

Log file entries are structured following a type of format
known as Common Log Format (CLF) [8], which is pro-
duced by most of web servers including Apache and is fairly
configurable. At this point, we highlight certain problems
arisen by dealing with these log files. Each explicit user re-
quest generates at least an entry in the log file and after being
processed by a web server, other log entries are generated
from the response of this user request; certain nontrivial re-
quests (e.g. user login) involve in turn requesting others and
hence they may implicitly trigger new log entries; the What
and Where fields contain very similar information regard-
ing the URL strings that describe the service requested and
the parameters with the input values; certain information is
found in a very primitive form and is represented as long text
strings (e.g. user session key is 128-character string long).
Therefore, there is a high degree of redundancy, tedious and
ill-formatted information as well as incomplete as at some
cases certain user actions do not generate any log entry (e.g.
user may leave the campus by either closing or readdressing
the browser) and thus these actions have to be inferred. As a
consequence, treating this information is very costly in time
and space needing a great processing effort.

2.3 The need for massive processing of log data

From our experience at the UOC, the description and pre-
diction of our students’ behavior and navigation patterns
when interacting with the campus is a first issue. Indeed, a

well-designed system’s usability is a key point to stimulate
and satisfy the students’ learning experience. In addition,
the monitoring and evaluation of real, long-term, complex,
problem-solving situations is a must in this context. Our goal
is to understand and adapt the learning process and objects
to the actual students’ learning needs as well as to validate
the campus’ usability by the actual usage of the campus.

In order to achieve these goals, the analysis of the cam-
pus activity and specifically the users’ traces captured while
browsing the campus is essential in this context. The col-
lection of this information in log files and the later analysis
and interpretations of this information provide the means to
model the user’s behavior and activity patterns. For instance,
from the log data it is possible to capture the different areas
browsed by a student during his/her user session along with
the timestamp when accessing to these areas. This allows
us to know what the most popular areas are, how long in
average students remain in each area, user session time in
average and in different daily periods, navigation patterns
combining both the most and the least visited areas, and so
on. More advanced processing would address web sessions
clustering to be used for web site restructure, decision taking
and recommender system, user activity prediction, server
load prediction, etc.

However, in Web-based learning applications in general,
extracting navigation and behavior patterns from the anal-
ysis of user interactions is a difficult task due to both the
amount and the complexity of information generated. This
makes its later treatment very tedious and time-consuming.

Therefore, in order to construct a reliable, effective, use-
ful learner models, dealing with log files in eLearning ap-
plications must involve three separate, necessary steps: col-
lection of information, analysis and presentation [4]. During
the first step, a tight structuring and classification of the orig-
inal log data is needed. This information is then analyzed
and interpreted in order to extract the desired knowledge.
The final step is to provide users with the obtained knowl-
edge. In this paper we consider and deal with the two first
steps of this process.

During the first stage of this process, the most important
issue while monitoring learning activity is the efficient col-
lection and storage of the large amount of information gen-
erated. Given that such informational data may need a long
time to be processed, Web-based learning systems have to
be designed in a way that filter and pre-process the resulting
information effectively. The aim is, on the one hand, to cor-
rectly collect and store the learning activity and, on the other
hand, to increase the efficiency during the later data process-
ing and analysis stages. In the context of our university, the
whole user interaction generates a huge amount of informa-
tion in a day which is filtered and collected in large daily
log files. Furthermore, this large information is found in an
ill-structured highly redundant form needing a great amount
of computational power to constantly process log data.

To sum up, the main issues with log files that concern in
the Virtual Campus are:

– Log file size: Daily log files contain hundreds of thou-
sands to millions of lines and therefore require consider-
able computing power to be read and processed.

– Log file structure: Although the log files follow a de-
fined structure, this structure does not allow to directly
extract navigation patterns, and thus a preprocessing of
these log files is required. The resulting output of the pre-
processing are files ready to be used by mining analysis
tools.

2.4 Related work

Most of the existing approaches in the literature consider
a sequential approach mainly due to three reasons: (i) pro-
cessing for a specific purpose (i.e. limiting the quantity of
information needed for that purpose); (ii) processing the in-
formation afterwards (i.e. not in real time) and (iii) process-
ing of small data samples, usually for research and testing
purposes (i.e. not for real learning needs). Yet, the lack of
sufficient computational resources is the main obstacle to
process large amounts of data in real time and hence in real
situations this processing tends to be done off-line in order
to avoid harming the performance of the logging applica-
tion, but as it takes place after the completion of the learning
activity has less impact on it [6, 23].

Recently, distributed infrastructures, such as Cluster
Computing [9], is increasingly being used to reduce the
overall, censored time in processing data by taking advan-
tage of its large computing support. The concept of dis-
tributed infrastructures has emerged as a way of capturing
the vision of a networked computing system that provides
broad access not only to massive information resources, but
to massive computational resources as well. Thus, in this pa-
per, we show how a distributed infrastructure approach can
be used to match the time processing requirements.

Several studies have been conducted at the UOC [5–7,
16] to show that a distributed infrastructure can increase the
efficiency of processing a large amount of information from
group activity log files [22]. Some of these studies have in-
volved the interaction data collected from the log files of
both the BSCW system [2] used at the UOC to support
Problem-Based Learning practices in small groups and the
own virtual campus of the UOC. The experimental results
allowed us to show first the gain provided by the distributed
approach in terms of relative processing time and, second,
the benefits of using the inherent scalable nature of the ap-
proach while the input log files are growing up in both num-
ber and large size.

In this paper we report the different experiments car-
ried out at the UOC that first show the feasibility of the
Cluster Computing and PlanetLab infrastructures in terms

of the complexity and challenges of massive processing
in the big data era and then provide guidelines of how to
achieve an effective embedding of the extracted knowledge
into e-learning practices.

3 Research methodology and computational results

In order to deal with the above mentioned problems and in-
conveniences, this section presents a research methodology
to validate our processing approach mentioned in previous
sections. To this end, we first propose an algorithm for par-
allelizing the processing of log files. Then, we present sev-
eral proofs of concepts to evaluate the computational results
by using several distributed infrastructures. Finally we will
interpret and discuss on the experimental results.

3.1 Parallelizing the processing of log files

We have developed a simple application in Java, called UO-
CLogsProcessing that processes log files of the UOC. How-
ever, as the processing is done sequentially, it takes too long
to complete the work and it has to be done after the comple-
tion of the learning activity, which makes the construction
of effective real-time user models not possible [16].

The parallel implementations in the distributed infras-
tructures that we propose in this section follows the master-
worker (MW) [22] paradigm . In a nutshell, a log file of
the UOC Virtual Campus is split off into a certain number
of parts, which can be exactly equal to the number of peer
nodes (slaves) that will participate in the processing or can
be larger. In this later case some peer nodes could receive
more than one part for processing. By splitting the original
file into more parts than peer node candidates for processing,
we can achieve different degrees of granularity of the par-
allel processing. Achieving different degrees of granularity
is very desirable in distributed environments given the high
heterogeneity of computing resources. Note that we have a
perfect split of the problem in many independent parts. In
the end, the master node just needs to append to a unique
file the arriving of partial solutions (partial result files after
processing).

The main steps of the MW parallel algorithm to process
a log file in our distributed infrastructures are as follows:

1. [Pre-processing phase]: UOCLogsProcessing counts the
total number of lines of the log file, totalNbLines,
and knowing the total number of parts to split the file
off, nbParts, each peer node will receive and process
a totalNbLines/nbParts of lines from the file.

2. [Master Loop]: Repeat
(a) Read totalNbLines/nbParts lines from the

original file and create a file with them.

(b) Create a request and submit the partial file to the dis-
tributed infrastructure.

(c) [Parallel processing]:
(i) The request is assigned to a peer node of the

distributed infrastructure.
(ii) The peer node, upon receiving the petition,

reads according to the petition’s description, the
part of the file it has to read via HTTP. The peer
runs UOCLogProcessing functionality for pro-
cessing the lines of the file, one at a time, and
stores the results of the processing in a buffer.

(iii) The peer node, once the processing of the peti-
tion is done, sends back to the master node the
content of the buffer.

Until the original log file has been completely scanned.
3. [Master’s final phase]: Receive messages (partial files)

from slave nodes and append in the correct order the
newly received resulting file to the final file containing
the information extracted from the original log file.

3.2 Computational results

We present some computational results for the massive pro-
cessing of log files up to 15 GB size. The implementations
follow the master-slave paradigm [16], a classical parallel
model for massive processing. It should be noticed here that
the nature of log files recording entries of different indepen-
dent events makes it possible their splitting into a number of
smaller files for processing.

The study of this processing is divided into two parts: in
the first part, we deal with a fixed number of nodes and vary
the size of logs, and in the other part, we vary the number of
nodes. The aim is to see the scalability of the massive pro-
cessing in terms of the size of the log file and also in terms
of the processing nodes of the distributed infrastructure.

The results are obtained using two different platforms:
(i) a cluster computing environment and (ii) the PlanetLab
platform infrastructure. Results are also given for process-
ing in a local node to have a reference of the sequential pro-
cessing. In processing the log file data, we consider two pa-
rameters, namely, processing time and size of the log files.
Chunks of files ranging from 50 MB to 15 GB are used.

3.2.1 Local processing

A PC with standard configuration is used for local sequential
processing of the log files. We present in Tables 2 and 3
the processing times as a function of log file size, and the
graphical representation is shown in Fig. 1.

Table 2 Local processing of Log files (from 50 MB to 500 MB)

Size 50 MB 100 MB 250 MB 500 MB

Time 13 s 21 s 46 s 93 s

Table 3 Local processing of Log files (from 1 GB to 15 GB)

Size 1 GB 2 GB 4 GB 8 GB 15 GB

Time 197 s 413 s 817 s 1741 s 3076 s

Fig. 1 Local processing time of Log files

3.2.2 Cluster processing

For the cluster processing we use a cluster infrastructure1

as shown in Fig. 2. The master node in the cluster (called
UOCLogs node) has the following hardware characteristics
and configuration:

CPU: QEMU Virtual
CPU version 0.12.3 64bits 3192.498Mhz
RAM: 2005MB
Hard drive: 100GB

The other slave nodes (called Eagles) have hardware
characteristics similar to the master node:

CPU: QEMU Virtual
CPU version 0.12.3 3192,364 Mhz
RAM: 2005MB
Hard drive: 100GB

Now, obviously, the processing time is different due to
the distributed processing of the chunks of the log files at
different nodes of the cluster. More precisely, we have three
phases of processing with the corresponding timing. First,
the log file is divided into as many chunks as nodes (slave

1eagle.lsi.upc.edu.

http://eagle.lsi.upc.edu

Fig. 2 Distributed processing infrastructure

Table 4 Cluster processing of Log files (with 2 nodes)

Size 50 MB 100 MB 250 MB 500 MB

Time 5 s 6 s 12 s 18 s

Table 5 Cluster processing of Log files (with 2 nodes)

Size 1 GB 2 GB 4 GB 8 GB 15 GB

Time 49 s 111 s 335 s 902 s 1437 s

Table 6 Cluster processing of Log files (with 4 nodes)

Size 50 MB 100 MB 250 MB 500 MB

Time 4 s 7 s 10 s 15 s

nodes) available (excluding the master node). Next, the dif-
ferent chunks are distributed to different nodes and finally,
the results of the processing, which are files, are joined into
one single file. The processing time (averaged) is then the
sum of the processing times of the three phases.

We present in Tables 4 and 5 the processing times for
various sizes of log files using two nodes of the cluster and
the graphical representation in Fig. 3.

We present in Tables 6 and 7 the processing times for
various sizes of log files using four nodes of the cluster and
the graphical representation in Fig. 4.

Fig. 3 Cluster processing time of Log files

Fig. 4 Cluster processing time of Log files

Table 7 Cluster processing of Log files (with 4 nodes)

Size 1 GB 2 GB 4 GB 8 GB 15 GB

Time 33 s 66 s 151 s 513 s 1097 s

3.2.3 PlanetLab processing

PlanetLab is a distributed computing infrastructure currently
with 1161 nodes distributed in 548 different sites among uni-
versities, research centers or homes. The nodes are located
outside a firewall and have to be visible from anywhere in
more than one DNS. Currently, the characteristics of the
node must be the following [18]:

– 4 GB RAM
– At least 500 GB hard disk
– At least 1 MB/sec connection to the Internet
– cores@2.4Ghz 4× Intel (e.g., 2× dual core or quad core)
– External or built-in CPU, remote-access power-reset ca-

pability, accessible from PLE, such as IntelAMT, HPiLO,
DellRAC, IPMIv2, etc.

Table 8 PlanetLab nodes

PlanetLab Node Location

dplanet2.uoc.edu (Spain)

planetlab2.iitr.ernet.in (India)

planetlab3.upc.es (Spain)

planetlab01.cs.tcd.ie (Ireland)

planetlab3.di.unito.it (Italy)

planetlab2.fct.ualg.pt (Portugal)

planetlab1.upc.es (Spain)

onelab1.info.ucl.ac.be (Belgium)

planetlab4.cs.uiuc.edu (USA)

ple1.cesnet.cz (Czech Republic)

onelab3.warsaw.rd.tp.pl (Poland)

planetlab2.willab.fi (Finland)

planetlabpc2.upf.edu (Spain)

planetlab2.upc.es (Spain)

dplanet1.uoc.edu (Spain)

dplanet2.uoc.edu (Spain)

planetlab2.iis.sinica.edu.tw (Taiwan)

planetlab-02.ece.uprm.edu (Puerto Rico)

planetlab1.pop-mg.rnp.br (Brasil)

planetlab2.rd.tut.fi (Finland)

planetlabpc1.upf.edu (Spain)

planetlab2.cis.upenn.edu (USA)

pl1.cis.uab.edu (USA)

planetlab2.urv.cat (Spain)

planetlab-01.ece.uprm.edu (Puerto Rico)

planetlab4.n.info.eng.osaka-cu.ac.jp (Japan)

planetlab1.cs.ucla.edu (USA)

server4.planetlab.iit-tech.net (USA)

pl1.pku.edu.cn (China)

pl2.pku.edu.cn (China)

pl2.cis.uab.edu (USA)

planetlab2.eurecom.fr (France)

planet2.elte.hu (Hungary)

Table 9 PlanetLab processing of Log files (16 nodes)

Size 50 MB 100 MB 250 MB 500 MB

Time 2 s 3 s 5 s 10 s

For the purpose of this study we use up to 32 nodes of
the PlanetLab. We continue to use as the master node that of
UOCLogs to divide and join the logs but without participat-
ing itself in the processing.

The list of PlanetLab nodes used are listed in Table 8,
which as can be observed are geographically distributed
across Europe, USA. South America and Asia.

We present in Tables 9 and 10 the processing times using
16 nodes of PlanetLab platform (the 1st 16 nodes of Table 8)

Table 10 PlanetLab processing of Log files (16 nodes)

Size 1 GB 2 GB 4 GB 8 GB 15 GB

Time 23 s 45 s 101 s 270 s 528 s

Fig. 5 PlanetLab processing time of Log files with 16 nodes

Table 11 PlanetLab processing of Log files (32 nodes)

Size 50 MB 100 MB 250 MB 500 MB

Time 1 s 2 s 3 s 7 s

Table 12 PlanetLab processing of Log files (32 nodes)

Size 1 GB 2 GB 4 GB 8 GB 15 GB

Time 21 s 42 s 81 s 242 s 458 s

Fig. 6 PlanetLab processing time of Log files with 32 nodes

and the graphical representation in Fig. 5. In addition, Ta-
bles 11 and 12 present the processing times using 32 nodes
and the corresponding graphical representation is shown in
Fig. 6.

Table 13 Comparative processing of Log files with one node in three
platforms (Local-Cluster-PlanetLab)

Local Cluster PlanetLab

500 MB 93 s 30 s 61 s

1 GB 197 s 73 s 121 s

2 GB 413 s 167 s 268 s

4 GB 817 s 335 s 557 s

8 GB 1741 s 693 s –

15 GB 3077 s 1299 s –

Table 14 Comparative processing of Log files with multiple nodes in
PlanetLab platform

500 MB 1 GB 2 GB 4 GB 8 GB 15 GB

1 node 61 s 121 s 269 s 557 s – –

2 nodes 36 s 76 s 153 s 430 s 1129 s –

4 nodes 18 s 42 s 93 s 191 s 616 s 1325 s

8 nodes 13 s 28 s 63 s 126 s 324 s 821 s

16 nodes 10 s 23 s 47 s 101 s 271 s 529 s

24 nodes 8 s 22 s 46 s 92 s 251 s 481 s

32 nodes 8 s 21 s 43 s 82 s 242 s 458 s

3.3 Evaluation

In Table 13 we can see a comparative results of the battery
of tests for each of the three platforms described above with
one node (i.e., Local, Cluster, PlanetLab). Note that no re-
sults are shown in PlantetLab for log files bigger than 4 GB
due to the space restriction of this platform. Also note that
the PlanetLab times may be influenced by the node work-
load carried out at the time of the experiment. Finally, the
time difference between the local and cluster processing is
to do with the different processing capacity between a home
PC and a server in the cluster. In all cases, the results for one
node shows a linear increase over time.

From the experimental study shown in the previous sec-
tion for more than one node (see Figs. 3–6), we can see
that the results do not grow linear anymore. In Table 14 and
the corresponding Fig. 7 we can see an example of process-
ing log files with multiple nodes in PlanterLab platform. We
can see also that by using a distributed infrastructure of up
to 16 nodes, a considerable speed up (more than 40 %) is
achieved in processing large log file data (up to 15 GB). For
infrastructures larger than 16 nodes truly geographically dis-
tributed, such as PlanetLab, the speed up reduces with the
increase in the number of nodes due to the significant com-
munication time (in receiving the chunk files and sending
back the results to master node).

The above results are confirmed by the results in the Clus-
ter platform, where we can see that not considerable gain of
time is achieved with a maximum of 4 nodes (see Table 15

Fig. 7 Comparative of processing time of Log files in PlanetLab with
multiple nodes

Table 15 Comparative of processing time of Log files in the Cluster
infrastructure

1 node 2 nodes 3 nodes 4 nodes

500 MB 30 s 19 s 18 s 15 s

1 GB 73 s 49 s 49 s 33 s

2 GB 167 s 167 s 80 s 66 s

4 GB 336 s 335 s 208 s 151 s

8 GB 693 s 902 s 655 s 514 s

15 GB 1299 s 1437 s 1213 s 1098 s

and the corresponding Fig. 8). Even with 2 nodes the pro-
cessing time is higher than with 1 node for large log files
due to the overhead caused by first the split function that di-
vides the original log files and then merging the processing
results. Note that by comparing PlanetLab and Cluster plat-
forms, the latter achieves better results in similar conditions
(i.e., same number of nodes and log size) due to both the
greater power provided by machines in a cluster infrastruc-
ture with fast communication and also full availability for
the experiments being PlanetLab platform constantly busy.

Once the original log files have been processed by our
UOCLogsProcessing algorithm and the results have been
merged in well-structured files, we observed a enormous re-
duction of the overall data up to 95 %. This allows a feasi-
ble storing of the processing results in a database for further
analysis and knowledge extraction. Indeed, the difference
between handling an original 15 GB log file and a result-
ing 800–900 MB files is very considerable. Next section re-
ports a complete experience of using the results of log file
processing for knowledge extraction in our virtual campus.

Fig. 8 Comparative of processing time of Log files in Cluster infras-
tructure

4 An application: extracting navigation patterns
in the Virtual Campus

In this section we present an application of the results of
log data processing obtained in the previous section for ex-
tracting navigation patterns in our Virtual Campus. In the
general information and knowledge management process in
eLearning systems presented in Sect. 2.3, consisting of three
stages (data processing, extraction of knowledge and knowl-
edge presentation) [4], the study presented in this section
corresponds with the second stage, namely the extraction of
knowledge from the analysis of the log data processed and
stored in a structured way, such as a database and a well-
structured text file.

We first describe the navigation patterns of our Virtual
Campus we are interested in. Then, we introduce some data
mining methods suitable for our purposes as well as the use
of WEKA framework to implement the selected data mining
methods. Finally, we show the computational results and the
eventual association rules obtained forming the interested
navigations patterns.

4.1 Navigation patterns

As precisely described in Sect. 2.2, a user access to the
UOC’s Virtual Campus, on the one hand, provide access to
a range of resources (typically, files or web pages). On the
other hand, accessing to the Virtual Campus means the start
of a work session by the user logged in. This work session
is identified by an alphanumeric string. From the point of
view of log files of the Virtual Campus, users are identified
by the IP address they have accessed the Campus and/or a
resource, reflected in a line in the log file corresponding to
the day/time on which the access has been made. Moreover,

resources are identified by their URL in the Virtual Campus,
which incorporates the session identifier of the user who ac-
cessed the resource.

For the purposes of this work we concentrate on the anal-
ysis of two navigation patterns:

1. Commonly accessed resources: This pattern will iden-
tify those resources most frequently requested by users
of the UOC’s Virtual Campus. Given the couple <IP
address, session ID>, we define a navigation se-
quence as the set of resources visited by a particular IP
address during a work session, i.e. a navigation sequence
shall consist of the URLs that a user has accessed from
logging on the Virtual Campus until the end of the ses-
sion activity. Thus, if the same user (identified by the IP
address) initiates a new session, the set of resources ac-
cessed would be considered part of another sequence.

2. Common navigation rules: This pattern will identify the

most common behaviors of users of the UOC’s Virtual
Campus. For example, given the set of resources [R1, R2,
R3, R4] for which users’ hits have been recorded in a
log file of the Virtual Campus, we could determine those
users who have accessed R1 have accessed also to R2,
and users who have accessed R3 have accessed to R4 as
well.

4.2 Data mining methods

In order to determine the above mentioned navigation pat-
terns, we apply the following data mining methods.

4.2.1 K-Means

K-Means (or centroid method) is a method of aggrega-
tion/clustering, which from a data set computes a list of
groups (clusters) of objects having similar characteristics.
Specifically, the K-means method is based on obtaining a
number of K groups K, set at the beginning of the process
[17].

According to the method, the process starts by setting a
starting point of the space (called a seed) as a potential cen-
ter of the group to be formed. This seed can be either one of
the objects that are part of the initial data set, or a combina-
tion of artificially created values representing the character-
istics of various objects. Thus, the main steps taken by the
K-means method are as follows:

1. Select the initial seeds.
2. Calculate the centers.
3. Assign objects to the nearest center group.
4. Recalculate the centers.
5. Repeat until there is no variation in the groups.

For the present study, the groups to be computed are se-
quences of users browsing the Virtual Campus of the UOC,
so that we can determine the resources that were accessed
more frequently.

4.2.2 The Apriori algorithm

Apriori is a classical algorithm for learning association rules
[13]. The algorithm is based on prior knowledge (a priori)
of the common data sets. An item is considered frequent if
its frequency is greater than the value of trust (confidence).
It should be noted that this algorithm does not support nu-
merical values so that depending on the characteristics of
the data set to be processed, it may be required to perform a
pre-processing of the same, usually to make a discretization.

Association rules An association rule is an expression of
the form X ⇒ Y where X and Y are item sets. This expres-
sion should be interpreted as: when there is a data set that
contains the item X, it is also often to contain the element Y .

Confidence and support Given the set of elements X and
Y , and binary database r , the confidence, represented as
conf (X ⇒ Y, r) is the conditional probability that a ran-
domly chosen line within r matches X, also matches with
Y . In other words, confidence refers to cases that a rule pre-
dicts correctly.

On the other hand, the support (or frequency) refers
to cases that covers a rule. It is usually represented as
Supp(X, r) where X is a set of elements and r a binary
database. Generally, the association rules of interest are
those with a high support value.

For the present study, the application of the Apriori al-
gorithm is to discover association rules on the access to
resources made by users of the UOC’s Virtual Campus,
recorded in log files.

4.2.3 FPGrowth algorithm

FPGrowth is an algorithm that behaves more optimally and
faster than Apriori with large volumes of data, since it only
performs two iterations [13]. This algorithm is based on stor-
ing information in compressed form in a tree structure called
FP-tree and this is where improvement is achieved on Apri-
ori to reduce the number of iterations required to process
information.

4.3 WEKA application

We have selected WEKA application for the data mining of
the log data files. WEKA implements the three data min-
ing methods mentioned above (K-means, Apriori and FP-
Growth) [21].

4.3.1 Features

WEKA [20] is a Java application that has a collection of vi-
sualization tools and algorithms for preprocessing data anal-
ysis and predictive modelling, coupled with a graphical user
interface for easy access to its functionality.

The main features of this tool are the following:

Fig. 9 Graphical User Interface of WEKA (K-means method)

• This is free software, licensed under GNU.
• It is easily portable to other platforms by being com-

pletely developed in Java.
• Supports various data mining tasks, namely: data prepro-

cessing, clustering, classification, regression, visualiza-
tion, and selection.

• Makes it possible to read data files in plain text (CSV,
ARFF, . . .) or directly from relational databases through
the JDBC API.

• It is extensible, so new algorithms can be incorporated.

4.3.2 Implementation of K-means in WEKA

WEKA implements the method K-means through a known
algorithm, which in turn is implemented in the class Sim-
pleKMeans weka.clusterers.SimpleKMeans. The
implementation of this algorithm is parameterized (see
Fig. 9) by a set of options from which the most relevant
are the numClusters and Seed.

4.3.3 Implementation of Apriori in WEKA

WEKA implements the Apriori association algorithm through
weka.associations.Apriori class. The implemen-
tation of this algorithm is configurable through a series of
options that can be seen in snapshot of Fig. 10.

4.4 Computational results

We present here some computational results for the real log
data files of the UOC’s Virtual Campus. The starting point is
the pre-processing tasks described in Sect. 3, which provide
the final files in a well-structured format for suitable pro-
cessing in the WEKA framework. As mentioned in Sect. 3,
this preprocessing consisted in several steps (from reading
the original log file, removing unnecessary lines, identify-
ing sessions and session Ids, removing URL options, identi-
fying IP, session and resource, conversion to CSV format of

Fig. 10 Graphical User Interface of WEKA (Apriori method)

final file for mining). The final file ready for mining has the
following format:

IP,resource1,resource2,resource3
111.111.111.111,T,T,F
222.222.222.222,T,F,F
333.333.333.333,T,F,T
444.444.444.444,F,F,T
555.555.555.555,T,T,T
111.111.111.111,T,F,F

As can be seen, in the final file, it is distinguished be-
tween the sequence of actions performed by the IP address
111,111,111,111 during an initial session and the sequence
of actions performed by the same IP address in a different
session. ‘T’ means the resource has been accessed and ‘F’
means there has been no access.

The final file is then processed in WEKA and results are
analyzed and interpreted.

4.4.1 Results obtained with WEKA K-means

First Run Firstly, we executed the aggregation (clustering)
SimpleKMeans algorithm, using the default parameters set
by Weka (see snapshot of Fig. 11).

Running the algorithm with default parameters set by
WEKA produced two groups (clusters) with the following
distribution given in Table 16.

As a matter of fact, the 1st run of WEKA SimpleKMeans
using default parameters produced poor results (in terms of
identified sessions and resources). Due to the large number
of data, the execution of the SimpleKMeans setting pro-

Fig. 11 Parameters of 1st run of K-means in WEKA

Table 16 Results of SimpleKMeans using default parameters

Number of lines 1.384

Lines in group 0 168 (12 %)

Lines in group 1 1.216 (88 %)

Table 17 Results of SimpleKMeans (numClusters = 10)

Number of Lines 1.384

Lines in group 0 40 (2.89 %)

Lines in group 1 259 (18.71 %)

Lines in group 2 133 (9.61 %)

Lines in group 3 36 (2.60 %)

Lines in group 4 429 (31.00 %)

Lines in group 5 1 (0.07 %)

Lines in group 6 117 (8.45 %)

Lines in group 7 87 (6.29 %)

Lines in group 8 227 (16.40 %)

Lines in group 9 55 (3.87 %)

duced only two groups (clusters), which could be consid-
ered biased and inconclusive results (this is very noticeable
through the tables of results of the first iteration), therefore,
we performed a second execution of the algorithm by defin-
ing 10 groups (WEKA numClusters parameter value 10).
The results obtained after the re-execution of the algorithm
are as shown in Table 17.

Given the resources that have been marked as accessed in
any of the groups and the total set of groups generated by the
algorithm, the results obtained were as shown in Table 18. In
the table, ‘T’ indicates that the resource has been accessed
and ‘F’ (represented by an empty cell) that there has been
no access to the resource.

Analysis of results From the results in Tables 17 and 18 the
following can be noted:

1. The largest group identified is the group 4, which has
brought together a total of 429 lines.

Table 18 Results of accessing the resources per groups (‘T’ represents a resource accessed by a group)

Resource/Group 0 1 2 3 4 5 6 7 8 9

T T

T

T

T

T

T T

T

T

T T T T

T

T

T T

T T

T

T

T

T T

T T

T T

T

T

T

T

T

T T T

T T

T

T T

T

T T

T T

T T

T

/webapps/classroom/081_common/jsp/eventFS.jsp

/WebMail/listMails.do

/UOC2000/b/cgi-bin/ma_filter

/cgi-bin/uocapp

/UOC/a/jsstuff_mail.html

/WebMail/resources/html/bodyHeight.html

/webapps/classroom/081_common/jsp/iniciAula.jsp

/UOC2000/b/extern_0.html

/avis.html

/UOC2000/b/cgi-bin/ma_folders

/UOC/a/ext_menu.html

/WebMail/readMailSecure.do

/cgi-bin/avis

/UOC2000/b/ext_menu.html

/UOC/a/extern_0.html

/WebMail/resources/html/logobar.html

/cgi-bin/ma_folders

/cgi-bin/ma_buttons

/cgi-bin/ma_mssgs

/rb/inici/navigation/redir

/UOC/js/banner.dat

/webapps/classroom/081_common/jsp/event.jsp

/UOC2000/b/cgi-bin/ma_buttons

/cgi-bin/ma_filter

/webapps/widgetsUOC/widgetsNovetatsExternesWithProviderServlet
/WebMail/sendMail.do

/WebMail/readMail.do

/webapps/widgetsUOC/widgetsRssServlet

/UOC2000/b/cgi-bin/ma_mssgs

/webapps/widgetsUOC/widgetsIcalServlet

/WebMail/contacts.do

/webapps/classroom/081_common/jsp/entrada.jsp

/UOC/a/menu.htm

/webapps/classroom/download.do T

Total access/group 4 4 5 7 0 16 4 3 4 4

2. The second and third largest groups are the groups 1 and

9 with 259 lines and 227 lines, respectively.

3. There is a group consisting of a single line.

4. Group 4, which has the largest number of lines has

grouped values ‘F’ only.

5. Group 5, which only has one line, is the one for which

the most resources have taken value ‘T’.

6. The resource that has taken more values ‘T’ in all the

groups is ‘/avis.html’ (4 values), then ‘/webapps /widget-

sUOC/widgetsNovetatsExternesWithProviderServlet’ (3

values). Both resources are found in rows 9th and 25th of
Table 18.

Analyzing the content of the final file, the resources that
have been considered by the algorithm have been accessed
at least 42 times. Looking at only the accesses, arguably the
most commonly accessed resources are represented in group
5 but the issue with that group is that it has only one line. Nor
does it appear that the most common navigational sequence
is represented by group 4, since the result is ‘distorted’ by
the large number of values ‘F’ present in the final file. The
most common resources are those who have been accessed

Table 19 Total number of
accesses to resources Resource Total number of access

/avis.html 454

/webapps/classroom/081_common/jsp/entrada.jsp 406

/webapps/widgetsUOC/widgetsRssServlet 334

/webapps/widgetsUOC/widgetsIcalServlet 318

/rb/inici/navigation/redir 313

/webapps/classroom/081_common/jsp/eventFS.jsp 308

/webapps/widgetsUOC/widgetsNovetatsExternesWithProviderServlet 277

/UOC/a/jsstuff_mail.html 245

/cgi-bin/avis 245

/UOC/a/menu.htm 242

more often given the set of IP addresses and sessions of the
final file (remind that one line of the final file is determined
by the pair IP address-session). The most accessed resources
are shown in Table 19.

Beyond the global statistics of Table 19, the data mining
techniques employed here can give valuable insights on the
navigation patters and accesses to the resources.

– Resources accessed by each student (identified by its IP
address and session work) are quite heterogeneous, i.e.
there are many differences between actions of students
during a work session. On the other hand, we notice that
students do not access a large number of resources dur-
ing a single work session. This has resulted in the appear-
ance of a large number of ‘F’ values in the final file. The
fact that the data mining method has generated a group
with many ‘T’ values but only grouping a line (group 5)
states that it is unusual for a student to access too many
resources during a work session on the Virtual Campus.

The fact that a group has been created with all its val-
ues to ‘F’ (group 4), can also conclude that it is common
that students do not perform many accesses to resources
in each working session (only a few resources worth tak-
ing ‘T’ in each row of the final file) but also that overall
students access to diverse resources and hence as many as
411 columns do appear in the final file.

– The analysis of groups 1 and 9 (the second and third
that grouped most lines), allows us to conclude that, re-
gardless of the total number of accesses, the students
of the Virtual Campus tend to access resources whose
URL is /avis.html and /webapps/widgetsUOC/

widgetsNovetatsExternes WithProviderServlet.
This is supported by the fact that these two resources

are the ones that have taken more ‘T’ values in all the
groups. This is so because the URLs that include the term
‘Avis’ refer to some kind of notification issued in the
Virtual Campus, just as the term ‘widget’ could re-
fer to the modules of the home page of the Virtual Cam-
pus, that ‘classroom’ could refer to the classrooms to
which students have access and ‘mail’ to email.

4.4.2 Results obtained with WEKA Apriori

We started by running the Apriori algorithm using default
parameters set by WEKA. The problem encountered was
that the WEKA Apriori is not able to process large amounts
of data, confirming again the scalability issue of the Apriori
algorithm [13].

Because of this, it was necessary to find an alternative
algorithm that would allow obtaining association rules using
Weka. Based on the suggestion in [13] we considered the
FPGrowth algorithm.

Results obtained with WEKA FPGrowth We run the FG-
Growth for the first time using the default parameters and
then decided to make a second run where the default param-
eters were modified as follows:

findAllRulesForSupportLevel=True and
maxNumberOfItems=2.

While the parameter findAllRulesForSupportLevel
was changed in order to obtain all the possible rules for the
level of support set, the parameter maxNumberOfItems
was changed to achieve the opposite effect, restricting the
number of rules to those formed by a maximum of two ele-
ments.

Some of the most interesting rules found are shown in
Fig. 12.

Analysis of the results Analyzing each of the obtained as-
sociation rules, the following are en excerpt of navigation
patterns of students’ sessions extracted from the Virtual
Campus:

1. The students that have accessed to a classroom have also
accessed to classrooms spaces.

2. The students that have accessed to mailbox have not ac-
cessed to teaching plan.

3. The students that have accessed to teaching activities,
have navigated (passed) through classrooms.

Fig. 12 Some rules found by
FPGrowth of WEKA

4. The students that have accessed to classroom participant
list, have not accessed to teaching plan.

5. The students that have accessed to campus RSS, have not
accessed to teaching plan.

6. The students that have accessed to teaching calendar,
have not accessed to teaching plan.

5 Conclusions and future work

In this paper we have presented an innovative approach for
the building of learner models based on the identification of
navigation patterns, allowing for adapting the system’s us-
ability to the actual learners’ needs resulting in a great stim-
ulation of the learning experience. This approach is based
on a massive pre-processing of log files of a Virtual Cam-
pus, which generate huge amounts of information of great
variety of type and formats. The massive processing is im-
plemented following the master-slave paradigm and evalu-
ated using different distributed infrastructures (Cluster and
PlanetLab platforms). The study showed the need to care-
fully tune the application in terms of chunk data size to be
processed at slave nodes as well as the bottleneck in process-
ing in truly geographically distributed infrastructures due to
the overhead caused by the communication time among the
master and slave nodes.

We show then how to extract knowledge from the anal-
ysis of the resulting log data from the Virtual Campus pre-
processed and stored in a well-structured format ready for
data mining purposes aiming to identify the navigation pat-
terns of online users. To this end, we used WEKA frame-
work for mining the data and more specifically, we used the

K-means, Apriori and FPGrowth algorithms implemented in
WEKA. The proposed approach showed its usefulness in ef-
fectively identifying navigation patters of online users of the
Virtual Campus.

Ongoing work is adding the Hadoop platform to our
study of massive log processing with multiple distributed in-
frastructures. Apache Hadoop [11] is an open-source frame-
work that allows for scalable, reliable, distributed process-
ing of large data sets across clusters of computers using
simple programming models. It implements a computational
paradigm named MapReduce [12], where the application is
divided into many small fragments of work, each of which
may be executed or re-executed on any node in the clus-
ter following the master-slave paradigm. Rather than rely on
hardware to deliver high-availability, Hadoop is designed to
detect and handle failures at the application layer, so deliv-
ering a highly-available service on top of a cluster of com-
puters, each of which may be prone to failures. Our aim
is to compare the log processing results obtained from the
above distributed platforms with the results obtained by us-
ing Hadoop.

In our future work, we would like to compare the results
of the data mining methods employed in this work with that
of a bi-clustering algorithm initially studied in [23]. This
approach is also useful to extract relevant knowledge about
user activity for other purposes beyond navigation patterns,
such as identifying activities performed by students as well
as to study time parameters related to such activities.

References

1. Apache HTTP Server Project: http://httpd.apache.org/

http://httpd.apache.org/

2. Bentley, R., Appelt, W., Busbach, U., Hinrichs, E., Kerr, D.,
Sikkel, S., Trevor, J., Woetzel, G.: Basic support for cooperative
work on the world wide web. Int. J. Hum.-Comput. Stud. 46(6),
827–846 (1997)

3. Bushey, R., Mauney, J.M., Deelman, T.: The development of
behavior-based user models for a computer system. In: Proc. of the
7th Intl. Conf. on User Modeling (UM 99), pp. 109–118. Springer,
Berlin (1999)

4. Caballé, S., Daradoumis, T., Xhafa, F., Conesa, J.: Enhancing
knowledge management in online collaborative learning. Int. J.
Softw. Eng. Knowl. Eng. 20(4), 485–497 (2010)

5. Caballé, S., Xhafa, F., Fernández, R., Daradoumis, Th.: Efficient
enabling of real time user modeling in on-line campus. In: Proc.
of the User Modeling 2007, pp. 365–369. Springer, Berlin (2007)

6. Caballé, S., Paniagua, C., Xhafa, F., Daradoumis, Th.: A grid-
aware implementation for providing effective feedback to on-
line learning groups. In: Proceedings of the Second International
Workshop on Grid Computing and Its Application to Data Analy-
sis (GADA 2005), pp. 274–283. Springer, Berlin (2005)

7. Carbó, J.M., Mor, E., Minguillón, J.: User navigational behavior
in e-learning virtual environments. In: The IEEE/WIC/ACM In-
ternational Conference on Web Intelligence (WI’05), pp. 243–249
(2005)

8. Apache Server Log Files. http://httpd.apache.org/docs/1.3/logs.
html

9. Foster, I., Kesselman, C.: The Grid: Blueprint for a Future Com-
puting Infrastructure, pp. 15–52. Morgan Kaufmann, San Fran-
cisco (1998)

10. Gaudioso, E., Boticario, J.G.: Towards web-based adaptive learn-
ing communities. In: Proceedings of Artificial Intelligence in Ed-
ucation. IOS Press, Sydney, Australia (2003)

11. Apache Hadoop. http://hadoop.apache.org/
12. Apache Opensource Hadoop Map/Reduce framework. http://wiki.

apache.org/hadoop/ProjectDescription
13. Han, J., Pei, J., Yin, Y., Mao, R.: Mining frequent patterns without

candidate generation: a frequent-pattern tree approach. Data Min.
Knowl. Discov. 8(1), 53–87 (2004)

14. Ciesielski, V., Lalani, A.: Data mining of web access logs from
an academic web site. In: Abraham, A., Koppen, M., Franke, K.
(eds.) Proceedings of the Third International Conference on Hy-
brid Intelligent Systems (HIS’03): Design and Application of Hy-
brid Intelligent Systems, December, pp. 1034–1043. IOS Press,
Amsterdam (2003)

 15. Bindu Madhuri, Ch., Anand Chandulal, J., Ramya, K., Phanidra,
M.: Analysis of Users’ Web Navigation Behavior using GRPA
with Variable Length Markov Chains. International Journal of
Data Mining & Knowledge Management Process (IJDKP) 1(2)
(2011)

16. Paniagua, C., Xhafa, F., Caballé, S., Daradoumis, T.: A grid pro-
totype implementation for real time processing of group activity
log data in collaborative applications. In: Proceedings of the 2005
PDPTA’05, Las Vegas, USA (2005)

17. Park, S., Suresh, N.C., Jeong, B.K.: Sequence-based clustering
for web usage mining: a new experimental framework and ANN-
enhanced K-means algorithm. Data Knowl. Eng. 65(3), 512–543
(2008)

18. PlanetLab. http://www.planet-lab.org/
19. Open University of Catalonia. http://www.uoc.edu
20. Weka 3: Data mining software in Java. http://www.cs.waikato.ac.

nz/ml/weka/
21. Witten, I.H., Frank, E., Hall, M.A.: Data Mining: Practical Ma-

chine Learning Tools and Techniques, 3rd edn. Morgan Kauf-
mann, Burlington (2011)

22. Xhafa, F., Caballé, S., Daradoumis, Th., Zhou, N.: A grid-based
approach for processing group activity log files. In: Proceedings
of the First International Workshop on Grid Computing and Its
Application to Data Analysis (GADA 2004), pp. 175–186 (2004)

23. Xhafa, F., Caballé, S., Barolli, L., Molina, A., Miho, R.: Using bi-
clustering algorithm for analyzing online users activity in a virtual
campus. In: Proceedings of the INCoS 2010 International Con-
ference on Intelligent Networking and Collaborative Systems, pp.
214–221 (2010)

http://httpd.apache.org/docs/1.3/logs.html
http://httpd.apache.org/docs/1.3/logs.html
http://hadoop.apache.org/
http://wiki.apache.org/hadoop/ProjectDescription
http://wiki.apache.org/hadoop/ProjectDescription
http://www.planet-lab.org/
http://www.uoc.edu
http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/

	Caratula_Article_Postprint_CC_BY-NC-ND_en(11)
	Caballe_Xhafa_CC_Distributed

