
A Performance Model for OpenMP Memory Bound

Applications in Multisocket Systems

César Allande1, Josep Jorba2, Anna Sikora1, and Eduardo César1

1 Univeritat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
{callande,ania}@caos.uab.es, eduardo.cesar@uab.cat

2 Universitat Oberta de Catalunya, Barcelona, Spain.
jjorbae@uoc.edu

Abstract
The performance of OpenMP applications executed in multisocket multicore processors can be
limited by the memory interface. In a multisocket environment, each multicore processor can
present a performance degradation in memory-bound parallel regions when sharing the same
Last Level Cache (LLC). We propose a characterization of the performance of parallel regions
to estimate cache misses and execution time.

This model is used to select the number of threads and affinity distribution for each parallel
region. The model is applied for SP and MG benchmarks from the NAS Parallel Benchmark
Suite using different workloads on two different multicore, multisocket systems.

The results shown that the estimation preserves the behavior shown in measured executions
for the affinity configurations evaluated. Estimated execution time is used to select a set of
configurations in order to minimize the impact of memory contention, achieving significant
improvements compared with a default configuration using all threads.

Keywords: performance model, multicore, multisocket, OpenMP, memory bound applications

1 Introduction

Performance on shared memory systems must consider multicore multisocket environments,
with different sharing levels of resources in the memory hierarchy. To take advantage of shared
memory systems, the high performance computing community has developed OpenMP Ap-
plication Program Interface (OpenMP) defining a portable model for shared-memory parallel
programming. However, depending on the memory utilization, the memory interface can be-
come a bottleneck. It is possible to group threads to take advantage of sharing memory or,
on the other hand, distribute them in the memory hierarchy or restrict their number to avoid
degradation due to memory contention.

To this aim, we propose a performance model based on characteristics of the multicore
multisocket architectures and the application memory pattern. The model estimates the run-
time of an application for a full set of different configurations in a system regarding the thread

Procedia Computer Science

Volume 29, 2014, Pages 2208–2218

ICCS 2014. 14th International Conference on Computational Science

2208 Selection and peer-review under responsibility of the Scientific Programme Committee of ICCS 2014
c© The Authors. Published by Elsevier B.V.

doi: 10.1016/j.procs.2014.05.206

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2014.05.206&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2014.05.206&domain=pdf

distribution among cores (affinity) and number of threads. The model is evaluated using run-
time measurements on a partial execution of the application in order to extract the application
characteristics.

To develop our approach we have made the following assumptions: 1) The application is
iterative and all iterations have uniform workload; 2) Workload is evenly distributed among
threads; 3) Performance degradation is mainly generated by memory contention at LLC; and
4) All processors in the socket are homogeneous. Our input parameters for the model are based
in the measurement in a single socket execution.

Taking into account these assumptions, our contributions are the following:

• A performance model to estimate the LLC misses for different affinities at the level of
individual parallel regions.

• A performance model to estimate the execution time for a parallel region, considering an
empirical value to adjust the parallelism degree at the memory interface level and data
access pattern.

The experimental results show that using the estimated values and selecting the best con-
figuration, a significant improvement in speedup is achieved.

This paper is structured as follows. Section 2 introduces related work about analytical
performance modeling. Section 3 introduces our performance model for estimating total cache
misses (TCM) at the last level cache (LLC) and estimated execution time. The model is
validated in Section 4, where it is evaluated using the SP and MG benchmarks for two different
architectures. Section 5 summarizes our conclusions and describes our ongoing work.

2 Related work

There are several approaches to estimate shared memory systems performance. Tudor [7]
presents a performance analysis for shared memory systems, and a performance model. It is
validated with NAS parallel benchmarks. This model considers idleness of threads, which is
present in context switching, specially when more than one thread per core is executed. We
consider our model to focus on the cache behavior because memory contention is the main cause
for performance degradation in memory bound HPC applications.

We use the idea of performance degradation in the context of parallel executions. Following
this, [2] presents the impact of cache sharing. The analysis is based on the characterization
of applications on isolated threads and, Zhuravlev in [9] presents two scheduling algorithms
to distribute threads base on miss rate characterization. Dwyer et al. [3] present a practical
method for estimating performance degradation on multicore processors. Their analysis is based
on machine learning algorithms and data mining for attribute selection of native processor
events. We also obtain information from performance hardware counters but without using
database knowledge obtained on a postprocessing analysis, that information is obtained by
using empirical data from a reduced sample of data that could be achieved at runtime.

Regarding the hardware, the Roofline model [8] is a visual computational model to help
identifying applications characteristics such as memory bound limitations. This model shows
how operational intensity can provide an insight of architecture and application behavior, and
provides an insight of the architecture, however this model is oriented to help development and
provide suggestions to make code optimizations on the source code. In our case, we present a
model in order to select an affinity configuration with the aim of being used at runtime in an
automatic tuning tool.

Perf. Model OpenMP Mem. Bound Apps. in Multisocket Sys. Allande, Jorba, Sikora and César

2209

3 Performance Model proposal

Performance degradation in memory bound applications considered in this work can be pro-
duced depending on application data access pattern and its concurrency at cache level. There-
fore, characteristics such as workload and data partitioning, the degree of data reutilization of
the data access pattern based on temporal and spatial locality, data sharing between threads,
and data locality on the memory hierarchy must be considered. Consequently, a deep knowledge
of the application behavior and system architecture to improve performance is required.

Iterative applications can provide similar performance among iterations. For this case, it is
possible to apply a strategy (Figure1) to evaluate the behavior of the application for a reduced
set of iterations with different configurations regarding the degree of parallelism and thread
pinning configurations. Our model considers these measurements to estimate the execution
time for the total set of configurations in the system.

3.1 Defining the performance model

In order to apply the proposed model, NC executions with parallel region profiling are required,
NC being the number of cores in a single socket, the i-th execution runs on threads 0 to
i − 1. This allows us to obtain the model’s input parameters for time and hardware counters
(LLC MISSES). We consider that ideal run time is mainly altered by memory contention at
shared cache level, and this contention is measured by the LLC MISSES hardware counter,
which provides the number of inclusive miss events at LLC for the system architecture, meaning
that the data is not present on the socket and must be acquired on memory. We collect the total
cache misses (TCM) generated at last level cache for each parallel region in order to analyze
the concurrency overhead.

The parameters involved in our model are described on Table 1.

3.1.1 Model input parameters

We propose to measure performance degradation on an isolated socket. Therefore, the model
considers two known elements, the increase of TCM on a single socket due to concurrency, and
its overhead time (taking into account the parallelism at memory level).

Concurrency behavior in a single socket at last level cache is represented by the vector (CF)
of concurrency factors, defined in expression 1.

CF = {cf1, cf2, ..., cfi}, where i ∈ 1..NC (1)

Where each cfi is the relation, defined in expression 2, between the measured TCM for a
1 thread execution and the measured cumulative TCM for an execution with i threads in the
socket. This vector can be generated for each parallel region.

cfi =
TCMi

TCM1
, where i ∈ 1..NC (2)

On the other hand, to estimate the overhead time generated on memory accesses, we must
consider that the memory interface is capable of achieving a degree of parallelism resolving
the access requests. The full utilization of parallelism depends on the application data access
pattern. Therefore, to express the relation between the achieved memory parallelism on a single

Perf. Model OpenMP Mem. Bound Apps. in Multisocket Sys. Allande, Jorba, Sikora and César

2210

Characterization

 Performace
modeling

1..NC executions
 on an isolated socket

Compute concurrency factors
 and time degradation vectors

 TCM_i
 mmTimes_i

Estimation of TCM
 per socket

 CF and BF vectors

Execution time estimation
 per socket

 estTCM

Estimation selection
based on memory access pattern

 TOvhd (SUM)
TOvhd (MAX)

Configuration selection
 with minimum execution time

 estTime

Figure 1: Proposed Methodology
for the selection of the number of
threads and its affinity distribution.

Table 1: Table of parameters used to estimate the execution
time of N threads for a given configuration.

Parameter Description

NC Cores in a socket
NS Number of sockets in the system.
CF NC size vector containing cfi concurrency fac-

tor coefficients.
cfi Concurrency factor for i threads in a socket.

It is expressed as TCM rate for the i execu-
tion over 1 thread execution. Being i ≥ 1 and
i ≤ NC. These coefficients are measured at
runtime for an isolated socket.

βi Time degradation for i threads measured in a
single socket. Being i > 1 and i ≤ NC.

BF NC size vector containing βi factor coeffi-
cients.

affs Number of threads in the s-th socket for an
AFF configuration.

AFF Affinity configuration, described as an NS
size vector containing the specific number of
threads per each socket for a given configura-
tion.

estTCM Estimated TCM on the s-th socket for the
AFF configuration.

TOvhd Estimated overhead time for the s-th socket
on the execution of the AFF configuration

idealT ime Estimated ideal execution time.
estT ime Estimated execution time.

socket and the application behavior, we define the vector (BF) of β factors in expression 3.
These values are also obtained with the measured values in a single socket execution.

BF = {β1, β2, ..., βi}, where i ∈ 1..NC (3)

Each βi factor (defined by 4) represents, for the i threads execution in a socket, the re-
lation between the measured time (mmTime), and the overhead for the worst case scenario,
providing a ratio of memory parallelism. The worst case is a serialized data miss access with no
memory parallelism, implying a latency overhead per data miss. Also, we consider ideal time
(idealT imei) as

T1

NTi
, being T1 execution time for 1 thread, and NTi the number of thread for

the i-th execution.

βi =
mmTimei − idealT imei

TCMi
, where i ∈ 1..NC (4)

Perf. Model OpenMP Mem. Bound Apps. in Multisocket Sys. Allande, Jorba, Sikora and César

2211

Following this, to represent the set of possible configurations in a system with NS sockets,
the thread configuration is represented in expression 5 as the affinity vector AFF , where each
component represents the number of threads in the s− th socket.

AFF = {aff1, aff2, ..., affs}, where s ∈ 1..NS (5)

The maximum number of threads in each socket is NC, allowing a number of configurations
from 1 thread to NS ∗NC. This definition allows us to consider configurations independently
of thread positioning on the socket, that is, by considering homogeneous threads, where a
thread and its siblings in a socket are equivalent. Furthermore, configurations with the same
number of threads per socket but with different socket order are also considered equivalent (e.g.
AFF={1,2} is equivalent to AFF={2,1}).

Finally, this definition provides a number of possible configurations numConf =
(
NC+NS

NS

)−
1, being NC the number of cores per socket, and NS the number of sockets in the system.
Considering this, the model provides the estimation for all the different numConf affinities
(AFF) in the system, and allows to select the configuration with the minimum estimated
execution time.

3.1.2 Estimating TCM & Execution Time

In order to estimate the TCM generated in a socket from a given affinity configuration, we
represent the estimated TCM by expression 6.

estTCM(AFF, affs) =
TCM1

NT (AFF)
∗ affs ∗ cfaffs (6)

Where s is the number of socket, and NT (AFF) expresses
∑NS

x=1 affx, i.e., the total number
of threads for the AFF configuration.

Finally, time estimation for the affinity configuration is given by the ideal execution and the
overhead time (TOvhd) as shown in expression 7.

estT ime(AFF) = TOvhd(AFF) + idealT ime(AFF) (7)

Where TOvhd(AFF), presented in 8, is the calculated overhead depending on the data
access pattern. If the pattern is unknown, the TOvhd(AFF) value can be interpolated between
the best and the worst case scenario. The serialized access pattern considers the worst case
scenario, summation (SUM) of all the socket overhead, and on the other hand, the best case
scenario is presented by the fully parallel memory access between sockets (MAX), using the
maximum value overhead estimated on all sockets.

TOvhd(AFF) =

⎧⎪⎨
⎪⎩

∑NS
s=1 TOvhd(AFF, affs), Serialized Mem. Access.

max TOvhd(AFF, affs), Parallel Mem. Access

(8)

Therefore, in order to describe the overhead time per socket we define TOvhd(AFF, s)
expression 9 that represents the overhead generated by TCM in a socket minus idealTCMaffs ,
which is corrected with the β value, that corresponds to its concurrency degree (affs) measured
in a single socket. The idealTCMaffs is obtained from TCM1

NT (AFF) ∗ affs

TOvhd(AFF, affs) = (estTCM(AFF, affs)− idealTCMaffs) ∗ βaffs (9)

Perf. Model OpenMP Mem. Bound Apps. in Multisocket Sys. Allande, Jorba, Sikora and César

2212

Table 2: System hardware characteristics at node level.

T7500 SuperMIG

Processor Westmere-EP Intel Westmere-EX Intel
Xeon E5645 (2,4GHz) Xeon E7-4870 10C (2,4GHz)

of Sockets 2 sockets 4 sockets
#cores per socket 6 cores 10 cores
L1 cache size 32 KB (I and D) 32 KB (I and D)
L2 cache size 256 KB 256 KB
L3 cache size 12 MB unified 30 MB unified
Main Memory 96 GB 256 GB
Local Main Mem. lat. 77 ns 116.254 ns

This model provides the execution time estimation for the AFF vector configuration, just
by considering the values of a single socket execution, and can be applied for all the affinity
configurations present in the system. Selecting the optimal configuration is not always trivial,
but, applying the model, it is possible to provide an estimation for each configuration an select
the one with minimum execution time.

4 Experimental validation

In this section we present the experimental validation of the proposed performance model.
We have used two different architectures (Table 2), T7500 and SuperMIG, and representative
regions of interest for the memory bound applications SP (scalar pentadiagonal solver), and
the MG (Multi-Grid) benchmarks from the NAS Parallel Benchmarks [1] NPB3.3.1-OMP, using
different workloads.

Firstly, we introduce application and system characterization. Next we present the valida-
tion of the model on the T7500 system with two sockets per node and 6 cores in a socket, and
the validation of the model on the SuperMIG system with 4 sockets and 10 cores per socket,
allowing us to evaluate the model for a greater number of configurations.

By using the definition of AFF provided in the previous section, the total number of possible
configurations (numConf) for the T7500 system is 27, and for the SuperMIG system is 1000.

The SP application has 4 principal parallel regions, where 3 parallel loops (at x solve,
y solve, and z solve functions) represent each one about 15% of the total execution time, and
one parallel region (at the rhs function) with inner loops representing between 20% and 40% of
the execution depending on the degree of parallelism. The MG application presents 2 parallel
loop regions of interest, Reg 011 (mg.f 614-637) and Reg 013 (mg.f 543-566), representing from
28% , and 16% respectively of total execution time.

To compare the measurements and the estimations, we have executed them for different
number of threads and representative affinities. We have used the ompP [4] profiler to obtain
performance information at application and at parallel region level. Also, ompP is integrated
with PAPI [5] to obtain hardware counters information. We considered the full profiling in-
formation for the MG benchmark, and a reduced number of iterations for the SP benchmark,
being 100 iterations for class C, and 10 iterations for class D.

Information given by PAPI is based on preset counters. We observe that the load (LD INS),
store (SR INS), total (TOT INS), and floating point (FP INS) instructions are distributed
evenly between threads. TCM for cache levels 1, 2 and 3 (L1 TCM, L2 TCM, and L3 TCM)
have been evaluated to characterize the memory contention problem of the applications.

Perf. Model OpenMP Mem. Bound Apps. in Multisocket Sys. Allande, Jorba, Sikora and César

2213

Table 3: T7500 system. Input data for x solve parallel region from SP benchmark class C.

NT (s1, s2) Measured Time (s) Measured TCM cfi βi

1(1,0) 123 1.19×108 1.00 0.0
2(2,0) 63 1.46×108 1.23 1.65×10−10

3(3,0) 57 7.89×108 6.61 2.58×10−10

4(4,0) 70 34.4×108 28.84 1.47×10−10

5(5,0) 74 59.3×108 49.69 1.09×10−10

6(6,0) 78 78.9×108 66.10 0.94×10−10

Table 4: T7500 system. SP class C with affinity AFF1. Estimation and evaluation of TCM for
parallel region x solve. Where estTCM(AFF) is ECTCM, and %RE is the average relative error.

NT (s1, s2) Cum.TCM ECTCM %RE NT (s1, s2) Cum.TCM ECTCM %RE
1 (1,0) 1.19 ×108 1.19 ×108 0 7 (4,3) 2.50 ×109 2.31 ×109 7.87
2 (1,1) 1.16 ×108 1.19 ×108 2.57 8 (4,4) 3.82 ×109 3.44 ×109 9.91
3 (2,1) 1.63 ×108 1.37 ×108 15.73 9 (5,4) 5.01 ×109 4.83 ×109 3.54
4 (2,2) 1.81 ×108 1.73 ×108 18.87 10 (5,5) 6.14 ×109 5.94 ×109 3.34
5 (3,2) 6.28 ×108 5.63 ×108 15.24 11 (6,5) 6.94 ×109 7.00 ×109 0.90
6 (3,3) 9.05 ×108 7.90 ×108 12.67 12 (6,6) 7.45 ×109 7.90 ×109 5.96

The execution with likwid-pin tool [6] allows to pin threads to cores in order to evaluate the
affinity. The affinity labeled as AFF0 assigns threads to cores at the same processor, until it is
full. Affinities AFFi define a Round-Robin distribution between sockets from a list of current
threads to be executed, where i represents the chunk size of threads from the list to assign to
each socket, and until the socket is filled. For example, in a two socket system with 6 cores
per processor, execution of 9 threads with AFF3 assigns the first 3 threads to socket 1, next 3
threads to socket 2, and the last 3 threads to socket 1.

The numatcl utility has been used to evaluate the behavior for different memory mappings,
by using two configurations, localalloc to force allocation closer the the master thread, and
interleave=all, where memory is allocated evenly between all set of NUMA nodes.

4.1 Applying the model for the SP application on the T7500 system.

In this section, we apply the model to a parallel region of interest to evaluate the NAS SP class
C on T7500 system, in order to compare the model estimation against the execution times for
two different affinity distributions.

The information from the profiled execution on a single socket is used, considering the values
from 1 thread to total number cores per socket (# cores per socket. in Table 2).

First step is to compute the CF vector and BF vector using TCM and times per parallel
region. Input data is shown on Table 3.

Following this, the CF is used to estimate the TCM for a specific AFF configuration. In this
example, if we consider AFF1, distributing threads from 1 to total number of cores in the T7500
system, in a Round Robin distribution, we obtain the different configurations expressed in Table
4, shown in column (NT (s1, s2)). Applying expression 6 for each combination of number of
threads in the sockets we obtain the estTCM(AFF, i) per socket and the cumulative estimation
Cum.TCM , which is presented in column ECTCM . For this configuration, the relative error
of the estimated TCM and measured TCM is presented in column %RE.

Relative error is less than 20%, and we can observe that our estimation represents the

Perf. Model OpenMP Mem. Bound Apps. in Multisocket Sys. Allande, Jorba, Sikora and César

2214

(a) Evaluation for AFF0 (b) Evaluation for AFF1

Figure 2: Evaluation of execution time between estimated boundaries.

behavior of the measured values.
Using the estimated TCM, we apply expression 7 in order to obtain the final estimation

time (estT ime(AFF1)) for the affinity 1. For this case, we evaluate two different estimations,
one by considering a serialized memory access and a second one that assumes an ideal parallel
memory access. Therefore, the first case considers the overhead as the summation of overhead
times per socket, and the second assumes full parallelism on memory accesses, implying that the
overhead time is generated by the slowest socket, therefore by the maximum time estimation
of sockets.

Both estimations are shown for the two affinity distributions (0 and 1) presented in Figure2.
Figure 2 shows that the measured time is in between the two estimated boundaries, and

in this case is similar to EstimationMax., meaning that the memory accesses are parallelized
between the sockets. Furthermore, the EstimationMax. presents the same behavior and lead
us to identify the best configuration, which in this case is the AFF1 using 6 threads (equivalent
to socket configuration {3,3}), and median error for the best estimation is 5%, and the average
error is less than 8%.

4.2 Selecting a configuration for SP and MG benchmarks on Super-
MIG

We present the application of the model for SP and MG, with different workloads, on the
SuperMIG system.

The experiments are configured to evaluate the two boundaries at memory level. We use
the numactl tool to allocate memory near to master thread (localalloc), to achieve a serial-
ized memory access at socket level, and interleaved allocation (interleave=all) to force data
distribution between sockets and parallel memory accesses.

The model is applied considering the single socket measurements and the results are shown
in Table 5.

We can observe on Table 5 for SP benchmark that local allocation provides a serialized
memory access. This is because data needs to be accessed through the same socket, and this
contention provides a serialized behavior. For the distributed allocation, the memory access
pattern allows more parallelism, improving performance and minimizing the memory bottleneck.

Perf. Model OpenMP Mem. Bound Apps. in Multisocket Sys. Allande, Jorba, Sikora and César

2215

Table 5: Selection of configuration for SP and MG benchmarks

System Bench. Par.Reg. Best Conf. Best Conf. %Avg Mem.Model
Measured Modeled Error

SP.C distr. x solve AFF1(24) = AFF1(32) = 4.64 MAX
{6,6,6,6} {8,8,8,8}

SP.C loc. x solve AFF1(20) = AFF1(20) = 8.55 SUM
{5,5,5,5} {5,5,5,5}

SuperMIG SP.D loc. x solve AFF1(9) = AFF1(4) = 11.40 SUM
{3,2,2,2} {1,1,1,1}

MG.C loc. R0011 AFF1(32) = AFF1(40) = 13.18 MAX
{8,8,8,8} {10,10,10,10}

(a) SP C xsolve local allocation (b) MG C R0011 local allocation

Figure 3: Comparison of measured time and estimation time for a subset of affinities using distribu-
tions from 1 to 10 on SuperMIG system

The model has provided a configuration with minimum execution time and an average error of
less than 14%.

MG has been forced with local allocation, however, it uses a different data access pattern
and higher workload. We have observed that memory access is not fully parallelized neither
serialized, therefore we used the closer boundaryMax.Estimation, which not represents exactly
the data access pattern increasing the error.

4.3 Exploration of the affinity configurations.

In this section we discuss the benefits of applying the model in a system with multiple sockets,
and the speedup achieved by allowing the selection of a configuration with the model compared
to the execution with all threads.

The main point is to rapidly detect memory bottlenecks in parallel regions, and select a
configuration that minimizes the contention overhead. Also, to provide an estimation approach
for all the configuration ranges without a full execution.

We present a model that provides an estimation for all the configuration ranges, which can
be applied with a minimum characterization on a single socket. Figure 3 shows a subset of 10
configuration affinities (considering the definition in 5) for the SuperMIG system.

Perf. Model OpenMP Mem. Bound Apps. in Multisocket Sys. Allande, Jorba, Sikora and César

2216

Table 6: Execution time for selected configuration and speedups.

Bench. Max threads Conf. Selected Conf. Speedup

Threads Measured Threads Measured
per socket Time (s) per socket Time (s)

SP.C.xsolve distr. {10,10,10,10} 3.65 AFF1(20) = {5,5,5,5} 2.57 1.42
SP.C.xsolve.loc. {10,10,10,10} 6.81 AFF1(20) = {5,5,5,5} 2.49 2.74
SP.D.xsolve loc. {10,10,10,10} 23.58 AFF1(4) = {1,1,1,1} 20.27 1.16
MG.C.R0011 loc. {10,10,10,10} 4.09 AFF1(40) = {10,10,10,10} 4.09 1.00
MG.C.R0013 loc. {10,10,10,10} 2.26 AFF1(40) = {10,10,10,10} 2.26 1.00

Figure 3 shows the measured times and the estimated execution times. We can observe that
3(a) present a memory contention problem when using a full thread execution. The minimum
for measured and estimated execution times is shown on a contour surface. The minimum
execution time is achieved by using about 20 threads on the configuration that provides less
concurrency per socket (e.g. AFF1(20)= {5,5,5,5}, that is, using half threads per socket).

Figure 3(b) shows that MG does not present significant variation between affinities, and
time is reduced using more threads.

Finally, we present in Table 6 the comparison between an unguided execution using all
threads, and the configuration provided by the model. The speedup is calculated using the
measured time for full execution and measured time for the selected configuration.

Even though the ideal configuration is not detected for all cases, the selection has provided
a configuration with a maximum speedup of 2.74, for the SP class C, with an affinity 1 with 20
threads. Also, the minimum speedup is 1, meaning that the application does not shows memory
contention, neither benefit from reducing the number of threads or modifying the affinity.

5 Conclusions

We have presented a performance model to estimate the LLC misses and to estimate the
execution time based on an execution of a small set of configurations. This model allows to
estimate any possible configuration of affinity and number of threads for the system. The
performance model has been applied for the NAS SP and MG applications for classes C and
D in two different architectures. The results show an average time error of less than 14%.
Despite the error, the time estimation preserves the measured behavior that lead us to select
automatically a configuration, and the possibility to improve performance compared with the
default configuration.

Our model can rapidly detect memory bottlenecks on each parallel region in an application,
and it is possible to identify a configuration that minimizes the contention overhead.

We are analyzing the results in order to improve the estimation between boundaries (Max
and Sum) when the memory access pattern of an application is not completely serialized or
parallel. Furthermore, when the boundaries are widely separated, and the measured time is in
between, the error increases. In order to estimate with more accuracy, it is needed to consider
the overhead on accessing data between different sockets which some native hardware counters
can provide.

Finally, we are currently evaluating real applications on different architectures in order to
extend the validation of the model.

Perf. Model OpenMP Mem. Bound Apps. in Multisocket Sys. Allande, Jorba, Sikora and César

2217

5.1 Acknowledgment

This research has been supported by the MICINN-Spain under contract TIN2011-28689. The
authors thankfully acknowledge the resources and technical assistance provided by Munich
Network Management Team (MNM-Team) and the Leibniz Supercomputing Centre.

References

[1] D. H. Bailey, E. Barszcz, and et al. The nas parallel benchmarks-summary and preliminary results.
In Proceedings of the 1991 ACM/IEEE conference on Supercomputing, Supercomputing ’91, pages
158–165, New York, NY, USA, 1991. ACM.

[2] Dhruba Chandra, Fei Guo, Seongbeom Kim, and Yan Solihin. Predicting inter-thread cache con-
tention on a chip multi-processor architecture. In Proceedings of the 11th Int. Symp. on HPCA,
HPCA ’05, pages 340–351, Washington, DC, USA, 2005. IEEE Computer Society.

[3] Tyler Dwyer, Alexandra Fedorova, Sergey Blagodurov, Mark Roth, Fabien Gaud, and Jian Pei. A
practical method for estimating performance degradation on multicore processors, and its applica-
tion to hpc workloads. In Proceedings of the ICHPC, Networking, Storage and Analysis, SC ’12,
pages 83:1–83:11, Los Alamitos, CA, USA, 2012. IEEE Computer Society Press.

[4] Karl Fürlinger and Michael Gerndt. ompp: A profiling tool for openmp. In MatthiasS. Mueller,
BarbaraM. Chapman, BronisR. Supinski, AllenD. Malony, and Michael Voss, editors, OpenMP
Shared Memory Parallel Programming, volume 4315 of Lecture Notes in Computer Science, pages
15–23. Springer Berlin Heidelberg, 2008.

[5] Philip J. Mucci, Shirley Browne, Christine Deane, and George Ho. Papi: A portable interface to
hardware performance counters. In In Proceedings of the Department of Defense HPCMP Users
Group Conference, pages 7–10, 1999.

[6] Jan Treibig, Georg Hager, and Gerhard Wellein. Likwid: A lightweight performance-oriented tool
suite for x86 multicore environments. CoRR, abs/1004.4431, 2010.

[7] B.M. Tudor and Yong-Meng Teo. A practical approach for performance analysis of shared-memory
programs. In Parallel Distributed Processing Symposium (IPDPS), 2011 IEEE International, pages
652–663, 2011.

[8] Samuel Williams, Andrew Waterman, and David Patterson. Roofline: an insightful visual perfor-
mance model for multicore architectures. Commun. ACM, 52(4):65–76, 2009.

[9] Sergey Zhuravlev, Sergey Blagodurov, and Alexandra Fedorova. Addressing shared resource con-
tention in multicore processors via scheduling. In Proceedings of the fifteenth edition of ASPLOS
on Architectural support for programming languages and operating systems, ASPLOS XV, pages
129–142, New York, NY, USA, 2010. ACM.

Perf. Model OpenMP Mem. Bound Apps. in Multisocket Sys. Allande, Jorba, Sikora and César

2218

