U Universitat Oberta uoc.edu
c de Catalunya

DraconicGB:
Creating a Game Boy Emulator

David Soler Bartomeu
Grau d'Enginyeria Informatica
Area de Videojocs

Gisela Vaquero Juanola
Joan Arnedo Moreno

06/06/2020

U Universitat Oberta uoc.edu
c de Catalunya

@O0

EW MG RO
Aquesta obra esta subjecta a una llicencia de
Reconeixement-NoComercial-SenseObraDerivada
3.0 Espanya de Creative Commons

TFG - Gameboy Emulator Development 06/06/2020 Page 3

http://creativecommons.org/licenses/by-nc-nd/3.0/es/
http://creativecommons.org/licenses/by-nc-nd/3.0/es/
http://creativecommons.org/licenses/by-nc-nd/3.0/es/

U Universitat Oberta uoc.edu
c de Catalunya

FITXA DEL TREBALL FINAL

Titol del treball: | DraconicGB: Creating a Game Boy emulator

Nom de Pautor: | David Soler Bartomeu

Nom del consultor/a: | Gisela Vaquero Juanola

Nom del PRA: | Joan Arnedo Moreno

Data de lliurament

(mm/aaaa): UL

Titulacid o programa: | Grau d'Enginyeria Informatica

Area del Treball Final: | Area de Videojocs

Idioma del treball: | Anglés

Paraules clau | Videojocs, Emulador, C++

Resum del Treball (maxim 250 paraules): Amb la finalitat, context
d’aplicacié, metodologia, resultats i conclusions del treball

En aquest treball s'explica el desenvolupament d'un emulador de la
consola Game Boy de Nintendo. Primer de tot es repassa la historia de
la consola i dels emuladors existents i després s'explica la
metodologia emprada, que consisteix en la realitzacié d'una amplia
recerca per a informar-se de l'estat de l'art actual aixi com de
l'arquitectura de la consola i emuladors existents tot seguit de la
definicié de l'abast del projecte: La creacio d'un emulador funcional de
Gameboy sense so ni guardat d'estats.

El resultat final ha estat satisfactori i s'ha pogut crear un emulador
que pot carregar ROMs, permet veure per pantalla el resultat a l'usuari
i agquest pot jugar als jocs. De la mateixa manera, l'emulador ofereix
capacitats de debugging basiques i una caracteristica addicional de
seleccio de paletes de color.

Com a conclusié s'ha vist que la realitzacido d'un projecte d'aquest
tipus es tracta d'una tasca dificil i que requereix molta recerca, pero
donat un abast realista es tracta d'un gran projecte d'aprenentatge en
el funcionament de hardware més antic, i enriquidor a ['hora
d'entendre una mica més com funcionen els emuladors. Es plantegen
millores de futur com afegir la possibilitat de guardar l'estat de
'emulador, portar l'emulador a altres plataformes o afegir
funcionalitat d'audio.

TFG - Gameboy Emulator Development 06/06/2020 Page 4

U Universitat Oberta uoc.edu
c de Catalunya

Abstract (in English, 250 words or less):

This work explains the development of an emulator of Nintendo's
Game Boy console. First of all, the history of the console and the
existing emulators is reviewed and then the methodology used is
explained, which consists of carrying out extensive research to find
out the current state of the art as well as the architecture of the
console and existing emulators followed by the definition of the scope
of the project: The creation of a functional Gameboy emulator without
sound or state save.

The end result has been satisfactory and it has been possible to
create an emulator that can load ROMs, allows the user to see the
result on the screen and the user can play the games. Similarly, the
emulator offers basic debugging capabilities and an additional color
palette selection feature.

In conclusion, carrying out such a project is a difficult task and
requires a lot of research, but given a realistic scope it is a great
learning project and it allows us to understand a little bit more how
emulators work. Future improvements are proposed such as adding
the ability to save the status of the emulator, bringing the emulator to
other platforms, or adding audio functionality.

TFG - Gameboy Emulator Development 06/06/2020 Page 5

U Universitat Oberta
c de Catalunya

Contents

uoc.edu

1. Introduction

1.1. Context and justification of the Work
1.2. Goals of the Work
1.3. Approach and method followed
1.4. Work Plan
1.4.1. PAC1 - Disseny del videojoc

1.4.2.
1.4.3.
1.4.4.
1.4.5.

PAC2 - Versid Parcial
PAC3 - Versid Jugable
PAC4 - Versio Final
PACS5 - Defensa

1.5. Brief summary of products obtained
1.6. Brief description of the other chapters of the report

2. History of Emulation

2.1. History of the gameboy console
2.1.1. The First Gameboy

2.1.2.
2.1.3.
2.1.4.
2.1.5.
2.1.6.
2.1.7.
2.1.8.
2.1.9.

The Link Cable

Kirby

The Super Gameboy
The Virtual Boy
Pokémon

The Gameboy Pocket
The Gameboy Light
The Gameboy Color

2.2. History of Gameboy Emulators

2.2.1.
2.2.2.
2.2.3.
2.2.4.
2.2.5.
2.2.6.
2.2.7.
2.2.8.

TFG - Gameboy Emulator Development

Introduction

GB SIM

Virtual Gameboy
GB 97
Wzonkalad
AmiGameboy
GodBoy
No$GMB

06/06/2020

Page 6

10
10
10

11
1

11
12
12
13
13
13
14

15
15
15
16
16
16
16
17
17
17
18
19
19
19
19
20
20
20
20
21

UOC

Universitat Oberta
de Catalunya

2.2.9. Current History

3. Emulator project

3.1. Emulator project description

3.2. State of the art

3.2.1. Visual Boy Advance

3.2.2. BizHawk
3.2.3. RetroArch
3.2.4. gbemu
3.2.5. Gearboy

3.2.6. Gameboy Emulator

3.2.7. Coffee GB
3.2.8. PyBoy
3.2.9. Cinoop
3.2.10. BGB

4. Technical Design

4.1. Game Boy Architecture

4.1.1. Processor
4.1.2. PPU

4.1.3. Background Layer

4.1.4. Window Layer
4.1.5. Sprite Layer
4.1.6. Interrupts
4.1.7. Audio

4.1.8. Cartridge
4.1.9. Memory

4.2. Programming Language

4.3. Tools

4.3.1. Microsoft Visual Studio

4.3.2. Sublime Text 3
4.4. Libraries

4.41. OpenGL

4.4.2. SDL

4.4.3. Dear ImGui

4. 5. Emulator Architecture

TFG - Gameboy Emulator Development

uoc.edu

06/06/2020

Page 7

21

22
22
23
23
23
23
23
23
24
24
24
24
24

25
25
25
26
26
26
27
27
27
28
28
29
29
29
29
30
30
30
30

31

U Universitat Oberta uoc.edu
c de Catalunya

4.5.1. Draconic Emulator
4.5.2. Base Hardware
4.5.3. Draconic CPU
4.5.4. Registers

4.5.5. Draconic Memory
4.5.6. Draconic Cartridge
4.5.7. Draconic State
4.5.8. Draconic GPU
4.5.9. Input Manager
4.5.10. Timer Manager
4.511. Interrupt Manager

5. User Manual

5.1. Launching the emulator

5.2. User interface
5.2.1. Global Layout
5.2.2. Main Screen
5.2.3. Registers Panel
5.2.4. GPU Debugger
5.2.5. Memory Viewer

5.3. Controls

5.4. ROM loading

5.5. Additional Features

5.6. Requirements

6. Conclusions
6.1. Development Process
6.2. Missing Features
6.3. Goals
6.4. Planning and Methodology
6.5. Future Work
6.6. Final Thoughts

7. Glossary
8. Bibliography

TFG - Gameboy Emulator Development 06/06/2020

Page 8

32
32
32
32
32
32
33
33
33
33
33

34
34
34
34
35
35
36
36
37
37
37
38

39
39
39
40
40
40
41

42

43

U Universitat Oberta uoc.edu
c de Catalunya

1. Introduction

1.1. Context and justification of the Work

Emulators are an interesting topic, they allow users to simulate a piece of
hardware without the need to have it themselves even if it is no longer
available. At the same time emulators allow developers to better
understand software created using said hardware in order to see how
such software works or even to modify it and upgrade it.

The Gameboy is one of the most well known consoles and at the same
time it is simple enough for a work like this to be able to happen.

There is not a lot of information regarding the topic of emulator
development readability available to the public and creating a console
emulator from scratch is a really good learning experience for a game
developer in order to understand how consoles work.

In this case, choosing the Gameboy has been a combination of it being
one of the most influential consoles of all time and at the same time its
hardware being simple enough for a single person to be able to develop
an emulator for it. is a really good learning experience for a software
developer.

1.2. Goals of the Work

This work has two main goals. First, the creation of an emulator of the
Nintendo Gameboy which can load game ROMs and play them. Second, to
be a learning experience and allow the author as well as other people
who read this work to learn more about emulator development.

TFG - Gameboy Emulator Development 06/06/2020 Page 9

U Universitat Oberta uoc.edu
c de Catalunya

1.3. Approach and method followed

The main method to develop this work has been that of first gathering the
necessary information doing research, then planning how the emulator
will be developed and finally acting upon this plan. During the course of
the development the whole plan has not been able to be followed exactly
but more research has been conducted as the development has
progressed and problems have arisen.

Developing a game product can have a more concise plan such as first
creating a game design document, then implementing game mechanics,
level design and finally the game systems such as Al, pathfinding, 3D
rendering etc. However, emulator development is still a very unknown
field, so fixing a robust plan has not been possible and instead a more
flexible approach has been deemed better for this task.

1.4. Work Plan

The plan designed to accomplish this task is the following (titles have
been maintained in original language as this was the name of those
deliverables in the subject).

1.4.1. PAC1 - Disseny del videojoc

PACT - 01/03/2020 . L
The first PAC has been centered around finding
Disseny del videojoc . . . e .
information about existing emulators and planning
Cerca dinformacia sobre emuladors the following tasks. The development tools have
existents
also been chosen and more research has been
Conceptualitzacio de I'emulador conducted. This fist stage is a planning stage.
Planificacio de les tascas
Eleccio de les eines de
desenvolupament
Escriptura del document de disseny de
software
+ Afiada otra tarjeta =}

TFG - Gameboy Emulator Development 06/06/2020 Page 10

U Universitat Oberta uoc.edu
c de Catalunya

1.4.2. PAC2 - Versio Parcial

PARR - (R AR020 “ 1 The work on the second part has been to
Versio Parcial research how the hardware of the game boy
N functions as well as its technical specifications.
usat per la Gameboy In a practical level in this PAC a program that

opens a window with basic GUI should be

Cerca d'informacio del funcionament

d'una CPU de Gameboy implemented and in a basic level Memory, CPU
and registers should also be implemented.

Implementacio d'una executable que
mostra una finestra

Implementacio de primera GUI
Implementacio de Memoria
Implementacio de CPU

Implementacio de Registres

| o tarjeta =]

b3 gf et an e R i P e e A s o s

1.4.3. PAC3 - Versi6 Jugable

PAC3 - 24/05/2020 1 In this deliverable ROMs should be able to be
Versio Jugable loaded into the emulator and graphics, such as
sprites and tiles also implemented. A timer
system should be implemented as well as the

Implementacio de carrega de ROMs

Implementacio de Grafics, Tiles i GPU Component designed to draw everything on

S the screen. This deliverable should then also

Implementacio de Timers contain research regarding the above mentioned
topics.

Implementacio de GPU

Cerca d'informacio sobre carrega del
format de fitxers de ROMs

Cerca d'informacio sobre sprites i
grafics

+ Afiada otra tarjeta Q

TFG - Gameboy Emulator Development 06/06/2020 Page 11

U Universitat Oberta uoc.edu
c de Catalunya

1.4.4. PAC4 - Versio Final

PAC4 - 07/06/2020

Versio Final Here ROMs should finally be able to be selected
T by the user and the GUI should be final as well.
ROMS Finally an analysis of the goals should be

performed to see if they have been achieved.
Millora de la GUI de I'emulador

Analisis dels objectius asolits

I + Afiada otra tarjeta =}

reaswraae - TR e < 4

1.4.5. PAC5 - Defensa

PALS < SuDGF0aD 1 This deliverable relates to the presentation and
Defensa 2| defense of the work. As such a powerpoint
presentation should be created and a video of

Perparacio d'un Power Point per a

presentar el trebal presenting the work done should also be created.

Preparacio de la presentacio a
defensar

+ Afiada otra tarjeta =]

1.5. Brief summary of products obtained
The final product has been a Gameboy emulator running on Windows that
is able to run ROM files. The emulator supports graphics as well as video

output but lacks audio and save/load state functionality.

With the emulator one can play commercial games given that a dump of
them is performed as well as homebrew ROMs created by other users.

TFG - Gameboy Emulator Development 06/06/2020 Page 12

U Universitat Oberta uoc.edu
c de Catalunya

1.6. Brief description of the other chapters of the
report

Chapter 2 will talk about the history of the Nintendo Gameboy console as
well as a little bit of the history of Nintendo Gameboy emulators.

Chapter 3 will describe in more detail the scope of the emulator project
and show some of the emulators that have been used as reference.
Chapter 4 will go over the technical design of the emulator as well as the
tools and libraries used to create it.

Chapter 5 will be the user manual. In this chapter the emulator
functionality will be described as well as additional features added to it
and how to run it.

Chapter 6 will show the conclusion of this report as well as possible
future work.

Chapter 7 will be a glossary of terms used during this work.

Chapter 8 will contain the bibliography of sources consulates during the
development of the project as well as during the writing of this report.

TFG - Gameboy Emulator Development 06/06/2020 Page 13

U Universitat Oberta uoc.edu
c de Catalunya

2. History of Emulation
2.1. History of the gameboy console

2.1.1. The First Gameboy

The gameboy was the first portable console developed by Nintendo. It
was first released in Japan on April 21 of the year 1989 and steadily
became one of the most popular games consoles of all time.

We can say that Gunpei Yokoi could be considered the father of the
gameboy as he was one of the most innovatives employees at Nintendo.
The creation of inventions such as the Ultra Hand or the Game & Watch
impressed Nintendo’s president at that time so he was allowed to
continue inventing new products. One of such inventions is the D-pad on
the Gameboy which would later become a trademark on all game
controllers.

One of the requirements for the Gameboy was that it needed to be
designed to look like a toy but feel like a computer. This was the core
premise. In order to fulfil such goal the development team took
inspiration on certain aspects of the NES (Nintendo Entertainment
System) and the Game & Watch and combined it with a robust build in
order for it to be able to sustain a lot of damage. One final aspect to be
considered is that the team wanted the battery to last long so that
increased the build size.

The final specs of the Gameboy resulted in a device that was a 8-bit
portable console that could display 4 shades of green on a 160x144 pixel
display. It was powered by 4 AA batteries (less than their competitors)
and its retail price was also lower than the competition.

It was released in North America the 14th of June of 1989 with launch

titles such as Tetris (which came with the console) and Super Mario
Land, resulting in an astounding success.

TFG - Gameboy Emulator Development 06/06/2020 Page 14

U Universitat Oberta uoc.edu
c de Catalunya

2.1.2. The Link Cable

In 1991 the Link Cable was introduced to the market which allowed users
to connect two Gameboy systems in order to play together, this would
allow games like Tetris to be played in multiplayer, but the relevance of
the Link Cable would come later with the launch of the Pokémon games.

2.1.3. Kirby

In 1992 Kirby debuted on the Gameboy, this was interesting because other
IPs (Intellectual Properties) like Mario and Zelda were established on
Nintendo home consoles. But the Kirby series started on the Gameboy
and became a long-live IP for nintendo.

2.1.4. The Super Gameboy

Another accessory related to the Gameboy launched in 1994 and it was
the Nintendo Super Game Boy, a cartridge adapter which allowed
Gameboy games to be played on the SNES (Super Nintendo
Entertainment System).

2.1.5. The Virtual Boy

On August 14th of 1995 a revolutionary device that would go down in
history as one of Nintendo’s greatest failures was released. This was the
Virtual Boy, a handheld system that simulated a 3D view of the games
such as being in virtual reality. Although today virtual reality has been a
massive success those ideas were too much ahead of its time and the
technology for a pleasant 3D viewing experience was still not there and
thus resulted in the commercial failure of the Virtual Boy.

TFG - Gameboy Emulator Development 06/06/2020 Page 15

U Universitat Oberta uoc.edu
c de Catalunya

2.1.6. Pokémon

If one year has to be remembered that is 1996. On the 27th of February of
1996 Pokémon was released for the first time in Japan. It would still take
2 years until 1998 for the game to release in North America. But this game
became one of the best-selling games on the Nintendo Game Boy and
introduced a lot of people to the world of videogames to the point that
today almost everyone has heard the name Pikachu, the mascot of the
Pokémon games. With the release of Pokémon the sales of the Link cable
also soared, as it allowed players to trade Pokémons with one another
and take part in multiplayer battles.

2.1.7. The Gameboy Pocket

Nintendo had a great success with the Gameboy, it had changed the
industry forever so they wanted to cash in the opportunity as much as
they could so on July 21st of 1996 a new Gameboy version was revealed:
the Gameboy Pocket. It was a much smaller and lighter device that could
do the same things as the original but better. The display this time was a
black and white display which allowed for more contrast and more
distinguishable animation and also reduced the blur that happened on the
original gameboy on fast paced games. At the same time, instead of 4 AA
batteries it was powered by 3 AAA batteries while keeping the 10 hour
gameplay battery life. This allowed the gameboy pocket to be much
thinner.

2.1.8. The Gameboy Light

In 1998 another revision of the Gameboy Pocket was released this time
called Gameboy Light. The main selling point of the device was that the
screen was retro illuminated allowing users to play the console on dark
spaces. They also changed the batteries to 2 AA batteries which increased
the total playtime to 20 hours if the backlight was not being used. Finally
they recovered the battery life indicator which was removed on the
Gameboy Pocket and many users complained that caused them to lose
progress as they did not know when the console was going to turn off due
to lack of power.

TFG - Gameboy Emulator Development 06/06/2020 Page 16

U Universitat Oberta uoc.edu
c de Catalunya

2.1.9. The Gameboy Color

After 6 month of the release of the Gameboy Light in 1998 Nintendo
announced the new Gameboy Color. The main feature of the console is
that it was capable of displaying 56 colors simultaneously from a palette
of a total of 32768 colors. It was also backwards compatible with all the
older Gameboy games so only at launch it had an incredible library of
games. With this new console new titles were announced such as
Pokemon Gold/Silver, The Legend of Zelda: Link’s Awakening and Super
Mario Bros Deluxe.

This new iteration also had better specs with 4 times the amount of RAM
and 2 times the amount of video RAM and the CPU could run at double
the clock of the original Gameboy.

This new iteration of the Gameboy was also a total success, selling an
incredible amount of copies.

TFG - Gameboy Emulator Development 06/06/2020 Page 17

U Universitat Oberta uoc.edu
c de Catalunya
2.2. History of Gameboy Emulators

2.2.1. Introduction

Not much is known about Gameboy emulation before 1995. One of the
first known Gamboy emulators was Toyboy, an emulator developed
in-house by Argonaut Software, a developer for Nintendo, that was stolen
from their servers. They used this emulator as a learning tool to be able
to learn development for the Gameboy before the hardware was even
released. The emulator itself does not run any games as it is intended for
development purposes. The platform it ran on was the Commodore
Amiga.

2.2.2. GB SIM

Developed by Jens Remstemeier was a DOS emulator that originally only
played the game Tetris. It was programmed in TurboPascal and Assembly
language and later was updated with a debugger. Although it was quite
advanced at the time, it was abandoned due to the ease of use of other
emulators such as Virtual Gameboy. Although it’s powerful debugger was
ported to C code and later integrated into Virtual Gameboy itself. The
development of this emulator allowed Jens Remstemeier to later get a
job at Rare to work on porting Donkey Kong Country to the Gameboy
Color.

2.2.3. Virtual Gameboy

VirtualGameboy is one of the oldest Gameboy emulators and was first
released in 1995 for an unknown platform and was ported to PC in 1996. It
was developed by Marat Fayzullin and it is still used and is extremely
accurate and versatile. It is considered by many to be the first usable
emulator that could support comercial games. The emulator was written
in the C language. It can be considered the standard at that time of
Gameboy emulation and having the debugger from GBSim this emulator
was one of the most powerful and flexible emulators around. One of it’s
caveats is that it was a paid emulator so later emulators that were free
pushed it into obscurity.

TFG - Gameboy Emulator Development 06/06/2020 Page 18

U Universitat Oberta uoc.edu
c de Catalunya

2.2.4. GB 97

An emulator developed by Paul Robson in Assembly Language and
released in 1997. For a short time this emulator competed with Virtual
Gameboy as an alternative as it was extremely fast and very efficient. It
was abandoned in 1998 but the source code was released which allowed
other people to learn from its code and expanded the emulation scene
even further. But after being abandoned and open sourced no one
continued the work on the emulator.

2.2.5. Wzonkalad

Wzonkalad was an emulator developed by Ville Helin in Assembly
Language for Amiga systems and released in 1997. It did not have sound
emulation for any games. Wzankalad was slightly slower than other
emulators on the Amiga but had better game compatibility and allowed
the user to change the game speed.

2.2.6. AmiGameboy

Was another gameboy emulator for the Amiga released in 1997. It was
written by Juan Anotnio Gomez and had similar compatibility support as
Wzonkalad but with sound support. It was originally a paid emulator but
was switched to freeware and later abandoned in 1999.

2.2.7. GodBoy

The GodBoy was an emulator for the Atari Falcon created by a group
called the Reservoir Gods. It was released in 1997 and had cheat trainers,
colored sprites and redone music. These emulators were packed directly
with the games which allowed for these recolors and music tweaks. It
was coded in Assembly and a total of 7 games were redone using this
emulator.

TFG - Gameboy Emulator Development 06/06/2020 Page 19

U Universitat Oberta uoc.edu
c de Catalunya

2.2.8. No$GMB

Released in 1997 and developed by Martin Korth No$GMB was a MS-DOS
and Windows emulator was really fast due to being written in Assembly
language and was really accurate.

It contained a really advanced debugger and it could emulate up to 4
Gameboys at the same time allowing you to hook up these virtual
Gameboys together like using a Link Cable in real life.

The emulator had 3 versions: A free version that limited the play time to 5
minus, a 20$ private version and a 750$ comercial version.

2.2.9. Current History

As of today many of the modern Gameboy Advance emulators can also
run Gameboy games. And these emulators are available on a lot of
devices including PCs, smartphones and even as homebrew for other
consoles. There are even Gameboy Emulators that run on browsers using
Javascript, showing how technology has advanced these days.

TFG - Gameboy Emulator Development 06/06/2020 Page 20

U Universitat Oberta uoc.edu
c de Catalunya

3. Emulator project

3.1. Emulator project description

An emulator is a software application that allows the user to replicate the
behavior of a piece of hardware in another one. Due to this specification
the creation of such a piece of software is a complex task that requires a
great deal of time and effort.

As stated in the introduction this academic work has been focused on the
creation of a function Gameboy Emulator. Due to the difficulty of the task
the goal of the project is not the creation of the emulator itself, as being
a difficult task the project may not be able to be finished or functional
but as a learning exercise in the necessary knowledge for the creation of
such an emulator.

That being said the main goal of the work has been the creation of an
emulator with the following features:

Memory emulation
Registers emulation
Flag emulation

CPU emulation

Timer emulation
Tilesets emulation
Sprites emulation

ROM loading capabilities

As an example, the following features are out of the scope of the work:

Saving and loading states
Audio emulation

Precise emulation
Integrated debugging
Gamepad support

With this definition it is assumed that the project will be able to be
completed in due time with the working emulator being finished at the
end of the project.

TFG - Gameboy Emulator Development 06/06/2020 Page 21

U Universitat Oberta uoc.edu
c de Catalunya

3.2. State of the art

The following emulators have been taken into account in order to develop
the emulator. Some pieces of code from the emulators that are open
source have been studied in order to know how to implement some
difficult aspects of the emulator.

3.2.1. Visual Boy Advance
http://www.emulator-zone.com/doc.php/gba/vboyadvance.html

Open source Gameboy Advance emulator that also supports Gameboy and
Gameboycolor games. It is regarded as one of the best Gameboy
Emulators

3.2.2. BizHawk
https://www.emulator-zone.com/misc/bizhawk

Emulator created in order to give support to TAS (Tool-Assisted
Speedruns). These types of speedruns are created using the help of an
emulator or other tools which the runner uses to optimize the route or
perform near impossible frame-perfect tricks.
https://en.wikipedia.org/wiki/Speedrun

3.2.3. RetroArch
https://www.emulator-zone.com/misc/retroarch

Multi system emulator that allows the emulation of a lot of different
platforms. It is really complex and highly customizable.

3.2.4. gbemu
https://github.com/jgilchrist/gbemu

gbemu is a Nintendo Gameboy emulator written in C++. It was written as an
exercise (and for fun!) so its goals are exploration of modern C++ and clean code
rather than total accuracy.

3.2.5. Gearboy

https://github.com/drhelius/Gearboy

Gearboy is a cross-platform Game Boy / GameBoy Color emulator written in C++
that runs on Windows, macQOS, Linux, iOS, Raspberry Pi and RetroArch.

TFG - Gameboy Emulator Development 06/06/2020 Page 22

http://www.emulator-zone.com/doc.php/gba/vboyadvance.html
https://www.emulator-zone.com/misc/bizhawk
https://en.wikipedia.org/wiki/Speedrun
https://www.emulator-zone.com/misc/retroarch
https://github.com/jgilchrist/gbemu
https://github.com/drhelius/Gearboy

U Universitat Oberta uoc.edu
c de Catalunya

3.2.6. Gameboy Emulator
https://qithub.com/mattbruv/Gameboy-Emulator

An emulator for the first version of the Nintendo Gameboy. Made for higher
learning purposes, written from scratch in C++ using the SFML library for
windowing & 10O.

3.2.7. Coffee GB
https://github.com/trekawek/coffee-gb

Coffee GB is a Gameboy Color emulator written in Java 8. It's meant to be a
development exercise.

3.2.8. PyBoy
https://qgithub.com/Baekalfen/PyBoy

Game Boy emulator written in Python

3.2.9. Cinoop
https://github.com/CTurt/Cinoop

A multiplatform Game Boy emulator written in C; currently available for: Windows,
OS X, Linux based OSes, Nintendo DS, Nintendo 3DS, Nintendo GameCube,
Sony PSP, and Sony PS4.

3.2.10. BGB
https://bgb.bircd.org/

BGB is a Gameboy emulator, a program that lets you play Gameboy and Gameboy
Color games on a pc. It does this with many features that give a good gameplay
experience, such as gamepad support, high quality sound and graphics, smooth
Vsync animation, and low latency. In addition, it contains a debugger that lets you
analyze/look into the emulation, create cheat codes, and assist in creating and
modifying roms.

TFG - Gameboy Emulator Development 06/06/2020 Page 23

https://github.com/mattbruv/Gameboy-Emulator
https://github.com/trekawek/coffee-gb
https://github.com/Baekalfen/PyBoy
https://github.com/CTurt/Cinoop
https://bgb.bircd.org/

U Universitat Oberta uoc.edu
c de Catalunya

4. Technical Design

4.1. Game Boy Architecture

https://www.copetti.org/images/consoles/gameboy/motherboard.1f907a9e44df7b7a800894eb3d137c719156bd26
4419e3767f040487f897664f.png

4.1.1. Processor

The processor of the Game Boy is a Sharp LR35902 which is a mix of the
z80 and the Intel 8080 processors and runs at 4.19 MHz.

The processor has eight registers of 8 bit each called A, B, C, D, E, F, H
and L and two 16 bit registers called SP and PC. The 8 bit registers are
all-purpose registers and the SP is the Stack Pointer registers and the PC
is the Program Counter register.

TFG - Gameboy Emulator Development 06/06/2020 Page 24

U Universitat Oberta uoc.edu
c de Catalunya

4.1.2. PPU

The graphic calculations are all done by the CPU and then the PPU (
Picture Processing Unit) renders them on the screen. The integrated LCD
has a resolution of 160x144 pixels and can display 4 shades of gray. The
PPU uses the information stored in the VRAM which the CPU has
previously setup and using that information renders the game in 3 layers
and finally onto the screen.

The PPU uses tiles as the basic building block to display sprites and
backgrounds. A gameboy tile is a 8x8 bitmap that is stored on the ROM of
the game but they have to be copied previously to the VRAM. In the VRAM
the tiles are organized in what's called a Pattern Table.

4.1.3. Background Layer

The background is a 256x256 map containing static tiles however as the
screen has a resolution of 160x144 pixels only a portion of the background
is displayed at a time. The viewable portion of the background can be
moved during gameplay in order to achieve camera panning or a scrolling
effect.

4.1.4. Window Layer

The window layer is a 160x144 layer that contains tiles that will be
displayed on top of the background and sprites. This layer does not scroll
and is usually used to display HUD (Heads Up Display) such as lives or
score.

TFG - Gameboy Emulator Development 06/06/2020 Page 25

U Universitat Oberta uoc.edu
c de Catalunya

4.1.5. Sprite Layer

The sprites are tiles that can move around the screen and overlap each
other and even appear behind background. This is decided using the
priority value of the sprite. Sprites have an extra color available which is
the Transparent color but due to this they can only display in 3 shades of
gray instead of 4. The OAM part of the memory allows us to specify which
tiles will be used as sprites as well as containing an index, a position and
multiple attributes of the sprite.

The PPU can only display up to 40 sprites per frame and overflowing this
will result in the sprites not being drawn.

4.1.6. Interrupts

In order to sync with the PPU the CPU uses a set of interrupts that let it
know that the PPU is idle so the corresponding RAM tables can be
modified. This is done using the Horizontal Blank interrupt and the
Vertical Blank interrupt.

4.1.7. Audio

The audio of the system is processed by the APU (Audio Processing Unit
), which is a PSG chip with four channels, each of one reserved to one
type of waveform.

Pulse waves are used for melody and sound effects and the APU reserves
two channels for two kinds of pulse waves. These channels use one of
four different tones. Due to the limited number of channels melody will
often be interrupted when playing sound effects during gameplay.

Another channel is allocated to a noise band, which is usually used for
percussion or ambient effects.

Finally, the APU allows the usage of 32 custom wave forms to be played
in the fourth channel. Each wave is composed of a 4-bit sample that will
be played repeatedly. This channel also allows to control its frequency,
which can be used to change the pitch of the notes, as well as the
volume.

TFG - Gameboy Emulator Development 06/06/2020 Page 26

U Universitat Oberta uoc.edu
c de Catalunya

4.1.8. Cartridge

The Game Boy cartridges have a maximum size of 32 KB so a lot has to be
done to make the games fit this size. However, some cartridges can use a
special Memory Bank Controller to reach bigger sizes such as 1MB. Such
cartridges can also include real time clocks and external batteries along
with an SRAM, which allows to keep save data.

4.1.9. Memory

The Game Boy RAM is divided into various regions and adds to a total of
32KB of RAM and 16KB of VRAM.

The RAM itself is then divided into the following memory mapping:

Cartridge ROM: This region is divided into various subregions and stores
the program of the cartridge made available to the CPU. A special chip on
some cartridges switches the banks and allows for different memory

regions on the cartridge to be accessible.

Cartridge Header: This section contains data about the game such as the
name, creator and other useful info.

Graphics RAM: Also called VRAM, this stores data required to render the
different layers and show them on screen using the PPU.

ERAM: This is a small amount of writable memory that is stored on some
cartridges and is made available using the cartridge memory bank
controllers.

Memory-mapped 1/0: Control values to allow the programs to interface
with the hardware such as graphics, sound and input.

Working RAM: This is the internal 8KB of RAM which the CPU can use.

Zero-page RAM: A high speed 128 bytes area of the memory to
communicate with the Gameboy hardware.

TFG - Gameboy Emulator Development 06/06/2020 Page 27

U Universitat Oberta uoc.edu
c de Catalunya

4.2. Programming Language

The language chosen to develop this emulator is C++. This language has
been chosen for 2 main reasons. First, it is a high performance language,
the performance that one can get programming using C++ is really high
and that is a requirement for an emulator. The second reason is the
familiarity of the language, being familiar with the language used to
develop software is also an important part in order to be able to program
fast.

At first the Rust language was also considered in order to be able to learn
this modern powerful language but it was dropped in favor of C++
because the task of creating an emulator was already a difficult one and

there was no time to have the problems of not only implementing the
emulator but also learning a new language.

4.3. Tools

4.3.1. Microsoft Visual Studio

Visual Studio has been chosen as the IDE (Integrated Development
Environment) as it offers a really good support for C++ programming as
well as an incredible in-depth debugger.

4.3.2. Sublime Text 3

Sublime Text 3 is a text editing program and has been used to take notes
and make high level plans regarding the development.

TFG - Gameboy Emulator Development 06/06/2020 Page 28

U Universitat Oberta uoc.edu
c de Catalunya

4.4, Libraries

4.4.1. OpenGL

OpenGL is the main rendering library that has been chosen to display the
graphics on screen. It has been chosen as it is available on all systems
and even low end hardware can run OpenGL applications. DirectX was
also an option but then the project was limited to only run on Windows.

4.4.2. SDL

Simple DirectMedia Layer is a cross-platform development library
designed to provide low level access to audio, keyboard, mouse, joystick,
and graphics hardware. This library has been used to create the window
that displays the emulator as well as to receive the input from the user.

4.4.3. Dear ImGui

Dear ImGui is designed to enable fast iterations and to empower
programmers to create content creation tools and visualization / debug
tools (as opposed to Ul for the average end-user). It favors simplicity and
productivity toward this goal, and lacks certain features normally found in
more high-level libraries.

This library has been used to create the Graphical User Interface
displayed on the emulator. An immediate GUI has been selected instead
of something like Qt as prototyping with an immediate GUI is much faster
than using other methods.

TFG - Gameboy Emulator Development 06/06/2020 Page 29

U Universitat Oberta uoc.edu
c de Catalunya

4.5. Emulator Architecture

The emulator architecture has changed many times

during the

development as it was not decided since the start as not enough info was
present to make such a decision. This architecture does not pretend to be
perfect but is a result of the ongoing development and learning procedure
about emulator development. If the emulator had to be redone from
scratch surely a different architecture would be used.

This is the final emulator architecture:

InterruptManager

|

icCPU

EEE— Draconic Emulator

.

InputManager

TimerManager

DraconicMemory

—F

vV V

Base Hardware

— DraconicCartridge

Registers

DraconicGPU }7 Dr: icState

TFG - Gameboy Emulator Development 06/06/2020

Page 30

U Universitat Oberta uoc.edu
c de Catalunya

4.5.1. Draconic Emulator

This class is responsible for holding the whole application together. It is
the starting point of the emulator and handles window creation using
SDL, OpenGL context initialization, drawing the GUI using imgui as well as
receiving the user input, loading ROMs and running the emulator main
loop.

4.5.2. Base Hardware

This is a base class for those classes that need the functionality to init
themselves with a pointer to the emulator state.

4.5.3. Draconic CPU

This class is the main core of the emulator, it is responsible for
implementing all the different opcodes as well as handling which opcode
must be run. It also handles state transformation due to opcode
operations.

4.5.4. Registers

This structure holds information relevant to the state of the different
emulator base registers.

4.5.5. Draconic Memory

This class represents the RAM of the emulator. It splits the RAM in its
different sections VRAM, OAM, WRAM and ZRAM and handles the task of
reading and writing to corresponding memory. It also contains the object
of the cartridge.

4.5.6. Draconic Cartridge

This class handles the ROM data as well as the ERAM.

TFG - Gameboy Emulator Development 06/06/2020 Page 31

U Universitat Oberta uoc.edu
c de Catalunya

4.5.7. Draconic State

This represents the whole state of the emulator. It contains the objects
of the registers as well as the memory and other information such as if
the CPU is halted, the number of cycles or the CPU clock speed.

4.5.8. Draconic GPU

This class is responsible for drawing the final output on an array buffer
and presenting the buffer into the screen. It does so by using an OpenGL
texture.

4.5.9. Input Manager

The Input Manager handles the SDL key events, processes them and
writes the corresponding values on the memory positions associated with
inputs.

4.5.10. Timer Manager

The Timer Manager handles the Game Boy timer. It can be used to update
the timer as well as to request a new timer and write it to the
corresponding position in memory.

4.5.11. Interrupt Manager

The Interrupt Manager has the job to handle interrupts such as gameboy
input button events as well as timer interrupts or LCD interrupts.

TFG - Gameboy Emulator Development 06/06/2020 Page 32

U Universitat Oberta uoc.edu
c de Catalunya

5. User Manual

5.1. Launching the emulator

The emulator is designed to run in x64 Windows machines. To launch the
emulator the executable DragonicGB.exe must be run from the Windows
explorer or from the command line.

5.2. User interface

5.2.1. Global Layout

B Draconic GB Emulator

WITCH'S HAT

PRESS START
g LS

WITCH'S HAT

PRESS START i

% h
h

xh.h.h'ho bt

P 118141114111, i
ial 3 E@ E@

The emulator has a top menu bar with its options. This is the main point
of interaction with the emulator user interface.

TFG - Gameboy Emulator Development 06/06/2020 Page 33

U Universitat Oberta uoc.edu
c de Catalunya

5.2.2. Main Screen

In the top left the emulator main screen is displayed, here the final image
presented by the Gameboy emulator will be displayed.

EE

MAIN MENU

G _pramns [ERS

5.2.3. Registers Panel

On the bottom left the registers debug panel can be seen. This panel
contains stats about the current performance of the emulator as well the
current value of the most important registers. The elapsed time displays
the time it has taken for the emulator to render 1 frame. The emulator
tries to cap itself to the vsync of the screen, which is usually 60 FPS o
16.6ms.

¥ Sktats

Raorm Mame: hak

rfalofaf o

TFG - Gameboy Emulator Development 06/06/2020 Page 34

U Universitat Oberta uoc.edu
c de Catalunya

5.2.4. GPU Debugger

In the center the GPU debug is displayed. These screens are useful to
debug what is going on with the Background, the Overlay Window or the
rendering of the sprites when a problem occurs.

Background Windaw

5.2.5. Memory Viewer

Finally on the right the memory debugger is rendered. By default the
memory debugger points at the VRAM memory but this can be changed by
selecting the Debug menu on the main menu and choosing what debug
visualization the user wants to see.

state, memory Editor

TFG - Gameboy Emulator Development 06/06/2020 Page 35

U Universitat Oberta uoc.edu
c de Catalunya

5.3. Controls

Once a ROM is loaded the emulator controls for the game are the
following:

A: Z key

B: X key

Start: A Key
Select: S Key
D-Pad: Arrow Keys

5.4. ROM loading

In order to run the emulator a ROM is needed, otherwise the emulator can
not be run. This can be done by selecting Flle->LoadROM and selecting an
appropriate ROM file.

Some freeware test ROMs have been provided as well and can be found
under File->Open Preset Files. Some of these ROMs are only for testing
purposes and other ones are little games.

5.5. Additional Features

A palette switch menu has been implemented and can be accessed from
the main menu. This allows the user to change the color palette used to
display the image.

File Color Paletke Debug

Paletke A
Palekke
Faletke
Paletke D
Palekke
Falekke

TFG - Gameboy Emulator Development 06/06/2020 Page 36

U Universitat Oberta uoc.edu
c de Catalunya

The different palettes can be seen in the images below:

bu tob
to_t;MEo_u

FRE33 S3THRT FRE33 33TART PRE33 3TART

bu tob
to_t;_mﬁo_u

PRES3S3 S3TART PRESS START

5.6. Requirements

A x64 Windows PC with a graphics card supporting Opengl 2.0 is required
in order to be able to run the emulator.

The user may also need to install the provided VC_redist.x64.exe file
located on the Redist folder in order to have the needed .dll files.

TFG - Gameboy Emulator Development 06/06/2020 Page 37

U Universitat Oberta uoc.edu
c de Catalunya

6. Conclusions

6.1. Development Process

The development process has been harder than initially expected. One of
the major problems has been understanding the Gameboy hardware, such
as the memory, cpu or gpu and how they communicate to one another
using RAM and registers.

In order to understand it a lot of resources have been consulted as well
as other already existing open source emulators in order to understand
how emulators work. The current emulator architecture is based on a
combination of some of the existing emulators as well as personal
preference.

Implementing all the Opcodes has also been a very difficult task as well
as testing the emulator as homebrew ROMs have had to be used. Initially
the plan was to dump an existing Gameboy game and use that as
reference, however, due to the problems with the pandemic it was
impossible to access to the hardware needed to dump those games and,
as such, alternative ROMs have been used as well as generic testing ROMs
created by the emulator development community.

6.2. Missing Features

The emulator lacks sound implementation, it is correctly being emulated
on the RAM, however, the implementation of sound output has not been
created.

The emulator also lacks a feature to save and load states. Some future
work could be done in order to implement such a feature, as it is
common for an emulator to have it.

TFG - Gameboy Emulator Development 06/06/2020 Page 38

U Universitat Oberta uoc.edu
c de Catalunya

6.3. Goals

The initially planned goals have been met. The emulator can load all kinds
of ROMs and works correctly. It displays the screen output to the user
and the user can interact with it using a keyboard in order to play the
games as well as using a mouse to use the menus in the emulator
window.

The missing features were features that initially were planned not to be
part of the emulator as they were quite time consuming to implement.

An additional feature of Color Palette switching that was not present on
the plan has been added which allows the user to change how the
emulator displays the final output on the screen.

6.4. Planning and Methodology

The plan has not been following very closely as a lot of problems have
been encountered during the development process. Such changes in
planning are to be expected as emulator development was an uncharted
territory before beginning work on this project. In order to assure the
success of the project more sources have had to be consulted as well as
taking inspiration on existing emulators regarding how they handle
memory management and opcode implementation. That being said, the
initial plan has been useful and a good guideline to start working.

6.5. Future Work

As explained on the missing features section audio would be one of the
main lines of work that could be developed. Right now the emulator has
no audio so a DSP(Digital Signal Processing) unit could be implemented
to emulate the Gameboy audio.

A feature to save the current emulation state as well as another feature
to load it could be implemented as well. Some work had been started on
it but quickly dismissed in order to complete the emulator. In theory it
could be as simple as loading the State struct which contains the current

TFG - Gameboy Emulator Development 06/06/2020 Page 39

U Universitat Oberta uoc.edu
c de Catalunya

state of both CPU and Memory and then make a function that loads that
file and restores that state. Going even further, a rewind functionality
could be added, saving the state every few frames and allowing the user
to rewind the state of the emulator.

The color palette feature could also be expanded. Instead of predefined
color palettes, the emulator could let the user choose what colors they
want and save those colors as a new color palette, that way each user
could have a personalized theme to their emulator.

The emulator could also be ported to other platforms. Right now it only
works on Windows, but it could also be ported over to Linux systems or
Mac OS systems. Going even further as this would require a complete
rewriting of the emulator it could also be ported to smart devices such as
iPhone or Android or to console devices as a part of the Homebrew scene.

6.6. Final Thoughts

The creation of this emulator has been a very difficult task that took
more work than anticipated but has also been a really good learning
experience.

Knowing first hand how a console like the Gameboy works is a really good
resource of knowledge that can later be used in creating other pieces of
software or coming up with clever solutions to difficult problems.

The creation of this emulator has also been a fun task as the topic of
emulation is an interesting one and knowing now how it works
participating in emulator development communities sounds like an
interesting thing.

| hope that this work also serves others to learn a little bit more about

the emulator development scene and to make people gain interest in
emulator development.

TFG - Gameboy Emulator Development 06/06/2020 Page 40

U Universitat Oberta uoc.edu
c de Catalunya

7. Glossary

PAC: Prova d’Avaluacio Continuada.

Speedrun: An instance of completing a video game, or level of a game, as
fast as possible.

TAS: Tool Assisted Speedrun.

GB: Game Boy.

NES: Nintendo Entertainment System.

SNES: Super Nintendo Entertainment System.

RAM: Read Only Memory.

ROM: Read Only Memory (Also used to refer to game data stored on disk).
CPU: Central Processing Unit.

Al: Artificial Intelligence.

Pathfinding: The plotting, by a computer application, of the shortest route
between two points.

D-pad: Directional pad, a four-way directional control with one button on
each point

DOS: Disk Operating System (Usually refers to Microsoft DOS or MS-DOS)
Flag: A value that can be true or false and changes the behavior of the
program.

Register: A small place on the CPU designated to store data.

Timer: A clock that controls a sequence of events.

Tileset: A collection of rectangular images.

Sprite: A bitmap graphic designated to be part of a larger screen.
Debugging: The process of identifying and removing errors from computer
hardware or software.

Opcode: Short for Operation Code, the part of a machine code instruction
that defines the operation to be performed.

TFG - Gameboy Emulator Development 06/06/2020 Page 41

U Universitat Oberta uoc.edu
c de Catalunya

8. Bibliography

1. Gameboy Emulators, www.emulator-zone.com/doc.php/gameboy/.

2. -= The GameBoy Project Homepage =-, marc.rawer.de/Gameboy/.

3. Binjgb Rewind, 31 Dec. 2017, binji.github.io/posts/binjgb-rewind/.

4. Imran Nazar: GameBoy Emulation in JavaScript: The CPU,
imrannazar.com/gameboy-Emulation-in-JavaScript.

5. Binjgb Rewind, 31 Dec. 2017, binji.github.io/posts/binjgb-rewind/.

6. Debugging Hangs, 3 May 2017, binji.github.io/posts/debugging-hangs/.

7. Binjgb on the Web, Part 1, 26 Feb. 2017,
binji.github.io/posts/binjgb-on-the-web-part-1/.

8. Previously Hosted at Gameboydev.org,
gbdev.gg8.se/files/roms/blargg-gb-tests/.

9. Index of /Files/Mooneye-Gb/Latest/,
gekkio.fi/files/mooneye-gb/latest/.

10. “# About the Pan Docs.” Pan Docs [Pan Docs, gbdev.io/pandocs/.

11. /, CodeSlinger. Codeslinger.co.uk,
www.codeslinger.co.uk/pages/projects/gameboy.html.

12.262588213843476. “GameBoy Color Boot ROM Disassembly.” Gist,
gist.github.com/drhelius/6063265.

13. Aappleby. “Aappleby/MetroBoy.” GitHub, 6 June 2020,

TFG - Gameboy Emulator Development 06/06/2020 Page 42

UOC

Universitat Oberta uoc.edu
de Catalunya

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

github.com/aappleby/MetroBoy.

AntonioND. “AntonioND/Giibiiadvance.” GitHub, 8 May 2020,
github.com/AntonioND/giibiiadvance/blob/master/docs/.

AntonioND. “AntonioND/Giibiiadvance.” GitHub, 8 May 2020,
github.com/AntonioND/giibiiadvance/tree/master/docs.

Applefreak. “Applefreak/esp8266-Gameboy-Dev-Board.” GitHub, 29
Mar. 2017, github.com/applefreak/esp8266-gameboy-dev-board.
Applefreak. “Applefreak/esp8266-Gameboy-Printer.” GitHub,
github.com/applefreak/esp8266-gameboy-printer.

“BGB Homepage.” BGB GameBoy Emulator (Current Version: BGB 1.5.8),
bgb.bircd.org/.

Baekalfen. “Baekalfen/PyBoy.” GitHub, 17 May 2020,
github.com/Baekalfen/PyBoy.

“Board Index.” GBC Colorization Palettes in the BIOS,
forums.nesdev.com/viewtopic.php?p=114388&sid=c3d4ce08cfd9d9c83
4958d4f148750c3#p114388.

“Build Software Better, Together.” GitHub,
github.com/topics/gameboy-emulator.

CTurt. “CTurt/Cinoop.” GitHub, 15 Nov. 2015, github.com/CTurt/Cinoop.
“The Centre for Computing History.” Centre For Computing History,

www.computinghistory.org.uk/det/4033/Nintendo-Game-Boy/.

TFG - Gameboy Emulator Development 06/06/2020 Page 43

U Universitat Oberta uoc.edu
c de Catalunya

24.“DMG Schematics.” DMG Schematics - GbdevWiki,
gbdev.gg8.se/wiki/articles/DMG_Schematics.

25.Dinu, Cristian. “DECODING Gameboy Z80 OPCODES.” Decoding
Gamboy Z80 Opcodes,
gb-archive.github.io/salvage/decoding_ghbz80_opcodes/Decoding
Gamboy Z80 Opcodes.html.

26.Drhelius. “Drhelius/Gearboy.” GitHub, 23 May 2020,
github.com/drhelius/Gearboy.

27.“Emulating a GameBoy Cartridge with an STM32F4. Part 1.” Emulating
a GameBoy Cartridge with an STM32F4. Part 1 - Dhole’s Blog, 24 Dec.
2014, dhole.github.io/post/gameboy_cartridge_emu_1/.

28.Furrtek. “Furrtek/DMG-CPU-Inside.” GitHub, 7 Nov. 2019,
github.com/furrtek/DMG-CPU-Inside.

29.“Game Boy.” National Museum of American History,
americanhistory.si.edu/collections/search/object/nmah_1253117.

30.“Game Boy.” Wikipedia, Wikimedia Foundation, 6 June 2020,
en.wikipedia.org/wiki/Game_Boy.

31. “Game Boy Advance.” Wikipedia, Wikimedia Foundation, 1 June 2020,
en.wikipedia.org/wiki/Game_Boy_Advance.

32.“Game Boy Color Bootstrap ROM.” Game Boy Color Bootstrap ROM -

TFG - Gameboy Emulator Development 06/06/2020 Page 44

U Universitat Oberta uoc.edu
c de Catalunya

The Cutting Room Floor, tcrf.net/Game_Boy_Color_Bootstrap_ROM.

33.“Game Boy Family.” Wikipedia, Wikimedia Foundation, 4 June 2020,
en.wikipedia.org/wiki/Game_Boy_family.

34.“Game Boy Hardware Databaseby Gekkio and Contributors.” Home -
Game Boy Hardware Database, gbhwdb.gekkio.fi/.

35.“GameBoy Cartridges.” GB.html,
fms.komkon.org/GameBoy/Tech/Carts.html.

36.“Gameboy Cartridges.” GB.html, www.devrs.com/gb/files/gb.html.

37.Gbdev. “Gbdev/Awesome-Gbdev.” GitHub, 24 May 2020,
github.com/gbdev/awesome-gbdev#emulators.

38.Gbdev. “Gbdev/Awesome-Gbdev.” GitHub,
github.com/gbdev/awesome-gbdev/blob/master/EMULATORS.md.

39.Gekkio. “Gekkio/Gb-Hardware.” GitHub, 17 May 2020,
github.com/Gekkio/gb-hardware.

40.Gekkio. “Gekkio/Mooneye-Gb.” GitHub, 18 Apr. 2020,
github.com/Gekkio/mooneye-gb.

41. “History of Emulation.” Video Game Emulation Wiki,
emulation.fandom.com/wiki/History_of_emulation#:~:text=Game Boy
Advance&text=GBAEmu, released in September 2000,according to its
official site.

42.“History of Emulation.” History of Emulation - Emulation General Wiki,

TFG - Gameboy Emulator Development 06/06/2020 Page 45

UOC

Universitat Oberta uoc.edu
de Catalunya

emulation.gametechwiki.com/index.php/History_of_emulation.
43.“Home.” Home, gekkio.fi/.

44 Imgur. “Gameboy Cartridges.” Imgur, 21 June 2016,
imgur.com/a/D5bpC.

45.L1J132. “LIJI32/SameBoy.” GitHub, 3 June 2020,
github.com/LIJI132/SameBoy.

46.L1J132. “LIJI32/SameSuite.” GitHub, 29 Sept. 2019,
github.com/LIJI32/SameSuite.

47.“Lazy Foo' Productions.” Lazy Foo' Productions - Beginning Game
Programming v2.0, lazyfoo.net/tutorials/SDL/.

48.Levick, Ryan. “Oh Boy! Creating a Game Boy Emulator in Rust.” Home,
Media.ccc.de, media.ccc.de/v/rustfest-rome-3-gameboy-emulator.

49.Mattbruv. “Mattbruv/Gameboy-Emulator.” GitHub,
github.com/mattbruv/Gameboy-Emulator.

50.Mattcurrie. “Mattcurrie/Mealybug-Tearoom-Tests.” GitHub, 24 Oct.
2019, github.com/mattcurrie/mealybug-tearoom-tests.

51. Minotti, Mike. “25 Years of the Game Boy: A Timeline of the Systems,
Accessories, and Games.” VentureBeat, VentureBeat, 12 Dec. 2018,
venturebeat.com/2014/04/21/25-years-of-the-game-boy-a-timeline-of
-the-systems-accessories-and-games/.

52.“NAME.” GBZ80(7), rednex.github.io/rgbds/gbz80.7.htmL.

TFG - Gameboy Emulator Development 06/06/2020 Page 46

UOC

Universitat Oberta uoc.edu
de Catalunya

53.0cornut. “Ocornut/Imgui.” GitHub, 5 June 2020,
github.com/ocornut/imgui.

54.Plant, Mike. “A Timeline of Game Boy's Record-Breaking History as
Iconic Console Celebrates 30 Years.” Guinness World Records,
Guinness World Records, 17 Apr. 2019,
www.guinnessworldrecords.com/news/2019/4/a-timeline-of-game-bo
ys-record-breaking-history-as-iconic-console-celebrates-30-565921.

55.Saltalamacchia, Brandon, et al. “The History Of The Gameboy.” Retro
Dodo, 24 Feb. 2020, retrododo.com/gameboy/.

56.Stephen, Bijan. “How the Game Boy Found a New Life through
Emulation.” The Verge, The Verge, 18 Apr. 2019,
www.theverge.com/2019/4/18/18311740/game-boy-emulation-new-life
-old-technology.

57.“TASVideos.” TASVideos RSS News,
tasvideos.org/EmulatorResources/GBAccuracyTests.html.

58.“Thirty Years Ago, Game Boy Changed the Way America Played Video
Games.” Smithsonian.com, Smithsonian Institution, 29 July 2019,
www.smithsonianmag.com/innovation/thirty-years-ago-game-boy-cha
nged-way-america-played-video-games-180972743/.

59.Trekawek. “Trekawek/Coffee-Gb.” GitHub, 21 Dec. 2018,

github.com/trekawek/coffee-gb.

TFG - Gameboy Emulator Development 06/06/2020 Page 47

U Universitat Oberta uoc.edu
c de Catalunya

60.Webb, Kevin. “How Nintendo's Handheld Video Game Consoles Have
Evolved over the Past 30 Years, from the Original Game Boy to the
Switch.” Business Insider, Business Insider, 23 Apr. 2019,
www.businessinsider.com/nintendo-game-boy-history-evolution-ds-3
ds-switch-2019-4?IR=T.

61. “Why Did | Spend 1.5 Months Creating a Gameboy Emulator?” Why Did
| Spend 1.5 Months Creating a Gameboy Emulator? - Tomek's Blog,
blog.rekawek.eu/2017/02/09/coffee-gb/.

62.“Writing a Game Boy Emulator, Cinoop.” Cinoop,
cturt.github.io/cinoop.html.

63.“Writing a Game Boy Emulator, Cinoop.” Cinoop,
cturt.github.io/cinoop.html.

64.“r/Emulation - g Early History of Gameboy Emulation g§.” Reddit,
www.reddit.com/r/emulation/comments/c9tb97/early_history_of_gam
eboy_emulation/.

65.serginho89, and serginho89. RealBoy, 1 July 2013,
realboyemulator.wordpress.com/posts/.

66.“4” Game Boy CPU (SM83) Instruction Set (JSON).” Game Boy CPU

(SM83) Instruction Set, gbdev.io/gb-opcodes/optables/.

TFG - Gameboy Emulator Development 06/06/2020 Page 48

