

Kasperry π

Albert Sabaté Martínez

Grau en Enginyeria de Tecnologies i Serveis de Telecomunicació (Sistemes Telemàtics)

Félix Freitag

08 / 06 / 2020

1

This work is licensed under a Creative Commons

Attribution-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

2

 FINAL WORKSHEET

Work title: Kasperry π

Author name: Albert Sabaté Martínez

Consultant name: Félix Freitag

Deadline (mm/aaaa): 06/2020

Final Work Area: Aplicacions i sistemes distribuïts

University title: Grau en Enginyeria de Tecnologies i Serveis de

Telecomunicació (Sistemes Telemàtics)

 Abstract (max 250 words):

The project Kasperry PI consists of deploying a Kubernetes cluster, which has four

Raspberry PI 4 (4Gb) and a development Raspberry PI to build the Docker images,

also it will be accessible world-wide.

Kasperry PI required research and development to be able to build the cluster and

make it work with public internet. The cluster contains monitoring, security and routing

using ingress route. In order to achieve this, DataDog was implemented for monitoring

and Traefik for doing the DNS routing. Security was a major concern and it has been

implemented in every part of the cluster.

Furthermore, Kasperry PI project covers how to implement a CI/CD environment

using Github and Github Actions, which is the new schema to work with distributed

applications in microservices.

Finally, as a working proof, a web page was developed with Gatsby containing

homemade “how to build a home production-ready Kubernetes cluster” tutorials.

All of these tutorials are available at https://kasperry.io/.

 Keywords (between 4 and 8):

Kubernetes, Raspberry, Cluster, Kasperry, PI, Home Cluster

https://kasperry.io/

3

Table of contents

1. Introduction 7

1.1 Context and Justification of the Project 7

1.2 Work objectives 7

1.3 Approach and method followed 7

1.4 Work Planning 8

1.5 Brief summary of products obtained 8

2. Kasperry π 10

2.1 Big Picture 10

2.1.1 Raspberry PI 10

2.1.2 Docker 10

Containerd 11

2.1.3 Mesosphere 12

2.1.3.1 Apache Mesos 12

2.1.3.2 Marathon 13

2.1.4 Kubernetes 13

2.1.4.1 Rancher K3s 17

2.1.4.2 MicroK8s 17

2.1.4.3 Minikube 18

2.1.5 Helm 18

2.1.6 CNCF - Cloud Native Computing Foundation 18

2.2 Architecture 20

2.2.1 Planning & Schemas 20

2.2.2 Material and economic valuation 22

2.2.3 Network 23

2.2.4 Deployments 24

2.2.4.1 Tracing & Monitoring 24

2.2.4.2 Load Balancing & Routing 24

2.2.4.3 App 25

2.2.4.4 Database 25

2.3 Building process 26

2.3.1 Setup Raspberry PI 26

2.3.2 Setup Network and local domains 27

2.3.3 Deploying Kubernetes with the CNI (Flannel) 28

2.3.4 Deploy DataDog 29

2.3.5 Deploy Traefik 31

4

2.3.6 Deploy Private Docker Registry 34

2.3.7 Deploy Kasperry PI app 36

2.3.8 CI / CD 40

2.4 Results 43

3. Conclusions 47

4. Glossary 48

5. Bibliography 50

6. Annexes 51

5

Table of figures

■ Figure 1. Gantt timeline. It defines deadlines to ensure a time-quality work.

■ Figure 2. Docker Containers [4]

■ Figure 3. Containerd [17]

■ Figure 4. Mesos Architecture [14]

■ Figure 5. Kubernetes Diagram [5]

■ Figure 6. Rancher k3s Architecture Diagram [20]

■ Figure 7. CNCF Software Landscape [10]

■ Figure 8. Kasperry PI cluster Architecture

■ Figure 9. CNI table comparison [1]

■ Figure 10. My production-ready home cluster!

■ Figure 11. Devices Map Ubiquiti Control Panel

■ Figure 12. Devices List Ubiquiti Control Panel

■ Figure 13. Kubectl get nodes

■ Figure 14. Kubectl -n default get po

■ Figure 15. DataDog Logs Dashboard

■ Figure 16. DataDog Host metrics Dashboard

■ Figure 17. DataDog Kubernetes Dashboard

■ Figure 18. Checking if traefik is running properly

■ Figure 19. nodeSelector and toleration example

■ Figure 20. Traefik Dashboard

■ Figure 21. Ubiquiti Port Forwarding manager

■ Figure 22. Docker Registry IngressRoute

■ Figure 23. Docker Registry Middleware IPWhiteList

■ Figure 24. Persistent Volume & Persistent Volume Claim

■ Figure 25. Docker registry & registry UI running successfully

■ Figure 26. Screenshot of the UI made by Joxit

■ Figure 27. Kasperry PI Web Deployment

■ Figure 28. Kasperry PI Web Service

■ Figure 29. Middleware Traefik

■ Figure 30. Traefik IngressRoute notls

■ Figure 31. Traefik IngressRoute tls

■ Figure 32. Valid Let’s Encrypt Certificate

■ Figure 33. Kasperry PI (Under development) webpage

■ Figure 34. Github Actions Self-hosted runners

■ Figure 35. Github actions Secrets

■ Figure 36. Github actions pipeline

■ Figure 37. Github Action Passed Pipelines

■ Figure 38. Final cluster result (Hardware)

■ Figure 39. Github Actions workflows

■ Figure 40. DataDog memory usage by Kasperry PI pods

6

■ Figure 41. DataDog Kasperry PI running pods

■ Figure 42. Index of figure 41

■ Figure 43 & 44. Kasperry PI vs Splyt benchmark comparison

7

1. Introduction

1.1 Context and Justification of the Project

The idea of this project is to provide knowledge on building a home cluster. Once

built, the home cluster can be used to establish web pages or IoT projects. It is an

important topic because in this way, one can get a production-ready small cluster

with a low budget, which can be used to host services.

This is possible with low cost hardware thanks to the last revision of Raspberry PI

increasing memory RAM to 4Gb.

Previous models of the Raspberry PI did not have enough resources to build a

production-ready cluster. The solution to this is either to have a proper server and

spend a significant amount of money, or to just run a server without any kind of

deployment or scaling system.

With the new technologies, it seems feasible to build a home cluster with Raspberry

PI, and this project is going to prove it.

1.2 Work objectives

● Build a production-ready home cluster using Raspberry PI

● Enable monitoring using DataDog.

● Enable reverse routing and domain resolver for Kubernetes using Traefik.

● Deploy a web page using CI / CD solution provided by Github Actions.

● Publish the tutorials under the domain kasperry.io for the purpose of knowledge

sharing.

1.3 Approach and method followed

For the purpose of the research, content on the internet has been referred to in

order to obtain all the relevant information and knowledge regarding the project,

8

and therefore, to apply and execute accordingly. In particular, third party software

and popular opinions are referred to herein.

The important consideration is how to choose between various Open Source

Software and demonstrate how to build a cluster at home. This project aims to

ensure that everyone can build an affordable cluster without having to use the

costly cloud services provided by the big companies.

1.4 Work Planning

Figure 1. Gantt timeline. It defines deadlines to ensure a time-quality work.

1.5 Brief summary of products obtained

The project will be divided into 4 sections.

● Big Picture

All of the software used to build Kasperry PI will be explained. In addition, other

possible alternatives will be considered and set out briefly.

● Architecture

The architecture of Kasperry PI will be explained. As well as the reason for

choosing this approach.

● Building process

How Kasperry PI is built step by step, including the details and problems

encountered during the process, will be set out.

9

● Results

Validations, “why’s” of Kasperry PI.

10

2. Kasperry π

2.1 Big Picture

Before starting, it would be helpful to be aware of what is available on the market

in the year of 2020. Every year, or even every month, there is new software / tool

/ methodology ready to use. As a result, this big puzzle has to be described piece

by piece.

2.1.1 Raspberry PI

Raspberry PI 4 (4Gb) is the selected board to be used. With the latest release of

this board, the minimum requirements to deploy a cluster of Kubernetes have been

met. More importantly, this board is the most accepted and commonly used on the

market. The popularity and probable continuous development of the board makes

the project more meaningful in the long term. Last but not the least, it is very

affordable.

Despite the aforesaid, Kasperry PI is not limited to this board. In fact, in order to

build a home cluster, one can apply the knowledge shared in the tutorials to

whichever ARM board he deems appropriate, as long as the board chosen meets

the minimum requirements to deploy a cluster of Kubernetes.

2.1.2 Docker

“Docker is a set of platform as a service (PaaS) products that uses OS-level

virtualization to deliver software in packages called containers. Containers are

isolated from one another and bundle their own software, libraries and

configuration files; they can communicate with each other through well-defined

channels. All containers are run by a single operating system kernel and therefore

use fewer resources than virtual machines.” [11].

Figure 2 illustrates how Docker makes use of the architecture of the OS to deploy

containers by reusing it, shown as App A, App B… It is like creating OS layers.

11

Figure 2. Docker Containers [4]

Docker is compatible with ARM infrastructure.

● Containerd

“Containerd was designed to be used by Docker and Kubernetes as well as any

other container platform that wants to abstract away syscalls or OS specific

functionality to run containers on linux, windows, solaris, or other OSes.” [17].

Figure 3 illustrates the tasks of Containerd. It shows how the engine can run

syscalls to containers and vice versa.

Figure 3. Containerd [17]

12

2.1.3 Mesosphere

2.1.3.1 Apache Mesos

“Apache Mesos abstracts CPU, memory, storage, and other compute resources

away from machines (physical or virtual), enabling fault-tolerant and elastic

distributed systems to easily be built and run effectively. Built using the same

principles as the Linux kernel, only at a different level of abstraction. The Mesos

kernel runs on every machine and provides applications (e.g., Hadoop, Spark,

Kafka, Elasticsearch) with API’s for resource management and scheduling across

the entire datacenter and cloud environments.” [13]

Figure 4. Mesos Architecture [14]

“ZooKeeper is a centralized service for maintaining configuration information,

naming, providing distributed synchronization, and providing group services. All of

these kinds of services are used in some form or another by distributed

applications.” [16]

Apache Mesos is a powerful tool backed up by Apache, a massive company

experienced in servers and providing them as an open source.

Unfortunately, this platform is not fully compatible with Raspberry PI. There are

developments trying to work on its compatibility issue, but at this stage Apache

Mesos just provides partial ARM coverage.

13

2.1.3.2 Marathon

“Marathon is a framework (or meta framework) that can launch applications and

other frameworks. Marathon can also serve as a container orchestration platform

which can provide scaling and self-healing for containerized workloads. The figure

below shows the architecture of Mesos + Marathon.” [12]

“A container orchestration platform for Mesos and DC/OS” [15]

In other words, the combination of Apache Mesos + Marathon can be compared

with Kubernetes.

Unfortunately, Marathon is dependent on Apache Mesos which does not fully

support ARM.

2.1.4 Kubernetes

“Kubernetes is a portable, extensible, open-source platform for managing

containerized workloads and services, that facilitates both declarative

configuration and automation. It has a large, rapidly growing ecosystem.

Kubernetes services, support, and tools are widely available.

The name Kubernetes originates from Greek, meaning helmsman or pilot. Google

open-sourced the Kubernetes project in 2014. Kubernetes combines over 15 years

of Google’s experience running production workloads at scale with best-of-breed

ideas and practices from the community.” [5]

Figure 5 shows the diagram of a Kubernetes cluster with some of the components

and their relation. Important concepts and components of Kubernetes are as

follows:

14

Figure 5. Kubernetes Diagram [5]

● Api Server

This component is the management hub for the Kubernetes master node. It

facilitates communication between the various components, thereby maintaining

cluster health.

● Scheduler

This component places the workload on the appropriate node – in this case all

workload will be distributed accordingly to the feasible nodes.

● Controller Manager

This component ensures that the cluster’s desired state matches the current state

by scaling workload up and down.

● Proxy

The Kubernetes network proxy runs on each node. This reflects services as

defined in the Kubernetes API on each node and it can do simple TCP, UDP, and

SCTP stream forwarding or round robin TCP, UDP and SCTP forwarding across a

set of backends.

● Kubelet

This component receives pod specifications from the API Server and manages

pods running in the host.

● Etcd

This component stores configuration data which can be accessed by the

Kubernetes master’s API Server by simple HTTP or JSON API.

15

● Container Network Interface (CNI)

Kubernetes has adopted the Container Network Interface(CNI) specification for

managing network resources on a cluster.

● Deployments

These building blocks can be used to create and manage a group of pods.

Deployments can be used with a service tier for scaling horizontally or ensuring

availability.

● ReplicaSet

A ReplicaSet’s purpose is to maintain a stable set of replica Pods running at any

given time. As such, it is often used to guarantee the availability of a specified

number of identical Pods.

● DaemonSet

A DaemonSet ensures that all (or some) nodes run a copy of a Pod. As nodes are

added to the cluster, Pods are added to them. As nodes are removed from the

cluster, those Pods are garbage collected. Deleting a DaemonSet will clean up the

Pods it created.

● StatefulSet

Like a Deployment, a StatefulSet manages Pods that are based on an identical

container spec. Unlike a Deployment, a StatefulSet maintains a sticky identity for

each of their Pods. These pods are created from the same spec, but are not

interchangeable: each has a persistent identifier that it maintains across any

rescheduling.

● Pods

Kubernetes deploys and schedules containers in groups called pods. Containers

in a pod run on the same node and share resources such as filesystems, kernel

namespaces, and an IP address.

● Services

These are endpoints that can be addressed by name and can be connected to

pods using label selectors. The service will automatically round-robin requests

between pods. Kubernetes will set up a DNS server for the cluster that watches

for new services and allows them to be addressed by name. Services are the

“external face” of your container workload.

16

● Ingress

An API object that manages external access to the services in a cluster, typically

HTTP. Ingress may provide load balancing, SSL termination and name-based

virtual hosting.

● Namespaces

Namespaces are intended for use in environments with many users spreading

across multiple teams, or projects. It is recommended to start using namespaces

when the features they provide are needed.

● Labels

These are key-value pairs attached to objects. They can be used to search and

update multiple objects as a single set.

● Persistent Volume

A PersistentVolume (PV) is a piece of storage in the cluster that has been

provisioned by an administrator or dynamically provisioned using Storage Classes.

● Storage Classes

A StorageClass provides a way for administrators to describe the “classes” of

storage they offer. Different classes might map to quality-of-service levels, or to

backup policies, or to arbitrary policies determined by the cluster administrators.

Kubernetes itself is unopinionated about what classes represent. This concept is

sometimes called “profiles” in other storage systems.

● Secrets

Kubernetes Secrets allows storing and managing sensitive information, such as

passwords, OAuth tokens, and ssh keys. Storing confidential information in a

Secret is safer and more flexible than putting it verbatim in a Pod definition or in a

container image.

● ConfigMaps

A ConfigMap is an API object used to store non-confidential data in key-value

pairs. Pods can consume ConfigMaps as environment variables, command-line

arguments, or as configuration files in a volume.

A ConfigMap allows decoupling environment-specific configuration from your

container images so that your applications are easily portable.

Information obtained from sources [5 & 12 & 18]

17

2.1.4.1 Rancher K3s

“Certified Kubernetes distribution designed for production workloads in

unattended, resource-constrained, remote locations or inside IoT appliances.” [19]

Figure 6. Rancher k3s Architecture Diagram [20]

Rancher k3s is probably the most common way to deploy a Kubernetes cluster

using Raspberry PI. Previously it was the only way, given that Raspberry PI 1,2,3

do not have enough resources to run Kubernetes, nor does Raspberry PI 4 with

1Gb of RAM. Rancher k3s is a very good solution for a cluster with low capacity

nodes.

Another important point to consider is if the project needs to use k3s HA, an

external database is needed.

2.1.4.2 MicroK8s

“MicroK8s is a CNCF certified upstream Kubernetes deployment that runs entirely

on your workstation or edge device. Being a snap it runs all Kubernetes services

natively (i.e. no virtual machines) while packing the entire set of libraries and

binaries needed. Installation is limited by how fast you can download a couple of

hundred megabytes and the removal of MicroK8s leaves nothing behind.” [25]

18

MicroK8s is similar to k3s. In this case, it is backed by canonical instead of

Rancher, which means the community is who decides on the changes rather than

a private company.

2.1.4.3 Minikube

“Minikube is a tool that makes it easy to run Kubernetes locally. Minikube runs a

single-node Kubernetes cluster inside a Virtual Machine (VM) on your laptop for

users looking to try out Kubernetes or develop with it day-to-day.” [5]

Minikube is mainly used for development purposes.

2.1.5 Helm

“Helm helps you manage Kubernetes applications — Helm Charts help you define,

install, and upgrade even the most complex Kubernetes application.” [6]

In short, it can be said that Helm can be compared with apt, brew, snap, but it

applies to Kubernetes.

Helm became a graduated project in CNCF in April 2020.

2.1.6 CNCF - Cloud Native Computing Foundation

“Sustaining and integrating open source technologies to orchestrate containers as

part of a microservices architecture” [21]

19

Figure 7. CNCF Software Landscape [10]

CNCF software is the preferred option when choosing a software to use in

Kasperry PI, another criteria is the resources and compatibility with ARM.

20

2.2 Architecture

2.2.1 Planning & Schemas

Before starting to plan anything, the requisites to run a Kubernetes cluster are set

out below.

● Ubuntu 16.04+

● Debian 9+

● CentOS 7

● Red Hat Enterprise Linux (RHEL) 7

● Fedora 25+

● HypriotOS v1.0.1+

● Container Linux (tested with 1800.6.0)

● 2 GB or more of RAM per machine (any less will leave little room for the apps)

● 2 CPUs or more

● Full network connectivity between all machines in the cluster (public or private

network is fine)

● Unique hostname, MAC address, and product_uuid for every node.

● Certain ports are open on the machines.

● Swap disabled. Swap MUST be disabled in order to make the kubelet work

properly.

This is everything one needs to know according to the official Kubernetes

documents. Raspberry PI 4 has enough resources to run Kubernetes according to

the above.

In addition, using a good router, firewall, etc. has to be considered. A breach in

one of the apps, or a bad port opened unintentionally can expose the network to

the world.

21

Having all of the information, the architecture of the cluster can be designed.

Figure 8. Kasperry PI cluster Architecture

As shown in Figure 8, a router with a firewall is used to filter the access to the local

network.

The access to the internal network will be using a VPN, the only 2 ports exposed

to the public will be port 80 and 443 the http(s) standard ports.

Moreover, a cluster of 4 Raspberry PI will be built, deployed with Ubuntu 18.04,

since 20.04 is still in beta and a lot of software is not yet available. Another

Raspberry PI will be used for development purposes and to run pipelines CI / CD.

Then, one Raspberry PI will be running the master node and the other three

minions. One minion, the one called node-infra, will be used for running a

database, cache or an application needing a persistent volume.

The nodes master and node-infra will be deployed with an SSD and the operating

system will boot in an external SSD disk. This is done because it is more R/W

22

efficient, and also, the SD cards are not designed for storing intensive R/W Data

and doing so can increase the probability of failure. [26]

Finally, the cluster has to be strongly secured by using TLS certificates.

2.2.2 Material and economic valuation

The material I will be using to build the cluster

Product Qty Price (S$)

Ubiquiti USG 1 206

Switch 8 Ports 1 189

Raspberry PI 4 (4Gb) with SD & power
supply & heat sink

5 116

Ethernet Cable 6 6.90

Raspberry PI case with fan 5 12.50

External SSD Disk (500Gb) 2 159

Prices based in Singapore.

Total 1,396.90

* Price in euros it will be around ~900 EUR.

This is the price to have a basic production-ready Kubernetes cluster at home.

Kasperry PI hardware can be upgraded in the future, but it is a good starting point.

In the schema a SSD disk is also added to the dev Raspberry PI, which is

supposed to increase the CI / CD speed.

Another key factor is to have a good internet connection and asking your ISP for a

public IP address.

23

2.2.3 Network

For networking Calico has been chosen since judging from the reviews, it provides

a lot of good functionalities and security.

There are more options to consider for building the cluster network. Figure 9 shows

the information that was analyzed and explains the reason for discarding certain

options.

Figure 9. CNI table comparison [1]

As shown in the comparison chart, the best options are Calico or WeaveNet Crypt

if security is a concern.

Calico: The selected one. According to all comparisons, it is the most balanced

option which gives support to all Kubernetes functionalities.

WeaveNet Crypt: Using Raspberry PI, it cannot afford to encrypt all connections.

This part can be managed on the app side when necessary.

Canal: Similar to WeaveNet Crypt, it consumes too much resources. It also has

less community support.

Cilium: It consumes too much resources, it would not be a good fit for Raspberry

PI.

24

Flannel: Kubernetes recently stopped to support this CNI.

Kube-router & Romana: Discarded as there are better options to choose from.

2.2.4 Deployments

2.2.4.1 Tracing & Monitoring

Once the important aspect of the resource limitations running locally has been

discussed, a full monitoring and tracing solution does not seem to be possible as

there is a lot of data in the network. For example: deploying elasticsearch is known

to be really expensive in terms of resource consumption, so EFK (elastic, fluentd

and kibana) and ELK (elastic, logstash and kibana) which also does not give

support to ARM have to be discarded. Loki with grafana and prometheus was

evaluated as well. At first sight, it looked like a good fit for the Raspberry PI 4 since

it is more lightweight, but it does not provide tracing, so Jaeger will be an option.

As at the moment of this project, considering the resources available, the best

option is to use DataDog. DataDog offers monitoring, logging and tracing all in one

place. It does not need to run a heavy search engine like elasticsearch. Only an

agent has to be running giving a resources release for the cluster. Also, it is easier

to set up.

However, there are some disadvantages of DataDog: Code is partially public and

property of a private company. DataDog is really expensive. The logs are in a third

party database, which can be considered insecure.

2.2.4.2 Load Balancing & Routing

After evaluating envoy, istio and nginx, ARM support is not in the roadmap.

For this reason, Traefik has been chosen as a load balancing and routing app, a

CNCF project.

Furthermore, it provides support for ARM and has full Kubernetes compatibility.

25

Finally, an interesting feature of Traefik is auto SSL (https) using Let’s Encrypt.

2.2.4.3 App

Gatsby has been selected to develop the app. In this case, the decision is a matter

of personal preference. It is a ReactJS based framework which transpiles in html

and makes the web really efficient.

The code will be published with the Dockerfile, Kubernetes yaml and the

information to build the CI / CD.

2.2.4.4 Database

For this project, a database is not required although a deployment of PostgreSQL,

MariaDB & MongoDB was successful.

If these databases are to be deployed, official Docker images have to be used

instead of Bitnami images who are the ones supporting Helm installation. The

deployment has to be created manually.

26

2.3 Building process

2.3.1 Setup Raspberry PI

Figure 10. My production-ready home cluster!

Figure 10 is a presentation of how the project was built initially, including four

Raspberry PI for the cluster and the dev Raspberry PI. Kindly note there is one

extra Raspberry PI to manage the control panel of Ubiquiti and the WiFi AP which

is used for home environment. Thanks to Ubiquiti, creating a safe environment is

possible even if WiFi is shared with guests.

Also, three external SSD Disks (Samsung T5) are attached to the master node,

being the top Raspberry PI in the rack (red SSD), below of which is the node-infra

(blue SSD), and there is another blue SSD attached to the dev node.

Moreover, all the connections are over ethernet so as to provide the cluster with

more stability.

An important detail during the process was to add a heat sink to all the Raspberry

PI and a fan to the ones in the rack. It is a fairly cheap action yet an essential detail.

27

The CPU performance without adding these elements is considerably lower. The

small step makes the difference.

Finally tidying up the cables and the set-up is completed! (Just hardware).

2.3.2 Setup Network and local domains

Now it is time to set up networking, which is an interesting point. A DHCP server

provided by Ubiquiti will be used. For better support, a hostname resolver and

static IP addresses will be set to the Raspberry PI.

At first sight this part seems straightforward and simple, but linking everything with

the IP you want and making the hostname resolve the local domains properly

without any conflict has been fun time!

Figure 11. Devices Map Ubiquiti Control Panel

28

Figure 12. Devices List Ubiquiti Control Panel

Thankfully at the end it works well as shown in figures 11 and 12 above.

In the previous figures it can be seen the domain is zenet.local. The reason for

choosing this domain is that my nickname is AlberTenez, inverting Tenez is Zenet.

2.3.3 Deploying Kubernetes with the CNI (Flannel)

Now the hard part is done. Next step is to run some group of commands which can

be found in the tutorials:

1. https://www.kasperry.io/install-k8s-pkg

2. https://www.kasperry.io/setup-k8s-calico

Following the install and setup tutorials we get the following result.

Figure 13. Kubectl get nodes

Now services can be run in the cluster.

https://www.kasperry.io/install-k8s-pkg
https://www.kasperry.io/setup-k8s-calico

29

The cluster has node-infra. In this node only specific containers need to be

deployed. Therefore, this node will be labeled and tainted.

> kubectl label nodes node-infra.zenet.local worker=infra-master

> kubectl taint node node-infra.zenet.local workers=infra-master:NoSchedule

Tainting a node is the way to have control of what is deploying and where. Once

done, the containers are not going to be scheduled in the node-infra by default.

2.3.4 Deploy DataDog

To deploy DataDog, Helm will be used to simplify the deployment management.

So, the documentation of DataDog [24] will be referred to for the purpose of setting

the “values.yaml” according to the cluster architecture, basically specifying IP,

ports and API secrets.

> wget -O datadog-values.yaml

https://raw.githubusercontent.com/helm/charts/master/stable/datadog/values.yam

l

> # Edit the file adding the no_verify and api_key, also enabled kube metrics.

> helm install -f datadog-values.yaml datadog stable/datadog

There are still a lot of problems with the API certificates x.509, mainly SSL

identification problems. That is because Kubernetes is using self-signed

certificates and custom domains “.local”. As a possible solution, Datadog team

recommends setting the insecure flag to the api requests [23].

Following the recommendation, after setting this flag to “no_verify” the cluster

shows healthy status:

Figure 14. Kubectl -n default get po

https://raw.githubusercontent.com/helm/charts/master/stable/datadog/values.yaml
https://raw.githubusercontent.com/helm/charts/master/stable/datadog/values.yaml

30

Figures 15, 16 and 17 are images of the control panel of DataDog. The log

management page, system status and Kubernetes information are shown.

Figure 15. DataDog Logs Dashboard

Figure 16. DataDog Host metrics Dashboard

31

Figure 17. DataDog Kubernetes Dashboard

The above figures 15-17 provide a lot of information. However, there are still some

blank pieces. That is because DataDog provides a lot of solutions which has to be

checked one by one in order to make everything work smoothly.

Using DataDog relieves a lot of resources from the not-so-powerful Raspberry PI.

2.3.5 Deploy Traefik

To deploy Traefik, same as before, Helm will be used, since it is the recommended

way and the easiest one. [22]

> wget -O traefik-values.yaml

https://raw.githubusercontent.com/containous/traefik-helm-

chart/master/traefik/values.yaml

> helm repo add traefik https://containous.github.io/traefik-helm-chart

> helm repo update

> helm install --namespace=traefik -f traefik-values.yaml traefik traefik/traefik

https://raw.githubusercontent.com/containous/traefik-helm-chart/master/traefik/values.yaml
https://raw.githubusercontent.com/containous/traefik-helm-chart/master/traefik/values.yaml
https://containous.github.io/traefik-helm-chart

32

In this case it is a bit different. Traefik does not use the official Helm repository.

That is because the “helm stable/traefik” is the version 1.7 of Traefik using Helm

v2 and the version that will be deployed has to be the newest one, v2.2 with Helm

v3. The reason is that the cluster is using the v3 of Helm.

Once everything is deployed:

Figure 18. Checking if traefik is running properly

The next step is to deploy Traefik to node-infra, which has a taint to disable

Kubernetes scheduling pods to the node.

To get the pod scheduled to node-infra, the config tolerations has to be set as

shown in Figure 19.

Figure 19. nodeSelector and toleration example

Now, node-infra is running Traefik and the ports have been exposed to the host.

Figure 20 shows the control panel of Traefik, proving that the service is working.

33

Figure 20. Traefik Dashboard

Access from outside the cluster is banned, since there is a firewall in the Ubiquiti

which filters all new incoming traffic.

On the other hand, the public access to the pod, Traefik which will be managing

the load balancer and routing, will be allowed.

Figure 21. Ubiquiti Port Forwarding manager

34

Figure 21 shows the ports of which the access has been granted to the public. For

security reasons no other ports will be exposed to the public.

Now everything is ready to deploy an app!

2.3.6 Deploy Private Docker Registry

This is the most straight forward service to deploy.

Helm package: https://github.com/Joxit/docker-registry-ui

> git clone https://github.com/Joxit/docker-registry-ui.git

> cd docker-registry-ui/examples/helm/docker-registry-ui

> # Edit values accordingly our needs

> helm install --namespace=registry registry .

Traefik IngressRoute has to be created to make the Docker registry exposed.

Figure 22 shows the IngressRoute yaml with all configurations needed.

Figure 22. Docker Registry IngressRoute

https://github.com/Joxit/docker-registry-ui
https://github.com/Joxit/docker-registry-ui.git

35

Also, a middleware has been created to make sure nobody has access to the

Docker registry without authorization. Figure 23 shows the yaml of this middleware

used to whitelist the IPs of the cluster.

Figure 23. Docker Registry Middleware IPWhiteList

Now the Docker registry is well protected.

Finally, to make the data more consistent the pod will be deployed to node-infra

using persistent Volume as shown in Figure 24. Also, tolerations in Helm

configuration is updated.

Figure 24. Persistent Volume & Persistent Volume Claim

And that’s it! Now Docker registry is already running.

36

Figure 25. Docker registry & registry UI running successfully

In addition, this repository provides a small UI which is shown in Figure 26.

Figure 26. Screenshot of the UI made by Joxit

2.3.7 Deploy Kasperry PI app

Deploying Gatsby will require making a custom Kubernetes yaml.

The code of the webpage is completely public and accessible at:

https://github.com/AlbertSabate/kasperry

To make it work using ARM, the Docker container needs to be built using the same

architecture.

The dev Raspberry PI will be used for all building processes.

The following commands are for creating the Docker image using the dev

Raspberry PI.

> git clone https://github.com/AlbertSabate/kasperry.git

> cd kasperry

> docker build -t registry.zenet.io/kasperry .

> docker push registry.zenet.io/kasperry

Now the new Docker image with the Gatsby website is available to the Docker

registry.

https://github.com/AlbertSabate/kasperry

37

Figure 27 shows the deployment yaml needed to deploy Kasperry PI.

Figure 27. Kasperry PI Web Deployment

The deployment is responsible for deploying the new Docker image previously

created to the kubernetes cluster.

Figure 28. Kasperry PI Web Service

Figure 28 shows the Kubernetes service. It is the responsible to expose the

container to the cluster, and then Traefik will be the one exposing it to the public.

38

Figure 29. Middleware Traefik

This Middleware shown in figure 29 is an asset of Traefik. It is the way we have to

create a 301 permanent redirect from http to https.

Figure 30. Traefik IngressRoute notls

Figure 30 shows another asset of Traefik, IngressRoute. It is the way to link the

domain and the service and expose it to the public. This figure is the non-tls

version.

It can be seen that the middleware shown in figure 29 linked in figure 30 is doing

a force redirect to https.

39

Figure 31. Traefik IngressRoute tls

Related with figure 30, figure 31 is the TLS version. The TLS version contains the

data “certResolver”. certResolver is the credentials of the DNS provider, and then,

Traefik will use let’s encrypt to create automatically a valid SSL Certificate.

Figure 32. Valid Let’s Encrypt Certificate

40

Figure 33. Kasperry PI (Under development) webpage

Figure 32 and 33 shows the webpage properly certificated and successfully

running.

Finally, a Helm chart is created to be able to do automatic deployment easily.

> git clone https://github.com/AlbertSabate/kasperry.git

> # Configure helm/values.yaml

> helm install kasperry-web ./helm

2.3.8 CI / CD

The new Github Actions will be used to build the CI / CD. Since the webpage does

not have tests the pipeline will be defined to build the Docker image, push it to the

Docker registry and deploy Kubernetes using Helm.

Github Actions does not provide ARM compatibility, but it provides a self-hosting

option which can be executed in the dev Raspberry PI.

https://github.com/AlbertSabate/kasperry.git

41

Figure 34. Github Actions Self-hosted runners

Figure 34 shows the self-host runner with ARM already active.

Figure 35 shows the missing part to make it work, the secrets with the keys to

access to Kubernetes.

Figure 35. Github actions Secrets

Done, all prerequisites to make it work are green. So, it’s time to start to code the

pipelines.

Figure 36 shows the code used for the pipeline.

42

Figure 36. Github actions pipeline

It is a really simple approach, running everything inside of the Raspberry PI. What

the pipeline is doing is checking out master, versioning, executing Docker build

and Helm upgrade.

Figure 37 shows how the pipeline is successfully executed.

Figure 37. Github Action Passed Pipelines

This CI / CD is really simple, but it proves a working solution on how to build a

pipeline with whatever resources we have.

43

2.4 Results

Figure 38. Final cluster result (Hardware)

Figure 38 presents the final result of Kasperry PI hardware as defined in figure 8.

There is also an extra Raspberry PI, which was used to test Ubuntu 20.04 LTS.

On the other hand, the software successfully running is:

• Kubernetes

Successfully deployed on v1.18.2.

• Traefik

Successfully deployed on v2.2.0.

• DataDog

Successfully deployed on v7.19.0-rc.7 of the agent. In this case, a development

version has to be used to get ARM support.

• Docker registry

Successfully deployed on v2 using the UI provided by Joxit.

44

• Github Actions

Running the self-runner successfully in dev node. The workflow is:

- git push to master

- Triggers the Github Actions

- Executes the workflow shown in figure 37 which is running in the dev node with

access to Kubernetes cluster to apply the new deployment

Once hardware and software are settled, the CI / CD part has to be explained.

Figure 39. Github Actions workflows

Figure 39 shows how the pipeline runs successfully for each push to branch

master. When the pipeline fails, the workflow is stopped and the webpage does

not get deployed, in prevention of having an error on production.

45

Figure 40. DataDog memory usage by Kasperry PI pods

Figure 41. DataDog Kasperry PI running pods

Figure 42. Index of figure 41

Figures 40-42 shows DataDog graphs, aiming to prove the deployments happen

automatically and without downtime to the webpage. Figure 41 shows specifically

there are never less than 2 containers deployed.

46

Figure 43 & 44. Kasperry PI vs Splyt benchmark comparison

Figure 43 and 44 show a benchmark comparing Kasperry PI website with another

landing page deployed on GCloud. In both cases, the availability is 100%, and

concurrency is even better on Kasperry PI website. Kasperry PI is a very optimized

website where the data transferred is 0.99MB in comparison to the 17.46MB from

Splyt.

The only downside is that home internet is not as stable as the corporate one. And

most likely only one IP address will be assigned to the home internet.

Taking all into consideration, the final result I can give after building all of this

project is that Kasperry PI is a really good server candidate, small but ready for

production.

47

3. Conclusions

Building Kasperry PI needed a lot of knowledge on Kubernetes, networking and

webpage design. To obtain the knowledge a lot of reading and analyzing of

documents, articles, news, etc. are required. It develops into a deep learning

process on the most recent DevOps technology.

Furthermore, Kasperry PI web page contains a lot of tutorials to reproduce the

project and it is available worldwide. The webpage is publicly accessible, and it is

hosted on the cluster built following these tutorials.

Finally, Kasperry PI was successfully built. It has been running for more than

30days as of now, which proves that the objectives of this project have been

achieved.

Kasperry PI has been completed and it could demonstrate that building a

production-ready cluster is possible even at home, which is a meaningful

discovery.

48

4. Glossary

K8s or Kube: Short for Kubernetes.

DC/OS: Distributed Cloud Operating System, ie how mesos defines its OS.

CI/CD: In software engineering, CI/CD or CICD generally refers to the combined

practices of continuous integration and either continuous delivery or continuous

deployment.

ARM: A family of reduced instruction set computing architectures for computer

processors.

PaaS: Platform as a service.

OS: Operating system, eg windows, linux, mac, etc.

Cloud: Storing and accessing data and programs over the Internet instead of the

computer's hard drive.

Minion: Refers to a worker node.

Worker: Worker machines. It runs run containerized applications.

Master: A master node is a node which controls and manages a set of worker

nodes.

ISP: Internet Service Provider

SSD: Solid-state drive

YAML: A recursive acronym for "YAML Ain't Markup Language". A human-

readable data-serialization language. It is commonly used for configuration files

and in applications where data is being stored or transmitted.

Cluster: It is a set of loosely or tightly connected computers that work together so

that, in many respects, they can be viewed as a single system.

GCloud: It is referring Google Cloud.

IP address: An Internet Protocol address is a numerical label assigned to each

device connected to a computer network that uses the Internet Protocol for

communication.

TLS: Transport Layer Security, and its now-deprecated predecessor, Secure

Sockets Layer (SSL), are cryptographic protocols designed to provide

communications security over a computer network.

SSL: Secure Sockets Layer is a security technology that is commonly used to

secure server to browser transactions.

x.509: In cryptography, X.509 is a standard defining the format of public key

certificates.

DNS: The Domain Name System is a hierarchical and decentralized naming

system for computers, services, or other resources connected to the Internet or a

private network.

HTTP: The Hypertext Transfer Protocol is an application protocol for distributed,

collaborative, hypermedia information systems.

49

HTTPS: Hypertext Transfer Protocol Secure is an extension of the Hypertext

Transfer Protocol.

DevOps: DevOps is a set of practices that combines software development and

IT operations. It aims to shorten the systems development life cycle and provide

continuous delivery with high software quality.

RC: Release Candidate

Pipeline: In computing, a pipeline, also known as a data pipeline, is a set of data

processing elements connected in series, where the output of one element is the

input of the next one.

DHCP: The Dynamic Host Configuration Protocol is a network management

protocol used on Internet Protocol networks whereby a DHCP server dynamically

assigns an IP address and other network configuration parameters to each device

on a network so they can communicate with other IP networks.

VPN: A virtual private network extends a private network across a public network

and enables users to send and receive data across shared or public networks as

if their computing devices were directly connected to the private network.

MAC address: A media access control address is a unique identifier assigned to

a network interface controller for use as a network address in communications

within a network segment.

CPU: A central processing unit, also called a central processor or main processor,

is the electronic circuitry within a computer that executes instructions that make up

a computer program.

SWAP: SWAP memory is basically parts/pages of memory from the RAM which is

switching to use a file (or partition) dedicated on the hard-drive as memory space

instead.

RAM: Random-access memory is a form of computer memory that can be read

and changed in any order, typically used to store working data and machine code.

GB: The gigabyte is a multiple of the unit byte for digital information. The prefix

giga means 10⁹ in the International System of Units.

MB: The megabyte is a multiple of the unit byte for digital information. Its

recommended unit symbol is MB. The unit prefix mega is a multiplier of 1000000

in the International System of Units.

UUID: A universally unique identifier is a 128-bit number used to identify

information in computer systems.

Bit: The bit is a basic unit of information in information theory, computing, and

digital communications.

Byte: It is a unit of digital information that most commonly consists of eight bits.

IT: Information technology is the use of computers to store, retrieve, transmit, and

manipulate data or information.

50

5. Bibliography

1. https://itnext.io/benchmark-results-of-kubernetes-network-plugins-cni-over-

10gbit-s-network-36475925a560

2. https://docs.traefik.io/

3. https://docs.docker.com/

4. https://www.docker.com/resources/what-container

5. https://kubernetes.io/docs/home/

6. https://helm.sh/docs/

7. https://help.github.com/en/actions

8. https://docs.docker.com/registry/

9. https://joxit.dev/docker-registry-ui/

10. https://landscape.cncf.io/

11. https://en.wikipedia.org/wiki/Docker_(software)

12. https://platform9.com/blog/kubernetes-vs-mesos-marathon/

13. https://mesos.apache.org/

14. https://mesos.apache.org/documentation/latest/architecture/

15. https://mesosphere.github.io/marathon/

16. https://zookeeper.apache.org/

17. https://www.docker.com/blog/what-is-containerd-runtime/

18. https://ubuntu.com/kubernetes/docs/cni-overview

19. https://stackshare.io/stackups/k3s-vs-kubernetes

20. https://rancher.com/docs/k3s/latest/en/architecture/

21. https://github.com/cncf

22. https://github.com/helm/charts/tree/master/stable/traefik

23. https://github.com/DataDog/integrations-core/issues/2582

24. https://github.com/helm/charts/tree/master/stable/datadog

25. https://ubuntu.com/tutorials/install-a-local-kubernetes-with-microk8s#1-overview

26. https://fstoppers.com/poll/how-often-do-sd-cards-really-fail-289251

https://itnext.io/benchmark-results-of-kubernetes-network-plugins-cni-over-10gbit-s-network-36475925a560
https://itnext.io/benchmark-results-of-kubernetes-network-plugins-cni-over-10gbit-s-network-36475925a560
https://docs.traefik.io/
https://docs.docker.com/
https://www.docker.com/resources/what-container
https://kubernetes.io/docs/home/
https://helm.sh/docs/
https://help.github.com/en/actions
https://docs.docker.com/registry/
https://joxit.dev/docker-registry-ui/
https://landscape.cncf.io/
https://en.wikipedia.org/wiki/Docker_(software)
https://platform9.com/blog/kubernetes-vs-mesos-marathon/
https://mesos.apache.org/
https://mesos.apache.org/documentation/latest/architecture/
https://mesosphere.github.io/marathon/
https://zookeeper.apache.org/
https://www.docker.com/blog/what-is-containerd-runtime/
https://ubuntu.com/kubernetes/docs/cni-overview
https://stackshare.io/stackups/k3s-vs-kubernetes
https://rancher.com/docs/k3s/latest/en/architecture/
https://github.com/cncf
https://github.com/helm/charts/tree/master/stable/traefik
https://github.com/DataDog/integrations-core/issues/2582
https://github.com/helm/charts/tree/master/stable/datadog
https://ubuntu.com/tutorials/install-a-local-kubernetes-with-microk8s#1-overview
https://fstoppers.com/poll/how-often-do-sd-cards-really-fail-289251

51

6. Annexes

● https://kasperry.io

● https://github.com/AlbertSabate/kasperry

Kasperry PI Project README

https://kasperry.io/
https://github.com/AlbertSabate/kasperry

52

Kasperry PI Web page

53

54

55

56

57

58

59

	1. Introduction
	1.1 Context and Justification of the Project
	1.2 Work objectives
	1.3 Approach and method followed
	1.4 Work Planning
	1.5 Brief summary of products obtained

	2. Kasperry π
	2.1 Big Picture
	2.1.1 Raspberry PI
	2.1.2 Docker
	● Containerd

	2.1.3 Mesosphere
	2.1.3.1 Apache Mesos
	2.1.3.2 Marathon

	2.1.4 Kubernetes
	2.1.4.1 Rancher K3s
	2.1.4.2 MicroK8s
	2.1.4.3 Minikube

	2.1.5 Helm
	2.1.6 CNCF - Cloud Native Computing Foundation

	2.2 Architecture
	2.2.1 Planning & Schemas
	2.2.2 Material and economic valuation
	2.2.3 Network
	2.2.4 Deployments
	2.2.4.1 Tracing & Monitoring
	2.2.4.2 Load Balancing & Routing
	2.2.4.3 App
	2.2.4.4 Database

	2.3 Building process
	2.3.1 Setup Raspberry PI
	2.3.2 Setup Network and local domains
	2.3.3 Deploying Kubernetes with the CNI (Flannel)
	2.3.4 Deploy DataDog
	2.3.5 Deploy Traefik
	2.3.6 Deploy Private Docker Registry
	2.3.7 Deploy Kasperry PI app
	2.3.8 CI / CD

	2.4 Results

	3. Conclusions
	4. Glossary
	5. Bibliography
	6. Annexes
	Kasperry PI Project README
	Kasperry PI Web page

