
Universitat Oberta de Catalunya (UOC)

Master in Data Science (Data Science)

MASTER THESIS

Area: 4

Optimal decision trees using optimization techniques

—————————————————————————–

Author: Josep Alòs Pascual

Course instructor (UOC): Raúl Parada Medina

Area Responsible Professor (UOC): Jordi Casas Roma

External supervisor (UdL): Carlos Ansotegui

—————————————————————————–

Balaguer, June 16, 2020

Credits/Copyright

Aquesta obra està subjecta a una llicència de Reconeixement - NoComercial -
SenseObraDerivada

Esta obra está sujeta a una licencia de Reconocimiento - NoComercial -
SinObraDerivada

This work is subject to an Attribution - NonCommercial - NoDerivatives license

3.0 España de CreativeCommons.

i

https://creativecommons.org/licenses/by-nc-nd/3.0/es/

ii

FITXA DEL TREBALL FINAL

T́ıtol del treball: Optimal decision trees using optimization techniques

Nom de l’autor: Josep Alòs Pascual

Nom del colaborador/a docent: Raul Parada Medina

Nom del PRA: Jordi Casas Roma

Data d’entrega (mm/aaaa): 06/2020

Titulació o programa: Màster de Ciència de Dades

Àrea del Treball Final: Àrea 4

Idioma del treball: Anglès

Paraules clau arbres de decisió, optimització

iii

iv

Acknowledgements

I would like to thank all the people that have helped me during this project. First of all, I
want to thank both my course instructor at Universitat Oberta de Catalunya and my external
supervisor at the Universitat de Lleida for their guiding during this project, their constant
support and the time they spent resolving my doubts. Secondly, I want to thank my family
that did not let me down even during the turbulent times we have experienced during the
quarantine, and to my friends for the same exact reason, being as close as possible during those
months.

v

vi

Abstract

The rising need of having a way to understand and explain the decisions produced by the

artificial intelligence algorithms, used in a broad set of fields, led to the apparition of the concept

of explainable artificial intelligence. One of the most simple, although powerful, algorithms are

the decision trees. This project focuses on studying the algorithms that allow the creation

of such trees, while ensuring that the tree is optimal, as smaller trees are usually easier to

explain. The project presents a Python package whose purpose is to act as a barrier remover

for the users that don’t have the means to implement those algorithms, allowing them to use

the implementations proposed by different authors while leveraging the implementation of both

the algorithms and the interaction with the solving tools to the package.

In this report, the design of such tool is presented, as well as the technical considerations on

which solving tools are used. Also, benchmarking on different datasets used in the bibliography

is done to assess that the package accomplishes its main task, and to compare the different

approaches implemented.

Keywords— optimal decision trees, optimization

vii

viii

viii

Contents

Abstract vii

Table of contents ix

List of figures xi

List of tables xiii

List of code listings 1

1 Introduction 3

1.1 Description of the project . 4

1.2 Personal motivation . 5

1.3 Objectives . 6

1.4 Methodology of the project development description 6

1.5 Planning of the project . 7

1.6 Document structure . 11

2 State of the art 13

2.1 Decision trees algorithms . 13

2.1.1 Heuristic greedy algorithms . 14

2.1.2 Mathematical optimization algorithms . 15

2.2 Tools used . 17

2.2.1 Python . 17

2.2.2 Minizinc and Flatzinc . 17

2.2.3 Mathematical solvers . 18

3 Library design 21

3.1 Library overview and design . 21

3.2 Interaction with external components . 22

ix

x CONTENTS

4 Library implementation 25

4.1 Overview . 25

4.2 Implementation . 26

4.2.1 CNF module . 27

4.2.2 Models module . 27

4.2.3 SAT models . 30

4.2.4 Cross validate . 33

4.2.5 Trees . 34

4.2.6 Data parsing . 39

4.3 Dependencies . 40

4.4 Installation and usage . 41

5 Experimental results 43

5.1 Results discussion . 46

6 Conclusions and future work 49

6.1 Conclusions . 49

6.2 Future work . 50

Glossary 51

Acronyms 53

Appendices 55

A API reference 57

A.1 decisiontrees.cnf.CNF . 57

A.2 decisiontrees.cnf components . 60

A.3 decisiontrees.cnf.utils . 65

A.4 decisiontrees.data parsing . 66

A.5 decisiontrees.trees . 67

A.6 decisiontrees.cross validate . 70

A.7 decisiontrees.models . 72

B Encodings implementations 77

B.1 SAT APPROACH . 77

B.2 MINIZINC APPROACH . 81

B.3 InferDT . 84

B.3.1 Inferring tree with a maximum depth . 84

B.3.2 Inferring a tree with a maximum number of nodes 87

x

List of Figures

1 Example of a decision tree . 4

2 Project’s planning (part 1/3) . 8

2 Project’s planning (part 2/3) . 9

2 Project’s planning (part 3/3) . 10

3 Layout of the package interacting with the external components 24

4 Package structure . 26

5 Models hierarchy . 28

6 Solve method for MinizincModel . 29

xi

xii LIST OF FIGURES

xii

List of Tables

1 Planned tasks and its timing . 7

2 Correspondence of each model with the factory method used 37

3 Dataset list . 44

4 Results for the small datasets . 44

5 Results for the reduced datasets . 45

6 Decision trees found by Scikit-Learn . 46

xiii

xiv LIST OF TABLES

xiv

List of code Listings

1 Example of the encoding of a Knapsack problem in Minizinc 18

2 SklearnModel.find tree method . 30

3 CrossValidationResult class . 33

4 cross validate method . 34

5 Optimal tree for the “irish” dataset (see table 3) . 35

6 EncoderPipeline class. The auxiliar methods are not added for the sake of brevity . . 39

7 Example of how to use the package . 41

8 Weather dataset . 42

LIST OF CODE LISTINGS

2

Chapter 1

Introduction

Machine learning is a scientific discipline whose objective is to provide algorithms that can automat-

ically detect patterns in data, with the aim of be able to exploit those patterns to predict future

data[1].

When it comes to classify machine learning algorithms, we have two main blocks: (1) supervised

learning and (2) unsupervised learning. Supervised algorithms are the ones that the training of a

model is based on having both the input and the expected output for the model. On the other hand,

unsupervised algorithms rely only in using the input data to find similarities and interpretations[2].

One of the main applications of supervised machine learning is to solve classification problems. A

classification problem is the problem of assigning one label for an item according to some of its

features (p.e. in a bank each client (item) could be classified as potential customer for a new product

or not (label)). We name observation to the set of features for a specific item, and class to the specific

label for this observation. The goal of the classification algorithms is to be able to predict correctly

the class of unseen observations (i.e. observations not used in the training process) after the training.

In this project we will focus in one of the earliest and most common classification algorithm: the

decision trees. A decision tree is a tool based on creating a tree-like structure of decisions based on

the features, and paths based on the answers of those decisions. Starting from the root node, the path

follows a list of decisions until it reaches a leaf. This leaf contains the class which will be applied to

the observation.

With the increasing usage of artificial intelligence in day to day operations, the need of being able to

explain how the algorithms take decisions has lead to a new discipline in this field called eXplainable

Artificial Intelligence (XAI)[3]. The decision trees provide a substantial advantage over other algo-

rithms that make them specially interesting nowadays: it is incredibly easy to visualize those decisions,

making them one of the most interpretable models of machine learning.

3

Introduction

Figure 1: Example of a decision tree

Source: Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Chal-
lenges toward Responsible AI [3]

In [4] an optimal decision tree is defined as the tree with the minimum size (node count, depth. . .)

that classifies correctly all the observations. In other approaches some percentage error is allowed,

since perfect classification leads in general to overfitting, i.e., classifiers with high accuracy on the

training set but do not generalize well.

In [5] it was stated that finding an optimal binary decision tree with a fixed depth is an NP-complete

problem1. From that point, lots of approaches based on greedy heuristics or mathematical optimization

techniques have appeared to overcome this problem. In this project, we will focus on the latest.

1.1 Description of the project

In this project we will explore the feasibility of using constraint programming techniques to find

optimal decision trees. Lots of studies can be found along the line of creating new algorithms and

encodings for solving the problem of finding those optimal trees using boolean SATisfiability problem

(SAT)[7] [8][9], Linear Programming (LP)[10], or Constraint Programming (CP)[11].

Those studies are based on solving a sequence of decision problems where each decision problem is

feasible (has a yes answer) if a tree of a given size k and structural constraints can be built. By

iteratively refining k, the optimal size is found when decision problem for size k has a yes answer and

for k − 1 a no answer.

These decision problems can be encoded through the suitable formalism so that they can be solved

by the application of mathematical or constraint programming solvers. The main advantage of this

approach is that the user can leverage the advancements in the solvers without any modification to

the encodings.

In order to assess those techniques, we will develop a library that implements some of those approaches,

1NP-Complete is a non deterministic problem that can be reduced in a polynomial time to the satisfiability
problem[6]

4

5

from encoding the problem to finding the solution using the proposed algorithms. This library will

allow the user to select between the different implementations, providing some degree of flexibility

for different user cases. We will also conduct an extensive experimental study for all the approaches

implemented.

This work is part of a project of the Logic&Optimization Group (LOG) at Universitat de Lleida

(UdL)2. This group brings together researchers with different background from UdL and Universitat

Politècnica de Catalunya (UPC). It focuses on the design of efficient solving techniques for industrial

combinatorial optimization an machine learning problems, and on the design of automatic configu-

ration and selection techniques for a wide range of applications. On the more theoretical side, this

group specializes on computational complexity, proof complexity and complex networks analysis. As

a member of the LOG group, during the development of this work we will have access to an extensive

experience of its members in the optimization field, as well as having access to the high performance

computation cluster required to run the benchmarks for the algorithms.

1.2 Personal motivation

With the rising usage of machine learning in day to day tasks, people can start to feel threatened by

those algorithms that “take decisions for me that I can not understand”. In order to be able to use

safely those algorithms, we must consider two things: (1) the capacity to understand how they work,

and (2) the robustness of those algorithms. As was stated before, decision trees are extremely easy

to understand when it comes to evaluate why such a decision was taken (we only have to follow the

path). But because of this simplicity, those trees might not be enough powerful to compete against

algorithms such neural networks. Having the capacity to obtain optimal decision trees with reasonable

resources in the real world, though, can provide those algorithms a huge boost in this “competition”.

As a member of a research group where its main topic is mathematical optimization, being able to

combine those two lines is an incredible opportunity to expand to potential unexplored ideas, thus

being able to advance towards better machine learning algorithms and its underlying knowledge.

2http://ulog.udl.cat/

5

http://ulog.udl.cat/

Introduction

1.3 Objectives

The main goal of this project is to explore the methods of finding optimal decision trees using opti-

mization techniques. Those techniques will be evaluated and compared using well-known benchmarks,

thus assessing its feasibility in the real world problems.

To achieve this, we define those goals:

1. Create a library that implements the process of loading an instance, encoding it using a specific

encoding, and retrieve its solution.

2. Use the Minizinc3 modeling language to create parametizable encodings for each approach.

3. Implement the interface between the library and Minizinc.

4. Benchmark each approach implemented against well-known datasets4.

5. Design the library in a way that can be easily extended with new encodings and/or techniques.

6. Implement at least 4 different approaches for obtaining optimal decision trees in the library.

1.4 Methodology of the project development description

While it might seem redundant to implement some existing ideas in this field, the goal of this project

is to integrate all those ideas in a common library. Thus, the strategy this project follows is to research

about existing algorithms with decent performance results, and integrate them in the extensible library.

After selecting which algorithms we want to integrate, and in order to keep the library as open to new

ones as possible, we will first implement one of those algorithms and check the main structure of the

library. Once this basic structure works, it will be the time to do the refactoring to make it extensible

to the other algorithms selected.

Although during the implementation the algorithms will be tested for its correctness, once all the

selected ones are integrated the benchmarking will be performed. This benchmarking will be executed

in a high performance cluster to allow us to compare the algorithms with the results in the original

papers.

3https://www.minizinc.org/
4Those can be either datasets used in the original papers or datasets used commonly in the bibliography.

6

https://www.minizinc.org/

7

Task Task Start End

1 Project definition 19/02 01/03
2 State of the art 02/03 22/03
2.1 Research for the state of the art of decision trees 02/03 12/03
2.2 Research for the algorithm 1 08/03 18/03
2.3 Research for the algorithm 2 08/03 18/03
2.4 Research for the algorithm 3 08/03 18/03
2.5 Research for the algorithm 4 08/03 18/03
2.6 Write the start of the art of the used tools (python, minizinc. . .) 18/03 22/03
2.7 Research for additional algorithms 20/03 22/03
3 Design and implementation 23/03 23/05
3.1 Get familiar with the minizinc tool 23/03 31/03
3.2 First library implementation to test the components integration 01/04 10/04
3.3 Implement the algorithm #1 in the library 05/04 15/04
3.4 Refactor the library to allow the addition of new algorithms 16/04 20/04
3.5 Implement the algorithm #2 in the library 18/04 28/04
3.6 Implement the algorithm #3 in the library 29/04 08/05
3.7 Implement the algorithm #4 in the library 05/05 15/05
3.8 Design the experiments 16/05 17/05
3.9 Benchmarking 18/05 23/05
4 Project report writing 24/05 10/06
5 Thesis delivery and defense 11/06 24/06

Table 1: Planned tasks and its timing

1.5 Planning of the project

Next the Gantt diagram is presented with the planning of the project. The main restriction for this

project is the time constraints set by the deliveries of the different parts of the project’s memory.

Thus, we divide the tasks to be done in the 5 deliveries, with those deliveries as milestones.

The tasks to be done for each delivery are listed in the table 1, and shown in the figure 2.

7

2020

02 03

W1 W2 W3 W4 W5

Project definition

PAC 1 delivery

State of the art

–Research for the state of the
art in a broad sense

–Research for the alg. #1

–Research for the alg. #2

–Research for the alg. #3

–Research for the alg. #4

–Write the start of the art of
the known used

–Research for additional algorithms

PAC 2 delivery

Figure 2: Project’s planning (part 1/3)

9
2020

03 04 05

W1 W2 W3 W4 W5 W6 W7 W8 W9

Design and implementation

–Get familiar with the minizinc tool

–First framework implementation
to test the components integration

–Implement the alg. #1

–Refactor the framework to allow
the addition of new algorithms

–Implement the alg. #2

–Implement the alg. #3

–Implement the alg. #4

–Design the experiments

–Benchmarking

PAC 3 delivery

Figure 2: Project’s planning (part 2/3)

9

In
tro

d
u
ctio

n

2020

05 06

W1 W2 W3 W4 W5 W6

Project report writing

PAC 4 delivery

–Thesis delivery and defense

PAC 5 delivery

Defense

Figure 2: Project’s planning (part 3/3)

1
0

11

1.6 Document structure

This report is divided in 5 chapters, explained below:

• Introduction: (The current chapter) presents the project and the motivation behind it.

• State of the art: In this chapter the previous work and knowledge relevant to the technologies

and techniques used in the project is presented.

• Library design: This chapter shows the design and its considerations of the library that imple-

ments the selected algorithms.

• Library implementation: Complementary to the previous chapter, this chapter focuses on ex-

plaining how the specific algorithms are implemented in the project.

• Experimental results: This chapter shows the performance results of the different algorithms

against a set of benchmark, as well as a comparison between those algorithms.

• Conclusions and future work: Here, the conclusions of the project are shown. Also, the potential

research works to follow are explained.

11

Introduction

12

Chapter 2

State of the art

This chapter provides an analysis of the state of the art for the concepts and tools that will be used

in this project. It is structured in 3 main blocks: (1) the decision tree concept and algorithms, (2) the

tools used for the formulation of the problems, and (3) the mathematical solvers used to solve those

formulations.

2.1 Decision trees algorithms

Starting from 1963 with the publication of the first regression tree algorithm[12], the decision trees

field has been extensively researched[13]. In those years, research has focused on multiple facets of

those trees: from improving heuristics (for example, Classification and Regression Trees (CART)[14]

(see below at 2.1.1) uses the Gini impurity to select which feature to use in a node), mining rulesets,

pruning techniques. . .

In this section, we will review the state of the art of the approaches for creating those trees. Despite

the fact that (as said before) decision trees can also be applied to regression problems, we will focus

only in the usage in classification problems, as the output/prediction/classification when applying

them to the regression problems can be a continuous value.

13

State of the art

2.1.1 Heuristic greedy algorithms

When it comes to tackle classification problems, the usual strategy is to use greedy strategies. Those

greedy strategies rely on exploring the near region of the search space to find locally optimal values,

thus obtaining an approximation of the solution faster than strategies that ensure the answer is

optimal. By definition, when NP problems increase linearly in size, the time requirements for finding

a solution grows exponentially. Is in those cases that, in the real world, it might be better to find an

approximate solution faster than finding the exact solution with an unknown delivery time. As the

heuristics improve, the approximate solutions or the required time to find the tree also improve.

Is this benefit of having acceptable solutions faster that has led those heuristic greedy algorithms to

have the usage share they have currently. Following, we present the greedy algorithms that are most

used or perform better in real case scenarios.

2.1.1.1 CART

Classification and Regression Trees (CART) was presented in [14], and it is a greedy algorithm that

relies on constructing binary trees by, given the data that reaches a specific node, selects the best

feature to split the data. This selection is based on the Gini impurity, a measure that represents the

statistical error rate of labeling a random element of the set.

2.1.1.2 ID3, C4.5, C5.0/See5

Ross Quinlan first developed Iterative Dichotomiser 3 (ID3)[15], an algorithm that creates a tree by

splitting the training observations in each node based on the entropy or the information gain measure

of each unused feature. The entropy[16] is the measure of impurity, disorder or uncertainty in a set.

The information gain of a feature measures how much the entropy is reduced when the set is split

based on this feature.

Seven years later, Ross Quinlan presented a new iteration of this algorithm, called C4.5[17]. The new

features of this algorithm include accepting both continuous and discrete features, handling incomplete

data points, using pruning to avoid overfitting, and accepting weights for the features.

Quinlan went further, and presented the tools called C5.0 on Linux and See5 on Windows[18]. Those

tools are an implementation of the C4.5 algorithm. The version Quinlan’s released is significantly

faster and efficient in terms of memory, and also allows boosting1.

1An ensemble method for improving the model predictions.

14

15

2.1.1.3 CHAID

Gordon V. Kass presented Chi-square Automatic Interaction Detection (CHAID)[19], an heuristic

approach to create decision trees based on adjusted significance testing. It is a tool to discover how

the variables can be merged to explain the outcome in the given dependent variable using the chi-

square test, that allows to measure the independence of two variables (in this context features) x and

y.

2.1.1.4 ID5R, ITI

ID5R is an incremental algorithm created by Paul E. Utgoff[20] for inducing trees similarly to those

created by ID3 algorithm; with the main difference that the instances are presented serially instead

of giving all the training data in batch. In 1997, a new algorithm based on the same incremental

procedure was developed[21], called Iterative Tree Induction (ITI).

Those approaches are suitable for online training, i.e. training the tree while predicting instead of

pretraining the model using a batch of training data; as they are intended to construct the trees in an

iterative way.

Although being from 1984 and 1993 respectively, the most used heuristic algorithms to find decision

trees currently are CART and C4.5. For example, tools like Scikit Learn implement a variant of

CART[22]. Although they do not find optimal decision trees, their good results are well known. Thus,

we can use them to compare the state of the art of the mathematical optimization approaches with

the heuristic approaches.

Those heuristic algorithms can be used to obtain upper bounds for the mathematical optimization

approaches, as done by [8] with the Iterative Tree Induction (ITI) algorithm.

2.1.2 Mathematical optimization algorithms

Here, we present the approaches that in this project will be implemented in the library. In the

implementation chapter those algorithms will be explained more extensively.

15

State of the art

2.1.2.1 Optimal decision trees with SAT

Multiple approaches have been presented to find optimal decision trees using SAT solvers [7][8][9]. In

this project, two of those approaches will be implemented.

The first approach that will be implemented is presented in [8]. It shows a new SAT formulation of

this problem that encodes a tree with a given size N . Using a SAT solver, it verifies the existence of a

tree with this size that can encode perfectly the given train dataset. The optimal tree is found when,

for a satisfiable tree with size N , the encoding of the trees with size N ′ < N is unsatisfiable.

A similar strategy used in this paper can be found in [7], but the former achieves to create smaller

encodings. Despite this, the encodings are still large; so to compare to other algorithm it uses an

approximation using only a percentage of the available data in the encoding.

As said before, in order to search for the optimal tree, the ITI algorithm is used to set an upper bound.

Then, using an iterative approach, the tree with N = UB is encoded, and solved. If the problem is

satisfiable, the size of the tree is reduced by one, and solved another time until N ′ is found to be

unsatisfiable. Then, any solution for the solved problem N ′ + 1 is an optimal tree.

The second approach is the one developed in [9]. It also uses a SAT solver as an oracle to decide

whether the current tree layout is satisfiable or not. The main difference is that, while the former

approach creates the encoding for all the tree and the entire training dataset, the latter is based on

generating the feature constraints and class constraints, and then using incremental inference adding

rows in the dataset that makes the current tree inconsistent in order to refine it.

This approach allows to specify the maximum of nodes (or leave it undefined). The algorithm will

search for the smallest tree consistent with all the observations limited (or not, if undefined) by the

MaxNodes constraint.

2.1.2.2 Sub-optimal decision trees using the cover size constraint

In [11], a constraint programming approach is presented. Using a branch-and-bound algorithm in a

CP solver, it eliminates parts of the search space in which no solutions can be found. The encoding

of the problem is based on a modification of the CoverSize2 constraint.

This approach is focused on finding the decision tree that, with a limited depth, minimizes the classi-

fication error. Thus, this algorithm by default does not find the optimal tree.

2The cover size is the problem of linking an itemset to the number of transactions containing the itemset[23]
[24]

16

17

2.1.2.3 BinOCT

BinOCT is a binary linear programming formulation presented in [10]. Given a depth K, this encoding

finds the tree that minimizes the classification error. This approach focuses on reducing the dependency

of the problem size with the dataset size: the number of variables depends of the maximum number

of unique combinations of the features values.

BinOCT allows the usage of non-binary feature values, splitting the values of the features in sets

according to the label; thus it is not required to do a discretization nor a one hot encoding pre-

processing step.

2.2 Tools used

This project is intended to be developed as a Python package. The implementation will also need

some sort of tools that will enable the solving of the mathematical optimization approaches.

In this section, the different tools related to the implementation of the project are explained. First,

the programming language intended to be used will be introduced. Then, there is the description of

the tools that will be used to implement the different optimization algorithms.

2.2.1 Python

Python3 is a scripting language, that gained popularity due to its high-level language properties that

allow the fast prototyping of algorithms; specially in the artificial intelligence field.

It is a multi-platform, general purpose language, interpreted during its execution. As this language

resembles pseudo-code, it is one of the most used languages when it comes to researchers that do not

have the deep knowledge of the low-level details of the system.

2.2.2 Minizinc and Flatzinc

Minizinc4 is an open source constraint modeling language. It allows to define formally mathematical

optimization problems in this language in a language that resembles mathematical expressions and

constraints, and then connect to a set of mathematical solvers to obtain the solution.

3https://www.python.org/
4https://www.minizinc.org/

17

https://www.python.org/
https://www.minizinc.org/

State of the art

An example of how to express the Knapsack problem5 is shown in the listing 1.

1 % From Minizinc examples

2 int: n; % number of objects

3 set of int: OBJ = 1..n;

4 int: capacity;

5 array[OBJ] of int: profit;

6 array[OBJ] of int: size;

7

8 array[OBJ] of var int: x; % how many of each object

9

10 constraint (x[i] >= 0 | i in OBJ);

11 constraint sum(i in OBJ)(size[i] * x[i]) <= capacity;

12 solve maximize sum(i in OBJ)(profit[i] * x[i]);

13

14 output ["x = ", show(x), "\n"];

Listing 1: Example of the encoding of a Knapsack problem in Minizinc

Flatzinc is the counterpart of this language, and its the responsible of compiling the minizinc math-

ematical language into the specific encoding accepted by the solver used, for example converting the

a->b (a implies b) expression into the linear programming “.lp” format.

2.2.3 Mathematical solvers

2.2.3.1 SAT solvers

The boolean SATisfiability problem (SAT) is one of the most studied NP hard problems. This problem

is defined as, given a set of clauses (formula), composed by the disjunction of boolean literals, it is

possible to find an assignation for the variables that compose those literals such as all the clauses are

satisfied. So, in those problems we have:

Boolean variables Variables that can be assigned to either True or False.

Literals Minimal unit of the problem, it is a variable with its sign (i.e. a variable negated or not).

Clause A clause is a disjunction (boolean or operation) of literals.

Formula A conjunction (boolean and operation) of clauses.

5https://en.wikipedia.org/wiki/Knapsack_problem

18

https://en.wikipedia.org/wiki/Knapsack_problem

19

As SAT problems are one of the most studied NP hard problems, it is common to encode the NP hard

problems in this formulation (as done with the decision trees), and then solve it using the extensively

developed techniques.

To find the best solvers for this problems, we can use the yearly international SAT competition6. The

best solvers in 2019 were:

• Maple

• CaDiCaL

• Plingelin

2.2.3.2 Linear programming solvers

The modern era of optimization starts when Dantzig developed simplex method in the late 1940s [25].

This method allowed to solve in a systematic and efficient way large models of linear programming.

Linear programming is the application of an algorithm to maximize or minimize a given objective linear

function, subjecting it to a set of linear equality and inequality constraints [26]. A linear function is

a function whose constraints are of the first order (i.e. does not contain variables raise to any power

other than one or variables multiplied by each other) [27].

A linear problem can be expressed in the following way:

maximize cTx, subject to Ax <= b, x >= 0 (2.1)

where c and x are vectors in IRn, b is a vector in IRm, and A is an m × n matrix. x represents the

vector of unknown variables, c and b represent the vectors of known coefficients, A is a known matrix

of coefficients, and T is the matrix transpose. The expression cTx is the called objective function, and

can be maximized or minimized.

The importance of the linear programming techniques in fields such management, economics, finance,

and engineering since 1950; lead to a high investment in improving the solvers used. Thus, the maturity

level of some of those solvers and its maintainers guarantees both a high quality software and bleeding

edge techniques.

Lots of solvers exist for those problems, and because LP has multiple variants (integer programming,

mixed integer programming. . .), some solvers excel in a specific subset of those.

Following, we show three LP solvers:

6http://satcompetition.org/

19

http://satcompetition.org/

State of the art

• CPLEX7 IBM’s solver for linear programming, mixed integer programming, and quadratic

programming.

• Gurobi8 Gurobi is a mature solver for mathematical optimization problems. It is also one of

the most competitive solver in terms of performance.

• CLP9 CLP is the open source solver for linear programming from the Coin-OR research com-

munity.

7https://www.ibm.com/analytics/cplex-optimizer
8https://www.gurobi.com/
9https://projects.coin-or.org/Clp

20

https://www.ibm.com/analytics/cplex-optimizer
https://www.gurobi.com/
https://projects.coin-or.org/Clp

Chapter 3

Library design

One of the most important goals of this project is to provide an extensible library that will allow its

users to use different approaches to find optimal decision trees using constraint programming without

requiring to mess with the implementation and knowledge details of each approach. In this chapter,

the design of such library is presented.

3.1 Library overview and design

The library should provide two main functionalities: (1) find an optimal valid decision tree represen-

tation using any of the implemented methods, and (2) offer a class that represents this decision tree

which can be used to classify observations.

In the context of finding decision trees using CP, a valid decision tree is an assignation of the variables

of a model for a specific encoding where all the constraints of this model are satisfied.

All the algorithms perform a search on the set that contains all the valid decision trees for a dataset,

but the specific details of how this search is done are different for each one. Thus, the library should

abstract those details and proceed as shown in the algorithm 1.

The usage of such an algorithm relies on the premise that each implementation will deal with the entire

search space and return either an optimal decision tree or “No solution”. This will come back later in

the implementation for each method. Moreover, as the solution is “encoding specific”, the algorithm

should not return the raw solution, but the solution converted to the said class that represents a

decision tree.

Those two responsibilities are the two functionalities that are mentioned in the begin of the chapter,

21

Library design

Algorithm 1: Searching for the optimal decision tree

input: A dataset data as a matrix of n feats + 1× n rows
search space ← SOMETHING ; //specific of each encoding

while more params available(search space) do
params ← next params(search space);
model ← encode(data, params);
solution ← solve(model);
if solution is optimal then

return solution
end

end
return “No solution”

and according to the single-responsibility principle[28] the library should have two different components

that deal with the details of those, although they are interconnected as each tree creation must be

according to the specific solution provided.

Another functionality not required but desirable is that the package provides a way to prepare the

data for those algorithms. As this project focuses on the creation of decision trees for datasets with

boolean features, a third component is created to prepare the data to a common format expected by

the algorithms, so the implementation of the different methods can assume a clean dataset ready to

be encoded.

In the following sections the different external components used are explained.

3.2 Interaction with external components

This library is not self-contained, as it relies on external tools to solve the CP models to find the

decision tree. Thus, here those components are listed, and how the interaction with them is designed.

Library user source code

The most important external component is the projects that will use this library, otherwise this entire

project will have no purpose. The library must hide as much as possible of the different implementation

details to the end users. Thus, the user should be able to choose between one algorithm or another

one without requiring to change much code as the goal of the algorithms is common (i.e. finding a

22

23

decision tree). To achieve this, the different algorithms and the decision trees that represent their

solutions must have a common interface that allow the following basic actions:

• Algorithm implementation:

– Create the model for a dataset

– Find the tree

• Decision tree

– Classify an instance

– Get the accuracy of the tree for a dataset

– Print the tree

Minizinc and solvers

Most of the algorithms will be encoded using the Minizinc language. This is a high-level mathematical

language that cannot be used directly against the CP solvers. Thus, the library relies on the Minizinc

official Python package1 to input the model encoded in this high-level language to a solver that has an

interface for this tool. This abstraction will allow the user to select between a set of different solvers,

providing the flexibility of choosing between commercial implementations or open-source / freeware

solvers; broadening the target users that otherwise could be limited by the restriction of having to

buy a license to use this library.

Glucose

Although the final goal is to have a Minizinc-like encoding for each of the algorithms, some of them

rely on SAT solvers. At the moment of writing this project, no available interface was found to SAT

solvers such as Minisat or Glucose. Thus, some algorithms have both implementations, in Minizinc

and in pure SAT. This will allow us to compare the performance of the other solvers tested, determining

if such interface should be developed to call SAT solvers from Minizinc in future iterations of the

project.

1https://pypi.org/project/minizinc/

23

https://pypi.org/project/minizinc/

Library design

Scikit-Learn

The last component that this library will interact with is the Scikit-Learn package2. This package

will provide the algorithm for finding decision trees using a modified version of CART. Although this

method is greedy, it will serve as a comparison point to assess the advantages of using CP approaches

to find optimal decision trees.

The figure 3 shows the entire layout of the project taking into account the external components.

User
application

decisiontrees
module

trees

models

data parsing

external
components

Minizinc

Optimization

solver

Glucose

Scikit-Learn

Decision trees project

Figure 3: Layout of the package interacting with the external components

2https://scikit-learn.org/stable/

24

https://scikit-learn.org/stable/

Chapter 4

Library implementation

Having discussed the design of the library in the previous chapter, here the implementation of the

project is presented. First, the main overview of the solution is shown, as well as a minimal explanation

about the technologies related. Then, the details of how the package is implemented are shown. Finally,

there is a brief explanation about how to install the package and how to use it.

4.1 Overview

This project is implemented in the form of a Python 3.6 package, called decisiontrees. This

package is developed in the context of the LOG Group at UdL, so it is not available to the public

using the official pip repositories1. Despite this, for the sake of this project some parts are disclosed

to explain the implementation details.

The highlights of this package are:

• Provides different algorithms (some of them with multiple implementations) to find optimal

decision trees using CP.

• Solve the encodings using the Minizinc Python’s Application Programming Interface (API)

to delegate the interaction with a large set of optimization solvers.

• Parsing the encoding specific solution values to create a common object representing a decision

tree that can be used to classify observations.

• Integration with Scikit-Learn’s sklearn.DecisionTreeClassifier tool, implemented with

the same interface as the other algorithms to have a common usage.

1To obtain a copy of the package, please contact with the author of this project

25

Library implementation

Apart from Python 3.6 and the packages listed in the package requirements (installed automatically

thanks to the pip package manager), this package depends on a working installation of Minizinc

as well as all the solvers that the user wants to use. Note that the default installation of Minizinc

contains bundled solvers[29], so this step is not necessary but highly recommended as other solvers

(such as Gurobi2 or CPlex3) that have an interface with Minizinc can solve the models faster. The

comparison of all the available solvers is out of the scope of this project.

4.2 Implementation

The package has the following structure (figure 4):

decisiontrees

cnf

cnf.py

cnf components.py

utils.py

models

base.py

sklearn.py

sat models.py

cross validate.py

trees.py

data parsing.py

Figure 4: Package structure

In the design chapter (see 3), it was stated that this package has two main responsibilities. Those cor-

respond to the components shown in the package structure as the models/ and trees.py components.

It also provides the methods to parse the data and to perform cross validation over the datasets.

In the sections below each of the components is described in more detail.

2https://www.gurobi.com/
3https://www.ibm.com/analytics/cplex-optimizer

26

https://www.gurobi.com/
https://www.ibm.com/analytics/cplex-optimizer

27

4.2.1 CNF module

The first component in the hierarchy is the cnf/ module. Its name stands for Conjunctive Normal

Form. It is included because one of the algorithms provided (as seen below in 4.2.3.1) is an implemen-

tation that works with files in .cnf format, and solves them using the SAT solver Glucose[30].

Its main purpose is to serve as a high-level module to encode a SAT formula into the .cnf format using

declarations that resemble the boolean logic language such as “A implies B”4, while keeping track of

the variables by name instead of its numeric representation. It is also the responsible of hiding the

interaction with the solver.

The API reference for this module can be found in the appendix A.

4.2.2 Models module

This component has the specific implementation for each type of algorithm that this project seeks to

compare. The entire module is based on offering a single interface: DecisionTreeModel5 This interface

provides the method find_tree, that receives a bi-dimensional Numpy array, whose columns are the

features plus the label in the last column, and the rows are the observations of the train dataset;

and returns a tuple containing both the found decision tree and the accuracy of the tree in the train

dataset (as most methods find the optimal tree for the provided dataset, this is usually 1.0 (or 100%)),

but it is added for future extension. In this section only the parts related to the encoding and solving

algorithm are explained. How each algorithm’s variables are converted to a decision tree is explained

in the section 4.2.5.

The class hierarchy is shown in the figure 5. It can be seen that the DecisionTreeModel has three

descendants:

• MinizincModel. It serves as a base for the models implemented using Minizinc. It abstracts

the creation of the Minizinc related objects (model, instance, solver), adds the dataset and

the number of features to the instance as variables, and then calls the solve method. The

implementations of the specific algorithms inherit from this class.

• PerfectOptimalSatModel This class model (explained below, see 4.2.3.1) provides the imple-

mentation that encodes a model directly against SAT, instead of using Minizinc. Thus, it

inherits from the base class DecisionTreeModel.

4In .cnf this should be encoded such as “-1 2”; where 1 correspond to the A variable and 2 correspond to
the B variable.

5Note that in Python the concept of interface separated from class does not exist.

27

Library implementation

<<abstract>>
DecisionTreeModel

time limit : int
seed : int

<<abstract>>
find tree(data :
numpy.array)

MinizincModel

instance : miniz-
inc.Instance
<<class>> MODEL : str

get model()
solve(data : numpy.array,
solver : str)
add extra variables()

PerfectOptimalModel

- upper bound : int
- current nodes : int

InferMinimalDepth

max depth : int
current model : minizinc.Model
n feats : int
labels : list

add constraint(constraint : str)
encode(data : numpy.array, depth : int)
generate feature constraints(row : numpy.array, i :

int, depth : int, clause : str, q : int, lvl : int)
generate class constraints(row : numpy.array, i : int,

depth : int, clause : str, q : int, lvl : int)
infer tree for depth(data : numpy.array, depth : int)

InferMinimalNodes

current nodes : int

infer(data : numpy.array,
depth : int, nodes : int)
reduce nodes(data :

numpy.array, depth : int)

IterativeInfer

SklearnModel
PerfectOptimalSatModel

- upper bound : int

Figure 5: Models hierarchy

• SklearnModel The last model that inherits directly from this class is the model that uses

Scikit-Learn to find the decision tree using a greedy approach: CART.

MinizincModel

This class provides the method solve, that can be called from its descendants to solve the model

using Minizinc. It has two arguments: data, a Numpy array representing the dataset; and solver,

a string that will be used for the solver lookup. It proceeds as following:

1. It creates a minizinc.Model object using the _get_model() method.

2. Retrieve a minizinc.Solver instance using the minizinc.Solver.lookup method, feeding it

with the solver argument received.

3. It creates a minizinc.Instance object with the solver and the model, and sets two variables

in those models:

• array [int, int] of int: data: a bidimensional list representing the dataset.

28

29

• int: n_feats: the number of columns that represent a feature.

Those two variables must be declared in the model.

4. Adds the extra variables (if any) using the _add_extra_variables method.

5. Solves the Minizinc instance and returns its result.

The two auxiliary methods that the solve relies are:

• _get_model() Class method that returns a minizinc.Model object. It has a default implemen-

tation that creates the model from a file using the class variable MODEL. The descendants must

either set the class variable or override this method.

• _add_extra_variables. The descendants should implement this method if additional variables

should be set in the instance.

The solve method is represented in the sequence diagram 6.

MinizincModel minizinc.Solver minizinc.Instance

solve(data, solver)

get model()

model
lookup(solver)

solver inst
Instance(solver inst, model)

instance
set(“data”, data.tolist())

set(“n feats”, data.shape[1] - 1)

add extra variables()

solve()

result

result

Figure 6: Solve method for MinizincModel

29

Library implementation

SklearnModel

This model implements the find_tree method using a greedy approach. Its implementation is pretty

straightforward, and is shown in the listing 2.

1 def find_tree(self , data: np.array) -> Tuple[SklearnDT , float]:

2 train_x = data[:, :-1]

3 train_y = data[:, -1]

4

5 model = DecisionTreeClassifier(random_state=self.seed) \

6 .fit(train_x , train_y)

7 train_score = model.score(train_x , train_y)

8

9 tree = SklearnDT.from_sklearn(model)

10

11 return tree , train_score

Listing 2: SklearnModel.find tree method

Once the main idea of how the models work has been explained, the next sections detail how each

algorithm is implemented.

4.2.3 SAT models

The first type of algorithms implemented in this project are the SAT approaches explained in 2.1.2.1.

We have two different algorithms:

4.2.3.1 PerfectDecisionTrees

The first approach is the one developed in [8]. It is implemented using two different methods: a pure

SAT solver approach, and using Minizinc. This algorithm provides an encoding that, for a given

number of nodes N and a dataset, determines if a decision tree that can classify all the observations

of the dataset exists. To find the optimal tree, it starts using a value of N set to the provided upper

bound, and reduces this value by two each iteration until this tree does not exist (i.e. the model is

unsatisfiable). Thus, the last tree found is guaranteed to be optimal.

Although both approaches use a different method for asserting the existence of the said tree for each

number of nodes, the rest of the algorithm is similar. Thus, the find_tree method is almost the

30

31

same, with the difference being in how the tree is obtained and the specific line that checks if the

solver reported that the model is satisfiable or not.

Pure SAT approach

The SAT approach relies on the cnf/ package to create the different constraints and solving

the resulting .cnf file. The implementation of the algorithm is divided in two classes: the

PerfectOptimalSatModel class, which implements the DecisionTreeModel interface; and the

SatDecisionTreeEncoder class, that encapsulates the encoding provided for a specific number of

nodes and a dataset.

The SatDecisionTreeEncoder receives in its constructor an integer representing the maximum num-

ber of nodes, and a Numpy array representing the dataset; and has three main methods:

• encode This method performs the creation of the constraints into the internal cnf.CNF ob-

ject. The implementation of the entire method is not included in this report as it is pretty

straightforward. In the appendix B (see B.1) it is shown how each constraint is created.

• solve Once the model is encoded, it can be solved using this method. It is simply a passthrough

method, as it only calls the solve method of the internal cnf.CNF object.

• get_tree It creates a DecisionTree instance using the TreeFactory (see 4.2.5).

Minizinc approach

The Minizinc approach relies on a model file created in advance, that represents the entire encoding.

This file, shown in the appendix B.2, is expanded when calling the solve method of the MinizincModel

parent class automatically when sending the model to the solver by Minizinc. Thus, the only required

step each time is to set the value for the variable that represents the number of nodes in this model

(N), as the data is added by the parent class. Because of this, the class PerfectOptimalModel only

implements the iterative part of the tree search, and calls solve each time with a different value for

the variable N .

31

Library implementation

4.2.3.2 InferDT

The approach proposed in [9] is composed by three phases. As the objective of this project is to com-

pare the different algorithms, three different models are implemented. Though, each model actually

extends the previous step, so the inheritance is a strong advantage in this approach. The specific

details of how the constraints are implemented are shown in the appendix B.3.

Inferring the tree with an optimal depth

The first step is to find the decision tree that minimizes its depth. The main difference with the perfect

decision tree approach explained above, because this algorithm relies on generating the constraints in

an iterative way the entire model has to be constructed dynamically.

The find_tree method is a loop that iterates through the depths in range from 2 (the minimum

depth) to a maximum depth specified. In each iteration, it searches for a satisfiable tree using the

method _infer_tree_for_depth that receives both the data and the depth. If a tree can be inferred,

then the algorithm stops and returns this tree as the tree with minimal depth (note that because it

searches from a small depth to the maximum depth, if the optimal depth is d, all the depths d′ such

that d′ < d the solver will find the model unsatisfiable).

The method _infer_tree_for_depth creates the new model using the _encode method, and solves

it using the MinizincModel.solve method.

Inferring the tree with an optimal number of nodes

The next step consists on, having found the minimal depth, try to minimize the number of nodes that

are used. This is done using a dichotomic search in the _reduce_nodes, once the satisfiable depth is

found. To allow the next step to be implemented, both when searching the minimal depth and the

minimum number of nodes, it uses the _infer that solves the model for a given depth and a specific

number of nodes. It also extends the _encode method to add the new constraints that encode the

maximum number of nodes.

32

33

Iterative inferring

The last step of the proposed algorithm is to reduce the number of instances that are used to create

the tree, as the main problem of those methods is that the number of constraints depends on the

number of observations used to create the tree. To do this reduction, the _infer is modified to start

inferring the tree using only a subset of rows, the enough to have at least two different classes in this

subset. Once a tree is found for this subset, the remaining rows are classified using the tree, and if a

row is classified incorrectly, the row is added to the subset and the tree is inferred another time, until

all the rows are classified correctly (or the model is reported to be unsatisfiable).

4.2.4 Cross validate

This component provides a method to perform cross-validation given a model class, a number

of folds, the dataset and the arguments for the model class. It also contains a class called

CrossValidationResult, shown in the listing 3. This class is used to accumulate the results for

each fold split during the cross validation, and then apply a specific metric (mean, median. . .) to the

results all at once.

1 class CrossValidationResult:

2 def __init__(self):

3 self.train_accuracies = list()

4 self.test_accuracies = list()

5 self.sizes = list()

6 self.solved = 0

7

8 def add_result(self , train_accuracy , test_accuracy , size):

9 self.train_accuracies.append(train_accuracy)

10 self.test_accuracies.append(test_accuracy)

11 self.sizes.append(size)

12 self.solved += 1

13

14 def get_results(self , metric):

15 return (metric(self.train_accuracies),

16 metric(self.test_accuracies),

17 metric(self.sizes),

18 self.solved)

Listing 3: CrossValidationResult class

33

Library implementation

The cross validation uses the Scikit-Learn KFold utility to split the data, and then searches for the

decision tree using the model passed as an argument. It records both the train and the validation

accuracy, as well as the size of the tree found. The cross validation method is shown in the listing 4.

1 def cross_validate(model_class , n_folds , data , time_limit , seed ,

*args , ** kwargs):

2 kf = KFold(n_folds , random_state=seed , shuffle=True)

3

4 result = CrossValidationResult ()

5

6 model = model_class(time_limit , seed , *args , ** kwargs)

7

8 for i, (train_index , test_index) in enumerate(kf.split(data)):

9 fold_data = data[train_index]

10 tree , train_accuracy = model.find_tree(fold_data)

11

12 if tree:

13 test_accuracy = tree.get_accuracy(data[test_index])

14

15 result.add_result(

16 train_accuracy ,

17 test_accuracy ,

18 tree.size()

19)

20 return result

Listing 4: cross validate method

4.2.5 Trees

Having the algorithms only fulfills half of the objective of make those new approaches user-friendly.

Once the result is obtained, it has to be converted to a class that can be used without knowing the

specific details of each encoding. This problem is dealt in the trees/ module. This module provides

two main classes: DecisionTree and TreeFactory.

The class DecisionTree is the class that represents the trees found during the solving processes, ready

to be used. They serve as a fully functional decision tree model, able to classify new observations based

on the learnt patterns during the training. It offers the following methods:

34

35

• classify This method implements the most important feature for a decision tree. This is

classifying observations based on the previous knowledge.

• print_tree Following the topic of XAI, the tree can be printed to the console in an intuitive

structure, so it is easy to inspect the resulting tree after the training process. An example of

this tree printed is shown in the listing 5.

• get_accuracy One of the common tasks in machine learning is to compare the models using

not the accuracy during the training step, but with a test set (i.e. rows that are never seen

during the training of this model). This method allows to compute the accuracy of the trained

decision tree for a given dataset.

• size To assess that the algorithms find the optimal value for the known data, this method is

implemented. It gives the number of nodes (decision nodes and leaves) that compose the tree.

- Split by feature 71

| - Split by feature 70

| | - Split by feature 69

| | | - Leaf has class (-)

| | | - Leaf has class (+)

| | - Leaf has class (+)

| - Leaf has class (+)

Listing 5: Optimal tree for the “irish” dataset (see table 3)

As many of the implementations for tree-like data structures, this implementation follows a recursive

pattern to represent the entire structure. Thus, the DecisionTree class is not only the entire tree but

also each node and leaf, as the left and right child of a node can be seen as independent sub-trees. This

recursivity eases the implementation of the methods that need to iterate the tree, and conveniently

all the methods of this class require this iteration (one could think that the get_accuracy is called

for a single tree, not on sub-trees, but this method is only a fancy wrapper for the classify method

applied to an entire set of rows).

classify

This method starts in the root node, and keeps calling recursively the left or right child according to

the observation’s value in the feature chosen for each node. Once a leaf is reached, it returns the value

assigned to this leaf.

35

Library implementation

print tree

This method prints the current node with a given prefix (that will represent the characters that “draw”

the tree along with the correct indentation). Then, it appends the next level of indentation to this

prefix, and calls the same method for the left child and then the right child. If one of the printed

nodes is a leaf, it simply prints the value assigned to the leaf, and stops the recursive calls.

get accuracy

To get the accuracy for an entire set of observations, this method first applies the classify method

to each of the observations given, and then compares the result of the label assigned by the tree with

the real labels provided. Thus, the accuracy is computed as[31]:

1− errors

cardinality(observations)

size

This is the easiest method to implement for a tree. Defining the size of a node as the sum of the sizes

of the sub-trees hanging from this node plus one (the node itself), the method just returns:

• 1 if the node is a leaf

• 1 + left_child.size() + right_child.size()

Thus, starting from the root node we can find the size of the tree.

It is important to mention that all the algorithms implemented in this library will use this class

to represent the tree with the exception of the model that uses Scikit-Learn. This model has its

own decision tree class, that implements the method to get the accuracy and the classify method as

wrappers for the internal sklearn.DecisionTreeClassifier model used. Those methods will not

follow the recursive strategy as they can be called directly to the model. This class has a problem,

and it is that inspecting the resulting model it is possible to find which feature is used each node, but

not the class assigned to the leaves. But as this class is only different internally, the class is private,

and when it is returned it can be used as a DecisionTree object.

The other important component of this module is the TreeFactory class. that implements the factory

pattern[32]. Its a class composed entirely by static methods that contain the logic to translate the

36

37

Model Factory method arguments

SklearnModel from sklearn DecisionTreeClassifier
PerfectOptimalSatModel from perfect optimal sat SatDecisionTreeEncoder
PerfectOptimalModel from perfect optimal minizinc result
InferMinimalDepth from infer minizinc result, depth
InferMinimalNodes from infer minizinc result, depth
IterativeInfer from infer minizinc result, depth

Table 2: Correspondence of each model with the factory method used

specific result of each algorithm to an instance of the DecisionTree class. It is designed to be used

exclusively from the models/ module, as the implementation details of how the problem and the

solution are encoded should be contained inside the package, and those methods only translate the

solution encoding to an instance of a decision tree.

Currently it has 4 methods corresponding to the models as shown in the table 2. The conversion of

each encoding is explained below.

from sklearn

To convert the sklearn model to a decision tree the factory inspects the attribute tree_ of the

sklearn.DecisionTreeClassifier class. This attribute has the description of each node of the

tree as arrays. This internal structure can be found in the Scikit-Learn official documentation[33].

The method has an identifier for the current node that it is inspecting, and calls recursively the

creation of the sub-trees for the left and right children (stored in the tree_.children_left and

tree_.children_right arrays). The internal structure of the model also assigns both the left child

and the right child identifiers to the same value for leaves, thus it is possible to determine when this re-

cursion has to stop. Finally, the feature used to split each node is found inspecting the tree_.feature

array.

from perfect optimal sat and from perfect optimal

Those two methods are explained together, as the logic behind them is the same, with the difference

being how the values of the variables are accessed.

The variables inspected for creating the tree are:

• Vi: True if the node i is a leaf.

• Ci: True if the assigned class for node i is 1.

37

Library implementation

• Li,j : True if the node j is the left child of the node i.

• Ri,j : Counterpart for right child of the L variable.

• Ai,f : True if the node i has the feature j as the decision criterion.

For each node i (starting from the root identified as i = 0), the method finds whether this node is a

leaf, and if so creates the DecisionTree representing this leaf and the label assigned. Otherwise, it

finds which nodes are the left and right children, and creates the sub-trees recursively. It also adds

the feature of the current node.

from infer

To convert the inferred trees from the 3 approaches of InferDT the same method can be used, as the

variables describing the found tree do not conflict between the three versions.

The procedure is the following: first, a list is created with enough space to hold the decision nodes

and the leafs, according to the depth received as a parameter. The list will hold two values for each

element: a boolean that represents if the node is a leaf, and the feature or label assigned to the node

(if its a label or a feature is determined by the boolean). This list is created in two steps:

First, the variable Fi,f is inspected to determine if the node i has the feature f . If so, the element i6

is set with the tuple (False, f).

Then, the variable Ci,c is inspected to determine if the leaf i has the class c. If so, the element in

the list 2depth + i is set to (True, c). This indexing is justified by the fact that if a perfect binary

tree is traversed using the Breadth First Search (BFS) order, the leaves will be after all the decision

nodes (which cardinality is 2depth). Note that not all the decision nodes will exist when using the two

improvements InferMinimalNodes and IterativeInfer, but later the tree will be pruned.

Once the entire list is filled with one of the three possible values: (1) (True, label) representing a leaf,

(2) (False, feature) representing a node, or (3) (False,−1) (the default value) that represents a node

that should be pruned; the _inferred_list_to_tree starts creating the tree recursively. Starting

with the node 1, each element is inspected and three cases can happen:

1. The node should be pruned: it simply returns None.

2. The node is a leaf: create the DecisionTree with the class assigned to the leaf.

3. Otherwise: find the left and right sub-trees, following the property of the BFS ordering (left

child is found at i × 2 and the right child at i × 2 + 1). If one of the sub-trees is found to be

6The first element will never be used as the list starts at 0 but the nodes start at 1. The implementation
assumes all the list indexed at 1 to ease the calculations of the left and right child.

38

39

None (pruned) the other child’s sub-tree will be returned as being the sub-tree for this node7.

Otherwise, create the DecisionTree is created with the left and right children, and the feature

for this node.

4.2.6 Data parsing

This component is mainly a helper tool. As most of the models expect binary features, and a binary

class, the package also provides a way to convert an entire dataset to this format. It performs two

basic transformations:

• One hot encoding[34] of the columns (i.e. features) that have that have more values than 2 (non-

binary). This transformation creates multiple columns for each unique value A, and assigns a

value of 1 if the row’s value was A.

• Mapping of the columns with 2 unique values that are not 0 or 1 to those values.

Those two transformations allow the algorithms to assume the data has a value of 1 (0) corresponding

to the True (False) value. As the transformation is automatic, the class used to encode the data

(shown in listing 6) also offers the method inverse_transform(data) that converts the transformed

data to the original one. Note that currently the library expects the label to be the last column of

the dataset. In future iterations of this project this should be deprecated in favor of using a specific

column identified by its name.

1 class EncoderPipeline:

2 def __init__(self):

3 self.columns_mappings = dict()

4 self.columns_order = None

5

6 def transform(self , data: pd.DataFrame) -> pd.DataFrame:

7 transformed = data.copy() # Do not modify the dataframe

received

8

9 self.columns_order = data.columns

10 dummies = list()

11 for col in transformed.columns:

12 if len(transformed[col]. unique ()) > 2:

13 dummies.append(col)

7Note that if both sub-trees are to be pruned, this node will also return None, thus being pruned in the
parent.

39

Library implementation

14 transformed[col] = transformed[col]. astype(str)

15 elif set(transformed[col]. unique ()) != {0, 1}:

16 # Elif as the dummies function will use 0 and 1

17 mapping , inverse_mapping =

_convert_to_binary_vals(transformed[col])

18 self.columns_mappings[col] = (mapping ,

inverse_mapping)

19 return pd.get_dummies(transformed , columns=dummies)

20

21 def inverse_transform(self , data: pd.DataFrame) -> pd.DataFrame:

22 inverse = _reverse_dummy(data)

23 for column , (mapping , inverse_mapping) in

self.columns_mappings.items():

24 inverse[column]. replace(inverse_mapping , inplace=True)

25

26 return inverse[self.columns_order]

Listing 6: EncoderPipeline class. The auxiliar methods are not added for the sake of brevity

4.3 Dependencies

In this section the dependencies of this package are listed, as well as how and when they are used.

• Minizinc (0.2.3) Provides all the functionality to solve the models using the optimization

solvers.

• Pandas (1.0.3) This package is used during the load of the datasets. It is used mainly for

data manipulating such as the one hot encoding performed during the data loading (see 4.2.6)

as well as the mapping of the values.

• Scikit-learn (0.23.0) This library provides both the model used to create decision trees using

the greedy approach, but also it is used in the cross validation utility, as it provides a convenient

tool called KFold, used to split the data into different folds.

• Numpy (1.18.4) Although the data load is performed using Pandas, the algorithms work

with multidimensional arrays that represent the observations, where each row is an observation

and each column is a feature (or the label). Numpy is a framework that allows to work with

those multidimensional arrays by rows and columns easier than using pure Python nested lists.

40

41

4.4 Installation and usage

Assuming the provided python package is called decisiontrees.whl, and located in the directory

WHEEL_DIR

$ python -m venv venv

$ source venv/bin/activate

$ pip install ${WHEEL_DIR}/decisiontrees.whl

An example of the usage is shown in the listing 7. Running this file, will result in creating the decision

tree for the dataset named “weather.csv”, shown in the listing 8. This file is one benchmark file from

the paper [7].

1 >>> from decisiontrees.models import PerfectOptimalModel

2 >>> from decisiontrees import data_parsing

3 >>>

4 >>> dataset = "weather.csv"

5 >>> encoder , data = data_parsing.load_data(dataset)

6 >>>

7 >>> timeout = 600

8 >>> seed = 42

9 >>>

10 >>> model = PerfectOptimalModel(timeout , seed , 15)

11 >>> tree , accuracy = model.find_tree(data.to_numpy ())

12 [......]

13 Time: 3.24725341796875 seconds

14 >>> print(tree.size())

15 5

16 >>> print(tree.get_accuracy(data.to_numpy ()))

17 1.0

18 >>> print(tree.print_tree ())

19 - Split by feature 9

20 | - Split by feature 2

21 | | - Leaf has class (+)

22 | | - Leaf has class (-)

23 | - Leaf has class (-)

Listing 7: Example of how to use the package

41

Library implementation

1 outlook:sunny ,outlook:rain ,outlook:overcast , temp:mild , temp:hot ,

temp: cool , humidity , windy , classes

2 0,0,1,0,1,0, high , false , +

3 0,1,0,1,0,0, high , false , +

4 0,1,0,0,0,1, normal , false , +

5 0,0,1,0,0,1, normal , true , +

6 1,0,0,0,0,1, normal , false , +

7 0,1,0,1,0,0, normal , false , +

8 1,0,0,1,0,0, normal , true , +

9 0,0,1,1,0,0, high , true , +

10 0,0,1,0,1,0, normal , false , +

11 0,1,0,1,0,0, high , true , -

12 1,0,0,0,1,0, high , false , -

13 1,0,0,0,1,0, high , true , -

14 0,1,0,0,0,1, normal , true , -

15 1,0,0,1,0,0, high , false , -

Listing 8: Weather dataset

42

Chapter 5

Experimental results

This chapter presents the experimental results performed in this project, according to the objective 4

(see chapter 1). The benchmarking of the different approaches will allow to assess whether the project

is a suitable tool for finding optimal decision trees or not.

The datasets are divided in 3 classes: (1) small, (2) reduced, and (3) big. They are presented in

the table 3. Note that for each “big” dataset, the “reduced” counterpart also exists. Those reduced

datasets use a subset of the features for each observation.

The datasets selected are the ones used in [8], the paper that presents the first approach implemented;

although in this paper it is explained that those datasets originally appear in [7], whose author kindly

shared with us those datasets.

The experiments were executed on the computation cluster managed by LOG. The computation cluster

used is (for reproducibility purposes) composed by 12 nodes with two Intel Xeon 4110 scalable and 96

GiB of main memory each. The problems were launched to the computation cluster with a timeout

of 4 hours for each solving process.

Each experiment was solved using the 5 different approaches implemented: (1) inferring the minimal

depth, (2) inferring the minimal nodes used, (3) iterative inferring, (4) perfect optimal decision trees

(using Minizinc), and (5) perfect optimal decision trees (using a pure SAT implementation). The

four first approaches use Minizinc, and the configured solver for those experiments is Gurobi 8.1.1,

while the pure SAT approach uses Glucose 4.0[30].

For those experiments, both the solving time and the size of the tree is shown. Also, in the infer

minimal depth experiment the depth column is added.

The results for the “small” datasets are shown in the table 4, and the ones for the “reduced” dataset

are shown in the table 5. In some rows, the label “OOT” appears in the time column. This is due to

43

Experimental results

Set class Dataset name

Small Mouse
Small Weather
Small Irish
Small Corral
Small Mux6

Set class Dataset name

Reduced Appendicitis-un
Reduced Australian-un
Reduced Backache-un
Reduced Cancer-un
Reduced Car-un
Reduced Cleve-un
Reduced Colic-un
Reduced Haberman-un
Reduced Heart-statlog-un
Reduced Hepatitis-un
Reduced HouseVotes-un
Reduced Hungarian-un
Reduced Promoters-un
Reduced Shuttle-un
Reduced Spect-un
Reduced New-thyroid-un

Set class Dataset name

Big Appendicitis
Big Australian
Big Backache
Big Cancer
Big Car
Big Cleve
Big Colic
Big Haberman
Big Heart-statlog
Big Hepatitis
Big HouseVotes
Big Hungarian
Big Promoters
Big Shuttle
Big Spect
Big New-Thyroid

Table 3: Dataset list

the instance exceeding the time limit imposed.

Dataset Model1

IMD IN II POM POSM

size depth time (s) size time (s) size time (s) size time (s) size time (s)

Corral 31 5 32.71 13 48.21 13 37.84 13 11.12 13 1.01

Irish 15 4 1123.36 7 524.23 7 604.96 7 421.98 7 22.79

Wheather 9 3.32 2.41 9 5.2 9 6.33 9 11.86 9 1.06

Mouse 25 4.70 127.71 15 600.17 15 469.92 15 1090.52 15 14.2

Mux6 15 4 10.26 15 15.56 15 18.25 15 326.24 15 16.43

1 The names of the columns are:

• IMD: InferMinimalDepth

• IN: InferNodes

• II: IterativeInfer

• POM: PerfectOptimalModel

• POSM: PerfectOptimalSatModel

Table 4: Results for the small datasets

The results of the “big” dataset are not presented as no instance was solved given the system restric-

44

45

tions of memory and time.

Dataset1 Model2

IMD IN II POM POSM

size depth time (s) size time (s) size time (s) size time (s) size time (s)

Append. 31 5.00 473.39 25 428.2 25 971.8 25 9714.45 25 394.04

Austr. 27 4.81 1450.22 19 1145.33 19 1228.7 19 4070.56 19 723.02

Backache 63 6.00 225.4 23 356.1 23 2350.7 23 8125.72 23 104

Cancer 117 6.88 3622.29 35 4457.11 OOT OOT 35 2354

Car 37 5.25 1938.04 19 2582.92 19 902.5 19 12078 19 744

Cleve 31 5.00 56.79 15 4461.62 15 112.2 15 8546.88 15 4136

Colic 25 4.70 104.34 19 167.23 19 125.84 19 705.67 19 437.98

Haberman OOT OOT OOT OOT 25 4297.33

Heart. 61 5.95 176.11 25 309.58 25 356.87 25 9320.14 25 427.13

Hepatitis 7 3.00 3.68 7 55.76 7 52.11 7 1096.63 7 62

House. 63 6.00 215.93 27 454.1 27 467.28 27 211.35 27 144.62

Hungarian 55 5.81 207.51 19 306.74 19 390.73 19 446.37 19 501.17

Promoters 63 6.00 67.48 23 240.12 23 186.3 23 3732.07 23 3.65

Shuttle 15 4.00 1029.16 7 10748.64 7 12568.69 OOT 7 700.69

Spect OOT 23 13256.84 23 7055.65 23 2147.01 23 822.09

Thyroid. 7 3.00 2.74 5 16.66 5 20.48 5 1612.18 5 548.69

1 Some names were abbreviated, indicated with the dot at the end of the name
2 The names of the columns are:

• IMD: InferMinimalDepth

• IN: InferNodes

• II: IterativeInfer

• POM: PerfectOptimalModel

• POSM: PerfectOptimalSatModel

Table 5: Results for the reduced datasets

For comparison, the Scikit-Learn module was also used to solve the same datasets. In the table 6 it

is shown the size obtained by the greedy approaches, with the optimal known size for each dataset.

45

Experimental results

Dataset Size (known optimal) time

Appendicitis-un (reduced) 25 (25) 2.81ms
Australian-un (reduced) 25 (19) 2.86ms
Backache-un (reduced) 23 (23) 2.48ms
Cancer-un (reduced) 49 (35) 2.73ms
Car-un (reduced) 25 (19) 2.85ms
Cleve-un (reduced) 15 (15) 3.09ms
Colic-un (reduced) 19 (19) 2.46ms
Corral 27 (13) 3.10ms
Heart-statlog-un (reduced) 29 (25) 2.67ms
Hepatitis-un (reduced) 7 (7) 2.80ms
House-votes-84-un (reduced) 29 (27) 3.21ms
Hungarian-un (reduced) 21 (19) 2.69ms
Irish 7 (7) 3.74ms
Wheather 13 (9) 2.85ms
Mouse 15 (15) 5.74ms
Mux6 47 (15) 5.47ms
Promoters-un (reduced) 23 (23) 2.54ms
ShuttleM-un (reduced) 19 (7) 6.28ms
Spect-un (reduced) 33 (23) 2.55ms
New-thyroid-un (reduced) 5 (5) 2.48ms

Table 6: Decision trees found by Scikit-Learn

5.1 Results discussion

As we can see from the results, all the approaches managed to find smaller decision trees than the

ones found by the greedy approach implemented in Scikit-Learn in 11 of the datasets, at the cost of

requiring a significantly greater amount of time. This is the expected behaviour, as those approaches

obviously try to reduce the time required, but it is not the key feature of those algorithms.

Note that, although some datasets were also solved to the optimal size using the greedy approach,

it is worth noticing that it is only in the easy datasets. Once the rows grow in complexity, the sizes

differences become larger.

Another important detail to notice is that, while the encoding is the same for the “PerfectOpti-

malModel” and the “PerfectOptimalSatModel”, the second has an advantage in two aspects: (1) it

does not require the step of converting the Minizinc encoding to the SAT encoding, and (2) the

solver used is specifically designed to solve those problems, while Gurobi (used as the backend solver

for Minizinc) has a performance reduction when the amount of constraints is extremely large (as

in those encodings). Thus, the obvious solution would be to repeat the experiments using Minizinc

against one of the SAT solvers presented in , but unfortunately no interface between Minizinc and

any of those solvers (including Glucose) was found.

46

47

The other result to point out is that the first version of the “infer” methods (the one inferring the

minimal depth) finds trees that use more nodes that the optimal ones. This is because this first

version does not optimize against the tree node count. Though, the versions that inherit from this

first version manage to find the optimal trees. In some cases, for example in the car dataset, the

iterative method manages to solve the instance much faster than the other versions also, indicating

that probably it is using only a subset of the rows to find the optimal tree, thus reducing the required

number of constraints sent to the solver.

47

Experimental results

48

Chapter 6

Conclusions and future work

In this chapter the conclusion of this project is presented, as well as some guidelines on how to improve

the project as well as the potential branches of development that could follow this project.

6.1 Conclusions

This project presents a new tool that allows to find small decision trees that perform perfectly to the

train dataset using a mathematical language to describe the dataset and the relations of the different

nodes that compose the tree, without requiring to learn the intrinsic details of the different encodings,

thus reducing the entry barrier for some users that do not have the knowledge (nor the time to acquire

it) to implement such approaches to find the decision trees.

Using the library provided, one is now able to not only find those trees, but also experiment with

different approaches and benchmark them to find the most suitable one for the specific needs of the

user.

All the objectives have been achieved, as the library allows to solve instances using the Minizinc

modeling language from start to end with the different approaches presented in the chapter 2. It

implements all the steps required from start to end of the process, including pre-processing the data,

encode the dataset and call the solver the amount of times required, and parse the solution once a

solution is found (or detect when the solution cannot be found given the time or memory restrictions).

This library is also easily extensible. This has been seen during the development, as the different

approaches were implemented over the library “skeleton” requiring only small corrections or no changes

at all. Those approaches have been evaluated against the benchmarks used in the literature related

to the project.

49

Conclusions and future work

As commented in the previous chapter (see 5.1), the main handicap of this project is the lack of a

suitable modern SAT solver for Minizinc, reducing the performance of those algorithms to the point

where some instances could not be solved in the required time. It is expected that, if an interface is

developed to interact with any of the SAT solvers that occupy the highest places in the ranking, the

solving process would be faster (although still slower than the greedy approaches, everything has a

cost).

On a personal level, this project allowed me to deep dive in the field of describing problems using

mathematical language, and discover the full potential of those generic descriptions, or encodings, to

leverage the hardest part of the problem solving to bleeding edge solvers with the help of interfaces like

Minizinc. It also indirectly introduced me to the XAI field, which I find really useful and necessary

given the fast advancements that are done every day in the artificial intelligence and optimization

fields.

It also served me to increase my Python programming skills, to learn some tips and tricks to use a

computation cluster as the one used during the benchmarking process, as well as increasing my bash

skills when developing all the wrappers needed to launch batches of experiments all at once, and parse

their results.

6.2 Future work

The proposed future work for improving this project in the future iterations is:

• Implement an interface from Minizinc to a SAT solver.

• Implement more approaches that find not only perfect decision trees, but also another ones

such as [11] or [10] that rely on finding sub-optimal decision trees while still guaranteeing the

property of being the smallest one or best one given the restrictions of a maximum depth or a

maximum error.

• Implement the pure SAT counterparts of all the algorithms.

• Improve the underlying SAT library used to interact with the Glucose solver to reduce its

memory usage as well as allowing different solvers to be used.

50

Glossary

BinOCT

From BINary Optimal Classification Trees, a method proposed in [10]. 17

C4.5

Extension of ID3 algorithm, presended in [17]. 14, 15

C5.0

Implementation of the C4.5 algorithm[18]. 14

Gini impurity

A measure that represents the statistical error rate of labeling a random element of the set. 13,

14

ID5R

An incremental algorithm created by Paul E. Utgoff[20]. 15

NP

Any problem that cannot be solved in a polynomial time respect the problem size. 14

NP hard

Any problem that is at least as hard as the hardest problems in NP. 18, 19

NP-Complete

Any problem that can be reduced in a polynomial time to the satisfiability problem (also called

the hardest problem in NP) [6]. 4

overfit

Said from a machine learning model that performs excellent with the train dataset, but poorly

on unseen data (test dataset, future data. . .). 4, 14

51

Glossary

52

Acronyms

API

Application Programming Interface. 25, 27

BFS

A traversing order for a tree-like data structure where the elements are traversed by depth levels,

so before traversing any node in a depth N , the ordering has traversed all the nodes in the layers

N ′ < N . 38

CART

Classification and Regression Trees. 13–15, 24, 28

CHAID

Chi-square Automatic Interaction Detection. 15

CNF

Conjunctive Normal Form. 27

CP

Constraint Programming. 4, 16, 21–25

ID3

Iterative Dichotomiser 3. 14, 15

ITI

Iterative Tree Induction. 15, 16

LOG

Logic&Optimization Group from Universitat de Lleida. 5, 25, 43

53

Acronyms

LP

Linear Programming. 4, 19

SAT

Boolean satisfiability problem (abbreviated SAT) is the problem of determining if there exist

an interpretation that satisfies a boolean formula. 4, 16, 18, 19, 23, 27, 30, 31, 43, 46, 50

UdL

Universitat de Lleida. 5, 25

UPC

Universitat Politècnica de Catalunya. 5

XAI

eXplainable Artificial Intelligence. 3, 35, 50

54

Appendices

55

Appendix A

API reference

A.1 decisiontrees.cnf.CNF

class decisiontrees.cnf.CNF(print when added: bool = False)

Class that represents a Conjunctive Normal Formula.

Parameters print when added (bool) – Flag that allows verbosity when adding

clauses to the formula.

clauses

List of clauses that compose this formula.

Type List[OrClause]

variables

Dictionary with the boolean variables that exist in this formula, identified by its encoding.

Type Dict[int, Variable]

solve status

The current status of the formula. By default it is unsolved.

Type SolveStatus

add(item: Union[decisiontrees.cnf.cnf components.Variable, decision-

trees.cnf.cnf components.Term, decisiontrees.cnf.cnf components.OrClause, deci-

siontrees.cnf.cnf components.AndExpression])
Adds an undetermined boolean item to the formula.

Parameters item (Union [Variable, Term, OrClause, AndExpression])

– This item will be converted to a corresponding clause and then added

to the formula. If the item is an AndExpression (which represents multiples

clauses), all of its clauses are added.

57

Optimal decision trees using optimization techniques

add clause(clause: decisiontrees.cnf.cnf components.OrClause)

Adds a clause to the formula.

If the print when added flag was set to true it also prints the clause to stdout.

Parameters clause (OrClause) – The clause to be added.

Raises TypeError – The argument is not an OrClause.

add clauses(*clauses: decisiontrees.cnf.cnf components.OrClause)

Adds clauses in batch.

Parameters *clauses (OrClause) – A variable amount of clauses to be added.

add var(var name: str) → decisiontrees.cnf.cnf components.Variable

Creates a new variable with a given name.

The var is created, with the name and the next encoding available. This encoding is an

integer used to represent the variable in the .cnf file format.

Parameters var name (str) – The name of the newly created variable.

Returns The variable created with the name and its encoding set.

Return type Variable

add vars(prefix: str, *ranges: Iterable) → decisiontrees.cnf.utils.NestedDict

Creates indexed variables.

Those variables are variables such as Vi,j,k

Parameters

• prefix (str) – The name of the variable without the indices.

• *ranges (Iterable) – Variable amount of ranges. Those ranges determine

the amount of variables for each index.

Returns A nested dictionary that allows to access the variables for each index.

Return type NestedDict

get aux() → decisiontrees.cnf.cnf components.Variable

Create an auxiliary var.

The auxiliary vars are named by default auxi, where i is its a sequential identifier.

Returns The newly created variable.

Return type Variable

get variables()

Obtain the list of variables that are in this formula.

is sat() → bool

Return whether the formula is known to be satisfiable.

58 API reference

Optimal decision trees using optimization techniques

is solved() → bool

Return whether the formula has been solved or not.

print header(out file=None)

Print the header.

This header is always expected to be in the first line of the .cnf files.

Parameters out file – a file-like object (stream); defaults to the current

sys.stdout.

solve(print output: bool = True)

Solve the formula using a sat solver.

This method will create a temporary directory which will be the working directory for the

solver. After dumping the formula in a cnf file, it will call the solver. Once the solver

finishes, the status will be updated accordingly and the solution will be retrieved if found.

Warning: This is a blocking method, and it might take a very long time for it to

return, depending on the formula. This is the expected behaviour

to cnf(filename: str)

Dump the formula into a .cnf file.

Create the new file and dumps the entire formula in the cnf format to this file. It first

creates the header with the variables and clauses counts, and then writes all the clauses

using the correct encoding for the variables.

It also prints to stdout the size of the file in a human-readable format.

Parameters filename (str) – The name of the file to create.

A.1. decisiontrees.cnf.CNF 59

Optimal decision trees using optimization techniques

A.2 decisiontrees.cnf components

class decisiontrees.cnf.cnf components.Variable(name: str, encoding: int)

Represents a single boolean variable.

name

The variable name

Type str

encoding

The integer that represents this variable in a CNF formula.

Type int

value

If not None, this value represents the assignation of this variable in an satisfiable interpre-

tation of the CNF formula it belongs.

Type Optional[bool]

add (other: Union[Variable, Term, OrClause, AndExpression])

Perform the logical operation OR with another element.

eq (other)

Return self==value.

hash ()

Return hash(self).

init (name: str, encoding: int)

Initialize self. See help(type(self)) for accurate signature.

mul (other: Union[Variable, Term, OrClause, AndExpression])

Perform the logical operation AND with another element.

repr ()

Return repr(self).

weakref

list of weak references to the object (if defined)

get encoding() → str

String that represents the variable encoded.

class decisiontrees.cnf.cnf components.Term(var: decision-

trees.cnf.cnf components.Variable,

negated: bool = False)
A term is a variable with an specified sign in a CNF formula.

60 API reference

Optimal decision trees using optimization techniques

var

The variable that composes this term.

Type Variable

negated

True if the variable is negated.

Type bool

add (other: Union[Variable, Term, OrClause, AndExpression])

Perform the logical operation OR with another element.

eq (other)

Return self==value.

hash ()

Return hash(self).

init (var: decisiontrees.cnf.cnf components.Variable, negated: bool = False)

Initialize self. See help(type(self)) for accurate signature.

mul (other: Union[Variable, Term, OrClause, AndExpression])

Perform the logical operation AND with another element.

repr ()

Return repr(self).

weakref

list of weak references to the object (if defined)

get encoding() → str

String that represents the term encoded.

This encoding is in the form of: “<sign><variable encoding>”. The sign is omitted when

it is positive.

class decisiontrees.cnf.cnf components.OrClause(terms: Iterable[Union[Variable,

Term, OrClause, AndExpression]])
An or clause represents a sequence of elements joined by OR operations.

terms

The sequence of elements. They are represented as a set as:

A ∨A ∨B ≡ A ∨B

Type Set[CnfComponent]

add (other: Union[Variable, Term, OrClause, AndExpression])

Perform the logical operation OR with another element.

A.2. decisiontrees.cnf components 61

Optimal decision trees using optimization techniques

eq (other)

Return self==value.

hash ()

Return hash(self).

init (terms: Iterable[Union[Variable, Term, OrClause, AndExpression]])

Initialize self. See help(type(self)) for accurate signature.

mul (other: Union[Variable, Term, OrClause, AndExpression])

Perform the logical operation AND with another element.

repr ()

Return repr(self).

weakref

list of weak references to the object (if defined)

class decisiontrees.cnf.cnf components.AndExpression(clauses)

add (other: Union[Variable, Term, OrClause, AndExpression])

Perform the logical operation OR with another element.

This method expands the expression using the distributive property of the OR operation

to ensure that the CNF is still a valid conjunction of clauses (i.e. any OR operation has

no AND operation inside).

eq (other)

Return self==value.

hash ()

Return hash(self).

init (clauses)

Initialize self. See help(type(self)) for accurate signature.

mul (other: Union[Variable, Term, OrClause, AndExpression])

Perform the logical operation AND with another element.

repr ()

Return repr(self).

weakref

list of weak references to the object (if defined)

decisiontrees.cnf.cnf components.Not(item: Union[Variable, Term, OrClause, AndEx-

pression])
Negate a boolean expression.

Parameters item (CnfComponent) – The boolean expression to negate.

62 API reference

Optimal decision trees using optimization techniques

Raises TypeError – If the item’s type is not a known class.

decisiontrees.cnf.cnf components.or all(terms: Iterable[Union[Variable, Term, Or-

Clause, AndExpression]], with reification:

bool = False, formula: CNF = None) →
Union[decisiontrees.cnf.cnf components.OrClause,

decisiontrees.cnf.cnf components.AndExpression]
Creates a disjunction of all the terms. If reification is specified, the disjunction will keep creating

auxiliary variables to the formula and the corresponding clause.

Note: This method can return either a single OR clause, or a conjunction of those. This is

due to the expansion done when the disjunction is something like:

(A ∧B) ∨ C

as this expression will be expanded to:

(A ∨ C) ∧ (B ∨ C)

Parameters

• terms (Iterable [CnfComponent]) – The terms that will form the disjunc-

tion.

• with reification (bool) – If the conjunction should be created using reifi-

cation to avoid an explosion of clauses when expanding the OR operations.

• formula (CNF) – The formula where the reification clauses will be created.

If reification is false this formula will not be used, thus it can be None.

decisiontrees.cnf.cnf components.and all(clauses: Iterable[Union[Variable, Term,

OrClause, AndExpression]]) → decision-

trees.cnf.cnf components.AndExpression
Creates a conjunction of the different clauses received.

Parameters clauses (Iterable [CnfComponent]) – The clauses that conform this

conjunction.

A.2. decisiontrees.cnf components 63

Optimal decision trees using optimization techniques

decisiontrees.cnf.cnf components.at least one(terms: Iterable[Union[Variable,

Term, OrClause, AndExpres-

sion]], with reification: bool =

False, formula: CNF = None) →
Union[decisiontrees.cnf.cnf components.OrClause,

decisiontrees.cnf.cnf components.AndExpression]
Creates a clause that specifies that at least one of the terms should evaluate to true. It is created

using the or all method.

See also:

or all()

decisiontrees.cnf.cnf components.at most one(terms: Iterable[Union[Variable, Term,

OrClause, AndExpression]]) → decision-

trees.cnf.cnf components.AndExpression
Creates a set of clauses specifying that at most one of those terms should evaluate to true.

Parameters terms (Iterable [CnfComponent]) – The list of components that at

most one of them can evaluate to true.

decisiontrees.cnf.cnf components.exactly one(terms: Iterable[Union[Variable,

Term, OrClause, AndExpression]],

with reification: bool = False, for-

mula: CNF = None) → decision-

trees.cnf.cnf components.AndExpression
Creates the set of clauses that represents that, from all the terms, only one can evaluate to true.

See also:

at least one() , at most one()

class decisiontrees.cnf.cnf components.SolveStatus

Enumeration representing the status of a CNF formula.

64 API reference

Optimal decision trees using optimization techniques

A.3 decisiontrees.cnf.utils

Utilities for the CNF module

class decisiontrees.cnf.utils.NestedDict

Dictionaries with arbitrary depth.

This class allows the creation of dictionaries that can accept the addition of a value at an

arbitrary depth.

nested set value(keys: List[Any], value: Any)

Sets a value for the dictionary given multiple keys.

Parameters

• keys (List [Any]) – List of the keys that will identify the value. For

example, [“a”, “b”, “c”] corresponds to dict[“a”][“b”][“c”]

• value (Any) – The value that will be set.

decisiontrees.cnf.utils.sizeof fmt(num: int) → str

Converts the size in bytes to a human-readable form.

A.3. decisiontrees.cnf.utils 65

Optimal decision trees using optimization techniques

A.4 decisiontrees.data parsing

Utilities for abstracting the load and pre-processing of the datasets.

class decisiontrees.data parsing.EncoderPipeline

Represents the pre-processing performed to a dataset.

inverse transform(data: pandas.core.frame.DataFrame) → pan-

das.core.frame.DataFrame
Reverses the transformations that applies this processing step.

Parameters data (pd.DataFrame) – A transformed dataset.

Returns The data with the transformation reverted.

Return type pd.DataFrame

transform(data: pandas.core.frame.DataFrame) → pandas.core.frame.DataFrame

Applies this processing step to a dataset. The transformations applied are

• Convert the non-binary columns to binary columns using the One Hot Encoding

method.

• Map the values in the binary columns to {0, 1}, if the are not already those.

Parameters data (pd.DataFrame) – The dataset that will be processed.

Returns The processed dataset.

Return type pd.DataFrame

decisiontrees.data parsing.load data(csv file: str) → Tu-

ple[decisiontrees.data parsing.EncoderPipeline,

pandas.core.frame.DataFrame]
Loads a dataset from a csv file, and performs the pre-processing step to this data.

Parameters csv file (str) – The file to be loaded.

Returns Returns both the encoder pipeline used to process this dataset, and the

dataset processed.

Return type Tuple[EncoderPipeline, pd.DataFrame]

66 API reference

Optimal decision trees using optimization techniques

A.5 decisiontrees.trees

This module contains the logic related to create DecisionTrees from the results of the solvers.

class decisiontrees.trees.DecisionTree(feat: Optional[int] = None, right: Op-

tional[DecisionTree] = None, left: Op-

tional[DecisionTree] = None, leaf: bool =

False, label: Optional[int] = None)
Class that represents a decision tree.

Technically, this class represents a node for the tree, with “pointers” to its childs. But as each

node can be considered as a subtree, it is correct to represent the entire tree with the root node.

Parameters

• feat (Optional [int]) – If this node is a decision node, this parameter

sets the current feature used to split.

• right (Optional [DecisionTree]) – The pointer to the right descendant.

It represents the branch where the current feature takes a value of 1.

• left (Optional [DecisionTree]) – The pointer to the left descendant. It

represents the branch where the current feature takes a value of 0.

• leaf (bool) – True if this node is a leaf, False if it is a decision node.

• label (Optional [int]) – If this node is a leaf, this parameter sets the

label assigned to the observations that reach this leaf.

classify(row: numpy.array) → int

Assigns a label to an observation.

Parameters row (np.array) – A 1D array that represents the observation.

Returns The predicted label for the observation.

Return type int

static from array(str array: List[str]) → decisiontrees.trees.DecisionTree

Iterates a BFS representation of the tree to generate the corresponding decision tree.

Parameters str array (List [str]) – The array that represents the tree.

Each element is in the form of <node id>/<content>

See also:

to array()

Returns The decision tree represented by the array.

Return type DecisionTree

A.5. decisiontrees.trees 67

Optimal decision trees using optimization techniques

get accuracy(test: numpy.array) → float

Calculates the accuracy of the current decision tree given a set of observations.

Parameters test (np.array) – 2D array where each row is an observation to be

classified. Each row is assumed to contain the true label at the last element.

Returns

The accuracy of the decision tree, calculated as:

1− misclassified rows

total rows

Return type float

static load(filename) → decisiontrees.trees.DecisionTree

Recover a decision tree from a file with its BFS representation.

print tree()

Prints the tree with in a visual structure.

save(filename: str)

Store the tree in a file using the BFS representation

size() → int

Count the number of nodes hanging of this node.

to array() → List[str]

Create an array representing this tree in BFS order. Each node is represented as a string

in the form of <node id>/<content>, where content is either the feature (label) used in

this decision node (leaf).

Returns The tree in BFS order.

Return type List[str]

class decisiontrees.trees.TreeFactory

Class that implements the factory pattern to create decision trees from the results of each

encoding.

static from infer(result: minizinc.result.Result, depth: int) → decision-

trees.trees.DecisionTree
Creates the decision tree for the InferDT models.

Parameters

• result (minizinc.Result) – The result returned by the solver, containing

the solution.

• depth (int) – The maximum depth of the tree inferred.

Returns The found decision tree.

68 API reference

Optimal decision trees using optimization techniques

Return type DecisionTree

static from perfect optimal(result: minizinc.result.Result, node=0) → decision-

trees.trees.DecisionTree
Creates the decision tree for the perfect optimal decision trees model (minizinc version).

Parameters

• result (minizinc.Result) – The result returned by the solver, containing

the solution.

• node (int) – The index of the node that is being created. Used to create

the tree by recursion.

Returns The found decision tree.

Return type DecisionTree

static from perfect optimal sat(model: SatDecisionTree, node: int = 1)→ decision-

trees.trees.DecisionTree
Creates the decision tree for the perfect optimal decision trees model (pure sat version).

Parameters

• model (SatDecisionTree) – The SatDecision tree found during the solving

process.

• node (int) – The index of the node that is being created. Used to create

the tree by recursion.

Returns The found decision tree.

Return type DecisionTree

static from sklearn(estimator: sklearn.tree. classes.DecisionTreeClassifier, node=0)

→ decisiontrees.trees.DecisionTree
Creates the decision tree for the Scikit-Learn model.

Parameters

• estimator (DecisionTreeClassifier) – The decision tree object found

by Scikit-Learn.

• node (int) – The index of the node that is being created. Used to create

the tree by recursion.

Returns The found decision tree.

Return type DecisionTree

A.5. decisiontrees.trees 69

Optimal decision trees using optimization techniques

A.6 decisiontrees.cross validate

Compute cross-validation over a dataset.

class decisiontrees.cross validate.CrossValidationResult

Store the results for each cross-validation step.

add result(train accuracy: float, validation accuracy: float, size: int)

Add the result of a single cross-validation step in the results list.

Parameters

• train accuracy (float) – The accuracy of the training set.

• validation accuracy (float) – The accuracy of the validation set.

• size (int) – The node count of the tree found.

get results(metric: Callable[[List[Union[int, float]]], float]) → Tuple[float, float, float,

int]
Calculate the result of the cross validation according to an specific metric.

Parameters metric (Callable [[List [Number]] , float]) – The metric

function. It receives a list of numbers and applies the metric over all those

values together. An example of this metric is np.mean.

Returns A tuple containing the summary of the cross-validation with the metric

applied. This tuple contains (in order) the train accuracy, test accuracy, the

size (all of those with the metric applied), and the number of steps that were

solved during this cross-validation.

Return type Tuple[float, float, float, float]

decisiontrees.cross validate.cross validate(model class: type, n folds: int, data:

numpy.array, time limit: int, seed:

int, *args, **kwargs) → decision-

trees.cross validate.CrossValidationResult
Performs the cross-validation over a dataset using the specified number of folds.

Parameters

• model class (type) – The type of DecisionModel that will be used during

the cross validation.

• n folds (int) – The number of folds that will be used.

• data (np.array) – The dataset that will be used to obtain the training and

validation sets.

• time limit (int) – The time limit (in seconds) that will be requested the

model when solving each step of the cross-validation.

70 API reference

Optimal decision trees using optimization techniques

• seed (int) – The random seed that will be used during both the split of

the train-validate sets and during the solving process.

• *args – Additional arguments for the DecisionModel class.

• **kwargs – Additional named arguments for the DecisionModel class.

Returns Object containing the results of each step of the cross-validation.

Return type CrossValidationResult

A.6. decisiontrees.cross validate 71

Optimal decision trees using optimization techniques

A.7 decisiontrees.models

class decisiontrees.models.SklearnModel(time limit: int, seed: int)

Find a decision tree using a Scikit-Learn classifier.

find tree(data: numpy.array) → Tuple[decisiontrees.trees.DecisionTree, float]

Solve the model for a set of observations, obtaining the decision tree if found.

Warning: To be implemented by the sub-classes.

Parameters data (np.array) – A bi-dimensional array containing one row per

observation. Those observations are used to train the model to obtain the

decision tree.

Returns A tuple containing the decision tree found and the accuracy of the

model in the training set.

Return type Tuple[DecisionTree, float]

stop tree find()

Notify the process of finding a tree to stop.

class decisiontrees.models.PerfectOptimalSatModel(time limit: int, seed: int, up-

per bound: int)
Find the perfect decision tree using a pure SAT implementation.

upper bound

The maximum nodes that the tree can have.

Type int

find tree(data: numpy.array) → Tuple[decisiontrees.trees.DecisionTree, float]

Solve the model for a set of observations, obtaining the decision tree if found.

Warning: To be implemented by the sub-classes.

Parameters data (np.array) – A bi-dimensional array containing one row per

observation. Those observations are used to train the model to obtain the

decision tree.

Returns A tuple containing the decision tree found and the accuracy of the

model in the training set.

Return type Tuple[DecisionTree, float]

72 API reference

Optimal decision trees using optimization techniques

stop tree find()

Notify the process of finding a tree to stop.

class decisiontrees.models.PerfectOptimalModel(time limit: int, seed: int, upper bound:

int)
Find the perfect decision tree using a Minizinc model.

upper bound

The maximum nodes that the tree can have.

Type int

find tree(data: numpy.array) → Tuple[decisiontrees.trees.DecisionTree, float]

Solve the model for a set of observations, obtaining the decision tree if found.

Warning: To be implemented by the sub-classes.

Parameters data (np.array) – A bi-dimensional array containing one row per

observation. Those observations are used to train the model to obtain the

decision tree.

Returns A tuple containing the decision tree found and the accuracy of the

model in the training set.

Return type Tuple[DecisionTree, float]

class decisiontrees.models.PerfectMinimalDecisionTreeMaxSat(time limit: int, seed:

int, max nodes: int)

find tree(data: numpy.array) → Tuple[decisiontrees.trees.DecisionTree, float]

Solve the model for a set of observations, obtaining the decision tree if found.

Warning: To be implemented by the sub-classes.

Parameters data (np.array) – A bi-dimensional array containing one row per

observation. Those observations are used to train the model to obtain the

decision tree.

Returns A tuple containing the decision tree found and the accuracy of the

model in the training set.

Return type Tuple[DecisionTree, float]

class decisiontrees.models.DecisionTreeWithError(time limit: int, seed: int,

max nodes: int, max error: float)

A.7. decisiontrees.models 73

Optimal decision trees using optimization techniques

find tree(data: numpy.array) → Tuple[decisiontrees.trees.DecisionTree, float]

Solve the model for a set of observations, obtaining the decision tree if found.

Warning: To be implemented by the sub-classes.

Parameters data (np.array) – A bi-dimensional array containing one row per

observation. Those observations are used to train the model to obtain the

decision tree.

Returns A tuple containing the decision tree found and the accuracy of the

model in the training set.

Return type Tuple[DecisionTree, float]

class decisiontrees.models.PenalizeDepthDT(time limit: int, seed: int, max nodes: int)

74 API reference

Python Module Index

d
decisiontrees.cnf.utils, 65

decisiontrees.cross validate, 70

decisiontrees.data parsing, 66

decisiontrees.models, 72

decisiontrees.trees, 67

75

PYTHON MODULE INDEX

76

Appendix B

Encodings implementations

B.1 SAT APPROACH

1 # Constraint (1)

2 self.cnf.add(Not(v[1]))

3

4 # Constraint (2)

5 for i in range(1, self.n + 1):

6 lr = self._LR(i)

7 if not lr: # No possible childs -> node i is leaf

8 self.cnf.add(v[i])

9 continue

10 for j in lr:

11 self.cnf.add(Implies(v[i], Not(l[i][j])))

12

13 # Constraint (3)

14 for i in range(1, self.n + 1):

15 lr = self._LR(i)

16 if not lr:

17 continue

18 for j in lr:

19 self.cnf.add(DoubleImplies(l[i][j], r[i][j+1]))

20

21 # Constraint (4)

22 for i in range(1, self.n + 1):

23 rhs_terms = [l[i][j] for j in self._LR(i)]

77

Encodings implementations

24 if rhs_terms:

25 rhs = exactly_one(rhs_terms)

26 self.cnf.add(Implies(Not(v[i]), rhs))

27

28 # Constraint (5)

29 for i in range(1, self.n + 1):

30 lr = self._LR(i)

31 rr = self._RR(i)

32 if lr:

33 for j in self._LR(i):

34 self.cnf.add(DoubleImplies(p[j][i], l[i][j]))

35 if rr:

36 for j in self._RR(i):

37 self.cnf.add(DoubleImplies(p[j][i], r[i][j]))

38

39 # Constraint (6)

40 for j in range(2, self.n + 1):

41 terms = [p[j][i] for i in self._possible_parents(j)]

42 self.cnf.add(exactly_one(terms))

43

44

45 self.cnf.add(and_all(

46 [Not(d0[k][1]) for k in range(self.features)]

47))

48

49 for j in range(2, self.n + 1):

50 parents = self._possible_parents(j)

51 for k in range(self.features):

52 # d0 <-> V((p ^ d0) v (a ^ r))

53 lhs = d0[k][j]

54 rhs_elements = list()

55 for i in parents:

56 p1 = self.p[j][i] * d0[k][i]

57 try:

58 p2 = a[k][i] * self.r[i][j]

59 rhs_elements.append(p1 + p2)

60 except KeyError:

61 rhs_elements.append(p1)

62

78

79

63 if rhs_elements:

64 rhs = or_all(rhs_elements , with_reification=True , formula=self.cnf)

65 self.cnf.add(DoubleImplies(lhs , rhs))

66

67 # Constraint (8)

68 self.cnf.add(and_all(

69 [Not(self.d1[k][1]) for k in range(self.features)]

70))

71

72 for j in range(2, self.n + 1):

73 parents = self._possible_parents(j)

74 for k in range(self.features):

75 # d1 <-> V((p ^ d1) v (a ^ l))

76 lhs = d1[k][j]

77 rhs_elements = list()

78 for i in parents:

79 p1 = self.p[j][i] * d1[k][i]

80 try:

81 p2 = a[k][i] * self.l[i][j]

82 rhs_elements.append(p1 + p2)

83 except KeyError:

84 rhs_elements.append(p1)

85 if rhs_elements:

86 rhs = or_all(rhs_elements , with_reification=True , formula=self.cnf)

87 self.cnf.add(DoubleImplies(lhs , rhs))

88

89 # Constraint (9)

90 # j = 1 (no parents , 9.1 not applicable)

91 for k in range(self.features):

92 # 9.2 (without the OR for parents)

93 self.cnf.add(DoubleImplies(u[k][1], a[k][1]))

94

95 # j > 1 (with parents)

96 for k, j in itertools.product(range(self.features), range(2, self.n + 1)):

97 parents = self._possible_parents(j)

98 # 9.1

99 self.cnf.add(and_all(

100 [Implies(u[k][i] * self.p[j][i], Not(a[k][j])) for i in parents]

101))

79

Encodings implementations

102 # 9.2

103 lhs = u[k][j]

104 rhs = a[k][j] + or_all ([(u[k][i] * self.p[j][i]) for i in parents],

105 with_reification=True ,

106 formula=self.cnf)

107 self.cnf.add(DoubleImplies(lhs , rhs))

108

109 # Constraint (10)

110 for j in range(1, self.n + 1):

111 lhs = Not(self.v[j])

112 rhs = exactly_one(self.a[k][j] for k in range(self.features))

113 self.cnf.add(Implies(lhs , rhs))

114

115 # Constraint (11)

116 for j in range(1, self.n + 1):

117 lhs = self.v[j]

118 # no feature is used == not(a_r0_j) ^ not(a_r1_j) ^

119 rhs = and_all(Not(a[k][j]) for k in range(self.features))

120 self.cnf.add(Implies(lhs , rhs))

121

122 # Constraint (12) & (13)

123 for observation in self.data:

124 if observation [-1] == 0:

125 lhs = lambda j: self.v[j] * c[j]

126 else:

127 lhs = lambda j: self.v[j] * Not(c[j])

128

129 for j in range(1, self.n + 1):

130 rhs = or_all(d[j] for d in self._get_discriminators(observation))

131 self.cnf.add(Implies(lhs(j), rhs))

80

81

B.2 MINIZINC APPROACH

1 % Given a max nodes "N", a dataset "data" with "n_feats" features

2 % determine if we can find a DT with 100% accuracy using "N" nodes

3

4 int: N;

5 int: n_feats;

6 int: rows = length(data) div (n_feats + 1);

7 array[int , int] of int: data;

8

9 test even(int: n) = n mod 2 = 0;

10 test odd(int: n) = n mod 2 = 1;

11

12 function var set of int: LR(int: i) = {j | j in (i+1)..(min ({2*i,

N-1})) where even(j)};

13 function var set of int: RR(int: i) = {j | j in (i+2)..(min ({2*i +

1, N})) where odd(j)};

14 function var set of int: possible_parents(int: j) = { j | j in (j div

2)..(j-1)};

15

16 predicate atmostone(array[int] of var bool: x) =

17 forall (i,j in index_set(x) where i < j)(

18 (not x[i] \/ not x[j])

19);

20 predicate exactlyone(array[int] of var bool: x) = atmostone(x) /\

exists(x);

21

22

23

24 array [1..N] of var bool: v;

25 array [1..N, 1..N] of var bool: l;

26 array [1..N, 1..N] of var bool: r;

27 array [2..N, 1..N] of var bool: p;

28 array [1.. n_feats , 1..N] of var bool: a;

29 array [1.. n_feats , 1..N] of var bool: u;

30 array [1.. n_feats , 1..N] of var bool: d0;

31 array [1.. n_feats , 1..N] of var bool: d1;

32 array [1..N] of var bool: c;

81

Encodings implementations

33

34 % ==================== Tree shape constraints ===================

35

36 % For all the non -possible left and right childs , set the vars to

false

37 constraint forall (i, j in 1..N) (not (j in LR(i)) -> (not l[i,j]));

38 constraint forall (i, j in 1..N) (not (j in RR(i)) -> (not r[i,j]));

39

40 % For all non possible parents , set the vars to false

41 constraint forall (i in 1..N, j in 2..N) (not (j in LR(i) \/ j in

RR(i)) -> (not p[j,i]));

42

43

44 % Constraint 1

45 constraint not v[1]; % Node 1 isn 't a leaf

46

47 % Constraint 2

48 constraint forall (i in 1..N) (forall (j in LR(i)) (v[i] -> not

l[i,j]));

49

50 % Constraint 3

51 constraint forall (i in 1..N) (forall (j in LR(i)) (l[i,j] <->

r[i,j+1]));

52

53 % Constraint 4

54 constraint forall (i in 1..N) ((not v[i]) -> sum (j in LR(i))

(l[i,j]) = 1);

55

56 % Constraint 5

57 constraint forall (i in 1..N)

58 (forall (j in LR(i))

59 (p[j,i] <-> l[i,j])

60);

61 constraint forall (i in 1..N) (forall (j in RR(i)) (p[j,i] <->

r[i,j]));

62

63 % Constraint 6

64 constraint forall (j in 2..N) ((sum (i in possible_parents(j))

(p[j,i])) = 1);

82

83

65

66 % ===

67

68 % =================== Decision tree constraints =======================

69

70 % Constraint 7

71 constraint forall (k in 1.. n_feats) (not d0[k,1]);

72 constraint forall (k in 1.. n_feats , j in 2..N) (

73 d0[k, j] <-> exists (i in possible_parents(j)) ((p[j, i] /\

d0[k, i]) \/ (a[k, i] /\ r[i, j]))

74);

75

76 % Constraint 8

77 constraint forall (k in 1.. n_feats) (not d1[k,1]);

78 constraint forall (k in 1.. n_feats , j in 2..N) (

79 d1[k, j] <-> exists (i in possible_parents(j)) ((p[j, i] /\

d1[k, i]) \/ (a[k, i] /\ l[i, j]))

80);

81

82 % Constraint 9

83 constraint forall (k in 1.. n_feats , j in 2..N) (

84 forall (i in possible_parents(j)) (u[k,i] /\ p[j,i] -> not a[k,

j])

85);

86 constraint forall (k in 1.. n_feats , j in 2..N) (

87 u[k,j] <-> a[k,j] \/ (forall (i in possible_parents(j)) (u[k,i]

/\ p[j,i]))

88);

89

90 % Constraint 10

91 constraint forall (j in 1..N) (

92 (not v[j]) -> exactlyone (k in 1.. n_feats) (a[k,j])

93);

94

95 % Constraint 11

96 constraint forall (j in 1..N) (

97 v[j] -> not exists (k in 1.. n_feats) (a[k,j])

98);

99

83

Encodings implementations

100 % Constraint 12

101 constraint forall (row in 1.. rows where data[row , n_feats + 1] = 1) (

102 forall (j in 1..N) (

103 v[j] /\ not c[j] -> exists (k in 1.. n_feats) (if data[row , k] = 0

then d0[k,j] else d1[k,j] endif)

104)

105);

106

107 % Constraint 13

108 constraint forall (row in 1.. rows where data[row , n_feats + 1] = 0) (

109 forall (j in 1..N) (

110 v[j] /\ c[j] -> exists (k in 1.. n_feats) (if data[row , k] = 0

then d0[k,j] else d1[k,j] endif)

111)

112);

113

114 % ===

115

116 solve satisfy;

B.3 InferDT

B.3.1 Inferring tree with a maximum depth

1 # Create the variables

2 self._current_model = minizinc.Model()

3 self._current_model.add_string("int: n_feats ;\n")

4 self._current_model.add_string("array[int , int] of int: data;\n")

5

6 n_nodes = 2** depth - 1

7 n_leaves = 2**(depth + 1)

8 n_rows = data.shape [0]

9

10 # variables

11 vars = f"array [0..{ n_rows - 1}, 0..{ depth - 1}] of var bool: X;\n" + \

12 f"array [1..{ n_nodes}, 0..(n_feats - 1)] of var bool: F;\n" + \

84

85

13 f"array [0..{ n_leaves - 1}, 0..(n_feats - 1)] of var bool:

C;\n"

14 self._current_model.add_string(vars)

15

16 # Constraint 1 and 2

17 self._add_constraint(

18 f"forall (i in 1..{ n_nodes }) " +

19 f"((sum (j in 0..(n_feats - 1)) (F[i, j])) = 1)"

20)

21

22 # Constraint 3 and 4

23 def _generate_feature_constraints(self ,

24 row: np.array ,

25 i: int ,

26 depth: int ,

27 clause: str = "",

28 q: int = 1,

29 lvl: int = 0):

30 if lvl == depth:

31 return

32

33 for f in range(0, self._n_feats):

34 if row[f] == 1:

35 new_constraint = _or_join ([clause , f"X[{i},{lvl}]",

f"not(F[{q}, {f}])"])

36 self._add_constraint(new_constraint)

37

38 self._generate_feature_constraints(

39 row , i, depth , _or_join ([clause , f"X[{i},{lvl}]"]),

40 q * 2, lvl + 1

41)

42

43 for f in range(0, self._n_feats):

44 if row[f] == 0:

45 new_constraint = _or_join ([clause , f"not(X[{i},{lvl }])",

f"not(F[{q}, {f}])"])

46 self._add_constraint(new_constraint)

47

48 self._generate_feature_constraints(

85

Encodings implementations

49 row , i, depth , _or_join ([clause , f"not(X[{i},{lvl }])"]),

50 q * 2 + 1, lvl + 1

51)

52

53 # Constraint 5 and 6

54 def _generate_class_constraints(self ,

55 row: np.array ,

56 i: int ,

57 depth: int ,

58 clause: str = "",

59 q: int = 0,

60 lvl: int = 0):

61 if lvl == depth:

62 label = row[-1]

63 label_idx = self._labels.index(label)

64

65 constraint = _or_join ([clause , f"C[{q}, {label_idx }]"])

66 self._add_constraint(constraint)

67

68 for a in range(0, len(self._labels)):

69 if a == label_idx:

70 continue

71 constraint = _or_join ([clause , f"not(C[{q}, {a}])"])

72 self._add_constraint(constraint)

73 return

74

75 self._generate_class_constraints(

76 row , i, depth , _or_join ([clause , f"X[{i}, {lvl}]"]),

77 q * 2, lvl + 1

78)

79 self._generate_class_constraints(

80 row , i, depth , _or_join ([clause , f"not(X[{i},{lvl }])"]),

81 q * 2 + 1, lvl + 1

82)

86

87

B.3.2 Inferring a tree with a maximum number of nodes

1 # New vars

2 self._current_model.add_string(

3 f"array [0..{ n_leaves - 1}] of var bool: U;\n" +

4 f"array [0..{ n_leaves}, 0..{ n_leaves }] of var bool: H;\n"

5)

6

7 # Constraint 7

8 self._add_constraint(

9 f"forall (i in 0..{ n_leaves - 1}, a in 0..{ len(self._labels) -

1}) "

10 "(not(C[i, a]) \\/ U[i])"

11)

12

13 # Constraint 8

14 self._add_constraint(

15 f"forall (i in 0..{ n_leaves - 1}, j in 0..i) "

16 "(not(H[i,j]) \\/ H[i+1,j])"

17)

18

19 # Constraint 9

20 self._add_constraint(

21 f"forall (i in 0..{ n_leaves - 1}, j in 0..i) "

22 "(not(U[i]) \\/ not(H[i,j]) \\/ H[i+1,j+1])"

23)

24

25 # Constraint 10

26 self._add_constraint("H[0,0]")

27 self._add_constraint(f"not(H[{2**(depth + 1)}, {self.current_nodes +

1}])")

87

Encodings implementations

88

Bibliography

[1] Murphy KP. Machine Learning: A Probabilistic Perspective. The MIT Press; 2012.

[2] Segaran T. Programming Collective Intelligence. O’Reilly Media, Inc.; 2008.

[3] Arrieta AB, Dı́az-Rodŕıguez N, Del Ser J, Bennetot A, Tabik S, Barbado A, et al. Explain-

able Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward

Responsible AI. arXiv:191010045 [cs]. 2019 Dec;.

[4] Bertsimas D, Dunn J. Optimal Classification Trees. Machine Learning. 2017 Jul;106(7):1039–

1082.

[5] Hyafil L, Rivest RL. Constructing Optimal Binary Decision Trees Is NP-Complete. Information

Processing Letters. 1976;5(1):15–17.

[6] Garey MR, Johnson DS. Computers and Intractability; A Guide to the Theory of NP-

Completeness. USA: W. H. Freeman & Co.; 1990.

[7] Bessiere C, Hebrard E, O’Sullivan B. Minimising Decision Tree Size as Combinatorial Optimi-

sation. In: Principles and Practice of Constraint Programming - CP 2009. Berlin, Heidelberg:

Springer Berlin Heidelberg; 2009. p. 173–187.

[8] Narodytska N, Ignatiev A, Pereira F, Marques-Silva J. Learning Optimal Decision Trees with

SAT. In: Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intel-

ligence. Stockholm, Sweden: International Joint Conferences on Artificial Intelligence Organiza-

tion; 2018. p. 1362–1368.

[9] Avellaneda F. Efficient Inference of Optimal Decision Trees. In: The Thirty-Fourth AAAI

Conference on Artificial Intelligence (AAAI-20). New York; 2020. p. 8.

[10] Verwer S, Zhang Y. Learning Optimal Classification Trees Using a Binary Linear Program

Formulation. Proceedings of the AAAI Conference on Artificial Intelligence. 2019 Jul;33:1625–

1632.

89

BIBLIOGRAPHY

[11] Verhaeghe H, Nijssen S, Pesant G, Quimper CG, Schaus P. Learning Optimal Decision Trees

Using Constraint Programming. In: The 25th International Conference on Principles and Practice

of Constraint Programming (CP2019); 2019. p. 17.

[12] Morgan JN, Sonquist JA. Problems in the Analysis of Survey Data, and a Proposal; 1963. .

[13] Loh WY. Fifty Years of Classification and Regression Trees 1; 2014. /paper/Fifty-Years-of-

Classification-and-Regression-Trees-Loh/f1c3683cacc3dc7898f3603753af87565f8ad677.

[14] Breiman L, Friedman J, Stone CJ, Olshen RA. Classification and Regression Trees. Taylor and

Francis; 1984.

[15] Quinlan JR. Induction of Decision Trees. Machine Learning. 1986 Mar;1(1):81–106.

[16] Shannon CE. A Mathematical Theory of Communication. Bell System Technical Jour-

nal. 1948;27(3):379–423. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/j.1538-

7305.1948.tb01338.x.

[17] Quinlan JR. C4.5: Programs for Machine Learning. San Mateo, Calif.: Morgan Kaufmann

Publishers; 1993. OCLC: 26547590.

[18] RuleQuest. Information on See5/C5.0;. https://www.rulequest.com/see5-info.html.

[19] Kass GV. An Exploratory Technique for Investigating Large Quantities of Categorical Data.

Journal of the Royal Statistical Society: Series C (Applied Statistics). 1980;29(2):119–127. eprint:

https://rss.onlinelibrary.wiley.com/doi/pdf/10.2307/2986296.

[20] Utgoff PE. Incremental Induction of Decision Trees. Machine Learning. 1989 Nov;4(2):161–186.

[21] Utgoff PE, Berkman NC, Clouse JA. Decision Tree Induction Based on Efficient Tree Restruc-

turing. Machine Learning. 1997 Oct;29(1):5–44.

[22] Scikit-learn developers. Decision Trees (Scikit Documentation); 2020. https://scikit-

learn.org/stable/modules/tree.html#tree-algorithms-id3-c4-5-c5-0-and-cart.

[23] Nijssen S, Fromont E. Mining Optimal Decision Trees from Itemset Lattices. In: Proceedings of

the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining -

KDD ’07. San Jose, California, USA: ACM Press; 2007. p. 530.

[24] Schaus P, Aoga JOR, Guns T. CoverSize: A Global Constraint for Frequency-Based Itemset

Mining. In: Beck JC, editor. Principles and Practice of Constraint Programming. vol. 10416.

Cham: Springer International Publishing; 2017. p. 529–546.

[25] Nocedal J, Wright S. Numerical Optimization. Springer Science & Business Media; 2006.

90

91

[26] Poe WA, Mokhatab S. Chapter 4 - Process Optimization. In: Poe WA, Mokhatab S, editors.

Modeling, Control, and Optimization of Natural Gas Processing Plants. Boston: Gulf Professional

Publishing; 2017. p. 173–213.

[27] Dantzig GB. Maximization of Linear Function of Variables Subject to Linear Inequalities. Activity

Analysis of Production and Allocation Proceedings of the Conference on Linear Programming.

1951 Jan;.

[28] Martin RC, Rabaey JM, Chandrakasan AP, Nikolic B. Agile Software Development: Principles,

Patterns, and Practices. Pearson Education; 2003.

[29] Peter J Stuckey, Guido Tack, Kim Marriott. 1.2. Installation — The MiniZinc Handbook 2.4.3;

2018. https://www.minizinc.org/doc-2.4.3/en/installation.html.

[30] Gilles Audermard, Laurent Simon. Glucose’s Home Page; 2016.

https://www.labri.fr/perso/lsimon/glucose/.

[31] Casas Roma J, Lozano Bagén T, Bosch Rué A. Deep learning: principios y fundamentos.

Barcelona: Editorial UOC; 2019. OCLC: 1145244813. Available from: http://digital.

casalini.it/9788491806578.

[32] Gamma E, Helm R, Johnson R, Vlissides J. Design Patterns: Elements of Reusable Object-

Oriented Software. Edición: 1st ed., reprint ed. Reading, Mass: Addison Wesley; 1994.

[33] Scikit-learn developers. Understanding the Decision Tree Struc-

ture — Scikit-Learn 0.23.1 Documentation; 2020. https://scikit-

learn.org/stable/auto examples/tree/plot unveil tree structure.html#sphx-glr-auto-examples-

tree-plot-unveil-tree-structure-py.

[34] Harris D, Harris S. Digital Design and Computer Architecture. 2nd ed. Amsterdam: Morgan

Kaufmann; 2012.

91

http://digital.casalini.it/9788491806578
http://digital.casalini.it/9788491806578

	Abstract
	Table of contents
	List of figures
	List of tables
	List of code listings
	Introduction
	Description of the project
	Personal motivation
	Objectives
	Methodology of the project development description
	Planning of the project
	Document structure

	State of the art
	Decision trees algorithms
	Heuristic greedy algorithms
	Mathematical optimization algorithms

	Tools used
	Python
	Minizinc and Flatzinc
	Mathematical solvers

	Library design
	Library overview and design
	Interaction with external components

	Library implementation
	Overview
	Implementation
	CNF module
	Models module
	SAT models
	Cross validate
	Trees
	Data parsing

	Dependencies
	Installation and usage

	Experimental results
	Results discussion

	Conclusions and future work
	Conclusions
	Future work

	Glossary
	Acronyms
	Appendices
	API reference
	decisiontrees.cnf.CNF
	decisiontrees.cnf_components
	decisiontrees.cnf.utils
	decisiontrees.data_parsing
	decisiontrees.trees
	decisiontrees.cross_validate
	decisiontrees.models

	Encodings implementations
	SAT APPROACH
	MINIZINC APPROACH
	InferDT
	Inferring tree with a maximum depth
	Inferring a tree with a maximum number of nodes

