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Abstract

The following work seeks to evaluate traditional methodologies of

time series forecasting compared to the newest arti�cial intelligence

algorithms. Economic and �nancial time series are used in order to

evaluate the e�ectiveness of these procedures so that this has an eco-

nomic and practical signi�cance.
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Resumen

El siguiente trabajo busca evaluar las metodologías tradicionales de predic-
ción de series de tiempo en comparación con los algoritmos de inteligencia
arti�cial más nuevos. Se utilizan series de tiempo económicas y �nancieras.
con el �n de evaluar la efectividad de estos procedimientos para que esto
tenga un signi�cado económico y práctico.
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1 Introduction

The purpose of this work is to evaluate the e�ciency of traditional methods
as opposed to arti�cial intelligence algorithms in the forecasting of �nancial
and economic time series. The importance of this topic has multiple rami-
�cations in the �eld of economics and �nance. Finance and economics have
dealt with uncertainty for many years and the inability of economists to pre-
dict economic recessions has led to major errors in economic policy that have
had high costs for society as a whole. On the other hand, �nancial markets
are by nature random, and are a�ected by bad decisions of economic policy.
The ability to improve the algorithms used to forecast the evolution of the
economic series will have an important impact in decision making by �rms
and central banks. This should lead to a better allocation of resources, which
will allow an improvement in general well-being.

Most prediction methods used in economics are based on recursive methods
that extrapolate past results to the future. However the accuracy of these
methods decreases considerably as the forecast horizon increases. The need
to �nd new mathematical methods that adapt more e�ciently to the tra-
jectory of the time series, and that are able to handle a greater amount of
information, o�er an opportunity to arti�cial intelligence algorithms as pos-
sible solution that could increase the probability of success in the forecasting
of time series.
Although traditional statistical time series methods perform well, many have
inherent limitations. First, without expertise it is possible to misspecify the
functional form relating the independent and dependent variables and fail to
make the necessary data transformations. Second, outliers can lead to biased
estimates of model parameters.
In addition, time series models are often linear and thus may not capture
nonlinear behavior. Many have argued[14] that neural networks can over-
come or, at least, be less subject to these limitations.

Some traditional statistical time series methods have inherent limitations
due to the way in which the models are estimated. When many kinds of tra-
ditional statistical time series models are estimated, human interaction and
evaluation are required. Also, many traditional statistical methods do not
learn incrementally as new data arrive; instead, they must be re-estimated
periodically. It has been claimed[15] that neural networks can also overcome
these problems.
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What this work raises is the requirement to both evaluate classical methods
and use their results as a baseline when evaluating deep learning methods
for time series forecasting in order demonstrate that their added complexity
is adding skill to the forecast.

1.1 Objectives

� Implement classical methods for predicting time series.

� 1a)Apply ARIMA models to the forecasting of economic and �-
nancial time series

� Implement a method for forecasting time series based on neural net-
works.

� 2a)Learn about the di�erent arti�cial intelligence algorithms that
can be used to forecast economic and �nancial series.

� 2b)Create forecasting neural networks based on recurrent, CNN,
GRU and MLP structures.

� Compare the e�ciency of traditional algorithms vs arti�cial intelligence
algorithms in the forecasting of �nancial and economics time series.

� 3a)Analyze the di�erences between economic and �nancial time
series through the results obtained with arti�cial intelligence al-
gorithms.

� 3b)Re�ect on the practical ability of arti�cial intelligence algo-
rithms to be used as an economic analysis tool.
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In accordance with the initially planned times, the times necessary to carry
out the PEC are met, however, there are changes in the objectives and in
the series initially proposed, which are detailed:

� Economic time series is changed from GDP to Employment series, this
because GDP was only available quarterly.

� Initially the objective "Apply Simple Exponential Smoothing and holt
Winter's to the forecasting of economic and �nancial time series." was
raised. However, its application was considered redundant and did not
add much value to the results that were sought, so it was removed.

� Initially out of sample forecast were made for ARIMA models, how-
ever for making it comparable with built in method "predict" , from
TensorFlow-Keras, forecast was reduced to one step ahead for all mod-
els.

According to PEC I the following Risk and mitigation actions were proposed:

Risk 1) Results of the neural network do not exceed the classical methods

Contingency plan � choose another neural network

Risk 2) Computational cost of network training is excessive (too late)

Contingency plan� request access to UOC servers or use Google servers.

Risk 3) Results doesn't have economic or �nancial meaning

Contingency plan � conclusions will be oriented to the mathematical and
algorithmic aspects

Table 1: Risk Classi�cation

Probbility Gravity

1 High Low
2 Low High
3 High Low
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However none of these risks were materialized.
For risk 1, although the results of Neural Network Models did not exceed the
results of the ARIMA models, they are considered very close and generally
quite good and promising. Likewise, the main structures for time series based
on Neural Networks were proposed, allowing for a broader comparative base.
For risk 2, although the cost of training the Neural Networks was high, it was
considered manageable, and training sets could be generated, from which it
was possible to draw the necessary conclusions.
For risk 3, it was possible to �nd an economic sense to the results when the
results were separated between economic and �nancial series. Likewise, in
the conclusions, neural networks are proposed as promising instruments for
economic analysis in the coming years.
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2 Description of Work Done

The Data

For the current project a sample of two series will be used that start from
08/01/1978 to 09/01/2019 of data collected from the St Louis Federal Re-
serve Bank homepage[16]. This data contains time series of the United States
economy and US markets, the name of the di�erent time series used in this
study are shown in Table 1

Table 2: Names and types of the two data sets used

Data Set Type

S&P 500 Financial
NonFarm Payrolls Economic

The �rst one is the S&P 500 which is stock market index that tracks the
price of the stocks of 500 large capitalization U.S. companies. It represents
the stock market's performance by reporting the risks and returns of the
biggest companies. Investors use it as the benchmark of the overall market,
to which all other investments are compared.
The second index is the nonfarm payrolls report of the U.S. bureau of labor
statistics. Nonfarm payrolls are a summation of payroll jobs available within
the nonfarm payrolls classi�cation as designated by the Bureau of Labor
Statistics. The monthly nonfarm payrolls statistic is a measure of new pay-
rolls added by private and government entities in the U.S. This time series is
widely used in economic and �nancial analysis because of the importance it
has to market participants, in the prediction of changes in economic growth.
The Gross Domestic Product measures the value of economic activity within
a country.

We begin the analysis by the comparison of the economic time series of the
employment data, and �nancial time series. This time series is expected to
be less volatile than �nancial time series.
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Figure 1: Employment and S&P 500 data from august 1978 to September
2019

Employment is expected to be a cyclical variable and so its related to the
dynamics of GDP. We can check its di�erence in Volatility with the S&P 500
index by estimating its annual Volatility.

Figure 2: Employment data from august 1978 to September 2019

In general its expected that �nancial time series are more volatile and have
less predictability than economic time series. As seen in the �gure number
two, the volatility of the S&P 500 is much higher than the volatility of the
employment series.
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2.1 Classical Methods

For both time series classical methods have been implemented following the
box Jenkins methodology[17].

Figure 3: Box-Jenkins Scheme. Source: researchgate.net

Box - Jenkins Analysis refers to a systematic method of identifying, �tting,
checking, and using integrated autoregressive, moving average (ARIMA) time
series models. The method is appropriate for time series of medium to long
length (at least 50 observations). The Box-Jenkins method refers to the
iterative application of the following three steps:

� Identi�cation. Using plots of the data, autocorrelations, partial auto-
correlations, and other information, a class of simple ARIMA models is
selected. This amounts to estimating appropriate values for p, d, and
q.

� Estimation. The phis and thetas of the selected model are estimated
using maximum likelihood techniques, backcasting, as outlined in Box-
Jenkins [17].
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� Diagnostic Checking. The �tted model is checked for inadequacies
by considering the autocorrelations of the residual series (the series
of residual, or error, values).

These steps are applied iteratively until step three does not produce any im-
provement in the model[19]

As shown in �gure 4 we can separate the series in its irregular component
and its trend component[18].

Figure 4: Employment data from august 1978 to September 2019
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Figure 5: S&P 500 data from august 1978 to September 2019

For both methods we used the classical analysis of time series models that
is, basic ARIMA modelling[18]. For the purpose of this analysis, al code was
written in python for doing the following steps:

� Stationarity testing.

� Selection of di�erent ARIMA models based on information criteria and
the mean squared error.

� Evaluation of selected models with a train set and a test set.

� Evaluation of forecast made with Mean Squared Error(MSE) and R-
squared.

For Stationarity the following test were used:

� LjungBox Test: The null hypothesis of the Ljung-Box test[20] is that
the autocorrelations (for the chosen lags) in the population from which
the sample is taken are all zero. If p-value < 0.051: we can reject the
null hypothesis assuming a 5% chance of making a mistake. So we can
assume that our values are showing dependence on each other. If p-
value > 0.051: we don't have enough statistical evidence to reject the
null hypothesis. So we can not assume that your values are dependent.
This could mean that our values are dependent anyway or it can mean
that our values are independent. But we are not proving any speci�c
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possibility, what our test actually said is that we can not assert the
dependence of the values, neither can we assert the independence of
the values.

� Dickey fuller test[23]: According to the Augmented Dickey-Fuller(ADF)
test, in the presence of autocorrelation, the �rst-order di�erences x' t of
the original series can be expressed as a linear regression model of the
previous time index and �rst-order di�erences up to a lag of m times
indices. The linear regression on x'.

� Evaluation of the behavior of mean and variance along di�erent sample
paths.

For model selection the following criteria have been used:

� "Akaike Info Criterion: Given a collection of models for the data, AIC
estimates the quality of each model, relative to each of the other mod-
els. Thus, AIC provides a means for model selection. AIC estimates the
relative amount of information lost by a given model: the less informa-
tion a model loses, the higher the quality of that model. In estimating
the amount of information lost by a model, AIC deals with the trade-
o� between the goodness of �t of the model and the simplicity of the
model" (wikipedia 2020).

� "Bayesian Info Criterion: When �tting models, it is possible to increase
the likelihood by adding parameters, but doing so may result in over-
�tting. The BIC resolves this problem by introducing a penalty term
for the number of parameters in the model. The penalty term is larger
in BIC than in AIC. Though BIC is always higher than AIC, lower the
value of these two measures, better the model" (wikipedia 2020).

� Mean Squared Error (MSE): Measures the average of the squares of the
errors�that is, the average squared di�erence between the estimated
values and the actual value. The MSE is a measure of the quality of
an estimator�it is always non-negative, and values closer to zero are
better.

� Graphical analysis of the PACF and the ACF plots for the di�erenced
and original series.
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Figure 6: First di�erence of Employment data

Figure 7: First di�erence of S&P 500 data

For the forecasting evaluation, out of sample and in sample forecast were
made, taking 80% of the series for training and 20% for testing.
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Finally all of in sample forecast performance was stored with its MSE and
R-squared to be compared with the results produced by di�erent Neural Net-
works architectures.
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2.2 Deep learning Methods

For the purpose of this work a univariate forecast will be made using several
types of architecture of neural networks. Four types of structures will be
used:

� Multi-layer Perceptron's

� Recurrent Neural Networks

� Gate Recurrent Units

� Convolutional Neural Networks

For all of this methods the selection on basic hyperparameters has been done
through a GridSearchCV and using TensorFlow Keras Tuner[24], were the
following parameters were optimized:

� Number of units

� Neuron activation function

� Initial weights

� Network Optimizer

� Learning rate

� Batch size and number of epochs

� Dropout

For the number of units the following interval of values was used:
min_value=32,max_value=512, step=32, default=32

For the neuron activation function the following parameters were used:
'softmax', 'softplus', 'softsign', 'relu', 'tanh', 'sigmoid', 'hardsigmoid', 'linear'

For the initial weights the following option were available:
'uniform', 'lecununiform', 'normal', 'zero', 'glorotnormal', 'glorotuniform',
'henormal', 'heuniform'

For the optimizer selection the following options were available:
'SGD', 'RMSprop', 'Adagrad', 'Adadelta', 'Adam', 'Adamax', 'Nadam'
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For the learning rate the following parameters were used:
learn_rate = [1e-2, 1e-3, 1e-4, 1e-5]
For the Batch size and epochs the following parameters were used:
batch_size = [16,32,64,128]
epochs = [10, 50, 100]
For the dropout the following parameters were used:
min=0,max=0.5, step=0.05.

All this parameters were evaluated through a grid search looking for the
minimization of the val loss. This grid search method was evaluated multi-
ple times looking for consistency in the results obtained Once the optimal
parameters were found a K-fold with time series split is used to evaluate the
performance and evolution of the loss, the val_loss and the mse.

Figure 8: k-fold intuition. Source: Github

Cross-validation is a resampling procedure used to evaluate machine learn-
ing models on a limited data sample. The procedure has a single parameter
called k that refers to the number of groups that a given data sample is to be
split into. Importantly, each observation in the data sample is assigned to an
individual group and stays in that group for the duration of the procedure
For the purpose of this work 5 splits have been used. Each split gives us
a set of results that are then averaged to get a �nal result of performance
indicators.
It is important to emphasize the a time series split was used for this process.
Classical cross-validation techniques such as KFold and Shu�eSplit assume
the samples are independent and identically distributed, and would result
in unreasonable correlation between training and testing instances (yielding
poor estimates of generalisation error) on time series data. Therefore, it is
very important to evaluate our model for time series data on the �future�
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observations least like those that are used to train the model. To achieve
this, one solution is provided by TimeSeriesSplit. TimeSeriesSplit is a varia-
tion of k-fold which returns �rst folds as train set and the th fold as test set.
Note that unlike standard cross-validation methods, successive training sets
are supersets of those that come before them. Also, it adds all surplus data
to the �rst training partition, which is always used to train the model[25].
Once this step is validated a in sample forecast is made by using 80% of the
set for training and 20% for test. Final performance is measured through the
mean squared error and R-squared. This two measures are used to compare
di�erent neural network architectures and classical methods.

Now that the general step for the selection of parameters has been explained,
we will proceed to explain the peculiarities of the di�erent structures used in
this work. There are several bibliographical resources related to this point
that have been consulted [2,3,4,5,6,7,8,9,10,11].

2.2.1 Multi-layer perceptrons

Avishek[12] de�ned in 2017 an MLP as follows:

"An MLP consists of three components: an input layer, a number
of hidden layers, and an output layer. An input layer represents a
vector of regressors or input features , for example, observations
from preceding p points in time {xt−1,xt−2....xt−p}.
The input features are fed to a hidden layer that has n neurons,
each of which applies a linear transformation and a nonlinear
activation to the input features. The output of a neuron is gi =
h(wix+ bi), where wi and bi are the weights and bias of the linear
transformation and h is a nonlinear activation function. The
nonlinear activation function enables the neural network to model
complex non-linearities of the underlying relations between the
regressors and the target variable. Popularly, popularly although
there are many activation functions h can be the sigmoid function

1

1− ez

This function squashes any real number to the interval [0, 1]. Due
to this property, the sigmoid function is used to generate binary
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class probabilities and hence is commonly used in classi�cation
model.

Figure 9: Basic Multi-layer perceptron. Source: Slideplayer.com

In case of a single hidden layer neural network, the output from
each neuron is passed to the output layer, which applies a linear
transformation and an activation function to generate the predic-
tion of the target variable, which in case of time series forecasting,
is the predicted value of the series at the tht point in time."

Description Multi-layer Structure Used

First the data is scaled using the MinMaxScaler from sklearn libraries[26].
Preprocessing the data in this way makes the gradient descent algorithm to
work better, the next line show how this preprocessing was done in python:

scaler = MinMaxScaler(feature_range=(0, 1))

df['scaled_EM']=scaler.fit_transform(np.array(df['Employment'])

.reshape(-1, 1))

Then the data is split in two parts, a train set and a test set. Here as men-
tioned earlier a 80% training and a 20% test is used. This process generate
the following shapes of data:

Shape of train: (396, 2)
Shape of test: (98, 2)

Then regressors are generated, and a target variable, for train and test. For
the time series forecasting model, the past seven months of observations are
used to predict for the next month, this is equivalent to and AR(7) model.
The train and test sets are generated:
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Shape of train: (396, 2)
Shape of test: (98, 2)

Shape of train arrays: (388, 7) (388,)
Shape of train arrays: (90, 7) (90,)

This process will be used in all network structures in this document.

The MLP network Structure

The input layer is declared with shape (None, 7) and of type �oat32.

input_layer = Input(shape=(7,), dtype='float32')

Then Dense layers are declared with the activation obtained in the tuning
process also n number of units are selected in function of minimizing the
val_loss, all this models are created using the keras functional api[1], here
default values are used for the exposition. Three dense layers are used in the
employment series and four are used in the S&P 500:

dense1 = Dense(32,activation='relu')(input_layer)

dense2 = Dense(32, activation='relu')(dense1)

dense3 = Dense(32, activation='relu')(dense2)

A dense layer is a classic fully connected neural network layer : each
input node is connected to each output node.

After that a n% dropout layer is used.

dropout_layer = Dropout(0.2)(dense3)

Dropout of n% is used to dropout n% of randomly selected input features.
Srivastava[13] in 2014 de�ned dropout as:

"The term �dropout� refers to dropping out units (hidden and
visible) in a neural network. "Dropout works by randomly setting
the outgoing edges of hidden units (neurons that make up hidden
layers) to 0 at each update of the training phase. In the simplest
case, each unit is retained with a �xed probability p independent
of other units, where p can be chosen using a validation set or
can simply be set at 0.5, which seems to be close to optimal for
a wide range of networks and tasks"
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Figure 10: Dropout layer intuition. Source:[13]

Finally, the output layer gives prediction for the next month employment or
S&P 500 data.

output_layer = Dense(1, activation='relu')(dropout_layer)
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Model Compilation

The input and output layers are packed in a model function. Were mse
is used to minimize the loss function. For this an optimization algorithm is
used. The optimization algorithm is again selected from the process of tuning
the hyperparameters choosing the one that generates the smallest val_loss.

optimizer = keras.optimizers.Adam(learning_rate=0.001, rho=0.9)

ts_model = Model(inputs=input_layer, outputs=output_layer)

ts_model.compile(loss='mean_squared_error', optimizer=optimizer)

ts_model.summary()
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2.2.2 Recurrent Neural Networks

The problem with MLP is that it doesn't consider the sequential nature of
the time series data where observations have correlation with each other. The
correlation in a time series can also be interpreted as the memory that the
series carries over itself. The RNN its said to solve or, at least alleviate this
problem by keeping some information about the past data. More speci�cally
Venkatachalam [27] de�ned in 2019, an RNN as follows:

"Recurrent Neural Network remembers the past and it's decisions
are in�uenced by what it has learnt from the past. While RNNs
learn similarly while training, in addition, they remember things
learnt from prior input(s) while generating output(s). It's part of
the network. RNNs can take one or more input vectors and pro-
duce one or more output vectors and the output(s) are in�uenced
not just by weights applied on inputs like a regular NN, but also
by a �hidden� state vector representing the context based on prior
input(s)/output(s). So, the same input could produce a di�erent
output depending on previous inputs in the series".

Figure 11: RNN structures. Source: towardsdatascience.com

A RNN can be used to develop a time series forecasting model where the
input series {xt−1, ..., xt−p} is fed to the RNN and the output from the last
timestep is the prediction. RNNs are notoriously di�cult to be trained.
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The Vanishing Gradient Problem

According to Missinglink.ai 2016[28]

"This is one of the most signi�cant challenges for RNNs perfor-
mance. In practice, the architecture of RNNs restricts its long-
term memory capabilities, which are limited to only remembering
a few sequences at a time. Consequently, the memory of RNNs
is only useful for shorter sequences and short time-periods ".

The vanishing gradient problem restricts the memory capabilities of tradi-
tional RNNs adding too many time-steps increases the chance of facing a
gradient problem and losing information when you use backpropagation.
As a result, RNNs have di�culty in learning long-range dependencies. For
time series forecasting, going too many timesteps back in the past would be
problematic. To address this problem, Long Short Term Memory (LSTM)
and Gated Recurrent Unit (GRU), which are special types of RNNs are used.

Long Range Short Term Memory

Sciaga[27] in 2018 mentions:

"One of the appeals of RNNs is the idea that they might be
able to connect previous information to the present task, such as
using previous video frames might inform the understanding of
the present frame"

.
"Long Short Term Memory networks � usually just called �LSTMs� � are a
special kind of RNN, capable of learning long-term dependencies. LSTMs
are designed to overcome the vanishing gradient problem and allow them to
retain information for longer periods compared to traditional RNNs. LSTMs
can maintain a constant error, which allows them to continue learning over
numerous time-steps and backpropagate through time and layers. LSTMs
use gated cells to store information outside the regular �ow of the RNN.
With these cells, the network can manipulate the information in many ways,
including storing information in the cells and reading from them. The cells
are individually capable of making decisions regarding the information and
can execute these decisions by opening or closing the gates. LSTM con-
tains three gates: an input gate, an output gate and a forget gate. At each
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iteration, the three gates try to remember when and how much the informa-
tion in the memory cell should be updated. These three gates form a path
of remembering the long-term dependency of the system"(Missinglink.ai[28]
2016).
The ability to retain information for a long period of time gives LSTM the
edge over traditional RNNs in these tasks.
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Description of RNN Used

Again we generate regressors and targets, X_train, X_val, y_train and
y_val. X_train, and X_val. However, the input to RNN layers must be
of shape (number of samples, number of timesteps, number of features per
timestep).

Shape of train arrays: (388, 7) (388,)
Shape of train arrays: (90, 7) (90,)

Shape of 3D arrays: (388, 7, 1) (90, 7, 1)

we use here 7 month time steps and 1 feature per time step. Employment
series use 1 lstm layer and S&P 500 uses 2 lstm layers.

input_layer = Input(shape=(7, 1), dtype='float32')

lstm_layer = LSTM(64,input_shape=(7,return_sequences=False) (input_layer)

The LSTM layer has seven timesteps, which is the same as the number of
historical observations taken to make the next-month prediction of employ-
ment and S&P 500. Only the last timestep of the LSTM returns an output.
The number of units again are de�ned in function of the val_loss.

Next, the LSTM's output is passed to a dropout layer that randomly drops
n% of the input before passing to the output layer, which has a single hidden
neuron:

dropout_layer = Dropout(n)(lstm_layer)

output_layer = Dense(1, activation='relu', kernel_initializer='glorot_uniform')

(dropout_layer)

ts_model = Model(inputs=input_layer, outputs=output_layer)

optimizer = keras.optimizers.Nadam(lr=0.001)

ts_model.compile(loss='mse', optimizer=optimizer)

ts_model.summary()

Finally, all the layers are wrapped in a tf.keras.models.model and trained for
N number of epochs to minimize MSE using an optimizer.
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2.2.3 Gate Recurrent Units

"The key distinction between regular RNNs and GRUs is that the latter
support gating of the hidden state. This means that there are dedicated
mechanisms for when a hidden state should be updated and also when it
should be reset"(dive into deep learning 2020). The di�erent gates of a GRU
are as described below:

� "Update Gate(zt): It determines how much of the past knowledge needs
to be passed along into the future. It is analogous to the Output Gate
in an LSTM recurrent unit.

� Reset Gate(rt): It determines how much of the past knowledge to for-
get. It is analogous to the combination of the Input Gate and the
Forget Gate in an LSTM recurrent unit.

� Current Memory Gate(ht): It is often overlooked during a typical dis-
cussion on Gated Recurrent Unit Network. It is incorporated into the
Reset Gate just like the Input Modulation Gate is a sub-part of the
Input Gate and is used to introduce some non-linearity into the input
and to also make the input Zero-mean. Another reason to make it a
sub-part of the Reset gate is to reduce the e�ect that previous infor-
mation has on the current information that is being passed into the
future"(Geekforgeeks 2020).

Figure 12: GRU structures. Source: data-blogger.com

Similarly to the LSTM unit, GRU has gating units that modulate the �ow
of information inside the unit, however, without having a separate memory
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cell.

Description of GRU Used

It has been used two stacked GRU layers, for the employment series and
4 stacked layers for the S&P series.

input_layer = Input(shape=(7, 1), dtype='float32')

gru_layer1 = GRU(64, input_shape=(7, 1),

return_sequences=True)(input_layer)

gru_layer2 = GRU(32, input_shape=(7,64), return_sequences=False)(gru_layer1)

dropout_layer = Dropout(0.2)(gru_layer2)

output_layer = Dense(1, activation='linear')(dropout_layer)

ts_model = Model(inputs=input_layer, outputs=output_layer)

ts_model.compile(loss='mse', optimizer='adam', metrics=['mae', 'accuracy'])

ts_model.summary()

The �rst GRU takes a sequential input from the preceding input layer. Each
timestep of the �rst GRU returns a n dimensional feature vector as output.
This sequence is passed as input to the next GRU layer. The second GRU
layer returns output only from the last timestep. The neural network is
trained to minimize the MSE loss using the best optimizer selected in the
grid process and the keras tuner implementation.

2.2.4 Convolutional Neural Networks

As described by Saha[30] in 2018

"A Convolutional Neural Network (ConvNet/CNN) is a Deep
Learning algorithm which can take in an input image, assign im-
portance (learnable weights and biases) to various aspects/objects
in the image and be able to di�erentiate one from the other. The
pre-processing required in a ConvNet is much lower as compared
to other classi�cation algorithms. While in primitive methods
�lters are hand-engineered, with enough training, ConvNets have
the ability to learn these �lters/characteristics.
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The architecture of a ConvNet is analogous to that of the connec-
tivity pattern of Neurons in the Human Brain and was inspired
by the organization of the Visual Cortex. Individual neurons re-
spond to stimuli only in a restricted region of the visual �eld
known as the Receptive Field. A collection of such �elds overlap
to cover the entire visual area.

A ConvNet is able to successfully capture the Spatial and Tempo-
ral dependencies in an image through the application of relevant
�lters. The architecture performs a better �tting to the image
dataset due to the reduction in the number of parameters in-
volved and reusability of weights. In other words, the network
can be trained to understand the sophistication of the image bet-
ter".

Figure 13: An example of CNN architecture. Source:[30]

The role of the ConvNet is to reduce the images into a form which is easier
to process, without losing features which are critical for getting a good pre-
diction. This is important when we are to design an architecture which is
not only good at learning features but also is scalable to massive datasets.

CNN for time series Analysis

"Although traditionally developed for two-dimensional image data,
CNNs can be used to model univariate time series forecasting
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problems. Univariate time series are datasets comprised of a sin-
gle series of observations with a temporal ordering and a model
is required to learn from the series of past observations to predict
the next value in the sequence.

1D convolution layers can be used to develop time series fore-
casting models. A time series having 1 x m observations is like
an image of dimension p, which has a height of a single pixel.
In this case, 1D convolution can be applied as a special case of
2D convolution using a 1 x 3 �lter. Additionally, the �lter is
moved only along the horizontal direction by strides length of 1
x 8 time units. The approach of using a 1 x 3 convolution �l-
ter is equivalent to training several local autoregressive models
of order three. These local models generate features over short-
term subsets of the input time series. When an average pooling
layer is used after the 1D convolution layer, it creates moving
averages over the feature map generated by the preceding con-
volution layer. Furthermore, several 1D convolution and pooling
layers, when stacked with each other, give a powerful way of ex-
tracting features from the original time series. Thus, using CNNs
proves to be e�ective when dealing with complex, nonlinear time
series such as audio waves, speech, and so on"

(Avishek[12] 2017).

Description of the ConvNet Used

De�ne input layer

input_layer = Input(shape=(7, 1), dtype='float32')

A ZeroPadding1D layer is added after the input layer to add zeros at the
beginning and end of each series.

"Zero padding is a technique that allows us to preserve the orig-
inal input size. This is something that we specify on a per-
convolutional layer basis. With each convolutional layer, just as
we de�ne how many �lters to have and the size of the �lters, we
can also specify whether or not to use padding." (Deeplizard[31]
2020).
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zeropadding_layer = ZeroPadding1D(padding=1)(input_layer)

This ensures that the convolution layer does not reduce the dimension of the
output sequences.

conv1D_layer = Conv1D(64,3,strides=1,use_bias=True)(zeropadding_layer)

then a conv1d layer is added, this has 64 �lters with a 1d convolution windows
of length 3 that shifts in strides of 1.CNNs share the same characteristics and
follow the same approach, no matter if it is 1D, 2D or 3D. The key di�erence
is the dimensionality of the input data and how the feature detector (or �lter)
slides across the data.(Ackermann 2018)

avgpooling_layer = AveragePooling1D(pool_size=3, strides=1)(conv1_layer)

AveragePooling1D is added next to downsample the input by taking average
over three timesteps with stride of one timestep. The average pooling in this
case can be thought of as taking moving averages over a rolling window of
three time units.

"An average pooling layer performs down-sampling by dividing
the input into rectangular pooling regions and computing the
average values of each region. Pooling layers follow the convolu-
tional layers for down-sampling, hence, reducing the number of
connections to the following layers" (MathWorks 2020).

flatten_layer = Flatten()(avgpooling_layer)

The �atten layer reshapes the data received from the pooling layer and pass
the data to the dropout layer, so that it is �nally processed

dropout_layer = Dropout(0.2)(flatten_layer)

output_layer = Dense(1, activation='linear',

kernel_initializer='he_uniform')(dropout_layer)

ts_model = Model(inputs=input_layer, outputs=output_layer)

optimizer = keras.optimizers.adadelta(lr=0.001)

ts_model.compile(loss='mean_absolute_error', optimizer=optimizer, metrics=[

'mse', 'accuracy']) SGD(lr=0.001, decay=1e-5))

ts_model.summary()

�nally an optimizer is used to minimize the Mean Absolute Error.
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3 Experimental results

The data Set

The data set used consist of 494 monthly observations of a �nancial and
economic series ranging form August 1978 to September 2019. Both series
are positive correlated as measured by its correlation Coe�cient of 0.94.

Table 3: Descriptive Statistics

Statistic S&P 500 Employment
Average 958.81 120584.85

STD Deviation 735.55 18456.72
Asimetry 0.79 -0.33
Kurtosis -0.05 -1.15
Max 2980.38 151722.00
Min 93.15 87483.00

Coe�cient of Variation 0.77 0.15
Number of Observations 494 494

However as explained initially this series di�er greatly in is volatility and
trend component which is a usual characteristic di�erence between �nan-
cial and economic time series, this can be appreciated in the big di�erence
between the coe�cient of variation.

Figure 14: Relationship between S&P 500 and Labor Data

As the above �gure shows, they have a very strong positive correlation. This
has a very intuitive economic explanation. Job creation is strongly correlated
with the strength of expansions in GDP. The strength of GDP is associated
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with an improvement in company pro�ts. The value of a stock index is based
on the value of discounted earnings.

Table 4: Evolution of variance across time

S&P 500 Employment Data
Mean 1 Mean 2 Mean 1 Mean 2
368.35 1549.28 104,708.93 136,460.77

Variance 1 Variance 2 Variance 1 Variance 2
73,170.32 309,399.44 136,946,210.00 38,885,859.18

However we can see this data is not stationary and we can check this by start
looking at how the variance and mean behaves across di�erent samples.

When analyzed the ljung-box test for both time series we have the following
results:

Table 5: LjungBox Test

Up to lag 20 Employment S&P 500
Original Rejected Rejected
First Di�erence Rejected Accepted

we can reject the null hypothesis that autocorrelations up to lag k equal zero
(that is, the data values are random and independent up to a certain number
of lags�in this case 20) If p-value < 0.051: we can reject the null hypothesis
assuming a 5% chance of making a mistake. So we can assume that our values
are showing dependence on each other. If p-value > 0.051: we don't have
enough statistical evidence to reject the null hypothesis. When we reject we
can suspect that autocorrelations for one or more lags might be signi�cantly
di�erent from zero, indicating the values are not random and independent
over time, which is one of the assumptions of box Jenkins model selection
process.
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Table 6: Dicket fuller test

Statistic S&P 500 Employment Data
Dickey Fuller Test 1.1630 -0.4380

p-val 0.9957 0.9035
1% Critical Value -3.4439 -3.4437
5% Critical Value -2.8675 -2.8674
10% Critical Value -2.5699 -2.5699

The p-value is obtained is greater than signi�cance level of 0.05 and the ADF
statistic is higher than any of the critical values. Clearly, there is no reason
to reject the null hypothesis. So, the time series is in fact non-stationary.
The null hypothesis that the model of order 1 without a constant o�set and
no deterministic trend contains a unit root is no rejected at the 0.5 percent
level based on the Dickey-Fuller T test. Based on both of this statistics we
can conclude that this series are non stationary. So at least one level of in-
tegration has been used when applied autoregressive models to the data.

3.1 Arima Model Selection

As discussed earlier based on Box-Jenkins methodology model selection cri-
teria would be based on AIC and BIC criteria.
The results obtained for the information criteria are detailed below:
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Table 7: Employment

AR I MA AIC AR I MA BIC
1 2 1 6220.29 1 2 1 6237.08
0 2 2 6220.58 0 2 2 6237.37
1 1 2 6220.90 0 2 1 6239.62
2 1 1 6221.33 1 1 2 6241.90
2 2 1 6222.27 2 1 1 6242.33
1 2 2 6222.27 2 2 1 6243.26
2 1 2 6222.88 1 2 2 6243.26
2 2 2 6224.29 2 2 0 6244.10
0 2 1 6227.02 1 1 1 6246.81
2 2 0 6227.30 2 1 2 6248.08
1 1 1 6230.01 2 2 2 6249.48
2 1 0 6240.91 2 1 0 6257.71
1 2 0 6255.57 1 2 0 6268.16
1 1 0 6345.91 1 1 0 6358.51
0 1 2 6405.75 0 1 2 6422.55
0 2 0 6415.98 0 2 0 6424.38
0 1 1 6503.63 0 1 1 6516.23
0 1 0 6654.50 0 1 0 6662.90
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Table 8: S&P 500

AR I MA AIC AR I MA BIC
2 2 2 5176.93 0 2 1 5194.33
1 2 2 5178.94 0 1 0 5195.29
1 2 1 5181.44 1 2 1 5198.23
0 2 1 5181.73 0 1 1 5199.52
2 1 1 5182.58 1 1 0 5199.58
2 2 1 5183.11 1 2 2 5199.94
0 1 0 5186.88 2 2 2 5202.12
0 1 1 5186.92 2 1 1 5203.59
1 1 0 5186.98 2 2 1 5204.10
2 1 2 5187.45 2 1 0 5205.61
2 1 0 5188.81 0 1 2 5205.64
0 1 2 5188.84 1 1 1 5205.67
1 1 1 5188.87 2 1 2 5212.66
2 2 0 5323.14 2 2 0 5339.94
1 2 0 5393.46 1 2 0 5406.05
0 2 0 5547.61 0 2 0 5556.01

"The Akaike Information Criterion, or AIC for short, is a method for scoring
and selecting a model. The AIC statistic is de�ned for logistic regression as
follows

AIC = −2/N ∗ LL+ 2 ∗ k/N (1)

Where N is the number of examples in the training dataset, LL is the log-
likelihood of the model on the training dataset, and k is the number of
parameters in the model.

The score, as de�ned above, is minimized, e.g. the model with the lowest
AIC is selected.

The Bayesian Information Criterion, or BIC for short, is a method for scoring
and selecting a model.
The BIC statistic is calculated for logistic regression as follows:

BIC = −2 ∗ LL+ log(N) ∗ k (2)

Where log() has the base-e called the natural logarithm, LL is the log-
likelihood of the model, N is the number of examples in the training dataset,
and k is the number of parameters in the model".(Brownlee 2019)
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The score as de�ned above is minimized, e.g. the model with the lowest BIC
is selected.

Also Based on the MSE an ordering of the best results has been made for
the ARIMA structure.
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Table 9: Employment by MSE

AR I MA MSE
2 0 0 1418.88
1 0 1 5353.54
1 0 0 5468.89
1 1 1 6901.84
3 1 1 6966.74
1 1 2 6968.81
2 1 1 6970.64
2 1 2 6978.39
0 2 1 7028.00
0 2 2 7085.63
3 1 0 7098.83
1 2 1 7101.38
3 2 1 7101.55
1 2 2 7106.31
2 2 1 7106.81
2 2 2 7114.08
3 2 2 7114.18
3 2 0 7290.39
2 0 1 7292.03
2 0 2 7396.76
3 0 1 7406.54
3 0 2 7414.39
2 2 0 7443.04
2 1 0 7847.19
1 2 0 8579.66
3 0 0 8664.69
1 0 2 9156.59
1 1 0 9207.34
0 1 2 9669.75
0 1 1 9999.81
0 1 0 11737.66
0 2 0 11763.05
0 0 1 153362312.91
0 0 0 606265627.10
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Table 10: S&P 500 by MSE

AR I MA MSE
0 2 0 3156.95
0 2 1 5412.30
0 1 0 5465.33
1 2 1 5490.42
1 2 2 5523.07
1 1 0 5532.54
0 1 1 5539.38
2 2 2 5556.57
2 2 1 5582.42
2 1 0 5619.85
1 0 0 5625.65
0 1 2 5627.19
3 1 2 5640.58
3 2 1 5669.49
3 1 0 5728.55
3 1 1 5750.01
2 1 1 5762.10
3 0 0 5801.42
2 0 0 6191.91
3 2 0 7758.11
2 2 0 7929.49
1 2 0 8850.41
0 0 1 482556.86
0 0 0 1820059.59

Based on the results obtained above the following model speci�cations were
tested:

Table 11: Arima models selected

Employment S &P 500
AR I MA AR I MA
2 0 0 0 2 1
1 2 1 2 2 2
0 2 2 1 2 2
1 1 2 1 2 1
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This lead us to the following results:

Table 12: Employment Series

Order MSE RMSE R2
Arima(1,1,2) 6876.2711 82.9232 0.9998
Arima(0,2,2) 6964.3443 83.4526 0.9997
Arima (1,2,1) 7001.8839 83.6772 0.9997
Arima(2,0,0) 11395.5151 106.74977 0.9996
Average 8059.5036 89.2007 0.9997

For the employment series we can see that the best model is of the order
(1,1,2). We can plot the results as follows:

Figure 15: Employment Forecast Arima(1,1,2)

For the S&P500 series we get the following results:
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Table 13: S&P 500 Series

Order MSE RMSE R2
Arima(0,2,1) 5457.0651 73.8719 0.9787
Arima(1,2,1) 5537.5709 74.4148 0.9894
Arima(1,2,2) 5567.4915 74.6156 0.9893
Arima(2,2,2) 5587.7679 74.7513 0.9782
Average 5537.4738 74.4134 0.9839

For the S&P 500 series we can see that the best model is of the order (0,2,1).
We can plot the results as follows:

Figure 16: Employment Forecast Arima(1,1,2)
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3.2 Deep Learning Forecast

GridSearch Results

As stated before one of the methods for the tuning of hyperparameter was a
grid search. This was done for the following parameters:

� Neuron activation Function

� Initial weights

� Optimizer Selection

� Learning rate and momentum

� Batch size and number of epochs

The results are as follow:

Table 14: Hyperparameters for employment series

RNN_EM MLP_EM GRU_EM CNN_EM
Activation linear linear linear linear
Initial Weigths glorot uniform glorot uniform normal normal
Optimizer Adam Nadam Nadam Adam
Learning Rate 0.0001 0.001 0.01 0.01
Momentum 0 0 0 0
Batch size 10 10 60 60
Epochs 100 10 100 100

Table 15: Hyperparameters for S&P 500 series

RNN_SPX MLP_SPX GRU_SPX CNN_SPX
Activation relu linear linear linear
Initial Weigths normal glorot uniform glorot uniform normal
Optimizer Adam Nadam RMSprop SGD
Learning Rate 0.0001 0.001 0.001 0.01
Momentum 0 0 0 0
Batch size 10 10 128 60
Epochs 100 10 100 100

This yielded the following k-fold results:
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Table 16: RNN K-fold Result for Employment series

RNN_EM
Average_loss 0.01409
Average_val_loss 0.00278
Average R2 0.93470
Average MSE_level 1,937,755.18

Figure 17: K-fold for RNN in Employment series

Table 17: RNN for S&P 500 series

RNN_SPX
Average_loss 0.06130
Average_val_loss 0.07627
Average R2 0.82660
Average MSE_level 37,522.58
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Figure 18: K-fold for RNN in S&P 500 series

Table 18: MLP for Employment series

MLP_EM
Average_loss 0.20139
Average_val_loss 0.02452
Average R2 0.92323
Average MSE_level 2,270,390.32

Figure 19: K-fold for MLP in Employment series
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Table 19: MLP for S&P series

MLP_SPX
Average_loss 0.09238
Average_val_loss 0.01849
Average R2 0.91230
Average MSE_level 18,974.14

Figure 20: K-fold for MLP in S&P 500 series

Table 20: GRU for EM series

GRU_EM
Average_loss 0.01993
Average_val_loss 0.00399
Average R2 0.95656
Average MSE_level 1,374,085.00
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Figure 21: K-fold GRU for Employment series

Table 21: GRU for SPX series

GRU_SPX
Average_loss 0.04272
Average_val_loss 0.07479
Average R2 0.84200
Average MSE_level 34,199.11

Figure 22: K-fold GRU for S&P 500 series
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Table 22: CNN for EM series

CNN_EM
Average_loss 0.06600

Average_val_loss 0.05844
Average R2 0.97644

Average MSE_level 696,668.03

Figure 23: K-fold CNN for Employment series

Table 23: CNN for SPX

CNN_SPX
Average_loss 0.08110
Average_val_loss 0.09155
Average R2 0.92617
Average MSE_level 15,985.03
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Figure 24: K-fold CNN for S&P 500 series

Keras tuner results

Additionally tensor�ow keras tuner was used for hyperparameter tuning
yielding very di�erent results than previous k-folds. We show the results
with keras tuner:

Recurrent Neural Network

For the employment series the �nal RNN structure used:
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Figure 25: Final RNN structure

Figure 26: Final RNN structure

With hyperparameters:
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Table 24: Hyperparameters for Employment LSTM

Initializer: he_uniform
activation: softplus
batch_size: 32
dropout_2: 0.45
epochs: 50

learning_rate: 0.01
optimizer: Adam
units: 416

This generates the following forecast:

Figure 27: Final RNN Forecast for Employment series

with the following statistics:

Table 25: RNN for Employment

R2 0.9996
MSE 12157.61

For the S&P500 series we have:
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Figure 28: Final RNN structure

Figure 29: Final RNN structure

This LSTM has the following hyperparameters:
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Table 26: Hyperparameters for S&P LSTM

Initializer: he_uniform
activation: softsign
batch_size: 32
dropout: 0.2
epochs: 10

learning_rate: 0.01
optimizer: Adamax
units: 480

This generates the following forecast:

Figure 30: Final RNN Forecast for S&P 500 series

With the following Statistic:

Table 27: RNN for S&P series

R2 0.9456
MSE 11787.75

Multi-layer Perceptron
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The structure used for the MLP in the Employment series is:

Figure 31: Final MLP structure

Figure 32: Final MLP structure

The following hyperparameters were used:
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Table 28: Hyperparameter for Employment MLP

Initializer: uniform
activation: sigmoid
batch_size: 16
dropout: 0.45
epochs: 50
learning_rate: 0.001
optimizer: Adam
units: 480

This generates the following forecast:

Figure 33: Final MLP Forecast for Employment series

which gives the following statistics:

Table 29: MLP for Employment series

R2 0.9982
MSE 54631.05

The MLP for the S&P 500 series has the following structure:
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Figure 34: Final MLP structure

Figure 35: Final MLP structure

58



The following hyperparameters were used:

Table 30: Hyperparameters for S&P MLP

Initializer: he_uniform
activation: softplus
batch_size: 128
dropout: 0.5
epochs: 10

learning_rate: 0.0001
optimizer: Adam
units: 320

This generates the following forecast:

Figure 36: Final MLP Forecast for S&P 500 series

This generates the following statistics:

Table 31: MLP for S&P series

R2 0.9662
MSE 7322.57
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Gate Recurrent Units

The structure used for the GRU for the Employment series is:

Figure 37: Final GRU structure

Figure 38: Final GRU structure

This generates the following forecast:
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Figure 39: Final GRU Forecast for Employment series

The following hyperparameters were used:

Table 32: Hyperparameters for Employment GRU

Initializer: uniform
activation: softsign
batch_size: 16
dropout: 0.2
epochs: 10

learning_rate: 1.00E-05
optimizer: Adam
units: 224

This generates the following statistics:

Table 33: GRU for Employment

R2 0.9994
MSE 18559.20

The structure used for the S&P series is:
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Figure 40: Final GRU structure
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Figure 41: Final GRU structure

The following hyperparameters were used:

Table 34: Hyperparameters for S&P GRU

Initializer: he_normal
activation: softsign
batch_size: 64
dropout: 0.1
epochs: 10

learning_rate: 1.00E-05
optimizer: Adamax
units: 480
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This generates the following forecast:

Figure 42: Final GRU Forecast for S&P 500 series

This generate the following statistics:

Table 35: GRU for S&P 500

R2 0.958
MSE 9098.26

Convolutional Neural Networks

The structure used for the Employment series is:
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Figure 43: Final CNN structure
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Figure 44: Final CNN structure

The following hyperparameters were used:

Table 36: Hyperparameters for the Employment CNN

Initializer: he_uniform
activation: relu
batch_size: 64
dropout: 0.3
epochs: 100

learning_rate: 0.001
optimizer: SGD
units: 64
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This generates the following forecast:

Figure 45: Final CNN Forecast for Employment series

This generates the followings statistics:

Table 37: CNN for Employment series

R2 0.9991
MSE 26803.42

The �nal structure for S&P series was:
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Figure 46: Final CNN structure
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Figure 47: Final CNN structure

The following hyperparameters were used:

Table 38: Hyperparameters for the S&P CNN

Initializer: glorot_uniform
activation: relu
batch_size: 128
dropout: 0.15
epochs: 100

learning_rate: 0.001
optimizer: SGD
units: 64
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This generates the following forecast:

Figure 48: Final CNN Forecast for S&P 500 series

This generates the followings statistics:

Table 39: CNN for Employment series

R2 0.9623
MSE 8162.00

In summary the hyperparameters used based on Keras tuner selection are:
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Table 40: Summary of Hyperparameters

RNN_EM MLP_EM GRU_EM CNN_EM
Initializer he_uniform uniform uniform he_uniform
Activation softplus sigmoid softsign relu
Batch_size 32 16 16 64
Dropout 0.45 0.45 0.2 0.3
Epochs 50 50 10 100

Learning Rate 0.01 0.001 1.00E-05 0.001
Optimizer Adam Adam Adam SGD
Units 416 480 224 64

RNN_SPX MLP_SPX GRU_SPX CNN_SPX
Initializer he_uniform he_uniform he_normal glorot_uniform
Activation softsign softplus softsign relu
Batch_size 32 128 64 128
Dropout 0.2 0.5 0.1 0.15
Epochs 10 10 10 100

Learning Rate 0.01 0.0001 1.00E-05 0.001
Optimizer Adamax Adam Adamax SGD
Units 480 320 480 64

Table 41: Summary of results

RNN_EM MLP_EM GRU_EM CNN_EM Average
R2 0.9996 0.9982 0.9994 0.9991 0.999075

MSE 12157.61 54631.05 18559.2 26803.42 28037.82

RNN_SPX MLP_SPX GRU_SPX CNN_SPX Average
R2 0.9456 0.9662 0.958 0.9623 0.958025

MSE 11787.75 7322.57 9098.26 8162 9092.645

This results must be compared with ARIMA results that were previously
exposed

Table 42: Employment Series

Order Mse Rmse R2
Arima(1,1,2) 6876.2711 82.9232 0.9998
Arima(0,2,2) 6964.3443 83.4526 0.9997
Arima (1,2,1) 7001.8839 83.6772 0.9997
Arima(2,0,0) 11395.5151 106.74977 0.9996
Average 8059.5036 89.2006925 0.9997
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Table 43: S&P 500 Series

Order Mse Rmse R2
Arima(0,2,1) 5457.0651 73.8719 0.9787
Arima(1,2,1) 5537.5709 74.4148 0.9894
Arima(1,2,2) 5567.4915 74.6156 0.9893
Arima(2,2,2) 5587.7679 74.7513 0.9782
Average 5537.4738 74.4134 0.9839

Table 44: Final Comparison among models

Model Average R2 Average MSE
Employment NN Model 0.9991 28,037.82
Employment Arima Model 0.9997 8,059.50
Di�erence -0.0006 19978.31

Average R2 Average MSE
S&P 500 NN Model 0.9580 9,092.65
S&P 500 ARIMA Model 0.9839 5,537.47
Di�erence -0.0259 3555.17

As it can be observed, although are very close, none of the results found
to date based on neural networks, can exceed the results obtained by the
ARIMA models. The average R2 score for ARIMA model in the case of the
employment series is 0.9997 with an MSE of 8059.50, this generates a big
di�erence when compared with a 0.9990 for Neural network structures with
average MSE of 28037.82, been this MSE 3.48 times larger the the average
ARIMA MSE. However this should be understood as an average and it is
notable that there are other results that closely approximate the results of
the ARIMA models. For example, the fact that for the employment series,
the recurrent models like LSTM and GRU are the ones that have give the
best results must be rescued. Table 44 shows how the di�erences are reduced
when we separate only the recurrent models.

Table 45: Recurrent NN results for Employment

R2 MSE
Recurrent Models 0.9995 15358.41

ARIMA 0.9997 8059.50
Di�erence 0.0002 7298.90

When we compare the models for the S&P 500 series it is possible to observe
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that average R2 score for ARIMA models is 0.9839 while the for neural net-
works we can see an average of 0.9580, we observe a di�erence of -0.0259.
The MSE for the ARIMA model is 5537.47 while for the Neural Network
models is 9092.65, that is 1.64 times the MSE of ARIMA models, this di�er-
ence is much smaller, than the di�erence presented in the employment series.
Again, although there are some models that are quite close, none of them
can exceed the results obtained for ARIMA modelling. However we can still
see a very good performance for the MLP and the CNN models. Table 45
show how the di�erences are reduced when ARIMA models are compared
with the average of this two models.

Table 46: CNN-MLP Average result for S&P 500

R2 MSE
Average CNN - MLP 0.9643 7742.29

ARIMA 0.9839 5537.47
Di�erence -0.0196 -2204.81

When comparing results between �nancial and economic time series, as ex-
pected in both cases it can be seen that �nancial time series are more di�cult
to forecast than economic time series. This is re�ected in the lower level of
R2. Table 46 show the di�erences between �nancial and economic series for
both ARIMA and Neural Network models, this di�erence is larger between
the neural networks models with a 0.0411.

Table 47: Di�erence between Economic and Financial Series

Employment NN Model R2 S&P 500 NN Model Di�erence
0.9991 0.9580 0.0411

Employment Arima Model R2 S&P 500 ARIMA Model Di�erence
0.9997 0.9839 0.0158

Additionally, it is important to add that the e�ort made both from the com-
putational point of view and analytical work for the neural networks is much
greater in contrast to the basic ARIMA analysis. E�ort that under these
results would not be o�set by a better forecasting capacity.
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4 Conclusions

Throughout this document a tour of di�erent neural network architectures
has been made in order to evaluate the forecasting capacity that these have
when applied to economic and �nancial time series. According to the order
of the objectives set, simple but powerful ARIMA forecasting methods were
developed. In which the box-jenkins methodology was applied to determine
which models were more in line with the time series analyzed. Based on
this results, the 4 best models were determined for each series and their
prediction capacity measured through the R-squared and the mean squared
error were determined, this served to form the basis of comparison on which
neural networks were valued.
After this process in objective 2, an investigation of the main neural network
structures was carried out, through which forecasts for time series could be
made. This lead to the use of RNN, GRU, MLP and CNN structures which
were developed in accordance with objective 2b.
Finally in accordance with objective 3, through the comparative results ta-
bles, the structures of the neural networks were analyzed in opposition to the
results obtained under the ARIMA models and the conclusions were deter-
mined. Here we could see the di�erences between the average R-squared and
the mean of mean squared error for each series. For the employment series,
it was the recurrent models that gave the best results with an R2 of 0.9995.
For the S&P 500 series it was the MLP and CNN models that showed the
best results with an R2 of 0.9643.
However, none of the Neural Network results developed here could overcome
the results of the ARIMA models. Being the results by the ARIMA models
the ones that obtained better score.
Although neural network models are promising, under the parameters estab-
lished in this study, they cannot overcome the results of the basic ARIMA
models.
Additionally, at this point and throughout this document as expected in ob-
jective 3a, the di�erences between the economic and �nancial series have
been compared, both from the point of view of their volatility structure and
within their ability to be forecasted. This was demonstrated when analyzing
the di�erences between the average of the R2 for the two types of series. As
expected the �nancial series due to their more dynamic and random nature
tend to be more di�cult to be forecasted by both methods showing a smaller
R2.

The conclusion reached in this document is that based on the amount of
e�ort required to work a neural network, the capacity of these algorithms
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for forecasting time series does not exceed the classical methods, which with
less e�ort and less intensive use of CPU achieve results equal or superior in
all cases. However, it is important to add that within the large number of
hyperparameters that can be tuned there could be some combination that
could approach the results obtained by ARIMA models. However, due to
time and GPU limitations, it was only possible to estimate some possible
combinations.
Likewise, even with the results obtained, the great capacity of neural net-
works to learn about the trajectory of a time series and show forecasting
results that in general terms are considered quite good is evident. When
we re�ect on the ability of these algorithms to contribute to the economic
analysis and especially to the new economic mathematics, it is considered
that these are very powerful and promising instruments, and it's not dis-
carded, the possibility that with a greater training e�ort or perhaps other
combinations of hyperparameters the results can be as good as the tradi-
tional ARIMA models. Although the results under the applied models do
not succeed in surpassing the traditional classical models, it must be clear
that the world of deep learning opens up endless possibilities for new methods
of quantitative analysis. Therefore, what this document aims to conclude is
not that neural networks are not su�cient to compete with classic ARIMA
models, but rather, that the world of deep learning opens up endless alter-
natives for the analysis of time series that have hardly start. In this way, the
learning obtained in this work was invaluable from the point of view of ex-
posing some of the possible alternatives o�ered by the world of deep learning
to economic and �nancial modeling. The incorporation of arti�cial intelli-
gence algorithms into economic analysis is a relatively new topic and to date
there is little literature on it. However, its considered that the combination
of deep learning methods for forecasting exogenous variables, together with
reinforcement learning algorithms for the optimization of the trajectories of
macroeconomic variables in economic systems, will be a powerful tool for
many economists in the years to come.
What has been sought with this exercise is to contribute to the development
and use of deep learning methods in economic and �nancial analysis through
examples applied to series that in practice are very relevant and have been
very di�cult to forecast by economists all over the world.

It is concluded therefore that although it could be that the deep learning
methods still do not surpass the classical methods. It will be a matter of
time until developments such as those made in this document open up new
architectures that are better adapted to solve economic and �nancial prob-
lems.
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4.1 Proposals for future work

Among the many possibilities that remain to be tested would be to use di�er-
ent timesteps in the input so that other recurrent structures are formulated
di�erent than the ar(7) used in this work. Likewise, for the purposes of this
document, the tuner used to do hyperparameter search was random search
however, Hyperband and bayesian optimization are also available. Addition-
ally, within the analyzed structures, you could use other combinations of
layers that could give better results.
Also, relatively short series were used for this work. It is considered valuable
to carry out a similar exercise with series with a greater number of observa-
tions. For example, the series of �nancial instruments have the property of
fractality and therefore preserve their structure regardless of scale. There-
fore, series as small as 1-minute on the S&P 500 can be created, this would
open up the possibility to generate data as large as desired for testing and
training.
For this work, comparisons based on one step ahead forecasts have been
made. However, in practice many times it is possible to �nd the need to
make forecasts for more than one period onwards. So one point that is of
my personal interest, is the ability of neural networks to make out-of-sample
forecasts. This is a topic that I would like to later work on personal investi-
gations.
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