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Dr. Juan Alberto Rodŕıguez Velázquez, certifies that the student Magdalena Valveny

Juncosa has elaborated the work under his direction and he authorizes the presentation of this

memory for its evaluation.

Director’s signature:



Credits/Copyright

A page with the specification of credits / copyright for the project (either application on one

hand and documentation on the other, or unified), as well as the use of brands, products or

services of third parties (including source codes). If a person other than the author collaborated

in the project, his identity must be made explicit and what he did.

The most usual case is exemplified below, although it can be modified by any other alter-

native:

This work is subject to a licence of Attribution-NonCommercial-NoDerivs 3.0 of Creative

Commons

i



ii



FINAL PROJECT SHEET

Title: Protection of graphs.

Autor: Magdalena Valveny Juncosa

Tutor: Juan Alberto Rodŕıguez Velázquez
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Abstract

Suppose that one or more entities are stationed at some of the vertices of a graph G and that an

entity at a vertex can deal with a problem at any vertex in its closed neighbourhood. Informally,

we say that G is protected under a given placement of entities if there exists at least one entity

available to handle a problem at any vertex.

Cockayne et al. [Bulletin of the Institute of Combinatorics and its Applications 39 (2003)

87–100] proposed four properties of such functions under which the entire graph may be pro-

tected according to a certain strategy. In each case the parameter of interest will be the

minimum weight of a function in the subclass (minimum number of entities used).

In this work, we obtain closed formulae and tight bounds for two of these protection types:

weak Roman domination number and secure domination number; focusing in lexicographic and

Cartesian product graphs in terms of invariants of the factor graphs involved in the product.

It is shown that the problem of computing the weak Roman domination number (Henning

and Hedetniemi [Discrete Math. 266 (2003) 239-251]) and secure domination number (Boume-

diene Merouane and Chellali [Inform. Process. Lett. 115 (10) (2015) 786–790.]) is NP-Hard,

even when restricted to bipartite or chordal graphs. This suggests finding the domination

number for special classes of graphs or obtaining good bounds on this invariant.

Both approaches followed in this work, M. Valveny, H. Pérez-Rosés and J. A. Rodŕıguez-

Velázquez [Discrete Math. 263 (2019) 257-270] and M. Valveny and J. A. Rodŕıguez-Velázquez

[Filomat 33 (1) (2019) 319-333], have been published in Discrete Applied Mathematics and

Filomat respectively.

Keywords: Graphs, Domination, Protection of graphs, Weak Roman domination, Secure

domination, Product of graphs, Lexicographic product of graphs, Cartesian product of graphs.
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Chapter 1

Introduction

Any real world situation can be illustrated diagrammatically with set of points joined with

lines. A mathematical abstraction of situations which focuses on the way in which the points

are connected together give rise to the concept called graph [1, 2].

1.1 Context and justification of the Work

Understanding the relations and the effects on the interconnection between these points can

bring theoretical knowledge which contributes to a number of applications in communication,

molecular physics and chemistry, social networks, biological sciences, computational linguistics,

and in other numerous areas. In graph theory, one of the extensively researched branches is

domination in graphs [3]. As how its shown in [8], now we will illustrate some examples of the

applications of this area of study:

� Social Network Theory If we consider that the online social network can be repre-

sented as a graph of relationship with individuals representing the nodes and the social

interactions as edges, then domination plays a vital role in analyzing the real effect on a

real online social network data through simulation.

The domination concept can be applied to the social network graph to determinate the

amount of influence that is possessed by an individual as well as its impact to their related

neighbours. Persons can play different roles as they are affected by their peers. So, each

one can spread influence throughout the entire community in the social network[4]. A

good example nowadays is the prediction of the extension of COVID-19.

� Computer Communication Networks Domination plays an important role in com-

puter and communication networks to route the network.

3



4 Introduction

� Mobile Ad-hoc Network A Mobile Ad-hoc Network (MANET) is a self-configurable

infrastructureless network connecting the mobile devices in wireless mode [5]. Domination

has been commonly used for routing and broadcasting the information in mobile ad-hoc

networks. Domination is used in this field to reduce the communication and the storage

overhead by keeping its size to be minimal.

� Wireless Sensor Network A Wireless Sensor Network is a type of wireless network

which consists of spatially distributed autonomous sensors to monitor the physical or

environmental conditions and to broadcast their information through the wireless network

to a main location[6, 7].

The main activity here is to route the information between nodes in time. This can be

very challenging because of the inherit characteristics of distinguishing this networks from

other networks. Again, the domination is needed to reduce the routing overheads.

1.2 Aims of the Work

Observing our surrounding thoroughly, we can easily realize that any daily thing can be schema-

tized by representing it as a graph. In particular, referring to computer science, graphs are easily

associated to the structure of any network. Finding new working techniques for graphs has di-

rect repercussions on how networks are used remarking the importance of understanding graphs

in our environment.

The fact of contributing to scientific world providing new ideas and research, has been

the main reason that has motivated the election of this work. The area of domination has

been chosen as it is easily associated to networks and its key nodes. Finally, the research is

restricted to lexicographic and Cartesian product graphs as main graphs families are already

deepen studied and with this limited range results can be more accurate.

As the work is strictly associated to theory, it is also important the fact of contributing

with new knowledge and to find new formulae which simplify previous methods. Creating

new theory and learning how to work with it can imply huge progress in our daily routines

demonstrating the importance of the research work and the impact of theoretical investigation

in real implementation.

Finally, an important objective is to deepen the skills achieved during the years of work

and study so that they are firmly consolidated. Realizing such a research work also implies to

extend the current knowledge in order to adapt it to the needs of the project.
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1.3 Approach and method followed

A network is a graph on which a set of additional attributes has been defined. For the aim of

the work, we focus only on those attributes related to protection pf graphs and do not depend

on additional attributes.

The following approach to protection of a graph was described by Cockayne et al. [19].

Suppose that one or more entities are stationed at some of the vertices of a graph G and

that an entity at a vertex can deal with a problem at any vertex in its closed neighborhood.

Informally, we say that G is protected under a given placement of entities if there exists at least

one entity available to handle a problem at any vertex. The domination number of a graph is

the minimum amount of entities needed in order to consider the graph as protected according

to the type of domination.

It was shown in [28] that the problem of computing γ(G) is NP-hard, even when restricted

to bipartite or chordal graphs, also the problem of computing γs(G) is also NP-hard, even when

restricted to split graphs [14]. This suggests finding the weak Roman domination number and

the secure domination number for special classes of graphs or obtaining good bounds on these

invariants of the factor graphs.

The intention of this article is to research on the domination number of graphs. For doing

so, we will follow two of the approaches described in detail in Section 2.3. On the one hand, we

will have an overview on weak Roman domination focusing on lexicographic product graphs. On

the other hand, we will study secure domination with a slight emphasis on Cartesian product.

In weak Roman domination, we will remind some remarks and show only a few results on

common classes of graphs. The effort for this approach is directed mainly thowards the study

of families obtained by lexicographic product graphs. This strategy is followed as these families

of graphs are not deeply studied for weak Roman domination number and so more results can

be achieved. We cite the following works on domination theory for lexicographic product: the

domination number was studied in [31, 35], the Roman domination number was studied in [37],

the rainbow domination number was studied in [38], the super domination number was studied

in [21], while the doubly connected domination number was studied in [9].

The Cartesian product is a straightforward and natural construction, and is in many re-

spects the simplest graph product [25, 30]. Hypercubes, Hamming graphs, grid graphs, cylinder

graphs and torus graphs are some particular cases of this product. This product has been ex-

tensively investigated from various perspectives. For instance, the most popular open problem

in the area of domination theory is known as Vizing’s conjecture. Vizing [39] suggested that

for any graphs G and H,

γ(G�H) ≥ γ(G)γ(H).
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Several researchers have worked on it, for instance, some partial results appear in [15, 25]. On

the contrary, secure domination theory is less developed which allows us to do more research on

general bounds. For this reason, the approach followed will be the opposite than the previous

case. We will present more results on general families and relations with other graph properties

and have a smaller dedication on the product.

Weak Roman domination and Lexicographic product graphs was already presented as final

degree thesis. Secure domination and Cartesian product graphs will be presented in the current

document as an extension of the work which offers more results in the same scientific field.

As a result of this work we have published the following two papers: On the weak Roman

domination number of lexicographic product graphs [41] and Protection of graphs with emphasis

on Cartesian product graphs [42].

1.4 Planning of the Work

This thesis is presented in a unique submission which means that the work needs to be struc-

tured and self-organized. As it is a research work, the result obtained may seem abstract and

can give the impression that all the work can be done disorderly and in the end. By contrary,

continuity and temporary planning are fundamental for progressing and achieving objectives.

First of all, it is needed to define each of the parts and identify all the dependencies between

the tasks. In our case, the first need is to research on the topic and search for all possible related

information. When doing research work, it is very important to keep informed about the subject

of study which means investing a lot of time on researching related works. In this way it is

possible to see already known results and the strategies used for achieving them. Hence, this

is the first step which needs to be completed once the proposal of the thesis is done.

Next, it is possible to start thinking in new ideas and try to apply them in order to see

if they may be in the good direction. This part includes the search of examples and contrast

with other results. Finally, only by formalization of the work, real results (e.g. Theorems,

Corollaries, etc.) can be defined.

These three steps can be repeated as many times as needed and always following the same

order. In this way, it is possible to do incremental work on the already known results which

will enrich the value of the work. Thus, it is interesting to keep informed about related work

during the realization of the thesis and review already finished results.
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1.5 Summary of products obtained

In this work we obtain a set of bounds and closed formulae for both weak Roman domination

number and secure domination number. All of the results contribute with the investigation,

but some of them do it beyond the others. We show properties of the graphs studied and define

bounds and families of graphs that improve the results in a much general and useful way. For

this reason we consider important to remark some of them.

Starting with weak Roman domination, Theorem 19 shows that γr(G ◦H) ≤ γ(G)γr(H).

This inequality makes us realize that the first graph of the product is the one on which the

entities needed truly depend. Again, the importance of the first graph of the product is shown

in Theorem 23 where three lower bounds are given only considering this graph. This thought

is corroborated in Lemma 65 where it is shown that when operating G ◦ H, if maintaining

γ(H) ≥ 4, then the second graph does not change the result for any graph H. It is true that

graph H is involved in the final graph, but if it is a relatively big and with low density it will

not improve more than the stated result where γr(G ◦H) ≤ 2γt(G).

Also Theorem 37 must be remarked as it gives a formula to expand (or reduce) the first

graph knowing exactly the amount of entities to protect the generated graph according to the

previous one. This result is important because is the only one in the work that gives an exact

relation of entities between two similar graphs. In the same way, Lemma 65 is another important

result as it reduces the cost of calculating the entities needed to protect a lexicographic product

graph by dismissing great part of the nodes.

Referring to the study of secure domination number, we obtain some good bounds as shown

in Theorem 53 for general graphs and Theorem 61 for Cartesian product graphs. In both cases

we obtain some chains of inequalities which help accurating the precision of the results. Apart

from the general bounds, we derive new inequalities of Nordhaus-Gaddum type involving secure

domination and weak Roman domination in Theorem 52. Also in Theorem 64 it is shown that

secure domination is not following a Vizing-like conjecture.

Theorem 48 must be remarked as with the consideration of twin nodes, the bound for calcu-

lating both weak Roman domination number and secure domination of any graph is decreased

as redundant vertices are discarded. The relevance of this result remains on the fact that that

the bound can be extended to the most types of protection on graphs.

Finally, we also provide some bounds for known families of graphs in the Cartesian product

like complete graphs in Propositions 57-60 and star graphs in Proposition 63. For the case of

tree graphs, we calculate the amount of entities needed providing a reduction method 41. This

result means an improvement as for this family of graphs the cost of computing the secure

domination number is reduced considerably.
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1.6 Description of chaptes

In this document we research on protection of graphs, where we obtain results and bounds

for different classes and families. First, in Chapter 2, we introduce the concepts and notation

needed to follow the thesis. In this section we present an overview on the bases of graph theory

2.1, product composition 2.2 and protection of graphs 2.3.

The results of the study are gathered between Chapters 3-5. In Chapter 3 we show common

bounds for both weak Roman domination and secure domination while in Chapter 4 and 5 we

consider the strategies separately.

Chapter 4 corresponds to the work presented in final degree thesis where we explore par-

ticular results for weak Roman domination. In Section 4.1, we focus on the study of weak

Roman domination in lexicographic product graphs comparing it with other known metrics.

The subsection is divided in three subparts according to the nature of the result. First, we have

an overview on upper bounds of the domination in Section 4.1.1 followed by the lower bounds

in Section 4.1.2. Finally, we show in Section 4.1.3 closed formulae for the product. Notice that

the demonstration of Theorem 37 is moved to Annex 1 due to its huge extension.

Section 5 is devoted to obtain general bounds on γr(G) and γs(G) in terms of several

invariants of G. As a consequence of the study we derive new inequalities of Nordhaus-Gaddum

type involving secure domination and weak Roman domination. Later, in Subsection 5.1 the

study is restricted to the particular case of Cartesian product graphs.

After the collection of results, we give some conclusions obtained from the realization of this

work in Chapter 6. In this Chapter we treat the lessons learned from the realization of the work

in Section 6.1. Next, we have an overview of the achieved objectives in Section 6.2 according

to the proposed aims in Section 1.2. After this, we present an overview of the suitability of the

planning of the work followed in Section 6.3. Derived from the research done, there are still

some open problems left which are covered in Section 6.4. These problems represent future

study fields which would complement the bounds and formulae obtained giving more precision

to the results obtained.

For complementary terms and new definitions of the work, we have Chapters Glossary and

Acronyms which provide the needed descriptions for the referred terminology. Finally, in the

end of the document we provide the mentioned Annex 1 for the proof of Theorem 37.



Chapter 2

Bases on graph theory and domination

In this Chapter we present a reminder of the theory needed to follow the thesis. First, we

start in Section 2.1 showing an overview on the bases of graph theory defining the most used

notation 2.1.1 and graph families 2.1.2. Next, in Section 2.2 where we define graph operation

having Subsection 2.2.1 for Cartesian product and Subsection 2.2.2 for lexicographic product.

Finally, in Section 2.3, we define protection of graphs and the domination strategies used.

2.1 Basis on graph theory

The configurations of nodes and connections between them appear with frequency in different

contexts to represent “networks” of different types. Formally these structures are combinatory

structures called graphs.

2.1.1 Graph notation

Definition 1. A graph G = (V,E) is an orderly pair where V is a nonempty finite set and E

is a set of non-ordered pairs u, v of elements of V with u 6= v. The elements of V are called

vertices, or nodes, of G and the elements of E are called edges of G. The order of G is the

number of vertices and the size of G is the number of edges.

1 2 3

4 5 6

7 8 9

Figure 2.1: Example of graph definition.

9



10 Bases on graph theory and domination

Figure 2.1 shows a graphic representation of a graph G = (V,E) where V is the set of

vertices and E the set of edges. In this example the order of G is n = 9 and the size is m = 8.

V and E are defined as following:

V = {1, 2, 3, 4, 5, 6, 7, 8, 9}

E = {{1, 2}, {1, 4}, {1, 7}, {2, 5}, {2, 8}, {2, 3}, {3, 6}, {3, 9}}.

Definition 2. Two vertices u, v ∈ V of a graph G = (V,E) are adjacent, u ∼ v, if and only

if the edge {u, v} exists; {u, v} ∈ E. Another common denomination for referring to an edge

is that vertices u and v are neighbour vertices.

From now on, to avoid confusion, an edge {u, v} also will be denoted by uv and, in this

case, will be written as uv ∈ E instead of {u, v} ∈ E.

Definition 3. Given a vertex v ∈ V of a graph G = (V,E) the degree of v, δ(v), is defined as

the number of edges that are incident to v. That is:

δ(v) = |{u ∈ V : v ∼ u}| = |{u ∈ V : uv ∈ E}|

The maximum degree of a graph G is denoted by ∆(G) and the minimum degree of a

graph δ(G). The vertices of degree zero are called isolated vertices.

Let us consider the graph of Figure 2.1 as G. In this case, ∆(G) = 4, δ(G) = 1, δ(1) =

δ(3) = 3, δ(2) = 4 and all the other vertices have degree one.

Definition 4. A walk in a graph G = (V,E) is a sequence of vertices v1, v2, ..., vk with the

property that {vi, vi+1} ∈ E for every i ≤ k–1. A walk of endpoints v1 and vk is called a v1–vk

walk or, also, a walk between v1 and vk.

A walk is a trail if all the edges are different. The following types of trail can be highlighted:

� A path, if vertices are not repeated.

� A circuit, if it is closed.

� A cycle is a circuit (closed) that, by deleting the first vertex, is also a walk (does not

repeat vertices). The graphs that do not contain cycles are called acyclic.
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a

b

c

d

e a

b

c

d

e a

b

c

d

e

Figure 2.2: Example of walk types in a graph: path, circuit and cycle.

In Figure 2.2 we show an example of the three types of walk descrived for the same graph.

In the first graph we show path a, b, c, d, e highlighted. In the middle, we can see that all the

edges of the graph form the circuit a, b, c, d, e, c, a. Finally, we have remarked the cycle a, b, c, a

in the right graph.

Definition 5. We say that graphs G and H are isomorphic, G ∼= H, if they are are struc-

turally equivalent. Let G = (VG, EG) and H = (VH , EH) be two graphs. G and H are identical

if and only if VG = VH and EG = EH . G and H are isomorphic, G ∼= H, if and only if there

exists a bijection ϕ : VG → VH that preserves the adjacencies and the non-adjacencies, that is,

u ∼ v ⇔ ϕ(u)⇔ ϕ(v). In this case, it is said that ϕ is a graph isomorphism.

Definition 6. A graph is connected when there is a path between every pair of vertices. This

means that in a connected graph, there are no unreachable vertices. A graph G is said to be

nonconnected if there exist two nodes in G such that no path in G contains those two nodes

at the same time. In a nonconnected graph, each group of connected vertices is said to be a

component. An example of connection is shown in Figure 2.3.

G
connected

H1 H2

nonconnected

Figure 2.3: Example of a connected graph and a nonconnected graph with its components.

For tree graphs, which are defined in next Subsction 2.1.2, we introduce the following

notation:

� Leaf : vertex of degree 1.

� Support vertex: vertex adjacent to a leaf.

� Strong support vertex: vertex adjacent to more than one leaf.
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2.1.2 Main families of graphs

� Empty graphs. An empty graph Nn of order n ≥ 1 is the graph of n vertices and 0

edges; so that Nn= (V, ∅). The graph N1 is called a trivial graph.

� Complete Graphs. A complete graph Kn is a graph of order n with all possible edges.

� Bipartite graphs. A non-empty graph G = (V,E) is bipartite if V = V1 ∪ V2, with

V1 ∩ V2 = ∅, so that the existing edges only connect vertices in V1 with vertices in V2.

� Complete bipartite graphs. The complete bipartite graph, denoted by Kr,s= (V1 ∪
V2, E), is a bipartite graph where |V1| = r, |V2| = s, with all the possible edges connecting

vertices in V1 with vertices in V2.

E =
⋃

u∈V1,v∈V2

{u, v}

� Star graphs. A star graph of order n ≥ 3 is the complete bipartite graph denoted by

K1,n−1. In star graphs, all nodes are adjacent to the same vertex. K1,n−1= (V,E) such

that V = {v1, ..., vn} and

E = {v1v2, v1v3, ..., v1vn}.

� Tree grpahs. A tree is a connected graph without any cycle.

If we delete the condition of connectivity, we obtain a forest, that is, a graph composed

by a set of trees.

� Cycle graph. A cycle graph of order n ≥ 3 is defined as Cn= (V,E), where V =

{v1, ..., vn} and

E = {v1v2, v2v3, ..., vn–1vn, vnv1}.

� Path graph. A path graph of order n ≥ 2 denoted as Pn= (V,E) is a tree that

can be obtained by the elimination of an edge of the cycle graph Cn. Pn is defined by

V = {v1, ..., vn} and

E = {v1v2, v2v3, ..., vn–1vn}.
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empty graph N6 complete K6 bipartite bip. compl. K3,3

star K1,5 tree graph cycle C6 path P6

Figure 2.4: Example of some of the main families alf graphs: empty graph, complete graph,
bipartite graph, complete bipartite graph, star graph, tree graph, cycle graph and pah graph.

In Figure 2.4 we show an example of each of the families of graphs descrived above. Notice

that all the graphs shown have order N = 6.

Throughout the work, we will use the notation Kn, K1,n−1, Cn, Nn and Pn for complete

graphs, star graphs, cycle graphs, empty graphs and path graphs of order n, respectively.

We use the notation u ∼ v if u and v are adjacent vertices, and G ∼= H if G and H are

isomorphic graphs. For a vertex v of a graph G, N(v) will denote the set of neighbours or

open neighborhood of v in G: N(v) = {u ∈ V (G) : u ∼ v}. The closed neighborhood,

denoted by N [v], equals N(v) ∪ {v}. The subgraph of G induced by a set S of vertices is

denoted by 〈S〉.
For the remainder of the work, definitions will be introduced whenever a concept is needed.
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2.2 Elementary operations of graphs

Given a non-trivial graph G = (V,E) diverse operations can be done:

Remove a vertex u ∈ V . In this way we get the graph G1 = G–u, which is the graph

G1 = (V1, E1), where V1 = V \ {u} and E1 is the set of edges of G non-incident with u. This

operation can be generalised to a set W ⊂ V . That is,

G1 = G–W = (V \W, {{a, b} ∈ E : a, b /∈ W}).

Remove an edge a ∈ E. This is how to get a graph, with the same vertices, defined

by G2 = G–a = (V,E \ {a}); the operation can be trivially generalised to a subset of edges

B ⊂ E, in which case G–B = (V,E \ B). Given a graph G and an edge e ∈ E(G), the graph

obtained from G by removing the edge e can be denoted by G− e, i.e., V (G− e) = V (G) and

E(G− e) = E(G) \ {e}.
Add an edge {u, v}, with u and v being two non-adjacent vertices. In this way we get

the graph G3 = (V,E ∪ {{u, v}}). This new graph can be represented by G+ uv. The process

can be generalised to a set B of more than one edge so that +B = (V,E ∪B).

For adding an edge, the condition of non-adjacency of the vertices is fundamental, since

the contrary would create a multiple edge and, therefore, would not be in the domain of simple

graphs, as they have been defined.

Definition 7. Given a graph G = (V,E), a graph G1 = (V1, E1) is a subgraph of G if V1 ∈ V
and E1 ∈ E. A spanning subgraph of G is subgraph of G containing every vertex of G and

a subset of the edges of G: V1 = V and E1 ∈ E.

G G1 G2 G3

Figure 2.5: Example of vertex removal, edge removal and edge addition.

See the operations described graphically in Figure 2.5. G1 is the result of removing a vertex

from G, G2 is the removal of an edge of G and G3 is the addition of an edge to G. Notice that,

G1 is a subgraph of G, G2 is a spanning subgraph of G and that G is a panning subgraph of

G3, hence G1 and G2 are also subgraphs of G3.
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Contract an edge a = {u, v}. In this case, an edge is replaced by a new vertex. The

edge a and the two endpoint vertices u and v of a are removed and are identified in a single

new vertex w. This vertex inherits exclusively the adjacencies of vertices u, v.

u va

G H

w

Figure 2.6: Example of edge contraction.

See an example of an edge contraction in Figure 2.6. Notice that in this case the graph H

obtained is not a subgraph of the original graph G as in this operation a new vertex is created

and the adjacencies of the neighbour vertices are changed.

Definition 8. Union of graphs. The union of two graphs G1 = (V1, E1) and G2 = (V2, E2),

where V1 ∩ V2 = ∅ is a graph

G = G1 ∪G2 = (V1 ∪ V2, E1 ∪ E2).

Remark that in the definition of union of two graphs G1 and G2, the interception of the

vertex sets of G1 and G2 has to be empty; hence the resulting graph G = G1 ∪ G2 is a non-

connected graph.

G1

⋃

G2

=

G

Figure 2.7: Example of union of two graphs.

See in Figure 2.7 a representation of the union operation of two graphs. Notice that if G1

and G2 are connected graphs, G will be a non-connected graph of components G1 and G2.

Definition 9. Join of graphs. Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs such that

V1 ∩ V2 = ∅. The join G1 + G2 is the graph that has the vertices and the edges of the original

graphs, in addition to the edges that connect all the vertices of G1 with all the vertices of G2:

G = G1 +G2 = (V1 ∪ V2, (E1 ∪ E2 ∪ {{u, v} : u ∈ V1, v ∈ V2})).
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Remark that, as in the case of the union opertion, in the definition of join of two graphs

G1 and G2, the interception of the vertex sets of G1 and G2 has to be empty. Notice, that the

resulting graph is always connected independently of the connection properties of the factor

graphs.

G1

+

G2

=

G

Figure 2.8: Example of join of two graphs.

Join operation is represented in Figure 2.8 where the edges generated by the operation are

remarked in grey.

Definition 10. Product of graphs. Graphs are composed by two sets of different elements:

set of vertices V and set of edges E. In mathematics, a graph product is a binary spread

operation on those sets. This operation can be defined in multiple ways according to the

nature of the product; each strategy defines how V (GH) and E(GH) are built according to the

properties needed.

From now on we will refer to the vertices of GH according to the original vertices of G and

H. Let u be a vertex u ∈ V (G) and v a vertex v ∈ V (H). We identify (u, v) ∈ V (GH) as the

vertex corresponding to the product of u and v.

2.2.1 Cartesian product

Given two graphs G = (VG, EG), H = (VH , EH), the Cartesian product G�H = (VG × VH , E)

is defined so that two vertices (u1, v1) and (u2, v2) are adjacent if and only if they satisfy any

of the following conditions:

(i) u1 = u2 and v1 ∼ v2, or

(ii) u1 ∼ u2 and v1 = v2

To imagine or graphically represent Cartesian product G�H we can think that by each

vertex of H we put a copy of graph G and each vertex of the i-th copy of G will be adjacent to

its twin in j-th copy of G if and only if i and j are adjacent in H. See this strategy illustrated

in Figure 2.9.

For more information on structure and properties of the Cartesian product of graphs we

refer the reader to [25, 30].
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a

b

c

d
e

G �

1 2 3

4

H =

a1

b1

c1

d1

e1

a2

b2

c2

d2

e2

a3

b3

c3

d3

e3

a4

b4

c4

d4

e4

G�H

Figure 2.9: Cartesian product of graphs

2.2.2 Lexicographic product

Let G and H be two graphs. The lexicographic product of G and H is the graph G ◦H whose

vertex set is V (G ◦H) = V (G) × V (H) and (u, v)(x, y) ∈ E(G ◦H) if and only if ux ∈ E(G)

or u = x and vy ∈ E(H).

A way to represent graphically lexicographic product G ◦ H we can think that by each

vertex of G we put a copy of graph H. All copies of H will contain the same adjacencies as H

and these copies will be joined if the vertices of G corresponding to that copies are adjacent.

G H

G ◦H

Figure 2.10: Example of lexicographic product of two graphs.
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Notice that for any u ∈ V (G) the subgraph of G ◦H induced by {u}×V (H) is isomorphic

to H. For simplicity, we will denote this subgraph by Hu, and if a vertex of G is denoted by ui,

then the referred subgraph will be denoted by Hi. See this construction in Figure 2.10 where

all copies Hu of H are remarked in black for each u ∈ V (G).

For basic properties of the lexicographic product of two graphs we suggest the books [25, 30].

2.3 Protection of graphs

The following approach to protection of a graph was described by Cockayne et Al. [19]. Suppose

that one or more entities are stationed at some of the vertices of a graph G and that an entity

at a vertex can deal with a problem at any vertex in its closed neighborhood. In general, an

entity could consist of an observer, a robot, a guard, a legion, and so on. Informally, we say that

G is protected under a given placement of entities if there exists at least one entity available to

handle a problem at any vertex.

Consider a function f → V {0, 1, 2, . . . } where f(v) is the number of entities at v, and for

i ∈ {0, 1, 2, . . . } V = {v ∈ V |f(v) = i}. We will identify f with the partition V induced by f

and write f = (V0, V1, V2, . . . ). The weight of f , w(f) =
∑

v∈V f(v) =
∑

i≥1 i|Vi| is the total

number of entities used by f . A vertex v ∈ V (G) is unprotected with respect to f if f(v) = 0

and f(u) = 0 for every vertex u adjacent to v. We say that G is protected under the function

f if f has no unprotected vertices, i.e., G is protected if there is at least one entity available

to handle the problem at any vertex. Formally, f = (V0, V1, V2, . . . ) is safe if each v ∈ V0 is

adjacent to at least one vertex of V −V0. The set of vertices containing entities, V −V0, is said

to be a dominating set of G.

Cockayne et Al. [18] proposed four properties of such functions under which the entire

graph may be protected according to a certain strategy. In each case the parameter of interest

will be the minimum weight of (i.e. the minimum number of entities used by) a function in the

subclass. There can be more domination definitions but we will focus on the ones used for the

aim of this work. We may refer to other strategies during the study, in such case, the definition

will be introduced when necessary.

1. Domination

We say that f(V0, V1) is a Dominating Function (DF) if G is protected under f . Obviously,

f(V0, V1) is a DF if and only if V1 is a dominating set. The domination number, denoted

by γ(G) is the minimum cardinality among all dominating sets of G. This method of

protection has been studied extensively[26, 27].
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2. Roman domination

A Roman Dominating Function (RDF) is a function f(V0, V1, V2) such that for every

v ∈ V0 there exists a vertex u ∈ V2 which is adjacent to v. The Roman domination number,

denoted by γR(G), is the minimum weight among all Roman dominating functions on G.

This concept of protection has historical motivation [36] and was formally proposed by

Cockayne et Al. in [20].

3. weak Roman domination

A Weak Roman Dominating Function (WRDF) is a function f(V0, V1, V2) such that for

every v with f(v) = 0 there exists a vertex u adjacent to v such that f(u) ∈ {1, 2} and the

function f ′ : V (G) −→ {0, 1, 2} defined by f ′(v) = 1, f ′(u) = f(u) − 1 and f ′(z) = f(z)

for every z ∈ V (G) \ {u, v}, has no unprotected vertices. The weak Roman domination

number, denoted by γr(G), is the minimum weight among all weak Roman dominating

functions on G. A WRDF of weight γr(G) is called a γr(G)-function. This concept of

protection was introduced by Henning and Hedetniemi [28] and studied further in [17, 18].

4. Secure Roman domination

A Secure Dominating Function (SDF) is a WRDF f(V0, V1, V2) in which V2 = ∅. In this

case, it is convenient to define this concept of save graph by the properties of V1. Obviously

f(V0, V1) is a secure dominating function if and only if V1 is a dominating set and for every

v ∈ V0 there exists u ∈ V1 which is adjacent to v and (V1 \ {u}) ∪ {v} is a dominating

set. In such a case, V1 is said to be a secure dominating set. The secure domination

number, denoted by γs(G), is the minimum cardinality among all secure dominating sets.

A secure dominating function of weight γs(G) is called a γs(G)-function. Analogously, a

secure dominating set of cardinality γs(G) is called a γs(G)-set. This concept of protection

was introduced by Cockayne et al. in [19], and studied further in [17, 18].

1
1

γ(G) = 2

2
2

γR(G) = 4

2
1

γr(G) = 3

1

1

11

γs(G) = 4

Figure 2.11: Placements of entities corresponding to the four subclasses of dominating functions.

Figure 2.11 shows the behaviour of protection according to each of the four subclasses

of domination for the same tree. Notice that 2 = γ(G) < γr(G) < γR(G) = 4 and that

2 = γ(G) < γr(G) < γs(G) = 4.



20 Bases on graph theory and domination



Chapter 3

General bounds

In this Chapter we discuss some basic remarks on the protection of graphs. We focus on the

similar results for weak Roman domination number γr and secure domination number γs of a

graph.

For nonconnected graphs we have the following remark.

Remark 1. For any graph G of k components, G1, G2, . . . , Gk,

(i) γr(G) =
∑k

i=1 γr(Gi),

(ii) γs(G) =
∑k

i=1 γs(Gi).

According to the remark above, we can restrict ourselves to the case of connected graphs.

Proposition 2. We would like to emphatize that the following inequalty chains hold for any

graph G:

(i) γ(G) ≤ γr(G) ≤ γR(G) ≤ 2γ(G).

(ii) γ(G) ≤ γr(G) ≤ γs(G).

The problem of characterizing the graphs with γr(G) = γ(G) was solved by Henning and

Hedetniemi [28]. The inequality chain (ii) has motivated us to obtain the following result, which

shows that the problem of characterizing the graphs with γs(G) = γ(G) is already solved.

Theorem 3. Let G be a graph. The following statements are equivalent.

(i) γr(G) = γ(G).

(ii) γs(G) = γ(G).

21
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Proof. By Proposition 2 (ii), γs(G) = γ(G) leads to γr(G) = γ(G). Now, if γr(G) = (G),

then for any γr(G)-function f(V0, V1, V2) we have V2 = ∅;, as V1 ∪ V2 is a dominating set and

γ(G) = γr(G) = |V1|+ 2|V2| ≥ |V1|+ |V2| ≥ γ(G). Hence, V1 is a secure dominating set, which

implies that γ(G) = |V1| ≥ γs(G) ≥ γ(G). Therefore, γs(G) = γ(G).

As observed in [28] any γr(G− e)-function is a WRDF for G. Similarly, any γs(G− e)-set

is a secure dominating set for G. Therefore, the following basic result follows.

Remark 4. For any spanning subgraph H of a graph G,

(i) [28] γr(G) ≤ γr(H).

(ii) γs(G) ≤ γs(H).

Proposition 5. For any n ≥ 4,

(i) [28] γr(Cn) = γr(Pn) =
⌈

3n
7

⌉
.

(ii) [19] γs(Cn) = γs(Pn) =
⌈

3n
7

⌉
.

Definition 11. A Hamiltonian graph is a graph such that contains a cycle that passes through

each node exactly once. An example of a Hamiltonian graph is shown in Figure 3.1.

Figure 3.1: Example of Hamiltonian graph and its Hamiltonian cycle.

By Remark 4 and Proposition 5 we deduce the following result.

Theorem 6. For any Hamiltonian graph G of order n ≥ 4,

γr(G) ≤ γs(G) ≤
⌈

3n

7

⌉
.

Obviously, the bound above is tight, as it is achieved for G ∼=Cn having order n ≥ 4.



Chapter 4

On weak Roman domination

This Chapter explores particular results for weak Roman domination and corresponds to the

work presented in final degree thesis.

To start, we specify the graphs having domination number lower than three and define the

so-called weak Roman graphs. In next Subsection 4.1, we study weak Roman domination in

lexicographic product graphs compare it with other known metrics.

Remark 7. Let G be a graph of order n. Then γr(G) = 1 if and only if G ∼= Kn.

According to this remark, for any noncomplete graph G we have that γr(G) ≥ 2. The limit

case of this trivial bound will be discussed in the following remark. From now on we say that

a set {a, b} ⊆ V (G) satisfies Property P if the following conditions hold.

� {a, b} is a dominating set.

� If x ∈ V (G) \N [a], then {x, a} is a dominating set.

� If x ∈ V (G) \N [b], then {x, b} is a dominating set.

� If x ∈ N(a) ∩N(b), then {x, a} is a dominating set or {x, b} is a dominating set.

a b

N [a] N [b]

N [a] ∪N [b]

a b

Figure 4.1: On the left side, a diagram of the vertices of a graph with a set accomplishing

property P . On the right, an example graph.

23
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This property P is illustrated diagramatically together with an example in Figure 4.1.

Notice that in the graphs accomplishing property, all vertices in the graph form a clique with

a or b as shown in the figure above.

Remark 8. A graph G of order n satisfies γr(G) = 2 if and only if G 6∼= Kn and at least one

of the following conditions holds.

(i) γ(G) = 1.

(ii) There exists {a, b} ⊆ V (G) which satisfies Property P.

Proof. (Sufficiency) Assume that γr(G) = 2 and let f(X0, X1, X2) be a γr(G)-function. By

Remark 7, G 6∼= Kn. Notice that |X1| + 2|X2| = 2. Thus, if |X2| = 1, then γ(G) = 1. Now, if

X1 = {a, b}, then {a, b} is a dominating set and for every x ∈ V (G) \ {a, b}, the movement of a

legion from a to x, or from b to x, does not produce unprotected vertices. This implies that if

x ∈ V (G)\N [b], then {x, b} is a dominating set, if x ∈ V (G)\N [a], then {x, a} is a dominating

set, and if x ∈ N(a)∩N(b), then {x, a} is a dominating set or {x, b} is a dominating set. Hence,

{a, b} satisfies Property P .

(Necessity) Let G 6∼= Kn. We first assume that {a} is a dominating set of G. In this case

we can define a WRDF f(W0,W1,W2) by W0 = V (G) \ {a}, W1 = ∅ and W2 = {a}, as the

movement of a legion from a to any vertex x ∈ V (G) \ {a} does not produce unprotected

vertices. Finally, assume that {a, b} satisfies Property P . In this case we can define a WRDF

f(W0,W1,W2) by W0 = V (G) \ {a, b}, W1 = {a, b} and W2 = ∅. Obviously, by definition

of property P , the movement of a legion from a (or from b) to x ∈ W0, does not produce

unprotected vertices. In both cases we can conclude that γr(G) ≤ |X1| + 2|X2| = 2 and the

equality holds by Remark 7.

Graphs with γR(G) = 2γ(G) are called Roman graphs [28]. We say that G is a weak Roman

graph if γr(G) = 2γ(G). Notice that any weak Roman graph is a Roman graph. In general,

the converse does not hold. For instance, the graph shown in Figure 2.11 is a Roman graph, as

γR(G) = 2γ(G) = 4, while it is not a weak Roman graph as γr(G) = 3.

Lemma 9. [28] If T is a tree with a unique γ(T )-set S, and if every vertex in S is a strong

support vertex, then T is a weak Roman tree.

The reader is refereed to [28] for a complete characterization of all weak Roman forest.
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4.1 Lexicographic product graphs

This subsection covers the results on weak Roman domination in lexicographic product graphs.

We divide it in three subparts according to the nature of the result. First, we have an overview

on upper bounds of the domination in Section 4.1.1 followed by the lower bounds in Section

4.1.2. Finally we show in Section 4.1.3 closed formulae for the product. In order to facilitate

the lecture of the work, demonstration of Theorem 37 is moved to Annex 1.

For any u ∈ V (G) and any WRDF f on G ◦H we define

f(Hu) =
∑

v∈V (H)

f(u, v) and f [Hu] =
∑

x∈N [u]

f(Hx).

Remark 10. Let G and H be two graphs. The following assertions hold.

� G ◦H is connected if and only if G is connected.

� If G = G1 ∪ . . . ∪Gt, then G ◦H = (G1 ◦H) ∪ . . . ∪ (Gt ◦H).

From Remarks 1 and 10 we deduce the following result.

Remark 11. For any graph G of component G1, G2, . . . , Gk and any graph H,

γr(G ◦H) =
k∑

i=1

γr(Gk ◦H).

The following result is a direct consequence of Remark 4.

Remark 12. Let G be a connected graph of order n and let H be a nonempty. For any spanning

subgraph G1 of G,

γr(Kn ◦H) ≤ γr(G ◦H) ≤ γr(G1 ◦H).

In particular, if G is a Hamiltonian graph, then

γr(G ◦H) ≤ γr(Cn ◦H).

4.1.1 Upper bounds on γr(G ◦H)

Definition 12. A total dominating set of a graph G with no isolated vertex is a set S of vertices

of G such that every vertex in V (G) is adjacent to at least one vertex in S. For each vertex

u ∈ V (G) there exists s 6= u such that s ∈ S and u and s are neighbours, even if u ∈ S.

The total domination number of G, denoted by γt(G), is the cardinality of a smallest total

dominating set, and we refer to such a set as a γt(G)-set.
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Notice that for any graph G with no isolated vertex,

γr(G) ≤ 2γ(G) ≤ 2γt(G). (4.1)

The reader is referred to the book [29] for details on total domination in graphs where funda-

mentals of this type of domination are provided and explored. Two examples of this domination

are shown in the graphs of Figure 4.2 where the vertices of the dominating set are remarked.

K8 G

Figure 4.2: Example of total domination in different graphs.

Notice that if D is a total dominating set of G and h ∈ V (H), then D×{h} is a dominating

set of G◦H, so that γ(G◦H) ≤ γt(G). Hence, from the first inequality in chain (4.1) we deduce

the following theorem, which can also be derived from the inequity γR(G◦H) ≤ 2γt(G) observed

in [37] and the second inequality in Remark 2 (i).

Theorem 13. If G is a graph with no isolated vertex, then for any graph H,

γr(G ◦H) ≤ 2γt(G).

The total domination number of a Path Pn is known and is easy to compute. For every

integer n ≥ 3 we have γt(Pn) = bn/2c + dn/4e − bn/4c. We will show in Corollary 39 that if

γ(H) ≥ 4, then γr(Pn◦H) = 2γt(Pn). Thus, the bound above is tight. Furthermore, as we will

show in Proposition 34, if n ≥ 3 and γ(H) ≥ 4, then γr(K1,n−1◦H) = 4 = 2γt(K1,n−1).

Notice that K1,n−1 is a graph of diameter two and minimum degree δ = 1. In general,

for any graph G of diameter two and minimum degree δ, the total domination number of G

is bounded above by δ + 1. Moreover, if G is a graph of order n with no isolated vertex

and maximum degree ∆ ≥ n − 2, then γt(G) = 2. Therefore, the following result is a direct

consequence of Theorem 13.

Corollary 14. The following assertions hold for any graph H.

� If G is a graph of order n with no isolated vertex and maximum degree ∆ ≥ n− 2, then

γr(G ◦H) ≤ 4.

� If G has diameter two and minimum degree δ, then γr(G ◦H) ≤ 2(δ + 1).
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It was shown in [12] that for any connected graph of order n ≥ 3, γt(G) ≤ 2
3
n. Hence,

Theorem 13 leads to the following result.

Corollary 15. For any connected graph G of order n ≥ 3 and any graph H,

γr(G ◦H) ≤ 2

⌊
2n

3

⌋
.

We will show in Proposition 36 that the bound above is tight.

Chellali and Haynes [11] established that the total domination number of a tree T of order

n ≥ 3 is bounded above by (n+ s)/2, where s is the number of support vertex of T . Therefore,

Theorem 13 leads to the following corollary.

Corollary 16. For any graph H and any tree T of order n ≥ 3 having s support vertex,

γr(T ◦H) ≤ n+ s.

The bound above is tight. For instance, Proposition 36 shows that for any n = 3k and any

graph H with γ(H) ≥ 4, γr(Tn ◦H) = n + s = 4k, where Tn is a comb graph. This family of

graphs is defined in Definition 19 for the aim of this work.

As stated by Goddard and Henning [23], if G is a planar graph with diameter two, then

γt(G) ≤ 3. Hence, as an immediate consequence of Theorem 13, we have the following result.

Figure 4.3: A planar graph of diameter two.

Corollary 17. If G is a planar graph of diameter two, then for any graph H,

γr(G ◦H) ≤ 6.

The bound above is achieved, for instance, for the planar graph G shown in Figure 4.3

and any graph H with γ(H) ≥ 4. An optimum placement of legions in G ◦H can be done by

assigning two legions to the copies of H corresponding to the black-coloured vertices of G.
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Corollary 18. For any graph G with no isolated vertex and any noncomplete graph H,

γr(G ◦H) ≤ 4γ(G).

Proof. It is well known that for every graph G with no isolated vertex,γt(G) ≤ 2γ(G) (see,

for instance, [10]). Hence, by Theorem 13 we have γr(G ◦ H) ≤ 4γ(G). Therefore, the result

follows.

The bound γr(G ◦H) ≤ 4γ(G) is achieved, for instance, for graphs G and H satisfying the

assumptions of Theorem 30

Theorem 19. For any graph G and any noncomplete graph H,

γr(G ◦H) ≤ γ(G)γr(H).

Proof. Let f1(V0, V1, V2) be a γr(H)-function and X a γ(G)-set. Notice that γr(H) ≥ 2, as H is

not complete. It is readily seen that f(W0,W1,W2) defined by W1 = X × V1 and W2 = X × V2

is a WRDF of G ◦H. Hence,

γr(G ◦H) ≤ |X × V1|+ 2|X × V2| = |X|(|V1|+ 2|V2|) = γ(G)γr(H).

Therefore, the result follows.

The bound γr(G◦H) ≤ γ(G)γr(H) is achieved, for instance, for any comb graph T3k defined

in Definition 19 and any graph H with γr(H) = 4. Besides, the bound is attained for any G

and H satisfying the assumptions of Theorem 28.

Definition 13. A double total dominating set of a graph G with minimum degree greater than

or equal to two is a set S of vertices of G such that every vertex in V (G) is adjacent to at least

two vertices in S, [29]. The double total domination number of G, denoted by γ2t(G), is the

cardinality of a smallest double total dominating set, and we refer to such a set as a γ2t(G)-set.

Two examples of double total dominating set are shown in Figure 4.4.

K8

G

Figure 4.4: Example of double total domination in different graphs.
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Notice that the graphs used to describe double total domination are the same as the ones

used to define the total domination, where the corresponding domination numbers are different.

For the graph K8 we have that 2 = γt(K8) ≤ γ2t(K8) = 3, and for the right hand side graph

we have that 3 = γt(G) ≤ γ2t(G) = 5.

Theorem 20. Let G be a graph of minimum degree greater than or equal to two. The following

assertions hold.

(i) γr(G) ≤ γ2t(G).

(ii) For any graph H, γ2,t(G ◦H) ≤ γ2t(G).

(iii) For any graph H, γr(G ◦H) ≤ γ2t(G).

Proof. For every γ2t(G)-set. S we can define a WRDF f(X0, X1, X2) on G by X0 = V (G) \ S,

X1 = S and X2 = ∅. Hence, (i) follows.

Now, let D be a γ2t(G)-set and y ∈ V (H). Thus, for every (x, y) ∈ V (G) × V (H), there

exist a, b ∈ D ∩ N(x), which implies that (a, y), (b, y) ∈ (D × {y}) ∩ N(x, y), and so D × {y}
is a double total dominating set of G ◦H. Hence, (ii) follows.

Finally, from (i) and (ii) we deduce (iii), as γr(G ◦H) ≤ γ2,t(G ◦H) ≤ γ2t(G).

In order to show an example of graphs where γr(G ◦ H) = γ2t, we define the family G as

follows. A graph Gr,s = (V,E) belongs to G if and only if there exit two positive integers r, s

such that V = {x1, x2, x3, y1, y2, . . . , yr, z1, z2, . . . , zs} and E = {x1yi : 1 ≤ i ≤ r}∪{x1zi : 1 ≤
i ≤ s} ∪ {x2yi : 1 ≤ i ≤ r} ∪ {x3zi : 1 ≤ i ≤ s} ∪ {x2x3}. Figure 4.5 shows the graph G4,4.

x1

x3x2

Figure 4.5: The set of black-coloured vertices is a double total dominating set of G4,4.

It is not difficult to check that for any graph Gr,s ∈ family G and any graph H with

γ(H) ≥ 3 we have γr(Gr,s ◦H) = 5 = γ2,t(Gr,s).

Corollary 21. For any graph H and any graph G of order n and minimum degree greater than

or equal to two,

γr(G ◦H) ≤ n.

As we will show in Corollary 38, the bound above is tight.
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4.1.2 Lower bounds on γr(G ◦H)

In order to deduce or next result we need to state the following basic lemma.

Lemma 22. Let G be a graph and H a noncomplete graph. For any u ∈ V (G) and any

γr(G ◦H)-function f ,

f [Hu] =
∑

x∈N [u]

f(Hx) ≥ 2.

Proof. Suppose that f is a γr(G◦H)-function and there exists u ∈ V (G) such that f [Hu] ≤ 1. If

f [Hu] = 1, then the placement of a legion in a non-universal vertex of Hu produces unprotected

vertices, which is a contradiction. Now, if f [Hu] = 0, then there are unprotected vertices in

Hu, which is a contradiction again. Therefore, the result follows.

Definition 14. A set X ⊆ V (G) is called a 2-packing set if N [u] ∩ N [v] = ∅ for every pair

of different vertices u, v ∈ X. The 2-packing number ρ(G) is the cardinality of any largest

2-packing set of G. A 2-packing of cardinality ρ(G) is called a ρ(G)-set. An example of a

ρ(G)-set is shown in Figure 4.6, where ρ(P3 �N3) = 3.

Figure 4.6: The set of black-coloured vertices are the ones forming the 2-packing set.

Notice that, In general, for any graph G of order n and any graph H, ρ(G�H) = n.

Theorem 23. For any graph G of minimum degree δ ≥ 1 and any noncomplete graph H,

γr(G ◦H) ≥ max{γr(G), γt(G), 2ρ(G)}.

Proof. Let f(W0,W1,W2) be a γr(G ◦H)-function. In order to show that γr(G ◦H) ≥ γr(G),

we will show that there exists a WRDF f1(X0, X1, X2) of G where X0 = {x : (x, y) ∈ W0},
X2 = {x : (x, y) ∈ W2 or |{x} ×W1| ≥ 2} and X1 = V (G) \ (X0 ∪ X2). Notice that, since

W1∪W2 is a dominating set ofG◦H, X1∪X2 is a domination set ofG. Now, for every (x, y) ∈ W0

there exists (x′, y′) ∈ N(x, y) ∩ (W1 ∪W2) and a function f ′ : V (G ◦ H) −→ {0, 1, 2} defined

by f ′(x′, y′) = f(x′, y′)− 1, f ′(x, y) = 1 and f ′(a, b) = f(a, b) for every (a, b) 6∈ {(x, y), (x′, y′)},
which has no unprotected vertex. Hence, the function f ′1 : V (G) −→ {0, 1, 2} defined by

f ′1(x′) = f1(x′)−1, f ′1(x) = 1 and f ′1(a) = f1(a) for every a 6∈ {x, x′} has no unprotected vertex.

Thus, γr(G ◦H) ≥ γr(G).

Now, let X ⊂ V (G) be a ρ(G)-set. By Lemma 22 we have that

γr(G ◦H) = w(f) =
∑

u∈V (G)

f(Hu) ≥
∑
u∈X

f [Hu] ≥ 2|X| = 2ρ(G).
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In order to prove that γr(G ◦H) ≥ γt(G), we define Ui = {x ∈ V (G) : f(Hx) = i}, where

i ∈ {0, 1}, and U2 = {x ∈ V (G) : f(Hx) ≥ 2}. By Lemma 22 we have that if x ∈ U1, then

there exists x′ ∈ N(x)∩ (U1∪U2). Now, let U∗2 = {x ∈ U2 :
∑

x′∈N(x) f(Hx′) = 0}. Since δ ≥ 1,

there exists U∗0 ⊆ U0 such that |U∗0 | ≤ |U∗2 | with the property that for every x ∈ U∗2 there exists

x∗ ∈ U∗0 ∩N(x). Notice that U1 ∪ U2 ∪ U∗0 is a total dominating set. Therefore,

γr(G ◦H) = w(f) =
∑

u∈V (G)

f(Hu) ≥ |U1 ∪ U2 ∪ U∗0 | ≥ γt(G),

as required.

On the one hand, an example of a graph with γr(G) > max{γt(G), 2ρ(G)} is the graph

shown in Figure 4.7 (on the right), where γr(G) = 5, γt(G) = 4 and 2ρ(G) = 4. On the other

hand, an example of a graph with 2ρ(G) > max{γr(G), γt(G)} is the path graph Pn, n ≥ 4, as

γr(Pn) =
⌈

3n
7

⌉
, γt(Pn) = bn/2c+ dn/4e − bn/4c and 2ρ(Pn) = 2γ(Pn) = 2

⌈
n
3

⌉
. Finally, for the

graph shown in Figure 4.7 (on the left) we have γt(G) = 5 > 4 = max{γr(G), ρ(G)}.

2

11

2

1

2

Figure 4.7: γr(G) = 4, the labels correspond to an optimum placement of legions.

We will discuss several cases in which γr(G ◦H) = max{γr(G), γt(G), 2ρ(G))} is achieved

in the following subsection 4.1.3.

It is well known that for any graph G, γ(G) ≥ ρ(G). Meir and Moon [34] showed in 1975

that γ(T ) = ρ(T ) for any tree T . We remark that in general, these γ(T )-sets and ρ(T )-sets are

not identical. Notice that for any weak Roman tree T we have γr(T ) = 2ρ(T ), while if T is not

a weak Roman tree, then γr(T ) < 2γ(G) = 2ρ(T ).

Corollary 24. For any tree T and any noncomplete graph H,

γr(T ◦H) ≥ 2γ(T ).

The bound above is achieved for any tree T and any graph H satisfying the assumptions

of Theorem 29.
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4.1.3 Closed formulae for γr(G ◦H)

In this Section we will have an overview on the colsed formulae and demonstration of tight

bounds for lexicographic product graphs. Remind that proof of Theorem 37 is moved to Annex

1 due to its huge extension.

To begin this section we consider the case of lexicographic product graphs in which the

second factor is a complete graph.

Proposition 25. For any graph G and any integer n ≥ 1,

γr(G ◦Kn) = γr(G).

Proof. The result is straightforward. We leave the details to the reader.

From Theorems 13 and 23 we have the following result.

Theorem 26. For any graph G with γt(G) = 1
2

max{γr(G), 2ρ(G)} and any noncomplete graph

H,

γr(G ◦H) = 2γt(G).

To show some families of graphs for which γr(G) = 2γt(G) = 2ρ(G), we introduce the

corona product of two graphs.

Definition 15. Let G be a graph of order n and let H be a graph. The corona product of G

and H, denoted by G�H, was defined in [22] as the graph obtained from G and H by taking

one copy of G and n copies of H and joining by an edge each vertex from the i-th copy of H

with the i-th vertex of G.

Theorem 27. For any graph G with no isolated vertex and any noncomplete graph H,

γr(G�H = 2γt(G�H) = 2ρ(G�H).

Proof. Since γ(G � H) = |V (G)|, we have that γr(G � H) ≤ 2|V (G)|. Now, we denote by

〈gi〉 + H the subgraph of G � H induced by gi ∈ V (G) and the vertex set of the i-th copy

of H. Since H has two nonadjacent vertices and gi is the only vertex of 〈gi〉 + H which is

adjacent to some vertex outside 〈gi〉 + H, we deduce that every γr(G � H)-function assigns

at least two legions to the vertex set of 〈gi〉 + H, which implies that γr(G � H) ≥ 2|V (G)|.
Now, since G is a graph with no isolated vertex, V (G) is a total dominating set. Hence,

γr(G�H) = 2|V (G)| = 2γt(G�H).

The proof of the equality γt(G�H) = ρ(G�H) is straightforward.
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If γr(G) = 2γ(G), then for the Cocktail-party graph K2k −F we have γr(G ◦ (K2k −F )) =

γr(G). This example is a particular case of the next result which is derived from Theorems 19

and 23.

Theorem 28. For any weak Roman graph G and any graph H such that γr(H) = 2,

γr(G ◦H) = 2γ(G).

The study of weak Roman graphs was initiated in [28] by Henning and Hedetniemi, where

they characterized forests for which the equality holds. The general problem of characterizing

all weak Roman graphs remains open.

From Lemma 9 and Theorem 28 we derive the following result.

Theorem 29. If T is a tree with a unique γ(T )-set S, and if every vertex in S is a strong

support vertex, then for any graph H with γr(H) = 2,

γr(T ◦H) = 2γ(T ).

Our next result shows that the inequality γr(G ◦ H) ≤ 4γ(G) stated in Corollary 18 is

tight.

Theorem 30. If G is a graph with γt(G) = 2γ(G) and there exists a γ(G)-set D such that

every vertex in D is adjacent to a vertex of degree one, then for any graph H with γ(H) ≥ 4,

γr(G ◦H) = 4γ(G).

Proof. Assume that γt(G) = 2γ(G), γ(H) ≥ 4 and let D be a γ(G)-set such that every vertex

in D is adjacent to a vertex of degree one. We will show that γr(G ◦ H) ≥ 4γ(G). Since

γt(G) = 2γ(G), the vertex set of G can be partitioned by the closed neighborhoods of vertices

in D, i.e., V (G) = ∪x∈DN [x] and N [x] ∩ N [y] = ∅, for every x, y ∈ D, x 6= y. Now, let

f(W0,W1,W2) be a γr(G ◦H)-function and let x′ ∈ N(x) be a vertex of degree one, for x ∈ D.

Suppose that f assigns at most three legions to N [x] × V (H). We differentiate the following

cases for the set W = W1 ∪W2.

1. Case |W ∩ ({x} × V (H))| = 3. Since γ(H) ≥ 4, there exists at least one vertex in

{x} × V (H) which is not dominated by the elements in W , which is a contradiction.

2. Case |W2 ∩ ({x} × V (H))| = 1 or |W1 ∩ ({x} × V (H))| = 2. In both cases there exists

y ∈ N(x) such that |W1 ∩ ({y} × V (H))| = 1. Since γ(H) ≥ 4, the movement of a legion

from the vertex in W1 ∩ ({y} × V (H)) to any vertex in W0 ∩ ({x} × V (H)) produces

unprotected vertices in {x} × V (H), which is a contradiction.
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3. Case |W1∩({x}×V (H))| = 1. Since γ(H) ≥ 4, the movement of a legion from the vertex

in W1∩ ({x}×V (H)) to any vertex in W0∩ ({x′}×V (H)) produces unprotected vertices

in {x′} × V (H), which is a contradiction.

4. Case |W ∩ ({x} × V (H)) + | = 0. Since γ(H) ≥ 4, there exists at least one vertex

(x′, h) ∈ W0 which is not dominated by the elements in W , which is a contradiction.

According to the four cases above, for every x ∈ D we have that f assigns at least four

legions to N [x]× V (H), which implies that γr(G ◦H) ≥ 4γ(G).

Furthermore, by Corollary 18, γr(G ◦H) ≤ 4γ(G). Therefore, the result follows.

Figure 4.8: Example graph having γt(G) = 2γ(G).

For the tree shown in Figure 4.8 we have γ(T ) = ρ(T ) = 3. Notice that the set of black-

coloured vertices is the only dominating set of G which corresponds to the set of support vertices

of T ; is the only γ(T )-set and a ρ(T )-set. In this case γt(G) = 2γ(G) = 6. By Theorem 30, for

any graph H with γ(H) ≥ 4 we have γr(G ◦H) = 12 = 4γ(G).

Corollary 31. If the set of support vertices of a tree T is a ρ(T )-set, then for any graph H

with γ(H) ≥ 4,

γr(T ◦H) = 4γ(T ).

From Theorems 13 and 20 we have the following result.

Theorem 32. If G is a graph such that γ2,t(G) = max{γr(G), 2ρ(G)}, then for any noncomplete

graph H,

γr(G ◦H) = γ2,t(G).

According to Theorem 32, the problem of characterizing the graphs for which γ2,t(G) =

γr(G) or γ2,t(G) = 2ρ(G) deserves being considered in future works.

Definition 16. We will construct a family Hk of graphs such that γr(G) = γ2,t(G), for every

G ∈ Hk. A graph G = (V,E) family Hk if and only if it is constructed from a cycle Ck and k

empty graphs Ns1 , . . . , Nsk of order s1, . . . , sk, respectively, and joining by an edge each vertex

from Nsi with the vertices vi and vi+1 of Ck. Here we are assuming that vi is adjacent to vi+1

in Ck, where the subscripts are taken module k. Figure 4.9 shows a graph belonging to family

Hk, where k = 4, s1 = s3 = 3 and s2 = s4 = 2.
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Figure 4.9: Example of family Hk defined

For any graph G ∈ Hk we have γr(G) = γ2,t(G) = k. Therefore, by Theorem 32, for any

G ∈ Hk and any graph H, γr(G ◦H) = k. We can see an example in Figure 4.9 where the set

of balck-coloured vertices is a double dominating set:γr(G) = γ2,t(G) = 4.

Definition 17. From now on we say that a vertex a ∈ V (H) satisfies Property P ′ if {a, b} is

a dominating set of H, for every b ∈ V (H) \N [a]. In other words, a ∈ V (H) satisfies Property

P ′ if the subgraph induced by V (H) \N [a] is a clique.

Proposition 33. For any integer n ≥ 3 and any noncomplete graph H,

2 ≤ γr(Kn ◦H) ≤ 3.

Furthermore, γr(Kn ◦ H) = 2 if and only if γr(H) = 2 or there exists a vertex of H which

satisfies Property P ′.

Proof. By Remark 7 we have γr(Kn ◦H) ≥ 2 and by Theorem 20 we have that γr(Kn ◦H) ≤ 3.

To characterize the graphs with γr(Kn◦H) = 2 we first assume that γr(H) = 2, and we will

apply Remark 8 to the graph H. Let u ∈ V (G) and let {a, b} ⊆ V (H) which satisfy Property

P . We claim that the function f(X0, X1, X2) defined by X0 = V (Kn)× V (H) \ {(u, a), (u, b)},
X1 = {(u, a), (u, b)} and X2 = ∅ is a γr(Kn ◦ H)-function. To see this, we only need to

observe that the movement of a legion from (u, a) (or from (u, b)) to a vertex in X0 does not

produce unprotected vertices. Now, if γ(H) = 1, then we define the γr(Kn ◦H)-function f by

X0 = V (Kn) × V (H) \ {(u, z)}, X1 = ∅ and X2 = {(u, z)}, where z ∈ V (H) is a vertex of

maximum degree. On the other hand, if a ∈ V (H) satisfies Property P ′, then we define the

γr(Kn ◦H)-function f by X0 = (V (Kn)× V (H)) \ {(u1, a), (u2, a)}, X1 = {(u1, a), (u2, a)} and

X2 = ∅, where u1 6= u2.

Conversely, assume that γr(Kn ◦H) = 2 and let f(W0,W1,W2) be a γr(Kn ◦H)-function.

Notice that, |W1| + 2|W2| = 2. Now, if W2 = {(u, a)}, then γ(H) = 1. From now on, assume
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that W1 = {(u1, a), (u2, b)} and γ(H) ≥ 2. Assume that u1 = u2. In this case, {a, b} is a

dominating set of H and if there exists x ∈ V (G) \ {a, b}, then the movement of a legion from

(u1, a) to (u1, x) does not produce unprotected vertices or the movement of a legion from (u1, b)

to (u1, x) does not produce unprotected vertices, which implies that {a, b} satisfy Property P .

Hence, by Remark 8, γr(H) = 2. Finally, if u1 6= u2, then the movement of a legion from (u2, a)

to (u1, c), where c ∈ V (H) \N [a], does not produce unprotected vertices, which implies that a

satisfies Property P ′.

Proposition 34. Let H be a graph and let n ≥ 3 be an integer. Then the following statements

hold.

(i) If γr(H) ∈ {2, 3}, then γr(K1,n ◦H) = γr(H).

(ii) If γr(H) ≥ 4, then 3 ≤ γr(K1,n ◦H) ≤ 4.

(iii) If γ(H) ≥ 4, then γr(K1,n ◦H) = 4.

Proof. Let u0 be a universal vertex of K1,n. By Remark 7 we have that γr(K1,n ◦H) ≥ 2 and

by Theorem 13, γr(K1,n ◦H) ≤ 2γt(K1,n) = 4.

Let g be a γr(H)-function. Assume that γr(H) ∈ {2, 3}. The function f : V (K1,n ◦H) −→
{0, 1, 2} defined by f(u0, v) = g(v), for every v ∈ V (H), and f(u, v) = 0, for every u ∈
V (K1,n)\{u0} and v ∈ V (H), is a WRDF of K1,n◦H, which implies that γr(K1,n◦H) ≤ γr(H).

Hence, if γr(H) = 2, then we are done. Since n ≥ 3, for any γr(K1,n ◦ H)-function we have

f(Hu0) ≥ 2 and, if γr(H) ≥ 3, then w(f) ≥ 3. Thus, (i) and (ii) follow.

Finally, if γ(H) ≥ 4, then Theorem 30 leads to γr(K1,n ◦H) = 4.

We will now show that the bound given in Corollary 15 is tight. To this end, we need to

introduce some additional notation.

Definition 18. Given a graph G, let P3(G) be the family of ordered sets S = {x1, x2, x3} ⊂
V (G) such that 〈S〉 ∼= P3, δ(x1) ≥ 2, δ(x2) = 2 and δ(x3) = 1.

Lemma 35. Let G and H be two graphs, and {x1, x2, x3} ∈ P3(G). If γ(H) ≥ 4, then for any

γr(G ◦H)-function f ,
3∑

i=1

f(Hi) = 4.

Furthermore, there exists a γr(G ◦H)-function f , such that f(H2) = 2 and f(H3) = 0.



4.1. Lexicographic product graphs 37

Proof. Suppose that there exists a γr(G ◦H)-function f with

3∑
i=1

f(Hi) ≤ 3.

We differentiate the following cases according to the value of f(H1).

1. f(H1) = 0. If f(H2) = 0 (resp. f(H3) = 0), then there is an unprotected vertex in H3

(resp. H2). If f(H2) = 1 (resp. f(H3) = 1), then the movement of the legion from H2 to

H3 (resp. from H3 to H2) produces an unprotected vertex in H3 (resp. from H2).

2. f(H1) = 1. If f(H2) = 0, then there is an unprotected vertex in H3. If f(H2) = 1, then

the movement of the legion from H2 to H3 produces an unprotected vertex in H3. Finally,

If f(H2) = 2, then the movement of the legion from H1 to H2 produces an unprotected

vertex in H2.

3. f(H1) = 2. If f(H2) = 0, then there is an unprotected vertex in H3. If f(H2) = 1, then

the movement of the legion from H2 to H3 produces an unprotected vertex in H3.

4. f(H1) = 3. In this case the vertices in H3 are unprotected.

In all cases above we obtain a contradiction, which implies that f(H1)+f(H2)+f(H3) ≥ 4.

To conclude the proof we only need to observe that we can construct a γr(G ◦ H)-function f

with f(H1) + f(H2) + f(H3) = 4, as we can take f(H1) = f(H2) = 2 and f(H3) = 0.

We will now prove that there exists a family of trees Tn, which we will call combs, such

that for any graph H with γ(H) ≥ 4, γr(Tn ◦H) = 2
⌊

2n
3

⌋
. With this end we will now describe

this family.

Definition 19. We define comb family, Tn, as a family of trees such that taking a path Pk

of length k = dn
3
e, with vertices v1, . . . , vk, and attach a path P3 to each vertex v1, . . . , vk−1,

by identifying each vi with a leaf of its corresponding copy of P3. Finally, we attach a path of

length r = n− 3dn
3
e+ 2 to vk. Notice that

n− 3
⌈n

3

⌉
+ 2 =


0 if n ≡ 1 (mod 3);

1 if n ≡ 2 (mod 3);

2 if n ≡ 0 (mod 3).

Figure 4.10 shows the construction of Tn for different values of n. Notice that the comb of

order six is simply T6
∼= P6.
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...
...

...

Figure 4.10: Example of construction of family of combs Tn for r = 1, 2, 0.

Proposition 36. For any n ≥ 4 and any graph H with γ(H) ≥ 4,

γr(Tn ◦H) = 2

⌊
2n

3

⌋
.

Proof. By Corollary 15 we have γr(Tn◦H) ≤ 2
⌊

2n
3

⌋
. In order to show that γr(Tn◦H) ≥ 2

⌊
2n
3

⌋
we differentiate three cases.

If n = 3k, then Lemma 35 leads to γr(Tn◦H) = 4k = 2
⌊

2n
3

⌋
. Now, if n = 3(k−1) + 1, then

Lemma 35 leads to γr(Tn◦H) ≥ 4(k− 1) = 2
⌊

2n
3

⌋
. Finally, if n = 3(k− 1) + 2, then Lemma 35

leads to γr(Tn◦H) ≥ 4(k − 1) + 2 = 2
⌊

2n
3

⌋
.

Definition 20. Given a graph G, let family P4(G) be the family of ordered sets S = {x1, x2, x3,

x4} ⊂ V (G) such that 〈S〉 ∼= P4, δ(x1) ≥ 2, δ(x2) = δ(x3) = 2 and δ(x4) ≥ 2.

For any G such that family P4(G) 6= ∅ we define the family O4(G) of graphs G∗ constructed

from G as follows. Let S ∈ P4(G) such that 〈S〉 = P4 = (x1, x2, x3, x4), X = {x1x2, x2x3, x3x4},
X1 = N(x1) \ {x2}, X4 = N(x4) \ {x3} and Y = {ab : a ∈ X1 and b ∈ X4}. The vertex set of

G∗ is V (G∗) = V (G) \ S and the edge set is E(G∗) = (E(G) \X) ∪ Y .

X1

x1

x2 x3
x4

X4

V (G) \ S
E(G) \X

G

YX1 X4

V (G∗) = V (G) \ S
E(G∗) = E(G) \X

G∗

Figure 4.11: Schematic representation of the construction of graphs G∗ ∈ O4(G) from G.



4.1. Lexicographic product graphs 39

Schematic representation of G and its corresponding G∗ is shown in Figure 4.11. See

remarked the neighborhoods of that X1 = N(x1) \ {x2} and X4 = N(x4) \ {x3}. Notice that

the resulting graph G∗ is the result of contracting the edges X of G.

Theorem 37. Let G be a graph such that family P4(G) 6= ∅ and let H be a graph. If γ(H) ≥ 4,

then for any G∗ ∈ O4(G),

γr(G ◦H) = γr(G
∗ ◦H) + 4.

Proof. We provide the demonstration of this result in Annex 1.

A simple case analysis shows that for n ∈ {3, 4, 5, 6} and any graph H such that γ(H) ≥ 4

we have γr(Cn ◦H) = n. Hence, Theorem 37 immediately leads to the following corollary.

Corollary 38. Let n ≥ 3 be an integer and let H be a graph. If γ(H) ≥ 4, then

γr(Cn ◦H) = n.

It is readily seen that if γ(H) ≥ 4, then γr(P2 ◦ H) = γr(P3 ◦ H) = γr(P4 ◦ H) = 4 and

γr(P5 ◦H) = 6 . Therefore, Theorem 37 leads to the following result.

Corollary 39. Let n ≥ 2 be an integer and let H be a graph. If γ(H) ≥ 4, then

γr(Pn ◦H) =


n, n ≡ 0 (mod 4);

n+ 2, n ≡ 2 (mod 4);

n+ 1, otherwise.
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Chapter 5

On secure domination

This Section is devoted to obtain general bounds on γr(G) and γs(G) in terms of several

invariants of G. As a consequence of the study we derive new inequalities of Nordhaus-Gaddum

type involving secure domination and weak Roman domination. Later, in Subsection 5.1 the

study is restricted to the particular case of Cartesian product graphs.

Theorem 40. [16] Let G 6∼= C5 be a connected graph. If δ(G) ≥ 2, then

γs(G) ≤
⌊
n(G)

2

⌋
.

An example of a graph with δ(G) = 3 and γs(G) = γ2(G) =
⌊
n(G)

2

⌋
is the 3-cube graph.

Notice that from the result above and the fact that γr(G) ≤ γs(G) we can conclude that if

G 6∼= C5 is connected and δ(G) ≥ 2, then γr(G) ≤
⌊
n(G)

2

⌋
.

With the aim of providing a general upper bound on the weak Roman domination number

of any graph in terms of n(G), we need to introduce some additional notation.

Definition 21. For any support vertex v of a tree T , the set of leaves adjacent to v in T will be

denoted by LT (v). Let S(T ) be the set of support vertices v ∈ V (T ) of degree δ(v) ≤ |LT (v)|+ 1

and define

X(T ) =
⋃

v∈S(T )

({v} ∪ LT (v)).

Let T0, T1, . . . , Tk be the sequence of all embedded subtrees of T , of order greater than or equal

to three, defined as follows: T0 = T and Ti is the subtree of Ti−1 induced by V (Ti−1) \X(Ti−1),

for every i ∈ {1, . . . , k}. Notice that the smallest subtree Tk satisfies |V (Tk) \X(Tk)| ≤ 2.

With this notation in mind we proceed to prove the two following results.

41
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Theorem 41. For any connected nontrivial graph G,

γr(G) ≤
⌊

2n(G)

3

⌋
.

Proof. Since the case n(G) = 2 is straightforward, we can assume that n(G) ≥ 3. Let T be a

spanning tree of G and T0, T1, . . . , Tk the sequence of all embedded subtrees of T of order greater

than or equal to three defined previously. By Proposition 4, γr(G) ≤ γr(T ). It remains to show

that γr(T ) ≤ 2n(G)
3

. To this end, we proceed to construct a WRDF f such that w(f) ≤ 2n(G)
3

.

For every v ∈ X(Ti) and i ∈ {0, . . . , k} we set

f(v) =



2 if v ∈ S(Ti) and |LTi
(v)| ≥ 2,

1 if v ∈ S(Ti) and |LTi
(v)| = 1,

0 if v ∈ X(Ti) \ S(Ti).

Notice that V (G) =
k⋃

i=0

X(Ti)∪ (V (Tk) \X(Tk)) and X(Ti)∩X(Tj) = ∅ for every i 6= j. Hence,

it remains to define f(x) for every x ∈ V (Tk)\X(Tk), if any. Notice that for any i ∈ {0, . . . , k},

∑
v∈X(Ti)

f(v) =
∑

v∈S(Ti)

f(v) ≤ 2

3
|X(Ti)| (5.1)

and, if there is a support vertex v of Ti with |LTi
(v)| = 1, then

∑
v∈X(Ti)

f(v) =
∑

v∈S(Ti)

f(v) <
2

3
|X(Ti)|. (5.2)

Hence, if V (Tk) = Xk then
∑k

i=0 |X(Ti)| = n(G), which implies that

w(f) =
k∑

i=0

 ∑
v∈X(Ti)

f(v)

 ≤ 2

3

k∑
i=0

|X(Ti)| ≤
2n(G)

3
.

Suppose that V (Tk) \Xk = {x}. In this case, we set f(x) = 0 whenever f(v) = 2 for some

neighbour v of x, otherwise we set f(x) = 1. Obviously, if f(x) = 0, then

w(f) =
k∑

i=0

 ∑
v∈X(Ti)

f(v)

+ f(x) ≤ 2

3

k∑
i=0

|X(Ti)| ≤
2(n(G)− 1)

3
<

2n(G)

3
.
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Now, if f(x) = 1, then (5.2) leads to
∑

v∈Xk
f(v) ≤ 2

3
|Xk| − 1, which implies that

w(f) =
k−1∑
i=0

 ∑
v∈X(Ti)

f(v)

+
∑
v∈Xk

f(v) + f(x)

≤2

3

k−1∑
i=0

|X(Ti)|+
(

2

3
|X(Tk)| − 1

)
+ 1

=
2(n(G)− 1)

3
<

2n(G)

3
.

Finally, if V (Tk) \Xk = {a, b} , then we set f(a) = 0 and f(b) = 1. Thus,

w(f) =
k∑

i=0

 ∑
v∈X(Ti)

f(v)

+ f(a) + f(b)

≤ 2

3

k∑
i=0

|X(Ti)|+ 1

=
2(n(G)− 2)

3
+ 1 <

2n(G)

3
.

In summary, we can conclude that w(f) ≤ 2n(G)
3

, and it is readily seen that f is a WRDF.

Therefore, the result follows.

To see that the bound above is tight we can take any graph G1 and construct the corona

product of graphs G ∼= G1 � N2 by considering one copy of G1 and n(G1) copies of N2 and

joining, by an edge, each vertex of G1 with the vertices in the corresponding copy of N2. In

this case we have γr(G) = 2n(G1) and n(G) = 3n(G1).

Theorem 42. Let T be a spanning tree of a connected graph G such that n(G) ≥ 3. If

T0, T1, . . . , Tk is the sequence of all embedded subtrees of T of order greater than or equal to

three defined above, then

γs(G) ≤
k∑

i=0

∑
v∈S(Ti)

|LTi
(v)|+ %(T ),

where %(T ) = 0 if V (Tk) = X(Tk) and %(T ) = 1 otherwise.

Proof. Notice that Proposition 4 leads to γs(G) ≤ γs(T ). Let

W =
k⋃

i=0

 ⋃
v∈S(Ti)

LTi
(v)

 ∪Wk,
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where Wk is defined as follows. If V (Tk) = X(Tk), then we set Wk = ∅, otherwise we fix

xk ∈ V (Tk) \ X(Tk) and we set Wk = {xk}. To conclude that W is a secure dominating set

for T we only need to observe that W is a dominating set and the movement of a guard from

LTi
(v) to v does not produce undefended vertices, as well as, the movement of a guard from

xk to a vertex in V (Tk) \X(Tk) (if any) does not produce undefended vertices. Therefore, the

result follows.

The bound above is achieved, for instance, by the family of corona product graphs G ∼=
G1 � Nt. Obviously, for any spanning tree T of G we have %(T ) = 0 and tn(G1) ≤ γr(G) =∑k

i=0

∑
v∈S(Ti)

|LTi
(v)|+%(T ) = tn(G1). Notice that the lower bound γr(G) ≥ tn(G1) is deduced

from the fact that every secure dominating set contains at least one guard per each vertex of

degree one in G. In general, we can state the following tight bound in terms of the number of

vertices of degree one, denoted by `(G).

Remark 43. For any graph G,

γs(G) ≥ `(G).

In particular, for any graph G′,

γs(G
′ �Nt) = `(G′ �Nt) = n(G′)t.

Two edges in a graph G are independent if they are not adjacent in G. The matching

number α′(G) of graph G, sometimes known as the edge independence number, is the cardinality

of a maximum independent edge set.

Theorem 44. [18] If a graph G does not have isolated vertices, then

γs(G) ≤ n(G)− α′(G).

It is known that for every graph G with no isolated vertex α′(G) ≥ γ(G) [27]. Hence,

Theorem 44 leads to the following corollary.

Corollary 45. If a graph G does not have isolated vertices, then

γs(G) ≤ n(G)− γ(G).

Recall that a graph without isolated vertices satisfies γ(G) = n(G)/2 if and only if its

components are isomorphic to C4 or to corona product graphs of the form H �K1. If γ(G) =

n(G)/2, then Corollary 45 leads to n(G)
2

= γ(G) ≤ γr(G) ≤ γs(G) ≤ n(G)
2

. Thus, we deduce the

following result.
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Remark 46. If γ(G) = n(G)
2

, then γr(G) = γs(G) = n(G)
2
.

As we will show in Theorem 48, in some cases the bound provided by Theorem 44 can be

improved. To this end, we need to introduce some additional notation.

Definition 22. Let D(G) be the set of all γ(G)-sets. For every S ∈ D(G) we define

T (S) = {v ∈ V (G) \ S : N [v] = N [s] for some s ∈ S}.

Finally, we define the maximum twin set as

τ(G) = max{|T (S)| : S ∈ D(G)}.

Recall that two vertices u, v are called true twins if N [u] = N [v].

Lemma 47. Let G be a graph such that no component of G is a complete graph. If S is a

γ(G)-set, then V (G) \ (S ∪ T (S)) is a dominating set.

Proof. Since every vertex in T (S) has a true twin in S, we only need to show that every vertex

in S has a neighbour in S ′ = V (G)\(S∪T (S)). Notice that, since G has no isolated vertices and

S is a γ(G)-set, every vertex in S has at least one neighbour outside of S. Suppose that there

exists s ∈ S such that N(s)∩S ′ = ∅. In such a case, N(s)∩T (S) 6= ∅ and, if N(s)∩S = ∅, then

the subgraph induced byN [s] is a component ofG, which is a contradiction. Thus, N(s)∩S 6= ∅.
Now, let x ∈ N(s) ∩ T (S). If s and x are true twins, then every neighbour of s belonging to S

is a neighbour of x, while if s and x are not true twins, then there exists s′′ ∈ S \ {s} which is

twin with x. Therefore, S \ {s} is a dominating set, which is a contradiction.

Theorem 48. If no component of G is a complete graph, then

γs(G) ≤ n(G)− γ(G)− τ(G).

Proof. Let S be a γ(G)-set such that |T (S)| = τ(G). We will show that S ′ = V (G)\ (S∪T (S))

is a secure dominating set. We already know from Lemma 47 that S ′ is a dominating set.

It remains to show that for every v ∈ S ∪ T (S) there exists u ∈ S ′ ∩ N(v) such that S ′uv =

(S ′ \ {u}) ∪ {v} is a dominating set. To this end, for every u ∈ S ′ we define P (u) as follows:

P (u) = {v ∈ S : N(v) ∩ S ′ = {u}}.

If there exists u ∈ S ′ such that |P (u)| ≥ 2, then S1 = (S \ P (u))∪ {u} is a dominating set and

|S1| < |S| = γ(G), which is a contradiction. Hence, |P (u)| ≤ 1 for every u ∈ S ′. With this fact

in mind, we differentiate two cases for v ∈ V (G) \ S ′.
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(i) v ∈ S. Suppose that P (u) = {v} for some u ∈ S ′. In this case, for every w ∈ N(u) ∩
(S \ {v}) we have |N(w) ∩ S ′| ≥ 2. So that, if there exists y ∈ (N(u) ∩ T (S)) \ N(v),

then |N(y) ∩ S ′| ≥ 2, as y has a twin in S \ {v}. Hence, S ′uv is a dominating set. From

now on we assume that |N(v) ∩ S ′| ≥ 2. Now, if there exists u′ ∈ N(v) ∩ S ′ such that

P (u′) = ∅, then |N(w) ∩ S ′| ≥ 2 for every w ∈ N(u′) ∩ (S \ {v}), and also for every

w ∈ (N(u′) ∩ T (S)) \N(v), which implies S ′u′v is a dominating set. Finally, suppose that

P (u) 6= ∅ for every u ∈ N(v) ∩ S ′. Let

X = {v} ∪

 ⋃
u∈N(v)∩S′

P (u)

 .

Notice that |X| = 1 + |N(v)∩ S ′|. Hence, S2 = (S \X)∪ (N(v)∩ S ′) is a dominating set

of G and |S2| < |S|, which is a contradiction.

(ii) v ∈ T (S). Let v′ ∈ S such that N [v] = N [v′]. As discussed in (i), there exists u ∈ S ′

such that S ′uv′ is a dominating set. Since v and v′ are true twins, we can conclude that

S ′uv is also a dominating set.

According to the two cases above, S ′ is a secure dominating set. Therefore, γs(G) ≤ |S ′| =
n(G)− γ(G)− τ(G).

Figure 5.1: Example of Theorem 44 where true twins vertices are remarked.

Graph shown in Figure 5.1 shows an example where Theorem 48 improves the bound given

by Theorem 44, we take the graph G ∼= K3 + N2
∼= K5 − e. In this case γ(G) = 1, τ(G) = 2

and α′(G) = 2, which implies that γs(G) ≤ n(G)− γ(G)− τ(G) = 2 < 3 = n(G)− α′(G).

It is well known that for any graph G, γ(G) ≥ ρ(G), [27]. Meir and Moon [34] showed in

1975 that γ(T ) = ρ(T ) for any tree T . We remark that in general, these γ(T )-sets and ρ(T )-sets

are not identical. The following result is a direct consequence of Theorem 48.

Corollary 49. If no component of G is a complete graph, then

γs(G) ≤ n(G)− ρ(G)− τ(G).
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To see the sharpness of the bound above, consider the corona product graph G1 � Np,

where G1 is an arbitrary graph. In this case, n(G1 �Np) = n(G1)(p+ 1), ρ(G1 �Np) = n(G1)

and γs(G1 � Np) = n(G1)p = n(G1 � Np) − ρ(G1 � Np) = n(G1 � Np) − γ(G1 � Np). From

G′ ∼= G1�N2 we can construct a family of graphs G of order n(G) = 3n(G1) + l1 + · · ·+ ln(G1)

with γs(G) = n(G)−γ(G)−τ(G). We construct G from G′ and a γ(G′)-set S = {v1, . . . , vn(G1)}
by replacing every vj ∈ S with a copy of Klj and joining by an edge each vertex of Klj with

each neighbour of vj in G′.

As shown in [40], the domination number of any graph G is bounded below by n(G)
∆(G)+1

.

Therefore, the following result is deduced from Theorem 48.

Corollary 50. If no component of G is a complete graph, then

γs(G) ≤
⌊
n(G)∆(G)

∆(G) + 1

⌋
− τ(G).

The bound above is tight. For instance, it is achieved for any graph isomorphic to Kn− e.
In this case τ(G) = n(G)− 2 and ∆(G) = n(G)− 1 so γs(G) = 2.

Since γr(G) ≤ 2γ(G) and γr(G) ≤ γs(G), Theorem 48 leads to the following upper bounds

on the weak Roman domination number.

Corollary 51. If no component of G is a complete graph, then the following assertions hold.

(i) γr(G) ≤
⌊
n(G) + γ(G)− τ(G)

2

⌋
.

(ii) If γ(G) ≥ n(G)
3

, then γr(G) ≤ 2γ(G)− τ(G).

To see the sharpness of the bounds above, consider the corona graph G ∼= G1 � N2,

where G1 is an arbitrary graph. In this case, n(G) = 3n(G1), γ(G) = n(G1), τ(G) = 0 and

γr(G) = 2n(G1). Another example of equality for bound (i) is G ∼= Kn − e, where γr(G) = 2,

τ(G) = n(G)− 3 and γ(G) = 1.

The minimum number of cliques of a given graph G needed to cover the vertex set V (G)

is called the clique covering number of G and denoted by θ(G). Before stating our next result

we need to recall the following theorem, which states a Nordhaus-Gaddum inequality for the

chromatic number of a graph.

Theorem 52. [13] For any graph G,

χ(G) + χ(G) ≤ n(G) + 1 and χ(G)χ(G) ≤ (n(G) + 1)2

4
.
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Theorem 53. The following statements hold for any graph G.

(i) γs(G) ≤ θ(G).

(ii) γr(G) + γr(G) ≤ γs(G) + γs(G) ≤ n(G) + 1.

(iii) γr(G)γr(G) ≤ γs(G)γs(G) ≤ (n(G) + 1)2

4
.

Furthermore, if G 6∼= C5 is a connected graph with δ(G) ≥ 2 and ∆(G) ≤ n(G) − 3, then the

following statement hold.

(iv) γr(G) + γr(G) ≤ γs(G) + γs(G) ≤ n(G)− 1 for n(G) odd and

γr(G) + γr(G) ≤ γs(G) + γs(G) ≤ n(G) for n(G) even.

(v) γr(G)γr(G) ≤ γs(G)γs(G) ≤ (n(G)−1)2

4
for n(G) odd and

γr(G)γr(G) ≤ γs(G)γs(G) ≤ (n(G))2

4
for n(G) even.

Proof. Let Π be a partition of V (G) into cliques such that |Π| = θ(G). The proof of (i) directly

follows from the fact that any set formed by one representative of each clique in Π is a secure

dominating set.

Since χ(G) = θ(G), (i) and Theorem 52 lead to

γs(G) + γs(G) ≤ θ(G) + θ(G) = χ(G) + χ(G) ≤ n(G) + 1

and

γs(G)γs(G) ≤ θ(G)θ(G) = χ(G)χ(G) ≤ (n(G) + 1)2

4
,

as required. Finally, (iv) and (v) are a direct consequence of Theorem 40.

The inequalities above are tight. For instance, (i) is achieved by the graphs shown in Figure

5.2, (ii) and (iii) are achieved by the self-complementary graph shown in Figure 5.2 (on the

left) and also by C5. In both cases we have n(G) = 5 and γr(G) = γs(G) = 3. Finally, (iv) and

(v) are achieved by the self-complementary graph shown in Figure 5.2 (on the right), in this

case we have n(G) = 8 and γr(G) = γs(G) = 4.

Figure 5.2: Two self-complementary graphs.
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5.1 Cartesian product graphs

This Section focuses on the results obtained for secure domination on Cartesian product graphs.

This product has been extensively investigated from various perspectives. For instance, the

most popular open problem in the area of domination theory is known as Vizing’s conjecture.

Vizing [39] suggested that for any graphs G and H,

γ(G�H) ≥ γ(G)γ(H).

Several researchers have worked on it, for instance, some partial results appears in [15, 25]. The

study of the secure domination number of Cartesian product graphs was initiated by Cockayne

et al. in [19], where they obtained bounds on γs(Ck�Ct) and γs(Pk�Pt) in terms of k and t.

Before stating our first result we need to recall the following well known lower bound on

the domination number of any Cartesian product graph.

Lemma 54. [24] For any pair of graphs G and H,

γ(G�H) ≥ min{n(G), n(H)}.

Theorem 55. For any graphs G and H, the following statements hold.

(i) min{n(G), n(H)} ≤ γr(G�H) ≤ min{n(G)γr(H), n(H)γr(G)}.

(ii) min{n(G), n(H)} ≤ γs(G�H) ≤ min{n(G)γs(H), n(H)γs(G)}.

Proof. Let f(U0, U1, U2) be a γr(G)-function. In order to prove the upper bound, we claim that

the function g : V (G�H) −→ {0, 1, 2} defined by g(x, y) = f(x) is a WRDF on G�H, where

{W0 = U0 × V (H),W1 = U1 × V (H),W2 = U2 × V (H)}

is the partition of V (G�H) associated to g. To see this we only need to observe the following

two facts.

(a) Since every x ∈ U0 is dominated by some x′ ∈ U1 ∪ U2, every (x, y) ∈ W0 is dominated

by (x′, y) ∈ W1 ∪W2.

(b) Since for every x ∈ U0 there exists x′ ∈ N(x) ∩ (U1 ∪ U2) such that the movement of

a guard from x′ to x does not produce undefended vertices in G, the movement of a

guard from (x′, y) ∈ W1 ∪W2 to (x, y) ∈ W0 does not produce undefended vertices in the

subgraph of G�H induced by V (G)× {y}, which is isomorphic to G.
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According to Facts (a) and (b) we can conclude that g is a WRDF on G�H, which implies

that γr(G�H) ≤ w(g) = n(H)w(f) = n(H)γr(G), as required. By analogy we deduce that

γr(G�H) ≤ n(G)γr(H). Therefore, the upper bound of (i) follows. The proof of the upper

bound of (ii) is deduced by analogy to the previous one by taking a WRDF f(U0, U1, U2) such

that U2 = ∅ and |U1| = γs(G). Finally, the lower bounds are deduced from Lemma 54, as

γs(G�H) ≥ γr(G�H) ≥ γ(G�H) ≥ min{n(G), n(H)}.

As we show in the following results, the bounds above are tight.

Corollary 56. Let t be an integer. If 2 ≤ n(H) ≤ t, then γr(Kt�H) = γs(Kt�H) = n(H).

According to this result, it remains to study the weak Roman domination number and the

secure domination number of Kt�H for n(H) > t. Our next result covers two particular cases.

Proposition 57. For any integers t ≥ 3 and t′ ≥ 3,

γr(Kt�Ct′) = γr(Kt�Pt′) = γs(Kt�Pt′) = γs(Kt�Ct′) = t′.

Proof. By Theorem 55 and Propositions 2 and 4 we have that

min{t, t′} ≤ γr(Kt�Ct′) ≤ γr(Kt�Pt′) ≤ t′

and

min{t, t′} ≤ γr(Kt�Ct′) ≤ γs(Kt�Ct′) ≤ γs(Kt�Pt′) ≤ t′.

It remains to show that γr(Kt�Ct′) ≥ t′ for t′ > t ≥ 3. Let f(W0,W1,W2) be a γr(Kt�Ct′)-

function and V (Ct′) = {v1, . . . , vt′}, where the subscripts are taken modulo t′ and vivi+1 ∈
E(Ct′) for any i ≤ t′. Let Ai = (V (Kt) × {vi}) and αi = f(Ai) for every i ∈ {1, . . . , t′}. We

differentiate the following cases in which αi = 0 for some i. Symmetric cases are omitted.

(i) αi = 0. Since W1 ∪W2 is a dominating set, we can conclude that

αi−1 + αi + αi+1 ≥ t ≥ 3.

(ii) αi−1 = αi+1 = 0 and αi = 1. In this case, no guard can move from Ai to Ai+1 (or to

Ai−1), which implies that αi−2 ≥ t and αi+2 ≥ t. Hence, we can conclude that

αi−2 + αi−1 + αi + αi+1 ≥ t+ 1 ≥ 4 and αi−1 + αi + αi+1 + αi+2 ≥ 1 + t ≥ 4.

In this case, if t′ ≥ 6, then

αi−2 + αi−1 + αi + αi+1 + αi+2 ≥ 2t+ 1 ≥ 7.
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(iii) αi = 2 and αi−1 = αi+1 = 0. From (i) we know that αi−2 ≥ t − 2 and αi+2 ≥ t − 2.

Suppose that αi−2 = t−2 and αi+2 < t. Notice that W2∩ (Ai−2∪Ai) = ∅, as every vertex

in Ai−1 has to be dominated by some vertex in W1 ∪W2. Hence, for (u, vi), (u
′, vi) ∈ V1

we have that (u, vi−2), (u′, vi−2) ∈ V0 and (u, vi+2) ∈ V0 or (u′, vi+2) ∈ V0, as αi−2 = t− 2

and αi+2 < t. We can assume that (u, vi+2) ∈ V0. Thus, the movement of a guard form

(u, vi) to (u, vi−1) produces undefended vertices in Ai+1, which is a contradiction. Hence,

αi−2 + αi+2 ≥ 2(t− 1) and so we can conclude that

αi−2 + αi−1 + αi + αi+1 + αi+2 ≥ 2t ≥ 6.

According to the conclusions derived from the cases above we can deduce that,

γr(Kt�Ct′) = w(f) =
t′∑
i=1

αi ≥ t′.

Therefore, the result follows.

Notice that the result above does not include the case of complete graphs of order two. For

this case we propose the following conjecture.

Conjecture 58. For any integer t ≥ 2

γs(Pt�K2) =

⌈
3t+ 1

4

⌉
.

Furthermore, for t ≥ 3,

γs(Ct�K2) =


⌈

3t
4

⌉
+ 1, if t ≡ 4 (mod 8)

⌈
3t
4

⌉
, otherwise.

Regarding the conjecture above, we would emphasize that it is known from [32] that

γ(Pt�K2) =
⌈
t+1

2

⌉
and from [20] that γR(Pt�K2) = t+ 1.

Proposition 59. Let t ≥ 2 and t′ ≥ 2 be two integers. The following statements hold.

(i) γr(Kt�K1,t′−1) = min{2t, t′}.

(ii) γs(Kt�K1,t′−1) = t′.
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Proof. From Theorem 55 we have that γr(Kt�K1,t′−1) ≤ min{2t, t′}. We proceed to show

that γr(Kt�K1,t′−1) ≥ min{2t, t′}. Let f(W0,W1,W2) be a γr(Kt�K1,t′−1)-function and let

y0 be the universal vertex of K1,t′−1. Suppose that γr(Kt�K1,t′−1) < min{2t, t′}. Now, since

γr(Kt�K1,t′−1) < 2t, there exists x ∈ V (Kt) such that f({x} × V (K1,t′−1)) ≤ 1 and, since

γr(Kt�K1,t′−1) < t′, there exist y ∈ V (K1,t′−1) such that V (Kt) × {y} ⊆ W0. If y = y0,

then there is exactly one guard for each copy of Kt different from the one associated to y0 (as

every vertex has to be defended), which implies that the movement of any guard to a vertex in

V (Kt)× {y0} produces undefended vertices, so that y 6= y0. Notice that f(V (Kt)× {y0}) ≥ t,

otherwise there are undefended vertices in V (Kt)×{y}. Now, suppose that V (Kt)×{y′} ⊆ W0,

for some y′ ∈ V (K1,t′−1)\{y0, y}. In such a case, (x, y′) and (x, y) are only defended by a guard

located at (x, y0), but (x, y) will become undefended after the movement of that guard to (x, y′),

which is a contradiction. Hence,
∑

v 6=y0
f(V (Kt)× {v}) ≥ t′ − 2, and so w(f) ≥ t+ t′ − 2 ≥ t′,

which is a contradiction again. Thus, γr(Kt�K1,t′−1) ≥ min{2t, t′}, as required. Therefore, (i)

follows.

We now proceed to prove (ii). As above, let y0 be the universal vertex of K1,t′−1, W a

γs(Kt�K1,t′−1)-set and u ∈ V (Kt). Suppose that |W | ≤ t′ − 1. In such a case, there exists

v ∈ V (K1,t′−1) such that W ∩(V (Kt)×{v}) = ∅. Notice that N(u, v)∩W 6= ∅. We differentiate

two cases.

(i’) v 6= y0. Since W is a dominating set, V (Kt) × {y0} ⊆ W . Thus, there exists v1 ∈
V (K1,t′−1) \ {v, y0} such that V (Kt) × {v1} ⊆ W . Hence, N [(u, v)] ∩W = {(u, y0)} =

N [(u, v1)] ∩ W , and so (W \ {(u, y0)}) ∪ {(u, v1)} is not a dominating set, which is a

contradiction.

(ii’) v = y0. Since W is a dominating set and |W | < t′, for every v′ ∈ V (K1,t′−1) \ {y0} we

have that |(V (Kt)×{v′})∩W | = 1. Hence, for u ∈ V (Kt) such that (u, v′) ∈ W and u′ ∈
V (Kt)\{u} we have that N [(u′, v′)]∩W = {(u, v′)}. Thus, for every v′ ∈ V (K1,t′−1)\{y0}
and u ∈ V (Kt) such that (u, v′) ∈ W , we have that (W \ {(u, v′)}) ∪ {(u, y0)} is not a

dominating set, which is a contradiction.

According to the two cases above we can conclude that γs(Kt�K1,t′−1) = |W | ≥ t′. Finally,

Theorem 55 leads to γs(Kt�K1,t′−1) = t′.

Proposition 60. For any graph G and any integer t > 2n(G) ≥ 4,

γr(G�K1,t−1) = 2n(G).

Proof. By Theorem 55 we have γr(G�K1,t−1) ≤ 2n(G). To conclude the proof we only need to

observe that Propositions 4 and 59 lead to γr(G�K1,t−1) ≥ γr(Kn(G)�K1,t−1) = 2n(G).
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Theorem 61. If no component of a graph H is a complete graph, then for any nontrivial graph

G,

γs(G�H) ≤ n(G)γ(H) + n(H)γ(G)− 2γ(G)γ(H)− γ(G)τ(H).

Proof. In this proof we use the set T (S) as defined in Definition 22. Let S1 be a γ(G)-set and

S2 a γ(H)-set such that |T (S2)| = τ(H). We will show that W = (S1 × S ′2) ∪ (S1 × S2) is

a secure dominating set of G�H, where S ′2 = V (H) \ (S2 ∪ T (S2)). First of all, notice that

W is a dominating set of G�H as S2 and S ′2 are dominating sets in H (by Lemma 47). We

differentiate the following three cases for (x, y) ∈ W .

(i) (x, y) ∈ S1×S ′2. In the proof of Theorem 48 we have shown that S ′2 is a secure dominating

set. Hence, for each vertex (x, y) ∈ S1 × S ′2 there exists (x, y′) ∈ S1 × S ′2 such that

the movement of a guard from (x, y′) to (x, y) does not produce undefended vertices in

{x}×S ′2. Such a movement of guards does not produce undefended vertices in S1×{y′},
as these vertices are dominated by the ones in S1 × S2.

(ii) the movement of a guard from (x, y′) to (x, y) does not produce undefended vertices in

S1 × {y′}, as these vertices are dominated by the ones in S1 × {y}. Such a movement of

guards does not produce undefended vertices in {x}×S ′2, as these vertices are dominated

by the ones in {x′}×S ′2, for every x′ ∈ S1∩N(x). Now, suppose that y′′ ∈ N(y′)∩T (S2).

If |N(y′′)∩S2| ≥ 2, then (x, y′′) remains defended after the above mentioned movement of

guards. If |N(y′′) ∩ S2| = {y′}, then y′ and y′′ are twins, which implies (x, y′′) ∈ N(x, y),

so that (x, y′′) remains defended after the movement of a guard form (x, y′) to (x, y).

(iii) (x, y) ∈ S1 × T (S2). Let y′ ∈ S2 such that N [y] = N [y′]. As in the previous case,

the movement of a guard from (x, y′) to (x, y) does not produce undefended vertices in

S1 × {y′}. On the other hand, since y and y′ are twins, the movement of a guard from

(x, y′) to (x, y) does not produce undefended vertices in {x} × S2.

According to the three cases above, W is a secure dominating set of G�H. Therefore,

γs(G�H) ≤ |W | = n(G)γ(H) + n(H)γ(G)− 2γ(G)γ(H)− γ(G)τ(H)

as desired.

According to the result above, for any noncomplete graph H,

γs(Kt�H) ≤ (t− 2)γ(H) + n(H)− τ(H).
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It is not difficult to check that the bound above is tight. For instance, it is achieved by

H ∼= Kl +N3 for l ≥ 2, as γs(K3�(Kl +N3)) = 5, γ(H) = 1 and τ(H) = l − 1. Notice that, in

this case, Theorem 61 gives a better result than Theorem 55.

We learned from Theorem 40 that γs(G) ≤
⌊
n(G)

2

⌋
for every graph G 6∼= C5 having minimum

degree δ(G) ≥ 2. If G and H have no isolated vertices, then γ(G) ∈ {1, . . . , bn(G)/2c} and

γ(H) ∈ {1, . . . , bn(H)/2c}. Hence, we can state the following remark which shows that the

bound provide by Theorem 61 is never worse that the bound γs(G�H) ≤
⌊
n(G)n(H)

2

⌋
deduced

from Theorem 40.

Remark 62. If G and H have no isolated vertices, then

n(G)γ(H) + n(H)γ(G)− 2γ(G)γ(H) ≤
⌊
n(G)n(H)

2

⌋
.

The inequality chain

γr(G�H) ≤ γs(G�H) ≤ n(G)γ(H) + n(H)γ(G)− 2γ(G)γ(H)

is tight. It is achieved for P3�P3 and K2�K2
∼= C4, as γr(P3�P3) = 4 and γr(C4) = 2.

Proposition 63 provides another example of graphs for which this inequality chain is achieved.

Proposition 63. For any integer t ≥ 3,

γr(K1,t−1�K1,t−1) = γs(K1,t−1�K1,t−1) = 2(t− 1).

Proof. According to Theorem 61, we only need to prove the lower bound γr(K1,t−1�K1,t−1) ≥
2(t − 1). Let f(W0,W1,W2) be a γr(K1,t−1�K1,t−1)-function and, for simplicity, set V =

V (K1,t−1). Let x ∈ V be the vertex of degree t−1. From now on, we suppose that w(f) ≤ 2t−3.

We proceed to show the following claim.

Claim 1. f({u} × V ) ≥ 1, for every u ∈ V \ {x}.
In order to prove Claim 1, we suppose that there exists u ∈ V \{x} such that f({u}×V ) = 0.

In such a case, f(x, y) ≥ 1, for every y ∈ V . Now, since w(f) ≤ 2t−3, there exist u′ ∈ V \{x, u}
and v ∈ V such that f({u′} × V ) = 0 and f(x, v) = 1, which is a contradiction as (u′, v) is

undefended after the movement of the guard located in (x, v) to (u, v). Thus, Claim 1 follows.

Since w(f) ≤ 2t− 3 , Claim 1 leads to the following ones.

Claim 2. There exists u∗ ∈ V \ {x} such that f({u∗} × V ) = 1.

Claim 3. There exists v∗ ∈ V \ {x} such that f(x, v∗) = 0.

We differentiate the following two cases for f(u∗, x).
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(i) f(u∗, x) = 0. By Claims 2 and 3 we can conclude that f(u∗, v∗) = 1, otherwise (u∗, v∗) is

not dominated by the elements inW1∩W2. Since every vertex in {u∗}×V \{(u∗, x), (u∗, v∗)}
has to be dominated by some vertex in W1 ∪W2, from w(f) ≤ 2t − 3 and Claim 1 we

deduce that f(x, v) = 1 for every v ∈ V \{x, v∗}, f({u}×V ) = 1 for every u ∈ V \{x, u∗},
and f(x, x) = 0. Hence, the movement of any guard from a vertex in {x} × V to (x, x)

produces undefended vertices in {u∗} × V , and the movement of a guard from a vertex

of the form (a, x) to (x, x) leaves vertex (a, v∗) undefended. In both cases we have a

contradiction.

(ii) f(u∗, x) = 1. In this case, (u∗, x) is the only vertex in W1 ∪ W2 which is adjacent

to (u∗, v∗). Hence, the movement of a guard from (u∗, x) to (u∗, v∗) does not produce

undefended vertices, and so from w(f) ≤ 2t− 3 and Claim 1 we deduce that f(x, v) = 1

for every v ∈ V \ {x, v∗}, f({u} × V ) = 1 for every u ∈ V \ {x, u∗}, and f(x, x) = 0.

Thus, the movement of a guard from a vertex of the form (a, x) to (x, x) leaves vertex

(a, v∗) undefended, which is a contradiction.

According to the two cases above we can conclude that, w(f) ≥ 2(t− 1), as required.

As usual in domination theory, when studying a domination parameter, we can ask if a

Vizing-like conjecture can be proved or formulated. By Proposition 63 we can claim that there

are graphs with

γs(G�H) 6≥ γs(G)γs(H),

i.e., for any p ≥ 3 we have γs(K1,p�K1,p) = 2p < p2 = γs(K1,p)γs(K1,p).

Theorem 64. Let fH = (V0, V1, V2) be a γr(H)-function of a graph H such that V2 6= ∅, and

let Y = V (H) \N [V2]. For any graph G,

γr(G�H) ≤ 2n(G)|V2|+ |Y |γr(G).

Proof. Let fG = (U0, U1, U2) be a γr(G)-function, W1 = U1×Y and W2 = (V (G)×V2)∪(U2×Y ).

In order to show that f = (W0,W1,W2) is a WRDF of G�H, we differentiate the following two

cases for (x, y) ∈ W0.

(i) (x, y) ∈ V (G)× (N(V2) \ V2). Since there exists y′ ∈ V2 ∩N(y), the movement of a guard

from (x, y′) to (x, y) does not produce undefended vertices.
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(ii) (x, y) ∈ U0 × Y . Since fG is a γr(G)-function, there exists x′ ∈ U1 ∪ U2 such that the

movement of a guard from x′ to x does not produce undefended vertices. Which implies

that the movement of a guard from (x′, y) to (x, y) does not produce undefended vertices

in V (G)× Y .

Notice that for any graph with γr(H) = 2γ(H), Theorems 55 and 64 lead to the same

result γr(G�H) ≤ 2n(G)γ(H). In order to show an example where Theorem 64 gives a better

result we take G ∼= K3 and the graph H shown in Figure 5.3. In this case, an optimum solution

consists of two guards at each vertex of the copy of K3 corresponding to the vertex v ∈ V (H)

of maximum degree and one guard at each copy of K3 corresponding to the vertices of H

nonajacent to v.

2 1

Figure 5.3: A graph with γr(H) = 3, |Y | = 2 and γr(K3�H) = 2n(G)|V2|+ |Y |γr(G) = 8.



Chapter 6

Conclusion

6.1 Lessons learned

After only a little research on the utilization of graphs, it was easy to realize how common they

are and the amount of applications they have; a particular example is informatics where graphs

are rapidly associated to a network structure. This amount and variety of possible applications

accentuates the need of investing in research in order to take the maximum advantage of theory

in real implementation.

Dominating sets and graph protection have a big impact on the way in which relations are

treated among huge amounts of data. As lexicographic product is a product that increases the

connection between nodes, the obtained graphs are very willing to be used in domination; which

benefits the amount of relations in a graph. For the part of Cartesian product, this is the most

natural and common product which contributes more on the usability of the results obtained.

The difference between both specializations of the thesis is that lexicographic product has been

very thankful for the development of the study due to the density of the graphs obtained while

Cartesian product may be more complex for domination but provides more valuable results.

Most of the capabilities and knowledge have been put in practice during the realization of

the work. On the other hand, this has helped us realizing of the importance and the impact

of theoretical investigation in real implementation. Hence, while doing the investigation and

research on new formulae, we have been able to test our thinking abilities in order to facilitate

methodologies previously used.

57
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6.2 Objectives

Our main aim was to work on research studies so that we could realize the amount of effort

needed in order to bring new results to the current existing theory. By doing so, we wanted

to achieve good results which can bring value to future implementations and research. As

we could provide many bounds and formulae, we can say that the objectives were achieved

successfully. The fact of providing new ideas and research to scientific world has motivated

us to keep working on this field. In this way, we will be able to take part in the evolution of

technologies, even if it is with a little contribution. We can say that a new goal has raised form

this study.

6.3 Organization

Developing a project which is not being guided by the specifications of practices, also has

supposed a challenge to overcome. This part has implied acquiring an own methodology of work

and to strengthen the capability of developing new ideas. For doing so, it is very important

be constant in the work and to keep informed about the topic. Only by investigation and

continuity, valuable results can be achieved.

6.4 Open problems

Some closed formulae for γr(G◦H), obtained in Section 4.1.3, were derived under the assumption

that γt(G) = 1
2

max{γr(G), 2ρ(G)} or γ2,t(G) = max{γr(G), 2ρ(G)} or γr(G) = 2γ(G). This

suggests the following open problems.

Problem 1. Characterize the graphs with γr(G) = 2γ(G).

Problem 2. Characterize the graphs with γr(G) = 2γt(G).

Problem 3. Characterize the graphs with γt(G) = ρ(G).

Problem 4. Characterize the graphs with γr(G) = γ2,t(G).

Problem 5. Characterize the graphs with γ2,t(G) = 2ρ(G).

Notice that γr(G) ≤ γR(G) ≤ 2γ(G) ≤ 2γt(G). Hence, γr(G) = 2γ(G) if and only if

γr(G) = γR(G) and G is a Roman graph. Furthermore, γr(G) = 2γt(G) if and only if all

equalities hold true in the previous domination chain. Therefore, the starting point to solve

Problems 1 and 2 is a deep investigation of Roman graphs.
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P3(G) Family of graphs defined for the aim of this work. Given a graph G, let P3(G) be the

family of ordered sets S = {x1, x2, x3} ⊂ V (G) such that 〈S〉 ∼= P3, δ(x1) ≥ 2, δ(x2) = 2

and δ(x3) = 1.

3-cube graph Hypercube Q3.

chromatic number Vertex-colouring function of a graph G = (V,E) is a function f : V → N
with the property that f(u) = f(v) whenever {u, v} ∈ E(G) is defined as χ(G) =

minf∈F(G)|Im(f)| where Im(f) denotes the image of f .

clique Subset of vertices of a graph such that every two distinct vertices in the clique are

adjacent; that is, its induced subgraph is complete.

clique covering number The minimum number of cliques of a given graph G needed to cover

the vertex set V (G) is called the clique covering number of G and denoted by θ(G).

Cocktail-party graph The Cocktail-party graph of order n is the graph consting of two rows

of paired nodes in which all nodes except the paired nodes are connected.

comb Family of graphs defined for the aim of this work. Family of trees Tn, such that taking

a path Pk of length k = dn
3
e, with vertices v1, . . . , vk, and attach a path P3 to each vertex

v1, . . . , vk−1, by identifying each vi with a leaf of its corresponding copy of P3. Finally, we

attach a path of length r = n− 3dn
3
e+ 2 to vk.

complement Given the graph G = (V,E), the complement of this graph is defined as the

graph, (G)c, that is constructed on the same set of vertices, so that two vertices are

adjacent in (G)c if and only if they are not adjacent in G.

corona product Product of graphs obtained by creating a copy of the second factor for each

of the nodes of the first one and joining oll the vertices of the copy to the corresponding

vertex of the first graph.

59
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cylinder graph Graph that is obtained by the Cartesian product of a cycle graph and a path

graph of order n and m respectively: Cn�Pm.

density Amount of existing edges of a graph against the possible edges.

diameter Longest path among all shortest paths between all pair of nodes in a graph. The

density of a graph increases as more adjacencies it has.

doubly connected domination number For a given connected graph G = (V,E), a set

D ⊆ V (G) is a doubly connected dominating set if it is dominating and both 〈D〉 and

〈V (G)−D〉 are connected. The cardinality of the minimum doubly connected dominating

set in G is the doubly connected domination number.

embedded subtrees of T Sequence of all embedded subtrees of T , of order greater than or

equal to three: T0, T1, . . . , Tk. T0 = T and Ti is the subtree of Ti−1 induced by the removal

of some suport vertices and leaves from Ti−1 according to Definition 21.

family O4(G) Family of graphs defined for the aim of this work. For any G such that Family

P4(G) 6= ∅ we define the family O4(G) of graphs G∗ constructed from G as follows. Let

S ∈ P4(G) such that 〈S〉 = P4 = (x1, x2, x3, x4), X = {x1x2, x2x3, x3x4} and Y = {ab :

a ∈ N(x1) \ {x2} ∪ b ∈ N(x4) \ {x3}}. The vertex set of G∗ is V (G∗) = V (G) \ S and the

edge set is E(G∗) = (E(G) \X) ∪ Y .

family P4(G) Family of ordered sets defined for the aim of this work. Given a graph G, let

P4(G) be the family of ordered sets S = {x1, x2, x3, x4} ⊂ V (G) such that 〈S〉 ∼= P4,

δ(x1) ≥ 2, δ(x2) = δ(x3) = 2 and δ(x4) ≥ 2.

family G Family of graphs defined for the aim of this paper. A graphGr,s = (V,E) belongs to G
if and only if there exit two positive integers r, s such that V = {x1, x2, x3, y1, y2, . . . , yr, z1,

z2, . . . , zs} and E = {x1yi : 1 ≤ i ≤ r} ∪ {x1zi : 1 ≤ i ≤ s} ∪ {x2yi : 1 ≤ i ≤ r} ∪ {x3zi :

1 ≤ i ≤ s} ∪ {x2x3}. Figure 4.5 shows the graph G4,4.

family Hk Family of graphs defined for the aim of this work. A graph G = (V,E) belongs to

family Hk if and only if it is constructed from a cycle Ck and k empty graphs Ns1 , . . . , Nsk

of order s1, . . . , sk, respectively, and joining by an edge each vertex from Nsi with the

vertices vi and vi+1 of Ck. Here we are assuming that vi is adjacent to vi+1 in Ck, where

the subscripts are taken module k. The graphs in this family of graphs have the property

that γr(G) = γ2,t(G).
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grid graph Graph that is obtained by the Cartesian product of two path graphs of order n

and m respectively: Pn�Pm.

Hamiltonian cycle Cycle that passes through each node in a Hamiltonian graph exactly once.

An example of a Hamiltonian cycle is shown in Figure 3.1.

Hamiltonian graph Graph such that contains a cycle that passes through each node exactly

once. An example of a Hamiltonian graph is shown in Figure 3.1.

Hamming graph The Hamming graph, denoted by Hk,t, is the Cartesian product of k copies

of the complete graph Kt.

hypercube Hypercubes, Qt are the family of Hamming graphs, denoted by Ht,2, generated by

the Cartesian product of K2.

independent edge set Subset of edges such that no two edges in the subset share a vertex.

matching number The matching number α′(G) of graph G, sometimes known as the edge

independence number, is the cardinality of a maximum independent edge set.

maximum twin set Definition provided for the aim of this work. Let D(G) be the set of all

γ(G)-sets. For every S ∈ D(G) we define

T (S) = {v ∈ V (G) \ S : N [v] = N [s] for some s ∈ S}.

Finally, we define

τ(G) = max{|T (S)| : S ∈ D(G)}

as the maximum twin set.

non-universal vertex An universal vertex v is a vertex of maximum degree, δ(v) = n− 1 in

a graph of order n. A non-universal vertex v′ is then a vertex of degree δ(v′) < n− 1.

planar graph Graph that can be drawn in such a way that no edges cross each other.

property P ′ Let H be a graph. A vertex a ∈ V (H) satisfies Property P ′ if {a, b} is a domi-

nating set of H, for every b ∈ V (H) \N [a]. In other words, a ∈ V (H) satisfies P ′ if the

subgraph induced by V (H) \N [a] is a clique.

property P Property defined in Section 4 used for charectirising noncomplete graphs with

two nodes {a, b} ⊆ V (G) satisfying the following conditions:
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� {a, b} is a dominating set.

� If x ∈ V (G) \N [a], then {x, a} is a dominating set.

� If x ∈ V (G) \N [b], then {x, b} is a dominating set.

� If x ∈ N(a) ∩N(b), then {x, a} is a dominating set or {x, b} is a dominating set

.

rainbow domination number Given a graph G, we have a set of k colors and assign an

arbitrary subset of these colors to each vertex of G. If a vertex which is assigned an

empty set, then the union of color set of its neighbors must be k colors. This assignment

is called the k-rainbow dominating function of G. The weight of the function is the sum of

numbers of assigned colors over all vertices of G. The minimum weight of this k-rainbow

dominating function is defined as the k-rainbow domination number of G..

self-complementary graph Graph G whose complement is isomorphic to the same graph

(G)c ∼= G.

shortest path Path of minimum cardinality between two given vertices in a graph.

super domination number The open neighbourhood of a vertex v of a graph G is the set

N(v) consisting of all vertices adjacent to v in G. For D ⊆ V (G), we define D = V (G)\D.

A set D ⊆ V (G) is called a super dominating set of G if for every vertex u ∈ D, there

exists v ∈ D such that N(v) ∩ D = {u}. The super domination number of G is the

minimum cardinality among all super dominating sets in G.

torus graph Graph that is obtained by the Cartesian product of two cycle graphs of order n

and m respectively: Cn�Cm.

true twin Vertex u of graph G is a true twin of v ∈ V (G) if N [u] = N [v].
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Cn Cycle graph of order n.

K1,n−1 Star graph of order n.

Kn Complte graph of order n.

Kr,s Complte bipartite graph of order n = r + s.

Nn Empty graph of order n.

Pn Path graph of order n.

T3k Comb graph of order n = 3k defined for the aim of this work according to Definition 19.

Tn Comb graph of order n defined for the aim of this work according to Definition 19.

DF Dominating Function.

RDF Roman Dominating Function.

SDF Secure Dominating Function.

WRDF Weak Roman Dominating Function.

]
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Annex 1

Proof of Theorem 37

To prove Theorem 37 wee need the following lemma.

Lemma 65. Let G and H be nontrivial connected graphs. If γ(H) ≥ 4, then there exists a

γr(G ◦H)-function f such that
∑

u′∈N(u) f(Hu′) ≥ 2, for every u ∈ V (G).

Proof. Let u, u′ ∈ V (G) such that u′ ∈ N(u) and v′ ∈ V (H). First, suppose that
∑

z∈N(u) f(Hz) =

f(u′, v′) = 1. If f(Hu) < γ(H)− 1, then there exists v ∈ V (H) such that
∑

h∈N [v] f(u, h) = 0,

so that the movement of the legion from (u′, v′) to (u, v) produces unprotected vertices, which

is a contradiction. Hence, f(Hu) ≥ γ(H)− 1 ≥ 3 and we can construct a γr(G ◦H)-function f1

from f as follows. For some (u, v) such that f(u, v) ≥ 1 we set f1(u, v) = f(u, v)− 1, for some

v′′ 6= v′ we set f1(u′, v′′) = 1 and f1(x, y) = f(x, y) for every (x, y) ∈ V (G◦H)\{(u, v), (u′, v′′)}.
Hence,

∑
z∈N(u) f1(Hz) = f1(u′, v′) + f1(u′, v′′) = 2.

Now, if
∑

z∈N(u) f(Hz) = 0, then we proceed as above to construct a γr(G ◦ H)-function

f1 from f by the movement of two legions from Hu to (u′, v′). In this case,
∑

z∈N(u) f1(Hz) =

f1(u′, v′) = 2.

For each u ∈ V (G) such that
∑

u′∈N(u) f(Hu′) ≤ 1 we can repeat the procedure above until

finally obtaining a γr(G ◦H)-function satisfying the result.

Proof of Theorem 37. Let S ∈ P4(G) such that 〈S〉 ∼= P4 = (x1, x2, x3, x4). We will first

show that γr(G ◦H) ≤ γr(G
∗ ◦H) + 4. Let f be a γr(G

∗ ◦H)-function and define α1 and α4

as follows:

α1 =
∑

x ∈ N(x1) \ {x2}

f(Hx) and α4 =
∑

x ∈ N(x4) \ {x3}

f(Hx).
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We will construct a WRDF f1 on G ◦H from f such that w(f1) ≤ w(f) + 4. For each vertex

(u, v) ∈ V (G∗ ◦ H) we set f1(u, v) = f(u, v) and now we will describe the following six cases

for the vertices (u, v) ∈ S × V (H), where symmetric cases are omitted. In all these cases we

fix y ∈ V (H).

1. α1 ≥ 2 and α4 ≥ 2. We set f1(x1, y) = f1(x4, y) = 2 and f1(u, v) = 0 for every (u, v) /∈
{(x1, y), (x4, y)}.

2. α1 ≥ 2 and α4 = 1. We set f1(x1, y) = f1(x3, y) = 1, f1(x4, y) = 2 and f1(u, v) = 0 for

every (u, v) /∈ {(x1, y), (x3, y), (x4, y)}.

3. α1 ≥ 2 and α4 = 0. We set f1(x3, y) = f1(x4, y) = 2 and f1(u, v) = 0 for every (u, v) /∈
{(x3, y), (x4, y)}.

4. α1 = 1 and α4 = 1. We set f1(x1, y) = f1(x2, y) = f1(x3, y) = f1(x4, y) = 1 and

f1(u, v) = 0 for every v 6= y and u /∈ {x1, x2, x3, x4}.

5. α1 = 1 and α4 = 0. We set f1(x2, y) = f1(x4, y) = 1, f1(x3, y) = 2 and f1(u, v) = 0 for

every (u, v) /∈ {(x2, y), (x3, y), (x4, y)}.

6. α1 = 0 and α4 = 0. We set f1(x2, y) = f1(x3, y) = 2 and f1(u, v) = 0 for every (u, v) /∈
{(x2, y), (x3, y)}.

2
2 2

2

2
1 1 2

1

2
2 2

0

1
1 1 1 1

1

1
1 2 1

0

0
2 2

0

Figure 1.1: Representation of the placement of entities for each of the cases for vertices (u, v) ∈
S × V (H).

A simple case analysis shows that the vertices of G ◦H are protected by the assignment of

legions produced by f1. Therefore,

γr(G ◦H) ≤ w(f1) ≤ w(f) + 4 = γr(G
∗ ◦H) + 4. (1.1)
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Now we will show that the equality holds. Let g be a γr(G ◦H)-function satisfying Lemma

65. We will construct a WRDF g1 on G∗ ◦H from the function g such that w(g1) ≤ w(g)− 4.

We also need to define β1 and β4 as follows.

β1 =
⋃

x ∈ N(x1) \ {x2}

V (Hx) and β4 =
⋃

x ∈ N(x4) \ {x3}

V (Hx).

We define g1 according to the following six cases:

1’. g(β1) ≥ 2 and g(β4) ≥ 2. In this case, we set g1(x, y) = g(x, y) for every (x, y) ∈
V (G∗ ◦H).

2’. g(β1) ≥ 2 and g(β4) = 1. Depending on g(H1) we will consider the following two cases:

2’.1 g(H1) ≤ 1. Since g(H1) ≤ g(β4), we can set g1(x, y) = g(x, y) for for every (x, y) ∈
V (G∗ ◦H).

2’.2 g(H1) ≥ 2. We will show that g(S×V (H)) ≥ 5. To see this, we will try to place four

legions in S×V (H) as shown in Figure 1.2, where 0 ≤ a, b ≤ 2. Since in all these cases

we have a contradiction with Lemma 65, we can conclude that g(S × V (H)) ≥ 5.

Hence, we place the legions in the following way: for some (x0, y0) ∈ β4 we set

g1(x0, y0) = g(x0, y0)+1 and g1(x, y) = g(x, y) for every (x, y) ∈ (G∗◦H)\{(x0, y0)}.

2
2 a 0 b

1 2
2 0 2 0

1

2
2 1 1 0

1 2
2 0 1 1

1

Figure 1.2: Proof of Theorem 37: Scheme corresponding to Case 2’.2.

3’. g(β1) ≥ 2 and g(β4) = 0. In this case, we consider the following three cases depending

on the value of g(H1):

3’.1 g(H1) = 0. In this case g(H1) = g(β4) so we set g1(x, y) = g(x, y) for every (x, y) ∈
V (G∗ ◦H).

3’.2 g(H1) = 1. We will show that g(S×V (H)) ≥ 5. To see this, we will try to place four

legions in S × V (H) as shown in Figure 1.3, where 2 ≤ a+ b ≤ 3 and c+ d = 1. In

both cases we have a contradiction with Lemma 65. Hence, g(S×V (H)) ≥ 5 and so
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2
1 a ≤1 b

0 2
1 c 2 d

0

Figure 1.3: Proof of Theorem 37: Scheme corresponding to Case 3’.2.

we place the legions in the following way: for some (x0, y0) ∈ β4 we set g1(x0, y0) = 1

and g1(x, y) = g(x, y) for every (x, y) ∈ V (G∗ ◦H) \ {(x0, y0)}.

3’.3 g(H1) ≥ 2. We will show that g(S×V (H)) ≥ 6. To see this, we will try to place five

legions in S × V (H) as shown in Figure 1.4, where 2 ≤ a+ b ≤ 3 and c+ d = 1. In

both cases we have a contradiction with Lemma 65. Hence, g(S×V (H)) ≥ 6 and so

we place the legions in the following way: for some (x0, y0) ∈ β4 we set g1(x0, y0) = 2

and g1(x, y) = g(x, y) for every (x, y) ∈ V (G∗ ◦H) \ {(x0, y0)}.

2
2 a ≤1 b

0 2
2 c 2 d

0

Figure 1.4: Proof of Theorem 37: Scheme corresponding to Case 3’.3.

4’ g(β1) = g(β4) = 1. In this case, we consider the following three cases depending on the

value of g(H1) and g(H4):

4’.1 g(H1) ≤ 1 and g(H4) ≤ 1. In this case g(H1) ≤ g(β4) and g(H4) ≤ g(β1), so we set

g1(x, y) = g(x, y) for every (x, y) ∈ V (G∗ ◦H).

4’.2 g(H1) ≥ 2 and g(H4) ≤ 1 (this case is symmetric to g(H1) ≤ 1 and g(H4) ≥ 2).

We will show that g(S × V (H)) ≥ 5. To see this, we will try to place four legions

in S × V (H) as shown in Figure 1.5, where a + b = 1. In all cases we have a

contradiction with Lemma 65. Hence, g(S × V (H)) ≥ 5 and so we define g1 as

follows: for some (x0, y0) ∈ β4 we set g1(x0, y0) = g(x0, y0) + 1 and g1(x, y) = g(x, y)

for every (x, y) ∈ V (G∗ ◦H) \ {(x0, y0)}.

1
2 a b 1

1 1
2 2 0 0

1

1
2 0 2 0

1 1
2 1 1 0

1

Figure 1.5: Proof of Theorem 37: Scheme corresponding to Case 4’.2.
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4’.3 g(H1) ≥ 2 and g(H4) ≥ 2.

We will show that g(S × V (H)) ≥ 6. To see this, we will try to place five legions

in S × V (H) as shown in Figure 1.6, where a + b = 1. In this case we have a

contradiction with Lemma 65. Hence, g(S × V (H)) ≥ 6 and so we place the legions

in the following way: for some (x0, y0) ∈ β1 we set g1(x0, y0) = g(x0, y0) + 1, for

some (x′0, y
′
0) ∈ β4 we set g1(x′0, y

′
0) = g(x′0, y

′
0) + 1 and g1(x, y) = g(x, y) for every

(x, y) ∈ V (G∗ ◦H) \ {(x0, y0), (x′0, y
′
0)}.

1
2 a b 2

1

Figure 1.6: Proof of Theorem 37: Scheme corresponding to Case 4’.3.

5’ g(β1) = 1 and g(β4) = 0. Notice that if g(H2) = 0 or g(H3) ≤ 1, then we have a

contradiction with Lemma 65, so that g(H2) ≥ 1 and g(H3) ≥ 2. We differentiate two

cases according to the value of g(H2):

5’.1 g(H2) = 1. By Lemma 65, we have that g(H4) ≥ 1. Thus, we place the legions in

the following way: for some (x0, y0) ∈ β1 we set g1(x0, y0) = min{2, g(H4) − 1}, for

some (x′0, y
′
0) ∈ β4 we set g1(x′0, y

′
0) = min{2, g(H1)} and g1(x, y) = g(x, y) for every

(x, y) ∈ V (G∗ ◦H) \ {(x0, y0), (x′0, y
′
0)}.

5’.2 g(H2) ≥ 2. In this case, we place the legions in the following way: for some (x0, y0) ∈
β1 we set g1(x0, y0) = min{2, g(H4)}, for some (x′0, y

′
0) ∈ β4 we set g1(x′0, y

′
0) =

min{2, g(H1)} and g1(x, y) = g(x, y) for every (x, y) ∈ V (G∗◦H)\{(x0, y0), (x′0, y
′
0)}.

6’ g(β1) = g(β4) = 0. Notice that if g(H2) ≤ 1 or g(H3) ≤ 1, then we have a contradiction

with Lemma 65, so that g(H2) ≥ 2 and g(H3) ≥ 2. We place the legions in the following

way: for some (x0, y0) ∈ β1 we set g1(x0, y0) = min{2, g(H4)}, for some (x′0, y
′
0) ∈ β4

we set g1(x′0, y
′
0) = min{2, g(H1)} and g1(x, y) = g(x, y) for every (x, y) ∈ V (G∗ ◦ H) \

{(x0, y0), (x′0, y
′
0)}.

A simple case analysis shows that the vertices of G∗ ◦H are protected by the assignment

of legions produced by g1. Therefore,

γr(G
∗ ◦H) ≤ w(g1) ≤ w(g)− 4 ≤ γr(G ◦H)− 4. (1.2)

Finally, by (1.1) and (1.2) we can conclude that γr(G ◦H) = γr(G
∗ ◦H) + 4, as claimed.
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