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  Resumen del Trabajo: 
Este proyecto tiene dos objetivos principales. Por un lado, el estudio del concepto de 
Federated Learning, el cuál fue acuñado hace 3 años por un equipo de ingenieros de 
Google. Por otro lado, se pretende desarrollar un software que sirva como herramienta 
para crear una red distribuida de dispositivos, que sea capaz de entrenar modelos de 
Machine Learning manteniendo la privacidad de los datos utilizados para esos 
entrenamientos. 
 
El resultado final es un software funcional que cumple nuestros requisitos iniciales, y es 
capaz de aplicar Federated Learning en un entorno distribuido, lo que nos permite validar, 
de una forma práctica los conceptos iniciales del estudio. A lo largo de este proyecto, se 
presentan los conceptos más importantes de Federated Learning, así como algunos de los 
frameworks de software que están empezando a surgir a partir del mismo. 
 
  Abstract: 
This project has two main goals. On one hand, the study of the concept of Federated 
Learning, which was coined 3 years ago by a team of engineers from Google. On the 
other hand, it is intended to develop a software which serves as a tool to create a 
distributed network of devices, capable of applying Federated Learning with different 
Machine Learning models. 
 
The result is a functional software that meets our initial purpose and can apply Federated 
Learning in a distributed environment, allowing us to validate in a practical way, the 
initial concepts of study. Throughout this project, the most important concepts of 
Federated Learning are presented, as well as some of the software frameworks that are 
starting to emerge from it. 
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1. Introduction 
1.1 Context and rationale 
In 2017, several Google researchers published the article "Communication-Efficient 
Learning of Deep Networks from Decentralized Data" [1], which defined a new concept 
called Federated Learning. 
 
This concept is based on the idea of increasing privacy when training Machine Learning 
models. It is normal when working on a new algorithm to collect a lot of data and train a 
model with that data until it is accurate enough. This may seem harmless, but if we look 
more closely at the process, we can see that most of the data used can affect the privacy 
of the people associated with it. This is where Federated Learning comes in, whose main 
objective is to avoid sharing data for the training of an artificial intelligence model. 
 
Although there is  a growing body of research works about Federated Learning, it seems 
that currently no  standard components have been created to carry out a correct 
implementation. The final result of this project is to demonstrate that it is possible to 
implement a real solution, and show that the results obtained are acceptable for training 
Machine Learning models. 
 
1.2 Goals 
This project has several objectives: 
 

1. Explore this new concept of Federated Learning and investigate as much as 
possible how effective the training of Machine Learning models is using this 
technique. 

2. Use one of the existing frameworks to train a model. 
3. Try to implement our own solution to see Federated Learning working in a real 

environment. 
4. Draw conclusions about Federated Learning. That is, strengths, weaknesses or 

possible improvements. 
 

1.3 Approach and methodology 
At first there was nothing obvious about how to tackle this project. Since everything was 
new to me, the approach was to begin by researching as much as possible about Federated 
Learning, other existing projects, or implementations in the form of frameworks or 
libraries that would serve to develop a solution that would allow the proposed objectives 
to be met. 
 
As the research progressed, some tools began to appear that seemed to serve our goal, but 
after some time working with them, it was seen that the only thing that could be achieved 
was to perform simulations of Federated Learning algorithms. 
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The simulations were not enough for what was initially intended, so it was decided to 
create a basic proof of concept that was adequate, as a starting point, to create a real 
solution. 
 
When all the requirements are clear in a project, an obvious option may be to follow a 
Waterfall methodology, but in this case, we had to assume that everything could change 
from one day to the next, since we could find ourselves with some unsolvable problem 
or, on the contrary, we could discover something new that would help us to achieve our 
goal in a way that had not been foreseen until then. 
 
Therefore, it was decided to follow a more flexible strategy that would allow to evolve, 
in an incremental way, from a proof of concept to a final product, by using an iterative 
process with which the scope of the project could be easily changed if necessary. 
 
In conclusion, the steps that have been followed to accomplish the project have been: 
 

1. Research of concepts and available resources. 
2. Experimentation. 
3. Creation of a proof of concept. 
4. Implementation of a product from the proof of concept. 
5. Validation of the obtained product. 
6. Drawing up conclusions.  

 
1.4 Project planning 
The planning of this project has been defined considering the deliveries of the different 
PECs as project milestones. Therefore, there will be several intermediate deliveries on 
these dates: 
 
PEC1: 22nd September 2020. 
PEC2: 10th November 2020. 
PEC3: 14th December 2020. 
Final delivery TFM: January 4, 2021. 
 
A Gantt chart of the resulting project planning is shown below: 
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Figure 1: Gantt chart of the project planning 

A more detailed view of the task within the chart can be viewed here: 
 

 

Figure 2: List of the high-level tasks planned for the project 

 
The following lists and describes the different tasks with which this project is intended to 
be carried out. Each one is assigned an identifier, in order to refer to them in the Gantt: 

1. Preparation of the planning: It includes the writing of this section itself, 
definition of the planning and definition of the objectives of the project in a broad 
way. 

2. PEC1 delivery: Milestone corresponding to the official delivery of the PEC1. 
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3. Research of basic concepts: Search of information about the different concepts 
of Federated Learning, reading of articles, blogs, creation of a documentary base 
that serves as reference for the rest of the project. 

4. Research on different Federated Learning solutions: Search for information in 
the reference documentation of the different frameworks with which to implement 
a generic solution, such as TensorFlow or Pytorch. The aim is to lay the 
foundation for implementing a neural network using this technique. 

5. Implementation of a generic case: Implement a generic case in Python using one 
of the frameworks investigated in the previous section. The result will be a source 
code published in a public repository such as GitHub. 

6. Documentation of test results and conclusions: The process followed to develop 
the implementation of the generic case, conclusions about the difficulties 
encountered, and results and response times will be written. 

7. Selection of a concrete case study: Once we know how to implement a solution 
with Federated Learning, we will try to find a concrete case where to apply it or 
modify some of the parameters or the way to implement it. 

8. PEC2 delivery: Milestone corresponding to the official delivery of PEC2, where 
the documentation generated during tasks 3 to 7 will be delivered. 

9. Definition of requirements and objectives of the specific case: This task will 
consist of clearly defining the results and objectives of the specific case. What we 
expect to obtain or implement, what we want to prove, the restrictions we will 
impose, etc. 

10. Search for resources needed for the implementation: Probably to carry out a 
different case you will need to install other software or use a different hardware 
or device. The objective of this task is to install and configure what is necessary 
to implement our specific solution. 

11. Implementation of a specific case: Implement the specific case defined in the 
previous tasks. The result will be a source code published in the same repository 
as the generic implementation. 

12. Documentation of results and conclusions: Task similar to number 6, in which 
the process followed to develop the selected concrete case, conclusions on the 
difficulties encountered, and results and response times will be written. 

13. PEC3 delivery: Milestone corresponding to the official delivery of the PEC3, 
where the documentation generated during tasks 9 to 12 will be delivered. 

14. Draft project report: This task will be started sometime during phase 2 (PEC2), 
and its result will be the draft report with all the documentation generated until 
that moment. 

15. Review and final writing of the report: This task will finish reviewing, 
reordering, correcting, adding or deleting information to give as the result the final 
document of the report of the project. 

16. Preparation of the presentation: As its name indicates, the result will be a 
document with the presentation of this project. 

17. Final delivery: Final milestone corresponding to the official delivery of all the 
artifacts generated during the project.  
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1.5 Overview of products obtained 
This project has allowed us to obtain several artifacts. Firstly, a documentation of the 
concepts and part of the existing software about Federated Learning (chaper 2). 
 
We have also been able to create a basic version of a simulator that trains a Machine 
Learning model, for image prediction, based on the MNIST dataset. The simulator has 
been developed using TensorFlow Federated (chapter 3). 
 
This was followed by our proof of concept, which allowed for training in the Federated 
Learning technique. Finally, we evolved the proof of concept towards a distributed system 
that can be managed from a web browser, capable of training different type of machine 
learning models using Federated Learning (chapter 4). 
 
1.6 Chapters summary 

1. Introduction: In this chapter we talk about the project itself, the reasons why it 
has been carried out, objectives, the methodology followed, high-level planning, 
and products achieved at the end. 

2. Federated Learning concepts: Definition of the concepts that have been 
researched, and an overview of the main software libraries that can be used. 

3. TensorFlow Federated simulator: The simulator implementation and its 
operation is described in this chapter. 

4. Design of a Federated Learning network: This is the bulk of the report, which 
describes what was intended to be achieved with the proof of concept, how the 
final product was reached, the evaluation of the product itself, and possible 
improvements that can be made in the future. 

5. Conclusions: It is a summary of lessons learned, and an overall assessment of the 
project. 

6. Glossary: Brief definition of the most important concepts. 
7. Bibliography & citations: Bibliography reference and citations. 
8. Annexes: Installation & user’s guide of the software produced. 

 
 
 

  



 

 
 

14 

2. Federated Learning concepts 
At the beginning of the project, the first work was to gather information about Federated 
Learning concepts and try to understand the necessary details, strengths and weaknesses. 
To do this, a multitude of research articles were read, articles on specialized websites, and 
others on some less specialized websites, but all of them related to Federated Learning 
and the world of Machine Learning in general. The following chapters present the 
concepts that I believe are the most important to understand the context of the project. 
 
2.1 What is Federated Learning? 

Is a concept coined in the research article by McMahan et al. [1], which defines a 
technique or solution for training machine learning models in a distributed manner among 
several nodes, without sharing the original data used for training among those nodes. The 
original definition also specifies that there must be a central node that orchestrates this 
distributed training. 
 
Data privacy, and regulations such as GDPR (General Data Protection Regulation), have 
been the main drivers for the birth of this technique. It is intended to prevent personal 
data from being sent over the network and from being stolen or manipulated by more or 
less malicious third parties. 
 
To give an application example, Federated Learning can be used to improve the user 
experience (UX) in the use of certain mobile device, tablet or computer applications, such 
as text prediction or image categorization. With this technique, predictive models can be 
trained without sharing the data that users have on their devices (text messages, personal 
photos, etc.) 
 
But  Federated Learning is not only useful in this kind of scenarios. It can also be applied 
at the level of data centers in companies, hospitals, universities or different government 
institutions that cannot share their data because they are too sensitive. 
 
The objective is to train models without sharing data, only the parameters calculated by 
the client nodes are shared. 
 
2.2 The high-level algorithm 
The broad outline of how  Federated Learning works is as follows: The client nodes 
receive the current state of the model from a central node, then they train the model using 
their local dataset. The training of the client nodes is the same for all of them, in principle 
we use the SGD method (Stochastic Gradient Descent) [3] (or one of its derivatives such 
as mini-batch-SGD), as a function of cost of the neural network. The result will be new 
weights for the parameters of the model that finally will be send to the central node. 
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The central node receives the weights of the parameters calculated by each client node 
and carries out a mean (Federated Average) with which it updates the original model that 
it had previously sent to the clients. The use of Federated Average is what is proposed in 
the original article [1] that gave rise to the concept of Federated Learning. 
 
In a cross-device scenario, as it is expected that the quantity of nodes client could be 
pretty big, not all the nodes will take part in the calculation at the same time, so from the 
total of the K nodes a quantity C is chosen randomly, which are those that in the following 
round they will do the calculations. In each round, other clients are chosen at random. 
 
After all, the key is that the local data of the client nodes is never shared with any other 
node. 
 
Algorithm steps: 

1. The central node selects C random clients from the K nodes registered in the 
network. 

2. The central node requests a training turn to the clients, sending the global model 
parameters (if any) to each client. 

3. Each client performs a number of epochs of training predefined by the central 
node. 

4. When a client finishes its training, it sends back the model parameters calculated 
locally to the central node. 

5. When the central node has received all the model parameters from the client 
nodes, it calculates the average of the parameters and updates the model params. 

6. Goes to step 1. 
 
2.2.1 Hyperparameters 

The hyperparameters of a Federated Learning training are the number of epochs, learning 
rate and batch size that will be used during the training. 
 
If the nodes are able to perform different trainings, these parameters should be adjusted 
for each type of training. Also, if the system is advanced, it would be advisable to adjust 
these hyperparameters by each client, depending on the capacity of the client node, 
number of samples to train the model, etc. 
  
2.3 Classification according to the type of client nodes 
These are two terms used in Federated Learning to describe the type of nodes involved  
in the process (Feng et al. [2]). 
 
2.3.1 Cross-device 

We talk about cross-device when it comes to small devices such as cell phones, tablets, 
sensors, small computers (edge devices), etc. Figure 3 illustrates this case. In this case it 
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is expected that there may be thousands, hundreds of thousands or millions of devices 
participating in the training. 
In this type of Federated Learning, it is also taken into account that the devices do not all 
have absolute availability, and that communications can be expensive, so it is tried that 
they use Wi-Fi connections, that they do the calculations while they are in standby mode, 
or when they are not being used by the user. 
 

 

Figure 3: Cross-device scenario 

Federated setting cross-device 

It defines the scenario for applying federated learning when we are in cross-device. 
The characteristics defined by McMahan et al [1] are: 
 

• The data is non-IID. That is, the data used for training will not be independent of 
each other, and its distribution will not be the same either. For example, there will 
be times when the model training will be carried out by nodes in the same time 
zone or geographical area, or a client may have a large amount of data and the rest 
will not. All this will produce biases in the final model. 

• Unbalanced data. Some devices will have a lot of data, and others will have very 
little. 

• The data is highly distributed. The number of devices participating will be much 
higher than the average amount of data per node. 

• Limited communications. Many devices may be off or have slow or expensive 
communications. 
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2.3.2 Cross-silo 

The term cross-silo is used when instead of small devices, we talk about institutions or 
companies (Figure 4). Nodes are no longer small devices; they are possibly datacenters. 
In this case, it is expected that their number is not as large as in cross-device, that all 
nodes participate in the computation, and that the expected power of the nodes is much 
higher than in the previous case. 

 

Figure 4: Cross-silo scenario 

Federated setting cross-silo 

The characteristics are: 
• Customers are always available. 
• Communications are not expensive, or customers can easily assume that cost. 

 
2.4 Categorization according to data distribution 
A dataset is made up of samples, each sample is made up of features or characteristics, 
and they can also be identified by customer. Depending on how the datasets of each client 
node are, and how they intersect between them, we can have three categories of Federated 
Learning [7]. 
 
2.4.1 Federated Learning horizontal 

In this case the local datasets share the same type of features, but completely different 
user samples. For example, we may have two companies that do the same thing, collecting 
data from their customers. As they are the same type of business, they will share many of 
the features, but the intersection between their customers will be very low. The same thing 
happens in a cross-device scenario where a neural network is trained for text prediction. 
The users are all different, but the features of the data are common. 
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2.4.2 Federated Learning vertical 

In this case the features are completely different, but the origins of the samples (clients) 
are more likely to match. For example, two entities from the same geographical area, one 
is dedicated to banking and the other to online sales. The objective could be to create a 
predictive model based on financial data and data on purchasing preferences, always 
preserving the identity of the customers, and without sharing the data between the two 
entities. 
 
2.4.3 Federated Transfer Learning  

It is the extreme case of vertical Federated Learning in which few features and few 
samples match. For example, a European bank and an Asian online sales company, the 
number of samples, due to the geographical distance, that coincide will be very low, and 
of course the features of their data will be very different.  We try to train the model with 
the few samples and features that coincide, and then try to obtain predictions from the 
entities separately, with their own features. 
 
2.5 Privacy and security 
Although the main objective of Federated Learning is to keep the privacy of people, 
research such as that of Nasr et al. [4] and Zhu et al. [5] has shown that certain private 
data can be inferred from the models or calculated gradients. To avoid this, the study by 
Feng et al. [2] proposes a technique for the server to share an encrypted model, and for 
the client nodes to send their calculations also with noise. In this way, neither the clients 
can infer anything from the original model, nor the server from the clients' calculations. 
 
2.6 Frameworks for Federated Learning 
To date there are three main frameworks for conducting research with Federated 
Learning. Obviously, all three use Python as programming language, which is the de facto 
standard in machine learning: 
 

• TensorFlow Federated: It is an opensource framework created by Google and 
based on TensorFlow. Mainly focused on the simulation of cross-device 
scenarios.  

• PySyft: It is also an opensource library, oriented to security and privacy in Deep 
Learning. Initially based on PyTorch, although they plan to use it with 
TensorFlow. It has been created by the private company OpenMined. 

• IBM Federated Learning: As its name suggests, is owned by IBM. It is not 
opensource but can be used for free. It provides tools to implement a real scenario. 

 
2.7 Simulations 
In a cross-device scenario we must expect the number of client nodes involved to be large 
(thousands or millions of them), so it is very difficult to implement a solution without 
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being able to simulate this type of scenario. How else are we going to do a test with 
100,000 nodes, for example? 
 
Therefore, what we do is simulate this type of scenario. A main process (the simulator) 
divides a special dataset (Federated dataset) in two, one that will be used for customer 
training, and another to evaluate the final model.  
 
In addition, some functions are implemented that simulate the central server, and other 
functions that simulate the clients. Each one of the clients will use its own local dataset 
that is not shared by the rest, and once its calculations are made, it sends them, as if it 
were a real process, back to the entity that simulates the server. It aggregates the data 
received from the clients and repeats the process. 
 
2.8 Federated datasets 
It is an interesting concept (Caldas et al. [6]) from the point of view of researching 
possible implementations of a Federated Learning solution, mainly in a cross-device 
scenario. For machine learning there are different datasets to be able to perform training, 
they are datasets of images of people, animals, X-rays, texts, data provided by different 
sensors, etc. These datasets are very useful when trying different machine learning 
algorithms, and in particular deep learning to train neural networks. 
 
In Federated Learning these traditional datasets do not serve as they are made. To be able 
to use them and to be able to simulate an implementation it is necessary to transform them 
previously because it is supposed that  each client has its own data, so it is necessary that 
the transformation generates different subsets grouped by client identifier. Obviously in 
a real scenario there would not be any type of customer identifier, but in this case, it is 
necessary for the simulator process to be able to correctly distribute the dataset among 
the different processes that simulate the customers. 
 
The LEAF project [6] provides several datasets already prepared to be used in different 
simulation processes: 
 

• Federated Extended MNIST (FEMNIST), based on the handwritten letters and 
numbers dataset. Used for the recognition of handwritten letters and numbers. 

• Shakespeare, created from Shakespeare's plays, in which each customer is a 
character in a play, and the dataset is the texts recited by that character. Used for 
text generation. 

• Sentiment140, used to evaluate the feelings of written messages, based on the 
emoticons written in Twitter tweets. Each Twitter account used is a different 
client. 

• CelebA, based on CelebFaces Attributes, composed of images of famous people. 
Each person is a different user. 

• Reddit contains comments and messages made by Reddit network users. 
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These are some of the statistics [6] of each of these Federated datasets, where we can see 
for example the number of nodes that we could use in a simulation (number of devices): 
 
Name Number of 

devices 
Total of 
samples 

Samples by device 

   Median Average 
FEMNIST 3.550 805.263 226,83 88,94 
Sentiment140 660.120 1.600.498 2,42 4,71 
Shakespeare 1.129 4.226.158 3.743,28 6.212,26 
CelebA 9.343 200.288 21,44 7,63 
Reddit 1.660.820 56.587.343 34,07 62,95 
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3. TensorFlow Federated simulator 
The first weeks of the project, as mentioned in the previous chapter, were dedicated to 
understanding in a theoretical way how Federated Learning works. But one of the main 
goals was to put the theory into practice.  Out  of the frameworks named in section 2.6, I 
chose TensorFlow Federated because it seemed the most mature and had the most 
documentation around, either in the form of reference documentation [32], or through 
small workshops and videos [33] that taught how to work with it. 
 
PySyft is also popular, but the documentation is still in a very primitive state. And IBM's 
proposal is very closed, so it is normal that it does not have many followers, although 
personally I think that the IBM solution is the closest one to the final product we have 
developed in this project. 
 
3.1 TensorFlow Federated 
Until the date of publication of this report, the only utility of this library is to make 
simulations of Federated Learning scenarios. This means that no real scenario is executed, 
but everything runs in the same machine, and in fact everything runs in the same process. 
 
What TensorFlow federated provides is a way to simulate a network of nodes, where the 
central node requests the client nodes to do a training. The client nodes then perform that 
training, each with different data, return the calculated parameters of the Machine 
Learning model to the central node, and the central node averages those parameters, 
which are then used in subsequent training rounds. There is no communication between 
clients and the central node, in fact there are no such nodes, the central node is a function 
within the program, and the client nodes are calls to the same function within a for loop. 
 
3.1.1 TensorFlow Federated annotations 

Before starting to explain how the simulator works, it is necessary to explain what the 
TensorFlow Federated annotations are. In our simulator we use three types of annotations: 
 

• @tf.function: This is not a Federated operation, it’s just a Python decorator used 
by TensorFlow to indicate that the function will be used in a tensor. These 
functions will be used inside the Federated operations explained below. 

• @tff.federated_computation: It is a Python decorator that makes the function 
mean that it is a Federated operation. This means that it may involve a network 
communication between two nodes in a network. It receives two parameters, first 
a function, and then a special type of data. This type of data must be previously 
defined with the class tff.FederatedType, which in turn receives two other 
parameters, a variable, which will be the data being transmitted, and a value 
tff.SERVER or tff.CLIENTS, which indicates where the transmitted data is used 
/ stored. A function can be decorated with this annotation without using any 
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parameter. That means that  the function is a Federated operation that doesn’t 
implies communication. 

• @tff.tf_computation: It’s a decorator that tells TensorFlow Federated that the 
function will be called from a Federated operation (the ones annotated with 
tff.federated_computation). 
 

(*) tf is the abbreviation for the Python package tensorflow. And tff is the abbreviation 
for the package tensorflow_federated. 
 
3.2 The simulator 
The goal of this simulator is to execute a Federated Learning training of a model that 
predicts if an image corresponds to a number from 0 to 9. It uses a special version of the 
MNIST dataset. It’s special because it’s divided by users. That means that the dataset is 
divided into as many subsets as users have participated in the contribution of images 
within the dataset. This is important for TensorFlow Federated to work properly, because 
it’ll assign to each simulated client node a different subset depending on the user. This 
dataset is integrated into TensorFlow Federated, the framework itself downloads the 
dataset at the beginning of the process. 
 
3.2.1 How it works 

The guide to install and run the simulator can be found at Annex II, and the complete 
source code at Annex III. 
 
Everything starts downloading the dataset: 

8. emnist_train, emnist_test = tff.simulation.datasets.emnist.load_data()   

This line loads the training data and the test data. Then the simulation is managed by the 
FederatedSimulator class: 
 

113. # The Federated Lerning algorithm is an 'Iterative Process' which first
 initializes the server,   

114. # then run next_fn the number of rounds defined at the beginning of the
 simulation.   

115. federated_algorithm = tff.templates.IterativeProcess(   
116.     initialize_fn=initialize_fn,   
117.     next_fn=next_fn   
118. )   
119. federated_simulator.run_simulation(federated_algorithm)   

 

First the Federated IterativeProcess is defined using an initialization function and the 
function that will be executed in each round of training. Both are Federated operations 
annotated with @tff.federated_computation annotation explained above. As explained in 
the Annex II, the parameters of the simulation (number of clients, batch size and number 
of rounds) can be changed in simulation.py file. 
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10. federated_simulator = FederatedSimulator(emnist_train, emnist_test, batch_form
at, create_keras_model,   

11.                                          num_clients=10, batch_size=20, rounds
=100)   

 
Even if the dataset has more than 3000 different users, the simulation does not run over 
all of them, it selects randomly the number of clients set at num_clients variable. The 
function that performs this selection of data is in 
FederatedSimulator.__build_federated_training_data: 

38. def __build_federated_training_data(self, training_data):   
39.     client_ids = np.random.choice(training_data.client_ids, size=self.num_clie

nts, replace=False)   
40.     federated_training_data = [self.__preprocess(training_data.create_tf_datas

et_for_client(x))   
41.                                for x in client_ids   
42.                                ]   
43.     return federated_training_data   

The initialization function initialize_fn initializes the server node with a Keras model, a 
loss function and some metrics, in this case a function to calculate the accuracy of the 
model. 

46. def model_fn():   
47.     """Creates the Keras model with a loss function, accuray as metric and the

 specification of the input data"""   
48.     keras_model = create_keras_model()   
49.     return tff.learning.from_keras_model(   
50.         keras_model,   
51.         input_spec=federated_training_data[0].element_spec,   
52.         loss=tf.keras.losses.SparseCategoricalCrossentropy(),   
53.         metrics=[tf.keras.metrics.SparseCategoricalAccuracy()]   
54.     )   
55.   
56.   
57. @tff.tf_computation   
58. def server_init():   
59.     """Initialization of the server model"""   
60.     model = model_fn()   
61.     return model.weights.trainable   
62.    
63.    
64. dummy_model = model_fn()   

Then, as explained for each round defined (100 by default) the next_fn function is called 
by the Federated process. The next_fn function is a high level Federated operation that is 
the core of the simulation: 

95. @tff.federated_computation(federated_server_type, federated_dataset_type)   
96. def next_fn(server_weights, federated_dataset):   
97.     # Broadcast the server weights to the clients.   
98.     server_weights_at_client = tff.federated_broadcast(server_weights)   
99.    
100.     # Each client computes their updated weights.   
101.     client_weights = tff.federated_map(   
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102.         client_update_fn, (federated_dataset, server_weights_at_client)
   

103.     )   
104.    
105.     # The server averages these updates.   
106.     mean_client_weights = tff.federated_mean(client_weights)   
107.    
108.     # The server updates its model.   
109.     server_weights = tff.federated_map(server_update_fn, mean_client_we

ights)   
110.    
111.     return server_weights   

 
First, it broadcasts the model parameters to the client nodes. Then computes the clients 
training and gathers the model parameters calculated by each of them. The next 
computation is to calculate the mean of those client parameters, and finally updated the 
server model weights, that will be broadcasted in the next round. 
 
Depending on the number of clients and rounds it could take more or less time, also, if 
the computer doesn’t have a good GPU, the simulation can be slow.  
 
The last step of the simulation is to evaluate the accuracy of the model trained. 

120. federated_simulator.evaluate()   

That calls FederatedSimulator.evaluate() function: 

23. def evaluate(self):   
24.     keras_model = self.__create_keras_model()   
25.     keras_model.compile(   
26.         loss=tf.keras.losses.SparseCategoricalCrossentropy(),   
27.         metrics=[tf.keras.metrics.SparseCategoricalAccuracy()]   
28.     )   
29.     keras_model.set_weights(self.__server_state)   
30.     keras_model.evaluate(self.__federated_test_data)   

It evaluates the model with the last server weights calculated and uses the test dataset 
loaded at the beginning of the whole execution. 
 
As result we can see something like this output: 
 
2042/2042 [==============================] - 16s 8ms/step - loss: 
1.5411 - sparse_categorical_accuracy: 0.6575 
 
Process finished with exit code 0 

 
With the final accuracy get by all the rounds of a simulation. In this case we got 65% of 
accuracy in the prediction. 
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3.3 Conclusions 
It has been a bit disappointing that libraries like TenforFlow Federated or PySyft only 
serve to perform simulations, and do not provide anything to set up a real Federated 
Learning network. But on the other hand, they can be very useful if the goal is to test 
models with thousands of nodes, since it would be very complicated to mount a network 
of thousands of devices just to test a model of Machine Learning. 
 
Even so, this type of simulation is still far from reality, since it does not take into account 
any of the problems intrinsic to a real distributed system, such as node failure, latency, 
communication failures, security, etc. 
 
From the point of view of the development of this simulator, it has been pretty hard to 
modularize it properly because of the TensorFlow annotations needed to make it. These 
annotations cannot be put inside a class, because they need to be initialized with some 
external parameters, so in the end, they cannot be encapsulated. It seems that the goal of 
the programs made with TensorFlow Federated is to run them in Jupyter notebooks, or 
Colab notebooks (the Google’s cloud version of Jupyter notebooks). 
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4. Design of a Federated Learning network 
4.1 Goals 
The main goal is to create an open-source project that provides a way to create networks 
for training Machine Learning models with Federated Learning. During this project, the 
code has been private, but it’ll be released as opensource when this document is 
published. 
 
The result will be a network of nodes that will train one or several models, but without 
sharing the data they have used for the training. 
 
4.2 Architecture & design 
Federated Learning limits the design of the network, as it specifies that there must be a 
central node that orchestrates the training of the model. That is, we will have a central 
node that will conduct the training, and that will receive the parameters of the trained 
local models, from the client nodes that have registered on the network. 
Then, the network will have a typical star topology as we can see in Figure 5. 
 

 

Figure 5: Basic network diagram 

4.2.1 Nodes 

The client nodes should be any device that can train a typical Machine Learning model, 
that is, where Python can be installed, and some of the libraries used for training the 
models, such as TensorFlow, Keras and PyTorch. We are talking about PCs with any 
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operating system, mobiles, tablets, virtual machines, Docker containers or edge 
computers like Raspberry Pi. 
 
For this project we discarded the cell phones or tablets because it would not give time to 
develop a client for Android or iOS with the requirements we need. 
 
As for the central node, it should not have any special requirements, as it will not perform 
any tasks that require much processing, although it should be able to manage many 
communications. 
 
4.2.2 Code overview 

There are two main modules implemented, on one hand, the server module, that 
represents the central node (see Figure 6). 
 

 

Figure 6: Class diagram of the server module 

The main components are the __init__.py module that acts as controller and contains the 
REST API and the Server class that is responsible of all the logic and is always called 
from the REST API. 
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On the other hand, we have the client module, that is where the Machine Learning models 
are implemented (see Figure 7). 
 

 

Figure 7: Class diagram of the client module 

In the client module, the REST API calls the Client that depending on the type of training 
uses a different ModelTrainer implementation. 
 
4.2.3 Communication protocol 

Communications are performed using the HTTP protocol, through two different REST 
interfaces, one that will be implemented by the client nodes, and another that will be 
implemented by the central node. Ideally, HTTPS should be used, but this is left for future 
enhancement. 
 
The central node has this set of basic REST operations: 
 

• POST /client: Register a client in the network. 
• DELETE /client: Delete client from the network. 
• PUT /model_params: Update the calculated parameters after the training. 

 
In the client nodes we have only one operation: 
 

• POST /training: Train the model. 
 
The choice of this protocol has been to facilitate the installation and configuration of the 
nodes, and to be able to access the central node from the Internet with any type of device.  
 
4.2.4 How the whole system works 

The most basic requirement for the system to work is that the central node is operational 
and at least one client node available for training. At the moment the client node starts, it 
tries to register in the network, and from that moment on it will be available for the central 
node to request trainings.  
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Having only one client node in this network does not make much sense. What is expected 
is that there will be several nodes registered to participate in the training of the model, 
because it is assumed that each client will not have much data to be able to perform 
efficient training.  
 
Clients must know in advance what the IP address of the central node is, and at the time 
of the node's start-up, they will send a POST /client request (Figure 8), with their IP 
address so that the central node registers the client in its list of available clients for model 
training. 
 

 

Figure 8: Node clients registering in the network 

 
The central node will send a training request to the available, or not training client nodes. 
This request will be made asynchronously through the POST /training endpoint of the 
client nodes (Figure 9). It is at this point that the implementation of the corresponding 
Machine Learning algorithm starts. This request will send the averaged model 
parameters, if any, the type of training to perform (because a client node can be able to 
do several different trainings with different datasets), and the hyperparameters for the 
training (see section 2.2.1 Hyperparameters). 
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Figure 9: Central node requests training 

When each client node finishes its training, it will send its response to the central node 
through the PUT /model_params endpoint (Figure 10). 
 

 

Figure 10: Clients send training results to central node 

 
Once the central node has received all the parameters calculated by the client nodes, it 
will calculate the average of the parameter values, and store them for use in the next 
training round (Figure 11). 

 

Figure 11: Central node computes average of the model parameters 

 
4.2.5 Authentication 

It is outside the scope of the project, and is left for future enhancements, but access to 
REST APIs, both client and central node, should be limited by some authentication 
process. 
 
4.2.6 Data encryption 

It is also outside the scope of the project. As already mentioned in point 2.5 Privacy and 
security, the parameters or features of the model should be encrypted before sending them 
to the central node, thus further protecting the privacy of the people related to the data. 
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4.3 Development environment 
This Project has been developed on MacOS 10.15 and 11 versions. The language chosen 
has been Python version 3.8, that was the most stable version at the time.  
 
To facilitate the development with Python, the first tool installed was miniconda 
(https://docs.conda.io/en/latest/miniconda.html). It’s an environment and package 
management system that has been used to create virtual environments to avoid problems 
when using different versions of Python or the dependencies installed during the 
development. 
 
There are several mainstream Machine Learning frameworks and libraries in Python, we 
have chosen two of the most known ones to prove that the final product can be used with 
any library. To implement the Machine Learning model used in this PoC we used PyTorch 
1.7.0 and Fastai 2.1.5 libraries. On the other hand, during the second phase, the CNN 
model was implemented with TensorFlow/Keras. 
 
Of course, the other main tool was Docker, used to create containers of the two kind of 
nodes. 
 
Other general purpose software used has been IntelliJ as development.  
 
4.3.1 Source code repository 

The source code has been managed on GitHub in this repository: 
• https://github.com/eyp/federated-learning-network 

 
The source code of the PoC version can be found here:  

• https://github.com/eyp/federated-learning-network/releases/tag/PoC 
 
Whereas the code for the final version is at: 

• https://github.com/eyp/federated-learning-network/releases/tag/v0.1.2 
 

 
4.4 Proof of Concept implementation 
The Proof of Concept (aka PoC) has been implemented in Python. The decision to choose 
this language has been made bearing in mind that Python is the most popular language 
for implementing Machine Learning algorithms. 
 
For the development of the REST interface, Flask has been chosen as the development 
framework, because it is a very popular open-source framework with a large community 
behind it, as well as having good documentation. 
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The popularity of the language and the framework chosen has been a very important 
factor since there was no previous experience with any of them, so it was important that 
there was good documentation and support from different communities in order to solve 
possible problems during the development of the prototype. 
 
4.4.1 Goals of the PoC 

For this PoC the minimum requirements were: 
• Have a central node that orchestrates the Federated Learning training. 
• Be able to run several client nodes to train a Machine Learning model. 
• Have one implementation of a Machine Learning algorithm. 
• Implement the minimum REST interface to have everything working. 

 
4.4.2 What was finally developed 

When the deadline was reached all the requirements were properly implemented. Along 
the list of the initial requirements, the PoC added the possibility to be executed using 
Docker. Even if it was not in the main list, we thought that it would add lot of value and 
flexibility to the project, and would facilitate the testing on different machines, because 
with Docker we avoid the need to install Python and the dependencies of the application 
on the computers where the nodes are executed.  
 
The developed prototype is able to run a central node and several clients on the same 
machine or on different ones, using Docker or just the command line. Although both the 
central node and the client nodes run web servers on different ports, no web pages have 
been added. It means that the status of the nodes and the training can only be seen through 
the command line console. 
 
The nodes in the implemented network are able to train a very simple linear model that 
uses SGD (Stochastic Gradient Descent) as loss function, and a dataset provided by 
MNIST of samples of numbers 3 and 7 written by hand by lots of users.  
The model tries to train a model to recognize if an image is a 3 or a 7. 
 
 
Figure 12 shows some of the images provided by this dataset. 

 

Figure 12: Images of a three and a seven character provided by MNIST dataset 

 



 

 
 

33 

4.4.3 PoC in action 

When the central node starts running, we can see in a browser that it’s running and its 
status (Figure 13): 

 

Figure 13: HTML page of the central node running on the Proof of Concept 

 
Afterwards, if a client node is executed, we can see how it registers automatically on the 
central node: 
 

 

Figure 14: Console output of a client node registering on the Proof of Concept 

 
The central node also shows that a new client has registered in the network: 

 

 

Figure 15: Console output of the central node when a client registers in the network 
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A new training round can be launched using the browser at http://<central-node-IP-
address>/training: 
 

 

Figure 16: Console output of the central node requesting a training on the Proof of Concept 

 
The client receives the hyperparameters of the training in the request (see next figure). 
It’s also possible to see the evolution and the accuracy of the model after several training 
rounds: 
 

  

Figure 17: Console output of the training result of a client for MNIST model 
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After a second round of training: 

  

Figure 18: Console output of the result of a second round of training  for MNIST model 
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And after a third round: 

  

Figure 19: Console output of the result of a third round of training  for MNIST model 

 
All the clients train the model in parallel. It means that the central node requests the 
training to all of them, but it is not blocked, it can attend other requests. When all of the 
client nodes have sent their new calculated model parameters, the central node performs 
the average of the model parameters and stores it to be used in next training rounds.  
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4.5 First pre-release version 
Once the Proof of Concept was finished, the purpose of the next planned phase was to 
refine and polish the product to get a more useful application. 
 
To record a track of all the developments of this phase we used the Issues feature of 
GitHub (https://github.com/eyp/federated-learning-network), where all the development 
tasks have been registered, as it is shown in Figure 20:  
 

 

Figure 20: List of issues created in GitHub's project 
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The red icon besides the title ( ) means the issue has been completed, and the green one 
( ) means that is still a to-do task. So, in total 11 out if 23 issues were developed for this 
project, which led to version 0.1.2 presented in this document. 
 
4.5.1 Features implemented 

Among all the tasks there are some that stand out especially, and that are the ones that 
give a value to the product.  
 
A dashboard 

The Proof of Concept did not have any user interface to manage the network. Now a small 
dashboard has been implemented (Figure 21). Here we can see the status of the central 
node (called server in this version), and five client nodes registered in the network, 
waiting for training: 
 

 

Figure 21: Network dashboard 
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It seems a simple feature but it is very useful because from there we can see the status of 
every node in the network and launch trainings.  When the Launch training button is 
pressed, a dropdown with the available trainings is shown (Figure 22). 
 

 

Figure 22: Dashboard showing the different type of trainings available 

 
Figure 23 shows how the status changes when the training has been requested to the client 
nodes: 

 

Figure 23: Status of the network when a training is requested 
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Or in the middle of a training, when some of the clients have already finished, but others 
are still working as it is shown in Figure 24. 

 

Figure 24: Dashboard when some clients have finished the training but others not 

The Chest X-Ray Pneumonia algorithm 

The PoC had only one algorithm implemented. A model which is able to predict if a 
number written by hand is a 3 or a 7. In the next version of the prototype we introduced 
a CNN (Convolutional Neural Network) algorithm capable of predicting, from lung 
radiographs (Figure 25), if a patient suffers from pneumonia. 
 

 

Figure 25: Examples of chest x-ray used in one of the models. Image extracted from [9] 

For the implementation of this CNN model, we used TensorFlow/Keras library, and is 
based on an article of Varshita Ser [9]. It’s a typical CNN made of five layers and a kernel 
of 3x3, that’s is the most typical size used in this kind of algorithms. 
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The dataset ChestXRay2017 [10] is composed of these quantity of x-ray images: 
 
 Normal Pneumonia 
Training (train folder) 1352 3887 
Validation (test folder) 237 393 

 
Our implementation uses the test folder for validation. Also, to simulate how would be a 
real client node we do not use all the images in the training inside a client node, instead, 
we choose 100 random images of each class (normal and pneumonia) from the training 
set, and 50 images of each class from the validation set. Each training round will select 
another random set of images, and of course, each client node selects its own random 
images. In a real scenario each client node should have its own dataset. 
 
When a training is requested by the central node, we can see in the console output the 
results of the training (Figure 26). First, the client receives the request: 

 

 

Figure 26: Console output of a training request for Chest X-Ray Pneumonia model 

Then we can see that in the first training, the central node did not send any model params 
to the clients, and we can also see the validation accuracy achieved (50%) after the first 
round (Figure 27): 

 

 

Figure 27: Result of the execution of a first training round of Chest X-Ray Pneumonia model 
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In a second round of training, the client node receives initial parameters computed by the 
central node in the previous round. Now the validation accuracy increases up to 70% 
(Figure 28): 

 

 

Figure 28: Result of a second round of training of Chest X-Ray Pneumonia model 

 
Possibility to use external datasets  

The machine learning algorithm implemented in the PoC version downloads its own 
dataset using Fastai library. Now, for the new Chest X-Ray Pneumonia algorithm it’s 
possible to use an external dataset that can be configured with the variable 
GLOBAL_DATASETS defined in client/config.py file. Furthermore, if the client node is 
executed as a Docker container, this feature can be used passing an external volume to 
the container. Everything is explained in the user’s guide (see Annex I). 
 
4.6 Possible use cases 
What’s the meaning of working on a software if nobody can use it? That’s the question I 
would like to answer in this section for this project in particular. 
 
I think Federated Learning can be useful in different scenarios, for example: 
 

• Machine Learning models applied for rare diseases. When we think or read 
something about AI applied to medicine, we always have in mind popular 
diseases. Of course, that’s very useful, but probably Hospitals, Medical and 
Research centers have lot of samples to train those models. But what happens 
when that’s not the case? For rare diseases, these institutions probably don’t have 
enough data, and they cannot (or at least the shouldn’t) share that information with 
other organizations. Each organization could use its own dataset to train a global 
model. 

• Models applied on internet navigation information or emails, for example to create 
spam filters, anti-phishing models, etc. Nobody likes to share that information 
with external companies, we all know what happens with that data. Training these 
kinds of models locally, without sharing the data will help to keep the privacy of 
people. 
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• In general, any kind of collaboration between different organizations to produce 
prediction models. They could be universities, schools, financial institutions or 
banks, small retail business, governments, etc. 

 
4.7 Assessment 
Once the PoC of the software finished it is time to evaluate it. In order to do it, we have 
proposed several metrics that we can give another perspective about the product. 
 
The tests to evaluate the system have been made on several environment and operating 
systems: MacOS 10.15, MacOS 11, Ubuntu 18.04.5 LTS, Debian 10 and Raspbian 
(Debian 10 based version) for the Raspberry Pi devices. 
 
Ease of use 

On one hand, since the target users of Federated Learning Network are specialized people, 
we think we have provided some mechanisms that make it easy to use it. A very simple 
user interface to manage the trainings, and Docker containers to avoid installation issues. 
Of course, instead of using Docker, everything can be installed manually and run it 
through the command line. 
 
On the other hand, there are a lot of improvements that need to be made in this aspect. 
For example, the accuracy get after a client node trains its local model is not send to the 
central node, so it is not shown on the dashboard.   
 
One of the efforts made after the PoC version was to simplify the way to run the client 
nodes. There were lot of things in that version that added complexity to use run it, but it 
has been simplified a lot, and now only a couple of environment variables are needed to 
make it work. 
 
Flexibility 

This was one of the goals while developing the system. At the beginning, for the Proof of 
Concept, the first model provided was developed using PyTorch because I knew it better 
than TensorFlow, but with the second version, when a model based on TensorFlow/Keras 
was introduced, it has been proven that the system is framework agnostic. 
 
In fact, the way it’s been developed gives the possibility to add new Machine Learning 
algorithms using any library. The main class of the client node Client at client.py file 
doesn’t depend on any Machine Learning library, it uses the classes that implement the 
algorithms, in this case MnistModelTrainer and ChestXRayModelTrainer.  
 
Of course, it is not so simple to add a new model, besides adding a new class for the new 
model, some methods in the system must be adapted, but they are easy to localize and 
change. 
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Security 

This is the weakest point of the system, there is not security at all implemented. Now, a 
node that knows the central node IP address can connect to the network without any 
issues, and that could be a problem because an evil computation could manipulate the 
weights of the global weights used for the trainings. 
 
Also, probably the parameters of the model should be ciphered when transmitted to the 
central node to provide a complete privacy on the local dataset used in client nodes. 
 
Adding security is proposed as a future work in section 4.8. 
 
Portability 

The use of Python as a programming language, and the ability to deploy the nodes using 
Docker makes the system very portable. We have proven it running on nodes with 
different operating systems as we have already mentioned at the beginning of this chapter. 
 
However, we have experienced several problems on some environments. For example, 
PyTorch has proven to be a problem for running nodes on Raspberry Pi. It is an effort 
beyond the scope of this project to install PyTorch on these devices because they do not 
have binaries available for it. We have only found references from people who have been 
able to install older versions of PyTorch, but not the versions we needed. So finally, to 
prove that it works in these edge computers what has been done is to remove the PyTorch 
based model and leave only the one based on TensorFlow/Keras. 
 
Testability 

It seems that it is easy to test the system, but only one side of it. Connection to the network, 
adding nodes dynamically, requesting trainings to client nodes, using different type of 
devices or operating systems, is relatively easy thanks to the use of Docker containers. 
 
The bad side of the testing is about adjusting the implemented Machine Learning 
algorithms. Since the parameters of the models cannot be changed through any user 
interface, the only way to adjust them is changing the source code directly. The problem 
doing this, is that the Docker images used to run the containers must be re-created, and 
that’s a slow process. 
 
If the client nodes are run on a local installation, it’s faster to change the code and run 
them again, but to make these tests faster it’s recommended to run several clients on the 
same machine. 
 
A very useful improvement could be adding the possibility to change some model training 
parameters from the dashboard.  
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Accuracy of the models 

This is a point that depends completely on the models implemented, and the data used for 
training the models. For the MNIST model, even if it is a very simple linear 
implementation, not based on CNN, we have got accuracies up to 96% or 98% in several 
tests, but usually they are around 93%-95%. 
 
Unfortunately, for the model that predicts if a patient has pneumonia (Chest X-Ray 
Pneumonia) the accuracies obtained has been very low, and very irregulars. This is due 
to the fact that this kind of models need more epochs and therefore they also need more 
data to train and test. 
 
4.8 Future work 
There is a lot of room for improvements or new features in the Federated Learning 
Network project. Some of them can be found in the own Issues list in the GitHub project. 
Since the project is open to everyone, I believe that it will invite other people to 
collaborate and contribute with new ideas or improvements in the future. 
 
New features that could be added are: 
 

• Improving the functionalities of the dashboard introducing a more advanced 
frontend framework like React or Vue. 

• Training random clients in each round. 
• Adding security features like HTTPS, transmission of encrypted model weights 

so the central node knows nothing about the original client calculated weights. 
• Add a database to the nodes to keep the information about the nodes registered in 

the network and the models trained. 
• Merge the nodes (central node and client) into one, so all the nodes can act as 

central node or client node. 
• Add the possibility to load a picture or sample through the dashboard to test a 

model. 
• Add more Machine Learning algorithms. 
• Add authentication by provided token + IP address, for example. 
• Allow to change model training parameters through the dashboard. 

 
Some projects that could be done from this could be: 
 

• Develop an Android client node. 
• Develop an iOS client node. 
• Develop client nodes for browsers using frameworks like TensorFlow.js. 
• Create a real network of edge-devices or mobile phones to perform real trainings. 
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5. Conclusions 
5.1 About Federated Learning 
In the last 10 years the Machine Learning algorithms have reached an incredible 
popularity, and this has been due to the facility that has been in this time to create datasets 
that facilitate the training of these artificial intelligence algorithms. This can be seen as 
something positive, but a very negative side is the use and distribution of people's private 
data. It is in this point where I believe that Federated Learning has a lot to contribute. 
 
Some other conclusions about Federated Learning that can be answered now, after being 
worked in this project are: 
 

• It will (or at least it should) evolve to a more distributed model, instead of relying 
on a central node that controls the whole network.  

• Since it doesn’t need a cloud infrastructure, it will take some of the power or 
importance away from big internet corporations like Google, Amazon or 
Facebook, since other less powerful companies will be capable to create models 
without having access to as much data as these giants have. 

• Given the increasing importance of people's privacy, this paradigm has no choice 
but to start being adopted by more and more companies, so I believe that in the 
next few years more and more effective solutions will start to appear. 

• On the negative side, I believe that by not being able to train models with a lot of 
data, it will be more difficult to reach the precision that is achieved with traditional 
training, but I am sure that this will change in the near future. 

 
5.2 Personal conclusions 
Having worked in this project has given me the possibility of learning many new concepts 
which I don’t usually work with. It is an area within AI that is expected to be very 
important in the very near future and being part of it means a lot to me on a personal level. 
 
From the technical point of view, I have been able to develop a project using languages 
and tools practically unknown to me as Python, or libraries related to Machine Learning 
as PyTorch or TensorFlow. In addition, I have had the opportunity to use quite advanced 
concepts of Python to be able to implement the final solution It has not been an easy 
journey, but on the other hand it has been very interesting and has given me the possibility 
of contributing my work to the opensource world (*). 
 
I believe the objectives of the project have been more than fulfilled. As it was a research 
project of new concepts, the mentor of the project and I were not clear how far we could 
go, but as progress has been made, I think we can be happy with the results. The initial 
goals were: 
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1. Investigate about Federated Learning: Done. 
2. Use one of the existing frameworks to train a model: Done, a small simulator has 

been developed with TensorFlow Federated. 
3. Try to implement our own solution: Done, Federated Learning Network is a 

functional system, although it has room for adding lot of improvements. 
4. Draw conclusions about Federated Learning: Done (section 5.1). 

 
As for the project planning, everything went quite well. The truth is that the second phase 
was very open as to what it was intended to do, but it has been possible to meet the planned 
dates. There has been no need to modify the planning at any time 
 
Obviously, I would have liked to develop all the ideas I had in mind when starting the 
second phase of the project, and to result in a much more complete system with more 
features, but the time was not enough for everything. On the other hand, I had in mind to 
work on something that would be interesting and motivating from a personal point of 
view, and that would end up with something that you could continue with once the project 
was finished. This, I think it’s something that I've also achieved. The project is still alive 
in a public platform like GitHub, and I hope to keep working on it as one of my side 
projects. 
 
(*) https://github.com/eyp/federated-learning-network 
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Annex I: Federated Learning Network installation & 

user’s guide 
Introduction 
There are two options for running the nodes in the network, using Docker to create 
containers for each kind of node, or using a standard local installation from the command 
line. Of course, both can be mixed (some nodes running as containers and other by 
command line). 
 
Datasets 
For now, there are two models for training: MNIST and Chest X-Ray. For using the 
MNIST one you don't need to install anything else because 
the client node downloads the dataset when it runs the training, but for the Chest X-Ray 
model you'll need a dataset to get it working. 
 
Download the dataset from https://data.mendeley.com/public-
files/datasets/rscbjbr9sj/files/f12eaf6d-6023-432f-acc9-80c9d7393433/file_downloaded,  
and uncompress it wherever you want on the client node machine, in a folder called 
chest_xray. The final structure must be (other content in this folder will be ignored): 
 

  

 
By default, the client node looks for it at GLOBAL_DATASETS/chest_xray. The variable 
GLOBAL_DATASETS is defined in the configuration file client/config.py. 
 
If you're going to run the client node using Docker, you must pass a volume as a container 
parameter to indicate where you have the datasets: 
 
    -v /your_datasets_directory:/federated-learning-network/datasets 

 
In particular, for Chest X-Ray training, it’ll expect a directory chest_xray in your dataset’s 
directory with at least two folders train and test with x-ray images.  
 
Docker installation 
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Create the Docker image of the server: 
     
cd server 
docker build -t fl-server -f Dockerfile . 

 
Run the server: 
 
docker run --rm --name fl-server -p 5000:5000 fl-server:latest 

 
This command will delete the server container after stopping it. It runs the server on port 
5000. 
 
For the client, the first step is creating the Docker image: 
 
cd client 
docker build -t fl-client -f Dockerfile . 

     
Running the project    
Now there can be two different scenarios: running nodes on the same IP address, or 
running each node on a different IP address. 
Bear always in mind than we can choose the ports we want if they are free. The ports used 
in these examples are just that, examples. 
 
Same machine 
If our IP address is for example 192.168.1.20, and we have the server running on port 
5000, we can run several Docker clients in different ports: 
 
docker run --rm --name fl-client-5001 -p 5001:5000 -e 
CLIENT_URL='http://192.168.1.20:5001' -e 
SERVER_URL='http://192.168.1.20:5000' -v 
/your_datasets_directory:/federated-learning-network/datasets fl-
client:latest 
 
docker run --rm --name fl-client-5002 -p 5002:5000 -e 
CLIENT_URL='http://192.168.1.20:5002' -e 
SERVER_URL='http://192.168.1.20:5000' -v 
/your_datasets_directory:/federated-learning-network/datasets fl-
client:latest 
 
docker run --rm --name fl-client-5003 -p 5003:5000 -e 
CLIENT_URL='http://192.168.1.20:5003' -e 
SERVER_URL='http://192.168.1.20:5000' -v 
/your_datasets_directory:/federated-learning-network/datasets fl-
client:latest 
 
docker run --rm --name fl-client-5004 -p 5004:5000 -e 
CLIENT_URL='http://192.168.1.20:5004' -e 
SERVER_URL='http://192.168.1.20:5000' -v 
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/your_datasets_directory:/federated-learning-network/datasets fl-
client:latest 

 
If the server is running on another IP address, simply change the variable SERVER_URL 
accordingly. 
 
IMPORTANT: To be able to use the Chest X-Ray model training follow the instructions 
of Training the Chest X-Ray model section. 
 
Every node on a different IP address 
If the IP address of the server is, for instance, at 192.168.1.100, and every client will be 
running on different IP addresses, we can do:  
 
docker run --rm --name fl-client -p 5000:5000 -e 
CLIENT_URL='http://192.168.1.28:5000' -e 
SERVER_URL='http://192.168.1.100:5000' -v 
/your_datasets_directory:/federated-learning-network/datasets fl-
client:latest 

     
For other clients, simply use the right IP address of each one: 
 
docker run --rm --name fl-client -p 5000:5000 -e 
CLIENT_URL='http://192.168.1.50:5000' -e 
SERVER_URL='http://192.168.1.100:5000' -v 
/your_datasets_directory:/federated-learning-network/datasets fl-
client:latest 
 
docker run --rm --name fl-client -p 5000:5000 -e 
CLIENT_URL='http://192.168.1.60:5000' -e 
SERVER_URL='http://192.168.1.100:5000' -v 
/your_datasets_directory:/federated-learning-network/datasets fl-
client:latest 
 
docker run --rm --name fl-client -p 5000:5000 -e 
CLIENT_URL='http://192.168.1.70:5000' -e 
SERVER_URL='http://192.168.1.100:5000' -v 
/your_datasets_directory:/federated-learning-network/datasets fl-
client:latest 
 
docker run --rm --name fl-client -p 5000:5000 -e 
CLIENT_URL='http://192.168.1.80:5000' -e 
SERVER_URL='http://192.168.1.100:5000' -v 
/your_datasets_directory:/federated-learning-network/datasets fl-
client:latest     

     
Command line 
If Docker is not an option, then you must install everything and running from the 
command line. Python version must be 3.8, I haven't tested it with 3.9 or <3.8 versions. 
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The best way is to have an isolated environment using conda or similar environment 
managers. If you use miniconda or conda, just do: 
 
conda create --name fedlearning python=3.8 
conda activate fedlearning 

 
Once you're ready to install packages, do this: 
 
pip install torch torchvision 
pip install tensorflow 
pip install fastai 
pip install python-dotenv 
pip install aiohttp[speedups] 
pip install flask    

 
Running the project    
Central node 
That's very simple, just go to federated-learning-network/server and execute: 
 
flask run 

     
It'll start a central node in http://localhost:5000. To see that's running well, open a browser 
and go to that URL. You'll see the dashboard of the network. 
     
Clients 
Open a new console, or just do it in another computer which has access to the server. 
Go to federated-learning-network/client and execute: 
 
export CLIENT_URL='http://localhost:5001' 
flask run --port 5001 

     
Do that for every client, changing the listening port. You'll see some log traces telling the 
client has started and has registered in the network: 
 
Registering in server: http://127.0.0.1:5000 
Doing request http://127.0.0.1:5000/client 
Response received from registration: <Response [201]> 
Client registered successfully 

     
If you refresh the central’s node dashboard you can see all the clients registered in the 
network. 
 
Training sessions 
Once we have the central node and clients running properly and registered, just open the 
dashboard and click on the Launch training button. This action will launch a training 
session between all the clients registered. You can see the progress of the training in each 
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client's console. For example, for MNIST training you will see something like this in the 
client node console: 
 
Federated Learning config: 
--Learning Rate: 1.0 
--Epochs: 20 
--Batch size: 256 
 
Training started... 
Accuracy of model trained at epoch 1 : 0.9118 
Accuracy of model trained at epoch 2 : 0.9118 
Accuracy of model trained at epoch 3 : 0.9118 
Accuracy of model trained at epoch 4 : 0.9118 
Accuracy of model trained at epoch 5 : 0.8824 
Accuracy of model trained at epoch 6 : 0.8824 
Accuracy of model trained at epoch 7 : 0.9118 
Accuracy of model trained at epoch 8 : 0.9118 
Accuracy of model trained at epoch 9 : 0.9118 
Accuracy of model trained at epoch 10 : 0.9118 
Accuracy of model trained at epoch 11 : 0.9118 
Accuracy of model trained at epoch 12 : 0.9118 
Accuracy of model trained at epoch 13 : 0.9118 
Accuracy of model trained at epoch 14 : 0.9118 
Accuracy of model trained at epoch 15 : 0.9118 
Accuracy of model trained at epoch 16 : 0.9412 
Accuracy of model trained at epoch 17 : 0.9412 
Accuracy of model trained at epoch 18 : 0.9412 
Accuracy of model trained at epoch 19 : 0.9412 
Accuracy of model trained at epoch 20 : 0.9412 
Training finished... 

 
You can do more training sessions afterwards and see how the model improves.  
 
Customization 
You can change some training parameters (epochs, batch size and learning rate) at: 
 
federated-learning-network/server/server.py start_training method 

 
In the future it'll be possible to do it from the central node's dashboard. 
 
Known issues 
There's no persistence implemented yet, so every time you start servers & clients the 
model will be initialized with random values and must be trained from the beginning. 
 
This is a very early version, so it has room for lots of improvements, so new features will 
be added. 
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Annex II: Simulator installation and user’s guide 
The simulator needs Python 3.8 and has two dependencies that can be installed using pip:  
 
pip install --quiet --upgrade tensorflow_federated 
pip install --quiet --upgrade nest_asyncio 

 
For running the simulation, simply execute the simulation.py file: 
 
python simulation.py 

 
The number of clients, the batch size of the subsets and the total rounds of training can 
be changed in the line 10 of the file. 

10. federated_simulator = FederatedSimulator(emnist_train, emnist_test, batch_form
at, create_keras_model,   

11.                                          num_clients=10, batch_size=20, rounds
=100)   
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Annex III: Simulator source’s code 
The simulator is made out of three files that must be in the same directory: 
 
simulator.py 

1. import tensorflow as tf   
2. import tensorflow_federated as tff   
3. import nest_asyncio   
4. from federated_simulator import FederatedSimulator   
5. from federated_external_model import batch_format, create_keras_model   
6.    
7. nest_asyncio.apply()   
8. emnist_train, emnist_test = tff.simulation.datasets.emnist.load_data()   
9.    
10. federated_simulator = FederatedSimulator(emnist_train, emnist_test, batch_form

at, create_keras_model,   
11.                                          num_clients=10, batch_size=20, rounds

=100)   
12. federated_training_data = federated_simulator.get_federated_training_data()   
13.   
14.   
15. @tf.function   
16. def client_update(model, dataset, server_weights, client_optimizer):   
17.     """The most important function, It's the training of each client."""   
18.     # Initialize client weights with server weights.   
19.     client_weights = model.weights.trainable   
20.     tf.nest.map_structure(lambda x, y: x.assign(y),   
21.                           client_weights, server_weights)   
22.    
23.     # For each batch in the dataset, compute the gradients using the client op

timizer   
24.     for batch in dataset:   
25.         with tf.GradientTape() as tape:   
26.             outputs = model.forward_pass(batch)   
27.    
28.         grads = tape.gradient(outputs.loss, client_weights)   
29.         grads_and_weights = zip(grads, client_weights)   
30.         client_optimizer.apply_gradients(grads_and_weights)   
31.    
32.     return client_weights   
33.   
34.   
35. @tf.function   
36. def server_update(model, mean_client_weights):   
37.     """Updates the server weights with an average of the client wegiths calcul

ated by each client"""   
38.     # Get the model weights   
39.     model_weights = model.weights.trainable   
40.     # Assign the mean of the clients weights to the server model weights   
41.     tf.nest.map_structure(lambda x, y: x.assign(y),   
42.                           model_weights, mean_client_weights)   
43.     return model_weights   
44.    
45.    
46. def model_fn():   
47.     """Creates the Keras model with a loss function, accuray as metric and the

 specification of the input data"""   
48.     keras_model = create_keras_model()   
49.     return tff.learning.from_keras_model(   
50.         keras_model,   
51.         input_spec=federated_training_data[0].element_spec,   
52.         loss=tf.keras.losses.SparseCategoricalCrossentropy(),   
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53.         metrics=[tf.keras.metrics.SparseCategoricalAccuracy()]   
54.     )   
55.   
56.   
57. @tff.tf_computation   
58. def server_init():   
59.     """Initialization of the server model"""   
60.     model = model_fn()   
61.     return model.weights.trainable   
62.    
63.    
64. dummy_model = model_fn()   
65.    
66. # Definition of Federated Types for Federated Functions   
67. # The arguments of some of the annotations are special types that define the t

ype of the data and where it's used (server or client).   
68. tf_dataset_type = tff.SequenceType(dummy_model.input_spec)   
69. model_weights_type = server_init.type_signature.result   
70. federated_server_type = tff.FederatedType(model_weights_type, tff.SERVER)   
71. federated_dataset_type = tff.FederatedType(tf_dataset_type, tff.CLIENTS)   
72.    
73.    
74. # Now come the federated functions annotated with Tensorflow Federated special

 annotations.   
75. # These functions are used by the framework to run the simulation.   
76. # Each federated function uses the corresponding regular function defined prev

iously.   
77. @tff.federated_computation   
78. def initialize_fn():   
79.     return tff.federated_value(server_init(), tff.SERVER)   
80.   
81.   
82. @tff.tf_computation(tf_dataset_type, model_weights_type)   
83. def client_update_fn(tf_dataset, server_weights):   
84.     model = model_fn()   
85.     client_optimizer = tf.keras.optimizers.SGD(learning_rate=0.01)   
86.     return client_update(model, tf_dataset, server_weights, client_optimizer) 

  
87.   
88.   
89. @tff.tf_computation(model_weights_type)   
90. def server_update_fn(mean_client_weights):   
91.     model = model_fn()   
92.     return server_update(model, mean_client_weights)   
93.   
94.   
95. @tff.federated_computation(federated_server_type, federated_dataset_type)   
96. def next_fn(server_weights, federated_dataset):   
97.     # Broadcast the server weights to the clients.   
98.     server_weights_at_client = tff.federated_broadcast(server_weights)   
99.    
100.     # Each client computes their updated weights.   
101.     client_weights = tff.federated_map(   
102.         client_update_fn, (federated_dataset, server_weights_at_client)

   
103.     )   
104.    
105.     # The server averages these updates.   
106.     mean_client_weights = tff.federated_mean(client_weights)   
107.    
108.     # The server updates its model.   
109.     server_weights = tff.federated_map(server_update_fn, mean_client_we

ights)   
110.    
111.     return server_weights   
112.    
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113. # The Federated Lerning algorithm is an 'Iterative Process' which first
 initializes the server,   

114. # then run next_fn the number of rounds defined at the beginning of the
 simulation.   

115. federated_algorithm = tff.templates.IterativeProcess(   
116.     initialize_fn=initialize_fn,   
117.     next_fn=next_fn   
118. )   
119. federated_simulator.run_simulation(federated_algorithm)   
120. federated_simulator.evaluate()   
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federated_simulator.py 

1. import numpy as npimport numpy as np   
2. import tensorflow as tf   
3.    
4.    
5. class FederatedSimulator:   
6.     def __init__(self, clients_training_data, clients_test_data, batch_format_

fn, create_keras_model_fn, num_clients=10, batch_size=20, rounds=50):   
7.         np.random.seed(0)   
8.         # TODO arguments of the simulator   
9.         self.num_clients = num_clients   
10.         self.batch_size = batch_size   
11.         self.rounds = rounds   
12.         self.__batch_format_fn = batch_format_fn   
13.         self.__create_keras_model = create_keras_model_fn   
14.         self.__federated_training_data = self.__build_federated_training_data(

clients_training_data)   
15.         self.__federated_test_data = self.__preprocess(clients_test_data.creat

e_tf_dataset_from_all_clients())   
16.         self.__server_state = None   
17.    
18.     def run_simulation(self, federated_algorithm):   
19.         self.__server_state = federated_algorithm.initialize()   
20.         for round in range(self.rounds):   
21.             self.__server_state = federated_algorithm.next(self.__server_state

, self.__federated_training_data)   
22.    
23.     def evaluate(self):   
24.         keras_model = self.__create_keras_model()   
25.         keras_model.compile(   
26.             loss=tf.keras.losses.SparseCategoricalCrossentropy(),   
27.             metrics=[tf.keras.metrics.SparseCategoricalAccuracy()]   
28.         )   
29.         keras_model.set_weights(self.__server_state)   
30.         keras_model.evaluate(self.__federated_test_data)   
31.    
32.     def get_federated_training_data(self):   
33.         return self.__federated_training_data   
34.    
35.     def __preprocess(self, dataset):   
36.         return dataset.batch(self.batch_size).map(self.__batch_format_fn)   
37.    
38.     def __build_federated_training_data(self, training_data):   
39.         client_ids = np.random.choice(training_data.client_ids, size=self.num_

clients, replace=False)   
40.         federated_training_data = [self.__preprocess(training_data.create_tf_d

ataset_for_client(x))   
41.                                    for x in client_ids   
42.                                    ]   
43.         return federated_training_data   
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federated_external_model.py 

1. import tensorflow as tf   
2.    
3.    
4. def create_keras_model():   
5.     return tf.keras.models.Sequential([   
6.         tf.keras.layers.Input(shape=(784,)),   
7.         tf.keras.layers.Dense(10, kernel_initializer='zeros'),   
8.         tf.keras.layers.Softmax(),   
9.     ])   
10.    
11.    
12. def batch_format(element):   
13.     return (tf.reshape(element['pixels'], [-1, 784]),   
14.             tf.reshape(element['label'], [-1, 1]))   

 


