
Universitat Oberta de Catalunya (UOC)

Masters in Data Science

MASTER’S THESIS

Area: Medicine Area (TFM-Med)

Deep Convolutional Autoencoders for reconstructing magnetic

resonance images of the healthy brain

—————————————————————————–

Author: Adrián Arnaiz Rodŕıguez

Tutor: Baris Kanber

TFM Professor: Ferran Prados Carrasco

—————————————————————————–

Barcelona, January 19, 2021

Créditos/Copyright

Este obra está bajo una licencia de Creative Commons Reconocimiento, NoComercial, Compar-

tirIgual 3.0 España.

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Spain

License.

The official code repository of this Master’s Thesis1 is licensed under MIT license.

1https://github.com/AdrianArnaiz/Brain-MRI-Autoencoder

i

http://creativecommons.org/licenses/by-nc-sa/3.0/es/
http://creativecommons.org/licenses/by-nc-sa/3.0/es/
http://creativecommons.org/licenses/by-nc-sa/3.0/es/deed.en
http://creativecommons.org/licenses/by-nc-sa/3.0/es/deed.en
https://github.com/AdrianArnaiz/Brain-MRI-Autoencoder
https://github.com/AdrianArnaiz/Brain-MRI-Autoencoder

FICHA DEL TRABAJO FINAL

T́ıtulo del trabajo: Deep Convolutional Autoencoders
for reconstructing magnetic
resonance images of the healthy brain

Nombre del autor: Adrián Arnaiz Rodŕıguez

Nombre del colaborador/a docente: Baris Kanber

Nombre del PRA: Ferrán Prados Carrasco

Fecha de entrega (mm/aaaa): 01/2021

Titulación o programa: Máster en Ciencia de Datos

Área del Trabajo Final: Area Medicina (TFM-Med)

Language: English

Keywords Deep Learning, Brain MRI, Autoencoder

ii

Nobody ever figures
out what life is all
about, and it doesn’t
matter. Explore the
world. Nearly
everything is really
interesting if you go
into it deeply enough

Richard P. Feynman

iii

Acknowledgment

I would like to express my special thanks and gratitude to my Master’s Thesis Director, Baris Kanber,

who has been widely open to solve all my doubts and also discussing the proposed approaches of the

project. He also has encouraged me to do my best and provide me the opportunity to prepare the

project.

I would also like to extend my gratitude to all the professors that I have had in this Master’s,

which despite being online, they have been very close to us for everything we need.

I also pay my deep sense of gratitude to the professors of ADMIRABLE research group of the

University of Burgos. They let me focus on the Master’s Degree to finish it as soon as possible,

sometimes even allowing me to set aside some group research assignments.

Last, but not least, my family is also an inspiration and a big support for me.

iv

Abstract

The analysis of brain magnetic resonance imaging (MRI) is critical for a proper diagnosis

and treatment of neurological diseases. Improvements in this field can lead to better health

quality. Numerous branches can be still enhanced due to the nature of MRI recompilation:

disease detection and segmentation, data augmentation, improvement in data collection,

or image enhancement are some of them.

For several years, many approaches have been taken to address this. Machine Learning

and Deep Learning emerge as very popular approaches to solve problems. Several kinds of

data mining solutions (supervised, unsupervised, dimension reduction, generative models,

etc) and algorithms can be applied to the problem-solving of MRI. Besides, new emerging

deep learning architectures for other kinds of image processing tasks can be helpful. New

types of convolution, autoencoders or generative adversarial networks are some of them.

Therefore, the purpose of this work is to apply one of these new techniques to T1 weighted

brain MRI (T1WMRI). We will develop a Deep Convolutional Autoencoder, which can be

used to help with some problems in neuroimaging. The input of the Autoencoder will be

control T1WMRI and will aim to return the same image, with the problematic that, inside

its architecture, the image travels through a lower-dimensional space, so the reconstruction

of the original image becomes more difficult. Thus, the Autoencoder represents a normative

model.

This normative model will define a distribution (or normal range) for the neuroanatomical

variability for the illness absence. Once trained with these control images, we will discuss

the potential application of the autoencoder like noise reducer or disease detector.

Keywords: Deep Learning, Brain MRI, Deep Convolutional Autoencoder, Image denoising.

v

Resumen

El análisis de las resonancias magnéticas cerebrales es fundamental para un diagnóstico y

tratamiento adecuados de las enfermedades neurológicas. Se pueden mejorar ámbitos del

análisis debido a la naturaleza de la recopilación de resonancias: detección y segmentación

de enfermedades, aumento de datos, mejora en la extracción o mejora de imágenes.

El aprendizaje automático y el aprendizaje profundo surgen como nuevas alternativas

populares para resolver estos problemas. Se pueden aplicar varios enfoques de mineŕıa

de datos y algoritmos para la resolución de problemas relacionados con la neuroimagen

(supervisados, no supervisados, reducción de dimensionalidad, modelos generativos, etc.).

Además, las nuevas arquitecturas emergentes de aprendizaje profundo, desarrolados para

otro tipo de tareas de imagen, pueden ser útiles. Algunas de ellas son nuevos tipos de

convolución, autoencoders o redes generativas adversiales (GAN).

Por lo tanto, el propósito de este trabajo es aplicar una de estas nuevas técnicas a reso-

nancias cerebrales tipo T1. Desarrollaremos un Autoencoder convolucional profundo, que

puede usarse para ayudar con algunos problemas de neuroimagen. La entrada del Au-

toencoder será el imágenes de control T1WMRI y tendrá como objetivo devolver la misma

imagen, con la problemática de que, dentro de su arquitectura, la imagen viaja por un

espacio de menor dimensión, por lo que la reconstrucción de la imagen original se vuelve

más dif́ıcil. El autoencoder representa un modelo normativo.

Este modelo normativo definirá una distribución (o rango normal) para la variabilidad

neuroanatómica para la ausencia de enfermedad. Una vez entrenado con imágenes de

control, discutiremos la aplicación potencial del Autoencoder como reductor de ruido o

detector de enfermedades.

Keywords: Aprendizaje profundo, Imágenes cerebrales de resonancias magnéticas, Autoencoder con-

volucional profundo, eliminación de ruido de imágenes.

vi

Contents

Abstract v

Resumen vi

Content vii

List of Figures ix

List of Tables 1

1 Introduction 2

1.1 Problem overview and relevance . 2

1.1.1 MRI general problems . 2

1.1.2 MRI Image enhancement . 4

1.1.3 Noise and artifact reduction with Deep Learning 4

1.1.4 Our approach . 5

1.2 Personal motivation . 6

2 State of art: related works 8

2.1 Overview . 8

2.2 Related works . 9

2.3 Volumes or slices? . 13

2.4 Network architectures for images . 15

2.4.1 Alexnet . 15

2.4.2 Residual networks . 15

2.4.3 Other skip-connection-based architectures . 17

2.4.3.1 U-Net and V-Net . 18

2.5 Summary of related works . 19

2.6 New paper-discovery frameworks . 23

3 Scope 25

3.1 Hypothesis . 25

3.2 Primary aims . 25

vii

viii CONTENTS

3.3 Secondary aims . 26

4 Planning and Methodology 27

4.1 Research plan . 27

4.2 Methodology . 29

5 Project development 32

5.1 Pipeline and overview . 32

5.2 Dataset . 34

5.2.1 Exploration and preprocessing . 34

5.2.1.1 Profile selection and orientation checking 35

5.2.1.2 Relevant slice selection . 35

5.2.2 MRI Preprocessing . 41

5.3 Data Split . 42

5.4 Experiment . 44

5.4.1 Environment . 44

5.4.2 Data Generator with augmentation . 45

5.4.3 Data Augmentation . 46

5.4.4 Architectures definition . 47

5.4.4.1 Shallow Residual Autoencoders . 48

5.4.4.2 Myronenko Autoencoder . 50

5.4.4.3 Skip Connection Convolutional Autoencoder 51

5.4.4.4 Residual U-NET Autoencoder . 52

5.4.5 Experiments . 54

5.4.5.1 Metrics . 55

5.4.5.2 Without data augmentation . 55

5.4.5.3 With data augmentation . 57

5.5 Results . 60

6 Conclusion and Outlook 63

6.1 Conclusion . 63

6.2 Future work . 64

Bibliography 65

List of Figures

1.1 Brain MRI examples [1] . 2

1.2 Noised and Denoised MRI [2] . 4

2.1 Architecture of ResNet-VAE-based network of A. Myronenko. [3] 10

2.2 U-Net based architecture of network of J. V. Manjon et. al. [4] 12

2.3 Left: axial. Middle: sagittal. Right: coronal . 13

2.4 C. Bermudez et. al. Denoising CAE+skip-connections architecture [5] 14

2.5 Residual Block Architecture [6] . 17

2.6 Resnet architectures presented in [6] . 17

2.7 U-Net architecture of original paper: O Ronneberger et. al. [7] 19

2.8 2D slices from brain volume IXI ID 002. Different profiles can be seen. Source: myself 20

2.9 2D slices from IXI ID 002. Slices from volume sides with no relevant information.

Source: myself . 21

2.10 Graph of connected papers for A. Myronenko 2018 [3] 23

2.11 A. Myronenko work [3] in Papers with code . 24

4.1 CRISP-DM Cycle . 30

5.1 Pipeline of the project. 33

5.2 Number of volumes for each different value of 3rd volume dimension (in voxels). 34

5.3 Distribution of Non-Zero pixel count per image. 36

5.4 Distribution of mean of intensity of Non-Zero pixels per image. 37

5.5 Example of discarded images with intensity-based methods in some volumes: both red

and yellow framed images are discarded. Double framed (yellow and red) is the limit

image discarded. Left column is the Non-Zero intensity count method and right column

is the Mean intensity Non-Zero values method. 38

5.6 Example of DeepBrain segmentation. 39

5.7 Example of discarded images with DeepBrain method in same volumes as intensity

based methods: both red and yellow framed images are discarded. Double framed

(yellow and red) is the limit image discarded. Red framed images has o brain pixels,

and yellow framed has 0-3000 brain pixels. 40

ix

x LIST OF FIGURES

5.8 Different methods of histogram equalization [8]. 41

5.9 Train&validation/test distributions for each attribute to show the correct stratification 43

5.10 Examples of augmented images. 47

5.11 Residual building blocks used for residual autoencoders. 49

5.12 Upsampling block used in the decoder. 50

5.13 Shallow Residual Autoencoders. 50

5.14 Myronenko based autoencoder. 51

5.15 Decoder building block for Skip connection CAE. 52

5.16 Skip connection CAE Architecture. 52

5.17 Residuel U-Net Architecture. 53

5.18 MSE evolution in the training of models without data augmentation. 55

5.19 Bar charts of test metrics for experiments without data augmentation. 56

5.20 MRI reconstruction of non-augmented models from an clean input and another cor-

rupter one. 57

5.21 Evolution of validation loss on augmented models. 57

5.22 Reconstruction of corrupted input made by MSE-Augmented methods. Green-framed-

image is the one chosen as the best reconstruction. 59

5.23 Reconstruction of corrupted input made by DSSIM-Augmented methods. Green-framed-

image is the one chosen as the best reconstruction. 59

5.24 P-values for t-test pairwise comparison. 60

5.25 Comparison of all augmented-model test metrics. 62

List of Tables

2.1 AlexNet Architecture [9] . 16

2.2 Overview of studies for reconstruction based in Table 1 from D. Tamada [10] (In bold

the autoencoder related architecture) . 22

5.1 Data split . 43

5.2 Validation and Test metrics for experiments without data augmentation 56

5.3 Validation and Test metrics for experiments with data augmentation. 58

Chapter 1

Introduction

In this chapter we will introduce the main background, and aims of the project, basing it on its

non-solved tasks and relevance.

1.1 Problem overview and relevance

1.1.1 MRI general problems

Neuroimaging in medicine allows studying the morphological features of the human brain. With

the objective of improving the detection systems, diagnostic and treatment, correlations between the

morphological features and the neurological disorders can be addressed in order to achieve that [11].

If we improve brain magnetic resonance image analysis 1.1, we will improve the detection systems and

treatments for neurological diseases, so the social relevance of the field is very important.

Figure 1.1: Brain MRI examples [1]

2

1.1. Problem overview and relevance 3

The relevance of the project is also shown that there are a lot of branches in which neuroimaging

analysis can improve. Machine learning, and more recently Deep Learning and Computer Vision, has

irrupted in this field for helping in some tasks:

• Disease detection: segmentation and classification. There are still several problems to

solve in classification and segmentation problems. Brain MRIs are high dimensional, so we have

to recruit big amount of images to properly develop a Machine Learning model that be able to

achieve high accuracy. It is very difficult to recruit a large number of images, especially disease

images. Even if it performs well, machine learning algorithms have been criticized due to the

difficult of extract a clear knowledge of them (black-boxes). [3]. So a experimental approach

is disease detection based on outliers from a normative model. Patients with pathologies will

be outliers in the distribution build by the normative model (they will be out of normal range

defined by the normative model) [12] [13]. It could be seen as an unsupervised anomaly detection

technique, in which we don’t need labeled data.

• Data Augmentation. Lack of data problem can be addressed by Data Augmentation tech-

niques, which look for improve our Machine Learning models [14] and robustness of pipelines

[4].

• Improvement of data acquisition. Recently high-impact FastMRI1 release from Facebook

for improving the speed in MRI scans [15].

• Image enhancement. Clinical evaluation is critical for good disease treatment. Experts and

algorithms need good quality images to carry out their tasks. This is a problem we want to

address, so we will explain it deeper in the document [10] [3].

However, some of these problems overlap. The advance in some of them leads to the advance

in another. Image reconstruction, which is a mainly sub-problem of image enhancement, could

help to achieve better results in data acquisition (i.e. reconstruct the image from less data col-

lected), unsupervised anomaly detection (i.e. reconstruction of the disease image differs more than

the pathology-free one), data augmentation (i.e. reconstruction from patholohy-free to abnormal and

viceversa) and, obviusly, image enhancement (i.e. reconstruction of cropped parts or reconstruction

without noise and artifacts). Thus, the main purpose for this project is to apply this recon-

struction techniques for noise reduction (image enhancement) and data augmentation

(lesion inpainting), being another applications discussed for future work.

1https://fastmri.org/

https://fastmri.org/
https://fastmri.org/

4 Introduction

1.1.2 MRI Image enhancement

We are going to focus on the problem of image enhancement, specifically the problem of

image reconstruction. With this reconstruction technique, the noise and artifacts will be reduced,

see 1.2, and the image quality will be improved. If we achieved good performance in this task, we would

research about how to apply this solution to unsupervised disease detection or data augmentation.

Figure 1.2: Noised and Denoised MRI [2]

Magnetic resonance images are collected with MR scans and the scan process, even though it is

improved continually, adds some failures to the MR image. MR images have some random noise

and artifacts due to this fact [16]. This noise and artifacts are present in the image due to different

reasons: hardware-reasons (magnetic fields, etc.), body motion during scanning, thermal noise, weak

signal intensity (which causes low signal-to-noise ratio), etc. The difference between noise and artifact

is that noise can hide the characteristics of an image, whereas artifacts appear to be characteristic but

are not. If the ’problem’ is structured, it is probably an artifact, while if it is random, it is probably

noise.

1.1.3 Noise and artifact reduction with Deep Learning

Noise and artifact reduction is one of the main principal problems which are classically solved with

reconstruction techniques. To address this problem many approaches have been done, all of them

with some disadvantages. Advanced filtering methods [17] or retrospective correction approaches have

been proposed, but, with the rise of Deep Learning, other methods have been proposed that take

advantage of this approach. Deep Learning is very powerful in high-dimensional spaces and non-linear

problems, so it can make a better job in feature extraction or information compression. Therefore,

1.1. Problem overview and relevance 5

it will have good performance with images, where the underlying structure of the images will

be captured and foreign elements such as noise or artifacts can be eliminated through a

noise-free reconstruction.

There are some approaches to reduce the noise and artifacts in MRI images. An recent and

outstanding review is made by D.Tamada [10]. In this paper D.Tamada summarize Deep Learning

Architectures and applications to MRI. We notice the big relevance of denoiser MRI Deep Learning

methods in this review. Although there are many methods, we will focus in brain MRI denoisers. A

compilation of articles related with noise reduction is made in table 2.2.

There are some Deep Learning Architectures to address in the problem of denoise an brain MRI:

Single-scale CNN, Denoising CNN, Autoencoders, and GAN-based architectures. We will choose

the Autoencoder Architecture for this project.

Autoencoders [18] encode the input into a lower-dimensional space, smaller, as a dense repre-

sentation. It extracts important information from the higher-dimensional space, encodes it, and then

decodes it to reconstruct the higher-dimensional spacer from the lower one. As the latent space has far

fewer units than the input, the encoder must discard information. The encoder learns to preserve as

much relevant information as possible. The decoder learns to properly reconstruct it into a complete

picture. Therefore, if x is the input e(x) the encoded input and d(e(x)) the decoded output, the main

objective is reach x = d(e(x)). It could be seen as a data compression or dimensionality reduction

method.

1.1.4 Our approach

In this project, we will design a Deep Learning autoencoder for reconstructing brain

magnetic resonance images reducing noise/artifacts and inpainting lessons, and

study its further implications and applications like data augmentation, disease de-

tection or data acquisition improvement. In other words, we will train a autoen-

coder with disease-free neuroimaging data and, with this trained autoencoder, we

could define a distribution (or normal range) for the neuroanatomical variability

for the illness absence with the potential purpose of removing noise or look for

diseases. Once trained, the autoencoder should be able to encode a input image

and reconstruct it without the noise or lesson.

We want to highlight one main fact: the autoencoder do not remove noise or inpaint a lessons

because it is trained like a denoiser or a image-filler. It do reconstruct MRI without noise or lessons

because it is trained only with ’clean’ and control MRI like target images, so it does not know how to

reconstruct noise or lessons. Therefore, once the MRI is encoded in the latent space, the decoder will

6 Introduction

reconstruct a control clean MRI from this latent space.

If the main objective of the project is completed, we could research the application

of this model in data augmentation and disease detection fields. In the case of data aug-

mentation, we will then attempt to reconstruct magnetic resonance images from patients with brain

pathologies, with a further view to using the autoencoder to generate ’pathology-free’ versions of the

said images. In the case of disease detection, we could take an approach like the one in [19] (creating

a measure for the difference between input and output image and classify it as healthy or non-healthy

based on this measure). Patients with pathologies will be outliers in the distribution build by the

autoencoder (they will be out of normal range defined by the autoencoder) [12] [13]. This assumption

of patients as outliers (based in [13]) is used in [19] for abnormal brain structure detection.

Of course, we will need data. For this project, we will use T1-weighted MRI images of control

subjects (no disease). As the project is of fairly limited length, we won’t need to detect disease as

a principal objective, but only learn to reconstruct normal MRI images, so we won’t need pathology

images for this project. In addition, we will investigate whether our method of reconstruction can

filter out noise and/or artefacts. So, in essence, we will have n 3D MRI volumes (n can be any

number greater than 100) from healthy subjects, we will preprocess it (data augmentation based on

adding noise, remove parts...), and train our model to reconstruct the source MRI volumes. We will

have access magnetic brain resonance images from control subjects for training the autoencoder. This

data is arranged from different sources. We will use a set of T1 weighted control brain MR images

for training the autoencoder. Then, we will consider to use another datasets in the experimentation

stage:

• The IXI dataset2 for training.

• Other data sources such as Open Neuro3 for experiment with autoencoder applications (recon-

struction from disease image, etc).

1.2 Personal motivation

My personal motivation to carry out the project arises from several factors. My first steps in the

world of Machine Learning were in the last year of my career at the University of Burgos. I was

lucky enough to collaborate last year with the ADMIRABLE4 research department. The project that

I did (in which we continue working) was on the use of biomarkers extracted from the voice for the

construction of classifiers that detect Parkinson’s disease5. The project include topics like signal

2https://brain-development.org/ixi-dataset/
3https://openneuro.org
4http://admirable-ubu.es/
5https://adrianarnaiz.github.io/TFG-Neurodegenerative-Disease-Detection/

https://brain-development.org/ixi-dataset/
https://openneuro.org
http://admirable-ubu.es/
https://adrianarnaiz.github.io/TFG-Neurodegenerative-Disease-Detection/
https://adrianarnaiz.github.io/TFG-Neurodegenerative-Disease-Detection/
https://brain-development.org/ixi-dataset/
https://openneuro.org
http://admirable-ubu.es/
https://adrianarnaiz.github.io/TFG-Neurodegenerative-Disease-Detection/

1.2. Personal motivation 7

processing, supervised learning, unsupervised learning and transfer learning. The project

was very successful and we had a lot of impact at that time. We are currently in the process of meeting

with the Burgos hospital to continue developing the model and the application (project and impact

recompilation in Github6).

This project has fully opened me the doors the world of artificial intelligence and machine learning,

which is a field of knowledge that I love. I have always liked math, problem-solving and since I started

my career I love programming. Therefore, I find this field the ideal that aligns with my tastes and

interests. As I said before, I have done lot of jobs with supervised learning or data analysis, but only

with tabular data sets or text-datasets, so I wanted to break in the world of image processing and

Deep Learning.

Then I worked half year in Ernst and Young, developing Machine Learning systems for RPA tasks

(classify emails at Telefónica, Chatbot for Maxium or Fuzzy Name Matching for Xunta de Galicia).

In addition, I believe that the application of AI to medicine is one of the fields that may be of

greater general interest to society. By advancing in the speed and quality of medical diagnoses and

treatments, it will be possible to achieve health of higher quality, speed and accessibility for all. Also,

computer vision and deep learning have helped to achieve big advances in this field nowadays.

6https://github.com/AdrianArnaiz/TFG-Neurodegenerative-Disease-Detection

https://github.com/AdrianArnaiz/TFG-Neurodegenerative-Disease-Detection
https://github.com/AdrianArnaiz/TFG-Neurodegenerative-Disease-Detection

Chapter 2

State of art: related works

2.1 Overview

The world relevance and impact of this problem is also shown in the related articles of this subject. The

state of art of Deep Learning applied to brain MRI shows the relevance of this field. As we discussed

in the introduction, in section 1, different deep learning techniques have been used to address the

problems derived from brain MRI images: classification healthy/disease, tumor segmentation,

optimize data acquisition, data augmentation and image enhancement are the principal

ones.

Nevertheless, we must highlight that all of this problems have common points of works. One of

them is the purpose of our project: learn MRI representation for reconstruction.

The advance in some of the questions leads to the advance in another. Image reconstruction,

which is a mainly sub-problem of image enhancement, could help to achieve better results in:

• Data acquisition

– Reconstruct the image from less data collected: faster scanning process [15].

• Disease detection and segmentation

– Unsupervised Anomaly Detection: detect diseases with non-labeled data: reconstruction of

the disease image differs more than the pathology-free one [19].

– Tumor segmentation (widely known as BraTS [20]): encode for extract deep image features

and decoder for reconstruction of dense segmentation mask [3].

• Data Augmentation

8

2.2. Related works 9

– Construction of pathology-free image from abnormal and viceversa [4] (i.e. lesion inpaint-

ing).

– Artificial MRI Generation [14] [21]1 .

• Image Enhancement

– Reconstruction of cropped parts.

– Reconstruction without noise and artifacts [22] [5], [23], [24].

– Definition enhancement: from low resolution to high resolution [25] [22].

We want to emphasize the actual relevance of this project. Solving MRI problems using Deep

Learning isn’t just about how to apply Deep Learning to another field. It is not just a Deep Learning

experiment to demonstrate the power of this method. Solving problems with MRI diagnostics (classi-

fication, segmentation), MRI quality (MRI enhancement, data augmentation), or MRI acquisition are

cutting edge issues in both the field of Computer Science and Healthcare (neuroimaging, neurological

analysis, etc.).

2.2 Related works

We realize this in the overwhelming number of articles using different Deep Learning architectures

for solving all kinds of problems with MRI. We will discuss papers addressing different problems but

with one similarity: use of image reconstruction in some part of the process (preferably by using

autoencoder-based solution). However, the main purpose for this project is to apply this re-

construction techniques for noise reduction (image enhancement) and data augmentation

(lesion inpainting).

The main evidence of the big relevance and collaboration between Deep Learning and MR imaging

is FastMRI by Facebook AI. In fact, lately, the focus is on improving MRI acquisition, with

techniques based on collecting fewer data and using reconstruction techniques with Deep Learning

with the aim of improving image quality and acquisition speed. The high-impact in the academic field

of these kind of studies is based on Facebook AI works. Facebook AI is focused on accelerating MR

imaging with AI, and it is his main goal in healthcare nowadays. They created fastMRI2 [15], a set

of models working with some benchmark datasets in order to accelerate the MR imaging acquisition.

It is open source, and you can participate in the challenge3 with data from New York University.

Recently, Facebook and NeurIPS4 announced that the best models and projects presented for this

1https://paperswithcode.com/paper/generation-of-3d-brain-mri-using-auto
2https://fastmri.org/
3https://fastmri.org/submission_guidelines/
4https://sites.google.com/view/med-neurips-2020

https://paperswithcode.com/paper/generation-of-3d-brain-mri-using-auto
https://fastmri.org/
https://fastmri.org/submission_guidelines/
https://sites.google.com/view/med-neurips-2020
https://paperswithcode.com/paper/generation-of-3d-brain-mri-using-auto
https://fastmri.org/
https://fastmri.org/submission_guidelines/
https://sites.google.com/view/med-neurips-2020

10 State of art: related works

purpose, even from groups outside Facebook, will be invited to NeurIPS, one of the most important

conferences on Neural Information Processing Systems.

To continue with the different studies using reconstruction methods for distinct purposes, we

describe the use of reconstruction for helping Tumor Segmentation. This is another main problem

in the state of the art. There is a global academic challenge using labeled brain tumor MRI for BRAin

Tumor Segmentation called BRATS [20]. This competition is compound by a MRI dataset from

T1, T1c, T2 and FLAIR MRI and the goal is make the segmentation of the distinct parts of the

tumor. Using this data as a benchmark5, lots of different groups are making experiments each year to

improve the results. One of these studies using reconstruction techniques is the current best outcome

for BRAST 2018: A. Myronenko [3]6. Although their objective is the 3D segmentation of tumors,

they use a curious architecture, shown in figure 2.1, that incorporates an encoder and two decoding

branches: one for the creation of tumor segmentation masks and the other for the reconstruction of

images. This branch of image reconstruction is only used during training as an additional guide to

regularize the encoder part. The encoder is made by ResNet blocks (Group Norm+ReLu+Conv).

The decoder is a variational autoencoder (VAE) made of the distribution layer and deconvolutional

upsampling layers with Group Normalization and ReLu. 2 more parts are incorporated in their main

loss function for tumor segmentation: Mean square error and Kullback–Leibler divergence of the

reconstruction branch.

Figure 2.1: Architecture of ResNet-VAE-based network of A. Myronenko. [3]

Another problem is to classify whether an image belongs to a control or a patient. A

recent approach is based on the construction of normative models [12], and , therefore, the image

reconstruction based in this normative model. Pinaya et al. [19] use this technique to identify

abnormal patterns in neuropshychiatric disorders towards achieving unsupervised anomaly de-

5https://paperswithcode.com/task/brain-tumor-segmentation
6https://paperswithcode.com/paper/3d-mri-brain-tumor-segmentation-using

https://paperswithcode.com/task/brain-tumor-segmentation
https://paperswithcode.com/paper/3d-mri-brain-tumor-segmentation-using
https://paperswithcode.com/task/brain-tumor-segmentation
https://paperswithcode.com/paper/3d-mri-brain-tumor-segmentation-using

2.2. Related works 11

tection, so we don’t need labeled images from disease data. Classic methods and approaches based

on sMRI (structural magnetic resonance imaging) can’t get a good performance in abnormal brain

structural detection because neuroanatomical alterations in neurological disorders can be subtle and

spatially distributed. Another approach based on Machine Learning methods could improve perfor-

mance because algorithms are sensitive to these subtle characteristics. The downside of this road is

the need for a large amount of image data (control and disease) and that the models are black-boxes

with no information on the critical characteristics used for the decision. They developed a Deep

semi-supervised Autoencoder, which put unsupervised anomaly detection up for discussion. The

goal of that study is to build an autoencoder which encode the structure of control brains. It means

the autoencoder learn the normal distribution for healthy brains and the abnormal MR images would

be outliers in that distribution. With this autoencoder defining a distribution for control patients,

they define a deviation metric to measure the neuroanatomical deviation in patients. Patients with

some disorder should be outliers in this distribution. The architecture and technique used in the

experiment is the following:

• Architecture

– Semi-supervised autoencoder: reconstruction of the image and prediction of age and sex.

– 3 hidden layers with SELUs activation function.

– Output layer with Linear activation function.

– Loss function: MSE from reconstructed and original image + cross-entropy for age + cross-

entropy for years + Unsupervised cross-covariance.

– 2000 epochs.

– ADAM optimizer (adaptive moment estimation) with adaptative learning rate.

– 64 samples mini-batches.

• Transformation of input data:

– Add Gaussian noise to image (0, 0.1).

– Feature scaling (normalization).

– One-hot encoding for sex and age labels.

We continue with a special case: lesion inpainting [4]. It can be seen as a data augmentation

task (reconstructing ‘pathology-free’ versions from patients with any brain disease). In the work

of José V. Majón et. al. [4] the medial purpose is the improvement of the behavior of

current brain image analysis pipelines. These pipelines are not robust to brain MR images with

lesions. For example, a task such as brain part segmentation decreases its accuracy when dealing with

lesions. They proposed a 3D UNet like network to map the image with lesion to the inpainted image

(target). The encoder is made by 3 blocks of a 3D Convolutional Layer with ReLU activation, Batch

12 State of art: related works

Normalization and max-pooling. For the decoder they used same architecture but upsampling instead

of max-pooling and, in the last step, a tri-linear interpolation layer followed by a 3D convolution layer

(with 8 filters) plus a ReLU and Batch normalization layers for upsampling the image. We can see the

diagram pf the architecture in figure 2.2. Everything was trained with MSE loss function. They use

lesion masks to generate artificial training data. The use control cases masked out with lesion masks

using the software lesionBrain [26].

Figure 2.2: U-Net based architecture of network of J. V. Manjon et. al. [4]

Besides of all of these principal studies and objectives, there are so many more. Théo Estienne

et. al.7 [27] in 2020 realize a project based in the study from A. Myronenko [3] which we explained

before. They also research Deep Learning architectures for tumor segmentation (BraTS 2018) and use

a autoencoder-based network with 2 decoder branches: one for tumor segmentation an another for

image registration. They use a VNet-based architecture both for encoder and the 2 decoder branches,

with residual blocks and skip-connections as we explain before.

We discover another study from Evan M. Yu et. al. [28]8 in which they try to learn volumetric

representations from different parts of brain structure. They also use an autoencoder framework.They

architecture is composed by 2 components: a spatial transformer network (STN) and a convolutional

autoencoder (CAE). The autoencoder is a kind of ResNet-based one, because it uses residual blocks

with skip connections, instance normalization and Leaky ReLU activation function.

In order to finalize with the review of the studies of reconstruction applications in MRI, we want

to explain one last paper. This work is not focused in MRI, but it achieves very good performance

in many tasks like restoration, denoising, super-resolution or image inpainting. XJ. Mao et all [22]9

published in 2016 an study about CAE with symetric skip-connections to address those objectives.

They also use a residual based network which they call RED-Net. The main characteristics of this

network are the skip connections (in which one layer from the encoder are added up to its symmetric

7https://github.com/TheoEst/joint_registration_tumor_segmentation
8https://paperswithcode.com/paper/a-convolutional-autoencoder-approach-to-learn
9https://paperswithcode.com/paper/image-restoration-using-convolutional-auto

 https://github.com/TheoEst/joint_registration_tumor_segmentation
 https://github.com/TheoEst/joint_registration_tumor_segmentation
https://paperswithcode.com/paper/a-convolutional-autoencoder-approach-to-learn
https://paperswithcode.com/paper/image-restoration-using-convolutional-auto
 https://github.com/TheoEst/joint_registration_tumor_segmentation
https://paperswithcode.com/paper/a-convolutional-autoencoder-approach-to-learn
https://paperswithcode.com/paper/image-restoration-using-convolutional-auto

2.3. Volumes or slices? 13

layer in the decoder) and the lack of pooling layers. They don’t use pooling layers due to pooling

discards useful image details that are essential for these tasks. They use MSE loss function. Peak

Signal-to-Noise Ratio (PSNR) and Structural SIMilarity (SSIM) index are calculated for evaluation.

The studies and tasks just explained are the prominent and recent ones but there are other areas

and analysis in which MRI restoration could help. Some of them are survival prediction [29], disease

progression [30] or brain connectivity analysis [31].

2.3 Volumes or slices?

Brain MR images are stored in volumes. It means it are stored as 3D volumes representing somebody’s

head. Some projects directly use 3D volumes to achieve the purpose (i.e. 3D tumor segmentation or

3D reconstruction). It is more complicated get good results in 3D than in 2D, because results are

more relevant in the field.

When working in 2D we have to consider another decisions. The first one is what profile of the

volume should we use. Brain MRI Volume has 3 different views: axial (from above the head),

sagittal (from the side of the face, profile) and coronal (from behind the head). We can see the

different views in figure 2.3

Figure 2.3: Left: axial. Middle: sagittal. Right: coronal

For non-isotropic acquisitions, we should ideally slice them so that the slices are high resolution.

For example, if the voxel resolution is 1x1x5 mm3, we should slice the volume so that the slices are

1x1mm2rather than 1x5mm2 (or 5x1mm2). The other issue to address is what 2D slices from the

volume has relevant information. Some of the slices are slices of the extremes of the volume, and

it didn’t represent relevant information about the brain structure-

In this project, we are going to work with 2D slices due to time constraints. Therefore, in this

section, we will discuss whether the projects mentioned above have used volumes or images, from

which volume profile they have taken the images and how the ones containing important information

14 State of art: related works

have been chosen. Our approach will be explained in section 5.2.1.2.

A. Myronenko [3] uses 3D volumes for the brain tumor segmentation task (BraTS 2018) with 1x1x1

mm isotropic resolution and size 240x240x155. Consequently, he does not have to get any profile or

select slices. Pinaya et. al [19] use T1 weighted images, thus 2D slices. They don’t say neither the

profile used in the images, nor the method to select 2D slices with relevant information. To continue,

Manjón et. al [4] propose ”the first 3D blind inpainting method in medical imaging” as they say.

They use the same dataset that us (IXI), they work directly with 3D volumes, so neither profile nor

slice election is done. They only preprocessed the volumes in order to normalize the voxels in to 1

mm3 voxel resolution. More recently, Théo Estienne et.al [27] also address the problem of 3D tumor

segmentation of BraTS 2018. Evan M. Yu et. al. [28] uses 3D volumes of OASIS dataset to learn

volumetric shape representations for brains structures.

As we can conclude, most projects address 3D volumes because his relevant implications, both in

medical field and in deep learning field. However, we have found another articles in which they work

with 2D slices. C. Bermudez, et al [5] uses 2D axial slices from BLSA dataset. All subjects were

affine-registered to MNIs-space and intensity-normalized before 2D slices are selected. In addition,

the only select a single midline axial slice from each volume. Finally they had 528 images with

size 220 x 170 voxels. They use this 2D images to build 3 denoiser autoencoders with skip connections

(one autoencoder for each level of noise added to train data). The architecture of this 2D denoiser

brain mri autoencoder is shown in figure 2.4.

Figure 2.4: C. Bermudez et. al. Denoising CAE+skip-connections architecture [5]

2.4. Network architectures for images 15

2.4 Network architectures for images

The encoder part of the autoencoder should work as a feature extractor, so we can research the most

known Deep Learning Architectures for images in order to use the same architecture or realize transfer

learning (with frozen weights or not). We will start explaining the first approach to image processing

with Deep Learning, then we will continue with residual network architectures (commonly used in

related works) and we will conclude by explaining U-Net and V-Net, the other 2 commonly used

networks for medical image segmentation.

2.4.1 Alexnet

First of all, we are going to introduce Alexnet [9], a deep convolutional neural network for image

classification created by Alex Krizhevsky et. al in 2012 which, in that moment, was the best approach

for ImageNet classification, improving by 10% of difference with the second best. It is very important

because they apply Deep Learning and convolutional networks to the classification of images and they

establish a standard from which new networks are created by adding improvements. The architecture,

shown in table 2.1, is made by 5 convolutional layers and max pooling layer after convolutional 1,

2 and 5 layers, and 3 dense (fully connected) layers as classifier part. Rectified linear unit is used

a a activation function (ReLU). Softmax function is used in the last layer in order to represent a

probability distribution over the image classes. So AlexNet is characterized by convolutional layers,

max pooling layers, dense layers as classifier and ReLU activation function.

Since the moment Alexnet appeared, the improvements made were almost everyone about go deeper

in the layers and architecture. However, going deeper didn’t solve another problems like vanishing

gradient.

2.4.2 Residual networks

We realize that most of the works of the state of the art uses residual networks [3] [28] or networks

with skip-connections [4] [22] [5], so we will introduce deeper than other architectures.

The emergence of this network rises from deep plain neural networks (as Alexnet) problems on

training. Despite the general belief that the more layers these networks have the more it learns, an

experiment made by He et. al. [6] shows that, in some cases, more layers are related to less accuracy

even using regularization techniques like L2 or Dropout. Deep plain networks suffer from performance

degradation due to the loss of detail in deeper layers and vanishing gradient problem

This residual learning approach is introduced by Kaiming He et. al. in 2016 [6] with the goal of

reducing the complexity of deep neural networks. The main innovation of residual networks is that

16 State of art: related works

Layer Map Tensor size Kernel size Stride Activation Params

Input Image 1 227x227x3 - - - -

Convolution 1 96 55x55x96 11x11 4 relu 34,944

Max pooling 96 27x27x96 3x3 2 relu 0

Convolution 2 256 27x27x256 5x5 1 relu 614,656

Max pooling 256 13x13x256 3x3 2 relu 0

Convolution 3 384 13x13x384 3x3 1 relu 885,120

Convolution 4 384 13x13x384 3x3 1 relu 1,327,488

Convolution 5 256 13x13x256 3x3 1 relu 884,992

Max pooling 256 6x6x256 3x3 2 relu 0

Dense 1 - 4096x1 - - relu 37,752,832

Dense 2 - 4096x1 - - relu 16,781,312

Dense 3 - 4096x1 - - relu 4,097,000

Output Dense - 1000 - - Softmax -

Table 2.1: AlexNet Architecture [9]

the layers ”learn residual functions with reference to the layer inputs, instead of learning unreferenced

functions” [6] as they said. This network obtains better performance than before with less complexity

in training.

In plain networks, the layers are built to approximate a mapping function from the image to a

target: H(x). This is equivalent to approximate the residual of this function: F (x) = H(x) − x and

then get the original function as F (x) + x. This kind of layer is called Residual Block in which

we estimate the residuals and then we add the original input to get our original target function. We

can see the architecture of this block in figure 2.5 , which is the picture of the original work. Thus, a

skip-connection is include in the network. This only consist in adding the input of a stack of

layers to the output of this stack of layers. We have to notice F (x) and x could not have same

dimension, so we have to multiply by a linear projection the original input x for matching dimensions.

This paradigm of residual learning gives rise to other ResNet-based architectures, which differs in

number of layers and building block compositions. This kind of networks uses residual blocks (there

are also several residual block architecture) with skip-connections embedded in some architecture.

Two main examples are the ResNet34 and Resnet50 networks, which use different kinds of residual

blocks. In addition, He et. al. presents some differentes ResNet architectures which we show in figure

2.6.

In addition, an Autoencoder made with residual blocks made by A. Myronenko [3] is shown in

figure 2.1, in which green blocks represent residual blocks with group normalization. Residual blocks

are also used in Yu et. al. [28] work.

2.4. Network architectures for images 17

Figure 2.5: Residual Block Architecture [6]

Figure 2.6: Resnet architectures presented in [6]

2.4.3 Other skip-connection-based architectures

As we explained before, deep plain networks suffer from performance degradation due to the loss

of detail in deeper layers and vanishing gradient problem. Residual networks address this problems

through residual blocks. But there is a inner idea in ResNets which other architectures also use: skip-

connections. In ResNet skip-connections are added in order to estimate the residual function, but

these kind of skip-connections can be added to networks with another purpose. Other networks like

some Fully Convolutional Networks also use this skip-connections. For example, FCN-8 architecture

has skip connections, in which some feature maps of the earlier layers are added to later layers.

Skip connections from one layer of the encoder to it symmetric layer of the autoen-

coder are added to the architecture with 2 purposes. First, to allow the signal to backpropagate

18 State of art: related works

straight to the lower layers and thus address the problem of gradient disappearance, facilitating deep

network training and, thus, achieving improvements in restoration performance. Second, when we

build a deeper network, low-detail of the image could be lost, making deconvolution difficult in re-

covering task. However, the skip connections pass through the feature maps which carry much image

detail and helps deconvolution to recover the original image.

Some related works use this kind of architecture. C. Bermudez et. al [5] uses skip symmetric

connections as can be shown in figure 2.4. This is a convolutional autoencoder with Leaky ReLU, in

which the skip-connections add a layer in the encoder to their symmetric layer in the autoencoder

(Like FCN but being symmetric).

However, some concrete architectures of CAE + skip-connections have been established due to their

good results in some tasks. U-Net [7] is one of them, and a U-Net-Autoencoder-based architecture is

used by Manjon et. al. [4] which we can see in figure 2.2.

2.4.3.1 U-Net and V-Net

U-Net [7] is one of the networks that has skip-connections between symmetric layers. U-Net is a

Fully-Convolutional-based Network (FCN) that is mainly used for image segmentation, that’s why

Manjón [4] use a V-Net based architecture for inpainting. The principal 2 differences between a

FCN and U-net are the symmetry of U-NET and the skip connections between the downsampling

(encoder) path and the upsampling (decoder) path which use concatenation operator instead of sum

(sum operator is used in skip-connections in Fully Convolutional Networks).

Each of the 4 blocks used in the downsampling path is made up of 2 convolutional layers (3x3)

with batch normalization and ReLU and another 2x2 MaxPooling layer. This block extract advanced

features while reducing feature maps sizes. In the upsampling route, the 4 blocks used are made by

a 2x2 upconvolutional layer and 2 other convolutional layers like those of the downsampling route to

recover size of segmentation maps, the concatenation of the feature map of the symmetric layer of

the encoder to give the location information from the encoding path to decoding path and a final 1x1

convolution. The original architecture of U-NET paper is illustrated in figure 2.7. As we can see, this

original U-Net architecture is very similar to Manjon et. al. U-Net based autoencoder; see figure 2.2.

U-Net has suffered some modifications, one of the most important is V-Net. This network was

introduces by F. Miilletari et. al [32]. V-Net is used for volumetric biomedical image segmentation

and it gets a very good performance in this task. This network is used in the work or T. Estienne

[27] to create a V-Net-based autoencoder to solve Brats 2018 challenge. V-Net combines the skip-

symmetric-addition-connections with residual blocks. It means that the encoder and decoder parts

are built with residual blocks instead of convolutional blocks as U-Net. V-Net also changes the size

of kernels and convolutions in respect to original U-Net, but the main change are the residual blocks.

2.5. Summary of related works 19

Figure 2.7: U-Net architecture of original paper: O Ronneberger et. al. [7]

So, V-Net combine the 2 types of skip-connections we have spoken in this research of state of art:

residual blocks and larger skip-connections between symmetric layers.

2.5 Summary of related works

We have compiled some recent and prominent works in which they use reconstruction methods for

different purposes. We have generally explained their architectures and approaches.

Although all the collected architectures are based on autoencoders, it has its differences in how the

autoencoder is built. First of all, it differs in the main architecture of the blocks of the autoencoder.

Different kind of networks like ResNet, UNet, VNet, Simple CAE or AlexNet. Also, in some of

them use the Variational Autoencoder approach, even in [3] combine ResNet and VAE. Furthermore,

there are additional architecture characteristic in which studies differ.

Regardless of the main architecture, one feature is shared by all related works (works that use Deep

Learning for MRI reconstruction): skip-connections. In the works that use ResNet-based [3] [28]

architectures, skip-connections are implicit in residual blocks. In this architecture the skip-connection

is used for represents the residual estimation function. In U-Net [4] and CAE with skip-connections

architectures [5] [22], the skip-connection is used with 2 purposes: allow the signal to backpropagate

straight to the lower layers and pass the image details from the convolutional layers to the deconvolu-

tional layers, fighting the low-detail loss [22]. In conclusion with the architecture research, the related

work use skip connections architectures: ResNet-base and CAE+Skip-Connection-based

20 State of art: related works

(U-Net-based and more).

The loss function used is also a critical issue. Most of the studies researched use pixel-wise

MSE, which implicit improves the evaluation metrics PSNR and SSIM . In addition, other metrics

are also used. KLdivergence is added to loss function when VAE is used or cross − entropy and

cross−covariance are added when semi-supervised autoencoder is used [19]. However, we will discuss

in this project the benefits of using PSNR or SSIM directly in loss function.

We are going to work with 2D slices of 3D brain MRI volumes. It means that in our project

we are going to reconstruct 2D brain MR images. In order to get 2D images from volumes, we have

to get slices, as we can see in image 2.8. We can get many 2D images from one brain volume. So,

in the preprocessing step, we firstly must choose what brain MRI view we are going to work

with. For non-isotropic acquisitions, we should ideally slice them so that the slices are high resolution:

select slices where voxel dimension remains equal for the 2 slice dimensions (i.e. 1x1x5 mm3 should

transform into slices of 1x1 mm2 and not 1x5 mm2).

But main step in choosing 2D slices is not that, main step is choose slices which retrieves relevant

information. A volume can be seen as a 3D head and some slices (i.e. from the sides) can not retrieve

relevant information, because it will retrieve noise or bone parts, but it don’t show information about

brain structure. We can see this fact in the image 2.9, in which is shown the same volume of the

image 2.8 but different slice. In order to get images with relevant information, we have recompiled

some main methods in the state of art: get fixed number of slices from all volumes, get the

middle slice from the volume or develop ourselves a computer vision tool to evaluate the

thickness (with opencv) . Although the first approach seems the simplest, it is the most used for

its good results.

Figure 2.8: 2D slices from brain volume IXI ID 002. Different profiles can be seen. Source: myself

Brain MRI preprocessing differs depending on the objective. First of all, some of the studies

2.5. Summary of related works 21

Figure 2.9: 2D slices from IXI ID 002. Slices from volume sides with no relevant information. Source:
myself

use the images of the dataset directly as the target output of the network. Other works enhance the

image quality and contrast before sending it like target output. To continue, other preprocessing

can be made when sending brain MRI to the input layers. Downsampling the input images could be

also useful to reduce the number of parameters of the network. So the resolution of the input image

should be balanced between usability (if it is very small is not useful at all) and trainability. We can

normalize the intensity of pixels (values from 0 to 1 or mean 0 and standard deviation 1) is very

important for a neural network. Normalization of the inputs helps the training of the network due to

several reasons. One of the most important is that a target variable with a large spread of values may

result in large error gradient values causing weight values to change dramatically, making the learning

process unstable [33]. Besides, affine transformations like translation or rotation could be applied.

In addition, we can realize data augmentation in real-time by adding Gaussian noise, other noise

or cropping some parts (fixed rectangles or with lesion masks like lessionBrain [26]).

With this research of the art, we are ready to develop the next stages our approach to brain MRI

reconstruction. We emphasize that the paper-discovery techniques used in this research are improved

by new frameworks described in section 2.6.

Finally, we made a recompilation of papers reviewed in Table 1 of D. Tamada, 2020 [10] and by

our own, with some removals and additions based in our goal of the project (see 2.2). We have just

deeply explained some of them. From the table of D. Tamada we only obtain 1 autoencoder study

[5], 3 sCNN and DnCNN approaches [34] [25] [35] and 1 GAN study. The other papers have been

compiled by our own (Autoencoder based: [19] [3] [23] [22] [36] [28] [27], GAN-Autoencoder-based:

[24]).

22 State of art: related works

Purpose Year, Authors Network

Autoencoders

Identify brain abnormal struc-
tural patterns

2018, W. Pinaya, et al [19] Semi-supervised autoen-
coder with SeLU and loss
MSE+cross-variance

3D Tumor segmentation 2018, A. Myronenko [3] [Code
available]

VAE for regularization to
encoder (ResNet like)

Lesion inpainting 2020, J. V. Manjón et al [4] 3D UNet autoencoder with
skip-connections and up-
sampling at end

General image denoising and
super resolution

2016, XJ. Mao et al [22] [Code
available]

Residual CAE with sym-
metric skip connections

Learn Brain volumetric repre-
sentation

2018, Evan M. Yu et. al. [28]
[Code available]

STN+Residual CAE with
skip connections, IN and
LReLU

3D Tumor segmentation 2020, T. Estienne [27] [Code
available]

VNet Autoencoder for
BRATS and image regis-
tration.

Denoising for T1 weighted
brain MRI

2018, C. Bermudez, et al [5] Autoencoder with skip con-
nections

Medical image denoise 2016, L. Gondara, et al [23] Convolutional denoising
autoencoder

Brain MRI denoise 2019, N. Chauhan et al [36] Convolutional denoising
autoencoder with Fuzzy
Logic filters

sCNN and DnCNN

Denoising for T1, T2 and
FLAIR brain images

2018, M. Kidoh, et al [34] Single-scale CNN with DCT

Motion artifact reduction for
brain MRI

2018, P. Johnson, et al [37] Single-scale CNN

Denoising for multishot DWI 2020, M Kawamura et al [35] DnCNN with Noise2Noise

GAN

Motion artifact reduction for
brain MRI

2018 BA. Duffy, et al [25] GAN with HighRes3dnet as
generator

Denoise 3D MRI 2019, M. Ran et al [24] Wasserstein GAN with
Convolutional Autoen-
coder generator

Table 2.2: Overview of studies for reconstruction based in Table 1 from D. Tamada [10] (In bold the
autoencoder related architecture)

2.6. New paper-discovery frameworks 23

2.6 New paper-discovery frameworks

In this state of art research, we have use new techniques and frameworks among the classical ones.

Connected Papers10 is a network science framework to improve the search of papers. There are also

other platforms like Papers With Code11 and Distill12 that improve the experience of article discovering

and article visualization-interaction.

I will explain some little examples of paper discovery using this tools. Connected Papers retrieve

us a graph about the relationship of a given paper. A paper is related with another if one is cited

by the other. In addition, the graph contains papers citated by the succesors of the main one. So,

the graph contains the most important prior works and Derivate works of our main paper, giving us

a perfect tool for paper discovery. One example13 made for A. Myronenko work [3] is shown in figure

2.10

Figure 2.10: Graph of connected papers for A. Myronenko 2018 [3]

Papers with code is a web page, in which are stored papers with it official code implementations.

It also group works in different subjects of study, like Medical issues, image segmentation, etc. In

addition, it recompile the benchmarks for different machine learning tasks, and it make a ranking of

the papers (with the code an pdf linked from the page). We show in figure 2.11 an example of the

Myronenko work. We can see the abstract, the link of the paper and multiple links for implementations.

Also, we can see the tasks and the benchmark results. There are more thing that we can do and research

in this framework.

10https://www.connectedpapers.com/
11https://paperswithcode.com/
12https://distill.pub/
13https://www.connectedpapers.com/main/37a18be8c599b781cc28b6a62d8f11e8a6a75169/

3D-MRI-brain-tumor-segmentation-using-autoencoder-regularization/graph

https://www.connectedpapers.com/
https://paperswithcode.com/
https://distill.pub/
https://www.connectedpapers.com/main/37a18be8c599b781cc28b6a62d8f11e8a6a75169/3D-MRI-brain-tumor-segmentation-using-autoencoder-regularization/graph
https://www.connectedpapers.com/
https://paperswithcode.com/
https://distill.pub/
https://www.connectedpapers.com/main/37a18be8c599b781cc28b6a62d8f11e8a6a75169/3D-MRI-brain-tumor-segmentation-using-autoencoder-regularization/graph
https://www.connectedpapers.com/main/37a18be8c599b781cc28b6a62d8f11e8a6a75169/3D-MRI-brain-tumor-segmentation-using-autoencoder-regularization/graph

24 State of art: related works

Figure 2.11: A. Myronenko work [3] in Papers with code

Chapter 3

Scope

In this chapter, we will establish the aims of the project. We have just spoken about the problem to

be solved. So now we have to enumerate the concrete objectives of the project.

3.1 Hypothesis

We will build an autoencoder for reconstructing T1-weighted brain MRI. It will learn

how to encode the underlying structure healthy brains in a lower-dimension space, and

reconstruct the MRI from this space. Image quality will be improved reducing noise and

artifacts and also could be used for lesion inpainting.

3.2 Primary aims

• To build a autoencoder that gets good results with control T1-weighted brain MRI: given

a ”clean” T1-WMRI, the autoencoder will return the same image as equal as we can to the

original.

• Due to the nature of the autoencoder train, it will be able to remove noise or reconstruct hidden

parts of the input MRI (making data-augmentation in real time).

• Research the benefits of skip connections, residual building blocks and the combination of both.

• Research a good autoencoder architecture and parameters (loss function, regularization or not,

etc).

• Establish a good brain MRI pre-processing with a novel relevant slice selection.

25

26 Scope

3.3 Secondary aims

• Develop the Deep Learning code using one of the most relevant framework, Python, and one of

the best-known libraries: Tensorflow and Keras. Also create a very optimized pipeline which

could reduce the time of training.

• Use an agile methodology: SCRUM. This methodology should be used in the project. We will

use the Zenhub tool of Github as a helper in the project management.

• Research the reconstruct applications for image enhancement, disease detection or data augmen-

tation.

These next objectives will be addressed if the primary ones are reached. We could see these aims

like a extra for the project, and a potential future work. If we achieved good performance in this task,

we would research about how to apply this solution to disease detection or data generation.

• Build a semi-supervised autoencoder.

• Build a tumor detection system (based on supervised learning or based in the output of the

autoencoder [19]).

• Research the activation filters of our network, in order to dive in the qualitative results.

Chapter 4

Planning and Methodology

In this chapter, we are going to discuss the scheduling for the project and the methodology used in

this one.

4.1 Research plan

In this section, we are making a time planning for our project. Planning a project is a very important

feature, because we can manage the time properly and we can keep a realistic task-calendar. For this

purpose, we are going to elaborate a Gantt Diagram. This diagram is a very common resource used

in project management [38].

Our diagram is a weekly Gannt Diagram. It has 17 weeks ([mm/dd/yyyy]):

• Week 1: from 09/14/2020 to 09/20/2020

• Week 17: from 01/01/2020 to 01/10/2021

It is built by all the main tasks that a master’s degree final project must have and some personalized

ones for this project. So we will have 6 big phases derived from project submits.

27

28 Planning and Methodology

TODAY

WEEKS: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

100% completeProject Selection

100% completeScope and planning

100% completeTitle, Keywords and Abstract

100% completeOverview, relevance and aims

100% completeMethodology and planning

100% completeState of art research

100% completeSearch bibliography

100% completeSearch similar code projects

100% completeResume state of art, redefine aims

100% completeProject development

100% completeData preparation

100% completeDeep Learning Design

100% completeDeep Learning codification

100% completeExperiment execution

100% completeDiscuss results, improvements

100% completeUpdate documentation

100% completeDocumentation

99% completePresentation and defence

FINISH-TO-START

4.2. Methodology 29

4.2 Methodology

In this section we must choose a common academic Data Mining development methodology, in which

there are described the phases, tasks and its relationships.

The description and nature of the project are very helpful at this point because the methodology

used in the project will depend on the nature of it. The main characteristic of this project is its

research-oriented purpose, so we can label the project as an academic research project. Never-

theless, the main objective of this research is to develop a software component (a Deep Convolutional

Autoencoder). We can also describe the project as a software project. In addition, the project is

located in the Machine Learning and Deep Learning areas. These areas are very related to Maths,

Statistics, and Computer Science. In all of these fields, the aim is to analyze data in a quantitative way.

We analyze how the variables are related, how the autoencoder performance with a concrete measure,

how it trains getting concrete metrics (how it learns, time, overfitting...), etc. So our methodology

should be quantitative. We will take a representative sample of brain MRI, we will train the au-

toencoder and inference the results to all the population. All this sample and inference techniques

are addressed by the validation methods of Machine Learning (Train/test, Cross-validation to reduce

bias, etc).

So, due to the nature of the project, we have to apply a methodology for an quantitative aca-

demic research project for data mining software development.

In a very summarized way, we will start researching the state of art, defining the problem,

and proposing a model to solve the target problem. We will choose and prepare our data.

Then we will develop the data mining software solution for this problem, evaluating each step.

Finally, we will evaluate our model an get a conclusion for our hypothesis. Thus, CRISP-DM

methodology embed all of these steps and it will be chosen as the project methodology.

The methodology that best suits our project is CRISP-DM [39]. The CRoss-Industry Standard

Process for Data Mining is a framework used for creating and deploying machine learning solutions.

Moreover, research and quantitative tasks can be embedded in the CRISP-DM phases (i.e. state of

art research phase can fit into business understanding CRISP-DM phase and quantitative evaluation

can fit into model evaluation).

As we know, agile methodologies are often used in software development. CRIPS-DM is neither

an agile methodology nor a waterfall one. This methodology has clear stages, but the order of them

is not strict and we could move forward and back whenever we need, in order to improve our data

mining final model. In fact, this movement between phases is widely used. Also it has a iterative cycle,

in which data, data preparation, modelling and evaluation are improved wit the previous iteration

feedback.

30 Planning and Methodology

Figure 4.1 shows the phase dependencies and order. As we can see, the straight lines define the

dependencies between phases as in a classical methodology. Nevertheless, We can see the circle and

the two-arrowed straight lines that show the flexibility and the agile similarity of CRISP-DM.

Figure 4.1: CRISP-DM Cycle

The phases of CRISP-DM [39] are the following:

Business Understanding : deep analysis of the business needs. In this phase we can establish an

objective. In our case, we can research the state of art for Deep Convolutional Autoencoder for

brain MRI and propose a model based on this research.

Data Understanding : we should research the data sources as IXI1, data quality and we should

explore the data and its characteristics.

Data Preparation : Data should be cleaned, filtered, selected and integrated if necessary. We could

carry out tasks like preprocessing T1 weighted brain MRI or realize data augmentation. I will

be explained in-depth in section 5.2.

Modeling : Specify the model to use and the architecture, parameters, etc. Maybe running several

model architecture and hyper-parameter optimization to reach the most powerful model. So in

can be an iterative process.

Evaluation : We must evaluate models properly to get meaningful conclusions. There are many

techniques of model evaluation and it should be made carefully.

1https://brain-development.org/ixi-dataset/

https://brain-development.org/ixi-dataset/
https://brain-development.org/ixi-dataset/

4.2. Methodology 31

Deployment - Publication : As our main goal is academic research, this phase would be Publica-

tion. The tasks are: review the project and generate the final report.

Chapter 5

Project development

5.1 Pipeline and overview

We are going to explain a general pipeline of the experiment to set a clear steps to reach our goal.

These steps will be deeper explained in the following sections. First, we explore all the original

NIFTI volumes. To continue we select the best profile of the volumes to get the 2D images, we

check the orientation of the slices and we extract the 2D images with relevant information. Then, we

split the MRI volumes into 2 separated sets: train/validation and test. It is going to be a stratified

splitting by age, sex and ethnicity. We also check for duplicates and more information about the

volumes such as relevant slices of each volume. At this point, we can start training our models. We

define different architectures and a custom data loader in order to carry out these experiments with

data augmentation in an optimized way. We run experiments with different architectures, with and

without data augmentation, with and without L2 regularization and also using MSE and DSSIM Loss

functions. Finally, we get the test metrics, we compare them all, and we also compare the models in

a qualitative way. This last evaluation shows an intuition on how the models reconstruct corrupted

brain MR images.

The development, control version, and planning through issues and Sprints is made with Github

and Zotero in the official repository of this Master’s Thesis1. We will reference the appropriate

documents of the repository as we explain the steps.

The diagram of this experiment pipeline is shown in figure 5.1.

1https://github.com/AdrianArnaiz/Brain-MRI-Autoencoder

32

https://github.com/AdrianArnaiz/Brain-MRI-Autoencoder
https://github.com/AdrianArnaiz/Brain-MRI-Autoencoder

5.1. Pipeline and overview 33

Figure 5.1: Pipeline of the project.

34 Project development

5.2 Dataset

5.2.1 Exploration and preprocessing

We are going to work with IXI brain T1-weighted MRI dataset2. This public dataset belongs to

Imperial College London and it is composed by MRI images in NIFTI format. We made an initial ex-

ploration of the characteristics (could be seen in /src/0.Set up/MRI treatment - nibabel.ipynb3)

of this dataset and also some deeper ones are discovered while profile selection, orientation checking,

selection of relevant slices and data splitting.

IXI dataset has a total of 584 volumes. The dimension of voxels are 0.9375 × 0.9375 × 1.2mm3

for 576 volumes and 0.9766 × 0.9766 × 1.2mm3 for 5 volumes. Although some volumes have different

voxels dimensions, every volume is isotropic for 1st and 2nd dimensions. The dimension in voxels of

the images are the following: the first 2 dimensions are 256 for every volume, but there are differences

in the third dimension between different MRIs. Therefore, there are 503 volumes with 256×256×150,

74 volumes with 256×256×146, 2 volumes with 256×256×140 and last 2 volumes with 256×256×130

voxels, see figure 5.2. We also realize that if we freeze the first dimension we get the coronal view, if

we freeze the second dimension we get the axial view and if we freeze the third dimension we get the

sagittal view. We don’t care so much about the volume dimension in voxels, but voxel dimension. We

don’t care so much about the volume dimension in voxels, but voxel dimension. Volume dimension is

significant in relevant slice selection, but we are going to use a dynamic and more complex method to

improve this step. However, voxel dimension in mm3 is relevant for profile selection. We discuss this

in following sections, providing more information of the data exploration and the application of this

exploration to our tasks such as profile selection.

Figure 5.2: Number of volumes for each different value of 3rd volume dimension (in voxels).

2https://brain-development.org/ixi-dataset/
3https://github.com/AdrianArnaiz/Brain-MRI-Autoencoder/blob/master/src/0.Set_up/MRI%20treatment%

20-%20nibabel.ipynb

https://brain-development.org/ixi-dataset/
https://github.com/AdrianArnaiz/Brain-MRI-Autoencoder/blob/master/src/0.Set_up/MRI%20treatment%20-%20nibabel.ipynb
https://brain-development.org/ixi-dataset/
https://github.com/AdrianArnaiz/Brain-MRI-Autoencoder/blob/master/src/0.Set_up/MRI%20treatment%20-%20nibabel.ipynb
https://github.com/AdrianArnaiz/Brain-MRI-Autoencoder/blob/master/src/0.Set_up/MRI%20treatment%20-%20nibabel.ipynb

5.2. Dataset 35

5.2.1.1 Profile selection and orientation checking

As aforementioned, we have to select a profile to slice the 3D volume in 2D images. For non-

isotropic acquisitions, we should ideally slice them so that the slices are high resolution. For ex-

ample, if the voxel resolution is 1x1x5 mm3, we should slice the volume so that the slices are

1x1mm2 rather than 1x5mm2 (or 5x1mm2). Overriding this, we need to be consistent in which

orientation we are slicing. In other words, if we are getting sagittal slices from one volume, we

should make sure we get sagittal slices for all patients. Otherwise, the network will likely not train

well. This process is made in /src/1.DataPreprocessing/0.MRI Profile Selection - voxel and

size inspection.ipynb4. On one hand, we realize that the first and second dimension are

isotropic for all volumes, so we will freeze the 3 one to get the slices with higher resolu-

tion. Dimensions of voxels are specified in above section. Therefore, we are using the sagittal view

of the brain for this project. On the other hand, we check every volume orientation in their headers,

and every volume is in the same orientation: P, S, R. This means that 1st voxel axis goes from

anterior to Posterior, second voxel axis goes from inferior to Superior and third voxel axis goes from

left to Right. Getting images with sagittal orientation, we have a total of 86794 2D images from

the 584 volumes.

5.2.1.2 Relevant slice selection

As we discuss in section 2.3, we are going to use 2D images extracted from 3D volumes. The first step

is just explained: profile selection. But we have to make a more important decision: what 2D slices

from the volume are we going to select. In section 2.5 we show that some parts of the volume do

not have any brain portion, and from those parts no relevant information can be retrieved, so we have

to select images with relevant information. This is a very important step. This step has a huge impact

in many aspects. First of all, the autoencoder will learn the distribution of data that we give it. If we

use no relevant images in training, the autoencoder will learn strange distributions. One solution is

to be very restrictive in the selection of slices. Some projects use the single midline slice from the

volume [5], but, and this is another aspect in where this step has an impact, the amount of data for

training decreases abruptly. Another common approach is to select a fixed middle range of slices

but we have the same problems. If we select a narrow range, lot of relevant slices are discarded. If

we use a wide range, we take a risk of select no relevant slices. This happens because the difference

between volumes: maybe in one volume the relevant slices are 20-100 and in another are 50-110.

In this project we will discuss 3 methods of relevant slice selection, 2 of them based on the dis-

tribution analysis of intensity pixel values and another one based on the use of a pre-trained neu-

ral network used for brain segmentation. All these methods are developed in the notebook /src

4https://github.com/AdrianArnaiz/Brain-MRI-Autoencoder/blob/master/src/1.DataPreprocessing/0.

%20MRI%20Profile%20Selection%20-%20voxel%20and%20size%20inspection.ipynb

https://github.com/AdrianArnaiz/Brain-MRI-Autoencoder/blob/master/src/1.DataPreprocessing/0.%20MRI%20Profile%20Selection%20-%20voxel%20and%20size%20inspection.ipynb
https://github.com/AdrianArnaiz/Brain-MRI-Autoencoder/blob/master/src/1.DataPreprocessing/0.%20MRI%20Profile%20Selection%20-%20voxel%20and%20size%20inspection.ipynb
https://github.com/AdrianArnaiz/Brain-MRI-Autoencoder/blob/master/src/1.DataPreprocessing/1.Preprocessing-IntensityInspection-SelectRelecant-Slicing.ipynb
https://github.com/AdrianArnaiz/Brain-MRI-Autoencoder/blob/master/src/1.DataPreprocessing/1.Preprocessing-IntensityInspection-SelectRelecant-Slicing.ipynb
https://github.com/AdrianArnaiz/Brain-MRI-Autoencoder/blob/master/src/1.DataPreprocessing/0.%20MRI%20Profile%20Selection%20-%20voxel%20and%20size%20inspection.ipynb
https://github.com/AdrianArnaiz/Brain-MRI-Autoencoder/blob/master/src/1.DataPreprocessing/1.Preprocessing-IntensityInspection-SelectRelecant-Slicing.ipynb
https://github.com/AdrianArnaiz/Brain-MRI-Autoencoder/blob/master/src/1.DataPreprocessing/0.%20MRI%20Profile%20Selection%20-%20voxel%20and%20size%20inspection.ipynb
https://github.com/AdrianArnaiz/Brain-MRI-Autoencoder/blob/master/src/1.DataPreprocessing/1.Preprocessing-IntensityInspection-SelectRelecant-Slicing.ipynb

36 Project development

/1.DataPreprocessing /1. Preprocessing Intensity Inspection Select Relevant Slicing.-

ipynb5.

Non-zero intensity pixel count method

Our first candidate approach is based on the intensity of the pixels of each image, specifically

the count of non-zero values of an image. With this method we suppose that pixels with intensity

different from 0 belong to the body, and if we set a proper threshold on that distribution we could

filter the images with some amount of brain quantity. We made an histogram of the distribution, in

we have measure the non-pixel values of every slice of every volume. The mean of this distribution is

44386.72 with a standard deviation of 8771.458 and a range of [28-64709]. But the significant fact of

this distribution is that it follows a similar Normal distribution: Negative left skewed distribution

(Negative skewness or Right modal). The distribution is shown in figure 5.3.

Figure 5.3: Distribution of Non-Zero pixel count per image.

This distribution has a clear definition and it is really nice to see it. We had big hope in defining the

outliers of the distribution and solve the relevant slice selection with this approach. But we discovered

that discarding only the -3STD outliers or the Q1-1.5*IQR outliers were bad approach because lot

of irrelevant data pass through the filter. Because of this we were more restrictive: we discard the

25% images with less nonzero pixels (Q1, light blue vertical line in figure 5.3). We improved the

performance, but the filter discarded few images in some volumes and too much images in other

ones. This method is very inconsistent: the brain can not be identify by non-zero pixel values. This

happens because the apparition of noise and strange bone structures at the sides of the volume (sides

5https://github.com/AdrianArnaiz/Brain-MRI-Autoencoder/blob/master/src/1.DataPreprocessing/1.

Preprocessing-IntensityInspection-SelectRelecant-Slicing.ipynb

https://github.com/AdrianArnaiz/Brain-MRI-Autoencoder/blob/master/src/1.DataPreprocessing/1.Preprocessing-IntensityInspection-SelectRelecant-Slicing.ipynb
https://github.com/AdrianArnaiz/Brain-MRI-Autoencoder/blob/master/src/1.DataPreprocessing/1.Preprocessing-IntensityInspection-SelectRelecant-Slicing.ipynb
https://github.com/AdrianArnaiz/Brain-MRI-Autoencoder/blob/master/src/1.DataPreprocessing/1.Preprocessing-IntensityInspection-SelectRelecant-Slicing.ipynb
https://github.com/AdrianArnaiz/Brain-MRI-Autoencoder/blob/master/src/1.DataPreprocessing/1.Preprocessing-IntensityInspection-SelectRelecant-Slicing.ipynb
https://github.com/AdrianArnaiz/Brain-MRI-Autoencoder/blob/master/src/1.DataPreprocessing/1.Preprocessing-IntensityInspection-SelectRelecant-Slicing.ipynb

5.2. Dataset 37

of the head of a patiente). This noise or bone structure is counted as non-zero value, so this images

pass through the filter. The volumes where images are clean of noise could suffer too much discards.

Examples of proper and bad filtering could be shown in see figure 5.5.

Non-Zero pixel mean intensity method

We define another approach to improve the last. We suppose that the noise has a low intensity

value, thus the mean of intensity of Non-Zero values could be used as a better proxy of how much

relevant information an image has. With this approach we define the distribution. The distribution of

the mean intensity for Non-Zero pixels has a really strange shape. It could be similar to a power law,

a very long right tail distribution. But no clear low-outliers could be defined to discard the irrelevant

images. Distribution is shown in figure 5.4. Then, we define an low arbitrary threshold for the mean

intensity value of Non-Zero pixels to determine whether an image is relevant or not. We set this

threshold to Q1, as same as the above method. This method is more accurate than the Non-Zero

count method as can be seen in . However, with this non-zero pixel mean intensity method, in some

volumes too few images are discarded, adding irrelevant information to train dataset, such as volume

IXI337 that can be seen in the figure 5.5.

Finally we have saved a DataFrame in pickle format (/src/1.DataPreprocessing/nonzero image-

data.pickle) in which we have all the relevant metadata of this two experiments. It has 3 columns:

image ID (with format volumeID sliceIDx), number of of Non-Zero pixels, and mean of intensity values

of Non-Zero pixels.

Figure 5.4: Distribution of mean of intensity of Non-Zero pixels per image.

DeepBrain

38 Project development

Figure 5.5: Example of discarded images with intensity-based methods in some volumes: both red
and yellow framed images are discarded. Double framed (yellow and red) is the limit image discarded.
Left column is the Non-Zero intensity count method and right column is the Mean intensity Non-Zero
values method.

Summarizing intensity-based methods

• Nonzero pixel count is weak against noisy points and non-brain structures: it fails when there

are lots of noisy points like a cloud. It also fails when there are some structures which are not

a brain because the nature of the model is only count the number of nonzero pixels.

• Non-Zero pixel mean intensity method is weak against the strange structures: it fails when there

are very few points but very shiny. The nature of the model is compute the mean of nonzero

pixels, so, method could break when some strange structures or shiny noisy points appears in

the images.

The last, better and definitive approach for slice selection is based on brain segmentation. We

know that the best proxy of how relevant a image is, is the amount of brain a image has because the

relevant information is the information about the brain structure. So, Why not estimate the amount of

5.2. Dataset 39

brain straightforward instead of approximate it through intensity-based methods? Brain segmentation

is very commonly used in neuroimaging so it would be nice to use an approach like this.

Our method is to extract the amount of brain for each volume and select the slices with some brain

(or a threshold of brain). The general idea is that there is no better proxy of how much information

an image has than the amount of brain that this image has. However, build an accurate neural

network for brain segmentation could be very difficult. Therefore, we will use a python library named

DeepBrain, which uses a pre.trained neural network to perform brain segmentation.

What is the golden tool? DeepBrain6. This library returns a matrix with the probability of each

pixel belongs to the brain. Then, we could set a mask and, finally (if necessary) segment our original

image or, in our case, measure the amount of brain. This tool identify the brain using the whole

volume, thus, is more accurate than treating a single slice. Another advantage is that only takes 3

seconds in getting the mask from a whole volume. As DeepBrain return a probability for each volume,

we will count the True (p > 0.5) values in the mask (number of pixels belonging to the brain) as a

proxy of how much brain is there in the image. Some examples of DeepBrain brain segmentation are

shown in figure 5.6

Figure 5.6: Example of DeepBrain segmentation.

We are going to set a lower threshold of brain quantity to select the images: 4.5% of brain quantity

which is approximately 3000 pixels. With this threshold, we ensure that at least 4.5% of the image

pixels belong to the brain and we could retrieve relevant information from the slice. With this filtering,

we reduce the 2D image dataset from the original 86794 to 59278 relevant images. This

method is very accurate and outperforms the intensity-based ones. We show the image selection with

DeepBrain method in figure 5.7. We realize this method filters just the relevant ones in contrast to

intensity-based methods that filter less or more than necessary.

We have coded some notebooks and scripts to develop this. We have extracted a pandas DataFrame

in pickle format, with the brain quantity for each slice with format [volID idSlice - Brainquan-

6https://github.com/iitzco/deepbrain

https://github.com/iitzco/deepbrain
https://github.com/iitzco/deepbrain

40 Project development

Figure 5.7: Example of discarded images with DeepBrain method in same volumes as intensity based
methods: both red and yellow framed images are discarded. Double framed (yellow and red) is the
limit image discarded. Red framed images has o brain pixels, and yellow framed has 0-3000 brain
pixels.

tity (i.e IXI562-Guys-1131-T1 72, 16485)] named deepbrain image data.pickle created in src/-

1.DataPreprocessing/1.Preprocessing-IntensityInspection-SelectRelevant-Slicing.ipynb.

It is also store in csv format in src/IXI-T1/slice brain quantity.csv. The final slice selection is

done in a script called deep brain slice selection.py which also use a developed Class named

DeepBrainSliceExtractor from module deep brain slice extractor.py. DeepBrainSliceExtractor

Class params are: path where .nib volumes are stored and output path to save the PNG images, 2

DataFrame with test and train volume IDs and other DataFrame with the data of the brain quantity

of each slice, in this case, the deepbrain image data.pickle explained above. The result relevant

images in PNG are stored in src/IXI-T1/PNG/test folder/test and src/IXI-T1/PNG/train val-

5.2. Dataset 41

folder/train and val. Data splitting is explained in section 5.3.

5.2.2 MRI Preprocessing

As aforementioned, relevant images extracted are stored in PNG format with size 256x256. Images

could be preprocessed in may ways to potentially improve their quality. We made a small tutorial

about some example ways of MR image potential enhancement using computer vision techniques

(histogram equalization, center of mass centering, etc). This tutorial is made in the notebook src/1.-

DataPreprocessing/0.ExamplesofMRIpreprocessing.ipynb. A common prepossessing technique

used in images is contrast enhancement made with histogram equalization methods (HE). Histogram

equalization sharpens or enhances image features, such as boundaries or contrast, for better graphical

display and better analysis. However, although we see better the image, many low details could be

modified and these low-details are the critical ones for neuroimaging analysis. It may increase the

contrast of background noise, while decreasing the usable signal. Also histogram equalization can

produce undesirable effects (like visible image gradient) when applied to images with low color depth

[40] [8]. We can see the effects of different HE methods in figure 5.8.

Figure 5.8: Different methods of histogram equalization [8].

Therefore, we conclude that, even though image enhancement is a way to improve the

appearance of image to human viewers, it could be harmful to critical details of brain

MR images and we are not going to apply it to our brain magnetic resonance images.

We only apply 2 preprocessing techniques to our brain slices: downsampling and feature

normalization.

• Downsampling: We downsample the images from 256x256 to 128x128 to speed-up the training

with bilinear interpolation resizing method . With this size we still identify relevant brain

structures.

• Normalization: We normalize the intensity of pixels of the image in the range [0-1]. It is

very important the compatibility of normalization and activation function of the last layer of

the neural network. If the possible range of the output and the range of the input are different,

errors will be bigger and reconstruction may fail. Consequently we will use sigmoid function in

last layer because it output range is also [0-1].

42 Project development

Both of these preprocessing techniques are made on-the-fly with a customized Tensorflow

Data Loader and with Tensorflow functions (tf.image and tf.math modules) to optimize the train-

ing speed. This Data Loader will be explained in section 5.4.2.

5.3 Data Split

We have to split the 59278 2D images in 3 sets: train, validation and split. We use 3 sets because we

are going to several architectures, 2 loss functions and other comparable configuration. A validation

dataset is a partition used to tune the hyperparameters (i.e. the architecture, regularization) of a

classifier. Another critical aspect of data splitting is the independence of the data between parti-

tions and also the similarity on the distribution of each partition. It comes from the i.i.d statement

(independent and identically distributed).

We address the data independence problem, because exists a huge correlation between the

near images of the same volume. For example, slice 45 and slice 46 of the same volume are going to be

almost the same. These images, which are almost identical because they are near in the same volume,

belong to different sets. This could lead to a big overfitting problem if both images are in different

data partitions. If this happens with more similar images, the problem is obviously bigger. Therefore,

we do not split the dataset straight from images. It is better to split it from volumes to avoid this big

correlation.

We also address the identically distributed problem. In this project, we obviously have no

target label. However, we can stratify the example images through their metadata. We suppose that

physical features have a potential impact in the brain structure, so the stratification by these features

should be positive for the training, thus, we would like 3 data partitions retain the same distribution

regarding sex, ethnic and age.

In order to do this stratification, we follow these steps (made in notebook: src/2.Experiments-

/0.TrainTestSplit.ipynb7): We map our images and Nifti volumes to their metadata. We realize

that were duplicated volumes, so the final number of volumes were 581. We also discover that 18

out of 581 different volumes do not have any metadata, so the images of this 18 volumes will be

placed in training set automatically. The remaining 563 volumes. The age distribution on the total

population is 73.4% of adults [25, 65), 19.2% of elderly people [65, inf) and 7, 4% of young people

[0, 25). Sex are distributed like 55.6% male and 45.4% female. Finally, we have 7 values for ethnic,

very skewed for white people, with a 80.11% of the volumes, also there are ethnic values with only

1 or 2 volumes, so we only divide between white and others. Last has the remaining 19.89%. We

developed a module with 3 functions to help in the composed stratification task. It has been coded

7https://github.com/AdrianArnaiz/Brain-MRI-Autoencoder/blob/master/src/2.Experiments/0.

TrainTestSplit.ipynb

https://github.com/AdrianArnaiz/Brain-MRI-Autoencoder/blob/master/src/2.Experiments/0.TrainTestSplit.ipynb
https://github.com/AdrianArnaiz/Brain-MRI-Autoencoder/blob/master/src/2.Experiments/0.TrainTestSplit.ipynb
https://github.com/AdrianArnaiz/Brain-MRI-Autoencoder/blob/master/src/2.Experiments/0.TrainTestSplit.ipynb
https://github.com/AdrianArnaiz/Brain-MRI-Autoencoder/blob/master/src/2.Experiments/0.TrainTestSplit.ipynb

5.3. Data Split 43

in the file src/2.Experiments/stratifier complex.py, and we have 2 functions: the first to get

the report (quantitative table) with the number of samples of the stratification, and another function

to get the stratified sample. This last function is the used for getting the samples. We divide the

total dataset in 2 sets: one for train and validation (which will be splitted in train and validation

set in the training script) and another for test. The IDs of each partition are stored in separated

pandas DataFrame (as pickle). The columns of this sets are Volume IXI ID, Sex, Ethnic, Age Group,

N Relevant Slices. The files which have the list of IDs for each group are data train val volumes-

df.pkl and data test volumes df.pkl. As we explained before in section 5.2.1.2, these 2 files are

needed in the DeepBrainSliceExtractor Class in order to make the selection of relevant slices and the

stratified partition in the same script.

Once data is extracted and splitted, the final sizes of each set are showed in table 5.1. Be-

sides, we can see the correct stratification between partitions. The train&validation/test distributions

for each attribute are seen in figure 5.9.

Figure 5.9: Train&validation/test distributions for each attribute to show the correct stratification

Partition Volumes Images Volume% Image%

Train 454 46285 78.2% 78.1%

Validation 80 8169 13.8% 13.8%

Test 47 4824 8% 8.1%

Total 581 59278 100% 100%

Table 5.1: Data split

44 Project development

5.4 Experiment

In the stage we are going to train several models with different characteristics to obtain an empirical

comparison of the different strategies researched in the state of the art: different architectures, different

loss functions, different residual building blocks, regularization and no regularization, and finally, the

experiment with a new proposed architecture. Before starting the architecture and model explanations,

we are going to offer an explanation of the development environment, the customized Tensorflow data

loader designed to optimize the speed and ease of the training and the augmentation. Furthermore,

in this section we are also going to discuss the methods and results as we explain and obtain them.

5.4.1 Environment

In the first place, I want to highlight we wanted to run the experiment locally. The main reason

is the opportunity to develop a very optimized environment in terms of speed of data-loading and

parallelism between training and data loading. We have the opportunity with this Master’s thesis

because later, when we develop real applications, cloud training is going to be more common, or, in

the case of on-premise training, the situation would be more critical. Therefore, we are going to

face the speed optimization problem executing these experiments on local device, pushing

the boundaries of the hardware and giving more importance to the quality of the software developed.

This problem could be scaled in future situations, where we will have to train bigger models with tons

of data in the cloud.

We are using a HP OMEN Laptop with 16 GB of RAM, a Intel i7-9750H 2.6GHz processor and

a NVIDIA GeForce GTX 1660 Ti with 6GB of GDDR6 RVAM. The operating system is Windows

10. With 6GB of VRAM is obvious that all images and weights of the model does not fit on it, so we

will develop a custom data loader to read, preprocess and augment the images on-the-fly and in the

fastest way. This data loader will be explained in section 5.4.2.

The code was developed in Python language. We have used several libraries, but most important

are the ones related to neural networks. The Python version is 3.7.9. We use Tensorflow-gpu 2.3.1

which has the Keras 2.4.0 library built-in the module tf.keras. We configured CUDA 10.1 and

cuDNN 7.6.5. We have to highlight that every step of the training, included the data loader, data

augmentation and customized loss functions are coded with Tensorflow. This aspect make the training

faster using only Tensorflow (and Keras) modules and functions due to the fact that Tensorflow builds a

graph to optimize the computation and, if external libraries are used, the speed and high-performance

decreases. This set-up is also explained in src/0.Set up/GPU TF enviroment.ipynb.

5.4. Experiment 45

5.4.2 Data Generator with augmentation

We faced the challenge of create a optimized data loader, which has to load batches of images

on-the-fly and perform image preprocessing and augmentation in a optimized and pa-

rameterizable way. Fist of all, we created a data loader that loads numpy files instead of images,

but we discard this approach because reading numpy files is slower than reading images.

We compare 3 approaches Keras ImageDataGenerator.flow from directory, a customized Keras

Data loader implementing Sequence interface and, finally, a customized Tensorflow Data Loader,

using tf.data module. We made a simple experiment (same architecture, parameters and data) to

compare all of them. The original Keras ImageDataGenerator takes a mean of 5:12 minutes to run an

epoch, the customized Keras Data loader takes a mean of 2:35 minutes to run an epoch and, finally,

our customized Tensorflow Data Loader takes a mean of 1:12 minutes to run an epoch. We will explain

what we do in next paragraph, but the summary of the reason of the speed of the last data loader is

that is coded whole in Tensorflow. First, Tensorflow builds a computational graph, and this is more

efficient if all of the steps are made with native Tensorflow functions. We have coded the disk load,

the normalization, resizing and image augmentation with native TF functions. Second, the tf.data

module provides functions to perform parallelism, cache data and other functionalities to load while

training and make the train even faster.

So, out data loader is coded in a class named tf data png loader in the module src/2.Experiments-

/my tf data loader optimized.py. We coded this class to ease the creation of data loaders. With

this we only have to create the class and pass the parameters: list of files path, batch size, desired

size of the images, if the data is for training and if we want augmentation while data is loading. With

this we obtain a object tf.data.Dataset which dynamically will load the data in the Keras model. The

steps of this DataLoader are the following:

1. We read all the files paths as tf.Tensors.

2. Read PNG, resize and normalize image in a parallel way using native TF functions to realize all

these steps and calling with a map call to the dataset and the parameter number of parallel call

set to AUTOTUNE.

3. We use shuffle function to randomly shuffles the elements of this dataset. We also use repeat

function which is needed to repeat the dataset in training time.

4. We augment the images (if required) on-the-fly and in a parallel way (mapping a tf.Dataset).

Every augmentation and creation of randomness is made with Tensorflow functions. Data aug-

mentation is explained in section 5.4.3.

5. But the main advantage is made by batch and prefetch functions. The former allow us to

read, resize and augment images in batches. For example, if we had a batch of 16 images, a

46 Project development

multiplication is only needed instead of 16. We already know how batches works in the model,

but with this function, this improvement is also made in the load and the augmentation. The

latter is even more important to speed up the training. Prefetch function allows later elements

to be prepared while the current element is being processed. This often improves latency and

throughput.

6. Friendly remember: every step is made on-the-fly while model is training or evaluating.

5.4.3 Data Augmentation

Real time image augmentation is widely used in computer vision algorithms. The data augmentation

allow to increase the size of training data and without using any disk space as it is made on-the-fly.

This way, every image showed to our algorithm is going to be slightly different each epoch avoiding

overfitting. With the proper data augmentation we force to the algorithm to learn how to encode

the structure of a healthy brain instead of only copy the input. This leads to better learning of

the representation of the healthy brain in latent space. Therefore, avoiding the c̈opyöverfitting, the

reconstruction of brain MRI would be better, and we would be able to remove noise or fill empty parts

not because the autoencoder remove noise, but because our autoencoder only knows hot to encode

and decode the structure of the healthy brain.

Consequently, data augmentation techniques must be aligned with our goal. Adding more and

more augmentation techniques is not always helpful. A clear example is in MNIST dataset, where

flipping the 9 give us the number 6. For example flipping or rotation is not useful in this project. We

only want to know how a brain looks like, how to represent a healthy brain in a latent space of lower

dimension, thus, we do not really want our autoencoder to rotate images. In addition, when using an

autoencoder like this in a production environment, the one who uses the trained model will to give

the model an input image in the correct orientation.

We are going to add randomly 4 augmentations to the image. Each augmentation technique will be

added with a random level and intensity. So while training, the model could get from an original input

image to a fully augmented one (every augmentation is added at max level). The augmentations are

added with functions from Tensorflow and Tensorflow-addons libraries. We use pixels Dropout

with a random value between 0 and 5%. The Gaussian noise is applied to the image with a random

standard deviation between 0 and 0.04. We Blank Out a region with a probability of 20%. The

position and size of the black square is also random. It could be in any random position and the size

of the side of an square goes from 10 to 40 pixels. Finally, Blur is made with a Gaussian 2D filter

with sigma 0.6 with a probability of 10%. This augmentation process is made on-the-fly and in a

parallel way by customized Tensorflow data loader explained in the section 5.4.2. The examples of

augmentations are shown in figure 5.10.

5.4. Experiment 47

Figure 5.10: Examples of augmented images.

The value of the current augmentations added are the following: they cover, corrupt or

modify the real brain structures (through dropout, noise, blurring or cuts-out) so the model has to

learn to recover this covered or corrupted information. Dropout could represent lacks of intensity

measures for a voxel. The Gaussian noise could represent the deviation in this same measures. Region

blank-out could represent corrupted images due to bigger problems or even a small lesson which would

be in-painted by the autoencoder. Finally, the Gaussian blurred could represent artifacts or lack of

definition due to some reasons (like up-sizing).

5.4.4 Architectures definition

This section will explain all the architectures we have trained in our experiments. We have made

experiments with several architectures, different losses functions, with and without regularization and

with and without data augmentation. Obviously we already know the result of the last comparison

(data augmentation), but we want to test it quantitatively and empirically. In this section, we only

regard the explanation of architectures, their building blocks, and their foundations. The specific

experiments (regularization, losses, etc) will be explained deeper in section 5.4.5.

We wanted to pursue 2 purposes with the experiment. First, and the main one, the comparison

of residual architectures and convolutional architectures with skip-connections besides

of the novel benefits of the combination of both as we explained in the state of art 2. Second,

create very shallow optimized architectures. The creation of architectures with fewer and fewer weights

through the optimization of the connections and is one of the guidelines of Deep Learning. For example,

residual networks come from this topic. We already know that a very deep residual network could

lead to a optimal performance, but there are some downsides. First, big networks take too much train

48 Project development

to train (even residual, although less than common convolutional). Second, the Internet Of Things

breakthrough lead us to search for very light models that could work in these low-memory devices.

Therefore, considering these two guidelines we have defined 5 different 8architectures with similar

decoder architecture.

• Shallow residual autoencoder:

– Original building block.

– Full-pre-activation building block

• Skip connection convolutional autoencoder.

• Myronenko Autoencoder: based on the encoder of Myronenko research [3].

• Residual U-NET: architecture proposed in this project and arise from the combination of U-NET

and residual building blocks.

We would like to emphasize that neither the architectures use Max Pooling functions

to reduce feature maps, nor does it use Upsampling to increase their size. The former

idea comes from the fact that pooling discards useful image details that are essential for these tasks

[22]. The latter comes from the intuition that increasing the size of feature maps with a more complex

function such as Conv2DTranspose could be more helpful to the reconstruction than the Upsampling

method. So all of them are going to use strides with value 2 to reduce or increase the size.

5.4.4.1 Shallow Residual Autoencoders

We have discussed the benefits of Residual blocks in the training and optimization of Neural Networks

in the state of the art 2. As we explained, benefits comes from the building block, which have

skip-connections to force the neural network to learn the residuals. However, there are several kinds

of building blocks regarding the order of activation function, batch normalization, weights and

addition. The original one is shown in figure 2.5. But another identity blocks has been researched.

A very good research with excellent results was made by Kaiming He et. al. in 2016, concluding

that full pre-activation block (where BN and ReLU are both adopted before weight layers) throws

promising results [41]. Therefore, we are going to 2 architectures with the only difference of the type of

building blocks. Both building blocks are defined in figure 5.11. We implemented the building blocks

with convolutions of kernel size 3, stride 2 if downsampling is required, and a convolution in the skip

connection if we need to match the number of filters. They are also built with BatchNormalization

8Cheat Sheet of all architectures is in https://github.com/AdrianArnaiz/Brain-MRI-Autoencoder/blob/master/

ArchitecturesDiagram.svg

https://github.com/AdrianArnaiz/Brain-MRI-Autoencoder/blob/master/ArchitecturesDiagram.svg
https://github.com/AdrianArnaiz/Brain-MRI-Autoencoder/blob/master/ArchitecturesDiagram.svg

5.4. Experiment 49

Layers and Rectified Linear Unit activation function (ReLu) The order of the layers are defined by

the type of block.

We built 2 architectures with the only difference of the type of the building block. Obviously, our

autoencoders starts with the encoder part. This architectures have an initial Convolutional Layer

with 32 filters with a kernel of dimension 3x3, stride 2 and padding same to downsample the image

to half size (64) and increase the number of filters to 32. Then we add a residual building block

with downsampling which increases the number of filters to 64 and reduces the dimension of features

map to half (32). To continue we add another residual building block with neither downsampling

nor feature map addition, so we keep 64 filters of 32x32. Finally, we add another residual block with

downsampling to reduce the size of the feature maps to 16 and increase the number of filters to 128,

thus, this latent space has 16x16x128 dimension. In this point we start our decoding task with the

decoder. The building blocks of the decoder are made of a Con2dTranspose Layer with stride 2 to

upsample the image to double size, followed by a BatchNormalization Layer and a ReLu as is seen

in figure 5.12. Each of 3 decoder building blocks upsample the image to double size and reduces the

number of filters in half. Finally, we have a Convolutional Layer to reduce the number of filters from

16 to the 1 desired for the output. This last layer has a sigmoid activation function to get pixel

intensities from 0 to 1, like the normalized inputs.

Figure 5.11: Residual building blocks used for residual autoencoders.

Both architectures are coded in the file src/2.Experiments/residual cae.py. This script uses

flag parameters for allowing simple configuration of what building block we want to use and if regu-

larization is used. The final diagram of both architectures is shown in 5.13.

50 Project development

Figure 5.12: Upsampling block used in the decoder.

Figure 5.13: Shallow Residual Autoencoders.

5.4.4.2 Myronenko Autoencoder

We also wanted to develop a more complex, but still shallow, residual architecture. With this goal

we implemented an Autoencoder based on the encoder branch which Myronenko used in his project

for BRATS 2018 [3] to regularization. Although we use our decoder, the encoder part is the same

that Myronenko used, but going one less level in the size downsampling and number of filters. Every

building block used in this architecture has already been explained in last section 5.4.4.1. This archi-

https://github.com/IAmSuyogJadhav/3d-mri-brain-tumor-segmentation-using-autoencoder-regularization
https://github.com/IAmSuyogJadhav/3d-mri-brain-tumor-segmentation-using-autoencoder-regularization

5.4. Experiment 51

tecture is built with Convolutional Layers, full-pre-activation residual building blocks and the already

explained upsampling blocks. The main difference is the number of layers and the downsampling order.

In this case, the image downsampling is made by a Convolutional Layer with stride 2, but outside the

residual block instead of inside it like before. This architecture includes also a SpatialDropout Layer.

Layer configuration (number of filters, downsampling, number and order of layers, etc) is shown in the

Myronenko architecture diagram in figure 5.14 and coded in the file src/2.Experiments/residual-

cae myronenko.py. Latent space is 16x16x128 again.

Figure 5.14: Myronenko based autoencoder.

5.4.4.3 Skip Connection Convolutional Autoencoder

The other big advance in segmentation and reconstruction architectures comes from the skip connec-

tions. As aforementioned in the state of the art 2, this skip connections are not the ones of residual

building blocks. This skip connections are wider and connects encoder layers to decoder layers. Al-

though the interpretation of latent space becomes more abstract if this technique is used, architectures

with skip connections have shown a better performance due to the l̈eaköf information to the decoder

part, where the decoder will learn how to combine the details of the latent space and the details of

the feature maps from the encoder part [22] [4] [19]. This connections helps in the backpropagation

to earlier layers and also in the detail reconstruction in the decoder. Some outstanding architectures

such as FCN8 or U-Net uses this concept.

Therefore, we built an architecture with Convolutional Layers and skip connections, kind of Fully

Convolutional Network with skip connections. This architecture do not use residual blocks. The

skip connections added in this architecture are going to add the encoder layer to the correspondent

decoder layer, so the decoder dimension would be the same. This autoencoder is built with 3 Convo-

lutional Layers, each one is followed by a BatchNormalization and a ReLu function. Each one of this

Convolutional blocks (Conv -BN -ReLu) downsize the image in half and double the number of filters,

so finally our latent space is 16x16x128 again. The skip connections goes from the output of the

52 Project development

BatchNormalization of the Convolutional block of 1st and 2nd encoder layers, to the output of the

BatchNormalization of the 1st and 2nd decoder layers, thus, decoder block is also a little bit different

because it incorporate an addition operation in the middle. This decoder block is seen in figure 5.15.

The whole architecture is shown in figure 5.16 and it is coded in file src/2.Experiments/skip conne-

ction cae.py

Figure 5.15: Decoder building block for Skip connection CAE.

Figure 5.16: Skip connection CAE Architecture.

5.4.4.4 Residual U-NET Autoencoder

Finally, we present our proposed method to research the benefits of residual blocks and skip-

connection combinations. We have built a U-Net autoencoder with full-pre-activation residual building

blocks. U-Net is also explained in state of the art and refers to a Fully Convolutional Network with

skip connections with concatenation instead of addition. This way, it double the number of

feature maps in the decoder part, and an improvement is shown in medicine segmentation tasks.

Using concatenation instead of addition, the decoder network has the burden of make a complex

5.4. Experiment 53

operation instead of simply add it element-wise. With this architecture, we combine these U-Net

advantages with the advantages of skip connections (also inherit of U-Net) and with the

aforementioned advantages of the residual building blocks.

Regarding this, we add skip connections with concatenation to the shallow residual network with

full-pre-activation building blocks already explained in section 5.4.4.1. Therefore, the diagram of the

network, with the details of the connections, downsampling and feature maps is shown in figure 5.17

and coded in file src/2.Experiments/res skip cae.py.

Figure 5.17: Residuel U-Net Architecture.

54 Project development

5.4.5 Experiments

As we explained before, we want to compare these shallow architectures to obtain the best one.

Also, we want to compare another features: the consequences of the use of data augmentation, the

effects of L2 regularization, and the differences in learning between Mean Square Error (MSE)

and structural DiSSIMilarity (DSSIM) losses. Consequently we started with a sample experiment

training some models without data augmentation and MSE loss. As we know that data augmentation

is needed, we did only a few experiments without it, placing on all the importance of the project

in the experiments with data augmentation. With data augmentation we trained the architectures

both with MSE and DSSIM losses. In addition, L2 regularization was added to some of them to

discover the effect. However, every architecture was not trained with and without L2 because the

number of experiments would have been huge, so we consider that a consistent experiment regarding

regularization is beyond the scope of this project. Every model trained was tested quantitatively with

MSE, DSSIM and Peak Signal to Noise Ratio (PSNR) as well as qualitatively. As aforementioned,

we are also going to discuss the results as we explain and obtain them.

Our models use 100 epochs for training with a batch size of 32. We use RMSProp optimizer

which divides the gradient by a running average of its recent magnitude. We configure the Early Stop-

ping callback with a patience of 20 and a min delta of 2e−7 if MSE loss is used or 5e−5 if DSSIM loss

instead. To optimize the training and lead it to a better convergence we use ReduceLROnPlateau

which reduces the learning rate by a factor of 0.2 if the validation loss does not improve in 4 epochs.

The min improvement also depends on the loss used.

We have coded a parametrizable python script to ease the training of the models. We only have

to write the name of the architecture, a boolean to set the augmentation, the name of the loss metric,

a boolean to set regularization, and the name of the residual building block used (only relevant if

architecture allows residual blocks). With only this information our script configures all the exper-

iment: creation of folder to save the model checkpoint, the Keras diagram and the csv of training

metrics; creation of customized data loader; configuration of callbacks and its parameters: CSVLogger,

ModelCheckpoint and Earlystopping ; configuration of learning rate reducer and running of the exper-

iment. When train has finished, we have a folder with the aforementioned documents, each one with

self-explanatory name. This is coded in src/2.Experiments/residual cae experiment.py. The L2

kernel regularizer is used with a value of 1e− 5 if regularization is established.

TestMetricWrapper Python class has been coded with the goal of ease quantitative and quali-

tative evaluation. Class inputs are the paths of test images and the path of the model folders. With

this information, this class give us some charts about the training steps, quantitative test metrics, and

some qualitative examples. We also have a function on this class which allow us to perform a cus-

tomized augmentation on a desired image and to plot the reconstruction of every model. The module is

src/2.Experiments/create test report.py and the class name is TestMetricWrapper. It is used in

5.4. Experiment 55

the evaluation notebooks: src/2.Experiments/2.Exp NoDAug MSE.ipynb, src/2.Experiments-

/3.1.Exp DAug MSE.ipynb, src/2.Experiments/3.2.Exp DAug DSSIM.ipynb and src/2.Experiments-

/4.4.Evaluation custom corruptions.ipynb

5.4.5.1 Metrics

MSE error is measured as the mean intensity pixel-wise squared error between 2 images. Besides,

as SSIM is used to measuring the similarity between two images, we used DSSIM to compute the

dissimilarity and being able to minimize it when used as loss function. Finally, PSNR gives the peak

error in the output image. The value of this parameter should be large, as it represents the ratio of

signal power-to-noise power, noise power should be minimum. PSNR is not used as loss, only as test

metric.

MSE =
1

n

n∑
i=1

(Yi − Ŷi)
2;PSNR = 10 × log10

peakval2

MSE(x, y)
;DSSIM =

1 − SSIM(x, y)

2

5.4.5.2 Without data augmentation

To start with simple experiments, we compared the following architectures without data augmentation:

Shallow residual autoencoder with original block, Shallow residual autoencoder with full-pre-activation

block, Shallow residual autoencoder with full-pre-activation block and L2 regularization, Myronenko

autoencoder, Myronenko autoencoder with regularization and Skip Connection CAE.

Figure 5.18: MSE evolution in the training of models without data augmentation.

The evolution of training loss (MSE) is shown in 5.18. We could see the quickly convergence of

the methods, with convergence made mostly in less than 40 epochs. The table 5.2 showcases the best

model is Skip Connection CAE both in validation MSE and test MSE, DSSIM and PSNR. This

big difference with the other methods could also be seen in 5.19. Most of test metrics are outstanding,

56 Project development

showing a good reconstruction of the test set. We also realize the big similarity between validation

and test loss (MSE). This similarity is a proxy of the good stratification of our dataset and that we do

not notice overfitting. The shallow residual CAE with full-pre-activation blocks shows also a

very good performance, being better than the original block. In addition, the first intuition about L2

regularization is the fact that the same model but with regularization has lower test metrics. We are

not going beyond in the explanation in this moment, we will analyze it better with the augmentation

results.

Model loss L2 Val loss MSE DSSIM PSNR

Skip connection CAE MSE No 1.10e-5 1.07e-05 1.04e-03 49.8

Shallow RES full-pre MSE No 3.92e-5 3.82e-05 2.64e-03 44.4

Shallow RES full-pre MSE Yes 1.10e-4 8.56e-05 4.90e-03 41.0

Shallow RES orignial MSE No 1.11e-4 1.09e-04 1.40e-02 39.7

Myronenko CAE MSE No 1.83e-4 1.81e-04 5.59e-03 37.7

Myronenko CAE MSE Yes 1.47e-3 1.27e-03 4.40e-02 29.3

Table 5.2: Validation and Test metrics for experiments without data augmentation

Figure 5.19: Bar charts of test metrics for experiments without data augmentation.

We have shown a very good test metrics. But qualitative reconstruction is seen in figure 5.20. We

realize that all models have a very good reconstruction performance when the data is clean. How-

ever, Myronenko+L2 gives slightly blurry output images, this is the reason because its test metrics

are higher. When input data is corrupted, all methods are limited to copying the input, but My-

ronenko+L2 removes the dropout pixels with the downside of blurring. This is a very interesting

fact: although we have trained the method without data augmentation, it is able to reconstruct some

corruptions.

5.4. Experiment 57

Figure 5.20: MRI reconstruction of non-augmented models from an clean input and another corrupter
one.

5.4.5.3 With data augmentation

We have encouraging results with the models without data augmentation: almost every architecture is

able to reconstruct a brain MRI with a huge similarity even in lower-details. We also notice that it are

not able to reconstruct any image using their knowledge of how a healthy brain looks like. However,

we want our models to be improved by the aforementioned benefits of data augmentation. In this

experiments we went beyond the residual architectures and the skip connection ones: we propose a

new architecture combining residual and U-Net as explained in section 5.4.4.4. Considering the above

results, the models trained in this stage was: Shallow residual full-pre, Shallow residual full-pre+L2,

Skip Connection CAE, Skip Connection CAE+L2, Myronenko CAE and the proposed Residual U-

NET autoencoder. We trained each model optimizing both MSE and DSSIM losses, thus we have

12 final models with data augmentation.

First of all, we can see that the evolution of validation loss (figure 5.21) is more stable than the

evolution without data augmentation, but, even so, the convergence is still very fast.

Figure 5.21: Evolution of validation loss on augmented models.

Table 5.3 shows the results of every model. It shows the model architecture, loss and configuration

58 Project development

in the first 3 columns; best validation loss in the 4th column measured in the loss metric; then, it

shows the MSE, DSSIM and PSNR metric on test set. In each column, result is shown in bold-style.

However, in one column the best value is formatted in bold-blue and the others in bold. This column is

the test metric of the trained loss. We realize our proposed method (RES-UNET) outperforms

quantitatively every model else regarding every test metric. This method is the best trained

with both loss functions. To continue, if we focus in comparison of regularization we can observe one

clear fact: on one hand L2 regularization is helpful when the model optimizes DSSIM loss

and on the other hand this L2 regularization decreases the performance for methods that

optimizes MSE loss. Deeper conclusion and comparisons will be made in section 5.5.

Model loss L2 Val loss MSE DSSIM PSNR

Residual U-NET MSE No 3.58e-05 3.44e-05 2.95e-03 44.9

Shallow RES full-pre MSE No 1.55e-04 1.51e-04 6.75e-03 38.6

Skip connection CAE MSE Yes 2.69e-04 2.25e-04 1.65e-02 36.8

Skip connection CAE MSE No 3.10e-04 2.99e-04 9.36e-03 35.7

Myronenko CAE MSE No 3.38e-04 3.27e-04 1.57e-02 35.1

Shallow RES full-pre MSE Yes 3.72e-04 3.24e-04 1.14e-02 35.2

Residual U-NET DSSIM No 1.50e-03 7.49e-05 1.44e-03 41.8

Shallow RES full-pre DSSIM Yes 4.42e-03 2.34e-04 3.70e-03 36.7

Shallow RES full-pre DSSIM No 4.19e-03 2.88e-04 4.14e-03 35.9

Myronenko CAE DSSIM No 4.39e-03 6.69e-04 4.31e-03 32.1

Skip connection CAE DSSIM Yes 4.82e-03 4.08e-04 4.38e-03 34.2

Skip connection CAE DSSIM No 4.90e-03 4.57e-04 4.71e-03 33.7

Table 5.3: Validation and Test metrics for experiments with data augmentation.

Qualitative brain MRI reconstructions made by models trained with data augmentation are

shown in figure 5.22 for methods which optimize MSE and in figure 5.23 for methods which optimizes

DSSIM. We choose a fully-augmented image to test the Reconstruction capability of the methods.

Residual U-Net, the proposed method, provides the best reconstruction both for MSE and DSSIM

loss models, showing that it is able to remove noise, dropout and blurring and being able to fill the

blanked out region. We can see how this model is the more accurate filling the blanked-out region,

being the unique which gives a good reconstruction of the limit region between the skull and the brain.

Most of the remaining models are also prominent in all reconstruction tasks except filling blanked-out

regions.

Deeper conclusions are going to be discussed in the nest Results Section 5.5.

5.4. Experiment 59

Figure 5.22: Reconstruction of corrupted input made by MSE-Augmented methods. Green-framed-
image is the one chosen as the best reconstruction.

Figure 5.23: Reconstruction of corrupted input made by DSSIM-Augmented methods. Green-framed-
image is the one chosen as the best reconstruction.

60 Project development

5.5 Results

To obtain statistical significance for the metric difference to support our conclusions, we computed the

t-test for each pair of methods. We are comparing the different models with augmentation, through

it test measures, so the t-test should be the dependent t-test due to the test samples are the same for

all models. We applied a pairwise-models dependent sample t-test (figure 5.1) with 4823 degrees of

freedom, and the result is shown in figure 5.24 where pink, purple and black boxes represent significant

difference between the methods. Due to big the biog size of the test set, most of the differences are

significant even though they are small. Due to this significance, our results and conclusions are

supported by this statistical test.

t =
MSE1 −MSE2√

SD√
N

SD =

√√√√∑Ntest
i (MSE1i −MSE2i) −

∑Ntest
i (MSE1i

−MSE2i
)2

Ntest

Ntest − 1
(5.1)

Figure 5.24: P-values for t-test pairwise comparison.

First of all, we would like to mention the obvious advantages of data augmentation. Experiments

without data augmentation show us that the augmentation step could be critical in deep learning

image projects. Besides, this stage provided us a first feedback about how c̈lassicalärchitectures

worked. However, the big burden of the project relies on the experiments with data augmentation.

The first big conclusion of the project is that Residual U-net, our proposed architecture, outper-

forms the only residual or only skip-connection based ones. Combining the aforementioned benefits of

residual blocks and skip connections, we develop a model which is able to get information about the

structure of the brain. We measured this in a quantitative way, the table 5.3 show all the test metrics

(which are also shown in a summarized and more visual way in figure 5.25), and the t-test post-hoc

method (fig. 5.24) provide us statistical significance for this differences on the metrics. We have also

checked it in a quantitative way in figures 5.22 and 5.23, where we can see that structural information

is used when filling the black region.

5.5. Results 61

We also notice that all methods are outstanding (both MSE and DSSIM) for removing

noise and fixing image blur, all of them being able to perform a very good reconstruction in

which neither blur nor noise is appreciated. However, there are difference between architectures

reconstructing the dropped-out pixels. Shallow Residual architecture (both for DSSIM and MSE

loss and also both L2 and without L2), provide reconstruction with some little dark dots in them as

we can see in both figures for Shallow RES models. On the contrary, Residual U-Net, Myronenko and

Skip Connection CAE are able to totally reconstruct the dropped-out pixels.

Finally, a critical process in reconstruction is the filled of blanked-out regions. Focusing on the

difference between architectures, we observe that Residual U-Net is the more accurate one if we

observe the models trained with MSE in figure 5.22. It is the only model who is able to estimate a good

shape for the region between the skull and the brain and simulate a kind of brain limit. This model is

followed in accuracy by the Shallow Residual models (Both for L2 and no-L2 regularization). This 2

methods, although with lower qualitative accuracy, try to reconstruct a darker part belonging to the

limit brain-skull and a lower brighter part belonging to the brain. The remaining MSE-loss-methods

make a blurred reconstruction of the blanked-out region for this example.

However, the reconstruction of blanked-out regions is the main difference between

models trained with MSE and with DSSIM loss. DSSIM models show as good reconstruction as

MSE models with blurring, noise and dropout, thus, main difference is observed in the reconstruction

of blancked-out parts. If we compare the same model in figures 5.22 and 5.23, we notice the best

brain structure reconstruction made in DSSIM models. Residual U-Net is still the best and the

structure reconstructed is better for the model trained with DSSIM than trained with MSE loss.

But reconstruction improvement is more visible in the other models. The same models but trained

with DSSIM loss provides better reconstruction based on the structural information of the brain.

The reconstruction made by DSSIM-loss models show a big effort to simulate the skull-brain limit,

painting kind of a dark line, instead of the same MSE-loss models which paint a big blurred square.

This improvement is specific showed in the figure 5.23, where Shallow Residual models shows the

better skull-brain limit reconstruction, but also it is seen in Myronenko and Skip Connection+L2

CAE.

As a final thought, we notice qualitatively that L2 regularization has a better effect when

DSSIM loss is used. We can see in figure 5.23 that Shallow residual+L2 works better than Shallow

residual and also Skip Connection CAE+L2 provides better reconstruction than Skip Connection CAE

without regularization. In contrast, no difference in shown between these pairs when MSE is optimized

(5.22).

62 Project development

Figure 5.25: Comparison of all augmented-model test metrics.

Chapter 6

Conclusion and Outlook

6.1 Conclusion

First of all, we want to highlight the deep research of the state of the art, in which we have made a

review of pipelines, methods and applications. We want that chapter to be seen as a review paper,

where we have followed the steps that are made in classical review papers.

The deeper discussion of the results of every experiment is already done along the last section

5.4.5 while we made the experiments. We also summarized it in section 5.5. Therefore, we can

conclude that the combination of skip-connections and residual building blocks in shallow-

autoencoders have significant benefits in the reconstruction of magnetic resonance images

of the healthy brain, quantitatively and qualitatively (see Table 5.3 and Figures 5.22, 5.23,

5.24 and 5.25). We can also obtain other conclusions on other aspects. Every method, regarding every

architecture and loss function used, is outstandingly able to remove Gaussian noise and the blur in a

brain image. Besides, architectures with skip connections (RES-UNET and skip-connection CAE) and

with dropout regularization (Myronenko) fix excellently the dropped-out pixels. Although dropout

reconstruction is also very good for Shallow residual models, we can see a few dropped-out pixels were

not reconstructed.

To continue, regarding the reconstruction of blanked-out regions, the proposed method and the

shallow residual ones are the best in this task. Besides, reconstructions made with DSSIM loss

outperforms the ones made with the methods trained with MSE loss. Methods trained with DSSIM

loss are better at the task of reconstructing the real structure and shape. MSE methods are more

prone to predict blurred gray pixels. Finally, the conclusion about the use of L2 regularization that

it works better when DSSIM loss is used. Although L2 leads the MSE methods to lightly avoid

to reconstruct a regular gray cloud of pixels in blanked-out regions, the effect is more noticeable in

DSSIM methods, in which we can see that there is a better approach to simulate the brain structure.

63

64 Conclusion and Outlook

This happens because DSSIM tries to reduce difference in the structural information instead of the

pixelwise difference.

Finally, as a Master’s Thesis on Data Science, we also have focussed our project in keep the good

habits of Data Science projects. We have follow the Crisp-DM stages and the classical data life-cycle,

keeping in mind the good behaviour with the data.

6.2 Future work

Given the timescales of the project and the extension of the report, other planned experiments have

been out of the scope of the project. There are three groups of experiments that we wanted to

do: experiments of explainable AI (XAI) to explore the behavior of our models, experiments of

potential applications of our trained models, and finally experiments with other alternative models

and architectures.

The first group of futures experiments are about XAI. For explaining the difference of behaviour

between our residual CAE, skip-connections CAE and residual U-NET CAE, we will propose a visual

exploration of the activation of feature maps of each layer, as it is made in [42] an in other resources. In

addition, we could also explore the latent space visually and with dimensionality reduction techniques.

With this experiment we would dive deep into the differences in reconstruction between residual and

skip connections architectures. Another potential experiment to explore deeper in the qualitative

results of our method is analyze the reconstruction of the images in the sides of the brain. As we

have included more relevant images than the state of the art projects made, our hypothesis is that

our model would reconstruct better the images of the edges of the brain.

The second group of future experiments is related to the potential applications of the trained meth-

ods. First, one possible application is the detection of brain disorders. This is based on the Pinaya

et. al. research [19]. Our autoencoder defines a normative model of the healthy brain structure and

the resonances with disorders would be outliers in the distribution. Therefore, a measure distance

should be calculated between the input and output, and, if the input image has some disorder, this

distance would be higher than a threshold (or maybe we could implement a supervised or unsuper-

vised method with several distance measures). Second, another potential application would be the

improvement of brain MRI automatic analysis pipelines. For instance, we can explore the benefits

in brain segmentation pipelines. We could use the DeepBrain network to segment our images. We

would set the brain mask from the original images made by DeepBrain as the ground truth. Then we

calculate the DeepBrain mask from the randomly corrupted input, and also the DeepBrain mask from

our reconstruction of the corrupted input. Then we calculate the differences or accuracy between the

brain mask from the corrupted image and the ground truth and also between the brain mask from the

reconstructed image and the ground truth. Finally, we compare both measures with the hypothesis

https://towardsdatascience.com/using-skip-connections-to-enhance-denoising-autoencoder-algorithms-849e049c0ac9

6.2. Future work 65

that the latter accuracy should be higher than the former. So the steps would be: (1) Get mask from

original brain as GT (2) get mask from corrupted mri (3) get mask from reconstructed input (4) get

metrics accuracy(mask, corrupted-mask) and accuracy(mask, reconstructed-mask) (5) Compare them.

The last group of experiments includes those related to training different hyperparameter configu-

ration, new models and architectures. First, we could implement deeper models and analyze the effects

of using more layers. We could also use transfer learning, using some pretrained network with another

set of images (like ResNet-50 trained with CIFAR). Last, but not least, we must use other families of

models, which are based on another theoretical concepts instead of dimensionality reduction. We are

regarding to use generative models. Generative models are on the edge, becoming more popular in

many fields. Therefore, using Generative Adversarial Networks or Variational Autoencoders, could be

a useful future approach to capture the distribution of the structure of a normal brain.

Bibliography

[1] David C Preston. Magnetic Resonance Imaging (MRI) of the Brain and Spine: Basics. Case

Western Reserve University, 2006.

[2] José V Manjón, Pierrick Coupé, Luis Mart́ı-Bonmat́ı, D Louis Collins, and Montserrat Robles.

Adaptive non-local means denoising of mr images with spatially varying noise levels. Journal of

Magnetic Resonance Imaging, 31(1):192–203, 2010.

[3] Andriy Myronenko. 3d mri brain tumor segmentation using autoencoder regularization. In

International MICCAI Brainlesion Workshop, pages 311–320. Springer LNCS, 2018.

[4] José V. Manjón, José E. Romero, Roberto Vivo-Hernando, Gregorio Rubio, Fernando Aparici,

Maria de la Iglesia-Vaya, Thomas Tourdias, and Pierrick Coupé. Blind mri brain lesion in-

painting using deep learning. In Ninon Burgos, David Svoboda, Jelmer M. Wolterink, and Can

Zhao, editors, Simulation and Synthesis in Medical Imaging, pages 41–49, Cham, 2020. Springer

International Publishing.

[5] Camilo Bermudez, Andrew J Plassard, Larry T Davis, Allen T Newton, Susan M Resnick, and

Bennett A Landman. Learning implicit brain mri manifolds with deep learning. In Medical

Imaging 2018: Image Processing, volume 10574, page 105741L. International Society for Optics

and Photonics, 2018.

[6] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image

recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), June 2016.

[7] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomed-

ical image segmentation, 2015.

[8] Sakshi Patel, Bharath K P, Balaji Subramanian, and Rajesh Muthu. Comparative study on

histogram equalization techniques for medical image enhancement. In Soft Computing for Problem

Solving, pages 657–669, 01 2020.

[9] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-

lutional neural networks. In Advances in neural information processing systems, pages 1097–1105,

2012.

66

BIBLIOGRAPHY 67

[10] Daiki Tamada. Noise and artifact reduction for mri using deep learning. arXiv, abs/2002.12889,

2020.

[11] Mohammed T Abou-Saleh. Neuroimaging in psychiatry: an update. Journal of Psychosomatic

Research, 61(3):289–293, 2006.

[12] Andre F Marquand, Iead Rezek, Jan Buitelaar, and Christian F Beckmann. Understanding

heterogeneity in clinical cohorts using normative models: beyond case-control studies. Biological

psychiatry, 80(7):552–561, 2016.

[13] Janaina Mourão-Miranda, David R Hardoon, Tim Hahn, Andre F Marquand, Steve CR Williams,

John Shawe-Taylor, and Michael Brammer. Patient classification as an outlier detection problem:

an application of the one-class support vector machine. Neuroimage, 58(3):793–804, 2011.

[14] Changhee Han, Leonardo Rundo, Ryosuke Araki, Yujiro Furukawa, Giancarlo Mauri, Hideki

Nakayama, and Hideaki Hayashi. Infinite brain tumor images: Can gan-based data augmen-

tation improve tumor detection on mr images? In Proc. Meeting on Image Recognition and

Understanding (MIRU 2018), Sapporo, Japan, 2018.

[15] Florian Knoll, Jure Zbontar, Anuroop Sriram, Matthew J Muckley, Mary Bruno, Aaron Defazio,

Marc Parente, Krzysztof J Geras, Joe Katsnelson, Hersh Chandarana, et al. fastmri: A publicly

available raw k-space and dicom dataset of knee images for accelerated mr image reconstruction

using machine learning. Radiology: Artificial Intelligence, 2(1):e190007, 2020.

[16] Errol M Bellon, E Mark Haacke, Paul E Coleman, Damon C Sacco, David A Steiger, and Ray-

mond E Gangarosa. Mr artifacts: a review. American Journal of Roentgenology, 147(6):1271–

1281, 1986.

[17] MA Balafar. Review of noise reducing algorithms for brain mri images. methods, 10:11, 2012.

[18] Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimensionality of data with neural

networks. science, 313(5786):504–507, 2006.

[19] Walter HL Pinaya, Andrea Mechelli, and João R Sato. Using deep autoencoders to identify

abnormal brain structural patterns in neuropsychiatric disorders: A large-scale multi-sample

study. Human brain mapping, 40(3):944–954, 2019.

[20] Bjoern H Menze, Andras Jakab, Stefan Bauer, Jayashree Kalpathy-Cramer, Keyvan Farahani,

Justin Kirby, Yuliya Burren, Nicole Porz, Johannes Slotboom, Roland Wiest, et al. The mul-

timodal brain tumor image segmentation benchmark (brats). IEEE transactions on medical

imaging, 34(10):1993–2024, 2014.

[21] Gihyun Kwon, Chihye Han, and Dae-shik Kim. Generation of 3d brain mri using auto-encoding

generative adversarial networks. In International Conference on Medical Image Computing and

Computer-Assisted Intervention, pages 118–126. Springer, 2019.

68 BIBLIOGRAPHY

[22] Xiao-Jiao Mao, Chunhua Shen, and Yu-Bin Yang. Image restoration using convolutional auto-

encoders with symmetric skip connections. arXiv preprint arXiv:1606.08921, 2016.

[23] Lovedeep Gondara. Medical image denoising using convolutional denoising autoencoders. In

2016 IEEE 16th International Conference on Data Mining Workshops (ICDMW), pages 241–

246. IEEE, 2016.

[24] Maosong Ran, Jinrong Hu, Yang Chen, Hu Chen, Huaiqiang Sun, Jiliu Zhou, and Yi Zhang. De-

noising of 3d magnetic resonance images using a residual encoder–decoder wasserstein generative

adversarial network. Medical image analysis, 55:165–180, 2019.

[25] Ben A Duffy, Wenlu Zhang, Haoteng Tang, Lu Zhao, Meng Law, Arthur W Toga, and Hosung

Kim. Retrospective correction of motion artifact affected structural mri images using deep learning

of simulated motion. MIDL 2018 Conference, 2018.

[26] Pierrick Coupé, Thomas Tourdias, Pierre Linck, José E. Romero, and José V. Manjón. Lesion-

brain: An online tool for white matter lesion segmentation. In Wenjia Bai, Gerard Sanroma,

Guorong Wu, Brent C. Munsell, Yiqiang Zhan, and Pierrick Coupé, editors, Patch-Based Tech-

niques in Medical Imaging, pages 95–103, Cham, 2018. Springer International Publishing.

[27] Théo Estienne, M. Lerousseau, M. Vakalopoulou, Emilie Alvarez Andres, E. Battistella, Alexan-

dre Carré, S. Chandra, S. Christodoulidis, M. Sahasrabudhe, Roger Sun, C. Robert, Hugues

Talbot, N. Paragios, and E. Deutsch. Deep learning-based concurrent brain registration and

tumor segmentation. Frontiers in Computational Neuroscience, 14, 2020.

[28] E. M. Yu and M. R. Sabuncu. A convolutional autoencoder approach to learn volumetric shape

representations for brain structures. In 2019 IEEE 16th International Symposium on Biomedical

Imaging (ISBI 2019), pages 1559–1562, 2019.

[29] Spyridon Bakas, Mauricio Reyes, András Jakab, Stefan Bauer, Markus Rempfler, Alessandro

Crimi, Russell Takeshi Shinohara, Christoph Berger, Sung Min Ha, Martin Rozycki, Marcel

Prastawa, Esther Alberts, Jana Lipková, John B. Freymann, Justin S. Kirby, Michel Bilello,

Hassan M. Fathallah-Shaykh, Roland Wiest, Jan Kirschke, Benedikt Wiestler, Rivka R. Colen,

Aikaterini Kotrotsou, Pamela LaMontagne, Daniel S. Marcus, Mikhail Milchenko, Arash Nazeri,

Marc-André Weber, Abhishek Mahajan, Ujjwal Baid, Dongjin Kwon, Manu Agarwal, Mahbubul

Alam, Alberto Albiol, Antonio Albiol, Alex Varghese, Tran Anh Tuan, Tal Arbel, Aaron Avery,

Pranjal B., Subhashis Banerjee, Thomas Batchelder, Kayhan N. Batmanghelich, Enzo Battistella,

Martin Bendszus, Eze Benson, José Bernal, George Biros, Mariano Cabezas, Siddhartha Chan-

dra, Yi-Ju Chang, and et al. Identifying the best machine learning algorithms for brain tumor

segmentation, progression assessment, and overall survival prediction in the BRATS challenge.

CoRR, abs/1811.02629, 2018.

[30] Adrian Tousignant, Paul Lemâıtre, Doina Precup, Douglas L. Arnold, and Tal Arbel. Prediction

of disease progression in multiple sclerosis patients using deep learning analysis of mri data. In

BIBLIOGRAPHY 69

M. Jorge Cardoso, Aasa Feragen, Ben Glocker, Ender Konukoglu, Ipek Oguz, Gozde Unal, and

Tom Vercauteren, editors, International Conference on Medical Imaging with Deep Learning, vol-

ume 102 of Proceedings of Machine Learning Research, pages 483–492, London, United Kingdom,

08–10 Jul 2019. PMLR.

[31] Mohammadi Fatemeh. Convolutional Autoencoder for Studying Dynamic Functional Brain Con-

nectivity in Resting-State Functional MRI. PhD thesis, Concordia University, April 2019.

[32] Fausto Milletari, Nassir Navab, and Seyed-Ahmad Ahmadi. V-net: Fully convolutional neural

networks for volumetric medical image segmentation. In 2016 fourth international conference on

3D vision (3DV), pages 565–571. IEEE, 2016.

[33] Christopher M Bishop et al. Neural networks for pattern recognition. Oxford university press,

1995.

[34] Masafumi Kidoh, Kensuke Shinoda, Mika Kitajima, Kenzo Isogawa, Masahito Nambu, Hiroyuki

Uetani, Kosuke Morita, Takeshi Nakaura, Machiko Tateishi, Yuichi Yamashita, et al. Deep

learning based noise reduction for brain mr imaging: tests on phantoms and healthy volunteers.

Magnetic Resonance in Medical Sciences, pages mp–2019, 2019.

[35] Motohide Kawamura, Daiki Tamada, Satoshi Funayama, Marie-Luise Kromrey, Shintaro

Ichikawa, Hiroshi Onishi, and Utaroh Motosugi. Accelerated acquisition of high-resolution

diffusion-weighted imaging of the brain with a multi-shot echo-planar sequence: Deep-learning-

based denoising. Magnetic Resonance in Medical Sciences, pages tn–2019, 2020.

[36] Nishant Chauhan and Byung-Jae Choi. Denoising approaches using fuzzy logic and convolutional

autoencoders for human brain mri image. International Journal of Fuzzy Logic and Intelligent

Systems, 19(3):135–139, 2019.

[37] PM Johnson and M Drangova. Motion correction in mri using deep learning. In Proceedings of

the ISMRM Scientific Meeting & Exhibition, Paris, volume 4098, 2018.

[38] Irida da Cunha. El trabajo de fin de grado y de máster: Redacción, defensa y publicación. Editorial

UOC, 2016.

[39] Rüdiger Wirth and Jochen Hipp. Crisp-dm: Towards a standard process model for data mining. In

Proceedings of the 4th international conference on the practical applications of knowledge discovery

and data mining, pages 29–39. Springer-Verlag London, UK, 2000.

[40] Priyanka Garg and Trisha Jain. A comparative study on histogram equalization and cumulative

histogram equalization. International Journal of New Technology and Research, 3(9), 2017.

[41] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual

networks. In European conference on computer vision, pages 630–645. Springer, 2016.

70 BIBLIOGRAPHY

[42] Lian-Feng Dong, Yuan-Zhu Gan, Xiao-Liao Mao, Yu-Bin Yang, and Chunhua Shen. Learning

deep representations using convolutional auto-encoders with symmetric skip connections. In 2018

IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages

3006–3010. IEEE, 2018.

	Abstract
	Resumen
	Content
	List of Figures
	List of Tables
	Introduction
	Problem overview and relevance
	MRI general problems
	MRI Image enhancement
	Noise and artifact reduction with Deep Learning
	Our approach

	Personal motivation

	State of art: related works
	Overview
	Related works
	Volumes or slices?
	Network architectures for images
	Alexnet
	Residual networks
	Other skip-connection-based architectures
	U-Net and V-Net

	Summary of related works
	New paper-discovery frameworks

	Scope
	Hypothesis
	Primary aims
	Secondary aims

	Planning and Methodology
	Research plan
	Methodology

	Project development
	Pipeline and overview
	Dataset
	Exploration and preprocessing
	Profile selection and orientation checking
	Relevant slice selection

	MRI Preprocessing

	Data Split
	Experiment
	Environment
	Data Generator with augmentation
	Data Augmentation
	Architectures definition
	Shallow Residual Autoencoders
	Myronenko Autoencoder
	Skip Connection Convolutional Autoencoder
	Residual U-NET Autoencoder

	Experiments
	Metrics
	Without data augmentation
	With data augmentation

	Results

	Conclusion and Outlook
	Conclusion
	Future work

	Bibliography

