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Resum del Treball 

La incidència d’osteoporosi és major entre la població HIV+, per aquest motiu 

se’ls realitzen proves DEXA (densitometria òssia) de manera rutinària. Aquest 

treball s’ha centrat en estudiar una base de dades real, fruit de realitzar 

aquests anàlisis a pacients amb HIV. Les dades procedeixen de pacients que 

realitzen el seguiment de la malaltia a la fundació “Lluita contra la SIDA” 

(Badalona). 

És comú que les variables en un estudi mèdic no siguin independents, sinó 

que estiguin fortament correlacionades. Per això el primer apartat del treball 

s’ha centrat en purificar la base de dades i descobrir correlacions entre 

variables mitjançant gràfics de correlacions i mètodes més innovadors com els 

models gràfics (GGM i MGM). També s’ha aplicat un anàlisi de reducció de la 

dimensionalitat utilitzant components principals. 

En aquest primer punt s’ha corroborat la rellevància que té el gènere en 

l’estudi. En conseqüència s’ha realitzat tot el treball posterior per cadascun 

dels gèneres per separat. Els models gràfics apunten a que la importància de 
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les variables relacionades amb les vèrtebres és trivial a l’hora de calcular el 

mínim T-score (i per tant, a l’hora de diagnosticar osteoporosi). 

La segona part de l’estudi s’ha centrat en generar models predictius capaços 

de diagnosticar osteoporosis sense utilitzar els marcadors clàssics. S’han 

aplicat varis algoritmes de Machine Learning (Random Forests, SVM, k-NN) i 

s’ha generat un model capaç de classificar noves observacions amb una 

sensibilitat i especificitat del ~80%. 

  Abstract 

Osteoporosis incidence is notoriously larger in the HIV-positive population. For 

this reason, DEXA analysis (bone densitometry tests) are conducted as a 

control technique. This work focuses on studying a real DEXA database, 

retrieved from HIV+ patients doing medical checkups in the “Lluita contra la 

SIDA Foundation”, in Badalona. 

Medical databases often suffer from strong correlations between variables. For 

this reason, the first chapter of the study has been destinated to purify the 

database and discover said relationships, via correlation plots and more 

innovative techniques such as graphical models (GGMs and MGMs). Also, a 

dimensionality reduction analysis has been executed using principal 

components. 

This first part of the study corroborated the relevance of the gender variable. 

All the subsequent analysis has been conducted separately for men and 

women. Also, graphical models suggested that vertebral variables have a 

rather weak importance in determining the minimum T-score (and thus, 

predicting osteoporosis). 

The second part of the study has focused on generating a predictive model 

with the ability to diagnose osteoporosis without using its classical indicator 

variables. After modelling with various Machine Learning algorithms (Random 

Forests, SVMs, k-NNs), a classificatory model has been generated, reporting 

a sensitivity and specificity of ~80%. 
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1. Introduction 

1.1 HIV and common comorbidities 

HIV is a worldwide-spread viral disease that affects the functionality of the 

immune system by destructing leucocytes. Therefore, infected patients are 

unable to activate an immune response and are more prone to suffer other 

viral/bacterial infections along with some types of cancers. The most advanced 

stage of the disease is known as AIDS, although not all HIV-infected patients will 

develop it. 

Nowadays there is no healing treatment for HIV, and the medical approaches 

focus on decreasing the viral load and the reproduction rates. The chemicals 

used to achieve those lines of therapy are known as antiretrovirals (ARVs) and 

are classified in 7 groups depending on their molecular targets. 

In 2019, 1,7 million people got infected and 700.000 died of HIV-related diseases, 

according to UNAIDS (UNAIDS, 2020). The latest estimations estate that there 

are 38 million people living with the infection, of which only 25,4 (about a 66%) 

are following an ARV treatment. 

The knowledge around the disease and its possible treatments has seen an 

exponential increase in the last decades. Early detection and a medical follow-

up, along with the discovery of new treatments, has supposed a big improvement 

in both the quality of life and longevity of the patients. In 2019, the deaths by HIV-

related diseases were roughly a 60% of the number of deaths in 2010 (UNAIDS, 

2020). 

This improvement in life longevity lead doctors and scientists to discover a 

number of comorbidity disorders associated with the ageing of HIV-infected 

patients. Recent studies (Finnerty, Walker-Bone, & Tariq, 2017; Negredo et al., 

2018) infer a direct relation with the presence of the disease and various lean, fat 

and bone mass anomalies, likely caused by the constant inflammation of the 

tissues and as a side effect of the ARV drugs (Compston, 2016). 

Patients with low bone density have a higher risk of suffering from vertebral, hip 

bone and limb fractures (Premaor & Compston, 2020). Women aged 45 to 56 

following some ARV treatment seem to be a high-risk population, because of the 

decrease in the estrogen levels due to menopause. 

Also, there seems to be a positive relationship between low bone density (either 

osteopenia or osteoporosis) and the use of antiretroviral drugs: patients lose 

between a 2 and a 6% of bone mineral density (BMD) in the first years of 

treatment (Compston, 2016). 
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Appearance of muscular dystrophy is 1,1 to 33,5 times higher in patients with HIV 

(Oliveira, Borsari, Webel, Erlandson, & Deminice, 2020), but HIV is still not 

considered a risk factor. 

ARV treatment has also been linked to lipodystrophy. Patients usually show lipidic 

accumulation in abdomen, chest, and neck (lipohypertrophy), while showing 

lipidic loss in face, limbs, and waist (lipoatrophy). It is also common the 

appearance of lipomas (Guzman & Vijayan, 2020). 

 

1.2 State of the art and study justification 

Health related databases usually contain mixed data (categoric, numeric…) of 

uncommon origins (routine controls, medical prescriptions…) and great 

complexity. Also, number of variables tend to be large respect the number of 

observations (i.e., a blood test from a single patient contains over 80 variables 

analyzed). Therefore, preparation, analysis and global interpretation of the data 

is a complex duty and requires modern algorithms (usually based in machine 

learning) to be achieved. 

When it comes to interpreting results of DEXA analysis of HIV-positive patients, 

as is the case in this study, data is usually looked over and only the stablished 

marker variables are considered to diagnose a series of comorbidities in the 

patients (i.e., minTscore for osteoporosis, appendicular lean mass for LMM, etc). 

This study will be conducted under the hypothesis that a deeper exploratory 

analysis can be useful to further understand the relationships between variables, 

along with detecting possible dynamics that are overlooked in the classical 

studies.  

Prior studies tried to deepen in the database complexity via dimensionality 

reduction (PCA) and regression/classification modeling with Random Forest 

approaches. 

The scientific community has been strongly focused in discovering new 

algorithms of increased complexity, that could study conditional correlations 

between variables of different natures (as is the case in this study). Recently, a 

method has been reported (Altenbuchinger, Weihs, Quackenbush, Grabe, & 

Zacharias, 2020; Sedgewick et al., 2019) claiming to be able to interpret 

multimodal data and thus opening some boundaries in the medical-statistical 

field. In this study, the data will be analyzed under some ML methods, including 

the vanguardist Gaussian Graphical Models and Mixed Graphical Models, aiming 

to discover some relationships hitherto unknown. 
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Results are expected to help understand the synergies between variables and 

the comorbidity markers, opening a door to more accurate disease diagnose and 

detection. 

 

1.3 Main objectives 

Three main objectives are expected to be covered in the extension of this study. 

They are: 

1. Study the complexity of the database, the correlations between 

variables using non-supervised models and perform a 

dimensionality reduction approach. 

a. Determine how missing data, typos, repeated values and outliers 

have to be treated. 

b. Univariate analysis of the dataset: descriptive statistics. 

c. Establish the underlying relationships and correlations between the 

variables, via correlation plots and graphical models. 

d. Determine the importance of the gender variable. 

e. Dimensionality reduction via Principal Component Analysis. 

2. Design of a predictive model for osteoporosis using the variables of 

the database. 

a. Study of the modeling options available for our type of variables and 

application of the best model/s. 

b. Application of regression and classification models over the 

osteoporosis variables (ampliation work: model LMM and 

lipodystrophy). 

c. Selection of the model with best performance. 

3. Generate a dynamic report in Rmarkdown format, that allows not only 

to replicate the analysis but to perform it over a new dataset.  

 

1.4 Work line 

A deep browse in various search engines (Pubmed, Scopus, Web of Science…) 

has been conducted to determine the State of the Art about statistical methods. 

Most authors address their studies conducting an exploratory analysis, that leads 

to a directed analysis to obtain results to their hypothesis. This is the structure 

that has been followed in this study. 

The first step in this study has been to load the data into the statistical software 

and transform it for the exploratory analysis. This initial step focused on 

addressing missing values, outliers, possible typos, merge databases, calculate 

missing variables, etc. The objective has been to have a consistent database to 

perform the exploratory analysis, which is the second step. Also, one of the major 
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concerns has been solved in this first step, which was whether genders had to be 

treated as a single group or separately. 

In the exploratory analysis a descriptive study of our variables has been 

performed, studying their normality, distribution, linear correlations, etc. A 

dimensionality reduction approach has been conducted, using Principal 

Components Analysis. This method has been selected for being the most used 

in literature. 

Relationship between variables has been furtherly studied using both directed 

and undirected graphical models. 

Finally, many machine learning algorithms have been selected to infer sample 

classification and regression based on subsets of the database variables. 

Random Forests, Support Vector Machines and k-Nearest Neighbors have been 

performed. Classical models such as linear and logistic regressions have been 

omitted in favor of the more powerful methods.  

 

1.5 Workplan 

The first step of this project is reading the state of the art, followed by data 

incorporation and processing. Once the general context has been established, 

future work has been divided in three main steps: 1) Non-supervised analysis; 2) 

Statistical models for osteoporosis and 3) formatting the Rmakrdown document. 

The first and second objectives have been designed as follows: 

1. Non-supervised analysis     14 days 

a. Bibliographic research about the state of the art  7 days 

b. Data filtering and processing     2 days 

c. Descriptive statistics      2 days 

d. Correlation plots       2 days 

e. Bibliographic research about unsupervised methods  2 days 

f. Unsupervised analysis     7 days 

g. Gender effect study      7 days 

h. Methods and results annotation     9 days 

 

2. Statistical models for osteoporosis    42 days 

a. Bibliographic research about the best models  7 days 

b. Database division in train and test   1 day 

c. Model design and application over osteoporosis 20 days 

d. Methods and results annotation    15 days 

e. Models over LMM and lipodystrophy (ampliation) 20 days 

f. Conclusions       20 days 
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The third objective (3. Dynamic report) has been designed to be performed side 

by side with the 2.f point, with a length of 20 days. 

When the statistical part of the project ended a last milestone started: the 

redaction of the paper. 

4. Paper redaction       41 days 

a. Choosing a copyright license    1 day 

b. State of the art      3 days 

c. Introduction and background    8 days 

d. Materials and methods     8 days 

e. Results       8 days 

f. Conclusions       16 days 

g. Abstract       16 days 

h. Bibliography management     8 days 

i. Annexes       8 days 

j. Glossary       8 days 

k. Figure and images translation    8 days 

l. Last reading       13 days 

m. Visual presentation      17 days 

 

A Gantt graphic of the detailed milestones and the corresponding partial 

evaluations can be seen in the Figure 1. In addition to the upper information, the 

following image contains the monitoring reports and the PACs (Continuous 

Evaluation Tests). 

Weak colors inside a group indicate that said milestones are designed as 

ampliation work. Completion of additional milestones is strongly dependent to the 

availability of time. 

Modeling is the most delicate part of the study, and the one that is more likely to 

suffer from time deviances. For this reason, studying the other two comorbidities 

has been designed as ampliation work. 

There are two determining moments in the calendar: the 25th of October (ending 

of the non-supervised analysis and starting of the data modeling) and the 1st of 

December (paper redaction, which requires the modeling to be completed). 
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1.6 Final products 

This final project retrieves a ML based model to predict osteopenia/osteoporosis 

presence in HIV patients based on their muscular and fat values. It also increases 

the knowledge about the relationships that exist between muscular and bone-

related variables, along with a practical application of vanguard methods such as 

the Gaussian and Mixed graphical models. 

As a side product, a dynamic report is generated (Rmarkdown format), to 

replicate the statistical study over the same data or over new observations. 

 

Figure 1: Gantt graphic. Diagram detailing the objectives and milestones followed in the project, 

generated using the freeware “GanttProject”. 
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1.7 Chapter description 

Chapter 2: The “DEXA” database gives some background about the database 

and its variables. This chapter is designed to introduce some biological concepts 

to the reader and provide him with all the technical information to follow the work 

done in the study. Along with the theorical concepts, the origin of the database 

and its nature are explained, focusing on the different comorbidities and the way 

they are calculated with the variables of the database. 

Chapter 3: Statistical background will introduce the reader to the concepts of 

graphical models, machine learning, random forests, support vector machines 

and k-Nearest neighbor algorithms. This chapter gives a theorical background 

about the models used in the study. 

The following two chapters, 4: Materials and methods and 5: Results are 

designed to follow the structure of any scientific paper. The first chapter contains 

the information of the steps and analysis taken in the study, while the later returns 

the results of said operations. Both chapters follow a side-by-side structure, 

starting by the univariate study and ending with the directed analysis. 

Chapter 6: Conclusions closes the technical part of the study, summing up the 

most relevant information that can be obtained of the previous chapters. All the 

hypothesis and products obtained are detailed in this chapter. Not only the study-

related conclusions are included in this section, but also a generic view about the 

work done, timelines and personal growth is provided. 

Chapter 7: Glossary gives brief descriptions of the most relevant terms of the 

study. I focused on including the statistical tests (such as the T-test, or Shapiro-

Wilk), statistical models (PCA, random forest, SVM…) and performance-related 

terms (sensitivity, specificity, kappa…). 

Chapter 8: Bibliography contains the relation of all the books and papers used 

to retrieve information. They have been indexed following the American 

Psychological Association (6th edition) citation style. 

Chapter 9: Annexes is a section dedicated to all those materials that are not 

required to follow the study but provide extra information and/or transparency to 

the obtained results. Summary tables and graphics excluded from the main text 

can be found in the annexes (also, graphics excluded from the annexes can be 

retrieved by contacting the author). 
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2. The “DEXA” database 

2.1 Origin of the data and variables 

Osteoporosis is one of the most well-established comorbidities associated with 

HIV and its detection and monitoring is highly protocolized. For this reason, 

patients with HIV usually are also under control for bone-related diseases and 

are periodically exposed to a Dual-energy X-ray absorptiometry (DEXA). 

DEXA is an imaging technique that uses radiation to measure the bone mineral 

density in various body zones. Several bones are measured in every screening, 

usually vertebrae (T1 to T4), hip bone and femur (trochanter, neck and Walds). 

Muscular and fat values are also retrieved in the same scan. 

The data used in this study has been collected in the “Fundació Lluita contra la 

SIDA” in the Germans Trias i Pujol University Hospital, Badalona. It reflects the 

DEXA analysis conducted on HIV-infected patients in the last 20 years. While 

some of these screenings are conducted under medical prescription, others 

reflect routine controls. This represents a challenge when it comes to analyzing 

the data, as both groups may differ in behavior and can bias our study. 

The DEXA analysis summarizes a series of body measures, that can be classified 

as bone-related, lean mass-related and fat-related. In the next table (Table 1) a 

comprehensive list of all variables in the database is provided, colored according 

to said classification (variables in orange refer to the lean and fat mass values, 

while variables in green are bone related). If any transformation improves their 

normality it has been listed in the description. 

Variable name Description NAs Origin 

ID Patient identification number. Factor.  DB 1* 

gender Gender of the patient. Factor: 2 levels (“F”, “M”).  DB 1 

gender_num Gender coded as binary. Factor: 2 levels (0 = F, 1 = M).  DB 1 

Age Age, in years, at the time of the DEXA. Numeric.  DB 1 

Age_cat Patient classification in under/over 50 years old. Factor: 2 
levels (<=50, >50). 

 DB 1 

Height Full body height, in meters. Numeric. 2 DB 1 

Weight Full body weight, in Kg. Numeric. 1 DB 1 

RAFp Right arm fat, percentage. Numeric.  DB 1 

RAFg Right arm fat, grams. Numeric. Log transform.  DB 1 

RALg Right arm lean, grams. Numeric. Log transform.  DB 1 

LAFp Left arm fat, percentage. Numeric.  DB 1 

LAFg Left arm fat, grams. Numeric. Log transform.  DB 1 

LALg Left arm lean, grams. Numeric. Log transform.  DB 1 

BothAFp Both arms fat, percentage. Numeric.  DB 1 

BothAFg Both arms fat, grams. Numeric. Log transform.  DB 1 

BothALg Both arms lean, grams. Numeric. Log transform.  DB 1 
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RLFp Right leg fat, percentage. Numeric.  DB 1 

RLFg Right leg fat, grams. Numeric. Log transform.  DB 1 

RLLg Right leg lean, grams. Numeric. Log transform.  DB 1 

LLFp Left leg fat, percentage. Numeric.  DB 1 

LLFg Left leg fat, grams. Numeric. Log transform.  DB 1 

LLLg Left leg lean, grams. Numeric. Log transform.  DB 1 

BothLFp Both legs fat, percentage. Numeric.  DB 1 

BothLFg Both legs fat, grams. Numeric. Log transform.  DB 1 

BothLLg Both legs lean, grams. Numeric. Log transform.  DB 1 

TFp Trunk fat, percentage. Numeric.  DB 1 

TFg Trunk fat, grams. Numeric. Square root transform.  DB 1 

TLg Trunk lean, grams. Numeric. Square root transform.  DB 1 

TotalFp Total body (no head) fat, percentage. Numeric.  DB 1 

TotalFg Total body (no head) fat, grams. Numeric. Square root 
transform. 

 DB 1 

TotalLg Total body (no head) lean, grams. Numeric. Log 
transform. 

 DB 1 

L1BMD Vertebra 1, BMD value. Numeric. 1 DB 1 

L1T Vertebra 1, T-score value. Numeric. 1 DB 1 

L1Z Vertebra 1, Z-score value. Numeric. 1 DB 1 

L2BMD Vertebra 2, BMD value. Numeric. 1 DB 1 

L2T Vertebra 2, T-score value. Numeric. 2 DB 1 

L2Z Vertebra 2, Z-score value. Numeric. 1 DB 1 

L3BMD Vertebra 3, BMD value. Numeric. 1 DB 1 

L3T Vertebra 3, T-score value. Numeric. 2 DB 1 

L3Z Vertebra 3, Z-score value. Numeric. 2 DB 1 

L4BMD Vertebra 4, BMD value. Numeric. 2 DB 1 

L4T Vertebra 4, T-score value. Numeric. 2 DB 1 

L4Z Vertebra 4, Z-score value. Numeric. 3 DB 1 

L1L4BMD Vertebrae 1-4, BMD value. Numeric. 1 DB 1 

L1L4T Vertebrae 1-4, T-score value. Numeric. 1 DB 1 

L1L4Z Vertebrae 1-4, Z-score value. Numeric. 1 DB 1 

L2L4BMD Vertebrae 2-4, BMD value. Numeric. 2 DB 1 

L2L4T Vertebrae 2-4, T-score value. Numeric. 2 DB 1 

L2L4Z Vertebrae 2-4, Z-score value. Numeric. 2 DB 1 

NeckFBMD Femoral neck, BMD value. Numeric.  DB 1 

NeckFT Femoral neck, T-score value. Numeric.  DB 1 

NeckFZ Femoral neck, Z-score value. Numeric.  DB 1 

WardsBMD Wards region, BMD value. Numeric. 1 DB 1 

WardsT Wards region, T-score value. Numeric. 1 DB 1 

WardsZ Wards region, Z-score value. Numeric. 1 DB 1 

TrochBMD Greater trochanter, BMD value. Numeric. 1 DB 1 

TrochT Greater trochanter, T-score value. Numeric. 1 DB 1 

TrochZ Greater trochanter, Z-score value. Numeric. 2 DB 1 

TotalFBMD Total femoral values, BMD value. Numeric.  DB 1 

TotalFT Total femoral values, T-score value. Numeric.  DB 1 
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TotalFZ Total femoral values, Z-score value. Numeric.  DB 1 

BMI Body mass index, total Kg/m2. Numeric. Log transform. 3 DB 1 

BMI_cat BMI categorical. Factor: 4 levels (“Underweight”, “Normal”, 
“Overweight”, “Obesity”)  

 DB 1 

FMI Fat mass index, Fat Kg/m2. Numeric. Log transform. 3 DB 1 

FFMI Fat free mass index, lean Kg/m2. Numeric. 1/x transform. 3 DB 1 

Apendicularleanmas Appendicular lean mass index, Kg/m2. Numeric. 2 Calculated 

FMR Fat mass ratio: trunk fat % / legs fat %. Numeric. Log 
transform. 

 DB 1 

FTrunkgFLegsg Trunk fat mass / legs fat mass. Numeric. Log transform.  Calculated 

Indexdistributionfat Trunk fat mass / all limbs fat mass. Numeric. Log 
transform. 

 DB 1 

FtrunkpFlimbsp Trunk to limbs ratio: trunk fat % / limbs fat %. Numeric. 1/x 
transform. 

 DB 1 

FtrunkgFtotalg Trunk fat mass / total fat mass. Numeric.  DB 1 

FLegsgFtotalg Legs fat mass / total fat mass.   DB 1 

FlimbsgFtotalg Limbs fat mass / total fat mass. Numeric.  DB 1 

LLegFgBMI Left leg fat mass / BMI. Numeric. 2 DB 1 

LLegFpBMI Left leg fat percentage / BMI. Numeric. 2 DB 1 

Lipodystrophy Presence of lipodystrophy. Factor: 2 levels (0, 
1=presence). 

  

Sarcopenia Presence of sarcopenia. Factor: 2 levels (0, 1=presence). 2  

LipoSarcop Presence of lipodystrophy and/or sarcopenia. Factor: 2 
levels (0, 1=presence). 

2  

phenotype Combination of outcomes between BMI_cat and 
lipodystrophy/sarcopenia. Factor: 4x2x2 = 16 levels. 

2  

minTscore Lowest T-score value observed. Numeric.   Calculated 

Tscore_3cat WHO classification of bone density loss. Factor: 3 levels 
(“Healthy”, “Osteopenia”, “Osteoporosis”). 

 Calculated 

TotalBMD Total body BMD. Numeric. 12 DB 1 

HIV_date HIV diagnose date. POSIX time value. 28 DB 2** 

dexa_date Date of the DEXA screening. POSIX time value. 18 DB 2 

Disease_age Time passed between HIV diagnosis and DEXA, in years. 
Numeric. 

28 Calculated 

Table 1: Variables in the databases. Columns represent the name of the variable in the 

database, a brief description, the number of missing values and the origin (Database 1, 2 or 

manually calculated). 

* DB 1: “LastDEXA_10-05-18English_selection2 (1) (1).sav”, renamed as “data DEXA.sav”.  

** DB 2: “DEXA amb demogràfics_Vitruvi_13-01-20.xlsx”, renamed as “DEXA_nova.xlsx”. 

 

2.2 The “minTscore” and “Tscore_3cat” variables 

Bone mineral density is a measure of the healthiness of the bone and an indicator 

for various bone-related diseases (i.e., osteoporosis and osteopenia). BMD is 

measured as grams of calcium hydroxyapatite per cm3, but it is almost never used 

in its form. Instead, two statistical parameters are calculated: T-scores and Z-

scores. 

Both the T and Z-scores represent how many standard deviations a given BMD 

is away from the population value. The difference between the two statistics 
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resides in the population which the value is compared against: while the T-score 

is compared against a healthy male adult of 30 years old, the Z-score is computed 

against a healthy population of the same age and gender as the patient. 

In the practice T-score is used in most situations, Z-score having a role only with 

children and pre-menopausal women. 

The T-score values determine the level of demineralization and are a common 

cutting value to diagnose osteoporosis and osteopenia (Liu et al., 2011; Oursler 

et al., 2020). The World Health Organization establishes the following criteria: 

  T-score above -1:    Healthiness 

  T-score between -2.5 and -1:  Osteopenia 

  T-score below -2.5:    Osteoporosis 

Assuming that BMD follows a Gaussian distribution, these values would roughly 

represent the 84% (-1) and 99.4% (-2.5) percentiles. 

The bone mineral density is measured at a few locations. L1 to L4 represent 

individual vertebral values; L1L4 and L2L4 are mean values for the groups of 

vertebrae. The femoral measurements are taken at different parts: greater 

trochanter, Wards region, femoral neck, and total femoral bone. 

 

Figure 2: Delimitation of the bones in a DEXA analysis. Left: thigh bone zones: trochanter, 

femoral neck and Ward’s triangle. Right: vertebrae classification. (Font: Doroudinia & Colletti, 

2015). 

The “minTscore” variable represents the minimum of the T-scores of every 

patient. This value is used to calculate the “Tscore_3cat”, which classifies every 

patient in one of the three categories (healthy, osteopenia, osteoporosis) based 

on the criteria mentioned above. 
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Both BMD and T/Z-scores are strongly dependent of the placement of the patient 

inside the DEXA scanner and thus we rely on the ability of the screening 

technician. Spinal deformities are also a common handicap for vertebrae BMD 

lectures. 

 

2.3 The “lipodystrophy” variable 

Lipodystrophy is a pathology characterized by an abnormal redistribution of fat 

tissue along the body, that can be expressed by loss and/or gain of lipidic mass. 

It is common that patients show a decrease in the facial, appendicular and 

backside fat, while at the same time accumulate higher levels of lipidic tissue it in 

the abdominal/pectoral region and the neck. The symptoms usually appear as a 

consequence of the antiretroviral treatment and are associated with decreased 

self-esteem and depression, that can eventually lead the patients to leave the 

drug treatment (Guzman & Vijayan, 2020). 

Beyond the psychological problems associated with the pathology some physical 

complications are observed, such as insulin resistance, cardiovascular diseases 

and lipomas (Guzman & Vijayan, 2020). 

 

2.4 The “sarcopenia” variable 

Sarcopenia is a disorder characterized by a loss of both muscular tissue and 

muscle function. It affects all the muscular tissue of the body and degenerates 

over time. Patients with this disorder have an increased likelihood of falling and 

suffering fractures. 

There are several known causes for sarcopenia, including ageing, lack of physical 

activity, changes in hormones and malnutrition. However, it has been seen that 

patients living with HIV have an increased risk of suffering from muscular 

weakness. 

Although we use the name “sarcopenia” in the dataset, it would be more accurate 

if we talked about low muscle mass, since we will be making our decisions based 

on the appendicular lean mass values retrieved by the DEXA (muscular mass in 

relation to height). A diagnosis of sarcopenia needs to be associated with 

muscular weakness and requires a strength test (Studenski et al., 2014). 
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3. Statistical background 

This chapter is designed to provide some theorical background about the 

selected graphical and machine learning models. We will talk about their method 

of action, along with their strengths, weaknesses and limitations. 

 

Graphical Models 

It is common in biological datasets to find out that data is very intercorrelated. 

This problem has been studied via classical approaches (i.e., pairwise correlation 

matrices and plots), but said methods are very weak in the sense that they do not 

distinguish direct relationships from dependencies mediated by a third variable. 

A more recent approach to face the correlation problem is using full order partial 

correlations, i.e., correlation between two variables accounting for all the other 

variables in the dataset. 

We say that two variables are independent if the values that they take are not 

influenced one-another. If we have more than two variables, we must consider 

the possibility that the (in)dependence between two of them is mediated by a third 

one. As an extension, two variables are conditionally independent of a third one 

if the values they take are not influenced by the values of the third variable. 

Expressed mathematically: P(A=a ∩ B=b | C=c) = P(A=a|C=c)P(B=b|C=c). 

Probabilistic graphical models (PGMs) are algorithms that visually represent 

these full order partial correlations, using nodes to represent the variables and 

edges to symbolize the dependencies. The models that only represent numerical, 

normally distributed data are known as Gaussian Graphical Models (GGMs). 

While GGMs are the simplest of the models and are easy to interpret, they tend 

to overfit relationships. An approach to reduce the number of edges is using the 

LASSO (Least Absolute Shrinkage and Selection Operator) regularization 

method, which assumes that most of the possible edges in the graphic are equal 

to zero. LASSO applies a penalty parameter, generating simpler graphics that 

are easier to interpret and are more prone to represent the true relationships 

between variables. 

The value of this shrinkage parameter is unknown and needs to be determined 

statistically. Usually, cross-validation or EBIC strategies are used. 

If the assumption of normally distributed data is violated, or if we want to 

incorporate factorial variables in the study, then a different method must be used. 

Mixed Graphical Models (MGMs) are a novel method that allows us to incorporate 

such variables. 
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Machine Learning 

Professor Tom M. Mitchell defined ML as “[…] the study of computer algorithms 

that allow computer programs to automatically improve through experience”. In 

the case that concerns us, the “programs” that must improve over time are the 

statistical models that we design to either classify our observations, predict a 

numerical value of a response variable or simply group similar 

observations/discover patterns between variables. 

We can find many categories of machine learning algorithms. Prediction and 

classification models fall into the “supervised learning” category because the 

models need the observations on which they are trained to be labeled (i.e., 

assigned to a response category or value). Descriptive models, which try to 

determine relationships between variables without having a target, are classified 

as “unsupervised learning”. The k-Nearest Neighbors and the Support Vector 

Machines algorithms fall into the “supervised learning” category; the Random 

Forest model is considered to be a “Meta-Learning Algorithm” (focused on 

learning how to learn more effectively). 

But how do machine learning models learn from our data? In a sort of way, they 

mimic the human process of learning (i.e., collecting data, converting it to the 

abstract concept that represents, generalizing the abstractions to create 

knowledge and finally checking if said knowledge correctly represents new 

observations). Each of the models has its own way to learn from the data and 

improve its performance, and while some of the methods show a high degree of 

transparency in their learning method, others are considered a “black box”. 

 

Support Vector Machines 

The SVM models are classificatory algorithms that can be used for both 

classification and regression, but the former is the most common of their uses 

(binary classification). 

The algorithm tries to represent the observations in a tridimensional space such 

that a flat boundary can be drawn separating observations from different groups. 

Said boundary is known as hyperplane and is designed to leave in each of its 

sides the maximum number of well-classified observations. 

If observations can be placed in a tridimensional space and be separated by a 

flat surface, they are called “linearly separable”. If this is the case, the model has 

to face a new question: which of all the possible hyperplanes will better separate 

future observations? 

To select the best hyperplane, the algorithms searches the “Maximum Margin 

Hyperplane (MMH)”, which is the one that generates the greatest separation 
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between classes. The observations that are 

closer to the MMH are called “Support 

Vectors”, and the model uses complex 

vector geometry mathematics to determine 

the MMH from them. 

If only two classes are involved in the 

classification process, the support vectors 

are easy to find. A perimeter is drawn for the 

outer samples of every class (known as 

convex hull), and the shortest distance 

between perimeters is found. The 

observations that generate said distance 

are the support vectors and the hyperplane 

is calculated from them. 

If by all means there is always an observation (or more) that is misclassified by 

the hyperplane, then we are working with “nonlinearly separable data”. If this is 

the case, a hyperplane is calculated in as similar way than in the previous 

example, but now a penalty is assigned to all the misclassified observations (a 

cost parameter, “C”). 

One of the keys that makes SVM so appealing is the representation of the 

observations into higher dimension spaces. The transformations into different 

dimensions are called “kernels” (or kernel tricks), and do not need to be linear. 

So, by trying different kernels, we may be able to draw a hyperplane to 

observations that were originally not linearly related. 

Basically, kernels have the potential to discover mathematical relationships 

between variables, learning trends that were not explicitly represented by the 

original data. 

Some of the most common kernels are the linear, the polynomial, the sigmoid 

and the RBF (radial basis function). Other available kernels in the R package 

“kernlab” are the Laplacian, Bessel, ANOVA, Spline and String. 

According to literature (Lantz, 2015) the SVM models are not prone to overfit and 

thus perform well over new observations, and have overall good accuracy. 

Despite their potential, they give almost no feedback about the process that has 

been used to classify the observations (black box) and should not be used if 

transparency is an important factor in the statistical study. Also, trying different 

kernels to find the best performance can be time consuming. 

In this study, the SVM models will be generated with the “ksvm{kernlab}” function. 

There are two parameters that can be used to increase the model performance, 

which are: kernel (defines the type of kernel to apply) and C (the cost parameter). 

Figure 3: Linearly separable data in a 

SVM. In the image, squares and circles 

represent the two categories of the 

response variable; the solid line 

represents the MMH, and the colored 

observations are the Support Vectors. 

Font: (Lantz, 2015). 
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k-Nearest Neighbors 

The k-Nearest Neighbors is a classification algorithm that assigns a category to 

the new observations based on their similarities with the observations on which 

the model has been trained. The algorithm bases its theory on the assumption 

that individuals of the same class must share similar traits. 

In the simplest of the events, we have two explanatory variables. In that situation, 

observations can be visualized in a scatterplot and the distance between 

observations “a” and “b” can be calculated using the Pythagorean theorem 

(Euclidean distance). 

𝑑𝑖𝑠𝑡(𝑎, 𝑏) =  √(𝑎𝑣𝑎𝑟1 − 𝑏𝑣𝑎𝑟1)2 +  (𝑎𝑣𝑎𝑟2 −  𝑏𝑣𝑎𝑟2)2 ;    (𝑓𝑜𝑟𝑚𝑢𝑙𝑎 1) 

If the number of explanatory variables is greater, we no longer can visualize 

distances in a graphic, but we can calculate them with the Euclidean distance, 

using a similar formula. For “n” variables: 

𝑑𝑖𝑠𝑡(𝑎, 𝑏) =  √(𝑎𝑣𝑎𝑟1 − 𝑏𝑣𝑎𝑟1)2 + [… ] +  (𝑎𝑣𝑎𝑟 𝑛 − 𝑏𝑣𝑎𝑟 𝑛)2 ;    (𝑓𝑜𝑟𝑚𝑢𝑙𝑎 2) 

The k-NN model calculates the distance between a given unclassified 

observation and all the observations in the test database. Once the distances 

have been calculated, the model observes the “k” (any given number, decided by 

the statistician) observations that are closer to the unclassified sample and 

retrieves their class. Finally, a class is assigned by majority voting. 

Since decisions are made based on the distance between observations, we need 

to face a problem: variables with larger ranges are prone to dominate the model. 

For this reason, all variables must be scaled before classification. A common 

scaling transformation uses the mean and the standard deviation as follows: 

𝑠𝑐𝑎𝑙𝑒𝑑 𝑋 =  
𝑋 − 𝑚𝑒𝑎𝑛(𝑋)

𝑠𝑑(𝑋)
;  (𝑓𝑜𝑟𝑚𝑢𝑙𝑎 3) 

Another scaling approach uses minimum and maximum values instead of mean 

and standard deviation. This leads to a possible situation in which future 

observations can have values outside the range of the initial population. For this 

reason the approach used in “formula 3” is preferred. 

Modifying the value of “k” can drastically change the classification output of the 

model. While larger values tend to reduce the variance caused by the noise, they 

also make the model more insensible to subtle (but relevant) patterns (bias-

variance tradeoff).  

While this is one of the simplest machine learning techniques, it is still one of the 

most used. The model does not make assumptions about the distribution of the 

variables, as it takes decisions based on the distances between observations. 
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Despite its simplicity, the level of transparency of the model is limited, and in most 

cases we will not know on what variables has the model based its decisions. 

 

Random Forests 

Before we describe random forests, we must talk about the concept of bagging, 

or bootstrap aggregating. This technique generates a finite number of training 

subsets of the original database via bootstrap, and trains a model on each of said 

subsets. Results of every individual model are combined into a single output, 

either by majority voting (classification) or by taking the mean value (prediction). 

Modeling of bagging sets can be achieved via multiple algorithms, but one of the 

most common is by using decision trees. Decision trees classify observations by 

making decisions over variables, and for this reason they tend to suffer great 

modifications even to the smallest changes in the input data. This variability is 

used by the bagging approach to ensure that observation diversity is represented 

in the final model. The bagging model based on decision trees is called random 

forest. 

The first step of the modeling is training the random forest. In this step the model 

generates “n” decision trees, each over a different subset of the training dataset. 

Here, “n” is the number of trees parameter, decided by the statistician: larger 

numbers of “n” will assure that every observation is predicted at least a few times 

(stabilizing the Out Of Bag error), in expenses to computational power. A second 

parameter, called “mtry” is also needed: this value limits the number of variables 

that are used in each split of the decision trees. 

Once the decision trees have been trained, they are tested with all the variables 

that were left out in the bagging process (i.e., every variable of the training 

database is used to test all the decision trees that have not been trained with it) 

and a response is calculated for every one of them: either a category is assigned 

(if response variable was categoric) or a value is predicted (if it was numeric). At 

the end of the training process, the model returns the OOB error, which can be 

interpreted as a good estimate of future predictions. 

In fact, if we predict new observations with the generated model we expect to 

obtain similar accuracy values. 

Random forests are considered top-tier models, useful for both classification and 

regression. Said models can work with both numeric and categoric data, and 

perform well no matter how big the dimensionality of the dataset is. On the other 

hand, understanding their decision processes is not a simple task (often not even 

doable): decision trees are easily interpretable, but pooled trees lose this 

interpretability. However, we can infer variable importance in a random forest 
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model based on the number of decision trees that used each variable to make 

their decisions. 

The criteria used in this study to determine the most important variables in a 

random forest are the mean decrease in accuracy and Gini. 

The former is calculated during the OOB error calculation phase: variables 

importance is stablished by removing them (one at a time) from the decision tree 

models and observing the variance in accuracy. Variables with larger mean 

decrease in accuracy are more important for classification/regression. 

The mean decrease in Gini is related to the contribution of each variable to the 

purity of the tree nodes. Every time a split is made in a decision tree, Gini 

coefficients are calculated for child nodes (based on the homogeneity compared 

to the original node), and nodes from every variable are summed and normalized. 

Higher values of the mean decrease in Gini represent the variables that more 

purely classify data. 
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4. Materials and methods 

4.1 Management of data and statistical analysis (RStudio/Rmarkdown) 

All the data processing and studying has been conducted using R and can be 

found in the adjacent document “DEXAmarkdown.Rmd” (or the .pdf version of it). 

This is a “markdown” formatted document that contains the code used during this 

journey, along with the minimal text indications necessary to follow and 

understand it. Because of the extensivity of the document (especially when 

exported into a PDF file) it is presented as a side product of the analysis and is 

not included in the main document. 

Graphics, tables and other visual and/or numeric outputs can be generated with 

the markdown document but are also provided as an annex. 

Details about the R and RStudio versions, along with a complete list of the loaded 

packages, can be found in the Annex 1: R packages and versions 

 

4.2 Initial treatment of data 

4.2.1 Merging databases 

The original database contains 1480 observations of 82 variables. A second 

database contains some extra information from the observations, and the 

columns of interest are merged into the first database. The merging of the 

columns has been done by finding common values between “Database1 - ID” 

and “Database2 - historial”. 

The merged columns contain information about the date the DEXA was 

performed and the date that the patient got diagnosed with HIV. Both columns 

have been merged into the first database, resulting in 1480 observations of 84 

variables. An 85th variable (disease age) is generated by calculating the years 

that have passed between the day the patient got diagnosed with HIV and the 

day the DEXA was performed. 

Columns have been renamed and arranged in the following order: 

General information variables (1:7) 

"ID", "gender", "gender_num", "Age", "Age_cat", "Height", "Weight" 

Muscle/Lean related variables (8:31) 

"RAFp", "RAFg", "RALg", "LAFp", "LAFg", "LALg", "BothAFp", "BothAFg", "BothALg", "RLFp", 

"RLFg", "RLLg", "LLFp", "LLFg", "LLLg", "BothLFp", "BothLFg", "BothLLg", "TFp", "TFg", "TLg", 

"TotalFp", "TotalFg", "TotalLg" 
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Bone related variables (32:61) 

"L1BMD", "L1T", "L1Z", "L2BMD", "L2T", "L2Z", "L3BMD", "L3T", "L3Z", "L4BMD", "L4T", "L4Z", 

"L1L4BMD", "L1L4T", "L1L4Z", "L2L4BMD", "L2L4T", "L2L4Z", "NeckFBMD", "NeckFT", 

"NeckFZ", "WardsBMD", "WardsT", "WardsZ", "TrochBMD", "TrochT", "TrochZ", "TotalFBMD", 

"TotalFT", "TotalFZ" 

Summary variables (62:85) 

"BMI", "BMI_cat", "FMI", "FFMI", "Apendicularleanmas", "FMR", "FTrunkgFLegsg", 

"Indexdistributionfat", "FtrunkpFlimbsp", "FtrunkgFtotalg", "FLegsgFtotalg", "FlimbsgFtotalg", 

"LLegFgBMI", "LLegFpBMI", "Lipodistrophy", "Sarcopenia", "LipoSarcop", "phenotype", 

"minTscore", "Tscore_3cat", "TotalBMD", "HIV_date", "dexa_date", "Disease_age" 

All variables are numeric except: 

“ID”, “gender”, “gender_num”, “Age_cat”, “BMI_cat”, “Lipodystrophy”, 

“Sarcopenia”, “LipoSarcop” and “phenotype”, defined as factors; “HIV_date” and 

“dexa_date”, defined as POSIX time values. 

4.2.2 Typos 

Some values have been determined to have biologically or mathematically 

unexplainable values. Such issues have been addressed in the following ways: 

• Values of 0 in weight-related variables have been replaced by NAs. 

• Percentage values over 100 or proportion values over 1 are thought to be 

due a wrongly placed decimal separator and such values haves been 

divided by 100 and 10, respectively. 

• Appendicular lean mass and Trunk to legs fat ratio have been recalculated 

with the following formulas: 

𝐴𝑝𝑒𝑛𝑑𝑖𝑐𝑢𝑙𝑎𝑟𝑙𝑒𝑎𝑛𝑚𝑎𝑠 =  
𝐵𝑜𝑡ℎ𝐴𝐿𝑔 + 𝐵𝑜𝑡ℎ𝐿𝐿𝑔

𝐻𝑒𝑖𝑔ℎ𝑡2 · 1000
;   (𝑓𝑜𝑟𝑚𝑢𝑙𝑎 4) 

𝐹𝑇𝑟𝑢𝑛𝑘𝑔𝐹𝐿𝑒𝑔𝑠𝑔 =  
𝑇𝐹𝑔

𝐵𝑜𝑡ℎ𝐿𝐹𝑔
;   (𝑓𝑜𝑟𝑚𝑢𝑙𝑎 5) 

• “Sarcopenia” has been redefined using recommended cutting points. 

Samples with appendicular lean mass values below 7 (men) or 6 (women) 

have been classified as sarcopenia-positive (1). 

• Fat mass ratio values differ from the expected. All values have been 

recalculated with the following formula: 

𝐹𝑀𝑅 =  
𝑇𝐹𝑝

𝐵𝑜𝑡ℎ𝐿𝐹𝑝
;    (𝑓𝑜𝑟𝑚𝑢𝑙𝑎 6) 

• Lipodystrophy variable has been recalculated using the FMR variable and 

the selected cut-off points. 
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• Liposarcopenia has been defined to take values of 1 if the observation has 

either lipodystrophy, sarcopenia or both. 

4.2.3 Lipodystrophy and sarcopenia codification 

Lipodystrophy diagnosis via DEXA is determined using the Fat Mass Ratio (trunk 

to legs fat ratio) variable. Some literature recommends a single FMR cutoff value 

of 1.26 (Beraldo et al., 2015), while others establish different cutting points for 

men and women (1.961 and 1.329, respectively) (Freitas et al., 2010). Since 

gender seems to have an important role in this study, the second approach is 

used. According to literature, said cutoff points are associated (in their dataset) 

with a sensitivity of 58% / 51% (men, women), 84% / 95% specificity, 90% / 90% 

predictive positive value and 45% / 66% negative predictive value. 

Values above the cutting point (more fat in the trunk than in the legs) are 

associated with lipodystrophy. 

With sarcopenia, literature establishes a common criteria to determine the cutting 

points to the appendicular lean mass variable as being 2 standard deviations 

below the population mean (by genders). However, the exact values are strongly 

dependent of the ethnicity of the population of study (Abdalla et al., 2020; 

Malmstrom, Miller, Herning, & Morley, 2013; Shafiee et al., 2018; Viana et al., 

2018). 

For our dataset, the cutting points for men and women are set to 7 and 6 kg/m2, 

respectively, as recommended in literature (Cruz-Jentoft et al., 2019). Samples 

with appendicular lean mass below these values are diagnosed with low muscle 

mass (~ sarcopenia). 

4.2.4 Duplicate IDs 

Even though we worked with a database that supposedly contained the latest of 

the DEXAs of every patient, some of the entries of the database shared the same 

patient “ID”. 

Such values have been identified, and only the most recent one has been kept. 

To know which entry was the oldest, column “Age” has been used. 

After removing duplicate samples, the database size was 1475 x 85 (reduction of 

0.34%). 

Duplicate IDs removed: “148191”, “153111”, “153605”, “168789” and “232053”.  

4.2.5 Calculation of “minTscore” and “Tscore_3cat” 

The categoric classification (“Tscore_3cat”) has been made according to the 

WHO criteria. To calculate the minimum T-score, only measures from three 

regions have been considered: lumbar spine L1-L4, Femoral neck and Total hip.  
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Single vertebrae are excluded from study since L1L4 is a more reliable value. 

Wards is excluded because it usually overestimates the severity of the disease 

and is associated with false positives (doroudinia2015). Trochanteric values are 

taken into consideration: despite having lower bone density because of the 

presence of trabecular bone, the T scores are a reliable value. 

4.2.6 Management of NAs 

Dealing with missing values can be trivial or crucial based on the statistical 

models that must be used later. While some of them are capable of working with 

missing data, others require complete cases to work. In order to broaden the 

analytic possibilities, NAs have been evaluated and deleted when possible. 

Samples containing NAs have been identified in order to discover any possible 

relationships between them. However, they do not seem to represent any 

subgroup of our data and are normally distributed for all other variables. 

Therefore, said observations are safely removed. Brief numeric description of the 

deleted samples can be found in the Annex 2: Summary tables (Table 7: 

Summary of the deleted samples). 

For the purpose of this study, all observations containing NA values have been 

removed, ending up with a database of 1426 observations (3,6% reduction). 

A less restrictive approach has been considered, allowing some variables to have 

NAs. The resulting database showed a reduction of 3,4%, while increasing the 

complexity of the study. The approach has been discarded, but its details can be 

found in the markdown document. 

IDs of the deleted observations:  

"35981" "45806" "90908" "92242" 

"93264" "143630" "145445" "173955" 

"175815" "193544" "206459" "261221" 

"273533" "275572" "283737" "289085" 

"305728" "314142" "341762" "420494" 

"447739" "470836" "473998" "474320" 

"486931" "496757" "500488" "501443" 

"502384" "503754" "506932" "507355" 

"510354" "526215" "537097" "562458" 

"624562" "10000634" "10006435" "10448854" 

"10451281" "11139789" "11144163" "12726293" 

"14511840" "14667162" "15257591" "18113655" 

"18121144"    

4.2.7 Outlier detection 

Extreme values have been studied based on the Mahalanobis distance. Statistic 

has been calculated accounting for the gender effect. Distribution of the 

Mahalanobis distances have been visually represented using scatter plots, and 

the 5 observations with the most extreme values have been manually studied to 
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check for any incongruences or patterns. With the available background 

information, no assumptions can be made and all observations have been kept 

in the study. 

4.3 Exploratory data analysis 

An exploratory analysis is performed to determine the nature of the variables, 

their distribution and to identify possible correlations. 

Proportions inside the levels of every factorial variable have been observed using 

bar plots and proportion tables. The graphics represent the proportions inside the 

whole group of observations and inside every gender. 

Pie plots are strongly ill-advised in literature because of their ambiguous 

interpretation; instead, bar plots have been used. 

Bar plots have been generated using the package “ggplot2”. Proportion tables 

have been generated using both “dplyr” and “base” packages. 

Numeric variables have been firstly approached with summaries (Annex 2: 

Summary tables: Table 8 and Table 9). Two tables have been designed, 

containing basic numeric information about the variables (minimum and 

maximum values, 25%, 50% and 75% percentiles, mean and standard deviation). 

First table refers to the whole observed sample, while the second table is 

separated by gender. Min and max values have been excluded from the second 

table for brevity. 

Tables have been generated with “dplyr” and “knitr” packages. 

Gender is considered to have an important role in the database, as it is known 

and documented that body distribution of lean and fat tissues is strongly 

dependent of it (Karastergiou, Smith, Greenberg, & Fried, 2012). In order to 

determine the role that gender has in our dataset, all variables have been studied 

via statistics (t-test) and graphics (density plots). 

A T-test has been applied to every numeric variable to check from mean 

differences due to gender. The null hypothesis was: “Ho: Differences in the 

sample means cannot be seen, if we separate samples by gender”. A significance 

level of 0.05 has been established. Variances of samples have been treated as 

unequal, and therefore a Welch T-test has been conducted. 

The package “stats” has been used to perform the test. 

Also, a density plot has been calculated for every numeric variable. Distinction 

between genders has been considered and included in the resulting plots: blue 

and red colors represent the male and female observations. 

Graphics have been generated using “ggplot2”. 
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Linear correlation has been checked using correlation plots (code font: Williams, 

2020) Factor variables have been considered as numeric. A correlation threshold 

of 0.5 has been established when plotting the results: only variables with values 

over the threshold are part of the resulting graphics. 

Correlation has been studied between all variables and inside every subgroup 

(bone, lean/fat and summary variables). 

Finally, a normality test has been conducted using the Shapiro-Wilk method. This 

method is known to be very restrictive, and although variables may not pass the 

test, it is usually safe to treat them as normally distributed. 

Normality has been checked under two scenarios: for the whole samples and by 

genders. Significance level has been established at 0.1, as suggested in literature 

(Royston, 1995). 

Visual inspection of variable normality has been performed with quantile-quantile 

plots, using the package “car”. Graphics have been generated for all samples and 

by genders. 

Various transformations have been considered to improve normality, i.e., log, 

exp, sqrt, inverse, sin, cos, x2. Other methods (such as Tukey’s Lambda or Box-

Cox) have not been applied due to the difficulty of interpreting the biological 

meaning of the resulting transformations. 

 

4.4 PCA 

Principal components analysis has been conducted with the numeric variables of 

the dataset. Variables have been transformed, normalized, and standardized 

prior conduction of the analysis. Proportion of variance explained and cumulative 

proportion have been used to decide the number of PC needed to safely describe 

our data. 

The following variables have been excluded from the PCA, in an effort to work 

only over the pure (i.e., non-arithmetically calculated) variables: 

Lipodystrophy BMI Indexdistributionfat 

Sarcopenia FMI FtrunkpFlimbsp 

LipoSarcop FFM FtrunkgFtotalg 

Phenotype Apendicularleanmas FlegsgFtotalg 

minTscore FMR LLegFgBMI 

Tscore_3cat FTrunkgFLegsg LLegFpBMI 

Biplots have been generated to represent component pairs 1-2 and 3-4. Each 

plots’ observations have been colored by groups to identify patterns. 
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4.5 Graphical models 

Further exploration of the correlations in our database has been managed with 

graphical models. A first approximation has been conducted using undirected and 

directed Gaussian Graphical Models (GGMs), followed by an exploratory analysis 

including factorial variables via Mixed Graphical Models (MGMs). 

We must keep in mind that GGMs rely on the assumption of normality of the data 

(Bhushan et al., 2019), which is not strictly achieved in our dataset. 

Untransformed variables have been used for this analysis to simplify visual 

interpretation of the results. It’s also remarkable that all assumptions made 

observing the GGM graphics are merely hypothetic and do not confirm causal 

relations (Epskamp, Waldorp, Mõttus, & Borsboom, 2018). 

GGMs have been designed by genders, excluding all non-numeric variables. 

Colors have been assigned to represent the nature of the variables (patient 

information, fat/lean, vertebrae, femoral, summary, minTscore, TotalBMD and 

disease age). To calculate the sparse estimation of the covariance matrix, the 

EBIC glasso algorithm has been used, with a gamma of 0.5. Edges with weights 

below 0.1 have been excluded from the graphic. 

Graphics have been plotted using the Fruchterman-reingold algorithm, in which 

each node repulses each other, but connected nodes are also attracted (thus 

forming clusters). 

To direct the graphics, the functions “skeleton, udag2pdag{pcalg}” have been 

used. Fitness of the resulting DAG (Directed Acyclic Graphics) has been tested 

with a chi squared test. 

The function “mgm{mgm}” has been used for the Mixed Graphical Models. The 

variable “phenotype” is not part of the analysis due to the extreme lack of 

observations in various of its levels. Tunning parameters have been estimated 

with two approaches: via EBIC glasso (gamma 0.5) and via 10-fold cross 

validation. A few subset techniques have been considered to design the Mixed 

Graphical Models, such as selection of the 10 more important variables of the 

first Principal Component, selecting the most relevant variable of the 10 first 

principal components, selecting 3 variables of every group of measures (fat, lean, 

bone mass, etc.). A graphic has also been conducted with all the variables of the 

study. 

 

4.6 Directed analysis for osteoporosis and osteopenia 

All data partitioning has been done using “createDataPartition{caret}”. This 

function allows for an equal distribution of the response variable between groups. 

Size of the training split: 2/3. 
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Proportion between classes in the response variables has been evened (when 

needed) using the SMOTE over-sampling technique (“SmoteClassif{UBL}”). This 

algorithm applies both an over-sampling of the less represented class and an 

under-sampling of the most represented one. 

4.6.1 Random forests 

To test how well our data can predict the osteoporosis risk of the observations, 

random forests have been performed in duplicate: with all the variables and 

excluding those that directly explain the response (i.e., bone variables from 

L1BMD to totalFZ and totalBMD). 

Random forest models have been conducted for both regression (over 

minTscore) and classification (over Tscore_3cat). Number of trees has been 

established seeking best performance (computational processing is fast and 

therefore not an issue). 1 to 25 variables have been considered at each split (mtry 

value). 

Once the parameters have been optimized, the models have been used to predict 

over the “test” data split and the performance has been evaluated with ROC 

curves, AUC and RMSE. 

In aims of improving performance, a classification model has been tested 

accounting for only two factor levels: healthy bone vs diseased (osteopenia and 

osteoporosis collapsed in a single category). 

4.6.2 Support Vector Machines 

Support Vector Machine algorithms have been implemented in an attempt to 

improve the model performance when classifying observations by Tscore_3cat. 

Function used: “ksvm{kernlab}”. 

Various kernels and penalty values (C) have been implemented, seeking the best 

accuracy. Kernels tested: linear, polynomial, Gaussian, ANOVA, hyperbolic and 

Laplacian; penalty values ranged from 1 to 10. The analysis has been conducted 

over transformed and standardized data. Two models have been tested, 

classifying into 3 and 2 categories (healthy/osteopenia/osteoporosis; 

healthy/diseased). 

4.6.3 k-NN 

For the k-NN algorithm the number of neighbors has been set seeking the best 
accuracy. Range of values tested: 1 to 10 neighbors. Only numeric variables have 
been considered in the algorithm, and observations have been classified into two 
categories (healthy and diseased). Analysis has been conducted twice, balancing 
the categorical variable and without doing so. All numeric data has been centered 
and scaled prior classification, to ensure equal importance of variables 
(independently of their range). Package used: “knn{class}”.  
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5. Results 

5.1 Univariate study 

5.1.1 Factorial variable bar plots 

Plots can be seen in Figure 4. We observe a higher percentage of patients below 

50 years old for both women and men. Despite being a young database, more 

than the 70% of the women suffer from either lipodystrophy or some sort of 

muscular mass malfunction. 

 

 

 
 

   

Figure 4: Bar plots for factorial variables. From left to right and top to bottom: Age (above 50 

or under 50), BMI (underweight, normal, overweight or obesity), T-score classification (healthy, 

osteopenia or osteoporosis), presence of a) lipodystrophy or sarcopenia, b) sarcopenia and c) 

lipodystrophy (1: presence, 2: absence). Colour code: blue-men, red-women, gray-all samples. 

Low mass muscle is only observed in 1 of every 5 male patients, while half of the 

female observations suffer from it. Lipodystrophy is equally present in both 

genders, at about a 30%.  

10% of women present both lipodystrophy and LMM, while a 28% do not show 

any of the comorbidities. For men, those values are of 4% and 55%. 
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Examining the categorical T-score we can infer that women tend to have more 

extreme values, i.e., they are more represented in the healthy and osteoporotic 

groups. In the other hand, men are more likely to present moderate osteopenia. 

BMI distribution is uneven, and the underweight and obesity groups are strongly 

underrepresented. 

5.1.2 Summary overview 

The summary tables can be found in Annex 2: Summary tables (Table 8: 

Summary of the variables and Table 9: Summary of the variables, by gender). 

We are studying a middle-aged population formed mainly by men (~76% of the 

observations). The most prevalent comorbidity is osteopenia/osteoporosis 

(>60%), followed by lipodystrophy (30%). 

Sarcopenia seems to be more present in females, while the other diseases are 

equally distributed. 

5.1.3 Gender effect 

Most of the variables of the study show a significant difference in both mean and 

distribution based on gender. Such effect can be seen in the following t-test 

results, density plots and in the Principal Components analysis (5.1.6 PCA). This 

observation is supported by biological facts. Therefore, in subsequent analysis 

will be conducted separately by genders. 

T-tests 

No differences between genders has been found for the T-score variables (T-test 

p-values >0.05). All other variables show different means between men and 

women. Details of the p-values can be seen in Table 2: 

TotalFT 0.9803  NeckFT 0.2752  Age 0.0332 

L1L4T 0.9794  WardsT 0.2429  L3BMD 0.0177 

L2L4T 0.8857  L3T 0.23  WardsZ 0.0063 

L4T 0.6965  minTscore 0.1369  TFg 0.0059 

NeckFZ 0.455  TotalFZ 0.1049  L4BMD 0.0023 

L2T 0.3006  L1T 0.0439  Rest of var. < 0.0001 

Table 2: T-score p-values. P-value results for every variable. Significance level: 0.05 (values 

below are colored in red). Variables with p-values smaller than 0.0001 are excluded from the 

table. 

Density plots 

Bone-related variables are less determined by genders. BMI and T-scores show 

almost no mean differences (despite the t-test results) while Z-scores are mildly 

influenced by gender (women tending to have higher means than men). In Figure 
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5 “c” the L1L4 T-score values are represented, showing no variability between 

genders. 

 
 

 
 

Figure 5: Density plots. a) Total body fat, in grams; b) total body lean, in grams; c) L1L4 T-score 

and d) Time passed from the disease diagnosis to the DEXA, in years. Blue and red colors 

represent men and women observations; dotted lines mark the group means. 

Differences due to gender are especially significant for fat and lean related 

variables. Percentages show more differences than weight measurements. 

Differences between genders are consistent for all body parts (symmetry is 

preserved). While women display higher fat values for all measurements, men 

have higher values for all lean variables (see Figure 5 “a” and “b”). 

Men tend to be taller and more robust. Age (despite the T-test p-value of 0.03) 

seems to be evenly divided among genders. 

Women of this study have been living with the disease for longer than men. The 

image not only shows a difference in means, but a right-skewness for women and 

a left-skewness for men (Figure 5 “d”). 

All the density plots can be observed in detail in Annex 3: Density plots. 
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5.1.4 Linear correlation 

Correlation within variables is a common issue in DEXA analysis (human bodies 

tend to follow high levels of symmetry and proportionality and therefore muscle, 

fat and bone values are strongly correlated). 

Correlation between bone-related variables is strong. Two groups can be 

appreciated (Figure 6, left): vertebrae and femoral variables. Inside each group, 

BMD, T and Z-scores show lineal correlation values over 0.75. Both groups are 

correlated to the TotalBMD variable. 

Figure 6: Bone and fat variables correlations. Left: bone variables. Only BMD measurements 

plotted for clarity (T-scores and Z-scores share the same behavior). Upper-left cluster represents 

vertebral variables (L1BMD to L2L4BMD), while the bottom cluster refers to the thigh bone 

(NeckFBMD to TotalFBMD). Right: fat variables. A first correlation cluster is observed within 

upper-limbs variables (RAFg to BothAFg), and a second cluster among leg variables (RLFp to 

BothLFg). Whole body variables (TotalFp and TotalFg) are correlated to all other fat variables. 

Fat related variables are also strongly correlated (Figure 6, right). We observe 

higher correlation inside the arms variables, and again inside the leg-related 

variables. Also, a strong correlation (values over 0.9) is appreciated between left 

leg/arm values and their corresponding right leg/arm values (body symmetry). 

Total fat variables are correlated with both upper and lower limb groups and might 

be good options to summarize the information contained in the other variables. 

Lean variables are strongly intercorrelated but are linearly independent from fat 

variables (Figure 7, left). 

Among the “summary” variables, FMI, FFMI and Appendicular lean mass are the 

least correlated variables. A strong linear dependence (either positive or 

negative; always over 0.9) can be observed between the rest of the variables 

(Figure 7, right). 
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Figure 7: Lean and summary variables correlations. Left: lean and fat variables. Strong 

correlations can be observed between lean variables and other muscular values, but no 

correlations are appreciated with fat variables. Right: summary variables. The levels of 

correlation are more polarized. 

5.1.5 Normality 

According to the Shapiro-Wilk test, no variables present normality for neither men 

nor the whole population. 30 variables are normally distributed in the female 

subgroup: 

RAFp LAFp BothAFp RLFp 

LLFp BothLFp TotalFp L1BMD 

L1T L1Z L2BMD L2T 

L2Z L3BMD L3T L3Z 

L4Z L1L4BMD L1L4T L1L4Z 

L2L4BMD L2L4T L2L4Z NeckFBMD 

NeckFT TotalFBMD TotalFT FlimbsgFtotalg 

minTscore TotalBMD   

Quantile-quantile plots give us a better interpretation of the distributions and the 

transformations that might improve their normality. Plots are not shown in this 

document but are available under request. 

Fat and lean related variables measured in grams have been transformed using 

a logarithmic scale. Exceptions: TFg, TLg and TotalFg, transformed by their root 

square. 

BMI, FMI, FMR, FTrunkgFLegsg and Indexdistributionfat have been transformed 

using the logarithmic transformation. FFMI and FtrunkpFlimbsp have been 

inverted (1/x). 

Percentage variables did not show any normality improvements with any 

transformation. Bone variables do not improve with any transformation. 
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5.1.6 PCA 

The PCA conducted over the whole dataset requires 4 principal components to 

explain 85% of the variability, and 10 PC to explain over the 95%. The first two 

principal components account for the 62% of the variability. 

The first principal component contains the information related to bone density: all 

and only the bone variables have loadings with values over |0.1| (Table 3). This 

subset of variables seems to be related to the presence of low muscle mass 

(Figure 8, left) and the presence of bone diseases (Figure 8, right). 

  

Figure 8: PCA biplots for LMM and Bone health. Colored representation of the first two 

principal components, using various of the categorical variables in the dataset. The first 

component (x axis) seems to be related to Low muscle mass (sarcopenia) and Bone health 

(Tscore_3cat). 

The second principal component summarizes the variability of fat and lean 

variables, including height (as before, only fat/lean variables have loadings 

greater than |0.1|). This second subset of variables seems to be related to the 

gender effect (as we have previously seen in the T-test and the density plots) 

(Figure 9, left). 

Subsequent principal components are biologically harder to explain. However, 

variables of the third principal component partially explain the BMI variable 

(Figure 9, right). 

PCA over the feminine population reported similar results. 5 and 10 PC needed 

to explain 85% and 95% of the variance. First and second components divided 

variables in bone and muscle/fat. Second component seems to be a good 

explanatory variable for BMI. 

PCA over the masculine population needed one more component to explain the 

95% of the variability. The rest of the results are identical. 
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Figure 9: PCA biplots for FMI, Gender and BMI. First two PC plots are shown on the left, 

colored by FMI and gender. On the right, PC 3 and 4, colored by BMI. 

In Figure 10 we see how the biplots for the two principal components are almost 

identical for men and women (vertical axis is flipped, but the interpretation does 

not change). The percentage of variance explained by every component is also 

similar. 

 

  

Figure 10: PC biplots, by genders. Left: components 1 and 2 of the female PCA. Right: 

components 1 and 2 of the male PCA. Variables are colored by importance. 
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PCA has given us new variables that contain roughly the same variability than 

the original database. However, because of the difficulty to biologically explain 

the new variables, further analysis will be conducted over the original database. 

No dimensionality reduction is applied (even though PCA proves it is possible). 

  Pr. Comp. 1 Pr. Comp. 2   Pr. Comp. 1 Pr. Comp. 2 

 PCA Fem Male PCA Fem Male  PCA Fem Male PCA Fem Male 

Age 0.046 0.057 0.037 0.045 0.063 0.033 L2BMD 0.186 0.181 0.182 0.023 0.035 0 
Height 0.062 0.058 0.052 0.113 0.029 0.036 L2T 0.186 0.182 0.184 0.04 0.035 0.001 
Weight 0.065 0.078 0.067 0.037 0.204 0.196 L2Z 0.16 0.145 0.168 0.043 0.078 0.05 

RAFp 0.044 0.002 0.021 0.241 0.237 0.238 L3BMD 0.188 0.187 0.184 0.028 0.04 0.009 
RAFg 0.008 0.033 0.009 0.215 0.241 0.249 L3T 0.188 0.186 0.188 0.044 0.04 0.011 
RALg 0.084 0.106 0.091 0.127 0.059 0.033 L3Z 0.161 0.157 0.171 0.046 0.081 0.06 
LAFp 0.043 0.002 0.02 0.24 0.235 0.236 L4BMD 0.185 0.18 0.181 0.028 0.042 0.003 
LAFg 0.009 0.031 0.009 0.215 0.241 0.249 L4T 0.182 0.18 0.181 0.042 0.041 0.002 
LALg 0.08 0.094 0.086 0.123 0.075 0.036 L4Z 0.156 0.147 0.165 0.045 0.08 0.047 

BothAFp 0.043 0.002 0.021 0.241 0.236 0.237 L1L4BMD 0.197 0.192 0.194 0.03 0.034 0.003 
BothAFg 0.009 0.03 0.008 0.214 0.238 0.248 L1L4T 0.195 0.19 0.195 0.047 0.034 0.002 
BothALg 0.082 0.101 0.092 0.127 0.068 0.04 L1L4Z 0.168 0.158 0.179 0.05 0.077 0.053 

RLFp 0.044 0.01 0.018 0.234 0.222 0.226 L2L4BMD 0.197 0.191 0.193 0.028 0.04 0.003 
RLFg 0.014 0.022 0.007 0.214 0.228 0.24 L2L4T 0.194 0.191 0.193 0.044 0.04 0.003 
RLLg 0.084 0.102 0.087 0.121 0.026 0.054 L2L4Z 0.167 0.158 0.177 0.047 0.081 0.056 
LLFp 0.045 0.01 0.02 0.235 0.223 0.23 NeckFBMD 0.168 0.171 0.164 0.012 0.03 0.028 
LLFg 0.014 0.021 0.008 0.214 0.229 0.24 NeckFT 0.163 0.17 0.165 0.05 0.027 0.028 
LLLg 0.084 0.103 0.088 0.121 0.025 0.058 NeckFZ 0.154 0.151 0.155 0.038 0.001 0.006 

BothLFp 0.044 0.006 0.02 0.235 0.22 0.229 WardsBMD 0.162 0.171 0.155 0.012 0.004 0.002 
BothLFg 0.015 0.017 0.007 0.213 0.225 0.241 WardsT 0.158 0.168 0.155 0.031 0.005 0.001 
BothLLg 0.084 0.102 0.089 0.122 0.026 0.056 WardsZ 0.146 0.14 0.149 0.033 0.022 0.026 

TFp 0.03 0.015 0.014 0.225 0.231 0.229 TrochBMD 0.164 0.167 0.163 0.005 0.05 0.03 
TFg 0.002 0.039 0.007 0.187 0.232 0.235 TrochT 0.154 0.164 0.161 0.064 0.047 0.029 
TLg 0.077 0.075 0.077 0.136 0.007 0.006 TrochZ 0.144 0.147 0.15 0.044 0.006 0.015 

TotalFp 0.04 0.007 0.019 0.249 0.252 0.249 TotalFBMD 0.172 0.177 0.169 0.014 0.044 0.033 
TotalFg 0.007 0.037 0.008 0.218 0.255 0.257 TotalFT 0.171 0.176 0.173 0.052 0.043 0.028 
TotalLg 0.084 0.096 0.091 0.138 0.018 0.026 TotalFZ 0.163 0.161 0.16 0.03 0.012 0.007 
L1BMD 0.181 0.18 0.177 0.032 0.008 0.013 TotalBMD 0.171 0.176 0.169 0.006 0.028 0.05 

L1T 0.18 0.18 0.178 0.044 0.009 0.012 Disease_age 0.044 0.041 0.036 0.019 0.015 0.009 
L1T 0.18 0.18 0.178 0.044 0.009 0.012        

Table 3: PC 1 and 2 loadings, absolute values. PCA loadings given by the “prcomp {stats}” 

function, under “rotation” values. In green: variables with values over |0.1|.  

 

5.2 Graphical models 

5.2.1 Gaussian Graphical Models 

In the undirected gaussian graphical models we can appreciate various patterns: 

Fat and lean variables seem to form clusters of two (24-27), three (4-7-10; 5-8-

11; 6-9-12; 13-16-19; 14-17-20; 15-18-21) and four (22-23-25-26) variables. 

Those groups of 3 variables are related to the body symmetry (left/right/both body 

limbs) in arms (first 3 clusters) and legs (last 3 clusters). The cluster of four 

variables corresponds to the total body and trunk measurements of fat, in grams 

and percentages. The cluster of two variables refers to the lean mass values of 

the whole body and the trunk. 



37   

 

  

Table 4: Undirected Gaussian Graphical Models. Women (left) and men (right) 

variables and their correlations, as seen by an undirected Gaussian graphical 

model. 

Vertebrae variables seem to be very intercorrelated but do not present 

connections outside their group. In females we can appreciate a weak 

relationship with the age variable (1). The edges between BMD values and their 

corresponding T-score are stronger than the edges with the Z-scores. 

Femoral variables also form clusters of three variables, corresponding to the 

BMD, T and Z-scores (46-47-48; 49-50-51; etc.). Intercorrelations between 

groups exist, along with an external correlation to age (1) and minTscore (71). 

This relationship is between minTscore and NeckFT in women, and with TrochT 

in men. A negative edge between age and WardsT (50) seems to be consistent 

in both genders. 

Summary variables must be studied individually, but a similar behavior is 

appreciated in both genders: variables 62 to 68 form a cluster, variables 69 and 

70 form a second cluster and variables 58 to 61 form a more diffuse cluster. 

Summary and fat/lean variables are strongly intercommunicated. 

There is a strong positive bound between FlegsgFtotalg (67) and FlimbsgFtotalg 

(68), while a strong negative bound can be observed between the last one and 

FtrunkgFtotalg (66). This suggests a proportionality in fat percentage between 

upper and lower limbs that exists independently of gender. 
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FMR (62), FtrunkFLegs (63), Indexdistr. (64) and FtrunkpFlimbsp (65) have a 

strong positive relationship. A negative edge can be appreciated in women 

between FMR and BothLFp (19). 

Height (2) has a negative relationship with BMI (58), FFMI (60) and appendicular 

lean mass (61) (variables calculated as value/height2). A positive edge can be 

observed between height and TotalLg (27). There is also a positive correlation 

between height and weight (3). Weight is also correlated to the TotalFg (26) and 

BMI (58). 

TotalBMD (72) and disease age (73) show very weak relationships. 

No relationships are appreciated between the minTscore (71) and 

fat/lean/summary variables. 

Directed Gaussian Graphical Models show similar results, without highlighting 

any edges between different groups of variables, and can be seen in the Annex 

4: Directed Gaussian Graphical Models. 

 

5.2.2 Mixed Graphical Models 

Mixed Graphical Models over subsets of the variables have not reported any 

relationships hitherto unknown. Full dataset analysis reported similar results to 

the Gaussian Graphical Models. When representing the whole dataset variables 

(Figure 11), CV reports more consistent graphics than EBIC. 

In both genders, factorial variables representing presence of lipodystrophy and 

sarcopenia show a strong relationship via “LipoSarcop” variable, but no 

relationships can be observed with the rest of the dataset variables. In a similar 

way, categoric classification of bone healthiness is only related to the minTscore 

variable. 

Relationships within groups can be appreciated in both genders, but no edges 

can be observed between bone-related and fat/lean-related variables. 
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Figure 11: Mixed Graphical Models over all variables. Mixed Graphical Models for women 

(upper) and men (lower). Tunning parameter selected via 10-fold cross validation; nodes plotted 

in “spring” layout. Edge colors represent a positive (green) or negative (red) relationship; gray 

edges represent relationships with a factorial variable. 
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5.3 Directed analysis for osteoporosis and osteopenia 

5.3.1 Random forest 

Regression 

  

  

Figure 12: RF over osteoporosis, regression with all variables. Upper graphics represent the 

out-of-the-bag and the test errors; lower graphics represent the observed versus predicted. Men 

on the left, women on the right. 

Forest population has been set at 100 trees (OOB error stabilized). The best 

number of variables at each split has been established at 11 and 13 (men and 

women, respectively). Adding more variables did not seem to improve the 

performance (Figure 12, upper). The predictions of the model are accurate, 

having low values of RMSE (Figure 12, lower). 

When excluding the bone variables from the model, the performance decreased 

exponentially. Best models were obtained when using 16 and 20 variables at 

each split (men and women, respectively) (Figure 13). The dispersion of the 

graphics indicates a poor explanatory capacity of the models. 
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Figure 13: RF over osteoporosis, regression without bone variables. Upper graphics 

represent the out-of-the-bag and the test errors; lower graphics represent the observed versus 

predicted. Men on the left, women on the right.  

Figure 14: Variable importance in the RF. Variable importance in the regression Random 

forests, based on the Gini index, for men (blue, left) and women (red, right). 
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The variables (Figure 14) that seem to be important in both genders are related 

to the age and the quantity of lean mass in legs and arms. The variables that are 

exclusive to each of the two genders are FFMI and FlimbsgFtotalg (women) and 

disease age in men (along with other lean-mass related variables). 

Classification 

The number of trees in every forest has been set at 600. Observing the 

performances of the models with all the variables we observed a great 

classification task (Figure 15, upper). AUC values for osteopenia are 0.99 and 

0.97 (males and females), and the AUC values for osteoporosis are of 0.99 and 

0.98. The confusion matrix shows that most of the observations that are not 

correctly classified are from patients that are healthy, but the model has classified 

them as suffering from osteopenia. 

  

  

Figure 15: RF over osteoporosis, classification. From left to right, top to bottom: a) 

classification over males, whole variables; b) classification over females, whole variables; c) 

classification over males, no bone variables; and d) classification over females, no bone variables. 

On the other hand, observing the results of the models without bone variables, 

we can see a great loss in the classificatory capabilities (Figure 15, lower), 

especially over the osteopenia group. The AUC values of the models are: 0.57 
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and 0.49 for osteopenia; 0.71 and 0.72 for osteoporosis (males and females, 

respectively). 

The model with just two categories (healthy vs diseased bone, variables 

balanced) does not show a real improvement in the classification power. Although 

the model sensitivity is remarkably high (72% and 70%, men and women values), 

the specificity is lower (48% and 67%, respectively). Over half of the healthy 

individuals have been incorrectly classified as diseased. The AUC for the models 

are 0.66 and 0.73 (men, women) (Figure 16). 

  

Figure 16: RF over osteoporosis (2 levels), classification. Male (left), and female (right) 

models of classification, based on two categories: healthy or diseased bones.  

The important variables in the classification random forests (using 2 and 3 

classificatory categories) are really close to the ones obtained in the regression 

models (Figure 14). 

5.3.2 Support Vector Machines 

Models over transformed and balanced data performed significantly better than 

their untransformed relatives. Accuracy when trying to predict over 3 categories 

did not report any relevant results. Classification in two categories performed 

relatively well in both genders (detailed values can be found in Table 5). The best 

kernel function had been the “vaniladot” (linear kernel) in both genders, and the 

best penalty values for observations falling on the wrong group had been found 

to be “C = 10” and “C = 4” (men and women, respectively). 

 Male model Female model 

Accuracy C.I. 95% 0.72 – 0.80 0.64 – 0.81 

Kappa 0.53 0.46 

Sensitivity 0.78 0.75 

Specificity 0.76 0.70 

Table 5: SVM classification algorithms performances. 
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Predictive values are slightly better in men than in women, possibly because of 

the bigger sample size. However, the overall performances of the models are 

considerably good. 

5.3.3 k-NN 

Best performances (in terms of accuracy, kappa, sensitivity and specificity) were 

observed with the balanced databases. The best number of neighbors had been 

established at 15 for both men and women. Best model performances can be 

seen in Table 6. 

 Male model Female model 

Accuracy C.I. 95% 0.79 – 0.87 0.71 – 0.87 

Kappa 0.67 0.6 

Sensitivity 0.88 0.79 

Specificity 0.79 0.8 

Table 6: k-NN classification algorithms performances. 

Male and female models seem to perform better than the previous algorithms in 

classifying both the positive and the negative classes. According to the models, 

over 80% of the patients suffering some degree of bone disease will be positively 

identified (almost 90% in men). The probability of healthy patients being correctly 

identified is a bit lower, with values around 80%. 
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6. Conclusions 

6.1 Study-related Conclusions 

In first instance, the complexity of the database and the lineal dependences 

between its variables has proven to be very important. Most of the variables of 

every group (fat/lean variables, bone density measurements, etc) are strongly 

related one-another, so implementing techniques of dimensionality reduction is 

strongly recommended and useful. 

Along with the lines of the first conclusion, the assumption of normality is delicate, 

as even when studied by genders variables show strong deviations from the 

gaussian distribution. This effect could be partially explained by the dual nature 

of our data (routine control analysis mixed with medical prescription ones). 

Secondly, there is strong evidence to affirm that gender has an important role in 

this database (based not only on the results of the tests, but also on the biological 

background available in literature). Men and women show different mass values, 

fat distribution and bone density measurements, and therefore the data must be 

studied separately for every gender. The only variables that do not show gender 

differences are the T-scores, results that could be expected given that these are 

not observed values but standard deviations from healthy population. 

Correlations inside every group of variables are evident if we observe at the 

correlation plots and graphical models. However, correlations between groups 

are less significant. This can not only be seen on the graphics, but also on the 

different machine learning models that try to predict a response variable 

(minTscore, Tscore_3cat or Tscore_2cat) without the variables used to calculate 

it (i.e., bone density measurements). If correlations between bone variables and 

fat/mass variables were stronger, we would expect better overall performances 

in the predictive models. 

An important conclusion that emerges from the graphical models is that vertebrae 

variables seem to have little or no impact over the minTscore variable and, by 

extension, on osteoporosis/osteopenia diagnosis. As seen in the Gaussian 

Graphical Models (on both genders), only femoral variables have a direct 

relationship with the response variable. Further studies could deepen in this 

observation, as it could potentially reduce DEXA analysis costs and equipment 

dimensions (i.e., measuring the femoral bone vs measuring the whole skeleton). 

Also, scan repeatability might improve if vertebrae variables could be skipped: 

this region is problematic because body positioning inside the scanning machine 

is hard, specially if the patient suffers from kyphosis. 

Tested machine learning algorithms performed significantly worse when bone 

variables were excluded from the analysis. None of the designed models has 

been capable of differentiating between osteoporosis and osteopenia: all models 
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trying to classify over 3 categories (healthy, osteopenia, osteoporosis) failed in 

their purpose. Not even balancing techniques (SNOTE) could improve the results. 

However, when joining the later categories in a single one (healthy vs diseased), 

model performances improved notoriously. 

Random forests performed relatively poorly, even when classifying over only two 

categories. The other machine learning approaches reported better classificatory 

results, being the k-NN the best of the approaches. With the 15-NN model we 

achieved classificatory results with a sensitivity of the 80% (88% in men) and a 

specificity of the 80% (positive class: diseased). The results prove that muscular 

variables contain (somehow) enough information to determine the bone 

healthiness of a patient, but not enough to determine the degree of disease. 

Unfortunately, k-NN and SVM algorithms are a “black box” and the 

decisions/learnings made over the data to classify new observations will remain 

unknown. 

We are safe to assure that relationships between fat/lean variables and the 

presence of osteoporosis/osteopenia exist. Further studies could deepen in this 

statement and determine if this relationships are causation or just correlation. 

Another interesting work that could be conducted in the future is analyzing the 

evolution of every patient in time. Since DEXA scans are conducted periodically, 

it would be interesting to see how well the designed classification models perform 

at different temporal stages, and study if the correlations between variables 

change over time. 

 

6.2 Personal growth 

In the process of performing this study, I deepened in my knowledge about data 

management, study, and interpretation. I learned about the complexity that arises 

from working with a real dataset, and discovered techniques to manage missing 

data, outliers and typos. I learned the importance of implementing dimensionality 

reduction techniques (PCA) to manage correlated data, along with the potential 

of the new methods of both data observation (graphical models) and prediction 

(random forests, SVM, k-NN). 

This work offered me the opportunity of experimenting with the theorical concepts 

studied in the master’s degree in the fields of biology, regression, modelling and 

machine learning. I also learned some traceability skills, useful to achieve result 

replication and workflow understanding. 

This study also allowed me to improve my skills in the art of coding with R, along 

with implementing a dynamic code in Rmarkdown that allowed for fast replication 

of the analysis, adaptation to new observations and improvements in the code. 

With this study I found new R packages that will be of great utility in a future and, 



47   

more importantly, I discovered where and how I can search for both contrasted 

information and trustful statistical resources. 

Conducting a study that aimed to shed light into a real scientific problem has been 

a great motivation, and even though the results of the modeling might not be good 

enough for medical application I feel happy with them. In them I see reflected the 

improvement of my statistical skills. 

The continuous communication with Nuria Perez has been essential to achieve 

the milestones and objectives in time. She greatly helped me understand complex 

concepts and oriented my work when I walked into dead ends. 

Some of the initial objectives could not be achieved due to a lack of time. I am 

mainly referring to the extension of the study to the lipodystrophy and low muscle 

mass comorbidities. Instead of repeating the analysis over the new response 

variables, deepening on the osteoporosis analysis has been preferred, leaving 

the other studies to a future work. 

Overall, I performed accordingly to the calendar. Punctual deviations from the 

expected date limits have been solved reducing the complexity of the procedures. 

The most critical step has been to take the decision of not studying the other two 

comorbidities, which let me take more time to analyze osteoporosis in greater 

detail. 

The rest of the milestones have been accomplished in time, as it has been 

reflected in the monitoring reports. 

Conducting this final project helped me learn and practice rather 

intermediate/advanced statistical methods, but most importantly helped me 

realize that there is much more that what we can see. Databases hide a lot of 

information that is not visible at plain sight, and deepening into them to discover 

what they can offer is fascinating. 

I wonder how many questions could be solved with the data that we already have, 

if we only knew how to look at it appropriately. 
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7. Glossary 

DEXA: is an acronym for Dual-Energy X-ray Absorptiometry and refers to a 

common analytic technique to determine the levels of mineral density in the 

bones of a patient. Along with the bone measurements, DEXA scans also retrieve 

muscular and fat tissue values at various body regions. 

T-test: T-test (or T-student test) is any statistical test that is guided by a statistical 

parameter that follows a Student’s t-distribution under the null hypothesis. One of 

its more common uses (and how it has been used in this study) is to compare if 

the means of two populations are significantly different from each other (two 

sample T-test). In this study, the test compared variable means for every gender.  

Shapiro-Wilk test: this is one of the most common tests to determine if a variable 

is normally distributed. In this test, the null hypothesis determines that the 

provided observations have been taken from a normally distributed population. 

Therefore, p-values below the significance level (alpha) suggest a low probability 

of the null hypothesis being true, leading us to reject the assumption of normality. 

PCA: the best scenario to perform a study is when the variables on which we 

work are orthogonal, i.e., they show no correlation. This is a seldom scenario, 

especially in biological sciences. Principal Component Analysis is a technique to 

study a set of variables and find subsets of them that seek this least correlation, 

in what is called “dimensionality reduction”. The variables given by the PCA 

(called Principal Components) are linear combinations of the original data, and 

ideally show less correlation than the original variables. 

Machine learning: this concept is used to refer a group of algorithms that are 

capable of autonomously learn from our dataset and predict future behavior. 

These algorithms can detect complex patterns in our dataset that might be left 

unnoticed with classical regression methods, bringing opportunities to deeply 

study large and uniform databases. Graphical models, random forests, Support 

Vector Machines and k-Nearest Neighbors are (among others) machine learning-

based analytical tools. 

Graphical models: Gaussian and Mixed Graphical models (GGMs and MGMs, 

respectively) are probabilistic models that represent via dependency graphics the 

variables in our dataset (as nodes) and the relationships between them (as 

edges). In a simplistic way, the MGMs could be seen as an extension of the 

GGMs, designed to incorporate discrete and factorial variables. 

Random forest: is a regression and classification tool, based on machine 

learning. This model combines the base principles of bagging (bootstrap 

aggregating) with decision trees. After a forest (ensemble of decision trees, each 

using a few of the original variables) is generated over multiple subsets of the 
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data, the model combines the outputs of every single tree to get a consensus 

prediction. 

ROC / AUC: Receiver Operating Characteristic is a curve that represents the 

sensitivity over the specificity of a classifying model, giving us information about 

how good the model is at distinguishing between classes. The AUC is the area 

under said curve, with values ranging from 0.5 (curve following the diagonal) to 1 

(curve converging with the upper-left vertex of the graphic). AUC values closer to 

1 represent better classifying models. AUC values below 0.5 would represent 

models that are reciprocating classes. 

OOB error: Out-of-Bag error estimates the prediction error in random forest and 

other bagging models. In said models, multiple subsets are taken over the original 

database (with replacement, called bagging or bootstrap aggregating). Therefore, 

every observation used to train the model is actually used only in “n” of the total 

decision trees calculated. Said observation will be predicted for all the models 

that did not use it in the training process, and the majority vote will classify it. The 

process is then repeated with all the observations, and the number of correct 

classifications gives us the OOB. 

SVM: Support Vector Machines use multiple dimensions to create hyperplanes 

that correctly separate the groups in our dataset. Although they can be used for 

both regression and classification, only the later has been used in this study 

(which is, in fact, their most popular use). The most appealing trait about SVM is 

that they can not only model linear relationships, but also more complex situations 

(called “kernel functions”). 

K-NN: k-Nearest Neighbors is a classification algorithm based on a common 

principle of machine learning: “similar observations are likely to have similar 

properties”. Based on this premise, the k-NN model evaluates new observations 

and assigns them to a category, based on the known categories of the “k” more 

likely observations in which the model has been trained. 

Accuracy: percentage of observations correctly classified. 

Kappa: correction of the accuracy value accounting for random accuracy. 

Especially relevant in scenarios where one event is much likely to happen than 

the other, and thus by simply classifying all individuals to the majority group we 

would achieve great values of accuracy. 

Sensitivity: or true positive ratio, number of true positives detected divided by all 

positives (positives detected + positives classified as negative). A sensor of how 

well the model can detect a positive case. 

Specificity: or true negative ratio, number of true negatives detected divided by 

all negatives (negatives detected + negatives classified as positive). A sensor of 

how reliable a positive value is.  
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9. Annexes 

Annex 1: R packages and versions 

Package Version 

car 3.0-10 

carData 3.0-4 

caret 6.0-86 

corrplot 0.84 

devtools 2.2.1 

dplyr 0.8.3 

factoextra 1.0.7 

ggbiplot 0.55 

ggplot2 3.3.2 

gplots 3.0.1.1 

gridExtra 2.3 

haven 2.2.0 

knitr 1.26 

lattice 0.20-38 

plyr 1.8.4 

randomForest 4.6-14 

randomForestExplainer 0.10.1 

readxl 1.3.1 

ROCR 1.0-7 

rstudioapi 0.1 

scales 1.0.0 

usethis 1.5.1 

xfun 0.11 

pcalg 2.7-0 

qgraph 1.6.5 

ggm 2.5 

Rgraphviz 2.28.0 

RColorBrewer 1.1-2 

mgm 1.2-10 

UBL 0.0.6 

kernlab 0.9-29 

class 7.3-15 

R software 3.6.1 (2019-07-05) 

R studio 1.2.5019 
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Annex 2: Summary tables 

Table 7: Summary of the deleted samples 

Variable Min 25% Mean 75% Max SD 

Age 29 40 46.24 50 67 8.35 

Height 1.45 1.62 1.7 1.78 1.84 0.1 

Weight 41 57.16 66.67 74.72 109.5 13.78 

RAFp 4.3 7 16.13 22.5 36.5 8.44 

RAFg 136 291 564.5 743 1257 319.9 

RALg 1490 1943 2852 3462 4909 868.9 

LAFp 4.4 7.1 16.59 22.6 35.9 9.02 

LAFg 140 288 574.7 798 1392 345.1 

LALg 1270 2004 2797 3394 5386 878.3 

BothAFp 4.4 7.1 16.37 22.8 36.2 8.7 

BothAFg 276 559 1140 1579 2580 662.9 

BothALg 2760 3986 5649 6882 10296 1739 

RLFp 4.2 10.5 17.79 23.3 39.6 9.53 

RLFg 380 1106 1832 2623 6006 1161 

RLLg 4309 6437 8035 9280 14476 2035 

LLFp 4.2 10.7 17.79 23.4 40.2 9.56 

LLFg 369 1113 1863 2801 6099 1182 

LLLg 4288 6411 8030 9198 14428 2049 

BothLFp 4.2 10.4 17.78 23.4 39.9 9.55 

BothLFg 749 2258 3715 5559 12105 2330 

BothLLg 8597 13002 16067 18299 28904 4075 

TFp 7.2 15.8 24.83 33.1 42.6 9.84 

TFg 2364 4873 8724 12236 18050 4525 

TLg 16628 20856 24599 28068 40608 4884 

TotalFp 5.5 14.1 20.97 28.2 35.8 8.39 

TotalFg 3536 8286 13966 20096 27462 6736 

TotalLg 28630 40290 50093 57324 84066 11008 

L1BMD 0.73 0.95 1.04 1.15 1.44 0.16 

L1T -3.6 -1.75 -0.92 -0.1 2.3 1.27 

L1Z -3 -1.33 -0.56 -0.08 1.7 1.11 

L2BMD 0.81 1.02 1.14 1.24 1.67 0.18 

L2T -3.4 -1.75 -0.77 0 3.6 1.51 

L2Z -2.8 -1.4 -0.39 0.3 3 1.33 

L3BMD 0.78 1.03 1.15 1.24 1.76 0.19 

L3T -3.8 -1.65 -0.61 0.15 4.4 1.59 

L3Z -3.2 -1.35 -0.26 0.65 3.8 1.49 

L4BMD 0.85 1.01 1.13 1.27 1.68 0.19 

L4T -3.3 -1.9 -0.76 0.3 3.7 1.6 
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L4Z -3 -1.7 -0.43 0.68 3.5 1.58 

L1L4BMD 0.8 1 1.12 1.22 1.64 0.18 

L1L4T -3.5 -1.72 -0.76 0.1 3.5 1.45 

L1L4Z -2.9 -1.5 -0.39 0.25 2.9 1.33 

L2L4BMD 0.82 1.01 1.14 1.26 1.7 0.18 

L2L4T -3.5 -1.75 -0.71 0.1 3.9 1.5 

L2L4Z -2.9 -1.4 -0.32 0.6 3.3 1.45 

NeckFBMD 0.73 0.86 0.94 1.02 1.27 0.12 

NeckFT -2.6 -1.4 -0.82 -0.3 1.5 0.93 

NeckFZ -2.1 -0.8 -0.21 0.4 2 0.88 

WardsBMD 0.56 0.7 0.78 0.86 1.04 0.14 

WardsT -3.1 -1.9 -1.23 -0.55 0.6 1.04 

WardsZ -2.4 -1.1 -0.34 0.52 1.4 0.95 

TrochBMD 0.51 0.71 0.77 0.86 1.05 0.13 

TrochT -3.8 -1.83 -1.07 -0.27 1.1 1.05 

TrochZ -2.6 -1.4 -0.71 -0.05 1.1 0.92 

TotalFBMD 0.7 0.88 0.97 1.06 1.3 0.13 

TotalFT -2.7 -1.4 -0.77 -0.1 1.7 0.95 

TotalFZ -2.1 -0.9 -0.28 0.2 2.1 0.85 

BMI 17.51 20.91 23.01 25.09 33.06 3.43 

FMI 1.14 2.89 4.88 7.19 8.73 2.28 

FFMI 12.23 14.73 17.16 18.52 25.38 2.63 

Apendicularleanmas 4.85 6.06 7.42 8.18 11.83 1.41 

FMR 0.48 1.13 1.7 2.13 4.34 0.83 

FTrunkgFLegsg 0.76 1.75 2.92 3.75 9.21 1.66 

Indexdistributionfat 0.59 1.33 2.09 2.61 5.42 1.02 

FtrunkpFlimbsp 0.36 0.55 0.67 0.74 1.18 0.17 

FtrunkgFtotalg 0.37 0.55 0.63 0.7 0.82 0.11 

FLegsgFtotalg 0.09 0.18 0.26 0.32 0.48 0.1 

FlimbsgFtotalg 0.15 0.27 0.34 0.41 0.63 0.1 

LLegFgBMI 16.81 46.8 81.15 108.2 232.1 47.94 

LLegFpBMI 0.2 0.48 0.79 1.04 1.85 0.44 

minTscore -3.8 -2.1 -1.45 -0.8 1.5 1.04 

TotalBMD 0.81 1.09 1.16 1.22 1.75 0.15 

Disease_age 1.26 8.13 14.7 21.1 31.2 8.44 
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Table 8: Summary of the variables 

Variable Min 25% Mean 75% Max SD 

Age 17 39 45.92 53 81 10.57 

Height 1.4 1.64 1.7 1.76 1.93 0.09 

Weight 34.6 60.56 69.63 78.04 120.5 12.58 

RAFp 3.7 10 18.49 24.87 65.6 10.67 

RAFg 49 356.2 701.4 949.7 4374 459.9 

RALg 1125 2351 2889 3408 9316 799.8 

LAFp 2.2 9.93 18.59 24.82 63 10.74 

LAFg 45 352.2 693.3 926.7 3532 459.8 

LALg 299 2298 2819 3321 6659 764.6 

BothAFp 3.6 10 18.56 24.9 64.4 10.7 

BothAFg 95 697.2 1392 1877 7907 919.7 

BothALg 2271 4656 5707 6710 13317 1534 

RLFp 3.8 11.65 20.54 27.6 63 10.98 

RLFg 244 1179 2271 3035 12570 1444 

RLLg 3719 6848 8050 9266 13889 1746 

LLFp 3.8 11.6 20.48 27.48 63.8 10.96 

LLFg 239 1179 2269 3051 12570 1436 

LLLg 3815 6738 8053 9267 13873 1755 

BothLFp 3.8 11.6 20.47 27.48 63.3 10.93 

BothLFg 484 2358 4534 6052 25140 2870 

BothLLg 7776 13600 16102 18521 27395 3477 

TFp 4.5 21.02 28.71 36.48 59.4 10.6 

TFg 1006 6595 10557 13857 34163 5096 

TLg 12471 21259 24332 27355 59172 4644 

TotalFp 4.2 16.72 24.14 30.3 56.6 9.62 

TotalFg 184 10736 16794 21401 52915 8118 

TotalLg 25056 43454 49891 56342 88914 9687 

L1BMD 0.58 0.94 1.05 1.14 1.79 0.15 

L1T -4.5 -1.7 -0.85 -0.1 3.4 1.27 

L1Z -3.7 -1.4 -0.56 0.2 4.6 1.21 

L2BMD 0.12 1.01 1.12 1.23 1.68 0.16 

L2T -5.5 -1.8 -0.92 0 3.5 1.34 

L2Z -4.8 -1.5 -0.62 0.2 4.1 1.29 

L3BMD 0.34 1.02 1.13 1.23 1.71 0.17 

L3T -4.9 -1.8 -0.82 0.1 3.9 1.39 

L3Z -4.2 -1.5 -0.53 0.3 4.6 1.35 

L4BMD 0.62 0.99 1.1 1.21 1.76 0.17 

L4T -4.8 -2 -1.06 -0.2 4.3 1.38 

L4Z -4.3 -1.7 -0.77 0.08 4.5 1.35 

L1L4BMD 0.59 0.99 1.1 1.2 1.67 0.15 
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L1L4T -4.9 -1.8 -0.9 -0.1 3.7 1.28 

L1L4Z -4 -1.4 -0.61 0.1 3.6 1.23 

L2L4BMD 0.59 1.01 1.12 1.22 1.71 0.16 

L2L4T -5.1 -1.9 -0.94 -0.1 3.9 1.31 

L2L4Z -4.4 -1.5 -0.65 0.1 4 1.27 

NeckFBMD 0.51 0.84 0.94 1.03 1.74 0.14 

NeckFT -4 -1.6 -0.85 -0.2 5.1 1.09 

NeckFZ -3.1 -0.9 -0.27 0.3 5.4 0.94 

WardsBMD 0.34 0.66 0.78 0.88 1.79 0.16 

WardsT -4.5 -2.2 -1.32 -0.5 6.4 1.27 

WardsZ -3.4 -1.2 -0.5 0.1 6.9 1.08 

TrochBMD 0.35 0.7 0.79 0.87 1.62 0.13 

TrochT -4.3 -1.8 -0.97 -0.2 6.2 1.17 

TrochZ -3.8 -1.4 -0.65 0 6.2 1.07 

TotalFBMD 0.3 0.88 0.97 1.06 1.67 0.14 

TotalFT -4 -1.5 -0.73 0 4.1 1.1 

TotalFZ -3.3 -1 -0.3 0.3 5.2 0.99 

BMI 14.04 21.45 23.96 26.09 40.81 3.6 

FMI 0.06 3.63 5.86 7.48 19.71 2.99 

FFMI 10.71 15.49 17.08 18.54 27.85 2.33 

Apendicularleanmas 4.12 6.59 7.45 8.26 11.77 1.23 

FMR 0.47 1.12 1.66 2.02 8.88 0.79 

FTrunkgFLegsg 0.5 1.72 2.87 3.6 16.4 1.66 

Indexdistributionfat 0.36 1.37 2.08 2.56 8.11 1 

FtrunkpFlimbsp 0.36 0.56 0.67 0.74 1.83 0.17 

FtrunkgFtotalg 0.26 0.56 0.63 0.7 0.99 0.1 

FLegsgFtotalg 0.05 0.19 0.27 0.33 0.55 0.09 

FlimbsgFtotalg 0.11 0.27 0.35 0.41 0.74 0.1 

LLegFgBMI 14.59 50.59 92.14 125.4 344.3 50.34 

LLegFpBMI 0.15 0.5 0.85 1.12 2.16 0.44 

minTscore -4.9 -2.2 -1.47 -0.8 2.4 1.04 

TotalBMD 0.72 1.09 1.16 1.23 1.9 0.11 

Disease_age 0.1 7.63 15.28 22.49 38.61 9 
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Table 9: Summary of the variables, by gender 

Variable 25% F Mean F 75% F SD F 25% M Mean M 75% M SD M 

Age 41 46.91 52 9.55 38 45.6 53 10.85 

Height 1.56 1.61 1.65 0.07 1.68 1.73 1.78 0.07 

Weight 51.88 59.64 64.72 11.98 65.23 72.8 79.77 11.01 

RAFp 20.98 28.84 37.52 11.55 8.4 15.2 20.5 7.93 

RAFg 519.3 907.2 1143 581.1 323 636 877.2 392.4 

RALg 1649 1890 2079 353.7 2794 3207 3539 620.1 

LAFp 20.9 29.03 37.7 11.58 8.4 15.28 20.7 7.98 

LAFg 499 900 1134 587.4 318 627.7 853.7 389.1 

LALg 1606 1852 2042 358 2727 3127 3456 581 

BothAFp 20.98 28.95 37.6 11.56 8.4 15.25 20.6 7.95 

BothAFg 1010 1802 2279 1169 636.5 1262 1726 781.7 

BothALg 3269 3742 4102 701.6 5518 6332 6988 1151 

RLFp 23.03 31.22 38.9 11.41 10.2 17.14 22.7 8.36 

RLFg 1869 3091 3802 1789 1063 2010 2735 1204 

RLLg 5235 5911 6401 1083 7848 8730 9544 1314 

LLFp 22.67 31.16 38.9 11.46 10.2 17.08 22.6 8.29 

LLFg 1845 3075 3802 1748 1048 2013 2735 1215 

LLLg 5259 5901 6394 1078 7818 8737 9560 1322 

BothLFp 22.6 31.07 38.9 11.51 10.2 17.1 22.6 8.27 

BothLFg 3700 6133 7608 3522 2110 4025 5455 2419 

BothLLg 10480 11805 12839 2143 15726 17468 19107 2595 

TFp 27.6 34.85 42.92 10.81 19.52 26.76 34.2 9.76 

TFg 7002 11244 14292 5384 6462 10339 13694 4984 

TLg 16872 18875 20486 2923 23582 26067 28060 3637 

TotalFp 25.78 32.04 39.5 9.78 15.5 21.62 27.7 8.1 

TotalFg 13354 19575 24071 9191 10000 15910 20580 7538 

TotalLg 33768 37561 40262 5647 49071 53811 57825 7058 

L1BMD 0.91 1.01 1.12 0.16 0.95 1.06 1.15 0.15 

L1T -1.9 -0.98 -0.1 1.32 -1.7 -0.81 -0.1 1.25 

L1Z -1.1 -0.27 0.43 1.18 -1.5 -0.65 0.1 1.2 

L2BMD 0.95 1.08 1.19 0.17 1.03 1.13 1.23 0.16 

L2T -2.1 -0.98 0 1.46 -1.8 -0.89 -0.1 1.3 

L2Z -1.2 -0.28 0.6 1.3 -1.6 -0.73 0 1.26 

L3BMD 0.98 1.11 1.24 0.18 1.02 1.14 1.23 0.16 

L3T -1.8 -0.74 0.3 1.48 -1.8 -0.84 -0.1 1.35 

L3Z -1 -0.05 0.9 1.31 -1.6 -0.69 0.1 1.33 

L4BMD 0.95 1.08 1.21 0.18 1 1.11 1.21 0.16 

L4T -2.1 -1.03 0.1 1.49 -2 -1.07 -0.2 1.35 

L4Z -1.3 -0.34 0.5 1.34 -1.8 -0.91 -0.1 1.32 

L1L4BMD 0.95 1.07 1.18 0.16 1.01 1.11 1.21 0.15 
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L1L4T -1.9 -0.9 0.02 1.38 -1.8 -0.9 -0.1 1.24 

L1L4Z -1.1 -0.2 0.5 1.21 -1.5 -0.73 0 1.21 

L2L4BMD 0.96 1.09 1.21 0.17 1.02 1.13 1.22 0.15 

L2L4T -2 -0.93 0.1 1.42 -1.8 -0.94 -0.1 1.28 

L2L4Z -1.12 -0.23 0.52 1.25 -1.6 -0.78 -0.1 1.25 

NeckFBMD 0.79 0.89 0.98 0.14 0.86 0.95 1.04 0.14 

NeckFT -1.6 -0.79 0 1.2 -1.6 -0.87 -0.2 1.05 

NeckFZ -0.9 -0.24 0.3 0.99 -0.9 -0.29 0.3 0.92 

WardsBMD 0.62 0.75 0.86 0.17 0.67 0.78 0.89 0.16 

WardsT -2.2 -1.25 -0.4 1.29 -2.2 -1.34 -0.6 1.26 

WardsZ -1.1 -0.36 0.3 1.08 -1.3 -0.55 0 1.07 

TrochBMD 0.62 0.71 0.8 0.13 0.73 0.81 0.89 0.12 

TrochT -1.6 -0.74 0.02 1.21 -1.8 -1.04 -0.4 1.15 

TrochZ -1.1 -0.42 0.3 1.06 -1.4 -0.72 -0.1 1.06 

TotalFBMD 0.8 0.91 1.01 0.15 0.9 0.99 1.08 0.14 

TotalFT -1.7 -0.73 0.1 1.25 -1.4 -0.73 -0.1 1.05 

TotalFZ -1.12 -0.38 0.3 1.07 -0.9 -0.27 0.3 0.96 

BMI 20.41 23.16 25.4 4.52 21.86 24.21 26.18 3.22 

FMI 5.23 7.65 9.76 3.64 3.39 5.3 6.9 2.5 

FFMI 13.47 14.55 15.4 1.72 16.67 17.88 19.01 1.87 

Apendicul. 5.48 6.01 6.37 0.83 7.27 7.9 8.52 0.96 

FMR 0.9 1.26 1.39 0.69 1.24 1.79 2.2 0.78 

FTrunkgFLegsg 1.29 2.23 2.64 1.58 1.9 3.08 3.95 1.64 

Indexdistr. 1.07 1.59 1.84 0.79 1.54 2.23 2.77 1.01 

FtrunkpFlimbsp 0.5 0.55 0.58 0.1 0.6 0.71 0.77 0.16 

FtrunkgFtotalg 0.51 0.57 0.63 0.09 0.59 0.65 0.72 0.09 

FLegsgFtotalg 0.24 0.32 0.39 0.1 0.18 0.25 0.31 0.08 

FlimbsgFtotalg 0.34 0.4 0.47 0.09 0.26 0.33 0.39 0.09 

LLegFgBMI 87.7 128 160.3 54.86 46.09 80.74 108.1 42.97 

LLegFpBMI 1.03 1.34 1.64 0.42 0.44 0.7 0.91 0.31 

minTscore -2.2 -1.39 -0.5 1.15 -2.2 -1.5 -0.9 1.01 

TotalBMD 1.03 1.1 1.17 0.11 1.11 1.18 1.24 0.1 

Disease_age 13.21 18.54 24.54 8.02 6.56 14.25 21.22 9.05 
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Annex 3: Density plots 

Figure 17: Density plots (bone variables). Left to right columns: BMI scores, T-scores and Z-

scores. 
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Figure 18: Density plots (fat variables). Columns represent the body side (left, right, both or 

total). The first two rows refer to upper limbs (in grams and percentages, respectively), while the 

last two rows refer to the legs. 
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Figure 19: Density plots (lean variables). Columns represent the body side (left, right, both or 

total). The first row refers to upper limbs, while the second one refers to the legs. 

 
 

 
 

  

  

 

 

Figure 20: Density plots (summary variables). 
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Annex 4: Directed Gaussian Graphical Models 

 

Variable legend for the following graphics: 

 

 

 

[1] Age [2] Height [3] Weight 

[4] RAFp [5] RAFg [6] RALg 

[7] LAFp [8] LAFg [9] LALg 

[10] BothAFp [11] BothAFg [12] BothALg 

[13] RLFp [14] RLFg [15] RLLg 

[16] LLFp [17] LLFg [18] LLLg 

[19] BothLFp [20] BothLFg [21] BothLLg 

[22] TFp [23] TFg [24] TLg 

[25] TotalFp [26] TotalFg [27] TotalLg 

[28] L1BMD [29] L1T [30] L1Z 

[31] L2BMD [32] L2T [33] L2Z 

[34] L3BMD [35] L3T [36] L3Z 

[37] L4BMD [38] L4T [39] L4Z 

[40] L1L4BMD [41] L1L4T [42] L1L4Z 

[43] L2L4BMD [44] L2L4T [45] L2L4Z 

[46] NeckFBMD [47] NeckFT [48] NeckFZ 

[49] WardsBMD [50] WardsT [51] WardsZ 

[52] TrochBMD [53] TrochT [54] TrochZ 

[55] TotalFBMD [56] TotalFT [57] TotalFZ 

[58] BMI [59] FMI [60] FFMI 

[61] Apendicularleanmas [62] FMR [63] FTrunkgFLegsg 

[64] Indexdistributionfat [65] FtrunkpFlimbsp [66] FtrunkgFtotalg 

[67] FLegsgFtotalg [68] FlimbsgFtotalg [69] LLegFgBMI 

[70] LLegFpBMI [71] minTscore [72] TotalBMD 

[73] Disease_age   
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Figure 21: Female (upper) and male (lower) directed GGM. 

 

  


