

Deriving Operation Contracts from UML Class Diagrams

Jordi Cabot1 and Cristina Gómez2

1Estudis d'Informàtica, Multimedia i Telecomunicacions, Universitat Oberta de Catalunya
jcabot@uoc.edu

2 Dept. de Llenguatges i Sistemes Informàtics, Universitat Politècnica de Catalunya
cristina@lsi.upc.edu

Abstract: Class diagrams must be complemented with a set of system
operations that describes how users can modify and evolve the system state. To
be useful, such a set must be complete (i.e. through these operations, users
should be able to modify the population of all elements in the class diagram)
and executable (i.e. for each operation, there must exist a system state over
which the operation can be successfully applied). Manual specification of these
operations is an error-prone and time-consuming activity. Therefore, the goal of
this paper is to automatically provide a basic set of system operations that
verify these two properties. Operations are drawn from the elements (classes,
attributes, etc) of the class diagram and take into account the possible
dependencies between the different change events (i.e. inserts/updates/deletes)
that may be applied to them. Afterwards, the designer could reuse our proposal
to build up more complex operations.

1. Introduction

The specification of an information system must include all relevant static and
dynamic aspects of the domain [9]. The static aspects are collected in structural
diagrams, class diagrams in the UML. Dynamic aspects are usually specified by
means of a behavioral schema consisting of a set of system operations [11] (also
known as domain events [14]) that the user may execute to query and/or modify the
information modeled in the class diagram. A system operation consists of a non-
empty set of basic modifications over the system state that is perceived by the user of
the information system as a single change in the domain. We refer to these basic
modifications as structural events. Each structural event, such as “create object”,
“update attribute” or “delete link”, represents an elementary change to the elements of
a class diagram.

Behavioral schemas must be complete [14] and executable [7]. A behavioral
schema bs is complete when, through the system operations in bs, a user can apply all
kinds of structural events to any modifiable element of the class diagram (i.e. given
an element e of the class diagram and a possible structural event s over e, there is at
least an operation in bs that includes s). It is executable, when, for each operation op,
there exists at least an initial system state and a set of argument values that ensure a
successful execution of op (an execution is successful when the new system state is

consistent with the class diagram’s integrity constraints). Incomplete behavior
schemas result in information systems that have parts that the user cannot modify
since no available operations address their modification. Non-executable behavior
schemas result in information systems with operations that can never be successfully
executed.

For instance, given the simple example shown in Fig. 1.1, we must specify an
operation to create new employees, an operation to delete employees and two
operations to update the name and salary attributes. This behavior schema is
complete since all the modifiable elements in the class diagram (dateOfBirth is
marked as read only) can be created, updated and deleted through the execution of the
system operations. Moreover, it is also executable. The deletion operation can be
executed in all states with at least one employee instance. The creation and update
operations can be applied provided that the argument corresponding to the new salary
value is greater than 600, which is the only restriction imposed by the ValidSalary
constraint.

 Employee
name: String
dateOfBirth: Date {readOnly}
salary: Money

context Employee ValidSalary inv: self.salary>600

Fig. 1.1. Example of a simple structural schema

For all non-trivial class diagrams the number of required system operations rapidly
increases. Therefore, the specification of a complete and executable set of operations
becomes an error-prone and time-consuming activity.

We believe that an automatic generation of behavior schemas from UML class
diagrams would offer two main benefits. Firstly, it would guarantee the quality (in
terms of completeness and executability) of the specified system operations.
Secondly, the software development process would be sped up by avoiding a
systematic definition of all operations. In this sense, given a class diagram, the main
goal of our paper is to provide a method for the automatic generation of a basic
behavior schema that satisfies the completeness and executability properties. We
define our generated behavior schema as a basic one since we try to keep all defined
operations as simple as possible. Operations are declaratively specified by means of
OCL contracts. As far as we know, ours is the first approach to provide an automatic
generation of a complete and executable behavior schema.

Although our basic schema suffices to cover most common operations appearing in
class diagrams, designers may want to generate arbitrary complex operations. Such
complex operations may be defined as a combination of our basic ones in order to
guarantee their executability as well. Ideally, these more complex operations could
also be (semi)automatically generated when additional diagrams (such as the use case
diagram [21]) are considered but this is left as further work.

The rest of the paper is organized as follows. Section 2 introduces several
preliminary concepts. Section 3 and 4 define the completeness and executability of a
behavior schema, respectively. Section 5 presents our generation of a basic complete
and executable behavior schema. A case study is shown in Section 6. Finally, Section
7 presents related work and section 8 puts forwards the conclusions and ideas for
further research.

2. Preliminary Concepts

Class Diagrams. We represent a class diagram CD using the tuple:
CD=<CL, ATT, ASS, AC, GEN, IC >

where CL, ATT, ASS, AC, GEN and IC represent the set of classes, attributes,
associations, association classes, generalizations and constraints of the class diagram
CD, respectively. All elements in CD are assumed to be correct instances of the
corresponding metaclasses of the UML metamodel. We assume that all associations
are binary associations. N-ary associations can easily be expressed in terms of a set of
binary ones plus additional constraints [2].

Structural events. The concrete number (and specification) of the system operations
required by a class diagram depends on the exact types of structural events provided
by the modeling language. The structural event types (and their effect) being
considered in this paper are the following:

1. iCl(x): inserts a new object (i.e. instance) x into class Cl. If Cl participates in a
class taxonomy, x is inserted into all (direct or indirect) superclasses as well.

2. dCl(x): deletes an existing object x from Cl and from all its direct and indirect
superclasses and subclasses.

3. uAtiCl(x,v): sets v as the new value for the attribute Ati of object x (of class Cl).
4. iAs(x1:Cl1,x2:Cl2): inserts a new link in As between objects x1 of type Cl1 and

x2 of type Cl2.
5. dAs(x1:Cl1,x2:Cl2): removes the link between objects x1 and x2 in As.
6. gClcClp(x): generalizes an object x of a (child) subclass Clc to a (parent)

superclass Clp.
7. sClpClc(x): specializes an object x of a superclass Clp to Clc.

Creation/deletion of instances of association classes requires creating/deleting both
the class and association facets of the association class instance with the
corresponding events.

Our events are more basic than those proposed in the UML (see the list of actions
in the UML metamodel [15]). This permits a more fine-grained reasoning.
Nevertheless, we could easily define a correspondence between the two sets.

3. Completeness of a Behavior Schema

A behavior schema bs is complete when users are able to apply all kinds of changes
to the modifiable elements of a class diagram CD through the execution of the
operations in bs, that is, when for each modifiable element e in CD and each possible
structural event s over e, there is at least one operation in bs that includes s.

Therefore, completeness is guaranteed if we first compute the set setev of structural
events that may be applied over CD and then we ensure that each event ev, ev ∈ setev,
is included in one of the system operations in CD.

In Section 3.1 we define the notion of modifiability for each kind of model element
appearing in a class diagram. Then, in Section 3.2 we compute the set of structural

events relevant to a given class diagram (i.e. the set of events that can be possibly
executed over the diagram), taking into account the modifiability of each element in
the diagram. To illustrate the process we use the class diagram shown in Fig. 3.1 as a
running example.

 Employee
name: String
dateOfBirth: Date {readOnly}
salary: Money

M anages 0..11
Department

name: String
maxSalary:M oney

managedboss

WorksIn*
employeremployee

SeniorEmp

experience: String

context D epartment inv bossIsSenior:
 self.boss.oclIsTypeO f(SeniorEmp)

context D epartment inv maxSalary:
 self.employee-> forAll(e| e.salary<=self.maxSalary)

1

JuniorEmp IsSupervisedBy
1*

{disjoint,complete}

supervisor
Fig. 3.1. Class diagram used as a running example

3.1. Modifiability of a model element

The modifiability of a model element (that is, the possibility of changing the value or
population of that element) depends on the type of element and on the (metamodel)
properties specified by the designer during its definition.

A class c is modifiable as long as c is not an abstract class (i.e. when its isAbstract
property, defined in the Class metaclass evaluates to false) and c is not the supertype
of a covering generalization set (covering is also known as complete). In a covering
generalization set no instances of the supertype can be directly created, they can only
be created when one of their subtypes is being instantiated.

An attribute a is modifiable when a is neither read only nor derived (i.e.
a.isReadOnly=false and a.isDerived=false, where isReadOnly and isDerived are
properties of the Property metaclass).

An association is modifiable when none of its member ends is read only or
derived. An association class is modifiable when both its class facet and its
association facet are modifiable.

Generalization sets are always modifiable.
All elements in the class diagram in Fig. 3.1 are modifiable except for the

dateOfBirth attribute, which is marked as readOnly.

3.2. Computing the relevant structural events for a class diagram

Given a class diagram CD=<CL, ATT, ASS, AC, GEN, IC> the set of structural
events that may be applied to CD are the following:

- iCl and dCl events for each modifiable class Cl in CD.
- iAs and dAs events for each modifiable association As in CD.
- An uAtiCl event for each modifiable1 attribute Ati of a class Cl.

1 Update events for non-modifiable attributes are only admitted just after the object has been

created, as a way of initializing the attribute’s value

- gClcClp and sClpClc events for each subclass Clc of a superclass Clp in a
generalization set.

In the example of Fig. 3.1, iJuniorEmp, dJuniorEmp and gJuniorEmpEmployee
events may be applied over JuniorEmp. Similarly, iSeniorEmp, dSeniorEmp,
gSeniorEmpEmployee and uExperienceSeniorEmp may be applied over SeniorEmp.
Relevant events for Department are iDepartment, dDepartment, uNameDepartment
and uMaxSalaryDepartment and for Employee are uNameEmployee,
uSalaryEmployee, sEmployeeJuniorEmp and sEmployeeSeniorEmp2. For Manages
and WorksIn, insertion and deletion events may be applied.

4. Executability of a Behavior Schema

A behavior schema bs is executable when for all system operations in bs there is at
least a system state and a set of arguments for the operation parameters that permit a
successful execution of the operation. An operation succeeds when its execution
evolves the initial system state to a new state that satisfies all integrity constraints.

Defining an operation as executable does not imply that every time the operation is
executed the new system state will be consistent (this depends on the previous state
and on the exact arguments passed as parameters for the operation). We just
guarantee that it is at least possible to successfully execute it sometime. Otherwise,
the operation is completely useless and should be removed.

Executability depends on the set of structural events that the operation applies over
the system state. The basic idea is that some events require the presence of other
events within the same operation in order to leave the data in a consistent state at the
end of the operation execution. As an example, an operation createDepartment
creating new instances of department (that is, an operation applying the iDepartment
event) must be in charge of creating a new link in the Manages association relating
the new department with its boss (iManages event). Otherwise, every time this
operation is executed the minimum multiplicity of the boss role (see Fig. 3.1)
becomes violated, and thus, the operation never succeeds.

Therefore, executability is guaranteed if, for each event ev included in the effect of
a system operation op, all other events required by ev appear in op as well. A
behavior schema is executable when all operations are executable.

Dependencies between structural events depend on the type of the event and on the
integrity constraints of each particular class diagram. When the dependencies for an
event ev are being computed, all we need to consider are the minimum multiplicity
constraints for associations and attributes3 and disjoint and complete constraints
(either graphically represented or implicitly induced by textual OCL constraints4).

2 iEmployee and dEmployee events may be applied over Employee only when the

generalization set in which Employee participates as a supertype is defined as incomplete
3 Although it is also possible to define minimum multiplicities for the number of objects in a

class, they are quite rare. We are therefore not going to consider them in our approach.
4 Some textual OCL constraints may exactly correspond to minimum multiplicity, disjoint or

complete constraints. Also, some may indirectly imply them (for instance, stating that

For other constraints, we can always find a combination of a system state and/or a
set of arguments for which the execution of ev results in a consistent state. For
instance, maximum multiplicity constraints are never violated when ev is applied to
an empty system state. Constraints restricting the value of the attributes of an object
may be satisfied when passing the appropriate arguments as parameters for the event.
The same situation occurs with constraints restricting the relationship between an
object and related objects. Therefore, all these constraints are ignored when
computing the dependencies of ev, and thus, when determining the executability of
operations including ev. As an example, the maxSalary constraint (Fig. 3.1) does not
affect the executability of operations modifying departments, employees and the links
between them. The creation of employees and departments is always successful.
Updates of Salary and MaxSalary attributes may be successful when choosing the
right values for the corresponding attributes. The creation of a new WorksIn link is
successful when the state has at least a department and an employee (who is not
already related to a department) that satisfies the maxSalary condition.

For the class diagram of Fig. 3.1, several dependencies between the relevant
structural events are necessary. For instance, an iJuniorEmp(x) event requires the
presence of events uNameEmployee(x,name), uDateOfBirthEmployee(x,date) and
uSalaryEmployee(x,sal) to initialize the values of its non-derived attributes.
Otherwise, operations that do not include them will always violate the minimum ‘1’
multiplicity of these attributes. Additionally, this event also requires the events
iIsSupervisedBy(x,y) and iWorksIn(x,z) to avoid violating the minimum multiplicity of
the supervisor and employer roles. The complete list of dependencies for this example
can be found in Section 5.2.1.

5. Generation of a Complete and Executable Behavior Schema

In this section, we show how to automatically generate a complete and executable
behavior schema for a given class diagram CD, according to the previous complete
and executable properties. Our method has two main phases:

- The assignment of all relevant events for CD to a set of new system
operations (completeness)

- The definition of the actual operation parameters and body in view of the
dependencies of the assigned events (executability)

In our approach, system operations are assigned to an appropriate class of the class
diagram. Other authors argue that it is better to first assign all operations to an
artificial class called System [11]. The adaptation of our method to this case is
straightforward.

Furthermore, operations can be specified in one of two ways: imperatively or
declaratively [22]. In an imperative specification, the set of structural events that the
operation applies during the operation execution are explicitly defined. In a

navigating from an object of type X to the related Y objects we must find more than N objects
satisfying condition cond implies that the minimum cardinality of the Y role in the navigated
association must be at least N).

declarative specification the designer defines a contract for each operation. The
contract consists of a set of pre and postconditions. A precondition defines a set of
conditions on the operation input and the system state that must hold when the
operation is invoked. The postcondition states the set of conditions that must be
satisfied by the system state at the end of the execution. In our approach, the
imperative version of each operation can be directly deduced from the structural
events we assign to the operation during the generation process. Therefore, we focus
on the declarative version.

Note that our pre- and postconditions do not include the verification of the
integrity constraints in CD (strict interpretation of operation contracts [18]) in order
to avoid redundancies between the contracts and the constraints (this improves the
quality of the resulting specifications, see [6]). Only those constraints that could
potentially affect the executability property of the operations are considered (see the
discussion presented in Section 4) and already tackled when reasoning on the
dependencies between the structural events assigned to the operation.

5.1. Creating the required system operations

Assignment of relevant events for a class diagram CD into a set of system operation
can be done in many different ways. Since we intend to create a basic behavior
schema, our goal is to minimize the complexity of the generated operations. Roughly,
we create a different operation in CD for each relevant structural event.

Given that setev is the set of relevant events for CD (as computed in section 3.2) the
system operations our method generates are the following (operations are assigned to
the appropriate class according to the GRASP patterns [11]):

- A class operation Cl::Create for each iCl event in setev
- A Cl::Delete operation for each dCl event in setev
- A Clc::GeneralizeCl operation for each gClcClp event in setev
- A Clp::SpecializeCl operation for each sClpClc event in setev
- A Cl::UpdateAti operation for each uAtiCl event in setev
- Two P::CreateLinkAs operations (one for each participant class P) for each

iAs event in setev.
- Two P::DeleteLinkAs operations (one for each participant class P) for dAs

events in setev
In UML, operations cannot be assigned to associations (except for association

classes). Therefore, operations on associations are assigned to the participants of the
association. For recursive associations we can use the name of the opposite role rather
than the association name when creating the operation. To satisfy the completeness
property, it would be enough to add the operations to one of the participants.
However, on behalf of the usability of the generated behavior schema, we prefer to
add the operations to both participants. When designing the specified system,
designers may add navigability information to the diagram and remove the operations
using non-navigable association ends.

Fig. 5.1 shows the running example of Fig. 3.1 once it has been extended to
include the set of generated operations.

 Employee
name: String
dateOfBirth: Date {readOnly}
salary: Money

Manages 0..11
Department

name: String
maxSalary:Money

managed boss
WorksIn*

employer employee

SeniorEmp
experience: String

1

JuniorEmp IsSupervisedBy
1 *

{disjoint,complete}

UpdateName
UpdateSalary
SpecializeJuniorEmp
SpecializeSeniorEmp
CreateLinkManages
DeleteLinkMananges
CreateLinkWorksIn
DeleteLinkWorksIn

Create
Delete
GeneralizeEmployee
CreateLinkIsSupervisedBy
DeleteLinkIsSupervisedBy

Create
Delete
UpdateExperience
GeneralizeEmployee
CreateLinkIsSupervisedBy
DeleteLinkIsSupervisedBy

Create
Delete
UpdateName
UpdateMaxSalary
CreateLinkManages
DeleteLinkMananges
CreateLinkWorksIn
DeleteLinkWorksIn

supervisor

Fig. 5.1. Class diagram with the generated system operations

5.2. Completing the operation definition

Following on from the previous section we get a set of operations, each one attached
to a class in CD and with one of the relevant structural events assigned to it.

To complete the operation definition we need to first determine whether the
operation behavior must be extended with new events due to dependencies between
them (Section 5.2.1). We will then be able to define the set of parameters for the
operation (Section 5.2.2) and its final body (Section 5.2.3).

5.2.1 Computing the dependencies
A simple dependency for a structural event ev is defined as a tuple <direction, event>
where event is the name of the structural event required by ev and direction indicates
whether that event should be executed before ev (symbol ←), after ev (symbol →) or
if the exact position of ev is irrelevant (symbol ↑). In fact, the direction field is not
strictly necessary (in the same way that the exact order of predicates in a
postcondition is also irrelevant); as long as all dependent events are applied over the
system state, the state at the end of the operation will be consistent. Nevertheless, the
direction field helps to obtain a more clear and readable contract.

More complex dependencies are expressed as a sequence of simple ones joined
with the logical AND and OR operators (for example, ev may require the existence of
the events ev1 and ev2 or, alternatively, the existence of an event ev3).

Computing the list of dependencies for an event ev is a recursive process. If ev
requires an event ev2 we must take into account also the dependencies of ev2 and so
on. Otherwise an operation including ev and ev2 may be non-executable due to the
dependencies of ev2 not being satisfied within the operation. Therefore, to ensure
executability, we must compute the transitive closure of the dependencies of ev. The
transitive closure can be computed by means of recursively applying the following

dependency rules over the new events added to the initially empty list of
dependencies for an event ev until no more dependencies are added5.

Note that, due to OR dependencies (stating that ev depends on an event ev1 or,
alternatively, on an event ev2) we may obtain different alternative dependency lists at
the end of the computation process. Each OR dependency is a splitting point. From
that point, two new lists are created. The lists are initialized with the contents of the
original one and then the process continues with each list separately. Each list
generates a different operation specification.

The list of dependency rules is the following (in the rules min(Cl,As) returns the
minimum multiplicity of Cl in As, i.e. the minimum number of links in As in which all
instances of Cl must participate, and max(Cl,As) its maximum multiplicity).:

Rules for computing the dependencies for a structural event iCl(x):
- A dependency depAt1 = <→, uAtiCl(x,v)> for each non-derived attribute Ati

of Cl AND
- A dependency depAt2 = <→, uAtkClp(x,v)> for each non-derived attribute Atk

of Clp where Clp is a direct or indirect superclass of Cl AND
- A number of min(Cl,Asj) dependencies depAs1 = <→, iAsj(x,y)> for each

non-derived association Asj where Cl has a mandatory participation
(min(Cl,Asj) >=1) AND

- A number of min(Clp,Ask) dependencies depAs2 = <→, iAsk(x,y)> for each
non-derived association Ass where Clp is a direct or indirect superclass of Cl
and Clp has a mandatory participation in Ask.

Dependencies for a dCl(x) event :
- A number of min(Cl,Asj) dependencies depAs1 = <→, dAsj(x,y)> for each

non-derived association Asj where Cl has a mandatory participation AND
- A number of min(Cl’,Ask) dependencies depAs2 = <→, dAsk(x,y)> for each

non-derived association Ask where Cl’ is a direct or indirect superclass or
subclass of Cl and Cl’ has a mandatory participation in Ask.

Dependencies for a sClpClc(x) event:
- A dependency depAt = <→, uAtiClc(x,v)> for each non-derived attribute Ati

of Clc AND
- min(Clc, Asj) dependencies depAs = <→, iAsj(x,y)> for each non-derived

association Asj where Clc has a mandatory participation AND
- A dependency depSpec = <→, gClc’Clp(x)> for a Clc’ class such that Clc≠ Clc’

and that x is an instance of Clc’ . This dependency only applies when the
generalization set, for which Clp is the supertype, is disjoint and complete; in
such a case, specialization of x to Clc forces the removal (generalization) of x
from a different subtype Clc’ to satisfy the disjoint constraint. We know that
x was instance of some Clc’ because the generalization set is complete.

Dependencies for a gClcClp(x) event:

5 Termination is guaranteed except in the case of rare multiplicities combinations (as a cyclic

sequence of exact one-to-one associations), which require the designer to take part in the
process.

- min(Clc,Asj) dependencies depAs = <→, dAsj(x,y)> for each non-derived
association Asj where Clc has a mandatory participation AND

- A dependency depGen = <→, sClpClc’(x)> such that Clc≠ Clc’. Again, this
dependency only applies when the generalization set, for which Clp is the
supertype, is disjoint and complete.

Dependencies for an iAs(x:Cl1,y:Cl2) event when min(Cl1,As)=max(Cl1,As) (the
process must be repeated for Cl2 when min(Cl2,As)=max(Cl2,As)):

- A dependency depAs = <↑, dAs(x,z)> such that <x,z> is an existing link in
As, if min(Cl2,As)≠max(Cl2,As) OR

- A dependency depIns = <←, iCl1(x)> OR
- A dependency depSpec = <←, sClpCl1(x)> if Cl1 has a supertype Clp

Dependencies for a dAs(x:Cl1,y:Cl2) event when min(Cl1,As)=max(Cl1,As) (the
process must be repeated for Cl2 when min(Cl2,As)=max(Cl2,As)):

- A dependency depAs = <↑, iAs(x,z)> if min(Cl2,As)≠max(Cl2,As) OR
- A dependency depIns = <←, dCl1(x)> OR
- A dependency depGens = <←, gCl1Clp(x)> if Clp is a supertype of Cl1.

No dependencies are needed for uAtiCl events since changes on attribute values do
not violate cardinality, complete or disjoint constraints. Table 1.1 summarizes the
result of the (recursive) application of these rules over the relevant structural events
for the class diagram shown in Fig. 3.1.
Table 5.1. Dependencies for the relevant structural events in the class diagram in Fig 3.1

Structural event Required events (dependencies)
iJuniorEmp(x) uNameEmployee(x,vname) AND uDateOfBirthEmployee(x,vdate) AND

uSalaryEmployee(x,vsal) AND iIsSupervisedBy(x,y) AND iWorksIn(x,z)
dJuniorEmp(x) dIsSupervisedBy(x,y) AND dWorksIn(x,z)

sEmployeeJuniorEmp(x) iIsSupervisedBy(x,y) AND gSeniorEmpEmployee(x)
sEmployeeSeniorEmp(x) uExperienceSeniorEmp(x,exp) AND gJuniorEmpEmployee(x) AND

dIsSupervisedBy(x,y)
gJuniorEmpEmployee(x) sEmployeeSeniorEmp(x) AND dIsSupervisedBy(x,y) AND

uExperienceSeniorEmp(x,exp)
iSeniorEmp(x) uNameEmployee(x,name) AND uDateOfBirthEmployee(x,date) AND

uSalaryEmployee(x,sal) AND uExperienceSeniorEmp(x,exp) AND
iWorksIn(x,z)

dSeniorEmp(x) dWorksIn(x,z)
gSeniorEmpEmployee(x) sEmployeeJuniorEmp(x) AND iIsSupervisedBy(x,y)

iDepartment(x) uNameDepartment(x,name) AND uMaxSalaryDepartment(x,maxSal) AND
iManages(x,y)

dDepartment(x) dManages(x,y)
iManages(x,y) dManages(x:Department,z:Employee) OR iDepartment(x)
dManages(x,y) iManages(x:Department,z:Employee) OR dDepartment(x)
iWorksIn(x,y) dWorksIn(z:Department,y:Employee) OR iEmployee(y)
dWorksIn(x,y) iWorksIn(z:Department,y:Employee) OR dEmployee(y)

iIsSupervisedBy(x,y) dIsSupervisedBy(z:SeniorEmp,y:JuniorEmp) OR iJuniorEmp(y) OR
sJuniorEmp(y)

dIsSupervisedBy(x,y) iIsSupervisedBy(z:SeniorEmp,y:JuniorEmp) OR dJuniorEmp(y) OR
gJuniorEmpEmployee(y)

5.2.2 Defining the operation signature
The signature of an operation op depends on the list listev of structural events the
operation consist of (computed as shown in the previous section) and the class where
op is attached.

Each event ev ∈ listev may require the addition of new parameters in the signature.
The basic idea is that every variable that appears as a parameter of ev must also
appear as a parameter (of the same type) in the operation. Four exceptions apply:

1. Variables for iCl events are not parameters of the operation. These new
objects are created during the operation execution.

2. A parameter variable that has already appeared in a previous event does
not generate a new operation parameter (i.e. if an operation consists of
two events iAsX(x1,x2) and iAsY(x1,x3) only three parameters x1, x2 and x3
are defined).

3. We use the implicit parameter self as a replacement for one of the
parameters whose type is the class to which the operation is attached (i.e.
if an operation defined in a class Cl has the event uAtiCl(x,v) only a
parameter for v is generated; the implicit self parameter is used whenever
x appears).

4. Variables for dAs events not included in a DeleteLinkAs or a
CreateLinkAs operation are not parameters of the operation. Those
deletions are required by dCl or gClcClp events. In those cases, the link/s
to be deleted are the ones in which the self parameter participates, and
thus, they can be determined automatically.

For instance, the operation JuniorEmp::Create of Fig 3.2 consists of the
iJuniorEmp(x) event and all its dependencies defined in Table 5.1
(uNameEmployee(x,vname), uDateOfBirthEmployee(x,vdate), uSalaryEmployee(x,vsal),
iIsSupervisedBy(x,y), iWorksIn(x,z)). From this list of events we may determine the
signature of the Create operation as follows:

Create(vname:String, vdate:Date, vsal:Money, y: SeniorEmp, z:Department).

Similarly, the signature of Department::Delete is simply Delete(). This signature is
calculated from the list of events for this operation (dDepartment(x), dManages(x,y)).
In accordance with the rules above, none of the event variables must be added as an
explicit parameter of this operation.

5.2.3 Defining the operation body
In an imperative specification of the operation effect, the operation body is simply
defined as the ordered list of structural events computed for the operation as shown in
the previous sections. However, in a declarative specification we must transform the
list of structural events into an OCL contract such that the application of the events
over a state satisfying the contract preconditions evolves this initial state into a new
state that satisfies the contract postconditions.

As discussed in the introduction of Section 5, our operations do not explicitly
include the integrity checking of the class diagram’s constraints. Therefore, our
operations do not include preconditions and the postconditions refer solely to the

operation’s own behavior. Constraints that may affect the executability property of
the operation will already have been considered when computing the dependencies.

The initial postcondition is obtained by means of translating each single event into
an equivalent boolean condition and concatenating the different conditions with AND
operators (this translation is not unique, see [3]). In the following we provide a
possible boolean condition for each event.

1. iCl(x): x.oclIsNew() and x.oclIsTypeOf(Cl)
2. dCl(x):OclAny::allInstances()=OclAny::allInstances()@pre->excluding(x)
3. uAtiCl(x,v): x.Ati=v
4. iAs(x1,x2): x1.r2->includes(x2) (r2 is the role corresponding to x2 in As)
5. dAs(x1,x2): x1.r2->excludes(x2) (r2 is the role corresponding to x2 in As)
6. gClcClp(x): x.oclIsTypeOf(Clp)
7. sClpClc(x): x.oclIsTypeOf(Clc)

Note that OclAny is the supertype of all types in the UML class diagram [16].
Using OclAny instead of Cl in the definition of the dCl(x) event condition guarantees
that the object x is completely removed from the system (and that it does not remain,
for example, as an instance of a supertype of Cl).

The resulting postcondition may need to be refined depending on the combination
of translated structural events. For instance, if several sClpClc events are applied over
an instance x, only the translation for the event over the more specific class is
necessary. Translation for events dAs(x1,x2) can be discarded when dCl(x1) and/or
dCl’(x2) events also appear (usually, the deletion of links is implicitly assumed).

As an example, we provide the contract for the operation JuniorEmp::Create and
for the operation Department::Delete.

context JuniorEmp::Create(vname:String, vdate:Date, vsal:Money,y:SeniorEmp,
z:Department)
post: x.oclIsNew() and x.oclIsTypeOf(JuniorEmp) and x.name=vname and
x.dateOfBirth=vdate and x.salary=vsal and x.supervisor->includes(y) and
x.employer->includes(z)

context Department::Delete()
post: OclAny::allInstances()=OclAny::allInstances()@pre->excluding(self)

6. Case Study

To show the benefits of our proposal, in this section we compare the behavior schema
for a real-life application when it has been generated by our method with the behavior
schema originally specified by the designer by hand for the same application.

In particular, we analyze a system for a Conference Management Application as
specified in [19]. This system provides functionalities to support paper submissions,
assignment of papers to reviewers and the evaluation process. The class diagram
consists of 13 classes, 13 binary associations, 2 non-covering generalization sets and
several constraints. The proposed behavior schema includes 29 operations.

Our method is able to completely generate 13 of the 29 operations (6 creation
operations, 3 deletion operations and 4 update operations). Seven additional

operations (each one assigning one or more constant values to attributes of the class
diagram) can be directly mapped to our generated system operations by passing these
constant values as parameters of our UpdateAti operations. The rest of the system
operations, 9 out of 29, can only be partially generated by our method. This means
that the designer must manually complete their specification. Mainly, the difference is
that in the original schema these nine operations include some ad hoc if-else
conditions that restrict the applicability of the operations depending on the system
state. Clearly, it is not possible to automatically generate these conditions.

From the results presented above, we see that the application of our proposal helps
designers by reducing by 69% (20 of 29) the number of operations to be defined and
by providing at least an initial contract specification for the remaining ones.

Moreover, our approach generates several operations that did not appear in the
manually specified schema (for instance, all GeneralizeCl and SpecializeCl and some
UpdateAti operations). Designers could use this information to detect whether some
required operations must be added to the class diagram or if the specification of the
class diagram is incomplete (for instance, attributes are not marked as readOnly or
derived, completeness and/or disjointness of generalizations sets is not defined, etc).

7. Related Research

As far as we know, ours is the first approach to study the application of the
completeness and executability properties to the automatic generation of a basic
behavior schema.

[10] partially determines the set of possible structural events to be applied to a
class diagram (generalizations are not considered). However, in this approach system
operations must be manually defined as a combination of a set of structural events.
Therefore, the completenesss and executability of these operations must be
guaranteed by designers. In this approach, operations are specified using the formal
notation B.

[8] derives a set of basic operations (similar to our concept of structural events)
and a set of elementary operations from an EER diagram. These latter operations are
not necessarily executable since cardinality constraints are not considered in any case.

Alternatively, other approaches try to generate system operations from the
information provided in different diagrams, such as the use case diagram. For
instance, [21] presents a method for generating system operations from use cases
specifications. Nevertheless, this method is not automatic and completeness and
executability properties of the generated behavior schema are not analyzed.

The idea of dependencies between structural events is not new. This problem has
been addressed in the (deductive) database field as part of the more general problem
of integrity maintenance at compile-time (see [20], [12], [17]). In those cases, the
goal was similar: to extend a (predefined) given transaction/operation with additional
events to always ensure its successful execution. However, their expressivity
regarding the definition of the structural diagram and the set of admitted structural
event types is more restricted than in our method.

Regarding OCL contracts, [1] provides some patterns to help designers in their
manual definition but automatic generation of contracts is not studied.

Some IDEs (as [5] or [13]) are able to automatically generate basic getter/setter
and creator methods for classes. However, the methods do not take into account the
possible dependencies among the included events.

8. Conclusions and Further Research

The complete definition of the behavior schema is one of the most important tasks in
the analysis and design stages of an information system. The method presented in this
paper facilitates this task by automatically generating an initial set of system
operations. Operations are drawn from the structure of the class diagram.

The executability and completeness properties of this set of operations guarantee
the quality of the behavior schema. Designers are free to directly use our operations
(avoiding the manual definition of the behavior schema) or to reuse our method in
order to create more complex operations (while maintaining the previous properties).

We believe our method is useful even when the designer is not interested in a
complete and automatic generation of the behavior schema. If integrated in an OCL
editor, our method could assist the designer during the definition of OCL contracts by
means of suggesting additional predicates to complete the postconditions. These
suggestions would be provided based on our dependencies computation.

As a further research, we would like to study how we can reuse the information of
use cases (as in [21]) and state diagrams to automatically derive more complex
system operations. We are also interested in studying how to integrate the efficient
verification of all constraints that may be violated by the operation execution (the
relevant constraints can be determined with [4]) into the preconditions of our
generated operation contracts so that a successful execution of the operation is always
guaranteed (providing that the precondition is satisfied). Additionally, we plan to
apply the completeness and executability properties to the verification of existing
behavior schemas.

Acknowledgments

We would like to thank the people of the GMC group and the anonymous reviewers
for their many useful comments in the preparation of this paper. This work has been
partially supported by the Ministerio de Ciencia y Tecnología under project TIN2005-
06053.

References

1. Ackermann, J., Turowski, K.: A Library of OCL Specification Patterns for Behavioral
Specification of Software Components. In: Proc. 18th Int. Conf on Advanced Information
Systems Engineering (CAiSE'06), LNCS, 4001 (2006) 255-269

2. Andrew J. Mcallister, D. S.: An approach for decomposing N-ary data relationships.
Software: Practice and Experience 28 (1998) 125-154

3. Cabot, J.: From Declarative to Imperative UML/OCL Operation Specifications. In: Proc.
26th Int. Conf. on Conceptual Modeling (ER 2007), LNCS, (2007) to appear

4. Cabot, J., Teniente, E.: Determining the Structural Events that May Violate an Integrity
Constraint. In: Proc. 7th Int. Conf. on the Unified Modeling Language (UML'04), LNCS,
3273 (2004) 173-187

5. CincomSmalltalk. VisualWorks. http://www.cincomsmalltalk.com/
6. Costal, D., Sancho, M.-R., Teniente, E.: Understanding Redundancy in UML Models for

Object-Oriented Analysis. In: Proc. 14th Int. Conf. on Advanced Information Systems
Engineering (CAiSE'02), LNCS, 2348 (2002) 659-674

7. Costal, D., Teniente, E., Urpí, T., Farré, C.: Handling Conceptual Model Validation by
Planning. In: Proc. 8th Int. Conf. on Advances in Information System Engineering
(CAiSE'96), LNCS, 1080 (1996) 255-271

8. Engels, G., Gogolla, M., Hohenstein, U., Hüllmann, K., Löhr-Richter, P., Saake, G.,
Ehrich, H.-D.: Conceptual Modelling of Database Applications Using an Extended ER
Model. Data & Knowledge Engineering 9 (1992) 157-204

9. ISO/TC97/SC5/WG3: Concepts and Terminology for the Conceptual Schema and
Information Base. ISO, (1982)

10. Laleau, R., Polack, F.: Specification of Integrity-Preserving Operations in Information
Systems by Using a Formal UML-based Language. Information and Software Technology
43 (2001) 693-704

11. Larman, C.: Applying UML and Patterns: An Introduction to Object-Oriented Analysis and
Design and the Unified Process. 2nd edn. Prentice Hall (2001)

12. Link, S.: Consistency Enforcement in Databases. In: Proc. 2nd Int. Workshop on Semantics
in Databases, Dagstuhl Seminar, LNCS, 2582 (2001) 139-159

13. Microsoft. Visual Studio 2008. http://msdn2.microsoft.com/en-us/vstudio/default.aspx
14. Olivé, A.: Conceptual Modeling of Information Systems. Springer Verlag (2007)
15. OMG: UML 2.0 Superstructure Specification. OMG Adopted Specification (ptc/03-08-02)

(2003)
16. OMG: UML 2.0 OCL Specification. OMG Adopted Specification (ptc/03-10-14) (2003)
17. Pastor, J. A., Olivé, A.: Supporting Transaction Design in Conceptual Modelling of

Information Systems. In: Proc. 7th Int. Conf. on Advanced Information Systems
Engineering (CAiSE'95), LNCS, 932 (1995) 40-53

18. Queralt, A., Teniente, E.: Specifying the Semantics of Operation Contracts in Conceptual
Modeling. Journal on Data Semantics 7 (2006) 33-56

19. Raventós, R.: A conceptual schema for a conference management application. UPC, LSI
Technical Report, LSI-05-1-R (2005)

20. Schewe, K.-D., Thalheim, B.: Towards a theory of consistency enforcement. Acta
Informatica 36 (1999) 97-141

21. Sendall, S., Strohmeier, A.: From use cases to system operation specifications. In: Proc. 3rd
Int. Conf. on the Unified Modeling Language, LNCS, 1939 (2000)

22. Wieringa, R.: A survey of structured and object-oriented software specification methods
and techniques. ACM Computing Surveys 30 (1998) 459-527

