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  Resumen del Trabajo: 

La diseminación de genes resistentes a los antibióticos (GRAs) constituye un 

problema global al que, al margen de los tratamientos médicos, contribuye la 
agricultura. El resultado del compostaje una estrategia de gestión de residuos 
sólidos, se emplea como fertilizantes de suelos. La literatura muestra que el 
compostaje puede reducir la presencia de GRAs, pero los resultados son 
diversos. Este trabajo persigue analizar datos públicos de genomas de 
completos secuenciados de compost de GRAs y explorar su relación 
filogenética. Para ello, se emplean datos de 9 experimentos del archivo europeo 
de nucleótidos. Tras un ensamblaje de-novo, se examinan 4 bases de datos 
(ARG-annot, CARD, NCBI y Resfinder) para identificar GRAs y se construye un 
árbol filogenético a partir de sus secuencias de referencia. En total, se identifican 
381 GRAs diferentes en 7 conjuntos de datos. Los genes detectados con mayor 
frecuencia son lnu(C), lnu(D), erm(G), erm(A), mef(A) y tet(X). Sin embargo, 
estos genes no se encuentran en las muestras de compost de origen conocido, 
en las que se detectaron los genes aadA1, aadA14, aadA31, aph(3')-Ia, aph(3'')-
Ib, aph(6)-Id, blaCARB-8, blaCMY-8, blaTEM-150, blaTEM-171, sul1, sul2, 
tet(H),  tet(W) y vanR-O. Dentro de las 24 clases de medicamentos 
antimicrobianos, aquellos con mayor presencia en los ARGs son el 
aminoglucósido, la tetraciclina, el macrólido y los multifármacos (60,8%). En la 
clasificación taxonómica se identifican como filias dominantes las 
actinobacterias, bacteroidetes, firmicutes y proteobacterias. El análisis 
filogenético no resulta concluyente y se encuentran únicamente clústeres 
parciales de resistencia antimicrobiana. 
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  Abstract:  

Dissemination of antibiotic resistant genes (ARG) is a global health concern to 

which not only medical treatments but also agriculture contributes to. Composting 
is a waste management strategy for solid organic waste and compost is widely 
used as soil fertilizer. Studies show that composting can reduce ARGs, but 
results are inconsistent, influenced by different factors, and increase in 
abundance also got reported. The objective of this study was to analyze public 
available whole genome sequencing (WGS) data of compost for ARGs and 
explore their phylogenetic relationship. WGS data from 9 experiments were 
obtained from the European nucleotide archive. After de-novo assembly, 4 
databases (ARG-annot, CARD, NCBI and Resfinder) were screened to identify 
ARGs. A phylogenetic tree was built from their reference sequences. In total 381 
different ARGs were identified within 7 datasets. The most frequently detected 
genes were lnu(C), lnu(D), erm(G), erm(A), mef(A) and tet(X). However within 
the samples of known origin of finished compost, those genes were not detected; 
here, aadA1, aadA14, aadA31, aph(3')-Ia, aph(3'')-Ib, aph(6)-Id, blaCARB-8, 
blaCMY-8, blaTEM-150, blaTEM-171, sul1, sul2, tet(H),  tet(W) and vanR-O were 
found. From the 24 antimicrobial drug classes the main contributors to the 
resistome were against aminoglycoside, tetracycline, macrolide and multi-drug, 
accounting for 60.8%. The taxonomic classification identified as dominant phyla 
overall Actinobacteria, Bacteroidetes, Firmicutes and Proteobacteria. The 
phylogenetic analysis was not conclusive, only partial cluster for antimicrobial 
resistance were found.  
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1 Summary 
 
Background 
Dissemination of antibiotic resistant genes means a global health concern to 
which not only medical treatments but also agriculture contributes to. Composting 
has been shown to reduce antibiotic resistance genes (ARGs), but not to 
eliminate them. Therefore, adjusting composting processes regarding the specific 
organisms depending on the types of compost could help the management for 
ARGs.  
 
Methods 
Publicly available whole genome sequencing data of compost samples were de-
novo assembled and mapped against four different antibiotic resistance gene 
databases. A taxonomic classification was performed to obtain the microbial 
community of those samples. Lastly, a phylogenetic analysis was conducted on 
the reference sequences of the detected ARGs. 
 
Results 
ARGs have been found in 7 out of 9 datasets, in total 381 different ARGs were 
identified. The dominant phyla reported were Actinobacteria, Bacteroidetes, 
Chloroflexi, Deinococcus Thermus, Firmicutes, Planctomycetes and 
Proteobacteria. The phylogenetic analysis was not conclusive, only partial cluster 
for antimicrobial resistance were found. The frequency of the ARGs was not 
reflected. 
 
Conclusion 
ARGs can be found frequently in compost samples. A more meticulous analysis 
as it was possible within this work is needed, to investigate further the microbial 
community and the dissemination of ARGs by horizontal gene transfer during the 
composting process. 
 
Contribution 
It was possible to construct a phylogenetic tree from the ARGs detected within 
the available compost samples. 
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2 Introduction 
 

2.1 Background and justification 
 
The World Health Organization (WHO) considers antibiotic resistance as one of 
the greatest threats for global health, food security and development. The so-
called antibiotic resistance crisis responds to several factors: overuse and 
inappropriate prescribing in human Medicine, availability of few new antibiotics, 
regulatory barriers, and extensive agricultural use [1].  
The employment of antibiotics in agriculture and husbandry contributes to the 
dissemination of antibiotic resistance among microbial population in the 
environment through several channels. Not only antibiotics are widely used for 
treating infections in the cattle but also to prevent them in groups of animals. 
Furthermore, antibiotics are used as a growth promoter for food-producing 
animals [2]. In the European Union, the latter application is prohibited and there 
are relevant restrictions on their preventive use, which will be totally forbidden 
since 2022, that explains the significant reduction in their sales from 2010 to 2018 
[3]. The employment of antibiotics in agriculture has also an impact on the 
environmental microbiome: the urine and stool excreted by livestock, which 
represents up to 90% of the received intake, is widely dispersed through 
groundwater and surface runoff and used as fertilizer. Bacteria can acquire 
antibiotic resistance through mutation, but the dissemination of resistance surges 
because of antibiotic resistant genes (ARGs) [4]. The growing concern about 
antibiotic resistance is coupled by the increasing evidence suggesting a non-
neglectable possibility for ARGs in agricultural soil can affect the food chain [1, 5, 
6, 7]. 
 
Composting, decomposition of organic material, has become a waste 
management strategy for manure and also for solid organic waste in general [8, 
9]. As compost contributes to improve the structure of the soil, adding nutrients 
for plants and beneficial microbes, it is of wide use in gardening and agriculture 
(particularly, in organic farming, where synthetic fertilizers are not allowed). 
Depending on the material and the methods applied, there are several types of 
composting procedures. The most common ones are vessel composting, 
windrow composting, and aerated static pile composting, all three can be 
summarized as thermophilic  composting as it makes use of thermophilic 
bacteria, and vermicomposting. Vermicomposting makes use of earthworms that 
degrade organic matter by feeding on it and it takes between two and three 
months. Vessel compositing is carried out in an enclosed area (a container, a 
building or a vessel) and makes use of forced aeration or mechanical turning 
techniques. Its duration is variable, from 4 to 12 weeks. Windrow composting, 
which demands a minimum of 15 days, consists in placing raw materials (manure, 
plants) in long narrow piles, turned regularly to allow aeration. Finally, static 
composting is a quite traditional method involving passive aeration requiring 
between 3 and 6 weeks [9, 10, 11, 12].  
 
Studies show that composting can be a suitable method to reduce the 
concentration of ARGs [13, 14]. Yet, the process of composting itself and the 
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organic material used in the process can lead to highly variable results, including 
persistence or increase of the ARG concentration [15, 16].  
 
Metagenomic studies on the dynamics of antibiotics and ARGs abundance during 
composting, demonstrate a relationship between ARGs and mobile genetic 
elements (MGE). MGEs mediate horizontal gene transfer, so even if the initial 
ARG-carrying bacteria diminish during the compost process, the resistance can 
remain as ARG residue within the compost and may be a risk to public health. 
Further, one study indicates that the compost resistome displays a varied 
transcriptional response to composting process, suggesting microbial phylogeny 
as the key determinant. Monitoring for ARGs in compost seems to be advisable 
[14, 17, 18, 19, 20].  
 
Nevertheless, the available evidence is far from conclusive and current 
knowledge of how different types of compost are related to the persistence of 
ARGs is still incomplete [15, 20]. Therefore, a better understanding of ARGs 
might improve composting procedures and further be beneficial for adapting 
measures for the antibiotic resistance dissemination management. 
 
 

2.2 Objectives 
 
The main aim of this work is to perform an analysis of the resistome of compost 
in order to establish phylogenetic relationships among antibiotic-resistant genes 
(ARGs). Particularly, this study tries to explore the phylogenetic relationships 
between ARGs found in the compost samples. 
 
 

2.3 Approach and methodology 
 
This research made use of metagenomic sequencing data from the European 
Nucleotide Archive (ENA) [21]. As they are publicly available data, as long as 
they are cited in an appropriated way, there are no further ethical or legal 
concerns. All the analyses were carried out in a personal notebook running under 
Microsoft Windows 10. Therefore, aiming to avoid downloading and processing 
the raw data on the notebook - a very time consuming and computationally 
demanding work unfeasible with the mentioned computer facilities-, the 
processing of the metagenomic data was performed making use of the web-
based platform for bioinformatic analysis Galaxy [22].  
 
For the identification of ARGs a workflow was created applying the tools: fasterq-
dump utility of the SRA Toolkit [21], FastQC [23], MEGAHIT [24], ABRicate [25] 
and staramr [26]. Further a taxonomic classification on the fastq files of the 
compost samples was done on the Galaxy server using the tools: Kraken2 [27], 
Convert Kraken [28], and krona [29]. Once ARGs were identified, the 
phylogenetic analyses was carried out using the free statistical software R and 
its companion packages [30]. The elaboration of the final document relied on 
Microsoft Word 2019. The planning of the project was done under GanttProject 
3.0 [31]. Further methodological details are provided in Chapter 4.   
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2.4 Planning of the project 
 
The work unfolds in the following six tasks (in chronological order):  

1. Literature Review 

2. Database search for metagenomic data of compost samples 

3. Identifying ARGs within the metagenomic data 

4. Phylogenetic analysis of the ARGs 

5. Writing the final document to be submitted 

6. Preparing the presentation 

 
Figure 1 displays the timeline created with GanttProject 3.0 that illustrates the 
different stages of the work from the initial planning to the final presentation 
Phase 1, Phase 2, Finishing Work, Preparing Presentation, and Defense refer to 
the course outline. The total time required for completing the work, allocated 
among the specific tasks of data retrieval, analysis, and writing, is 300 hours. 
Weekends are marked in light grey and are not included in the estimation of the 
days needed for fulfilling a task. Furthermore, several tasks were performed in 
parallel (e.g., identifying ARGs and searching for suitable data or starting the 
writing process during analysis). 
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Figure 1. Gantt chart of the project schedule. 

 

 
As shown in the timeline, milestones of the work in chronological order are the 
following ones: 

 
1. Proposal: first draft of the planned work, including literature about the topic. 

2. Work plan: planification and outline of the steps needed to accomplish the 

work. 
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3. Data obtained: obtained the public metagenomic compost data and 

identified ARGs. 

4. Process Report 1: report of the process of the work during phase 1. 

5. Data analyzed: completed the phylogenetic analysis of ARGs. 

6. Process Report 2: report of the process of the work during phase 2. 

7. Thesis finished: completed the writing process of the thesis. 

8. Presentation: finished presentation of the work. 

9. Defense. 

 
Proposal, Work plan, Process Report 1, Process Report 2, Thesis finished, 
Presentation, and Defense correspond to the continuous evaluation over the 
course. 

 
 

2.5 Brief summary of contributions and outputs 
 
The output generated by this in-silico analysis of compost sequencing data is as 
follows: 
 
1. FastQC report files 

2. MEGAHIT de-novo assembly files 

3. Antibiotic resistance genes databases result files 

4. Taxonomic classification report files 

5. Krona interactive visualization of taxonomic classification 

6. R file and RData file for ARG summaries 

7. R Script, RData file and all related input/output files of the phylogenetic 

analysis  

8. Supplement.xlsx containing: 

a. List of datasets (ENA projects),  

b. ARG frequency by database 

c. Taxonomic summary files 

 
All files are available in google drive: 
https://drive.google.com/drive/folders/1tIjBXZQmE5g1SaKviVEUELLpbWHbUA
mt?usp=sharing 
 
Point 1-5 are stored within the folder Galaxy, organized by ENA project number. 
 
 

https://drive.google.com/drive/folders/1tIjBXZQmE5g1SaKviVEUELLpbWHbUAmt?usp=sharing
https://drive.google.com/drive/folders/1tIjBXZQmE5g1SaKviVEUELLpbWHbUAmt?usp=sharing
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2.6 Brief description of the rest of chapters of the project 
 
The rest of the works unfolds in five sections as follows. Chapter 3 summarizes 
the state of the art and frames the contribution of this work. The fourth chapter 
describes the main methodological tools used for analyzing the data. The main 
results of the work are presented in Chapter 5 and a further discussion on their 
implications and their relationship with the aims of the thesis is performed in the 
sixth section. The last chapter summarizes the main conclusions of the work, 
discusses several future research lines, and assess how the planning schedule 
performs in practical terms. 
 
 

3 State of the art 
There are many studies on how composting affects the abundance of antibiotics 
and antibiotic resistance genes. Most of them investigated the effect of 
composting on husbandry manure, lesser on sewage sludge or food waste [32, 
15, 19, 7, 33]. Composting experiments that examine the influence of different 
types of co-substrates are commonly done with rice, wheat or corn straw, 
composting end-products, sawdust, spent mushroom or cotton stalk, while the 
most studied antibiotic resistance genes belong to resistance to tetracyclines, 
sulfonamides, macrolides, fluoroquinolones and beta-lactam. The composting 
methods are mainly lab-scale experiments of thermophilic composting methods, 
fewer studies make use of vermicomposting. Both seem to be favorable for 
reducing the resistome, still many factors influence the outcome, leading to 
contradictory results [34, 15]. 
 
In terms of methodology, studies on ARG abundance are frequently conducted 
by qPCR, using a set of primer for the genes of interest. For the taxonomic 
classification of those samples a 16S rRNA amplicon sequencing approach is 
chosen. When working with 16S rRNA for classification, it is recommended to 
analyze and interpret those results carefully. The 16S rRNA genes can be 
affected by horizontal gene transfer (HGT). The existence of bacteria containing 
two types of rRNA operons or mosaics of sequences from multiple species have 
been demonstrated [35].  
 
Screening for ARGs with a qPCR allows only for detection of those selected 
genes. Although of interest is the clinically relevant antimicrobial resistance, this 
may be a too limiting approach. Microbiomes are complex, non pathogenic 
bacteria can be carrier of ARGs or genes that potentially might function as 
resistance genes. A pan-microbial approach, using whole genome sequencing 
(WGS) for resistome analysis, may be a better choice for the management of 
ARGs [36, 37]. WGS allows for detection of all known, but also for discovering 
new antibiotic resistance genes. 
 
The concern of this work is to investigate publicly available WGS data of compost 
samples for identifying ARGs and examining their phylogenetic relationship. 
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4 Methodology 
 

4.1 Data Retrieval 
 
The majority of metagenomic studies of compost apply 16S rRNA amplicon 
sequencing and test for the resistome by quantitative PCR of selected ARGs. 
Therefore, available data is limited. As source for the datasets the European 
Nucleotide Archive (ENA) was chosen [21]. The use of the database for 
metagenomic data MG-RAST resulted not possible as datasets could not be 
accessed due to accession restrictions or time-out errors [38]. Another reason for 
using ENA was, that it has a direct interconnectivity with the Galaxy platform. 
For selecting the datasets, they had to be specified as WGS in Library Strategy. 
One exception is PRJNA526758, which is defined as AMPLICON on the ENA 
website, but in the corresponding publication the ENA Project number refers to 
the samples of the shotgun sequencing only [13]. 
This leads to the conclusion, that it is possible that not all projects are defined 
correctly on the website. It was also observed, that a compost sample is defined 
as soil metagenome instead of compost metagenome. Additionally, a reference 
to a publication or further description is missing in many cases. All this made the 
process of data selection more difficult. In consequence, it is possible that not all 
suitable datasets were found and selected. The table below shows the selected 
datasets. 
 
Table 1. List of metagenomic datasets. 
The table lists the selected ENA project numbers, the PubMed identifier if a publication is 
available and the given study title on the ENA server. 

ENA Project  PMID ENA Study Title 

PRJNA433771 31563779 Metagenomics of chicken manure composts  

PRJNA526758 31884359 Cow manure metagenomics  

PRJNA311675 27834174 
Metagenomic analysis of a vermicomposting system in 

Uganda  

PRJNA549056a 31751342 
Shotgun metagenomic sequencing of food waste and 

compost samples from a Vermont poultry farm  

PRJNA41493 - Composting bioreactor sample metagenome  

PRJNA684647 - 
Effects of compound microbial inoculants on nitrogen 

conversion during livestock manure composting process 

PRJNA337811 - 
Thermal compost microbial communities from rain forest 

in Puerto Rico metagenome  

PRJNA288410 - Compost bacteria Metagenome  

PRJNA329458 - Compost metagenome 

a Only compost samples are included. 
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4.2 Identification of ARGs 
 
The analysis of the metagenomic data was conducted on the European 
(usegalaxy.eu) and US (usegalaxy.org) server. This allowed maintaining the 
timeline as the processing times of the different tools on the web-based platform 
can take varying time from hours to days. The basic workflow with the different 
applied tools is shown in figure 2.  
 
For characterization of ARGs the sequenced fragments can be directly mapped 
to databases (read-based profiling). Another approach, the one applied in this 
work, is de novo assembly. With this method longer contigs are created from the 
sequencing reads. De novo assembly can lead to loss of data and is 
computationally more demanding, but it is considered to be more accurate in 
detection of protein-coding genes [39]. 
 
In continuation, two different tools were used to map the contigs to four different 
databases. This allows for a wide search spectrum, identifying as many genes as 
possible.  
 
The tools are described briefly; if not stated otherwise, the analysis was 
performed under the standard settings.  

 

 
Figure 2. Bioinformatic workflow of ARG identification on Galaxy platform. 
The figure shows the tools used for retrieving the fastq files from ENA, contig assembly and 
antibiotic resistance gene identification. 
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Faster Download and Extract Reads in FASTQ 
Providing the Sample Accession Numbers, the tool extracts the data in fastq 
format from the Short Read Archive (SRA) at the National Center for 
Biotechnology Information (NCBI). It is based on the fasterq-dump utility of the 
SRA Toolkit (sra-tools, Version 2.10.9) [40].  
 
FastQC 
The quality of the sequence reads were viewed using FastQC (Version 0.11.8), 
a well-established tool for evaluation the quality of sequencing data [23]. 
All created web reports, as well as the raw data, were downloaded and stored. 
 
MEGAHIT Assembly 
The fastq files from each ENA project were assembled using MEGAHIT (Version 
1.1.3). It is a de-novo assembler for large and complex metagenomics NGS reads 
with reduced memory usage [24]. This was an important factor, as online tools 
have limited memory and storage usage. The minimum length of contigs was set 
to 300. The assembly results were also downloaded and stored. 
 
staramr 
staramr (Version 0.7.2) was used for mapping the contigs against the Resfinder 
database [26, 41]. The Percent identity threshold for BLAST was set to 90%.  
The files resfinder.tsv, detailed summary.tsv and results.xlsx were downloaded, 
stored. 
 
ABRicate 
ABRicate (Version 1.0.1) was used to screen for ARGs against the ARG-ANNOT, 
CARD and NCBI Bacterial Antimicrobial Resistance Gene databases [25] [42] 
[43] [44].  
The report files were downloaded and stored. 
 
 

4.3 Taxonomic classification 
 
Many tools exist for taxonomic classification. Limited to the Galaxy platform and 
computational restrains, Kraken2 was selected.  
Below the workflow on the Galaxy platform is shown for the taxonomic 
classification of the metagenomic samples.  
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Figure 3. Workflow of taxonomic classification of WGS samples on Galaxy platform. 
The figure shows the tools used for the taxonomic classification on fastq files. 

 

Kraken2 
For the taxonomic classification Kraken2 (Version 2.1.1) was used with the 
Kraken2 database Standard created 2020-06-24 [27]. This tool provides a fast 
classification on the raw reads using a k-mer based approach. The generated 
classification files were downloaded and stored. 
 
Convert Kraken 
The classification files were converted using the Convert Kraken tool to Galaxy 
taxonomy representation (Galaxy Version 1.2), a full representation of NCBI 
taxonomy. This file was needed for the following visualization with Krona. 
 
Krona pie chart 
From the converted taxonomy file a Krona pie chart was created with krona 
version 2.7.1 on the Europe server and version 2.6.1 on the US server [28]. The 
newest version did not work on the US server, and with the 2.6 version on the 
Europe server, problems with the interactive features were found. The resulting 
interactive html files were downloaded and stored. 
 
Kraken taxonomic report 
From the kraken2 classification files of each ENA project a taxonomic report was 
created, selecting the kraken database archea_2020 on Europe sever and 
bacterial on the US server (Galaxy Version 0.0.2) [29]. All reports were 
downloaded and stored. 
 
The files created by the tools on the Galaxy platform can be found within the 
folder Galaxy in google drive. 
 
 

4.4 Phylogenetic Analysis of ARGs 
 
The phylogenetic analysis was done with the reference sequences of the ARGs. 
Computational limitation did not allow for analyzing the metagenomic data itself. 
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The ARG databases use to some degree different gene names and no common 
identifier. Because of this it was necessary to compare the results for alternative 
gene names. The obtained unique genes used for further analysis.  
 
For the genes reported by ABRicate screening the NCBI database, the 
corresponding accession numbers were used for their sequence retrieval [44]. 
For the genes found only on the other databases, NCBI was used as reference if 
possible. In case there was no sequence for the gene listed as reference, the 
sequences were obtained from the CARD database [43]. However, there were 
some genes were neither on NCBI nor on CARD existed a reference: tetR(G) and 
vanA-G, that were reported by ARG-ANNOT [42]. But there were also genes 
reported by CARD, but then could not be found on the website. This was the case 
with SAT-1, the gene parY was listed as private model on the website and could 
not be accessed.  
 
The analysis was done under R software version 4.0.5 [30]. There exist many 
packages for phylogenetic analysis. In this work the package ape was used [45]. 
It is one of the core packages for phylogenies in R.  
 
Workflow 
First, the NCBI reference sequences were obtained using the read.GenBank() 
function. The remaining sequences from the CARD database were obtained 
manually and merged with the NCBI fasta files.  
 
For the multiple sequence alignment the msa package was used, applying the 
MUSCLE algorithm [46, 47]. An advantage of this package for multiple sequence 
alignment is, that it does not need any other external software.  
 
The construction of the tree was done by neighbor joining tree estimation using 
the nj() funtion [48]. A distance based algorithm that is widely used for phylogeny 
reconstruction. The distance was calculated with the dist.gene() function. 
 
Finally, the tree was visualized with the phydataplot() function. This function 
allows to add additional information to the tree. In this case, a barplot was added 
to show also the frequency in which the genes were detected. The tree was drawn 
as phylogram for best readability, for the branches the edge length was not used 
(use.edge.length=FALSE). 
 
Bootstrapping was not performed on the phylogeny due to computational 
limitations. 
 
In google drive the following files are available: 
arg-seqs.txt, containing all reference fasta sequences. 
card_seqs.txt, containing the reference sequences from CARD. 
msaMuscle.txt, multiple sequence alignment file. 
tiplabelannot.csv, annotation file for adding additional information of the 
antimicrobial resistance and the frequency of detection of the genes to the 
visualization of the tree. 
Further all intermediary files, the R script and the .RData file (phylo.R, 
pylo.RData).  
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5 Results 
 

5.1 Whole genome data of compost 
 
In this work, 9 whole genome sequencing datasets - containing in total 95 
samples - were analyzed. The list of the ENA project numbers, their given study 
title on ENA and their PubMed identification number, if a publication is available, 
is given in table 1. 
 
For the datasets without a reference to a publication, it can not be determined 
from which stage of composting the samples were taken. Neither which organic 
material or method was used.  
 
The origins of PRJNA288410 and PRJNA329458 are unknown. As shown in table 
1 they are described as compost metagenome but no further details are given.  
 
The data of PRJNA41493 and PRJNA337811 consist of one single sample each. 
The assigned title for PRJNA41493 on the ENA browser is “Composting 
bioreactor sample metagenome”. The description states that green-waste 
compost and switchgrass were “incubated under simulated composting 
conditions in a bioreactor”. 
The assigned title for PRJNA337811 is “Thermal compost microbial communities 
from rain forest in Puerto Rico metagenome”, no further details are given. 
 
PRJNA684647 consists of samples named from S1-S13, with assigned study title 
“Effects of compound microbial inoculants on nitrogen conversion during 
livestock manure composting process”. A publication was not found, so no further 
information is available. 
 
PRJNA433771 has a publication, but the sample names (XC1-XC12) do not allow 
assigning them to the description given by the authors [49]. The compost samples 
result from thermophilic composting of chicken manure with rice chaff, taken on 
day 0, 4, 21 and 28 in triplicate.  
 
Out of the 9 analyzed datasets, 3 have a full description in their corresponding 
publication: PJRNA311675, PRJNA54056 and PRJNA526758.  
 
PRJNA311675 corresponds to vermiculture of dairy manure and food waste [50]. 
The sampling was done at the endpoint on day 172. However, it is unclear if a 
difference exist between the samples named CB1-3 and CV1-3. 
  
PRJNA54056 refers to a study on food waste composting on a poultry farm [32].  
Sampling occurred at the beginning of the raw compost, of the unfinished, and of 
the finished in duplicates. On which days the samples were taken is unknown. 
The authors compared two composting methods, windrow and vermiculture. The 
vermiculture composting is done on this farm for commercial purposes. The 
samples “Worm Castings” refer to this method. The windrow composting was 
experimental, the samples are named “Compost”. 
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PRJNA526758 refers to a study on aerobic dairy manure composting, the 
experiment was performed in summer and winter for investigating seasonal 
changes [51]. 
 
A list of the datasets is given in Supplemental.xlsx. 
 
 

5.2 Identification of ARGs 
 
It was possible to verify ARGs in 7 datasets.  
The number of unique ARGs in all datasets found by databases are:  
 
ResFinder:    209  
ARG-ANNOT: 223  
CARD:    286  
NCBI:     236 
 
In total, 381 different antibiotic resistance genes were detected. 
The list of those genes with their frequency of detection by database can be found 
in Supplemental.xlsx. 
 
 
ARGs by dataset 
The data PRJNA288410 and PRJNA329458 were negative for ARGs. 
The total number of ARGs for the other datasets are shown in table 6. 
In continuation a description of the results by datasets are given. 
 
PRJNA311675 consist only of endpoint testing of vermiculture in which 4 ARGs 
were found (also see table 2). 
 
PRJNA41493 (bioreactor) and PRJNA337811 (rain forest) may also be endpoint 
testing, as they consist of one single sample.  
In the green-waste compost sample from a bioreactor, bla-TEM16 was detected 
and in the rain forest compost ant(9)-Ia, rphB and rphC. 
 
The number of ARGs found within the samples that could be clearly assigned to 
the composting stage are shown in table 2 below. 
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Table 2. Comparison of varying ARG abundance in composting process and methods. 
The table shows the number of unique antibiotic resistance genes of the 3 datasets for which the 
samples could be related to the sampling points. 

ENA Project Sample Composting Material Stage Total ARGs 

PRJNA549056 

Finished 
Compost 

Windrow Food Waste Mature 10 

Unfinished 
Compost 

Windrow Food Waste Unfinished         18 

Raw Compost Windrow Food Waste Raw 5 

Worm 
Castings 

Vermiculture Food Waste Mature 0 

Shifted Worm 
Castings 

Vermiculture Food Waste Unfinished 0 

Top Worm 
Castings 

Vermiculture Food Waste Raw 6 

PRJNA526758 

Sum14 Aerated pile Dairy Manure Mature 5 

Sum3 Aerated pile Dairy Manure Unfinished 15 

Sum0 Aerated pile Dairy Manure Raw 58 

Win14 Aerated pile Dairy Manure Mature 2 

Win6 Aerated pile Dairy Manure Unfinished 9 

Win3 Aerated pile Dairy Manure Unfinished 20 

Win0 Aerated pile Dairy Manure Raw 84 

PRJNA311675 CB/CV Vermiculture 
Dairy Manure 
+ Food Waste 

Mature 4 

 
 
The commercial vermiculture was positive for ARGs only at the initial layer of the 
worm casting. At the second sampling of the unfinished vermicompost after 
shifting, no ARGs were detected. The windrow composting of the same food 
waste showed the lowest detectable number of ARGs at the beginning, the 
highest at the second sampling of the unfinished compost. The finished compost 
had reduced from 18 to 10 ARGs, a higher amount than at the initial stage.   
 
The composting by aerated pile of dairy manure displays a continuous decrease 
in ARGs from the raw to the mature compost. The experiment conducted during 
the winter shows a slightly higher number of ARGs. 
 
In continuation, the detected ARGs from those 3 datasets are shown in table 3. 
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Table 3. List of ARGs found in PRJNA549056, PRJNA526758 and PRJNA311675. 
The table shows the types of antibiotic resistance genes detected within the samples of the 
datasets PRJNA549056 (compost/worm castings), PRJNA526758 (Sum/Win) and 
PRJNA311675 (CB/CV). The results for the 6 CB/CV samples were taken together as they refer 
to one endpoint sampling. The samples of compost and worm castings are duplicates analyzed 
together. 

Sample AR-Genes 

Finished 
Compost 

aadA1, aadA14, aadA31, aph(3')-Ia, aph(3'')-Ib, aph(6)-Id, blaCARB-8, sul1, 
sul2, tet(H) 

Unfinished 
Compost 

aadA1, aadA14, aadA27, aadA31, aph(3'')-Ib, aph(6)-Id, mef(A), mexF, msr(D), 
lnu(B), lnu(C), lsa(E), sul2, tet(L), tet(H), tet(W), tet(37), tet(39) 

Raw 
Compost 

aadA1, ant(3'')-Ia, aph(3'')-Ib, aph(6)-Id, sul2 

Worm 
Castings 

- 

Shifted 
Worm 
Castings 

- 

Top Worm 
Castings 

aadA1, ant(3'')-Ia, aph(3'')-Ib, aph(6)-Id, sul2, tet(X) 

Sum14 aph(3'')-Ib, aph(3')-Ia, blaTEM-171, tet(W), vanR-O 

Sum3 
aadA1, aadA6, ant(6)-Ia, aph(3'')-Ib, aph(6)-Id, aph(3')-Ia, blaTEM-17, mef(A), 
tet(Q), lnu(D), sul1, sul2, spw, vanR-O, qacH 

Sum0 

aadA1, aadA6, aadA9, aadK, aadS, aac(3)-IId, aac(6')-Ib', aac(6')-Ib-Hangzhou, 
aac(6')-Ib-cr, ant(2'')-Ia, ant(3'')-Ia, ant(6)-Ia, aph(3'')-Ib, aph(6)-Id, aph(3')-Ia, 
aph(3')-IIIa,  bla-TEM171, blaOXA-347, cfxA, CpxR, dfrA1, emrE, ermF, floR, 
lin(A), lsa(E), lnu(A), lnu(B), lnu(C), lnu(D), lnu(G), mef(A), mef(C),  mexB, 
mexK, mexF, mexW,  msr(D), mph(E), mph(G), OprN, OpmH, spw, sul1, sul2, 
tet(A), tet(G), tet(L), tet(M), tet(Q), tet(R), tetR(G), tet(W), tet(X), tet(X4), tet(39), 
qacH 

Win14 blaTEM-150, vanR-O 

Win6 
aadA1, aadA10, aph(6)-Id, aph(3'')-Ib, blaTEM-150, CpxR, mexK, rpoB2, vanR-
O 

Win3 
aadA1, aadA6, aadA13, aph(6)-Id, aph(3'')-Ib, ant(6)-Ia, blaTEM-150, CpxR, 
dfrA1, emrE, lnu(C), lnu(D), mexK, mexW, spw, sul1, sul2, tet(W), vanR-O, 
qacH 

Win0 

aadA1, aadA5, aadA6, aadA15, aadA27, aadE, aadS, aac(3')-IId, aac(6')-IIa, 
aac(6')-Ib3, aac(6')-Ib4, aac(6')-Ib9, aac(6')-Ib-cr, aph(3')-Ib, aph(3')-Ia, aph(3')-
VI, aph(3'')-Ib, aph(3'')-III, aph(3')-VIa, aph(6)-Id, ant(6)-Ia, blaCARB-5, 
blaCARB-16, blaOXA-278, blaOXA-285, blaOXA-335, blaOXA-347, blaOXA-
646, blaTEM-150, ble-MBL, catB3, catB4, catB8, catB11, catQ, cfxA, cfxA2, 
dfrA1, dfrA17, ere(D), erm(F), erm(G), floR, lin(A), lnu(A), lnu(B), lnu(C), lnu(D), 
lnu(G), lnu(F), lsa(E), Mef(En2), mef(A), mef(B), mexW, mph(E), msr(E), 
msr(D), tet(39), qnrD1, sul1, sul2, sul3, sat2, sat4, tet(A), tetA(P), tet(H), tet(L), 
tet(M), tet(O), tet(Q), tet(R), tetR(G), tet(W), tet(X), tet(X4), tet(Y), tet(32), 
tet(36), tet(44), vanR-I, vanR-O, vanZ-F 

CB/CV aph(3'')-Ib, blaCMY-8, sul1, sul2 

 
 
PRJNA433771, the thermophilic composting of chicken manure, with sampling 
on 4 stages of the process, shows 6 samples with a number of ARGs above 100. 
The other part of the samples show a decrease in abundance to the half or less 
(see table 4). As it is unknown to which stage the samples belong to, it remains 
unclear if the abundance decreased or increased during the composting process.  
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Table 4. Variation of ARG abundance in chicken manure compost. 
The table shows the variation of detected ARGs of experimental thermophylic chicken manure 
composting. The samples can not be related to the sampling points. It is known that the sampling 
was done in triplicate on day 0, 4, 21 and 28. 

Project Sample Composting Material NCBI Resfinder CARD 
ARG-
annot 

P
R

J
N

A
4
3
3
7
7
1

 

XC12 Thermophilic 
Chicken 

Manure + 
Rice Chaff 

54 38 46 43 

XC11 Thermophilic 
Chicken 

Manure + 
Rice Chaff 

57 51 50 49 

XC10 Thermophilic 
Chicken 

Manure + 
Rice Chaff 

51 38 46 43 

XC9 Thermophilic 
Chicken 

Manure + 
Rice Chaff 

31 28 24 28 

XC8 Thermophilic 
Chicken 

Manure + 
Rice Chaff 

43 41 39 38 

XC7 Thermophilic 
Chicken 

Manure + 
Rice Chaff 

46 37 40 40 

XC6 Thermophilic 
Chicken 

Manure + 
Rice Chaff 

118 120 104 111 

XC5 Thermophilic 
Chicken 

Manure + 
Rice Chaff 

132 125 122 122 

XC4 Thermophilic 
Chicken 

Manure + 
Rice Chaff 

120 112 109 111 

XC3 Thermophilic 
Chicken 

Manure + 
Rice Chaff 

135 127 156 129 

XC2 Thermophilic 
Chicken 

Manure + 
Rice Chaff 

148 131 163 140 

XC1 Thermophilic 
Chicken 

Manure + 
Rice Chaff 

138 133 149 132 

 
The experiment with livestock manure composting (PRJNA684647) has similar 
number of ARGs in all samples (see table 5). 
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Table 5. Variation of ARG abundance in experimental livestock manure composting. 
The table shows the number of ARGs found on the different databases of all samples of 
PRJNA684647. It is unknown to what composting process, experiment or testpoints refer to. 

Project Sample Composting Material NCBI Resfinder CARD 
ARG-
annot 

P
R

J
N

A
6
8

4
6

4
7
 

S13 na 
livestock 
manure 

62 58 54 56 

S12 na 
livestock 
manure 

50 42 10 49 

S11 na 
livestock 
manure 

71 78 60 65 

S2 na 
livestock 
manure 

54 65 76 53 

S1 na 
livestock 
manure 

54 62 50 52 

S10 na 
livestock 
manure 

66 56 57 63 

S9 na 
livestock 
manure 

61 50 53 59 

S8 na 
livestock 
manure 

73 71 63 69 

S7 na 
livestock 
manure 

63 53 55 61 

S6 na 
livestock 
manure 

68 71 75 66 

S5 na 
livestock 
manure 

86 90 130 88 

S4 na 
livestock 
manure 

70 78 100 68 

S3 na 
livestock 
manure 

62 63 75 61 

S18 na 
livestock 
manure 

92 83 137 88 

S17 na 
livestock 
manure 

102 86 101 89 

S16 na 
livestock 
manure 

64 61 59 56 

S15 na 
livestock 
manure 

112 94 104 99 

S14 na 
livestock 
manure 

65 61 56 59 
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Most frequent ARGs and AMR 
The most frequently identified gene is lnu(C), reported 65 times by Resfinder.  
Above 50 times reported were erm(G) and mef(A), both macrolide resistance 
genes. Table 6 below shows the genes that were detected more than 30 times 
by at least on database within all 95 samples. 
 
Table 6. Most frequently detected ARGs. 
The table shows those antibiotic resistance genes, that were detected more than 30 times within 
all 95 samples. The number of detection is given by database. Further the corresponding 
antimicrobial substance class (AMR) is given. 

Gene Resfinder NCBI CARD ARGannot AMR 

lnu(C) 65 58 58 58 LINCOSAMIDE 

erm(G) 25 56 55 56 MACROLIDE 

mef(A)  51 35 35 35 MACROLIDE 

erm(A) 36 44 40 40 MACROLIDE 

lnu(D) 0 43 43 43 LINCOSAMIDE 

tet(X) 41 22 11 22 TETRACYCLINE 

cfr 39 7 7 7 MULTIDRUG 

ant(9)-Ia  20 35 3 35 AMINOGLYCOSIDE 

cat 35 0 0 0 CHLORAMPHENICOL 

msr(D 18 24 35 24 MULTIDRUG 

spw 0 35 0 35 AMINOGLYCOSIDE 

tet(L) 35 26 26 26 TETRACYCLINE 

aph(3'')-Ib  34 31 31 31 AMINOGLYCOSIDE 

floR 25 26 34 34 PHENICOL 

aph(6)-Id  33 30 30 30 AMINOGLYCOSIDE 

sul2 33 30 30 30 SULFONAMIDE 

aadA1  15 30 32 29 AMINOGLYCOSIDE 

erm(T) 32 32 32 32 MULTIDRUG 

aph(2'')-Ih 9 31 0 9 AMINOGLYCOSIDE 

sul1 31 28 28 28 SULFONAMIDE 

aac(6')-aph(2'')  27 0 30 30 AMINOGLYCOSIDE 

ant(6)-Ia 30 13 12 13 AMINOGLYCOSIDE 

aph(3')-IIIa 30 30 30 30 AMINOGLYCOSIDE 

erm(F) 30 28 28 28 MACROLIDE 

lnu(G) 26 30 30 0 LINCOSAMIDE 

 
 
A total of 24 ARG types were found in the compost samples (see table 7). 
Genes encoding for aminoglycoside resistance are the most prominent ones with 
23.9% of all detected ARGs. This drug class also has the highest number of 
resistance genes with 73 (19.2% of total ARGs). Between 14% and 10% are 
resistance for tetracyclines, macrolides and genes responsible for multi-drug 
resistance. The resistance genes encoding mechanism against beta-lactam, are 
the second highest in terms of number of genes, with 64 (16.8% of ARGs), yet 
their contribution to the resistome is 7.8%. A similar proportion of 6.3% shows the 
resistance for lincosamide, yet they only make up for 3.4% of the ARGs. 
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Table 7. Antibiotic resistance prevalence by antimicrobial drug class. 
The table shows the antimicrobial drug class, how many of the 381 different antibiotic resistance 
genes belong to this class in total number and percentage. Further how often a resistance gene 
for the corresponding AMR class was detected in all 95 samples (Total AMR) and the percentage 
(AMR %). 

Drug Class Total ARGs ARG % Total AMR AMR % 

AMINOGLYCOSIDE 73 19.2 849 23.9 

TETRACYCLINE 37 9.7 472 13.3 

MACROLIDE 35 9.2 450 12.7 

MULTI-DRUG 48 12.6 388 10.9 

BETA-LACTAM 64 16.8 277 7.8 

CHLORAMPHENICOL 25 6.6 249 7.0 

LINCOSAMIDE 13 3.4 223 6.3 

TRIMETHOPRIM 17 4.5 153 4.3 

PHENICOL 4 1 76 2.1 

VANCOMYCIN 9 2.4 76 2.1 

SULFONAMIDE 4 1 71 2.0 

NUCLEOSIDE 8 2.1 62 1.7 

PEPTIDE 9 2.4 32 0.9 

BLEOMYCIN 3 0.8 31 0.9 

FLUOROQUINOLONE 5 1.3 25 0.7 

RIFAMYCIN 4 1 23 0.6 

STREPTOGRAMIN 4 1 20 0.6 

QUINOLONE 5 1.3 19 0.5 

AMINOCOUMARIN 6 1.6 17 0.5 

FOSFOMYCIN 3 0.8 14 0.4 

DISINFECTANT 1 0.3 12 0.3 

STREPTOMYCIN 1 0.3 10 0.3 

NITROIMIDAZOLE 2 0.5 5 0.1 

TRICLOSAN 1 0.3 1 0.03 

 
 
 

5.3 Taxonomic classification 
 
The most common phyla in all compost samples are Actinobacteria, 
Bacteroidetes, Firmicutes and Proteobacteria in variable distribution.  
In table 8 the phyla above 1% of identified bacteria are shown by dataset. 
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Table 8. Detected number of ARGs and dominant phyla by datasets.  
The table shows the phyla for each dataset that compose for <1% of identified bacteria in at least 
one sample within the ENA project. Further total amount of ARGs of all samples within the 
dataset. 

ENA Project  Total ARGs  Phyla (< 1% ) 

PRJNA433771 1073 
Actinobacteria, Bacteroidetes, Firmicutes, 
Proteobacteria 

PRJNA526758 169 

Actinobacteria, Bacteroidetes, Deinococcus Thermus, 
Chloroflexi, Firmicutes, Proteobacteria, 
Planctomycetes 

PRJNA311675 4b 

Actinobacteria, Bacteroidetes, Chloroflexi, Firmicutes, 
Gemmatimonadetes, Proteobacteria, Planctomycetes, 
Spirochaetes, Tenericutes, Verrucomicrobia 

PRJNA549056a 31 
Actinobacteria, Bacteroidetes, Firmicutes, 
Proteobacteria, Planctomycetes 

PRJNA41493 1c 
Actinobacteria, Bacteroidetes, Firmicutes, 
Proteobacteria, Planctomycetes 

PRJNA684647 1315 
Actinobacteria, Bacteroidetes, Firmicutes, 
Proteobacteria, Spirochaetes 

PRJNA337811 2c 
Actinobacteria, Bacteroidetes, Chloroflexi, Firmicutes, 
Proteobacteria 

PRJNA288410 - 
Actinobacteria, Bacteroidetes, Chloroflexi, Firmicutes, 
Gemmatimonadetes, Proteobacteria 

PRJNA329458 - 
Actinobacteria, Bacteroidetes, Deinococcus Thermus, 
Firmicutes, Proteobacteria, Tenericutes 

a  compost samples only 
b one testpoint only 
c single sample 
 

 
The list of the percentages by samples is given in the appendix. Further, the 
taxonomic reports of the kraken classification, as well as the interactive krona pie 
chart visualization are available in google drive. 
 

The dynamics of the composition of the main phyla from the two datasets were 
the testpoints are known for the samples, is visualized below. 
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Figure 4. Variation of main phyla during composting process. 
Panel A shows the change of the main phyla (<1% of identified bacteria) in aerated pile 
composting of dairy manure during summer (blue) and winter (red). Testpoint 1 refers to raw 
compost on day 0, testpoint 2 to day 3 and testpoint 3 to finished compost on day 14. 
Panel B shows the change of the main phyla (<1% of identified bacteria) in windrow composting 
(yellow) and commercial vermiculture (green) of food waste. Testpoint 1 refers to raw 
compost/first layer vermiculture, testpoint 2 to unfinished compost/after shifting vermiculture and 
testpoint 3 to finished compost/vermiculure compost. 
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The main differences in the seasonal aerated pile composting of dairy manure 
are at the finished compost samples. One can see a dominance of Deinococcus 
Thermus within the finished compost sample taken in winter. The sample taken 
in the summer experiment shows a higher prevalence of Actinobacteria, 
Bacteroidetes and Proteobacteria. 
 
The experiment of food composting by means of windrow or commercial 
vermiculture displays a higher percentage of Firmicutes in windrow through the 
whole process. The vermiculture has at the beginning a higher composition of 
Bacteroidetes, but at the finished compost they are similar in both groups. 
 
 

5.4 Phylogenetic Analysis 
 
The phylogenetic tree created from the reference sequences of the verified 
antibiotic resistance genes in the compost samples is shown in figure 5. 
The gene names are colored by their corresponding antimicrobial substance 
class. The bars visualize how often the respective genes were reported 
(maximum count by one database).  
 
The confidence levels for the phylogeny is unknown as it was not possible to carry 
out bootstrapping. 
 



24 
 

 
Figure 5. Phylogenetic tree of antibiotic resistance genes.  
The figure shows the phylogenetic tree by neighbor joining method of the antibiotic resistance 
genes reference sequences. The branches of the tree were drawn without using the edge length 
of the phylogeny. The gene names are colored by antimicrobial substance class. The bars 
visualize the frequency of their detection in all datasets. 
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It is visible, that the antibiotic resistance genes for the same antimicrobial 
substance form only partially clusters. Most of the tetracycline resistance genes 
can be found in the middle of the tree (see figure 5 and 7). 
 
Yet, if we take for example beta-lactam resistance (colored in dark blue), some 
of the subclasses like EBR, TEM and VEB build cluster, but the different types of 
the OXA subclass can be found across the tree (see figure 5, 6 and 8). 
 
In terms of the frequency of a genes detection, having a look at the most common 
macrolide resistance genes erm(A), erm(G) and mef(A), former two are located 
at the top of the tree, while latter is situated in the middle between the tetracycline 
(tet) clusters (see figure 6 and 7). 
 
 

 
Figure 6. Phylogenetic tree fragement from the top. 
The figure shows the first cluster of the phylogenetic tree. The frequently detected genes erm(A) 
and erm(G) are at the top. Also visible is that genes of OXA subclass are not all grouped together 
like the VEB subclass. 
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Figure 7. Fragment from the middle of the phylogenetic tree. 
The figure shows the third most frequent detected gene mef(A) and clusters of the tetracycline 
resistance (light green).  
 

The most frequent gene lnu(C) is grouped with the less frequent lincosamide 
resistance genes lnu(AN2), lnu(A)’ and lnu(A). Yet, the more prevalent gene 
lnu(D), is situated further down the tree (see figure 8). 
 
 

 
Figure 8. Fragment from the bottom of phylogenetic tree. 
The figure shows that the most common lincosamide resistance genes lnu(C) and lnu(D) are not 
grouped together. 
 

The phylogenetic tree is available in google drive as phylotree.pdf. 
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6 Discussion 
Soil is a natural reservoir for antibiotic resistance. However, the wide-spread use 
of antibiotics in medicine, veterinary medicine and agriculture lead to an 
exacerbate dissemination of antibiotic resistance genes in the environment [4]. 
Composting manure or sludge from wastewater treatments can help to reduce 
those ARGs, but study results are still inconsistent, showing also an increase of 
total ARGs during the process [15, 34]. Compost is commonly used as a soil 
fertilizer, not only in agriculture, but also in private households. A better 
understanding of ARG removal mechanisms during the composting process is 
needed. 
 
Most studies on this topic were performed screening for ARGs using qPCR, 
selecting the most clinically relevant genes only.  
Here, datasets were obtained from whole genome sequencing of compost that 
are publicly available on the ENA server. This in-silico analysis aimed to verify 
the presence of ARGs in compost, obtain the microbial community and explore 
the phylogeny of the detected ARGs. It needs to be mentioned that, the WGS 
data differ in sequencing platform, sequencing depths and sample replicates. 
Additionally there is a lack of information of sample origin and test points. Further 
it needs to be considered, that the computational limitations – a private notebook 
running under Microsoft Windows 10 and 8 GB working memory – had an impact 
on the methodological possibilities. 
 
WGS data 
The search had to be limited to the ENA server because of accession problems 
to the MG-RAST server, but also for avoiding to download and then again upload 
data to the Galaxy server on which most of the analysis steps were executed. 
Sequencing compost samples is more frequently done by 16S rRNA amplicon 
sequencing, so available WGS data is limited. Further, sharing data as open 
access still needs some more encouragement. Another difficulty to encounter 
suitable data is the scarce description or even mislabeling within the database. 
 
In the end, it was possible to obtain data from 9 different experiments - consisting 
of 95 samples - that could be analyzed. Two datasets from a compost facility,  
ENA project number PRJNA337761 and PRJNA337762, had to be discarded as 
the de-novo assembly step was not possible to execute on the Galaxy server due 
to working memory restrictions. 
 
ARG identification 
After de-novo assembly with MEGAHIT the contigs were screened against the 
databases ARG-ANNOT, CARD and NCBI using the tool ABRicate and against 
Resfinder database using staramr. The reason for using several databases was 
that they vary in curated genes and also in which intervals they are updated. The 
number of different genes found by database are 223, 286, 236 and 209, 
respectively. Although Resfinder detected fewer, it is a well curated database for 
acquired resistance, involving HGT events. CARD identified the most as it covers 
a broad spectrum of ARGs [39]. It came to attention that in many cases multi-
drug resistance genes were detected only by CARD. The CARD database was 
searched with the tool ABRicate. The reported results included the gene SAT-1, 
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which does not exist on the CARD website, and Streptomyces_rishiriensis_parY. 
Latter is marked as a private model on the website with the note that it is currently 
not used. This leads to the conclusion that a screening with their own tool 
Resistance Gene Identifier (RGI) may lead to slightly different results than the 
one obtained in this work. 
 
The different databases also use their own identifiers and to some degree the 
gene names differ. This made it more laborious to unify the obtained results. The 
list of those unified results is shown in the Supplemental.xlsx. In total 381 different 
ARGs were found. 
 
As mentioned before, only 9 datasets were analyzed and for most of them, 
information about their origin or sample points are missing. Only for 3 
experiments (PRJNA549056, PRJNA526758 and PRJNA311675) a full 
description including assignment of the samples to the sample points was 
available. For PRJNA433771 a publication exists, yet due to a missing 
description, the samples can not be related to the testing points. This lack of 
sufficient data on different types of organic material and composting method, as 
well as, that most of the data is derived from different types of experimental 
settings, does not allow a statistical comparison for drawing conclusions. 
Nevertheless, the results observed are concordant with what is described in 
literature.  
 
The experiment on thermophilic composting of chicken manure (PRJNA433771) 
showed the highest number of ARGs by individual samples (see table 4). This is 
coherent with chicken manure having a higher ARG abundance than cattle 
manure [52, 7, 14]. 
 
The experiment of vermicomposting dairy manure with food waste, shows a 
similar number of ARGs at the endpoint compared to an experiment of aerated 
pile composting of dairy manure (see table 2). However, the vermiculture data 
only consists of endpoint testing, it remains unknown if the initial abundance was 
also comparable.  
 
The food waste composted by windrow method (PRJNA549056) shows an 
increase of ARGs during the process, while the vermiculture for commercial 
purpose had eliminated all ARGs already at the test point of the unfinished stage.  
A study on food composting, using aerated static pile method, also observed an 
increase in total ARG during the process, suggesting that food waste could be an 
important reservoir of ARGs [53]. In terms of vermiculture, it was demonstrated 
that earthworms have an significant effect on the bacterial community and inhibit 
the growth of various human pathogenic bacteria [54].  
 
In continuation the ARGs present in the samples that refer to finished compost 
are shown grouped by antimicrobial substance class. 
 
Aminoglycoside: aadA1, aadA14, aadA31, aph(3')-Ia, aph(3'')-Ib, aph(6)-Id   
Beta-Lactam: blaCARB-8, blaCMY-8, blaTEM-150, blaTEM-171  
Sulfonamide: sul1, sul2 
Tetracycline: tet(H),  tet(W)  
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Vancomycin: vanR-O  
 
The data from two ENA projects consist of one sample each. The green-waste 
compost from a bioreactor and a compost from a rain forest. In those samples 
the genes bla-TEM16 (beta-lactam) and ant(9)-Ia (aminoglycoside), rphB, rphC 
(rifamycin) respectively, were detected. 
 
Interestingly, taking all samples together, blaCARB-8 and blaCMY-8 got reported 
only this one time. It needs to be mentioned, that the counts of the ARGs refer to 
unique ARG by sample. That means, that if a gene was reported several times 
within one contig, it was count only once. 
The genes aadA1, ant(9)-Ia, aph(3'')-Ib, aph(6)-Id, sul1, sul2, tet(W) and vanR-O 
were more commonly detected (more than 30 times within 95 samples) within the 
analyzed data. Yet the most frequently detected genes lnu(C), lnu(D) 
(lincosamides), erm(G), erm(A), mef(A) (macrolides) and tet(X) were not found in 
those endpoint samples. 
 
Genes responsible for resistance to aminoglycosides and beta-lactams are the 
mayor contributors to the 381 different ARGs, with 73 and 64 types each, they 
make up for 35.96% of ARGs. In this study, they add up to 31.7% of the compost 
resistome. While the aminoglycoside resistances are a little higher than the 
number of ARGs, the opposite is the case for beta-lactam resistance. The ARGs 
are 16.8% of the different genes, yet in the resistome proportion is only 7.8%. 
This suggests a lesser persistence of beta-lactam resistance genes 
The opposite is observed for lincosamide resistance. The ARGs lnu(C) and lnu(D) 
were often found in the samples (65 and 43 times). This increases their 
contribution to the resistome with 6.3%, although the number of ARGs belonging 
to this group are only 13, corresponding to 3.4% of the different genes. Apart from 
the drug class lincosamide, also for macrolide and tetracycline a higher 
contribution to the resistome than to the number of ARGs is observed.  
The resistance genes against tetracyclines, macrolides and multi-drugs 
contribute with 13.3%, 12.7% and 10.9% correspondingly. 
In case of sulfonamide, the resistance against this drug class consist of 1% of the 
detected ARGs (sul1-4) but contribute 2% to the resistome. 
This may indicate that ARGs encoding for resistance mechanisms against those 
drug classes could be more persistent within compost. 
 
Looking at the occurrence of ARG in livestock waste, the drug classes 
tetracycline, sulfonamide, macrolide and beta-lactam are most frequently 
detected, with tetracyclines and sulfonamides seemingly being the most 
persistent ones [7, 55]. So the corresponding genes can be expected also within 
the finished manure compost, which is coherent with this study results. 
 
 
Taxonomic classification 
 
The main phyla detected in all samples are Actinobacteria, Bacteroidetes, 
Firmicutes and Proteobacteria. 
The composting of food waste or added food waste, seems to show a higher 
prevalence of Proteobacteria. A high percentage of Proteobacteria was also 
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found in the compost sample from the rain forest were the organic material is 
unknown.  
One study found higher proportions of Acidobacteria and Planctomycetes in 
vermicomposting [54]. Planctomycetes was also a little higher in this study in 
vermicompost, but the percentage was in general low. Acidobacteria were not 
found to be above 1% (see also Supplement.xlsx). 
 
The most striking variation in all samples was found at the aerated pile 
composting experiment conducted once during summer and winter. The main 
difference in variation of the dominant phyla between the seasons is Deinococcus 
Thermus (see also figure 4, panel A). At testpoint 2 at day 3 accounting for 6.12% 
during summer and 22.52% in winter. This difference augmented in the finished 
compost. While during the summer the contribution of this phylum decreased to 
1.51%, during winter it increased further to 69.65%. This was the only dataset 
with such high percentage of this phyla. In most of the samples it was below 1%. 
The ARGs diminished in both piles during the composting process, from 58 to 5 
and 84 to 2 correspondingly (see table 2). 
 
A summarization of the taxonomic classification below phylum level was not 
conducted. Neither a test for correlation analysis between the microbiome and 
resistome. Therefore a more detailed analysis cannot be given here. 
 
 
Phylogenetic Analysis 
 
The phylogenetic analysis of the antibiotic resistance genes was performed with 
the reference sequences from the NCBI or CARD database. Unfortunately, as 
metagenomic data is computationally intensive, examining the phylogeny of the 
ARG-carrying microbes within the WGS compost samples was unfeasible.  
Further, it needs to be emphasized that the confidence level of the obtained 
phylogenetic tree remains unknown as the testing was also too computational 
intensive for the notebook used in this study. 
 
Within those limitations, the phylogenetic tree of the ARGs was visualized adding 
information on the antimicrobial drug class and the frequency of detection to 
obtain a general impression of their phylogeny (see figure 5). 
 
The contribution of the ARGs to the compost resistome are not reflected in the 
cluster of the tree.  
 
In terms of antimicrobial resistance, some partial clusters are visible. Most of the 
tetracycline resistance genes (tet) are grouped in proximity in three different 
cluster (see also figure 7).  
In comparison, within the beta-lactam resistance genes the subclasses EBR, 
TEM and VEB build cluster, yet the genes belonging to the OXA subclass can be 
found across the tree (see figure 5, 6 and 8). 
 
One study on the diversity of tetracycline resistance genes indicated that mobile 
tetracycline resistance genes originate, depending on the resistance mechanism, 
from different phyla [56]. Further visualization that takes into consideration the 
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phyla and drug resistance mechanism may provide a clearer picture. However, 
in this study the available time was not sufficient for investigating the phylogeny 
in more detail. 
 
 

7 Conclusions 
 

7.1 Conclusions 
 
The purpose of this work was to study the resistome of compost samples. 
Particularly, to explore the phylogenetic relationship between the detected ARGs. 
 
Availability of publicly shared WGS data and computational constraints are the 
inherent limitations to this study.  
 
Nevertheless, it was possible to analyze data from 9 different experiments. In 7 
datasets antibiotic resistance genes were detected. A total of 381 different ARGs 
were identified on 4 different databases. A phylogenetic tree was built from 365 
genes, from which 282 have a corresponding reference sequence listed on NCBI 
and 83 reference sequences were obtained from the CARD database. For the 
remaining genes a reference sequence was not found. The 4 ARG databases 
use to some degree different gene names, thus the results had to be combined 
manually. This could be a source for mistakes and the possibility exists that not 
all gene synonyms were identified as such. Working with databases and the tools 
connected to them, also means that the results are influenced by the curation of 
the database and the maintenance of both. In the case of the CARD database, 
screened with the tool ABRicate, genes got reported that on the CARD website 
returned either ‘no results’ or were marked as a private model and are therefore 
unavailable. As a phylogenetic analysis of the WGS data was not possible within 
this work, the tree of the reference sequences reflects only a general overview of 
the antibacterial resistance genes. In the visualization step, information about the 
corresponding antimicrobial drug class and the frequency of their occurrence 
within the compost samples was added. Some partial clusters are visible with 
regard to the antimicrobial drug class. The frequency of detection of the ARGs is 
not reflected. The available time for the analysis did not allow for further 
visualizations, taking  into consideration the phyla and drug resistance 
mechanism, which may provide a clearer picture. It also needs to be mentioned, 
that the confidence level of the phylogeny could not be tested as the working 
memory resulted to be insufficient for this task.  
 
As for the working process itself, at first glance the task of identification of ARGs 
within WGS data and subsequently phylogenetic analysis seemed to be straight 
forward. While researching the topic of the resistome in compost and soil itself 
and the bioinformatical methods for analyzing metagenomic data, it became soon 
apparent, that the complexity of this study was somewhat underestimated. 
It was clear from the beginning that the available data will be limited and that due 
to the data size most of the processing needed to be done on the Galaxy platform. 
Still, the search of data resulted more complicated simply because of a lack of 
description given for the few datasets available. Although the Galaxy platform 
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serves its purpose quite well, the processing times are somewhat unpredictable, 
the tools that can be used for the analysis are naturally limited and may not 
always be updated. 
 
As for the complexity of the topic itself, the available time for conducting this study 
was not sufficient for an extensive analysis of the resistome. The planning 
focused on the identification of the ARGs and the phylogenetic analysis. During 
the work process it became evident, that the microbial community needs a deeper 
analysis as what was possible here. Although examining the mobile genetic 
elements was not part of this work, they are needed to be investigated, as they 
are linked to the distribution of resistances between bacteria. And the ability of 
horizontal gene transfer influences the phylogeny.  
 
Taking all together, further analysis of the resistome with the adequate 
computational infrastructure is advisable. 
 
 

7.2 Future research lines 
 
There are several analysis that still remain open.  
To start with, a network analysis for investigating the co-occurrence among ARGs 
was not performed. The dissemination of ARGs occurs under the influence of 
MGEs, so they should be analyzed within the samples. A joined analysis, taking 
the microbial community into consideration, should be performed to characterize 
horizontal gene transfer among compost bacteria. 
A phylogenetic analysis performed directly with the WGS data could give a better 
picture of the variation among the composting process. 
Also a phylogenetic analysis by resistance mechanism and bacterial taxonomy 
could add more information to the phylogeny. 
 
Lastly, it would be preferable, if data sharing would be more the praxis. This would 
allow for more comparisons of compost types by material and method. 
 
 

7.3 Assessment of planning 
 
The milestones of this study were obtaining WGS data of compost samples, 
identifying ARGs within those samples and conduct the resistome analysis on 
them. The timetable for obtaining the data and identifying the genes was adhered 
to. What took up more time than expected was to unify the results from the 4 
different databases as they use to some degree different gene names. Also, it 
was necessary to obtain a part of the ARG reference sequences manually from 
the CARD database. This was unforeseen and needed additional time. In the 
end, the main aim of obtaining a phylogenetic tree of the ARGs was fulfilled within 
the timeline. However, adjustments or further analysis relating ARGs and 
microbial community and was not possible. 
 
The selection of the methodology was greatly influenced by the computational 
limitations inherent to metagenomic data. Selecting the data from ENA and the 
use of the Galaxy platform for the main bioinformatics workflow was the only 
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feasible possibility. Even so, two datasets needed to be excluded from this study 
as it was not possible to process them on the server due to working memory 
limitations.  
The plan to perform the phylogenetic analysis with the R software also proved to 
be correct, as online tools for multiple sequence alignments and phylogenetic tree 
construction are limited in the number of sequences possible. Here more than 
300 sequences were analyzed, a number that exceeds those established limits 
for the online tools. 
 
To sum up, it was possible to carry out the study within the set timeline. 
Nevertheless, the availability of WGS data and facing the problem of 
computational limitations for processing the data proved to be a shortcoming of 
this work and prevented a more meticulous analysis of the resistome. 
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8 Glossary 
ARG     - Antibiotic Resistance Gene 
ARG-ANNOT  - Antibiotic Resistance Gene-ANNOTation Database 
BLAST    - Basic Local Alignment Search Tool 
CARD    - Comprehensive Antibiotic Resistance Database 
ENA     - European Nucleotide Archive 
HGT    - Horizontal Gene Transfer 
MGE    - Mobile Genetic Element 
MUSCLE  - MUltiple Sequence Comparison by Log- Expectation 
NCBI   - National Center for Biotechnology Information 
NGS    - Next Generation Sequencing 
PCR   - Polymerase Chain Reaction 
qPCR    - quantitative Polymerase Chain Reaction 
rRNA    -  ribosomal Ribonucleic Acid 
RGI   -  Resistance Gene Identifier 
SRA    - Short Read Archive 
US    - United States  
WGS     - Whole Genome Sequencing 
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Annexes 
 
Table 9. Percentage of the main phyla (threshold 1%). 

 
 
 

ENA Project Sample Actinobacteria Bacteroidetes Chloroflexi
Deinococcus 

Thermus
Firmicutes Gemmatimonadetes Planctomycetes Proteobacteria Spirochaetes Tenericutes Verrucomicrobia

SRR2080282 67.79 1.99 1.97 0.05 23.51 0.82 0.08 3.43 - - 0.08

SRR2080283 62.44 8.61 1.73 0.05 7.86 2.67 0.08 15.31 - - 0.05

SRR2080284 50.12 15.60 1.26 0.03 10.64 - - 22.18 - - -

SRR2080285 39.20 30.13 0.09 - 21.54 0.09 0.06 8.80 - - -

SRR2080286 24.66 50.17 0.09 - 3.14 0.06 0.09 21.47 - - 0.06

SRR2080287 42.61 23.43 0.19 0.04 16.19 0.04 - 17.43 - - -

SRR2080288 1.25 2.74 0.45 - 92.93 0.06 0.18 1.70 0.06 0.18 -

SRR2080289 48.11 0.04 0.40 - 50.83 0.26 - 0.26 - - -

SRR2080290 7.31 0.67 0.03 - 90.32 0.03 0.03 1.52 - - -

SRR2080291 79.28 0.08 0.03 - 20.18 0.05 - 0.32 - - -

SRR2080292 6.34 4.00 0.02 0.07 73.00 - 0.09 16.34 - 0.05 -

SRR2080293 71.06 0.32 0.03 - 26.02 0.14 - 2.40 - 0.03 -

CB1 8.18 5.25 0.07 0.06 7.24 0.01 1.56 75.59 0.06 0.04 0.15

CB2 10.53 4.16 0.13 0.10 7.46 0.07 1.96 73.26 0.06 0.04 0.16

CB3 9.80 4.00 0.56 0.17 3.83 0.10 6.37 69.91 0.13 0.06 0.44

CV1 3.50 38.99 0.13 0.04 14.57 0.26 0.48 31.22 3.84 1.00 1.22

CV2 3.71 29.00 0.48 0.13 16.31 0.98 0.39 34.38 6.23 2.23 1.23

CV3 3.04 22.50 1.82 0.09 15.05 1.28 0.80 26.04 17.21 0.58 1.27

SRR3932001 16.55 40.50 0.15 3.88 11.15 0.06 0.13 27.20 0.03 0.09 0.02

SRR3932002 7.80 54.02 0.06 1.07 4.73 0.03 0.09 32.03 0.00 0.05 0.01

SRR3932003 18.08 33.72 0.33 3.19 24.60 0.55 0.34 18.88 - 0.09 0.03

SRR3932004 23.42 14.29 0.18 0.52 49.40 0.12 0.17 11.64 0.02 0.04 0.04

SRR3932005 12.69 6.71 0.08 0.59 68.79 0.13 0.26 10.59 - 0.04 0.03

SRR3932006 17.73 7.67 0.26 0.38 56.66 0.14 0.13 16.72 0.00 0.05 0.06

SRR3932007 7.95 2.41 0.05 0.35 85.08 0.01 0.03 4.00 0.00 0.00 0.01

SRR3932008 2.87 5.97 0.08 0.32 86.34 0.03 0.02 3.68 0.00 0.01 0.01

SRR3932009 10.98 15.23 0.02 0.70 59.18 0.00 0.02 13.49 - 0.05 0.01

SRR3932010 13.11 46.87 0.12 0.30 8.47 0.06 0.11 30.56 0.00 0.14 0.02

SRR3932011 10.87 47.20 0.09 0.15 22.56 0.01 0.05 18.83 - -

SRR3932012 37.44 21.10 0.10 0.74 15.03 0.06 0.21 24.73 0.03 0.28 -

SRR3932013 13.24 11.02 0.16 1.34 52.74 0.14 0.22 20.31 0.12 0.37 0.04

SRR3932014 9.25 6.01 0.09 1.63 70.82 0.22 0.27 11.16 0.01 0.25 -

SRR3932015 8.92 8.86 0.13 0.53 75.18 0.03 0.16 6.06 - 0.01 0.02

SRR3932016 3.88 5.49 0.08 0.25 85.49 0.01 0.04 4.10 - - 0.01

SRR3932017 5.62 19.06 - 0.20 64.97 - 0.02 9.93 0.00 0.03 0.00

SRR3932023 16.79 34.86 0.10 0.23 18.53 0.03 0.03 29.13 0.01 0.09 0.03

SRR3932030 12.80 4.03 0.34 0.31 60.78 0.03 0.58 20.61 0.01 0.02 0.01

SRR3932031 14.23 0.36 0.38 0.11 67.05 0.01 0.07 16.14 0.05 - -

SRR3932032 17.73 0.82 0.24 0.21 66.71 0.00 0.09 8.68 0.00 2.47 0.00

SRR3932033 15.17 0.52 0.32 0.05 63.12 0.05 0.03 17.22 0.01 0.09 -

SRR3932034 18.04 7.08 0.40 0.47 54.13 0.02 0.04 17.64 0.01 0.01 0.00

SRR3932035 7.61 2.02 0.23 0.24 75.60 0.03 0.12 11.43 0.00 0.16 0.02

SRR3932036 1.94 40.40 0.09 1.54 14.34 0.05 0.13 40.37 0.01 0.95 0.03

PRJNA337811 rain forest 9.46 2.61 5.07 0.10 6.48 0.01 0.05 74.06 0.05 0.01 0.03

PRJNA41493 bioreactor 22.32 7.05 0.77 0.35 9.59 0.20 1.30 52.02 0.06 0.02 0.22

XC12 45.52 0.84 0.12 0.18 41.42 0.03 0.17 9.67 0.03 0.06 0.04

XC11 51.30 1.53 0.14 0.18 26.49 0.04 0.20 17.48 0.03 0.07 0.04

XC10 53.30 1.00 0.09 0.26 31.28 0.03 0.19 11.42 0.03 0.07 0.05

XC9 45.27 0.97 0.06 0.15 41.60 0.02 0.20 8.53 0.06 0.08 0.05

XC8 27.63 1.43 0.07 0.12 57.45 0.02 0.23 9.22 0.09 0.14 0.05

XC7 38.96 1.18 0.07 0.14 46.21 0.02 0.22 9.97 0.07 0.11 0.05

XC6 9.89 9.29 0.07 0.12 46.24 0.02 0.15 28.76 0.11 0.75 0.03

XC5 8.13 8.25 0.05 0.07 56.86 0.01 0.10 23.06 0.07 0.54 0.02

XC4 8.63 8.40 0.06 0.08 56.28 0.01 0.11 22.75 0.09 0.45 0.02

XC3 6.76 25.31 0.03 0.03 11.96 0.00 0.07 52.34 0.07 0.30 0.03

XC2 6.08 28.83 0.03 0.03 13.83 0.00 0.06 48.16 0.07 0.42 0.03

XC1 6.03 27.31 0.03 0.03 12.96 0.01 0.07 50.43 0.07 0.40 0.03

Sum14 37.91 32.17 1.90 1.51 2.80 0.22 3.96 16.60 0.02 0.01 0.05

Sum3 21.57 23.43 1.21 6.12 16.56 0.31 1.07 24.92 0.09 0.07 0.05

Sum0 7.28 8.01 0.31 2.58 14.34 0.08 0.22 64.03 0.16 0.24 0.06

Win14 5.19 17.81 0.14 69.65 2.27 0.06 0.10 3.52 0.01 0.00 0.01

Win6 31.34 38.64 0.69 10.43 3.32 0.24 0.18 11.94 0.02 0.00 0.02

Win3 15.16 31.97 0.82 22.52 6.63 0.14 0.16 19.55 0.04 0.02 0.03

Win0 15.77 10.91 0.58 2.75 15.58 0.13 0.26 49.81 0.37 0.38 0.10

Finished Compost 1 24.12 1.40 0.81 0.13 10.47 0.04 0.08 60.10 0.02 0.02 0.02

Finished Compost  2 23.40 1.41 0.81 0.13 10.30 0.04 0.08 61.13 0.02 0.02 0.01

Raw Compost 1 10.63 2.44 0.55 0.12 17.73 0.12 0.09 64.64 0.05 0.03 0.03

Raw Compost 2 10.17 2.37 0.51 0.12 17.57 0.11 0.09 65.39 0.06 0.03 0.03

Shifted Worm Castings 1 19.81 1.73 0.40 0.31 4.24 0.35 1.29 65.50 0.06 0.04 0.16

Shifted Worm Castings 2 19.36 1.75 0.40 0.30 4.28 0.36 1.33 65.91 0.06 0.04 0.15

Top Worm Castings 2 13.43 16.59 0.49 0.20 5.75 0.04 0.33 58.11 0.04 0.04 0.09

Top Worm Castings 1 13.73 17.05 0.49 0.19 5.87 0.03 0.31 57.13 0.04 0.03 0.09

Worm Castings 2 18.92 3.13 0.34 0.23 3.64 0.26 0.98 67.61 0.04 0.03 0.09

Worm Castings 1 19.11 3.17 0.36 0.23 3.66 0.26 0.96 67.33 0.04 0.03 0.10

Unfinished Compost 2 10.37 2.00 0.15 0.05 16.30 0.01 0.04 69.45 0.02 0.03 0.01

Unfinished Compost 1 10.56 2.02 0.16 0.06 16.52 0.01 0.04 68.92 0.02 0.03 0.01

S13 90.56 0.07 0.00 0.01 6.59 0.00 0.01 2.43 0.04 0.01 0.00

S12 3.09 2.52 0.06 0.08 77.72 0.01 0.07 6.58 4.52 0.45 0.06

S11 4.83 3.98 0.11 0.15 67.26 0.02 0.11 10.51 4.83 0.84 0.10

S2 5.68 7.50 0.11 0.02 61.17 0.01 0.19 13.78 3.95 0.40 0.10

S1 3.67 13.71 0.11 0.02 33.05 0.01 0.24 35.33 6.13 0.52 0.14

S10 3.55 2.49 0.07 0.10 77.75 0.01 0.07 6.91 3.39 0.50 0.07

S9 4.59 3.68 0.11 0.13 58.55 0.01 0.09 8.42 17.72 0.59 0.09

S8 3.99 2.92 0.09 0.11 73.24 0.01 0.08 8.79 4.23 0.66 0.08

S7 4.58 2.73 0.07 0.09 76.07 0.01 0.07 7.37 3.01 0.63 0.07

S6 4.07 8.80 0.11 0.13 50.14 0.02 0.12 19.19 8.79 1.13 0.11

S5 2.82 6.65 0.07 0.10 35.62 0.01 0.08 46.53 2.63 0.52 0.08

S4 3.26 8.83 0.08 0.10 57.37 0.01 0.11 16.44 6.74 0.71 0.09

S3 4.63 26.12 0.17 0.17 37.68 0.02 0.14 14.09 9.53 0.29 0.16

S18 63.89 12.47 0.01 0.02 12.34 0.00 0.01 10.38 0.01 0.02 0.00

S17 70.82 0.27 0.00 0.01 24.12 0.00 0.01 4.20 0.05 0.02 0.00

S16 94.46 0.53 0.00 0.01 3.50 0.00 0.01 1.20 0.02 0.02 0.00

S15 47.39 0.72 0.04 0.13 15.58 0.15 0.10 33.27 0.05 0.04 0.02

PRJNA684647

PRJNA549056

PRJNA288410

PRJNA311675

PRJNA329458

PRJNA433771

PRJNA526758


