
NDT-Link
Master’s Thesis

Master in Web App and Website Development

Author: Chakir Mrabet

Consultant Professor: Carlos Caballero González

Professor: César Pablo Córcoles Briongos

June 06, 2021

1/ 90

Credits/Copyright

© Chakir Mrabet / Innerspec Technologies, Inc.

All rights reserved. The total or partial reproduction of this work by any means

or procedure, including printing, reprography, microfilm, computer processing

or any other system, as well as the distribution of copies through rental and

loan, is prohibited without the written authorization of the author, Innerspec

Technologies Inc., or the limits authorized by the Intellectual Property Law.

2 / 90

Dedication

To my beloved wife Amal, for convincing me to take this journey, and for being a source of strength when I

most needed it. To my wonderful kids Adam and Sara, for all the moments I took from them and gave to this

thesis. To my mentor and friend Borja, for his support and for believing in me when others didn’t.

3 / 90

Abstract

NDT-Link is a web based cloud service that provides a complete suit of productivity tools to companies that

own instruments and systems manufactured by Innerspec Technologies1, a US based company leader in

NDT2 solutions. Innerspec products are used in a wide range of applications, including defect detection in

manufacturing processes and measurement of material properties such as thickness and residual stress.

Innerspec customers usually own several instruments and systems which they need to configure and

manage individually. Also, Innerspec customers don’t have a tool that centralizes the data generated by all

their instruments and systems. NDT-Link will provide a centralized location from where Innerspec customers

can manage all their instruments and systems. NDT-Link will also serve as a hub where Innerspec

customers can upload, review and share data generated by the instruments and systems they own.

Key Words: NDT, cloud, service, defect, thickness, stress, centralization, configuration, management, data.

1 Innerspec Technologies, Inc. (http://www.innerspec.com).

2 Non-Destructive Tests
4 / 90

http://www.innerspec.com/

Index

1. Introduction... 9

1.1. Pain Points... 10

1.2. Proposed Solution.. 13

2. Description.. 14

2.1. Application Structure.. 14

2.2. Modules.. 16

2.3. Authentication/Authorization... 17

2.4. Account Creation.. 19

2.5. Purchasing Subscriptions... 19

3. Objectives... 21

3.1. Primary... 21

3.2. Secondary.. 21

3.3. Other.. 21

4. Methodology... 22

5. Application Architecture.. 23

5.1. Preliminary Information Architecture..23

5.2. Preliminary Information Architecture Validation..30

5.3. Improved Information Architecture...35

6. Prototypes... 38

6.1. Lo-Fi... 38

6.2. Hi-Fi.. 40

7. Development Platform.. 42

8. Planning.. 44

8.1. Implementation Stages... 44

8.2. Gantt Chart... 45

9. Implementation... 46

9.1. Back-End.. 46

9.2. Product Connector... 49

9.3. Front-End... 50

10. Used APIs... 53

10.1. Mapbox... 53

10.2. PayPal.. 54

10.3. Amazon Simple Email Service (ASES)..55

5 / 90

11. UML Diagrams.. 57

11.1. Application Domain.. 57

11.2. Activities... 65

11.3. Sequence Diagrams... 71

12. Security... 76

12.1. Back-End.. 76

12.2. Front-End... 78

12.3. Hosting... 79

13. Installation/Deployment Instructions...81

13.1. Installation for Development...81

13.2. Build and Deploy.. 81

13.3. Accounts for evaluation tests..83

14. Future Improvements/Roadmap...84

15. Conclusions.. 85

15.1. General... 85

15.2. Front-End... 85

15.3. Back-End.. 85

15.4. Deployment.. 86

Annex 1. Project Deliverables... 87

Annex 2. Bibliography... 88

Annex 3. Vita.. 89

6 / 90

Figures
NDT professional inspecting corrosion in a pipe using an Innerspec instrument..10

Strip chart showing the location of a defect when inspecting a part..11

NDT-Link centralization for Innerspec products..13

NDT-Link main structure... 14

Communication flow between NDT-Link components...15

Authentication/Authorization profiles and roles...18

Implementation Methodology for NDT-Link...22

Preliminary Information Architecture for Innerspec based profiles..28

Preliminary Information Architecture for User based profiles..29

Test Trees for User and Innerspec profiles...31

Tree Test - Tasks for User profiles.. 32

Tree Test - Tasks for Innerspec profiles...32

Gantt chart for estimated implementation planning...45

Implementation - Back-end file structure...47

Implementation - Back-end module organization..47

Implementation - Back-end shared modules...48

Implementation - Back-end configuration file..49

Implementation - Front-end module structure...50

Mapbox - UiMapComponent used to compose the dashboard system map...53

Mapbox - GeocodeService called from LocationsService when updating a location......................................54

PaymentService - Methods handling communications with PayPal gateway..54

PayPal - SubscriptionService calling PaymentService method to process a purchase...................................55

ASES - UsersService sending an email in response to a new account registration..55

ASES - Location of email HTML templates used by the Users Module..56

ASES – Part of the HTML template used to send confirmation email for new accounts.................................56

Application Domain UML diagrams – High Level..59

Application Domain UML diagrams - Contact Management...60

Application Domain UML diagrams - Innerspec Product Management...61

Application Domain UML diagrams - User Assets..62

Application Domain UML diagrams – Help Desk..63

Application Domain UML diagrams - Support...64

Activity UML Diagrams - User Registration...66

Activity UML Diagrams - System Registration..67

Activity UML Diagrams - Reset System's Asset Secret..68

Activity UML Diagrams - Add System Account...69

Activity UML Diagrams - Purchase Subscription...70

UML Sequence Diagrams - Subscription Order Confirmation...73

UML Sequence Diagrams - Subscription Payment Confirmation..74

7 / 90

UML Sequence Diagrams - Subscription Payment Execution..75

Security - CORS, Helmet and Rate-Limit in NestJS main.ts...77

Security - Authorization guards and decorators..78

Security - Angular route definition with guards for the Users module..79

Security - HTTPS configuration for front-end on Amazon CloudFront..80

Security - HTTPS configuration for back-end on Amazon EC2 instance with Load Balancer.........................80

Front-end and back-end deployment on Amazon Web Services..82

Github Action that completed building and deploying the back-end after new commit....................................83

Tables
Table 1: Project Deliverables.. 87

8 / 90

1. Introduction

NDT-Link is a web based cloud service that provides a complete suit of productivity tools to companies that

own products manufactured by Innerspec Technologies. NDT-Link will serve as a hub where Innerspec

customers can manage several aspects of the products they own, store and share data generated from

them, and receive direct support provided by Innerspec personnel. The products owned by customers will

also synchronize automatically their user information, settings, and licensing credentials with the information

managed from NDT-Link.

Innerspec Technologies is a manufacturer of NDT solutions that include integrated systems for

manufacturing plants, and portable solutions for in-service applications. Innerspec pioneered commercial

applications using Ultrasound generated with EMAT3 in the mid-90s, becoming the world leader in this

technology with hundreds of systems installed worldwide. More recently, Innerspec has included other

techniques to serve customers with all their advanced non-destructive testing needs.

Innerspec is headquartered in Forest, Virginia (USA), and has offices in Mexico, Europe and China, along

with representatives around the globe that provide commercial and technical support with factory trained

personnel.

The author of this thesis is the head of the Software team at Innerspec Technologies.

3 Electro-Magnetic Acoustic Transducer
9 / 90

1.1. Pain Points

Innerspec products are mainly used to find defects caused during the production process of different

types of parts and components, or to measure specific material properties such as thickness, stress,

and electrical conductivity. Innerspec products range from large automated systems installed in

factory production lines, to small portable instruments that NDT inspectors use in the field to inspect

the integrity of pipes, tubes and tanks used to transport or store oil, gas and other corrosive elements.

Portable instruments are also used by R&D professionals who research new inspection and

measurement methods.

Innerspec products can perform different types of inspections and measurement which generate large

amounts of data presented to the user as graphical charts. In the case of applications for defect

detection, the software installed in the integrated systems will analyze the generated data

automatically in order to tell the user where the defect is located on the inspected part, which later can

be either discarded or repaired. For portable instruments, the user will analyze the generated data to

determine where the defect is located on the part in order to determine if it needs repair.

10/ 90

Figure 1: NDT professional inspecting corrosion in a pipe using

an Innerspec instrument

Innerspec customers usually have several systems installed in one single factory or several

instruments deployed in the field at the same site where an In-Service job is performed. All these

systems and instruments work isolated from each other which introduces several limitations:

1. No centralized user account management:

◦ The software that powers Innerspec products requires user authentication and role based

authorization in order to grant access to its functionality. Customers that have several

products used by multiple operators don’t have a centralized location from where they can

manage and push user accounts. Customers need to do this from each one of the

products they own.

2. No centralized setup management:

◦ Innerspec products can be configured to work with different types or materials and parts.

The configuration consists of a group of settings entered by the operator in the user

interface of the product. In many situations, customers inspect the same material or part

with multiple products, requiring them to re-create the same settings in each one of them.

3. No centralized status information, usage statistics and inspection data:

◦ Innerspec customers don’t have a tool that aggregates status information, usage statistics

and inspection results from all the products they own. Customers need to access their

products individually in order to get this information.

4. No centralized location for product documentation:

◦ Innerspec customers don’t have an automatic and reliable way to access user guides,

manuals, spares lists and other product documentation. Up to now, customers need to

rely on either contacting Innerspec directly to ask for the desired documentation, or hope

to get contacted by Innerspec personnel when there is new documentation available.

5. No centralized location for support:

◦ When users experience problems with Innerspec products they are forced to either call

Innerspec or use their desktop computers or laptops to send an email to

help@innerspec.com describing the problem they have. Customers don’t have an option

11/ 90

Figure 2: Strip chart showing the location of a defect when inspecting a part

mailto:help@innerspec.com

to report problems directly from the Innerspec products they own, which adds an extra

level of disconnection with the user.

6. No software based option to review inspection data:

◦ Innerspec doesn’t have a reliable tool that allows customers to review inspection data

generated by the products they own. If customers need to share inspection data with

other team members, they have to extract it first from the instrument or system, and

manually send it to their team members, who then need to import the data into another

product of the same type.

◦ This limitation also affects Innerspec personnel when they need to assist the customer by

reviewing their inspection data. Innerspec is currently overcoming this problem by

establishing remote connections to the customers’ instruments and products, which is in

many situations, a slow and unreliable process.

7. No option to limit access to specific software features:

◦ The software that powers Innerspec products provides several levels of functionality.

Some of these levels are not critical for the operation of the product, but provide extra

tools that ease the job of the operator or enhance the resultant inspection data. Innerspec

wants to start monetizing the access to specific software levels with a pay-as-you-go

system, managed from a centralized location where customers can purchase daily,

monthly or annual recurrent subscriptions.

12/ 90

1.2. Proposed Solution

NDT-Link will provide the centralization that is currently missing in the ecosystem of products provided

by Innerspec, bringing users, machines and Innerspec staff together in one single application hosted

in the cloud.

Among other features, NDT-Link will allow Innerspec customers to manage user accounts and push

them to their instruments and systems, access aggregated status and usage information uploaded

from them, access to updated product information, track issues reported from the Innerspec products,

or report new ones, view and share inspection data, and buy subscriptions to premium software

modules.

13/ 90

Figure 3: NDT-Link centralization for Innerspec products

2. Description

2.1. Application Structure

NDT-Link will be composed of the following main components:

1. Hosted in the cloud by 3rd party services:

1. Web client (front-end).

2. REST API (back-end).

3. Mail Service.

4. Payment Gateway.

5. Database Service.

2. Hosted locally in each Innerspec product:

1. Product Connector.

The web client will be implemented as a responsive SPA4 that will be served from https://www.ndt-

link.com. The web client will communicate with a back-end that provides a REST5 API6 exposing

endpoints for the front-end and for all the Innerspec products deployed in the field. All the content

provided by the back-end will be persisted in a database service. The back-end will be listening for

incoming requests from https://api.ndt-link.com .

A separate service will handle the transmission of transactional emails that are queued by the back-

end as a response to certain actions performed by users. For processing purchases of subscriptions

for premium software modules, a payment third party payment gateway will be used.

4 Single Page Application

5 Representational State Transfer

6 Application Programming Interface

14/ 90

Figure 4: NDT-Link main structure

https://api.ndt-link.com/
https://www.ndt-link.com/
https://www.ndt-link.com/

Innerspec products will communicate with the REST API through the Product Connector, which will

authenticate in the REST API using a unique Asset Tag and Asset Secret.

Product Connector

This will be an application installed as a service in each Innerspec product. It will be continuously

running in the background and performing the following actions when there is Internet connectivity:

1. For all products:

◦ Send a GET request to the REST API to check if new users have been assigned to the

system or existing ones have been removed. If there are changes, apply locally (create

new accounts for the users that has been added, or delete the accounts for the users that

has been removed).

◦ Send a POST request to the REST API with scan data for inspections selected by the

operator.

◦ Send a GET request to the REST API to check the software licenses available for the

system. Lock or unlock software features based on the response.

2. Portable Instruments:

◦ Send a POST request to the REST API with the system status (new geolocation and

usage since the last request).

3. Integrated Systems:

◦ Send a POST request to the REST API with the system status (system is running, system

is idle, system is in error state).

◦ Send a POST request to the REST API with the current production statistics (loaded

setup, number of inspections since the last request, number of pass and fail inspections).

15/ 90
Figure 5: Communication flow between NDT-Link components

2.2. Modules

The content and functionality of NDT-Link will be organized in five different modules.

User Management

1. Register new users, edit, delete and block existing ones.

2. Assign and remove roles from existing users.

3. Create new groups and companies, link users to companies, and companies to groups.

4. Manage contact information for existing groups and companies.

User Asset Management

1. List all the products owned by groups and companies.

2. See detailed information for each product:

1. For portable products, history of usage and localization.

2. For integrated products, current status and production statistics.

3. Assign and remove users from products.

4. Access to product documentation (manuals, drawings and spare lists).

5. List all the available software updates for a product.

6. Purchase software licenses for a product.

7. Purchase one-to-one Customer Support time (provided by phone), and track its usage

(number of hours used, number of hours left).

8. Report and track issues found with the products.

Innerspec Product Management

Innerspec users will be able to:

1. Populate NDT-Link with all the available products, their technical specifications, and the

software packages they can run.

2. Publish product documentation (manuals, drawings, and spare lists).

3. Register products as new assets of the location that purchased them.

Help Desk (Ticketing System)

1. Report a problem (open a ticket) or bug that a user is experiencing when using Innerspec

products.

2. Track the resolution of reported problems.

3. Subscribe for email notifications when the status of the reported problems changes.

4. List all reported problems by a group, by a company, by a user, or for a product, with options

to filter by status and importance.

Innerspec users will also:

1. Keep the user updated on the resolution of a reported problem by updating their open tickets.

16/ 90

Data Sharing

This module will allow customers to upload to NDT-Link the resultant data of selected inspections

performed with Innerspec products, so it can be then shared with other NDT-Link users from their

same groups and companies:

1. From the products, users will select a specific inspection and upload it to NDT-Link (done by

the Product Connector described later in this section).

2. From NDT-Link, under the product profile, users will be able to manage the list of uploaded

inspections. Users will be able to select one of the inspections to see its details, or to

generate a shareable link for other users.

3. When an inspection is selected, users will see its meta data (timestamp, setup used,

inspection disposition), as well as plot data based on the types of scans performed.

2.3. Authentication/Authorization

All content in NDT-Link will be private and will require user authentication for access. For

authentication, NDT-Link will provide the following public paths:

1. User Log In

2. User Password Recovery

Users will be able to change their passwords and other contact information from their profile pages

once they have authenticated in NDT-Link. The authentication strategy will be based on email and

password confirmation. The emails used to create new accounts will be unique since they will be used

as username or unique identifier for each account.

Profiles

NDT-Link will support three different user profiles that will limit the actions the users can perform:

1. Innerspec:

◦ It will be assigned to accounts created for Innerspec users or personnel.

◦ It will will allow access to the content of all groups and companies as well as other content

and pages for used for back-office operations.

2. User:

◦ It will be assigned to accounts for Innerspec customers, partners and representatives.

◦ It will only allow access to content that belongs to the user’s company and group.

3. Product:

◦ This profile will used by Innerspec products to communicate with NDT-Link in order to

download user account and asset information, and to upload status and usage

information, as well as inspection data.

Roles

NDT-Link will provide two main roles that will be used to authorize the actions the users can perform:

1. Manager:

17/ 90

◦ Innerspec profiles: Creation, edition, and deletion of any content.

◦ User profiles: Creation, edition and deletion of any content that belongs to the user’s

company.

2. Employee:

◦ Innerspec profiles: Read any content, creation and deletion of content in the Customer

Support module, registration of new systems when purchased by customers.

◦ User profiles: Read any content that belongs to the user’s company, report and update

issues in the Customer Support module.

The User profile will have two extra roles:

1. Group:

◦ It will allow the user to read content from all the companies that are part of the group.

2. Group Manager:

◦ It will allow the user to read content from all the companies that are part of the group.

◦ It will allow the users to assign the role Group to other users.

The Innerspec profile will also have one extra role:

1. Superuser:

◦ It will give full control to settings that configure NDT-Link.

◦ It will allow changing the password for the built-in Superuser account.

◦ It will allow assigning the profile Superuser to other Innerspec profile based users.

18/ 90

Figure 6: Authentication/Authorization profiles and roles

2.4. Account Creation

New user accounts will be created as follows:

1. The REST API will provide a built-in account with the Innerspec profile and the Superuser

role. This account will be used to create other Innerspec accounts with roles Manager and

Employee as needed in order to populate NDT-Link with accounts for Innerspec personnel.

2. Innerspec accounts with role Manager will populate NDT-Link creating Groups and

Companies for all Innerspec customers.

3. Innerspec accounts with role Manager will create a User profile account with role Manager for

each company. This process will send an automatic email to the users with their username

and password.

4. Innerspec accounts with role Manager will assign the Group Manager role to one of the User

accounts with role Manager.

5. From this point on, any User profile account with role Manager can create more User profile

accounts for their companies, assigning the roles Employee or Manager as needed. Also, the

User profile account elevated with the role Group Manager can assign the Group role to other

users in its group as needed.

NDT-Link accounts for products will be created by Innerspec personnel as follows:

1. Innerspec profile based users will register a new system under the company’s profile by

entering its unique serial number, Asset Tag, purchase order number, and purchase date.

2. NDT-Link will generate a unique Asset Secret for the system.

3. Innerspec based profile users will then enter the generated Asset Secret in the Product

Connector service running in the system. The Product Connector will use this information to

authenticate in NDT-Link REST API in order to download and upload data.

2.5. Purchasing Subscriptions

Subscriptions to paid Software Modules will be handled by an external payment gateway:

1. User profiles with the role Manager access the detail page of one of their systems.

2. Under the section where the active subscriptions are listed, the user will press a button to add

a new one.

3. A dialog box will show up listing all the software modules available for the software running on

the system, with the exception of those that are already active.

4. The user will select the desired software module and pick one of the available payment plans

(daily, weekly, monthly, annual).

5. The user accepts the dialog and is forwarded to the payment gateway's website, on which he

enters his payment method to process the purchase.

6. Once the purchase is processed, the user will be forwarded back to the product’s page on

NDT-Link.

7. NDT-Link REST API will check with the payment gateway that the purchase has been

admitted, and then it will enable the software module for the target product.

19/ 90

8. NDT-Link REST API will inform the Product Connector installed in the target product of the

new purchase, so the new software module can become available to the users who can

access it.

9. NDT-Link will run a recurrent daily task that will check expired licenses in order to update

target Product Connectors so they can revoke local access to paid software modules. If a

Product Connector can’t reach NDT-Link REST API at least once in 24 hours, the Product

Connector will make the local software to lock the paid software modules, and ask users to

connect the system to the Internet for synchronization.

20/ 90

3. Objectives

3.1. Primary

1. Implement user authentication and authorization based on different profiles and roles.

2. Implement password recovery.

3. Implement user account management for local products.

4. Implement asset management.

5. Implement global management of Groups, Companies, Users, Products, Software Platforms

and Software Modules for Innerspec profiles.

6. Implement subscriptions to Software Modules and the communication process with a

payment gateway.

7. Implement ticketing system for User and Innerspec profile based users.

8. Implement basic data sharing between systems and NDT-Link (status and usage information

only).

9. Implement REST API with endpoints for front-end and for the Product Connector.

10. Deploy front-end, back-end and database service on the cloud.

3.2. Secondary

1. Implement transactional emails triggered by different actions performed on the front-end.

2. Implement geolocation on the Product Connector and representation of the systems’

geographic location on maps in the front-end.

3. Expand data sharing between products and NDT-Link with inspection data and setups.

4. Implement private messaging between users.

3.3. Other

The author of this thesis will implement NDT-Link with the exception of the Product Connector, which

will be implemented by other employees at Innerspec Technologies. The author of this thesis will

supervise and manage the implementation of the Product Connector to make sure it satisfies NDT-

Link requirements.

21/ 90

4. Methodology

NDT-Link will be implemented following a Waterfall methodology, modified to fit the life cycle of a
product or service creation. The traditional sequential implementation in separate and consecutive
stages of the Waterfall methodology will be respected, but each stage will focus on producing different
versions of NDT-Link that gradually grow with new functionality.

The exception of this rule will be the stages dedicated to definition of requirements and design
specifications. Also, the maintenance stage will not be part of the scope of this project since Innerspec
Technologies will be responsible for implementing it once the product is finished and released.

22/ 90

Figure 7: Implementation Methodology for NDT-Link

5. Application Architecture

5.1. Preliminary Information Architecture

NDT-Link will provide two main menus for authenticated users:

1. User Menu, located at the top of the screen and containing the following options:

1. Log Out.

2. Messages:

1. It will show a list of messages sent by other users from their profile pages.

3. Notifications:

1. It will show a list of events, such as a new reply posted to a support ticket.

4. My Profile:

1. Will forward users to a screen where they can update personal information (name,

phone number, title, and department).

2. All NDT-Link users can visit the profile page of other users by clicking the usernames

that will appear in different screens.

3. From this page, users will be able to send messages to each other.

2. Navigation Menu:

1. It will be located on the left side of the screen and will provide links that change based on

the profile of the authenticated user.

The Navigation Menu for User profile accounts will have the following links:

1. Dashboard (default screen):

1. It will show a summary of relevant information:

1. Total number of systems, instruments and users in the company.

2. Total number of open and in-progress support issues reported by the user.

3. Total number of open and in-progress support issues reported by the company.

2. It will show a map containing the locations of all the Portable systems owned by the

company. Each marker in the map will be a link that forwards the user to the detail page

of the system.

3. It will show a table with the following information for all the Integrated systems owned by

the company:

1. Serial Number, type of the system, and software version installed. This will be a link

that forwards the user to the detail page of the system.

2. Current status (Idle, Running, in Error state).

3. Total number of parts inspected in the last production shift (8 hours).

2. My Group (only accessible by users with the role Group and Group Manager):

1. It will show general information about the group (name, description, notes).

2. It will show a map with the locations of all the companies that belong to the group, as

well as a table with the following information from each one of them:

1. Name.

23/ 90

2. Country.

3. Number of users.

4. Number of Portable Systems.

5. Number or Integrated Systems.

3. It will show a table listing all the Integrated Systems owned by all the companies in the

group, with the following columns:

1. Serial Number and type of the system.

2. Based on the selected range of time from filters exposed by the table (current shift,

last 24 hours, this week, this month, this year):

1. Total parts inspected.

2. Total parts that have passed the inspection.

3. Total parts that have failed the inspection.

4. Scrap percentage (fail/total * 100).

3. My Company:

1. This screen will show general information about the company (name, description and

type among others).

2. It will provide a CRUD section to manage the locations o addresses the company can

have (shipping, accounting, etc.).

3. It will provide a CRUD section to manage the users that belong to the company:

1. User profiles with the Role Manager will be the only ones allowed to create new

users or delete existing ones.

4. It will show a table listing all the Portable Instruments and Integrated Systems with a link

to their detail pages.

5. It will show a table listing all the open support issues reported for all products that belong

to the company.

4. Equipment:

1. This page will show tables listing all the Integrated Systems and Portable Instruments

that have been registered to the company by Innerspec personnel. These tables will

contain the following columns:

1. Product Serial Number, Part Number and Type.

2. Number of user accounts active in the product.

3. Software version installed.

4. Number of support issues reported for the product (open, in-progress, closed).

5. Number of inspections uploaded to NDT-Link.

6. For Integrated Systems:

1. Production totals based on selected time range.

2. Current status (idle, running, error state).

7. For Portable Instruments:

1. Number of hours that the instrument has been in use.

2. Last calibration date.

2. If the user clicks a row in these tables, they will be forwarded to the detail page of the

product, which will be as follows:

24/ 90

1. It will show general information about the product (serial number, product number,

name, description, purchase date, purchase order, manufacturing date, and notes).

2. It will show a CRUD section for managing the users that are allowed to sign in each

product:

1. Users with role Managers will be able to add new users or remove existing ones.

3. It will show a table listing all the subscriptions purchased for each product:

1. Status (active, inactive), date of the purchase, purchase order number and

recursion type (daily, monthly, annual).

1. Users with role Manager will be able to cancel subscriptions and buy new

ones.

4. It will show a table with all the documentation available for the product (manuals,

user guides).

5. It will show a table listing all the software updates available for the product, with a

link to download their installer.

6. It will show a table listing all the support issues reported from the product:

1. Users will also be able to report new issues from this page:

1. They will be forwarded to a screen where they can enter a subject

summarizing the problem, a description, and urgency.

2. Clicking on one of the rows in the table will forward the user to the detail page of

the support ticket show the following:

1. Subject, description, urgency and date the ticket was reported.

2. Status (open, in progress, fixed, etc..).

3. Name of the Innerspec agent assigned to work on the ticket.

4. Messaging section, that will contain a series of comments from the user and

the Innerspec agent during the resolution of the ticket.

7. Integrated Systems:

1. It will show general information about the system (Serial Number, Product

Number, Name, Description, Purchase Date, Purchase Order, Manufacturing

Date, and notes).

8. Portable Instruments:

1. It will show the localization history of the product as a series or marks on a map.

2. Clicking on each marker a box will provide a total of usage hours at the location,

start date and end date.

The Navigation Menu for Innerspec profile accounts will have the following links:

1. Dashboard (default screen):

1. It will show a summary of relevant information:

1. Total number of systems, instruments and users in all companies.

2. Total number of open and in-progress support issues reported by all companies.

2. It will show a map containing the locations of all the Portable products owned by all

companies. Each marker in the map is a link that forwards the user to the detail page of

the product.

25/ 90

2. Groups:

1. It will provide CRUD operations to manage all groups. Only Innerspec profiles with the

role Manager will be able to create new ones and delete existing ones.

2. Clicking a group will forward to its detail page that will provide the same functionality

described for User profiles.

3. Companies:

1. It will provide CRUD operations to manage all companies. Only Innerspec profiles with

the role Manager will be able to create new ones and delete existing ones.

2. Clicking a company will forward to its detail page that will provide the same functionality

described for User profiles.

4. Users:

1. It will provide CRUD operations to manage all users. Only Staff profiles with the role

Manager will be able to delete users or to create new ones and assign them to a

company.

2. Clicking a company will forward to its detail page that will provide the same functionality

described for User profiles.

5. Products:

1. It will provide CRUD operations to manage types of products. Only Staff profiles with the

role Manager will be able to create new ones and delete existing ones.

2. When creating new product types, the following information will be recorded:

1. Part number, name, type (Integrated or Portable), description.

2. Software Platform that runs on the product.

6. Software Platforms:

1. It will provide CRUD operations to manage types of software platforms. Only Staff

profiles with the role Manager will be able to create new ones and delete existing ones.

2. When creating new software platforms, the following information will be recorded:

1. Part number, name, description.

3. Clicking a software platform on the CRUD table will forward the user to a detail page that

shows the following:

1. Part number, name and description of the software platform.

2. A CRUD section where Staff profiles with the role Manager can add or remove the

modules that compose the software platform and their licensing type:

1. The information to record when creating a new module will be the following:

1. Name, Description, License Type.

2. License Type can be Free or Paid. When Paid is selected, the user will need

to enter the cost for the different types of subscriptions (daily, weekly,

monthly, annual). If no amount is entered the subscription will not be

available for that period of time.

7. Help Desk:

1. This page will provide a full ticketing system listing all the issues reported from all

products by all the customers. The table will expose filters that Innerspec profiles can use

to narrow down the list by type of product or company.

26/ 90

2. Each item in the list will show the ticket’s subject, product type, company, username of

the reporter, date, status and urgency.

3. Clicking on an item in the list will forward to the tickets detail screen with the same

functionality described previously for User profiles, with the following additions:

1. Option to assign the Innerspec account that will handle the ticket (agent).

2. Option to change urgency.

3. Option to categorize the ticket as bug, feature request or question.

4. Every time the ticket is updated by the reporter or agent, an automated email will be sent

to the other party with details about the change.

The following sections show sitemaps for Innerspec and User based profiles based on their

correspondent Information Architecture.

27/ 90

Preliminary Information Architecture for Innerspec based profiles

28 / 90

Figure 8: Preliminary Information Architecture for Innerspec based profiles

Preliminary Information Architecture for User based profiles

29 / 90

Figure 9: Preliminary Information Architecture for User based profiles

5.2. Preliminary Information Architecture Validation

Tree Testing was conducted to validate the preliminary Information Architecture. The testers were

selected from within different departments of Innerspec, and they were given several tasks to perform

using the Optimal Workshop7 platform.

Since NTD-Link has two different user profiles, one for Innerspec personnel and another for Innerspec

customers (User), two different tests were conducted with two different groups of testers. For the

Innerspec profile, the test was taken by members of the Sales, Customer Support, Software and

Assembly teams. For the User profile, members of the Sales team took the test.

The main reason to select all the testers from within Innerspec was due to the constraint in time to

finish the project. Innerspec customers are very diverse and belong to a wide spectrum of industries

and needs. Studying and defining specific groups of target users to produce customized tests would

be a very complex and time consuming task that would require coordination with several external

companies and groups. In order to meet the deadline set to publish the first version of NDT-Link,

validation and other usability tests were performed internally using feedback from those members who

are closer to Innerspec customers. Once NDT-Link is published and used for a reasonable amount of

time, Innerspec will conduct more usability tests if needed.

Test Setup

The sample for the test is as follows:

1. Innerspec profile:

1. 10 people:

1. 2x from Sales team.

2. 1x from Assembly team.

3. 1x from Customer Support team.

4. 6x from Software team.

2. Objectives:

1. Find customer related information (groups, companies, issues).

2. Find systems related information.

3. Manage Innerspec assets (products, software, software modules).

4. Manager customer’s assets (register new systems, register users).

2. User profiles:

1. 2x from Sales team.

2. Objectives:

1. Find information related to the user’s organization.

2. Find information about systems owned by the user’s organization.

3. Report issues with systems owned by the user’s organization.

7 https://www.optimalworkshop.com/

30/ 90

https://www.optimalworkshop.com/

Two different test trees were created for the User and Innerspec profiles (Staff).

31/ 90

Figure 10: Test Trees for User and Innerspec profiles

Two sets of tasks were were created for the User and Innerspec profiles (staff).

Test Results

This is the first time Innerspec conducts usability tests, so the experience was new for all the team.

Some of the testers didn’t complete the test, so the final result sample ended up being smaller than

expected.

32/ 90

Figure 11: Tree Test - Tasks for User profiles

Figure 12: Tree Test - Tasks for Innerspec profiles

For the User test, the average success rate was 60% and time needed to complete the tasks was

almost 5 minutes and a half:

The direct failures were all related to tasks that required to understand the difference between groups,

companies, product and software.

33/ 90

As for the Innerspec test, the average success rate was slightly lower, 55%, however the time needed

to complete the tasks was almost three times the one for the User test:

34/ 90

The direct fails were almost identical as with the test for the User profile.

From these results and analyzing each path taken by the testers for each task, it was concluded that

the testers in most of the cases were confusing the term Group (a set of companies) with Company,

and the term Software (generic) with Product, and sometimes even with System (one particular

instance of a product). Also, in some occasions, the testers didn’t understand the difference between

User generated content and Innerspec managed content.

The results of these tests are provided as ANNEX 5 to this document.

5.3. Improved Information Architecture

Based on the results from the Tree Tests, the Information Architecture was modified as indicated in

the following sections.

35/ 90

Improved Information Architecture for User profiles

36 / 90

Improved information Architecture for Innerspec profiles

37 / 90

6. Prototypes

NDT-Link is an application meant to be used mainly on desktop computers due to the several

complex operations that can be done on it and the amount of data that can it can display. This is why

a desktop-first approach was selected for the design and implementation of prototypes.

6.1. Lo-Fi

The following prototypes were designed for the main view used to list, create, edit and delete content

in all sections. The structure is similar to a mail browser, where items are listed in one side of the

screen, and clicking on them will show their details on the other one. The detail view provides several

actions to be performed on the selected item, as well as embedded lists of its related content.

38/ 90

39/ 90

The designs were made only for the Innerspec profile and their usability was tested using First Click

technique on the Optimal Workshop platform. The testers were the same people who took the Tree

Test for the preliminary Information Architecture made for Innerspec profiles. The First Click test was

done at the same time as the Test Tree in order to optimize the time dedication of the participants.

The resultant success rate was high, around 80%. The reasons for the failures were related in most of

the occasions to not identifying the meaning of some icons, or mistaken static texts for links. These

two issues will be fixed by showing tool-tips when hovering the icons and by styling the links

differently from the rest of the text.

6.2. Hi-Fi

The following figures show the final prototypes for the main view and the create/edit form, based on

the results obtained from the Tree testing and First Click test results.

40/ 90

41/ 90

7. Development Platform

The following are the main technologies selected to implement NDT-Link:

1. Front-End:

1. HTML5/CSS3.

2. Bootstrap with custom SASS following H.Roberts[1] style guide.

3. Angular as web application framework with NgRx8 for state management:

▪ The reason to select this framework over other options such as React or Vue is

because Angular contains all the necessary tools to build a business class application

out of the box, reducing dependencies, and it provides an opinionated structure that

ease sharing the project with other developers who also know Angular[2].

4. Unit Testing and E2E testing with Jasmine and Karma.

2. Back-End:

1. Node.js as server side platform with TypeScript9:

▪ The main reason to select this back-end technology over PHP, C# or Java is to

accelerate development by using the same language on both the front-end and back-

end, which will ease the development process done by one single person (the author

of this thesis)[3].

▪ Another reason is that the Software team at Innerspec Technologies is very

experienced with JavaScript and Node.js. Using the same technologies in NDT-Link

will ensure that others from the team can expand the project in the future with a small

learning curve.

2. NestJS server side framework based on Express.js.

3. Database connection and queries:

1. TypeORM with raw SQL queries in certain cases to improve performance.

4. Authentication/Authorization:

1. Passport.js middleware with local and JWT[4] token based authentication strategies.

5. AWS SDK for transactional emails.

3. Database Service:

1. MySQL server.

4. Hosting:

1. Amazon Web Services have been selected to host NDT-Link. The following sub-services

operate behind an Elastic Load Balancer and CloudFront CDN10 in a multi-zone

configuration to optimize access to all users around the globe:

1. Front-End: AWS S3.

2. Back-end: AWS Beanstalk (EC2 instance).

3. Database Service: AWS RDS.

5. Transactional Email Service:

8 https://ngrx.io/

9 https://www.typescriptlang.org/

10 Content Delivery Network

42/ 90

1. Amazon SES (Simple Email Service).

6. Other:

1. MapBox for maps and address geocoding:

1. Mapbox is a cloud based location platform that provides maps and geolocation

services similar to Google Maps. Mapbox provides an API with several endpoints that

handle different types of requests for fetching maps or for parsing addresses to

generate geographic coordinates. The main advantage of Mapbox over Google Maps

is that Mapbox offers 50.000 map loads at no additional cost.

2. PayPal as gateway for payments.

43/ 90

8. Planning

8.1. Implementation Stages

NDT-Link will be implemented in six consecutive stages:

1. Product Design:

◦ The goal of this stage is to create specifications needed for the development of the main

components that conform NDT-Link. These specifications will contain UML diagrams,

model descriptions of the data entities to use, selected software stack for development,

design mock-ups for the front-end, and a detailed description list of the different endpoints

served by the back-end.

2. Walking Skeleton:

◦ The goal of this stage is to implement prototype versions for the front-end, back-end and

Product Connector based on the specifications created in the design stage. These

prototypes will use mock data and will have minimal interactivity between them.

◦ Once finished, the prototypes will be shared with personnel from UOC and Innerspec for

review and feedback.

3. Minimum Viable Product:

◦ In this stage, the prototypes will be expanded with all the required functionality to produce

the first fully functional beta version of NDT-Link. This will include the implementation of

all the must-to-have functionality in each component, as well as full connectivity front-

end/back-end, and back-end/Product Connector.

4. Minimum Marketable Product:

◦ This stage will expand the beta version with need-to-have functionality before it can be

released to Innerspec personnel for full usage. This stage will include a finalized Product

Connector that can upload inspection data, and updated back-end/front-end that can

process and display it.

◦ In this stage, End-to-End tests will be performed too in order to automate and accelerate

some of the testing and debugging.

5. Minimum Delightful Product:

◦ The main purpose of this stage is to enhance the beta version of NDT-Link with a custom

or improved CSS theme, as well as extra functionality such as maps and geolocation,

user to user messaging, notifications and transactional mailing. Also, in this stage, the

existing End-To-End tests will be expanded in order to cover more test cases.

◦ Once finished, this version of NDT-Link will be released to Innerspec customers.

6. Documentation:

◦ This final stage is dedicated to the formalization of the project documentation and to the

creation of media that will be used to showcase NDT-Link.

44/ 90

8.2. Gantt Chart

The following chart shows a preliminary list of tasks for each one of the six implementation stages of the project, including their estimated duration and expected

milestones in red. The chart also contains a timeline that shows each task positioned in time in relation to its dependencies.

45 / 90
Figure 13: Gantt chart for estimated implementation planning

9. Implementation

9.1. Back-End

A RESTful11 API12 of the applications has been developed with NestJS and TypeORM using Data

Transfer Objects13 to map database entities to responses sent to the front-end and to receive

payloads from it for create, update and delete operations. DTO mapping is achieved by using the

class-transformer14 package, and the validation of payloads sent with POST and PATCH requests is

done with the the package class-validator15.

The API also contains a module for authentication that uses Passport.js to implement

username/password and JWT based authentication strategies. The JWT token is issued after a

successful login and sent in a 200 HTTP response to the front-end, who then must include the token

in any consecutive request as a Bearer token in the Authorization HTTP header. This is achieved by a

NestJS Interceptor and two guards that have been also implemented as part of the authentication

module.

In order to deploy the database for the first time, the script seed.ts has been implemented to populate

the database with company Innerspec Technologies, its locations, and the superuser that can be used

to access the application for the first time to create more content. This script is executed every time

the application starts, and will not perform any operations if the the database contains data.

In order to protect the application from malicious activities, CORS and rate limit policies have been

applied among others in the NestJS entry script as basic security measures.

With the exception of the authentication and shared modules, the rest of the application source code

is organized in modules containing domain functionality (Companies, Locations, etc..). Shared

functionality is organized in modules stored under folder shared. Absolute paths to the modules using

the prefix @ has been configured in the tsconfig.json file in order to facilitate the importation of

functionality from any file in the source tree.

The configuration of the application is handled from the config.ts file, responsible for pulling certain

values from environmental variables when available based on the current execution environment

(development or production).

11 Conforms to the constraints of REST architectural style

12 Application Programming Interface

13 https://en.wikipedia.org/wiki/Data_transfer_object

14 https://github.com/typestack/class-transformer

15 https://github.com/typestack/class-validator

46/ 90

https://github.com/typestack/class-validator
https://github.com/typestack/class-transformer
https://en.wikipedia.org/wiki/Data_transfer_object

Each domain module is organized in the same manner and includes a barrel export file:

The shared modules provide the following functionality:

1. crud: generic CRUD controller and service that are extended by other controllers and

services.

2. domain: contains all the entities used by the database ORM.

3. geocoding: contains a service that parses addresses into geographical coordinates using the

Mapbox API, described in detail in the section Used APIs.

4. hmtl-template: module that provides a service that parses HTML templates replacing tags in

them with values.

5. mail: this module provides a service in charge of sending transactional emails. The Amazon

Simple Email Service (ASES) section describes in detail how this module and the html-

template one work.

47/ 90

Figure 15: Implementation -

Back-end module organization

Figure 14: Implementation -

Back-end file structure

6. persistence: configures the database ORM and provides it as a connection to the rest of the

application.

7. infrastructure: provides common functionality that can be used from the rest of the modules.

8. payment: this module has been implemented to process payments with the PayPal gateway.

Section PayPal describes in detail its implementation, and section Sequence Diagrams

describes all the stages involved with several UML diagrams.

9. pipes and validators: contain NestJS custom pipes and validators shared by other modules.

In order to start the application, the file README.MD provides instructions for both, development and

production environments. Once the application starts, it will attempt to connect to a database that

must have been previously created. The name of the database, its credentials, and the URL of the

server that hosts it, are defined in the config.ts file:

48/ 90

Figure 16: Implementation -

Back-end shared modules

9.2. Product Connector

ANNEX 10 describes in detail the endpoints implemented by the back-end to communicate with the

Product Connector service installed on Innerspec systems. This service has been implemented by

other members of the Software team and integrated in another custom tool called System Manager, a

service responsible for configuring several aspects of the systems where it runs.

49/ 90

Figure 17: Implementation - Back-end configuration file

9.3. Front-End

The Angular application has been implemented using DTOs to map responses received from the

back-end and payloads sent to it for creation and update operations. The application state is managed

with NgRx Store, NgRx Effects, and NgRx Entity. For HTTP requests to the back-end, Angular

HttpClient is used from the NgRx Effects.

Similarly to the back-end and with the exception of authorization, the organization of the source code

in the front-end is based on domain functionality. Each module is structured the same way:

Each module provides its own routes defined in *-routing.module.ts files which are imported from the

AppModule router.

In terms of components, each module defines 3 different types:

1. Components: with well defined, one single concern, not-state-aware functionality.

2. Containers: are aware of the application state and use NgRx Store/Actions to fetch data that

they pass to the components.

3. Pages: merely for composition, they are the “landing” pages defined for each route. They use

the containers to create the desired markup.

For the detail pages that show content for a certain record in the database, the resolvers folder

contains Angular Resolvers are implemented to pull the information from the back-end using NgRx

Effects before the route is completed. Also, some modules have a pipes folder that contains Angular

Pipes used to format Enums in the markup.

Finally, the state folder contains all the NgRx related functionality:

50/ 90

Figure 18: Implementation - Front-

end module structure

The effects are split into two files, one for domain related functionality (fetch all, fetch one, create,

update, etc..), and another one just for UI responses to changes in state (i.e. show notification when a

new item is created).

For authentication, the auth module implements an interceptor that injects the token in the HTTP

requests, as well as guards to check if the user is authenticated and the role they have. Section

Security describes in detail this process and others related to security.

The site module implements generic pages not related to any domain in particular. It also implements

an interceptor to handle errors.

The shared folder contains several modules, the mos important ones are:

1. config:

1. A self-made module to handle and inject the application configuration (pulled from the

environmental variables) from any module.

2. ui:

1. A self-made module that implements many of components that are used by the domain

modules to compose their components.

2. This module also includes directives and pipes that can be used by other modules.

3. modal:

1. A module implemented to handle modal dialogs using Bootstrap CSS.

4. modal-form:

1. This module was implemented to handle forms in modal dialogs using Bootstrap CSS.

5. notifications:

1. A self-made module to handle emission of “Toast” notifications using Bootstrap CSS.

6. documents:

1. A module implemented to handle file uploads to the back-end.

7. model-selector:

1. This module provides drop down boxes for different domains (User, Company, etc..) that

perform queries to the back-end to provide asynchronous search results when the user

types in them. The reason for not having these components in the domain modules is to

avoid circular dependency between modules (i.e., Locations imports User, but creating a

new User, the application must also present a component from the Locations module).

51/ 90

8. classes:

1. Contains some self-made classes that are reused to extend functionality when

implementing new components and services. The two most relevant ones are:

1. FormComponent:

1. Implements common functionality for Angular Reactive forms that is repetitive. All

forms in the application extend from it.

2. FormInputControl:

1. Implements common functionality for Angular Reactive form elements that is

repetitive, such as error management. All form components defined in the

application extend from it.

3. CRUDService:

1. Implements a basic service that uses the Angular HttpClient to perform CRUD

operations with the back-end.

9. pipes:

1. Contains custom Angular pipes shared by different modules.

10. static:

1. Contains JSON data used by certain components (i.e., name of countries).

The application configuration is stored under src/environments folder following Angular standards.

Also, the folder src/theme contains SASS files used to customize some aspects of Bootstrap.

The file README.MD provides instructions on how to launch the application in development mode.

Also, section Installation/Deployment Instructions describes this topic in more detail.

52/ 90

10. Used APIs

10.1. Mapbox

NDT-Link uses Mapbox to show maps on the front-end containing markers that indicate the position of

Locations and status updates sent from customers’ systems deployed in the field. The implementation

of Mapbox functionality is done on the front-end and back-end.

Front-End

The component UiMapComponent was created as part of the UiModule to show a map with markers

passed as inputs. This component is used on the site dashboard page, company page, location page,

and system page.

Back-End

The module GeocodingModule was created to parse addresses into geographic coordinates. It

provides service GeocodingService that sends a request to Mapbox geocoding endpoint containing

the address to parse, and it receives as response the latitude and longitude of the address. This

service is used by the module LocationsModule to geocode the locations’ addresses before they are

updated in the database.

53/ 90

Figure 19: Mapbox - UiMapComponent used to compose the dashboard system map

10.2. PayPal

In order to decouple payments from the rest of the application, the back-end module PaymentModule
was developed to handle communications with the PayPal gateway. This module provides service
PaymentService that uses PayPal’s Checkout JavaScript SDK. This decoupling will simplify the
change to a different payment gateway in the future when needed.

The PaymentService provides two methods for handling the creation and execution of a purchase
order when called from the SubscriptionsService. These process is described in detail in the section
UML Sequence Diagrams.

54/ 90

Figure 20: Mapbox - GeocodeService called from LocationsService when

updating a location

Figure 21: PaymentService - Methods handling communications with PayPal gateway

10.3. Amazon Simple Email Service (ASES)

NDT-Link uses two modules to handle transactional emails that are sent from the back-end in
response to certain user actions:

1. MailModule:
1. Communicates with Amazon Simple Mail Service API through the AWS JavaScript SDK

to send emails.
2. Provides service MailService with method SendMail that is called from other back-end

services when they need to send an email. This method expects an email address for the
recipient, a subject and content for the body of the message.

2. HtmlTemplateModule:
1. Loads predefined HTML files and replaces the tags in them with values passed in a flat

object and returning the resultant HTML as a string.
2. Provides service HtmlMailService with method toString that accepts the absolute path of

an HTML file and a flat object with the values to use for the tag replacement. This service
is called by other services when they need to parse their custom email HTML templates.

55/ 90

Figure 22: PayPal - SubscriptionService calling PaymentService method to process a purchase

Figure 23: ASES - UsersService sending an email in response to a new account registration

The process of sending an email from a back-end service is a follows:
1. The service calls HtmlTemplateService.toString with the path to the HTML file and a

dictionary of values.
2. The service calls MailService.SendMail with the email address for the recipient, the subject

and the result from HtmlTemplateService.toString as content.
3. The call to MailService.SendMail is asynchronous and the caller service should not wait for it

s resolution since Amazon can process the transactional email at any time.
4. The HTML templates are stored under the folders of each domain model since they are

custom to the actions performed by the domain models.
5. The tags in the HTML templates are delimited by double curly braces.

This decoupling and modularization of the mail process was implemented to ensure an easy transition
to alternative mail services and HTML template parsing libraries in the future if needed.

56/ 90

Figure 24: ASES - Location of

email HTML templates used by

the Users Module

Figure 25: ASES – Part of the HTML template used to send confirmation email for new accounts

11. UML Diagrams

11.1. Application Domain

NDT-Link has been implemented around a domain organized in five different categories of models:

1. Contact Management:

◦ Responsible of all the operations related to the creation and maintenance of companies,

locations and user accounts.

2. Innerspec Product Management:

◦ Responsible of all the operations related to the creation and maintenance of Innerspec

software platforms, software modules and available products.

3. User Assets:

◦ Responsible of all the operations related to systems owned by customers.

4. Help Desk:

◦ Handles all the operations related to the problems found by users when using their

systems.

5. Support:

◦ Provides functionality to the other domain categories.

Each domain category contains several models:

 1. Contact Management:

• Company

• Location

• User.

 2. Innerspec Product Management:

• Software

• SoftwareModule

• Product

 3. User Assets:

• System

• SystemAccount

• SystemStatus

• Subscription

• Payment

 4. Helpdesk:

• Issue

• IssueComment

 5. Support:

• BaseEntity

• Session

• Document

57/ 90

The following diagrams show the relations between all the domain models organized by their

categories.

58/ 90

High-Level Domain Diagram

59 / 90

Figure 26: Application Domain UML diagrams – High Level

Contact Management

60 / 90 Figure 27: Application Domain UML diagrams - Contact Management

Innerspec Product Management

61 / 90

Figure 28: Application Domain UML diagrams - Innerspec Product Management

User Assets

62 / 90

Figure 29: Application Domain UML diagrams - User Assets

Help Desk

63 / 90

Figure 30: Application Domain UML diagrams – Help Desk

Support

64 / 90

Figure 31: Application Domain UML diagrams - Support

11.2. Activities

There are many different operations users can perform on NDT-Link. This section will focus on

describing the ones that are fundamental to providing connectivity between NDT-Link and systems:

1. User Registration:

1. Create new NDT-Link accounts for users (User and Innerspec profiles).

2. System Registration:

1. When a system is built, Innerspec’s Production team creates a new record on NDT-Link

for the system and customer’s location.

3. Reset System’s Asset Password:

1. In order to communicate with NDT-Link, all Innerspec systems need to authenticate by

providing their Asset Number and Asset Password. This operation allows changing the

Asset Password for a system when needed.

4. Add System Account:

1. Add an existing NDT-Link user to a system so they can authenticate on it with their NDT-

Link credentials.

5. Purchase Subscription:

1. Buy a subscription to a software module for a system.

The following figures show Activity Diagrams for the operations described above.

65/ 90

User Registration

66/ 90

Figure 32: Activity UML Diagrams - User Registration

System Registration

67/ 90

Figure 33: Activity UML Diagrams - System Registration

Reset System’s Asset Secret

68/ 90

Figure 34: Activity UML Diagrams - Reset System's Asset Secret

Add System Account

69/ 90

Figure 35: Activity UML Diagrams - Add System Account

Purchase Subscription

70/ 90

Figure 36: Activity UML Diagrams - Purchase Subscription

11.3. Sequence Diagrams

There are many operations and interactions occurring between the different blocks that compose

NDT-Link. The most complex one is the purchase of new subscriptions, because it involves several

components and services from both the front-end and back-end, as well as a third-party library, the

PayPal payment gateway and multiple asynchronous HTTP requests. Due to its complexity, this

section will focus on describing this process only.

Summary

The purchase of a new subscription for a system consists of three stages:

1. Order Confirmation:

1. The back-end creates a new PayPal order object with the subscription options selected

by the user on the front-end. This order also includes a return URL where the user should

be redirected from PayPal after processing the payment. The return URL points to a

component on the front-end (New Purchase Component) that will show a success

message after the purchase is finalized.

2. The back-end sends the order to PayPal’s gateway through a third party library.

3. PayPal verifies the order request and responds with a unique token assigned to the

transaction, and a URL to the checkout page where the user reviews the order, enters the

selected payment method, and accepts to be charged.

4. The back-end records in the database a new payment with the transaction token received

from PayPal’s gateway, as well as the system and software module the purchase is being

made for.

5. The back-end responds to the front-end with the return URL.

2. Payment Confirmation:

1. The front-end informs the user that he will be redirected to PayPal to finalize the

purchase.

2. The front-end opens a new window that navigates to the return URL, which is PayPal’s

checkout page.

3. The user selects payment method, enters its details (i.e., credit card number) and accepts

the purchase.

4. PayPal confirms the entered payment information is correct and redirects the user to the

return URL with the transaction token as a query parameter.

3. Payment Execution:

1. The New Purchase component on the front-end extracts the transaction token from the

browser route and informs the user to wait while the order is processing. The front-end

sends the token to the back-end for execution.

2. The back-end sends an execution request to PayPal’s gateway for the provided

transaction token.

3. PayPal executes the order (charges the user) and responds with a summary of the

transaction, which includes the transaction token and its status.

71/ 90

4. The back-end checks that transaction status is COMPLETED and updates the payment

record in the database accordingly. It’s at this point when the back-end creates and

assigns the purchased subscription to the system and sends a confirmation email to the

user.

5. The back-end responds to the front-end with a success response, and the New Purchase

component on the front-end shows a message informing that the order has been

processed. The user now can close the browser window with the New Purchase

component.

The size of the full sequence diagram showing the stages described above is too big to fit in this

document. Instead, the three stages have been extracted in separate figures presented in the

following sections. The full sequence diagram is provided with this document as ANNEX 9.

72/ 90

Order Confirmation

73 / 90

Figure 37: UML Sequence Diagrams - Subscription Order Confirmation

Payment Confirmation

74 / 90

Figure 38: UML Sequence Diagrams - Subscription Payment Confirmation

Payment Execution

75 / 90

Figure 39: UML Sequence Diagrams - Subscription Payment Execution

12. Security

There are several layers of security measures implemented in NDT-Link:

1. Back-End:

1. CORS, rate-limiting and HTTP header optimizations.

2. User authentication with JSON Web Tokens.

3. User authorization to endpoints restricted with NestJS guards.

2. Front-End:

1. User authentication with Angular HTTP interceptor and JSON Web tokens in HTTP

header for all requests.

2. User Authorization with Angular route Guards.

3. Hosting:

1. HTTPS with certificate issued by Amazon Web Services.

12.1. Back-End

In order to allow requests from the front-end running on a different host machine, the back-end uses

the CORS middleware from Express that enables and configures Cross-Origin Resource Sharing.

Another package used by the back-end is express-rate-limit, used to block repeated requests sent to

the exposed endpoints when they exceed a certain configured limit. When this happens, the back-end

will respond to the request with HTTP response code 429 (too many requests) and the client’s IP will

remain blocked for a certain amount of time.

The back-end also uses the package Helmet that injects more than a dozen of small middleware

functions into the NestJS application to set security-related HTTP response headers to help prevent

cross-site scripting attacks and other cross-site injections.

76/ 90

User Authentication and Authorization

The back-end module AuthModule handles all operations related to authentication and authorization.

It uses the packages Passport.js and @nestj/jwt to implement two authentication strategies, one to

validate credentials using the user’s email and password stored locally in the database server, and

another to generate and sign new JWT tokens as a response to a log in request, or to validate the

ones received in the Authorization header of the HTTP requests when the client is trying to access

one of the exposed endpoints.

The AuthModule provides service AuthService with three methods used to log in and log out users

and systems which. The method loginSystem is used by the systems deployed in the field.

For Authorization, two NestJS guards have been implemented:

1. AuthJwtGuard:

1. Extracts and validates the JWT token from the Authorization header of the requests

received from the clients. If the validation fails, the back-end will respond with HTTP error

code 401 (Unauthorized) if the token is missing (user or system not logged in), or 403

(Forbidden) if the the token is expired or malformed.

2. It also extracts from the token the id, profile and role of the user or system sending the

request, and injects them into the HTTP request context so they can be accessed by

other services and modules of the application.

2. AuthGuard:

1. It will block the controller route in which is used if the user extracted from the request JWT

token doesn’t have the required profile and role. In this case the back-end will respond

with HTTP error 401 (Unauthorized).

77/ 90

Figure 40: Security - CORS, Helmet and Rate-Limit in NestJS

main.ts

2. In order to reuse this guard with different combinations or profiles and roles, custom

NestJS decorators @AuthProfiles and @AuthRoles have been implemented to pass

multiple profiles and roles as parameters to the guard.

The following figure shows part of the SubscriptionsController in which a route to create subscriptions

bypassing the PayPal purchase process is limited only to Innerspec users with roles manager and

superuser, while the one that does require a PayPal purchase is limited to users with roles manager

and corporate manager.

12.2. Front-End

All the authentication and authorization operations on the front-end are handled by the AuthModule

which provides the following:

1. Angular service AuthService.

2. NgRx actions and state.

3. Angular HTTP interceptor AuthTokenInterceptor

4. Angular Guards AuthPublic, AuthPrivate and AuthHasCredentials.

AuthService provides methods logIn and logOut that are called by NgRx actions sent to the store from

the UsersModule. The logIn method sends the provided username and password to the back-end

authentication endpoint and receives the JWT token in the response’s payload if the authentication

succeeds, then it stores the token in browser’s LocalStorage. The AuthService also provides method

loadUserData to read the token stored in LocalStorage.

AuthTokenInterceptor fetches the JWT token from AuthModule store if a user is authenticated and

injects it as a Bearer token into the Authorization HTTP header of all requests sent to the back-end.

AuthPublicGuard blocks the navigation to certain routes if the user is authenticated (i.e., users already

logged in shouldn’t be able to navigate to the UsersLoginComponent component that shows the log in

78/ 90

Figure 41: Security - Authorization guards and decorators

form). AuthPrivateGuard blocks the navigation to certain routes if the user is not authenticated, and

instead, it redirects the user to the UsersLoginComponent. Lastly, the Guard AuthHasCredentials

prevents navigation to a route if the logged in user doesn’t have the required profile and role.

The guards are used from the routing modules of each domain module. The following figure shows

and example of this use from the UsersRoutingModule.

12.3. Hosting

The HTTPS protocol has been enabled on both the front-end and back-end. For the front-end to

provide encrypted communications between the user’s browser and Amazon S3 service where the

Angular application is hosted. For the back-end to encrypt the data exchanged between the Angular

application running on the user’s browser and the NestJS back-end application running on an

Amazon EC2 instance managed through Amazon Beanstalk service.

The HTTPS restriction for the Angular application hosted in the Amazon S3 service is provided

through a distribution of Amazon CloudFront launched in the regions of Canada, USA and Europe that

redirects all HTTP connections to HTTPS.

79/ 90

Figure 42: Security - Angular route definition with guards for the Users module

The HTTPS restriction for the back-end NestJS application hosted on the Amazon EC2 instance is

configured through a Load Balancer that only accepts connections to the 443 port.

Also, the communications between the Amazon EC2 instance and the MySQL server hosted on an

Amazon RDS instance are encrypted too. All external ports on the EC2 instance have been closed

with the exception of port 443 (HTTPS), while on the RDS instance, only communications within the

same security group where the two instances belong are allowed (direct external communications to

the RDS instance and blocked).

80/ 90

Figure 44: Security - HTTPS configuration for back-end on Amazon EC2 instance with Load Balancer

Figure 43: Security - HTTPS configuration for front-end on Amazon CloudFront

13. Installation/Deployment Instructions

13.1. Installation for Development

In order to launch the front-end and back-end applications for development, the following

requirements must be met on the development computer:

1. Node.js version 14 or above.

2. Angular version 11 or above.

3. MySQL server version 8 or above.

4. An empty database named ndtlink_nest, with access granted to user root with password

temate. If different values are used, they must be set in their correspondent environmental

variables defined in the back-end file config.ts.

Steps to follow to download and start the front-end and back-end applications for development:

1. Front-end:

1. Clone repository:

• git clone https://github.com/InnerspecTechnologies/ndtlink-client

2. Enter the project directory:

• cd ndtlink-client

3. Install dependencies:

• npm install

4. Modify the files environment.ts as needed.

5. Start Angular project:

• ng serve

2. Back-end:

1. Clone repository:

• git clone https://github.com/InnerspecTechnologies/ndtlink-backend

2. Enter the project directory:

• cd ndtlink-backend

3. Install dependencies:

• npm install

4. Set environmental variables as needed to override default configuration set in config.ts.

5. Start NestJS:

• npm run start:dev

13.2. Build and Deploy

General Arrangement

The Angular front-end application is hosted on the Amazon S3 service, and the back-end NestJS

application is hosted on an Amazon EC2 instance which communicates with a MySQL server hosted

by the Amazon RDS service. Both the EC2 and MySQL instances are managed from the Amazon

Beanstalk service.

81/ 90

https://github.com/InnerspecTechnologies/ndtlink-backend
https://github.com/InnerspecTechnologies/ndtlink-client

The front-end application is accessed at https://www.ndt-link.com through a CDN provided by the

Amazon CloudFront service launched in the USA, Canada and Europe regions. The Amazon EC2

instance hosting the back-end application is part of a secure Amazon Virtual Private Cloud that

restricts direct external access to the database. The back-end application responds to requests sent

to https://api.ndt-link.com. These two URL addresses are managed are resolved by Amazon Route 53

DNS service.

For security reason, specific details on how these services have been configured will not be described

in this document since they can be shared only with Innerspec personnel.

Continuous Delivery with Github Actions

The Github repositories for the front-end and back-end applications contain a master and a release

branch. Commits to the release branch will trigger a Github action that builds the source code and

publishes the result to Amazon S3 and Amazon Beanstalk services respectively.

These Github actions are defined in the file .github/workflows/build_and_deploy.yml present in each

repository.

82/ 90

Figure 45: Front-end and back-end deployment on Amazon Web Services

https://api.ndt-link.com/
https://www.ndt-link.com/

83/ 90

13.3. Accounts for evaluation tests

The following accounts are available for testing NDT-Link for the purpose of evaluating what has been

implemented for this thesis:

1. Superuser account:

1. Username: admin@innerspec.com

2. Password: Temate#1

2. Innerspec profile-based account:

1. Username: cmrabet@innerspec.com

2. Password: Temate#1

3. User profile-based account:

1. Username: cmrabet@gmail.com

2. Password: Temate#1

84/ 90

Figure 46: Github Action that completed building and deploying the back-end after new commit

mailto:cmrabet@gmail.com
mailto:cmrabet@innerspec.com
mailto:admin@innerspec.com

14. Future Improvements/Roadmap

There are several objectives from the planning stage that have not been implemented due to lack of

time. They will be implemented before releasing NDT-Link to customers:

1. Primary Objectives:

1. Finish applying role-based guards for all routes and operations on the front-end and back-

end. At the time of the writing of this document, guards are only applied to enforce profile

based restrictions but not role-based ones (this means that any user with the profile

Innerspec or User can perform any of the available operations for his profile with no

restrictions).

2. Pagination for the list views and tables.

3. Add recurrent CRON job in the back-end that deactivates the expired subscription.

4. User profile page.

5. Unit Tests and E2E tests.

2. Secondary Objectives:

1. Reception, organization, and display of inspection data sent from the systems.

2. Messaging between users.

Once the pending objectives are implemented, and NDT-Link has been in use by customers for a

certain amount of time, the following features will be implement:

1. Database migrations, as a replacement to the seeds.js script that runs every time the back-

end starts.

2. Expand data sharing between products and NDT-Link by synchronizing system setups and

configurations.

3. Integrate tests with Git Actions, and expand E2E tests.

85/ 90

15. Conclusions

15.1. General

The final effort required to implement NDT-Link was more than originally planned during the design

stage. There have been several deviations from the timing diagram presented in section 8.2. as well

as delays. One of the tasks that impacted negatively the progress of the project has been the study of

the Information Architecture, which has required a considerable amount of time, even though the

participation was low with minimal results.

The implementation of the Product Connector has forced to work on tasks that were planned for much

later, changing the plan considerably for some milestones. This happened because the team

responsible for the development of the Product Connector depended on the availability of the

endpoints from NDT-Link in order to continue making progress. Other tasks had to put on hold in

order to implement all the required endpoints.

15.2. Front-End

Previous knowledge of the Redux pattern helped to quickly understand and integrate NgRx. This

library allowed the implementation of a cleaner and more organized project structure than one using

just services and Observables. Using this library was fun and pleasant, even though the amount of

boilerplate generated was a concern in the beginning of the implementation stage.

The implementation of the UiModule took an important amount of time from the development of the

actual functionality needed by the application. In order to keep the application as much independent

as possible from any dependencies, the implementation of basic repetitive controls such as input

boxes and modal dialogs was necessary. The resultant decoupling is acceptable, however for faster

development and focus on the business of the application, a better approach like Angular UI

Framework would have been a better approach.

The most complicated task has been creating a CRUD structure that implements the list view, detail

view and creation and edition forms for each model. The complexity resided mostly in managing the

forms to work correctly with the state.

In general, developing with Angular has been fun and pleasant. Using it for a project as big as NDT-

Link has showed where this framework shines; organization, structure, robustness and reduction of

third party dependencies.

15.3. Back-End

Learning NestJS took a considerable amount of time, more than originally estimated, even though

node.js and Express.js were very familiar. After overcoming the learning curve, the development with

NestJS has been fast and enjoyable.

86/ 90

Evaluating different options for database interaction took also an important amount of time that was

not considered in the initial planning. After trying different ORMs, query-builders and drivers for direct

access to MySQL, it was decided to use TypeORM. This ORM has many problems, and getting help

from the maintainers was slow. This is the reason the most complex queries were implemented with

raw SQL, and just the simple ones were done with TypeORM methods.

The most complicated part to implement in the back-end has been the processing of payments with

PayPal. The developer documentation available from PayPal is very confusing and poorly organized.

Most of the time dedicated to this task was spent in reading documentation and trying to understand

the API and how the different stages of the payment process work. Once this was clear, the

implementation was very straightforward.

Finally, even though working with NestJS has been very enjoyable, the options available for

interacting with relational databases in Node.js are poor. This strongly forces to reconsider keeping

Node.js as the back-end platform for next versions of NDT-Link or instead, replace it with other

technologies such as .NET with EntityFramework.

15.4. Deployment

The implementation of Git actions has been very straightforward. There is plenty of information on

GitHub.com, as well as hundreds of third-party actions that can be incorporated to perform all kind of

tasks for CI and CD.

Configuring Amazon S3 to deploy the front-end was an easy task. However, setting up Amazon

Beanstalk to deploy the back-end was more complicated than expected. The reason is that Amazon

Beanstalk is a facade to several other services (EC2, Security Groups, Load Balancer, etc.), which

need to be understood and configured individually.

Finally, the only difficulty encountered when deploying MySQL in Amazon RDS was to correctly

configure the Amazon Security Groups and Virtual Private Cloud so the EC2 machine hosting the

back-end application could reach the MySQL instance. Also, the configuration of Route 53 and

CloudFront to enable HTTPS was surprisingly very straightforward. Using an Amazon SSL certificate

required no changes at the NestJS level.

87/ 90

Annex 1. Project Deliverables

Name/Title ANNEX

UX Test results 4A & 4B

UX First Click test results 5A & 5B

Front-End source code 6

Back-End source code 7

UML Sequence Diagram for PayPal purchase process 8

Product Connector Specifications 9

Masters 10

Presentation 11

Table 1: Project Deliverables

88/ 90

Annex 2. Bibliography

1: Harry Roberts, High-level advice and guidelines for writing sane, manageable, scalable CSS,

https://cssguidelin.es/

2: Stephen Fluin, Why Developers and Companies Choose Angular, https://medium.com/angular-

japan-user-group/why-developers-and-companies-choose-angular-4c9ba6098e1c

3: IhorFeoktistov, Why and When to Use Node.js?, https://relevant.software/blog/why-and-when-to-

use-node-js/

4: Auth0 Group, Introduction to JSON Web Tokens, https://jwt.io/introduction

89/ 90

Annex 3. Vita

Chakir Mrabet was born in Tangiers (Morocco) and was raised in Spain,

where he graduated from Universitat Politècnica de Catalunya in Barcelona

with a Bachelor's Degree in Industrial Engineering, major in Industrial

Electronics and minor in Informatics and Telematics. After working for

several years as a Software developer, Chakir joined the Automotive sector

as an R&D Engineer for Gestamp Automoción, an international group

headquartered in Spain dedicated to the design, development and

manufacture of metal automotive components. At Gestamp Automoción, Chakir was responsible for

the application and innovation of ultrasonic inspection systems used for the detection of defects

created by welding processes of automotive parts. This area brought Chakir close to Innerspec

Technologies, a US based company world leader in NDT16 solutions specialized in EMAT17 systems

and instruments. Chakir joined Innerspec Technologies in 2007 as the manager of the European

office in Spain, and in 2012 as the Director of Software Engineering in Lynchburg, Virginia (USA).

16 Non-Destructive Tests

17 Electro-Magnetic Acoustic Transducers

90/ 90

	1. Introduction
	1.1. Pain Points
	1.2. Proposed Solution

	2. Description
	2.1. Application Structure
	Product Connector

	2.2. Modules
	User Management
	User Asset Management
	Innerspec Product Management
	Help Desk (Ticketing System)
	Data Sharing

	2.3. Authentication/Authorization
	Profiles
	Roles

	2.4. Account Creation
	2.5. Purchasing Subscriptions

	3. Objectives
	3.1. Primary
	3.2. Secondary
	3.3. Other

	4. Methodology
	5. Application Architecture
	5.1. Preliminary Information Architecture
	Preliminary Information Architecture for Innerspec based profiles
	Preliminary Information Architecture for User based profiles

	5.2. Preliminary Information Architecture Validation
	Test Setup
	Test Results

	5.3. Improved Information Architecture
	Improved Information Architecture for User profiles
	Improved information Architecture for Innerspec profiles

	6. Prototypes
	6.1. Lo-Fi
	6.2. Hi-Fi

	7. Development Platform
	8. Planning
	8.1. Implementation Stages
	8.2. Gantt Chart

	9. Implementation
	9.1. Back-End
	9.2. Product Connector
	9.3. Front-End

	10. Used APIs
	10.1. Mapbox
	Front-End
	Back-End

	10.2. PayPal
	10.3. Amazon Simple Email Service (ASES)

	11. UML Diagrams
	11.1. Application Domain
	High-Level Domain Diagram
	Contact Management
	Innerspec Product Management
	User Assets
	Help Desk
	Support

	11.2. Activities
	User Registration
	System Registration
	Reset System’s Asset Secret
	Add System Account
	Purchase Subscription

	11.3. Sequence Diagrams
	Summary
	Order Confirmation
	Payment Confirmation
	Payment Execution

	12. Security
	12.1. Back-End
	User Authentication and Authorization

	12.2. Front-End
	12.3. Hosting

	13. Installation/Deployment Instructions
	13.1. Installation for Development
	13.2. Build and Deploy
	General Arrangement
	Continuous Delivery with Github Actions

	13.3. Accounts for evaluation tests

	14. Future Improvements/Roadmap
	15. Conclusions
	15.1. General
	15.2. Front-End
	15.3. Back-End
	15.4. Deployment

	Annex 1. Project Deliverables
	Annex 2. Bibliography
	Annex 3. Vita

