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Actualmente existen un tipo de estudios llamados GWAS que han permitido 
identificar varias variantes genéticas asociadas a enfermedades complejas. Sin 
embargo, en la mayoría de casos, se desconoce qué mecanismos biológicos 
participan entre la ocurrencia de las variantes genéticas y el desarrollo de la 
enfermedad. 
Nuestra propuesta es la utilización de análisis de rutas biológicas y de redes 
génicas junto con la integración de resultados de diferentes datos ómicos. Para 
ello, seleccionamos listas de genes representativas de datos transcriptómicos y 
genómicos de previos estudios de Alzheimer, y comparamos los resultados 
obtenidos con los programas: ConsensusPathDB, DAVID EnrichmentMap, 
g:Profiler, IPA, MAGMA, Reactome y WebGestalt.  
Algunos de los procesos biológicos sobrerrepresentados en la enfermedad de 
Alzheimer estaban relacionados con respuestas inmunológicas, procesos 
proteico-lipídicos, desarrollo neuronal, ciclo del ácido cítrico, péptido beta-
amiloide, y metabolismo de ácidos nucleicos. La comparación de métodos de 
redes génicas no fue concluyente, pero los resultados que se obtuvieron 
coinciden con los resultados de los estudios de los datos en los basamos nuestro 
proyecto.  
Una conclusión fue que el análisis de diferentes datos biológicos junto con la 
aplicación de análisis de rutas biológicas y génicas aporta una perspectiva 
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sistémica y funcional de la enfermedad de Alzheimer. Otra conclusión fue que el 
número de resultados significativos difiere entre programas de rutas biológicas 
a pesar de analizar los mismos datos y aplicar el mismo tipo de método. Sin 
embargo, generalmente los resultados más relevantes coinciden entre 
programas si se selecciona la misma base de datos, pero el nivel de significancia 
varia.  
 
 

  Abstract (in English, 250 words or less): 

Nowadays, a type of studies called GWAS have identified several risk alleles 
associated with different complex diseases. However, in most of the cases, the 
identity of the biological mechanisms involved in the development of complex 
diseases since the occurrence of genetic variants is yet unknown.  
Our proposal is to conduct pathway and network analysis together with the 
integration of results from different omics data. We selected to use lists of genes 
representative of transcriptomic and genomic data from previous Alzheimer’s 
disease studies. Moreover, we decided to compare the software tools: 
ConsensusPathDB, DAVID, EnrichmentMap, g:Profiler, IPA, MAGMA, 
Reactome, and WebGestalt.  
Some of the pathways enriched in Alzheimer’s disease were related to immune 
responses, protein-lipid processes, citric acid cycle, amyloid-beta peptide, 
neuronal development, and nucleic acid metabolism. The comparison of network 
analyses was inconclusive. However, our results coincide with the results seen 
in the studies of the data we base our project on. 
One of our conclusions was that pathway and network analysis together with the 
analysis of different biological data gave us a systemic and functional insight into 
Alzheimer’s disease. Another conclusion was that different number of significant 
results are obtained when using different tools, despite analysing the same data 
and applying the same pathway analysis method. Nevertheless, in general, if the 
same database is selected, the most relevant results coincide between tools, but 
the level of significance differs. 
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1 Abstract

The effect of multiple genetic variants contributes to the development of complex
diseases. Nevertheless, in most of the cases their functional roles are yet to be
discovered. The integration of different types of biological data together with the
usage of pathway and network analysis has been proposed to unravel the
biological mechanisms behind the development of complex diseases from a
systemic and functional point of view.

For our project, we decided to compare: (i) the results from different tools that
offer pathway and/or network analysis, and (ii) the results obtained when
different types of biological data are used for pathway and network analysis. We
selected Alzheimer’s disease as an example of complex disease, gene lists
representative of transcriptomic and genomic data from previous Alzheimer’s
disease studies, and eight software tools to compare. The novelty of our project
is the double comparison we carried out and one of questions we want to
answer: whether there is any loss in biological information when pathway and
network analysis are carried out using only one tool and only one type of
biological data.

Some of the pathways found to be enriched in Alzheimer’s disease were
processes related to: synaptic signalling, neuronal development,
transmembrane transport, citric acid cycle, cellular respiration, intestinal lipid
absorption, proteinlipid processes, amyloidbeta peptide, and immunological
responses. The comparison of network analysis methods was not conclusive
but, the results obtained coincided with the results of the studies of the data we
rely on to carry out our project.

In conclusion, pathway and network analysis together with the analysis of
different biological data gave us a systemic and functional insight into
Alzheimer’s disease. Different number of significant results between tools,
despite analysing the same data and applying the same pathway analysis
method. Nevertheless, in general, the most relevant results coincide when using
different software tools if the same database is selected for the analysis. But the
level of significance differs.

2 Introduction

2.1 Background and motivation

Complex human diseases are influenced by many genetic and environmental
factors [1, 2, 3, 4]. Alzheimer’s disease (AD) is a neurodegenerative disease, the
most common cause of dementia, and is an example of a complex disorder
[5, 6, 7]. Several studies have been carried out to discover what genetic,
environmental and lifestyle factors are involved in AD aetiology and

1
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pathogenesis [1, 8]. For example, genomewide association studies (GWAS)
have had an important role in identifying single nucleotide polymorphisms
(SNPs) associated with AD, other complex diseases, and complex traits [9, 10].

Most of the genetic variants associated with a particular disease identified by
GWAS are common variants of small effect sizes, but some of moderate effect
sizes can also be detected [1, 8]. However, part of the genetic architecture of
complex diseases is not explained by GWAS because GWAS results are:
associations of risk alleles with a phenotype. Those genetic variants, individually
or together, explain only a small proportion of the phenotypic variance due to
genetic factors [1, 8, 11]. A systems approach to complement GWAS findings in
unraveling the genetic and functional basis of complex disorders has previously
been proposed [8, 12, 13]. Together with the integration of multipleomics and
interaction data, pathway and network analysis can give a valuable functional
insight into how such SNP markers relate to each other and what collectively
effects have in complex diseases development [8, 12, 14].

There exist several software tools to carry out pathway and network analysis
[12]. However, a potential problem of having a wide range of tools and no
standard procedure to perform pathway and network analysis is the
heterogeneity of results. Each program uses different types of input data, gene
identifiers, gene set definitions, pathway annotation databases, and statistical
methods [8, 12]. Therefore, in this project we would like to select a subset of the
available software, to perform pathway and network analysis using different
types of biological data from previous studies of AD, and to compare the results
obtained.

2.2 Objectives

– To provide an indepth description of the software characteristics and
requirements for pathway and network analysis

– To compare the output of different software tools using microarray data,
RNAseq data, and GWAS summary statistics

– To demonstrate the role of network and pathway analysis in our
understanding of complex diseases such as Alzheimer’s disease

– To discover any loss in biological information when pathway and network
analyses are carried out using only one software tool and only one type of
biological data in studies of complex diseases

2.3 Research approach

Pathway and network analysis give a global and functional insight into genes’
roles, the relationships between genes and the trait or disorder of study in an

2
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increasingly automated manner thanks to the usage of several databases with
numerous gene annotations and other relevant biological information [12, 15].
Previously, the only way to get a mechanistic understanding of a gene —in other
words, to know in which biological pathways it has a role and with which genes it
interacted–, was by carrying out exhaustive literature reviews and experiments
[15]. Therefore, we will take advantage of databases that have integrated
different biological information and conduct pathway and network analysis to
have a functional and global comprehension of genes and molecular
mechanisms involved in AD development.

An ideal systems perspective of AD would be achieved by carrying out pathway
and network analysis using multiple levels of biological data; for example:
genomics, transcriptomics, epigenomics, proteomics, and metabolomics data
[16]. Nevertheless, in order to conduct such an extensive analysis it is essential
to have tools available that can handle each of the data types, at least one
dataset of each biological level, time, and funding. Moreover, by increasing the
number of levels of biological data, we increase the number of covariates and
potential confounders that must be taken into account and thus we increase the
complexity of the analysis [16].

In this project we aim to explain the missing genetic basis of AD from a systems
point of view, and due to lack of funding and short completion period we will only
analyse genomics and transcriptomic data. By doing so, we will have a
globalintegrative perspective of the genetic basis of AD. At the same time, we
will:

– Avoid deviation from the genomic level.

– Exclude the interaction between environmental and genetic factors, the
effect of posttranslational modifications, and several other factors that
would increase the study´s complexity and affect the results due to their
highly dynamic behaviour [16].

– Avoid results that are strongly dependent on sample preparation [17] and
the type of tissue extracted [16].

The datasets selected to be used as references for the current project and as
representatives of transcriptomic and genomic data are from Blalock et al. [18],
Nativio et al. [19], and Kunkle et al. [20]. These datasets were chosen because
they are freely available and because in [18, 19, 20], the authors worked with
samples of controls and of patients with AD patients, and performed pathway
enrichment analyses in their studies. Furthermore, [20] and [19] are recent
studies, and in [19], a multiomics strategy was conducted. Having those three
studies as direct references helped us to have a better understanding of AD
when using different types of biological data.

We selected the software tools mentioned in Project management section
because each of the tools has unique characteristics and different approaches to
perform pathway and network analysis, provides extensive tutorials or

3
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documentation, and is freely available or offers a trial period. In addition, some
of these tools are more flexible because they can work with several data types.
Others are connected through Cytoscape’s apps, which facilitates data
integration of different platforms.

2.4 Project management

The three different types of data used in our study are:

– Microarray data [18]

– RNAseq data [19]

– GWAS summary statistics [20]

The software tools chosen to analyse or visualise the data are:

– ConsensusPathDB [21, 22]

– DAVID [23, 24]

– EnrichmentMap [25] (Cytoscape [26] Plugin)

– g:Profiler [27]

– IPA [QIAGEN Inc.] [28]

– MAGMA [29]

– Reactome [30, 31, 32, 33]

– WebGestalt [34, 35, 36, 37]

In addition, in some cases R was also used to preprocess the datasets and
create figures [38]. The Methodology section contains more information about
the software tools and the datasets used.

Some of the key factors to carry out the project successfully were:

– Short learning periods to understand how each of the software works in
general and which assumptions they rely on

– No technical problems or short waiting periods due to unavailability or
updates of webservers

– Proper time management to have enough time to preprocess each of the
datasets, carry out each of the proposed analysis using the selected
software, prepare visual reports of the results and interpret them.

4
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Figure 1 shows a Gantt chart with two main sections. The name of the tasks are
shown on the right of each task bar. The tasks related to the analysis of the
project can be seen on the top part in dark blue, and the tasks related to the
writing of the project are marked in light blue at the bottom part. Moreover, there
are two yellow rhombi included in the Gantt chart which represent important
days. One of them was the deadline to activate the evaluation license given by
QIAGEN to use IPA, and the other rhombus represents the deadline to hand in
the dissertation.

Figure 1: Gantt chart. Tasks related to the analysis of the datasets of the project are shown in
dark blue. Tasks related to the writing of the project are shown in light blue, and the yellow
rhombi represent important dates.

2.5 Contribution of the project to the field of study

This work illustrates the importance of applying a systems approach to have a
better understanding of the biological factors involved and the effect of their
interrelationships in AD aetiology and pathogenesis. Moreover, this project gives
an overview of some of the available software tools and their respective
approaches to perform pathway and network analysis. Lastly, the comparison of
results when using the same program and different omics data of AD as input, or
viceversa, gives the opportunity to decipher whether the biological information
obtained is the same overall independently of the data type or software tool used.

2.6 Brief description of the content of the next sections

In the State of the Art section, a literature review of pathway and network
analyses and previous comparative studies will be shown. In the Methodology
section, the general approach used to carry out the project, key information of
the studies the datasets derive from, and a detailed explanation of the software
tools and data used for each analysis can be found. In the Results section tables
and figures together with other outcomes obtained after carrying out the
analyses will be shown. The interpretation of the results will be done in the

5
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Discussion section and a synthesis of the research topic and the significance of
our findings can be found in the Conclusions section. In addition, in the
Conclusions section deviations from the research project proposal, limitations of
our work, questions unanswered and suggestions for future projects will be also
covered. Finally, in the Glossary section the abbreviations used along the
dissertation and their meaning can be found.

3 State of the Art

3.1 Introduction to some key words

The words ”pathway”, ”network”, and ”gene set”, are often used as synonyms in
the literature. The fact that they are used interchangeably —when they are not
synonyms despite being close in meaning — leads to create confusion among
researchers when trying to integrate different biological information, create new
methods or tools, interpret data, and communicate their findings. Therefore, the
definition of each of those terms is not trivial and should always be given until a
consensus on their definition is reached.

We will start by defining in a general way what is a biological pathway.
Afterwards, as an example, we will put in context gene sets, pathways, and
networks when working with genes. Despite using as an example a specific
context, the definitions for each of these words will still be broad. So that the
sense of these words can be later applied to other scenarios and specific
definitions can be added to them. Lastly, while putting in context all of these
concepts, we will also give some examples of factors that have an effect on their
definitions and as a result give them more specific meanings.

A biological pathway could be broadly defined as a sequence of biological
events, performed by a group of biological entities, to create a new product or
induce a cellular change [11, 39, 40]. So, a sequence of biological events needs
to have a specific start and endpoint to be considered a biological pathway [12].

A gene set could be defined as a pathway if they are involved in the same
biological pathway [11, 13, 39]. Whereas a group of gene sets could be defined
and visualised as a network if the genes are biologically related, for example,
through the interaction of some of them, through the interaction of their products,
or through the biological pathways they form part of [11, 12, 15, 41]. Gene sets
also have to fulfil other requirements to be considered pathways or networks but
they vary from case to case. However, even if the definitions of pathways and
networks still seem very similar, usually pathways have stricter definitions and
the extent of pathways is much smaller than the extent that networks can cover.
In addition, networks require interaction between their components whereas
pathways not necessarily.

The definition of gene set is the most difficult and ambiguous — but its definition

6
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is key— because gene sets are the units of pathway and network analyses [42].
A group of genes is considered a gene set if they are somehow related.
However, the genes will be considered to be related depending on the definition
given by the tool selected to conduct the analysis, the gene set databases used,
the individual performing the analyses, or the hypothesis being tested [12].

After defining and putting in context gene sets, pathways, and networks, we will
explain what are pathway and network analyses. In addition, we will explain
other biological contexts where these type of analyses can be applied to.

3.2 Pathway analysis

The aim of pathway analysis, if we apply it to the example given at the beginning
of this section, would be to identify statistical significant gene sets (that can be
defined as pathways) related to a phenotype, trait or disease of interest, from
lists of ”unrelated” genes —but of interest based on previous experiments or
studies—. At first, the genes are unrelated for us but after conducting a pathway
analysis, we might discover that there are gene sets or pathways significantly
related to our phenotype than other pathways or solitary genes.

Pathway analysis are also known as functional enrichment analysis because this
type of analysis not only can be applied to gene sets–biological pathways
relationships, but also to other relationships between gene sets and other
gene–product properties of interest such as gene ontology (GO) terms [43]. If
we take again as an example genes, but instead we are interested in identifying
statistical significant gene sets that have common molecular functions, we could
still apply pathway analysis. Nevertheless, in this case, instead of considering
gene sets as pathways because they form part of the same biological pathway,
we would consider gene sets as pathways because the genes of the gene sets
share the same molecular functions.

Pathway analysis methods can be divided into two main groups. However,
depending on the perspective from which the methods can be described, the
name of the categories and their characteristics are different. Below I will
enumerate three different ways for describing and classifying pathway analyses.

1. Based on the usage or nonusage of existing biological pathway
knowledge, we can divide pathway analysis methods in topologybased
tests and nontopologybased tests. The latter group of tests can also be
can also be called gene set analysis methods [15, 43, 44, 45].
Topologybased methods take into account in the analysis prior information
available of biological pathways such as positions and roles of genes,
interactions of genes or gene products, direction of gene signaling, and
other biological information known [15, 44, 45].

2. Based on the null hypothesis being tested, we can divide pathway analysis
methods in competitive or enrichment tests, and selfcontained or

7
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association tests [11, 12, 13, 42]. In the competitive method, the null
hypothesis states that the gene set considered pathway shows the same
degree of association with the phenotype of study as other genes that do
not form part of that pathway [11, 12, 13, 15]. Whereas the null hypothesis
for the selfcontained type states that there is no association between the
gene set considered pathway and the phenotype of study [11, 12, 13, 15].

3. Based on the type of gene list to be analysed, pathway analysis methods
can be divided into rankbased and nonrankbased tests [15, 43].
Nonrankbased tests take as input only a gene list of interest to be
analysed. Whereas ranked tests take as input a list of genes and some
quantitative data associated with each of the genes on the list. The
quantitative variable permits to rank genes in terms of importance following
certain chosen criteria [15].

There exist several statistical methods to conduct pathway analyses.
Nevertheless, they usually fall in one of the two categories from the three points
of view mentioned above. In the Methodology and Results sections we will
explain the pathway analyses we have used with each software tool.

3.3 Network analysis

At the beginning of the section, we gave as an example that gene sets could be
defined as networks. Not only groups of genes can be represented as networks
but any biological system and other complex systems in which there are many
entities interacting with each other can be represented as networks [41]. The
aim of network analysis is to help to integrate great amounts of different
information, facilitate interpretation of complex systems, and sometimes even
predict how the different entities that form part of the network interact with each
other [41, 46, 47].

All networks have nodes and edges but, depending on the field and what is
being analysed, their visualisation and topology are different [41]. In other
words, the representation and the properties of the network, substructures within
a network or clusters of nodes highly interconnected called modules, nodes,
and edges vary from case to case [41]. However, in general, the main idea
behind nodes is that they represent the entities that act or receive an action and
edges represent interactions, overlaps, or relationships between entities [41, 47].

For example, in biology networks can represent several relationships between:
genes, proteins, metabolites, biological pathways, and drugs [41, 47].
Nevertheless, networks can also represent interactions, signals or any other
combination of relationships between the entities mentioned above [41, 47].

In our case, we will mainly work with interactions between genes, gene–product
properties, and biological pathways. Moreover, the type of network visualisations
we will use will be: undirected ballandstick diagrams and directed acyclic

8



Ximena Sofia Lemus Maulen

graphs (DAG) [41]. Lastly, we will explain in more detail the network analyses we
have used with each software tool in the Methodology and Results sections.
There exist several network visualisations and methods to conduct network
analyses [41] but with the software tools chosen and the time available for this
project, we have only been able to explore two different graphs and three
different network analyses. Therefore, we will only cover the methods and
network visualisations used because the rest of existing approaches go beyond
the scope of this project.

3.4 Previous studies

To the best of our knowledge, there are few comprehensive comparative studies
of pathway and network analyses [13, 42, 44, 48, 49]. All of them agree that
comparison of methods is complicated because there exist several different tools
and methods to conduct pathway or network analyses. At least, more than 70
different methods might exist to date [44]. To give an idea of how dynamic the
bioinformatics field is, out of the eight software tools we have chosen to explore
in this project, only half of them have been mentioned in at least one of the
comparative studies carried out until now.

Of all comparative studies found, some of them have used real data and others
simulated data but, it seems that competitive methods of geneset analysis
[12, 42] and topologybased methods [48, 49] have a better performance than
their opposites. Between rankbased [13, 48, 49] and nonrankbased methods
[42] it is not clear which type of analysis performs better. However, all
comparative studies are aware of the great amount of different factors that could
have influenced their results and the limitations of their studies.

Future comparative studies will benefit from accessing new methods and tools
with bigger databases. Nevertheless, it is quite likely that data integration and
curation will still be an issue. Therefore, it is key that more comparative studies
are carried out to confirm the results seen until now, to keep an updated picture
of the state of the field, and to decipher how different and reliable are the results
obtained when using different methods and programs.

4 Methodology

4.1 General approach

The main steps to conduct this project were quality control and data
preprocessing, pathway analysis, and, in some cases, network analysis.

After the quality control and data preprocessing step, the workflow was to use as
input either gene lists alone or gene lists together with some quantitative data
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from three different datasets, analyse the data using different parameters or
statistical analyses, and compare the results from a qualitatively point of view.
The results could be information about potential biological pathways represented
by genes present in our gene lists (pathway analysis), networks of biological
pathways that overlap between them (network analysis), or both. These results
were compared across different software tools and datasets. Table 1 shows
information about the programs used, the datasets analysed with each of them,
and the different methods used to analyse the data.

Depending on the information available on each dataset and on the program
used to analyse the data, different variables were selected to conduct the
pathway analyses. However, the main variable for this type of analysis was a
gene identifier. For those cases where quantitative data were required,
expression values, pvalues, or adjusted pvalues for multiple testing were used.

4.2 Data

4.2.1 Microarray data

Some of the data obtained in [18] was used in this project as a representative of
microarray and transcriptomics data. They extracted RNA from the hippocampal
CA1 gray matter of 30 postmortem human brain samples, used Affymetrix
Human Genome U133 plus 2.0 arrays and HGU133 annotation data (October
2003) [18]. Out of the 30 samples, 11 were from males and 19 were from
females. The average age of the individuals was 86.3 years and they were
divided into four categories of different AD severity based on two AD marker
scales: MiniMental Status Exam (MMSE) and neurofibrillary tangle (NFT)
density. AD severity is negatively correlated with MMSE results and positively
correlated with NFT counts. Seven individuals were classified as having severe
AD, eight moderate AD, seven incipient AD, and eight as controls [18].

The data that we used for our analyses can be found in the Supplemental Table
1 of [18]. For all 3,465 genes whose expression profiles were significantly
correlated with MMSE scores, NFT counts, or both across all 30 individuals, their
respective gene symbol, gene description, probeset identifier, Pearson’s
correlation coefficients with MMSE scores and with NFT counts, and Pearson’s
tests pvalues are provided in the dataset. Genes with low expression in AD
were positively correlated with MMSE results and negatively correlated with NFT
scores; whereas genes with high expression in AD were negatively correlated
with MMSE results and positively correlated with NFT scores.

To conduct our analyses, we decided to use gene symbols as our main gene
identifiers and analysed upregulated and downregulated genes separately. In
addition, for those software tools that offered rankbased methods, we selected
the pvalues obtained in the Pearson’s tests for MMSE results as our variable to
rank the genes. Gene symbols were selected as our main gene identifiers
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because all software tools chosen for this project gave the option to work with
this type of identifier and to facilitate the comparison of results between software
tools and datasets analysed. Pvalues obtained for the MMSE correlation
coefficients were selected as our variable to rank the genes because the
classification of patients into the four categories was mostly based on MMSE
scores, and also because in [18] was found that MMSE correlation coefficients in
comparison with NFT correlation coefficients explained a greater percentage of
the variability of gene expression.

Nevertheless, when we used DAVID we worked with probeset identifiers instead
because less than 80% of our gene symbols coincided with the gene symbols of
their database. When we used IPA, we analysed all genes together, and we
worked with probeset identifiers and gene symbols to increase the number of
annotated genes to carry out our analysis.

4.2.2 RNAseq data

In this project, some of the data in [19] were used as representatives of RNAseq
and transcriptomics data. In part of the study, transcriptomics data from the
lateral temporal lobe of 30 postmortem human brain samples were analysed. 12
of the samples were from patients with AD, 10 from healthy older subjects, and
eight were also from healthy individuals but younger. Most of the samples were
from males and the mean age for each of the three groups was 68, 68 and 52
years, respectively.

To perform our pathway and network analysis, we used the results of the
differential gene expression between the samples of patients with AD and old
controls (qvalue<0.05) of [19], data publicly available in GEO repository under
accession identifier GSE153873. Nativio et al. [19] aligned the RNAseq reads
to the Genome Reference Consortium Human build 37.75 (GRCh 37.75), used
RefSeq gene annotation, normalised the data using Evaluation of External RNA
Controls Consortium (ERCC) spikein control transcripts to account for global
transcriptional changes happening between AD and old healthy individuals
samples, and found a total of 855 differentially expressed genes. In the dataset,
information about 421 upregulated genes and 434 downregulated genes in AD
can be found separately. For each gene, their respective gene symbol, log2 read
count normalised per gene length and ERCC spikein in AD samples and old
controls, the log2 fold change of AD samples with respect to old controls, pvalue
and false discovery rate (FDR) adjusted pvalue obtained when identifying
differentially expressed genes is provided.
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4.2.3 GenomeWide association study summary statistics data

The summary statistics of a genomewide association metaanalysis of
lateonset Alzheimer’s disease (LOAD) conducted by The International
Genomics of Alzheimer’s Project (IGAP) group [20] was chosen as a
representative of genomics data in this study. A sample of 94,437 subjects,
among which 59,163 were controls and 35,274 were patients clinically
diagnosed of LOAD, was used for the whole metaanalysis [20]. In [20], 20 loci
already known to be associated with LOAD were confirmed and five new risk loci
were identified. The chromosome and SNP positions were based on GRCh37,
assembly hg19, and the variants annotation were based on RefSeq.

The summary statistics of [20] can be found in the National Institute on Aging
Genetics of Alzheimer’s Disease Data Storage Site (NIAGADS) under accession
identifier NG00075. Their study was divided into different stages, but for our
work only the results of the discovery stage were used. The results of stage 1
include imputed and genotyped data of 41,944 controls and 21,982 patients with
LOAD. In the dataset, for each SNP, the chromosome and position where they
are found, their reference SNP number (rsID), the risk allele, the noneffect
allele, the effect size for the risk allele, the standard error and pvalue for the
effect size are provided.

We only analysed 10,534,426 SNPs out of 11,480,632 genetic variants because
946,206 SNPs did not have an rsID. Moreover, we analysed common and rare
variants together because allele frequencies are not provided in the GWAS
summary statistics due to data privacy. However, this should not be an
inconvenience because Kunkle et al. [20] found that there was a positive and
significant correlation between the gene association results from the pathway
analysis using common and rare variants separately.
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Table 1: Summary table with information about pathway or network methods used and datasets analysed with each software tool. All software tools are freely
available, except IPA. The names of the pathway or network methods shown in the table are the same names the creators of the programs use to call or
describe their respective analyses. The latest year of release makes reference to the program not to the latest year when their databases where updated.

Software tools (current version and/or
latest year of release)

Datasets analysed Pathway (P) or network (N) analyses used

ConsensusPathDB (v34, 2019) [21, 22] Microarray, RNAseq and Genomewide
association study summary statistics

Overrepresentation analysis‡¶(P) and Wilcoxon enrich
ment analysis†‡¶(P)

DAVID (v6.8, 2016) [23, 24] Microarray, RNAseq and Genomewide
association study summary statistics

Functional annotation analysis‡¶(P)

EnrichmentMap (v3.3.2, 2021) [25] Microarray, RNAseq and Genomewide
association study summary statistics

Networkbased visualisation of geneset enrichment re
sults (N)

g:Profiler (v.e103_eg50_p15_68c0e33,
2019) [27]

Microarray, RNAseq and Genomewide
association study summary statistics

Overrepresentation analysis‡¶(P) and Incremental en
richment analysis†‡¶(P)

IPA* (2021) [28] Microarray and RNAseq Core analysis‡¶(P)(N)

MAGMA (v1.09a, 2021) [29] Genomewide association study summary
statistics

Competitive geneset analysis‡¶(P)

Reactome (v76, 2021) [30, 31, 32, 33] Microarray, RNAseq and Genomewide
association study summary statistics

Overrepresentation analysis‡¶(P)

WebGestalt (2019) [34, 35, 36, 37] Microarray, RNAseq and Genomewide
association study summary statistics

Overrepresentation analysis‡¶(P), Geneset enrichment
analysis†‡¶(P) and Network topologybased analysis (N)

*Proprietary software
†Ranked pathway analysis method
‡Competitive pathway analysis method
¶Nontopologybased pathway analysis method
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4.3 Software tools

In this section information about each software tool, methods, and parameters
used will be explained. In addition, specific steps done with each dataset to work
with each software tool will be explained. The order in which programs are
presented was selected to facilitate the understanding of part of our workflow.
The chronological order in which the analyses were conducted can be seen in
Figure 1.

Some of the parameters selected to analyse the data are selected by default by
each software tool but if the users want to select a different value or option it is
possible for them to change them. Those options or parameters chosen or
modified by us —not kept as default—, will have an (nd) next to each of them. For
the rest of options or parameters it can be assumed that were left as default.

4.3.1 IPA

Only the microarray and RNAseq dataset could be analysed using IPA [28] with
an evaluation license. During the trial period, we could only explore some of the
settings and results due to the lack of funding and the restrictions related to the
usage of an evaluation license, which we accepted in order to include IPA in our
list of software tools for this project.

For the microarray datasetrelated analyses, we submitted to IPA probeset
identifiers, official gene symbols, genes’ correlation with MMSE and their
respective pvalue, and genes’ correlation with NFT and their respective pvalue.
For the RNAseq dataset analysis, we submitted to IPA the official gene
symbols, the differential gene expression between AD and old control samples,
their respective pvalue and adjusted pvalue.

Due to the restrictions related to the usage of an evaluation license, incorrect
selection of reference set or different selection of species for the analyses of the
microarray and RNAseq dataset, the results from IPA will not be included in the
tables shown but, they will still be discussed. Not only the results obtained in
pathway or network analysis are important but also the data and settings chosen
to obtain results. The results obtained with IPA will help to emphasise the
importance of selecting the appropriate settings in pathway and network analysis
to avoid obtaining misleading results.

For the core analyses conducted using the RNAseq data, the settings selected
were:

– Reference set: Ingenuity knowledge base

– Relationships to consider: direct and indirect relationships.
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– Interaction networks: 35 molecules per network and 25 networks per
analysis.

– Species: Humans, mice, rat, and others.

Whereas the settings selected for the core analyses carried out using the
microarray data were:

– Reference set: User dataset(nd).

– Relationships to consider: direct and indirect relationships.

– Interaction networks: 35 molecules per network and 25 networks per
analysis.

– Species: Humans.

– Any cutoff to apply to the submitted dataset(nd): genes’ correlation with
MMSE pvalue < 0.05.

4.3.2 MAGMA

Only the GWAS summary statistics dataset was analysed using MAGMA [29].
The first step consisted in mapping SNPs to genes (annotation step). Followed
by an association analysis between genes and the phenotype of interest (gene
analysis), and ended with a mapping from genes to genesets and an
association analysis between genesets and the phenotype of interest
(competitive geneset analysis).

For the annotation step, a file with SNPs identifiers, their gene location (base
pair position and chromosome), and the pvalues for their effect sizes from the
GWAS summary statistics dataset was submitted to MAGMA. In addition, gene
locations file (human genome build 37) provided on CTGLab’s (creators of
MAGMA) website was also submitted and used for this step. Lastly, an
annotation window(nd) of 35 kilobases (kb) upstream and 10 kb downstream
around genes was used in the annotation step. The window setting was chosen
based on one of the analysis settings selected and applied in [20].

For the gene analysis step, the file obtained as output from the annotation step
and a file with SNP identifiers and their respective pvalues for their effect sizes
from the GWAS summary statistics dataset was submitted to MAGMA. In
addition, a reference genome data file was also required for this step. MAGMA
provides 1000 Genome data files from different populations; for our case, the
European file was used as our reference genome data. The sample size used to
obtain the statistics for the SNPs was also submitted to MAGMA because it was
needed for the gene analysis (n=63,925). Lastly, the model selected for the gene
analysis was the SNPwise mean model.
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A total of four geneset analyses were carried out. Each of them required the
output from the gene analysis step and a GMT file with information about genes
and genesets from a database of interest. The GMT files used were obtained
from the Molecular Signatures Database v7.4 [50, 51]. GMT files with geneset
information from KEGG [52, 53, 54], Reactome [30, 31, 32, 33], BioCarta [55],
and GO [56, 57] databases were used for our geneset analyses.

The gene list from the GWAS summary statistics dataset used for the analyses
conducted with the rest of software tools is the one obtained as an output from
the MAGMA’s gene analysis. Nevertheless, before using it as input for the other
analyses, the gene list was filtered. Only the genes with a pvalue lower than
0.05 were kept and used for the rest of analyses.

4.3.3 g:Profiler

A total of five gene lists from the microarray, RNAseq, and GWAS summary
statistics datasets were analysed using g:Profiler [27]. Upregulated and
downregulated genes from the microarray and RNAseq datasets were
analysed separately, and only one gene list from the GWAS summary statistics
dataset was analysed. In all cases, the official gene symbol was used as gene
identifier. g:Profiler offers two pathway analyses: Overrepresentation analysis
(ORA) and Incremental enrichment analysis.

For the ORA the settings used were:

– Options: Homo sapiens in organism option

– Advanced options: All results(nd), no evidence codes(nd), only annotated
genes in statistical domain scope, SCS threshold in significance threshold,
user threshold 0.05, and numeric identifiers treated as Entrez gene
identifiers.

– Data sources: GO molecular function terms, GO biological processes
terms, GO cellular component terms, no electronic GO annotations(nd)
[56, 57], KEGG [52, 53, 54], Reactome [30, 31, 32, 33], WikiPathways [58],
CORUM [59], Human Protein Atlas (HPA) [60, 61, 62], TRANSFAC [63],
miRTarBase [64], Human phenotype ontology (HP) [65].

For the Incremental enrichment analysis genes were ranked in descending order
of significance. No quantitative data were uploaded to the program, only ranked
gene lists were submitted to g:Profiler. To rank the genes from the microarray
dataset, the quantitative variable used was the pvalue for the genes’
correlations with MMSE. For the genes from the RNAseq dataset, the adjusted
pvalue for the differential expression of genes between AD and old control
samples was used; and for the genes from the GWAS summary statistics
dataset, the pvalue from MAGMA’s gene analysis. The settings used for this
type of analysis were the same as for the ORA but including the ordered query in
the options section(nd).
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4.3.4 EnrichmentMap (Cytoscape Plugin)

Data from all three datasets were analysed using EnrichmentMap [25, 26]. The
data submitted to EnricmentMap were results from g:Profiler analyses and data
obtained directly from the datasets.

Overrepresentation analyses and Incremental enrichment analyses were rerun
in g:Profiler but with the following settings:

– Options: Homo sapiens in organism option. Ordered query option(nd) was
also selected but only for the Incremental enrichment analyses.

– Advanced options: All results(nd), no evidence codes(nd), only annotated
genes in statistical domain scope, SCS threshold in significance threshold,
user threshold 0.05, and numeric identifiers treated as Entrez gene
identifiers.

– Data sources(nd): GO biological processes terms, no electronic GO
annotations [56, 57], and Reactome [30, 31, 32, 33].

The results were downloaded using the Generic Enrichment Map format directly
from g:Profiler. In addition, we downloaded from g:Profiler GMT files which had
information about the gene sets used in GO and Reactome databases, and
merged them in one file.

For all analyses, the GMT file with information about the gene sets used in GO
and Reactome databases was submitted to EnrichmentMap. ORA and
Incremental enrichment analysis results from g:Profiler were analysed
separately in EnrichmentMap. However, for each type of analysis, upregulated
and downregulated genes results were submitted to EnrichmentMap jointly.
Lastly, for each dataset and type of analysis additional gene data were also
submitted to EnrichmentMap. In all cases, the gene identifiers used were the
official gene symbols.

For the microarray datasetrelated analyses, the upregulated and
downregulated gene lists ranked in descending order of significance together
with their respective correlations with MMSE pvalue were also submitted to
EnrichmentMap. For the GWAS summary statistics datasetrelated analyses, a
gene list also ranked in descending order of significance together with their
respective pvalue from MAGMA’s gene analysis was submitted to
EnrichmentMap. Lastly, for the RNAseq datasetrelated analyses, the
upregulated and downregulated gene lists ranked in descending order of
significance together with their respective adjusted pvalue for the differential
expression of genes between AD and old control samples was used when the
Incremental enrichment analysis results from g:Profiler were submitted to
EnrichmentMap. Whereas when the results from the ORA results from g:Profiler
were submitted to EnrichmentMap, the gene identifiers together with their
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respective gene expression from upregulated and downregulated genes in AD
and old control samples were also submitted to EnrichmentMap.

In EnrichmentMap the settings to create all networks were:

– Number of nodes(nd): FDR qvalue cutoff and pvalue cutoff equal to one.

– Number of edges(nd): Dataset edges automatic, overlap chosen as metric,
overlap cutoff 0.5.

Once the networks were created, the FDR qvalue cutoff was decreased and/or
the overlap cutoff was increased until a few nodes and the edges that connected
them could be visualised properly.

4.3.5 ConsensusPathDB

All three datasets were analysed using ConsensusPathDB [21, 22]. Among the
methods that ConsensusPathDB offers, we used two out of the three gene set
analyses they offer: ORA and Wilcoxon enrichment analysis. The third gene set
analysis, called induced network modules, could not be used due to technical
problems with their server.

For the ORA, two gene lists (upregulated and downregulated genes were
analysed separately) from the microarray and RNAseq datasets and one gene
list from the GWAS summary statistics data set were analysed. Official gene
symbols were used as gene identifier. The settings that could be chosen were
related to: Network neighborhoodbased entity sets, Pathwaybased sets and
GO categories, and Protein complexbased gene sets. For our analyses, we
selected:

– Network neighborhoodbased entity sets: 1next neighbors set radius(nd),
two minimum set size, zero minimum connectivity index, two minimum
overlap with input list, and 0.05 pvalue cutoff(nd).

– Pathwaybased sets: pathways as defined by all pathway databases
offered in ConsensusPathDB*, two minimum overlap with input list, and
0.05 pvalue cutoff(nd).
*Name of the pathway databases offered in ConsensusPathDB:
PharmGKB [66], HumanCyc [67], INOH [68], Reactome [30, 31, 32, 33],
KEGG [52, 53, 54], Small Molecule Pathway Database (SMPDB) [69, 70],
Edinburgh Human Metabolic Network (EHMN) [71], WikiPathways [58],
NetPath [72], SignaLink [73], BioCarta [55], and Pathway Interaction
Database (PID) [74]. However, only results from Reactome, KEGG and
WikiPathways databases were selected for comparison with the results
from the other programs.
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– GO categories: GO level 2–5 for all GO categories (biological process,
molecular function and cellular component)(nd) [56, 57], and 0.05 pvalue
cutoff(nd) for all GO levels.

– Protein complexbased gene sets: No settings were selected for this
option(nd).

For the Wilcoxon enrichment analysis, only the RNAseq dataset was analysed.
Two gene lists (upregulated and downregulated genes were analysed
separately and the official gene symbol was used as gene identifier) together
with the gene expression levels for each gene in old control and AD samples
were submitted. The other two datasets were not analysed using this method
because gene expression levels for two different phenotypes were required and
we did not have that information neither for the GWAS summary statistics
dataset nor for the microarray dataset.

The settings chosen for the analysis of the RNAseq dataset using the Wilcoxon
enrichment analysis were:

– Network neighborhoodbased entity sets: 1next neighbors set radius(nd),
four minimum set size, zero minimum connectivity index, four minimum
overlap with input list, and 0.05 pvalue cutoff(nd).

– Pathwaybased sets: pathways as defined by all pathway databases
offered in ConsensusPathDB*, four minimum overlap with input list, and
0.05 pvalue cutoff(nd). *Name of the pathway databases offered in
ConsensusPathDB: PharmGKB [66], HumanCyc [67], INOH [68],
Reactome [30, 31, 32, 33], KEGG [52, 53, 54], SMPDB [69, 70], EHMN
[71], WikiPathways [58], NetPath [72], SignaLink [73], BioCarta [55], and
PID [74]. However, only results from Reactome, KEGG and WikiPathways
databases were selected for comparison with the results from the other
programs.

– GO categories: GO level 2–5 for all GO categories (biological process,
molecular function and cellular component)(nd) [56, 57], and 0.05 pvalue
cutoff(nd) for all GO levels.

– Protein complexbased gene sets: No settings were selected for this
option(nd).

4.3.6 DAVID

We used the Functional annotation analysis to analyse our three datasets in
DAVID [23, 24]. We submitted two gene lists from the microarray and RNAseq
dataset and one gene list from the GWAS summary statistics dataset. For the
RNAseq and GWAS summary statistics dataset we used the official gene
symbols as gene identifier; for the microarray dataset we used the probeset
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identifier as gene identifier. For all cases we selected to submit our gene list as
gene list (not as background or reference set) and selected Homo sapiens(nd) as
species.

In the Functional annotation analysis, annotation categories and databases,
from which to base your analysis on, can be chosen. The available categories in
DAVID are: disease, functional categories, GO, general annotations, literature,
main accessions, pathways, protein domains, protein interactions and tissue
expression. For all our analyses we only selected the following categories,
databases or options:

– Disease: OMIM [75].

– Functional categories(nd): up keywords.

– GO: direct GO terms for biological processes, direct GO terms for
molecular functions, and direct GO terms for cellular components [56, 57].

– Pathways: BBID [76], BioCarta [55], KEGG(nd) [52, 53, 54], and Reactome
[30, 31, 32, 33].

– Protein domains(nd): No options were selected for this category.

Among the tools available to use in the Functional annotation analysis, the
Functional annotation clustering tool and the Functional annotation chart tool
—which is an ORA method— were used. When the Functional annotation chart
tool was selected, the thresholds chosen to obtain results were: EASE score
equal to 0.1 and minimum gene number for each term (count) equal to two.
When the Functional annotation clustering tool was selected, the settings
chosen to obtain results were classification stringency medium and high(nd). The
thresholds selected for the medium classification stringency were:

– Kappa similarity: similarity term overlap equal to three and similarity
threshold equal to 0.50.

– Classification: initial and final group membership equal to three and
multiple linkage threshold 0.50.

– Enrichment thresholds: EASE score 0.05(nd) and one, respectively.

The thresholds selected for the high classification stringency(nd) were the same
as the ones selected for the medium classification stringency except:

– Kappa similarity: similarity threshold equal to 0.85.
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4.3.7 Reactome

We used the Gene list analysis, which is an ORA, and project to human to
analyse our three datasets in Reactome [30, 31, 32, 33]. We analysed two gene
lists (upregulated and downregulated genes were analysed separately) from
the microarray and RNAseq datasets and one gene list from the GWAS
summary statistics dataset. In all cases we used the official gene symbols as
gene identifier.

For the microarray and RNAseq dataset, we also submitted quantitative data.
The quantitative variables uploaded were only used for visualisation purposes,
they were not used in Reactome’s statistical analyses. For the microarray
dataset the quantitative data we uploaded were: the genes’ correlation with
MMSE and pvalue, and genes’ correlation with NFT scores and pvalue. For the
RNAseq dataset we uploaded: the differential gene expression between AD
and old control samples, the pvalue, and adjusted pvalue. The options
selected were the genes’ correlation with MMSE for the microarray dataset
(Figures ?? and ??) and the differential expression between AD and old control
samples for the RNAseq dataset (Figures ?? and ??) to colour the Voronoi
diagrams showed in the Results section.

4.3.8 WebGestalt

Gene lists from all three datasets were analysed using WebGestalt
[34, 35, 36, 37]. Upregulated and downregulated genes from the microarray
and RNAseq datasets were analysed separately; and only one gene list from
the GWAS summary statistics dataset was analysed. In all cases, the official
gene symbol was used as gene identifier. The three type of analyses that
WebGestalt offers are: ORA, Geneset enrichment analysis (GSEA) and
Network topologybased analysis (NTA).

For the ORA the settings used were:

– Reference gene list: genomeprotein coding(nd).

– Functional databases(nd): GO cellular components no redundant terms, GO
molecular functions no redundant terms, GO biological processes no
redundant terms [56, 57], KEGG [52, 53, 54], and Reactome
[30, 31, 32, 33], WikiPathways [58], and OMIM [75].

– Advanced parameters: minimum of genes per category equal to five,
maximum of genes equal to 2000, BonferroniHochberg multiple testing
correction, significance level top 15 most significant results(nd)(and to
download all significant results we selected 0.05 FDR option), number of
nonredundant sets expected from the weighted set cover algorithm equal
to 10, number of categories visualised in the report 40(nd), and continuous
colour for the DAGs.
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For the NTA, the settings used were:

– Functional database(nd): Proteinprotein interaction (PPI) BioGRID [77, 78].

– Advanced parameters: Network expansion used as network construction
method(nd), number of highlighted seed genes equal to ten, significance
level top ten most significant results, and seeds to be highlighted.

For the GSEA, apart from uploading gene lists from all three datasets,
quantitative data were also uploaded from all datasets to rank genes in
descending order of significance. For the microarray dataset, the quantitative
variable used was the pvalue for the genes’ correlations with MMSE. For the
RNAseq dataset, the adjusted p.value for the differential expression of genes
between AD and old control samples was used. Lastly, for the GWAS summary
statistics dataset, the pvalue from MAGMA’s gene analysis.

The settings used for this type of analysis were:

– Functional databases(nd): GO cellular components no redundant terms, GO
molecular functions no redundant terms, GO biological processes no
redundant terms [56, 57], KEGG [52, 53, 54], and Reactome
[30, 31, 32, 33]. However, for the GSEA, all databases were selected one
by one. In other words, one analysis for each functional database selected.

– Advanced parameters: minimum of genes per category equal to five,
maximum of genes equal to 2000, significance level top ten most
significant results, number of permutations equal to 1000, exponential
scaling factor in enrichment score equal to one, the mean will be used as
collapsing method for dealing with duplicated identifiers, number of
nonredundant sets expected from the weighted set cover algorithm equal
to ten, number of categories visualised in the report 40(nd), and continuous
colour for the DAGs.

5 Results

For the pathway and network analyses, we mainly worked with gene lists from
the microarray, RNAseq, and GWAS summary statistics datasets. Based on the
official gene symbols provided in each dataset, 98 genes from the RNAseq
dataset (total number of genes in the dataset 855) coincide with the genes found
in the microarray dataset (total number of genes in the dataset 3,645). However,
when using IPA, we found that a total of 120 genes match between the genes
from the microarray and RNAseq datasets (Figure 2). Among them, several
genes that were found to be positively correlated with MMSE in [18] (shown in
green colour in Figure 2) are located in the nucleus, and several genes that were
found to be negatively correlated with MMSE (shown in red colour in Figure 2)
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are located in the cytoplasm. In addition, a great proportion of genes positively
and negatively correlated with MMSE seem to be located somewhere else other
than in the nucleus, cytoplasm, plasma membrane or extracellular space.

After mapping the SNPs found in the GWAS summary statistics dataset to genes
using MAGMA (total number of genes annotated 1,763), a total of 60 genes
between the RNAseq dataset and the GWAS summary statistics dataset
overlap. Whereas a total of 214 genes between the microarray dataset and
GWAS summary statistics match.

The longest gene list is the one from the microarray dataset, followed by the one
obtained from the GWAS summary statistics and finally by the one from the
RNAseq dataset. The greatest number of gene matches between datasets’
gene lists coincides to be between the two longest gene lists analysed, the gene
lists from the microarray and the GWAS summary statistics dataset. The
difference in length of the gene lists submitted to conduct our pathway analyses
will be important to take into account for the discussion of the results.

Figure 2: Overlap and cell location of gene–product molecules found between genes from the
microarray and RNAseq datasets when using IPA. The colours represent the correlation of
genes with MiniMental Status Exam; where red indicates a negative correlation and green a
positive correlation. Each type of molecules is represented by different shapes. Rhombi
represent enzymes and peptidases; squares, cytokines and growth factors; ovals, transcription
regulators and transmembrane receptors; rectangles, ion channels, liganddependent nuclear
receptors, and Gprotein coupled receptors; the rest of shapes represent transporters or other
type of molecules. In the background, the rest of gene–product molecules found in the RNAseq
dataset are also shown in light grey colour.
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5.1 Pathway analysis

5.1.1 Overview

All pathway analysis methods used for this project are competitive (or
enrichment) and nontopologybased tests. In addition, the majority of them are
nonranked methods. Only three of the pathway analysis methods used are
ranked methods. In Figure 3 can be found some of the results obtained when
using ORA methods —which are competitive, nontopologybased, and
nonranked pathway analysis methods. Each of the subfigures from Figure 3
show the number of statistically significant results obtained (after correcting for
multiple testing) for each of the datasets analysed when using different software
tools. Moreover, each subfigure has its own legend and scale. The different
colours of the subfigures represent the databases from which each of the
respective tools relies on to obtain biological information for the ORA.

In the Methodology section we mentioned all the databases selected from each
software tool to base our analyses on. Figure 3d does not show the
ConsensusPathDB’s results based on GO terms and Figure 3c does not show
g:Profiler’s results based on TF and HPA sources because the number of some
of the results obtained from those sources were too large in comparison with the
rest to be shown in the same figure. The number of statistically significant
results for the GO terms obtained when using ConsensusPathDB were: GO for
biological processes 1495 (microarray dataset), 98 (RNAseq dataset), and 107
(GWAS dataset); GO for molecular functions 239 (microarray dataset), 44
(RNAseq dataset), and 24 (GWAS dataset); GO for cellular components 361
(microarray dataset), 60 (RNAseq dataset), and 39 (GWAS dataset). The
number of statistically significant results obtained when using g:Profiler based on
the TF source were: 576 (microarray dataset), nine (RNAseq dataset) and one
(GWAS dataset). The results obtained based on HPA: 279 (microarray dataset),
and six (RNAseq dataset). Figure 3b does not show the results obtained from
up keywords source because that option was only of interest for the Functional
annotation clustering tool of DAVID, but not for the ORA.

In general, from Figure 3 it can be observed that more statistically significant
results were obtained from the microarray dataset, independently from the
software tool used, except when using Reactome tool. Moreover, the number of
statistically significant results obtained from the GWAS summary statistics
dataset and RNAseq dataset are more similar than when comparing them with
the results from the microarray dataset. However, the number of statistically
significant results either between datasets when using the same tool or between
tools when analysing the same dataset based on the same source, notably differ.
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(a) Reactome (b) DAVID (c) g:Profiler

(d) ConsensusPathDB (e) WebGestalt

Figure 3: Bar plots showing the number of statistically significant results obtained (results corrected for multiple testing) after analysing all three datasets using
overrepresentation analyses in Reactome, DAVID, g:Profiler, ConsensusPathDB, and WebGestalt. Each subfigure has its own legend and scale. In all
software tools, except when using g:Profiler, the method of BenjaminiHochberg was used to control for multiple testing and a false discovery rate 5% threshold
was selected. When using g:Profiler, their SCS method was chosen to control for multiple testing and a 0.05 threshold was selected. REAC stands for
Reactome, WP for WikiPathways, GO:BP for GO terms for biological processes, GO:MF for GO terms for molecular functions, and GO:CC for GO terms for
cellular components.
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The number of statistically significant (pvalue < 0.05) results obtained when
analysing the GWAS dataset with MAGMA were: 13 (source BioCarta), 656
(source GO terms), seven (source KEGG), and 74 (source Reactome). The
results obtained with MAGMA are not shown in Figure 3 because MAGMA does
not use an ORA and test statistics such as: the hypergeometric test
(ConsensusPathDB, g:Profiler, Reactome, WebGestalt), and Fisher’s Exact test
or adaptations of it (DAVID, IPA, WebGestalt). MAGMA also uses a competitive
analysis but instead utilises a linear regression approach on genes taking into
account for example gene density, gene size, and genegene correlations.
MAGMA also offers a selfcontained analysis. Nevertheless, the latter option
was not used for this project.

The number of statistically significant results (after correcting for multiple testing)
when using rankbased methods are shown in Figure 4. ConsensusPathDB,
g:Profiler and WebGestalt are the only tools, among the programs chosen for
this project, that offered rankbased pathway analysis methods. The results
obtained when using WebGestalt are not shown in Figure 4 because only three
results passed the significance level chosen (FDR 5%): one GO for cellular
components (microarray dataset), one for GO molecular functions (RNAseq
dataset) and one KEGG pathway (RNAseq dataset). In the case of WebGestalt,
the number of statistically significant results obtained was much lower when we
used the GSEA method than when we used the ORA.

(a) ConsensusPathDB (b) g:Profiler

Figure 4: Bar plots showing the number of statistically significant results obtained (results
corrected for multiple testing) after analysing the respective datasets using rankbased methods
in ConsensusPathDB and g:Profiler. Each subfigure has its own legend and scale. When using
ConsensusPathDB, the method of BenjaminiHochberg was used to control for multiple testing
and a false discovery rate 5% threshold was selected. When using g:Profiler, their SCS
algorithm was chosen to control for multiple testing and a 0.05 threshold was selected. REAC
stands for Reactome, WP for WikiPathways, GO:BP for GO terms for biological processes,
GO:MF for GO terms for molecular functions, and GO:CC for GO terms for cellular components.

If we compare the number of statistically significant results shown in Figure 3d
and in Figure 4a when analysing the RNAseq dataset, we can observe that the
number of results substantially vary. The results obtained for the GO terms are
not shown in Figure 4a because in comparison to the rest of results obtained,
they were too large to be shown in the same figure. The results obtained for the
GO terms were: GO for biological processes 1335, GO for molecular functions
215, and GO for cellular components 269. The results obtained for the GO terms
also noticeably differ in number when using the ORA or the Wilcoxon enrichment
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analysis.

In the case of g:Profiler, the number of statistically significant results obtained
also differs when using ORA or the Incremental enrichment analysis, specially
for GO terms. In Figure 4b, the results for the Incremental enrichment analysis
from g:Profiler are shown. The results based on TF source are not shown in
Figure 4b because of their difference in magnitude in comparison to the rest of
results shown in the figure. The number of statistically significant results
obtained based on TF source were: 531 (microarray dataset), three (RNAseq
dataset), and five (GWAS summary statistics).

5.1.2 A closer look at the most relevant results

In Tables 3–7, we show the most relevant results obtained (after correcting the
results for multiple testing) with all software tools, except with IPA and MAGMA,
when using ORA. The results are shown sorted by tool, database and in
descending order of level of significance. The ratios shown in the column of
Entities found refers to the number of entities matched between the gene list
submitted and the database knowledge with respect to the total number of
entities known to be part of the respective biological pathway (database
knowledge). Tables 2 and 3 show the results obtained when analysing the
microarray dataset. Whereas, Tables 4 and 5 show the results obtained when
analysing the RNAseq dataset, and Tables 6 and 7 the results obtained when
analysing the GWAS summary statistics dataset.

In Tables 2 and 3, there are several results that coincide between software tools.
However, the results for the upregulated genes vary more from one tool to the
other. Whereas, the results for the downregulated genes are more consistent
between programs, specially when basing the results on KEGG’s database
(even the ranking based on FDR or SCS coincides). In general, the results are
more similar between tools when the same database is selected but, some
results based on KEGG’s and Reactome’s or on KEGG’s and WikiPathways’
databases also coincide despite the number of entities found and ratio vary.

Some interesting results are the results obtained when the upregulated genes
from the microarray dataset were analysed using Reactome’s tool (Table 2), and
the rest of tools based on Reactome’s database (Tables 2 and 3). Reactome’s
tool results do not pass the threshold for significance; whereas the same results
obtained when using a different software tool based on Reactome’s database or
not pass the significance threshold.
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Table 2: Most relevant pathways found in upregulated (above double line) and downregulated
(below double line) genes from the microarray dataset using overrepresentation analysis from
Reactome and g:Profiler. The thresholds chosen for multiple testing methods were FDR 5% and
SCS experimentwide α=0.05.

Pathway name Entities
found

adj. pvalue ToolDB

Cohesin Loading onto Chromatin 7 / 10 FDR: 0.852 RR
FOXOmediated transcription 30 / 110 FDR: 0.852 RR
Molecules associated with elastic fibres 14 / 38 FDR: 0.852 RR
FOXOmediated transcription 19 / 66 SCS: 1.61x104 g:PR
Gene expression (Transcription) 160 / 1435 SCS: 1.91x104 g:PR
RNA Polymerase II Transcription 145 / 1301 SCS: 7.93x104 g:PR
Molecules associated with elastic fibres 13 / 37 SCS: 9.90x104 g:PR
FoxO signaling pathway 27 / 131 SCS: 1.53x104 g:PK
Pathways in cancer 68 / 529 SCS: 9.24x104 g:PK
Cellular senescence 27 / 156 SCS: 4.54x103 g:PK
Focal adhesion 31 / 200 SCS: 1.12x102 g:PK
VEGFAVEGFR2 Signaling Pathway 61 / 437 SCS: 7.84x103 g:PW
Sarcoma 32 / 165 SCS: 9.38x103 g:PH

Neurotransmitter receptors and postsynap
tic signal transmission

53 / 231 FDR: 5.00x103 RR

Unblocking of NMDA receptors, glutamate
binding and activation

14 / 27 FDR: 5.00x103 RR

Proteinprotein interactions at synapses 28 / 93 FDR: 6.00x103 RR
Neuronal System 91 / 487 FDR: 6.00x103 RR
Activation of NMDA receptors and postsy
naptic events

31 / 113 FDR: 7.00x103 RR

Transmission across Chemical Synapses 68 / 341 FDR: 8.00x103 RR
Neuronal System 71 / 400 SCS: 3.51x1013 g:PR
Transmission across Chemical Synapses 52 / 259 SCS: 2.14x1011 g:PR
Neurotransmitter receptors and postsynap
tic signal transmission

39 / 196 SCS: 4.74x108 g:PR

Proteinprotein interactions at synapses 24 / 86 SCS: 1.60x107 g:PR
Glutamatergic synapse 28 / 114 SCS: 1.24x108 g:PK
Dopaminergic synapse 29 / 131 SCS: 8.26x108 g:PK
Retrograde endocannabinoid signaling 30 / 148 SCS: 3.93x107 g:PK
Longterm potentiation 19 / 67 SCS: 1.01x106 g:PK
Disruption of postsynaptic signalling by CNV 13 / 34 SCS: 1.09x105 g:PW
BrainDerived Neurotrophic Factor signaling
pathway

28 / 144 SCS: 1.13x105 g:PW

Epileptic encephalopathy 31 / 100 SCS: 2.54x1010 g:PH

adj., adjusted; DB, database; FDR, false discovery rate; g:P, g:Profiler; K, KEGG; R, Reactome; W, WikiPathways;

H, Human Phenotype ontology; SCS, g:Profiler algorithm to correct for multiple testing.
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Table 3: Most relevant pathways found in upregulated (above double line) and downregulated
(below double line) genes from the microarray dataset using overrepresentation analysis from
ConsensusPathDB, WebGestalt, and DAVID. The threshold chosen for multiple testing
correction was FDR 5%.

Pathway name Entities
found

adj. pvalue ToolDB

Molecules associated with elastic fibres 12 / 31 FDR: 5.53x104 CPDBR
Elastic fibre formation 12 / 36 FDR: 1.75x103 CPDBR
Gene expression (Transcription) 13 / 38 FDR: 5.03x103 CPDBR
FoxO signaling pathway 28 / 132 FDR: 1.68x104 CPDBK
Pathways in cancer 65 / 526 FDR: 3.23x103 CPDBK
Cellular senescence 28 / 132 FDR: 4.46x103 CPDBK
Type 2 papillary renal cell carcinoma 11 / 34 FDR: 3.66x103 CPDBW
TGFbeta Signaling Pathway 24 / 132 FDR: 4.46x103 CPDBW
Gene expression (Transcription) 151 / 1429 FDR: 8.12x105 WGR
RNA Polymerase II Transcription 135 / 1292 FDR: 3.31x104 WGR
Molecules associated with elastic fibres 13 / 38 FDR: 3.57x104 WGR
FoxO signaling pathway 28 / 132 FDR: 8.12x105 WGK
VEGFAVEGFR2 Signaling Pathway 60 / 431 FDR: 1.10x104 WGW
PPARA activates gene expression 25 / 113 FDR: 0.028 DR
Cohesin Loading onto Chromatin 7 / 10 FDR: 0.028 DR
TGFbeta signaling pathway 21 / 84 FDR: 2.87x103 DK
FoxO signaling pathway 28 / 134 FDR: 2.87x103 DK

Neuronal System 68 / 368 FDR: 5.07x106 CPDBR
Transmission across Chemical Synapses 49 / 224 FDR: 8.67x106 CPDBR
Proteinprotein interactions at synapses 32 / 88 FDR: 1.27x105 CPDBR
FoxO signaling pathway 42 / 132 FDR: 8.67x106 CPDBK
Dopaminergic synapse 29 / 131 FDR: 1.20x104 CPDBK
Amyotrophic lateral sclerosis (ALS) 21 / 51 FDR: 1.54x104 CPDBK
Insulin Signaling 48 / 160 FDR: 8.67x106 CPDBW
Neuronal System 70 / 368 FDR: 0 WGR
Transmission across Chemical Synapses 52 / 227 FDR: 0 WGR
Neurotransmitter receptors and postsynap
tic signal transmission

36 / 156 FDR: 3.65x1010 WGR

Glutamergic synapse 27 / 114 FDR: 4.54x108 WGK
Dopamine Neurotransmitter Release Cycle 10 / 23 FDR: 0.023 DR
Glutamatergic synapse 29 / 114 FDR: 2.37x106 DK
Retrograde endocannabinoid signaling 27 /101 FDR: 2.37x106 DK
Longterm potentiation 21 / 66 FDR: 3.57x106 DK

adj., adjusted; DB, database; FDR, false discovery rate; CPDB, ConsensusPathDB; D, DAVID; K, KEGG;

R, Reactome; W, WikiPathways; H, Human Phenotype ontology; WG, WebGestalt.
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In Tables 4 and 5, also several results coincide between software tools either
when the same database was selected or not. However, those results that
match, either when comparing tools or databases, only in some cases pass the
significance threshold.

Gene expression (Transcription), RNA Polymerase II Transcription, and
FOXOrelated pathways appear among the most relevant pathways found when
analysing upregulated genes from the microarray and RNAseq datasets
(Tables 2–5). Of those, the results that do not reach statistical significance are
the ones obtained when using Reactome’s tool (Tables 2 and 4).

In Tables 6 and 7, also several results for the GWAS summary statistics dataset
coincide between programs either when the same database was selected or not.
All results shown in Tables 6 and 7 pass the significance threshold. Among the
statistically significant results found for the GWAS dataset, none of them
coincide with the results found for the microarray or the RNAdataset.

Among the statistically significant results obtained when we used rankbased
methods, some results coincide with those we obtained when we analysed the
microarray, RNAseq and GWAS summary statistics dataset using ORA. In the
case of the microarray dataset, the results that match between the results shown
in Tables 2 and 3, and the results obtained when using the Incremental
enrichment analysis method from g:Profiler are: FOXOmediated transcription,
Glutamergic synapse, Retrograde endocannabinoid signaling, Transmission
across Chemical Synapses, Neuronal System, Proteinprotein interactions at
synapses, Disruption of postynaptic signalling by CNV, and Unblocking of NMDA
receptors, glutamate binding and activation. When we used GSEA method from
WebGestalt, none of the results obtained reached statistical significance.

When we analysed the RNAseq dataset using the Incremental enrichment
analysis method from g:Profiler, the results that reached statistical significance
and match with those shown in Tables 4 and 5 are: Cell cycle, Regulation of
FOXO transcriptional activity by acetilation, RNA Polymerase II Transcription,
TCA cycle, and Carbon metabolism. When we used the Wilcoxon enrichment
analysis from ConsensusPathDB, the results that reached statistical significance
and that coincide with the results shown in Tables 4 and 5 are: TCA cycle and
respiratory electron transport, Metabolism, Amino Acid metabolism, Cell cycle,
Mitotic G1G1/S phases, HSF1dependent transactivation, Gene expression
(Transcription), RNA Polymerase II Transcription, Attenuation phase, S Phase,
Selenium Micronutrient Network, and RUNX2 regulates chondrocyte maturation.
Lastly, when using GSEA method from WebGestalt, only one result reached
statistical significance (without counting results obtained based on GO terms).
The result, Transcriptional misregulation in cancer, was obtained when selecting
KEGG as database. However, it does not coincide with any of the results shown
in Tables 4 and 5.
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Table 4: Most relevant pathways found in upregulated (above double line) and downregulated
(below double line) genes from the RNAseq dataset using overrepresentation analysis from
Reactome, g:Profiler, and DAVID. The thresholds chosen for multiple testing methods were FDR
5% and SCS experimentwide α=0.05.

Pathway name Entities
found

adj. pvalue ToolDB

G0 and Early G1 6 / 38 FDR: 0.483 RR
RUNX2 regulates chondrocyte maturation 3 / 7 FDR: 0.483 RR
Regulation of FOXO transcriptional activity
by acetilation

4 / 16 FDR: 0.483 RR

Regulation of FOXO transcriptional activity
by acetylation

4 / 10 SCS: 4.44x103 g:PR

RNA Polymerase II Transcription 38 / 1301 SCS: 0.031 g:PR
Gene expression (Transcription) 40 / 1435 SCS: 0.053 g:PR
Cell cycle 9 / 124 SCS: 9.86x103 g:PK
Cell cycle 9 /124 FDR: 0.075 DK
HTLVI infection 11 / 254 FDR: 0.333 DK

MECP2 regulates transcription of neuronal
ligands

6 / 13 FDR: 0.009 RR

Attenuation phase 9 / 47 FDR: 0.030 RR
HSF1dependent transactivation 9 / 47 FDR: 0.106 RR
Mitochondrial protein import 9 / 69 FDR: 0.175 RR
HSF1 activation 7 / 43 FDR: 0.175 RR
Citric acid cycle (TCA cycle) 7 / 50 FDR: 0.339 RR
Citric acid cycle (TCA cycle) 6 / 22 SCS: 2.41x103 g:PR
MECP2 regulates transcription of neuronal
ligands

3 / 7 SCS: 0.148 g:PR

Carbon metabolism 14 / 116 SCS: 2.39x105 g:PK
Citrate cycle (TCA cycle) 7 / 30 SCS: 3.09x104 g:PK
Metabolic pathways 56 / 1490 SCS: 2.13x103 g:PK
Amino Acid metabolism 12 / 91 SCS: 5.92x105 g:PW
Citric acid cycle (TCA cycle) 6 / 18 SCS: 1.80x104 g:PW
Selenium Micronutrient Network 9 / 91 SCS: 0.018 g:PW
Abnormality of acidbase homeostasis 23 / 363 SCS: 0.012 g:PH
Increased serum lactate 15 / 172 SCS: 0.014 g:PH
Citric acid cycle (TCA cycle) 6 / 19 FDR: 0.017 DR
Mitochondrial protein import 7 / 54 FDR: 0.221 DR
Carbon metabolism 13 / 113 FDR: 3.00x103 DK
Citrate cycle (TCA cycle) 7 / 30 FDR: 5.73x103 DK
Metabolic pathways 50 / 1219 FDR: 5.73x103 DK

adj., adjusted; DB, database; FDR, false discovery rate; g:P, g:Profiler; K, KEGG; R, Reactome; W, WikiPathways;

D, DAVID; H, Human Phenotype ontology; SCS, g:Profiler algorithm to correct for multiple testing.
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Table 5: Most relevant pathways found in upregulated (above double line) and downregulated
(below double line) genes from the RNAseq dataset using overrepresentation analysis from
ConsensusPathDB and WebGestalt. The threshold chosen for multiple testing correction was
FDR 5%.

Pathway name Entities
found

adj. pvalue ToolDB

Mitotic G1G1/S phases 8 / 104 FDR: 0.021 CPDBR
HSF1dependent transactivation 5 / 36 FDR: 0.021 CPDBR
Gene expression (Transcription) 36 / 1373 FDR: 0.024 CPDBR
RNA Polymerase II Transcription 33 / 1236 FDR: 0.027 CPDBR
Cell cycle 9 / 124 FDR: 0.019 CPDBK
Initiation of transcription and translation
elongation at the HIV1 LTR

4 / 32 FDR: 0.038 CPDBW

Cell Cycle 7 / 120 FDR: 0.044 CPDBW
Regulation of gene expression by Hypoxia
inducible factor

3 / 11 FDR: 0.430 WGR

G0 and Early G1 4 / 27 FDR: 0.430 WGR
S Phase 9 / 161 FDR: 0.490 WGR
RUNX2 regulates bone development 4 / 32 FDR: 0.490 WGR
Cell cycle 9 / 124 FDR: 0.242 WGK
Integrated Breast Cancer Pathway 9 / 152 FDR: 0.430 WGW
Initiation of transcription and translation
elongation at the HIV1LTR

4 / 32 FDR: 0.490 WGW

Citric acid cycle (TCA cycle) 6 / 22 FDR: 3.00x104 CPDBR
The citric acid (TCA) cycle and respiratory
electron transport

12 / 173 FDR: 5.52x103 CPDBR

Metabolism 60 / 1972 FDR: 6.26x103 CPDBR
Citrate cycle (TCA cycle) 7 / 30 FDR: 2.09x104 CPDBK
Pyruvate metabolism 5 / 39 FDR: 0.026 CPDBK
Citric acid cycle (TCA cycle) 6 / 17 FDR: 2.09x104 CPDBW
Amino Acid metabolism 11 / 91 FDR: 2.09x104 CPDBW
Selenium Micronutrient Network 9 / 83 FDR: 1.76x103 CPDBW
Citric acid cycle (TCA cycle) 6 / 22 FDR: 1.29x103 WGR
Carbon metabolism 13 / 116 FDR: 3.17x104 WGK
Citrate cycle (TCA cycle) 7 / 30 FDR: 6.68x104 WGK
Metabolic pathways 48 / 1305 FDR: 4.32x103 WGK
Amino Acid metabolism 13 / 91 FDR: 6.89x105 WGW
Citric acid cycle (TCA cycle) 6 / 18 FDR: 4.41x104 WGW
Urea cycle and associated pathways 5 / 21 FDR: 0.011 WGW

adj., adjusted; DB, database; FDR, false discovery rate; CPDB, ConsensusPathDB; K, KEGG; R, Reactome;

W, WikiPathways; WG, WebGestalt.
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Table 6: Most relevant pathways found in genes from the genomewide association study
summary statistics dataset using overrepresentation analysis from Reactome, g:Profiler and
DAVID. The thresholds chosen for multiple testing methods were FDR 5% and SCS
experimentwide α=0.05

Pathway name Entities
found

adj. pvalue ToolDB

Interferon gamma signaling 85 / 250 FDR: 7.20x1010 RR
Interferon Signaling 114 / 394 FDR: 1.26x109 RR
Interferon alpha/beta signaling 61 / 188 FDR: 2.65x106 RR
Endosomal/Vacuolar pathway 35 / 82 FDR: 7.60x106 RR
Antigen Presentation: Folding, assembly
and peptide loading of class I MHC

38 / 102 FDR: 4.74x105 RR

TRAF6 mediated IRF7 activation 21 / 43 FDR: 4.51x104 RR
Interferon Signaling 39 / 191 SCS: 4.64x104 g:PR
Interferon alpha/beta signaling 17 / 66 SCS: 2.89x102 g:PR
Regulation of IFNA signaling 9 / 22 SCS: 3.46x102 g:PR
TRAF6 mediated IRF7 activation 10 / 27 SCS: 3.71x102 g:PR
Chylomicron remodeling 6 / 10 SCS: 4.38x102 g:PR
Plasma lipoprotein assembly 8 / 18 SCS: 4.41x102 g:PR
EpsteinBarr virus infection 37 / 198 SCS: 4.87x104 g:PK
Autoimmune thyroid disease 15 / 49 SCS: 9.93x104 g:PK
Tuberculosis 32 / 175 SCS: 3.41x103 g:PK
Influenza A 31 / 169 SCS: 4.25x103 g:PK
Hematopoietic cell lineage 21 / 95 SCS: 4.75x103 g:PK
Cholesterol metabolism 13 / 50 SCS: 2.54x102 g:PK
Statin Pathway 13 / 33 SCS: 3.01x104 g:PW
SARS coronavirus and innate immunity 10 / 31 SCS: 3.56x102 g:PW
Frontotemporal dementia 12 / 26 SCS: 1.25x103 g:PH
Xanthomatosis 11 / 27 SCS: 1.61x102 g:PH
Regulation of IFNA signaling 11 / 26 FDR: 0.029 DR
Interferon alpha/beta signaling 18 / 67 FDR: 0.029 DR
Autoimmune thyroid disease 18 / 52 FDR: 2.22x104 DK
Herpes simplex infection 35 / 183 FDR: 1.77x103 DK
Tuberculosis 33 / 177 FDR: 3.64x103 DK
Measles 27 / 133 FDR: 3.64x103 DK

adj., adjusted; DB, database; FDR, false discovery rate; g:P, g:Profiler; K, KEGG; R, Reactome; W, WikiPathways;

D, DAVID; H, Human Phenotype ontology; SCS, g:Profiler algorithm to correct for multiple testing.
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Table 7: Most relevant pathways found in genes from the genomewide association study
summary statistics dataset using overrepresentation analysis from ConsensusPathDB and
WebGestalt. The threshold chosen for multiple testing correction was FDR 5%.

Pathway name Entities
found

adj. pvalue ToolDB

Interferon Signaling 38 / 158 FDR: 5.40x106 CPDBR
Interferon alpha/beta signaling 19 / 70 FDR: 8.97x104 CPDBR
Regulation of IFNA signaling 11 / 26 FDR: 8.97x104 CPDBR
Chylomicron remodeling 6 / 10 FDR: 6.73x103 CPDBR
Plasma lipoprotein assembly 8 / 19 FDR: 9.40x103 CPDBR
Interferon gamma signaling 20 / 94 FDR: 1.02x102 CPDBR
EpsteinBarr virus infection 41 / 201 FDR: 5.82x105 CPDBK
Autoimmune thyroid disease 18 / 53 FDR: 6.51x105 CPDBK
Herpes simplex infection 36 / 185 FDR: 1.07x103 CPDBK
Tuberculosis 34 / 179 FDR: 1.07x103 CPDBK
Measles 27 / 132 FDR: 1.97x103 CPDBK
Tolllike receptor signaling pathway 23 / 104 FDR: 2.27x103 CPDBK
Factors involved in megakaryocyte develop
ment and platelet production

10 / 18 FDR: 1.59x104 CPDBW

Statin Pathway 13 / 31 FDR: 1.68x104 CPDBW
Tolllike Receptor Signaling Pathway 23 / 102 FDR: 1.97x103 CPDBW
Regulation of Tolllike receptor Signaling
Pathway

28 / 143 FDR: 3.03x103 CPDBW

Interferon Signaling 44 / 197 FDR: 2.01x105 WGR
TRAF6 mediated IRF7 activation 12 / 29 FDR: 1.95x103 WGR
Interferon alpha/beta signaling 19 / 69 FDR: 2.21x103 WGR
Regulation of IFNA signaling 11 / 26 FDR: 2.21x103 WGR
EpsteinBarr virus infection 41 / 201 FDR: 2.99x104 WGK
Autoimmune thyroid disease 18 / 53 FDR: 2.99x104 WGK
Herpes simplex infection 35 / 185 FDR: 3.45x103 WGK
Tuberculosis 34 / 179 FDR: 3.84x103 WGK
Statin Pathway 41 / 201 FDR: 2.99x104 WGW

adj., adjusted; DB, database; FDR, false discovery rate; CPDB, ConsensusPathDB; K, KEGG; R, Reactome;

W, WikiPathways; WG, WebGestalt.
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Some of the results obtained when analysing the GWAS summary statistics
dataset coincide when using the ORA and the Incremental enrichment analysis
from g:Profiler. The results that match between those shown in Tables 6 and 7
and the statistically significant results obtained with g:Profiler are: Autoimmune
thyroid disease, Cholesterol metabolism, Chylomicron remodeling,
Hematopoietic cell lineage, Plasma lipoprotein assembly, and Statin Pathway.
When using GSEA from WebGestalt, no results (without counting GO terms)
reached statistical significance.

Lastly, the most statistically significant results (pvalue<0.05) obtained when
using the competitive geneset analysis from MAGMA and Reactome as source
are: Reelin Signaling Pathway, VLDL assemblance, VLDL clearance, RHOG
GTPase cycle, and Diseases associated with Oglycosylation of proteins. The
results when KEGG was selected as a source: Autoimmune thyroid disease,
GnRH Signaling Pathway, Base excision repair, Regulation of autophagy, and
Pyrimidine metabolism. If we compare the results shown in Tables 6 and 7 with
the results obtained with MAGMA, only Autoimmune thyroid disease coincides.
Among the results that reached statistical significance when we analysed the
GWAS summary statistics dataset and used a rankbased test (Incremental
enrichment analysis from g:Profiler), the results that coincide with those obtained
with MAGMA are: Autoimmune thyroid disease, VLDL clearance, VLDL
assembly, and NR1H2 and NR1H3mediated signaling.

5.2 Network analysis

Network analyses were conducted using EnrichmentMap, IPA, and WebGestalt.
IPA and WebGestalt, do not need the results from another software tool to
perform their network analyses. Whereas EnrichmentMap requires data from
other programs which can perform pathway analyses to conduct its network
analysis.

In our case, we used the results from g:Profiler based on GO terms for biological
processes and Reactome’s database to create the networks with
EnrichmentMap. Figures 5–10 show the networks created with EnrichmentMap
using overlap as metric. Figures 11–13 show DAGs created with the NTA
method from WebGestalt. The results obtained with IPA will be presented and
discussed in the Discussion section.

5.2.1 EnrichmentMap

We tried to maintain the same cutoffs for the nodes and edges for all networks to
facilitate comparison. Nevertheless, for visualisation and readability purposes,
depending on the number of results obtained when creating the networks, we
selected a different FDR (qvalue) cutoff for the nodes and/or a different overlap
cutoff for the edges.
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One big network was created using the ORA results from g:Profiler, a 1x107
qvalue threshold for the nodes, and a 0.8 overlap threshold for the edges
(Figure 5). Metabolicrelated processes or pathways predominate among the
results that passed the qvalue threshold in upregulated genes from the
microarray dataset. Whereas, pathways or processes related to neuronal
development and synaptic signaling predominate among the results that
reached the qvalue threshold in downregulated genes from the microarray
dataset. From the results observed, Regulation of biological process and
Regulation of cellular process seem to be the cores of the network that connect
metabolicrelated pathways or processes with neuronal developmentrelated
and synaptic signalingrelated processes or pathways.

Two small networks and one big network were created using the Incremental
enrichment results from g:Profiler, a 1x104 qvalue threshold for the nodes, and
a 0.6 overlap threshold for the edges (Figure 6). Neuronal developmentrelated
and synaptic signalingrelated processes or pathways are also present in these
networks. In comparison to Figure 5, results related to metabolism do not
appear but other processes related to cations and transmembrane transport
appear. In addition, all nodes and edges shown passed the qvalue and edges
cutoffs only in downregulated genes from the microarray dataset.

Figures 7 and 8 share pathways or processes related to the citric acid cycle,
cellular respiration, and metabolism among the results obtained from g:Profiler
when downregulated genes from the RNAseq dataset were analysed using
ORA and Incremental enrichment analysis, respectively. In addition, the same
overlap edge cutoff (0.6) could be selected to connect the nodes of the
networks. In Figure 8 other nodes appear among the results for the
downregulated genes from the RNAseq dataset. Some are connected between
them and others appear isolated from the rest. Nevertheless, Figures 7 and 8
mostly differ by the results obtained when upregulated genes were analysed in
g:Profiler; the only result that coincides is the regulation of FOXO transcriptional
activity by acetylation.

Positive regulation of peptidylserine phosphorylation of STAT protein and
proteinlipidrelated pathways or processes are results that Figures 9 and 10
have in common. Moreover, the same overlap cutoff, with value equal to 0.6,
could be selected to create the edges of the networks. In Figure 9 other
pathways or processes related to intestinal lipid absorption and STAT protein
appear among the results for genes from the GWAS summary statistics dataset.
Whereas in Figure 10 a relatively big network formed with pathways or
processes related to amyloidbeta peptide appears.
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Figure 5: Network created with EnrichmentMap using overlap as metric after analysing the microarray data using the Overrepresentation analysis from
g:Profiler. The cutoffs used to obtain the network shown were: false discovery rate threshold 1x107 (qvalue) for the nodes and 0.8 overlap for the edges. The
size of nodes represents the number of genes known to be part of that biological pathway or biological process; the bigger the node, the more genes are known
to form part of that biological pathway or biological process. The width of the purple edges represents the number of genes that two nodes share; the thicker the
line, the more genes the two nodes have in common. The blue arrows next to some nodes indicate that the results of the upregulated genes for those
biological pathways or biological processes passed the qvalue cutoff selected. The colour of the nodes represents the qvalue of the biological pathway or
biological process; the scale used goes from zero (ochre) to 1 (white). The right half of the nodes represents the qvalue obtained in the analysis of the
upregulated genes and the left half of the nodes represents the qvalue obtained in the analysis of the downregulated genes. If one of the halves of the node
is painted with grey, it means that the respective biological pathway or biological process was not among the results obtained when either the upregulated or
downregulated genes were analysed in g:Profiler.
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Figure 6: Network created with EnrichmentMap using overlap as metric after analysing the microarray data using the Incremental enrichment method from
g:Profiler. The cutoffs used to obtain the network shown were: false discovery rate threshold 1x104 (qvalue) for the nodes and 0.6 overlap for the edges. The
size of nodes represents the number of genes known to be part of that biological pathway or biological process; the bigger the node, the more genes are known
to form part of that biological pathway or biological process. The width of the purple edges represents the number of genes that two nodes share; the thicker the
line, the more genes the two nodes have in common. The colour of the nodes represents the qvalue of the biological pathway or biological process; the scale
used goes from zero (ochre) to 1 (white). The right half of the nodes represents the qvalue obtained in the analysis of the upregulated genes and the left half
of the nodes represents the qvalue obtained in the analysis of the downregulated genes. If one of the halves of the node is painted with grey, it means that the
respective biological pathway or biological process was not among the results obtained when either the upregulated or downregulated genes were analysed in
g:Profiler.
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Figure 7: Network created with EnrichmentMap using overlap as metric after analysing the RNAseq data using the Overrepresentation analysis from
g:Profiler. The cutoffs used to obtain the network shown were: false discovery rate threshold 0.05 (qvalue) for the nodes and 0.6 overlap for the edges. The
size of nodes represents the number of genes known to be part of that biological pathway or biological process; the bigger the node, the more genes are known
to form part of that biological pathway or biological process. The width of the blue edges represents the number of genes that two nodes share; the thicker the
line, the more genes the two nodes have in common. The blue arrows next to some nodes indicate that the results of the upregulated genes for those
biological pathways or biological processes passed the qvalue cutoff selected. The colour of the nodes represents the qvalue of the biological pathway or
biological process; the scale used goes from zero (orange) to 1 (white). The right half of the nodes represents the qvalue obtained in the analysis of the
upregulated genes and the left half of the nodes represents the qvalue obtained in the analysis of the downregulated genes. If one of the halves of the node
is painted with grey, it means that the respective biological pathway or biological process was not among the results obtained when either the upregulated or
downregulated genes were analysed in g:Profiler.
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Figure 8: Network created with EnrichmentMap using overlap as metric after analysing the RNAseq data using the Incremental enrichment method from
g:Profiler. The cutoffs used to obtain the network shown were: false discovery rate threshold 0.2 (qvalue) for the nodes and 0.6 overlap for the edges. The size
of nodes represents the number of genes known to be part of that biological pathway or biological process; the bigger the node, the more genes are known to
form part of that biological pathway or biological process. The width of the blue edges represents the number of genes that two nodes share; the thicker the
line, the more genes the two nodes have in common. The blue arrows next to some nodes indicate that the results of the upregulated genes for those
biological pathways or biological processes passed the qvalue cutoff selected. The colour of the nodes represents the qvalue of the biological pathway or
biological process; the scale used goes from zero (orange) to 1 (white). The right half of the nodes represents the qvalue obtained in the analysis of the
upregulated genes and the left half of the nodes represents the qvalue obtained in the analysis of the downregulated genes. If one of the halves of the node
is painted with grey, it means that the respective biological pathway or biological process was not among the results obtained when either the upregulated or
downregulated genes were analysed in g:Profiler.
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Figure 9: Network created with EnrichmentMap using overlap as metric after analysing the
genomewide association study summary statistics data using the Overrepresentation analysis
method from g:Profiler. The cutoffs used to obtain the network shown were: false discovery rate
threshold 0.15 (qvalue) for the nodes and 0.6 overlap for the edges. The size of nodes
represents the number of genes known to be part of that biological pathway or biological
process; the bigger the node, the more genes are known to form part of that biological pathway
or biological process. The width of the grey edges represents the number of genes that two
nodes share; the thicker the line, the more genes the two nodes have in common. The colour of
the outer part of the nodes represents the qvalue of the biological pathway or biological process;
the scale used goes from zero (red) passing through mid values (orange) to 1 (yellow).

Figure 10: Network created with EnrichmentMap using overlap as metric after analysing the
genomewide association study summary statistics data using the Incremental enrichment
method from g:Profiler. The cutoffs used to obtain the network shown were: false discovery rate
threshold 2x103 (qvalue) for the nodes and 0.6 overlap for the edges. The size of nodes
represents the number of genes known to be part of that biological pathway or biological
process; the bigger the node, the more genes are known to form part of that biological pathway
or biological process. The width of the grey edges represents the number of genes that two
nodes share; the thicker the line, the more genes the two nodes have in common. The colour of
the outer part of the nodes represents the qvalue of the biological pathway or biological process;
the scale used goes from zero (red) passing through mid values (orange) to 1 (yellow).
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5.2.2 WebGestalt

Figures 11–13 show DAGs with enriched GO terms for biological processes in
the subnetwork created after using the Network expansion method from
WebGestalt NTA. Network expansion method and NTA from WebGestalt
[34, 35, 36, 37] use random walk analysis to create a subnetwork based on the
gene–product knowledge of a selected source and the gene list submitted. In
our case, we selected to create our subnetwork based on PPI from BioGRID.
The output of the algorithm of WebGestalt will give a subnetwork created with
some genes from our gene list and the most probable gene neighbours that are
connected to those genes from our gene list.

In the case of the GWAS summary statistics dataset, the results we obtained
using the NTA from WebGestalt partially coincide with the results obtained using
EnrichmentMap (Figures 9 and 10). Biological processes related to
immunological responses predominate in the results shown in Figure 13.
Whereas in Figures 9 and 10, apart from showing some pathways or processes
related to immunological responses, also proteinlipid, amyloidbeta, and
intestinal lipid absorptionrelated results appear.

For the microarray and RNAseq datasets, in general, the results observed in
Figures 11 and 12 (results obtained using the NTA from WebGestalt) coincide
with those observed in Figures 5–8 (results observed in the networks created
with EnrichmentMap when analysing the microarray or RNAseq dataset).
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(a) Microarray dataset (b) RNAseq dataset

Figure 11: Directed acyclic graph showing the ten most relevant gene ontology biological processes in the subnetwork created from the downregulated genes
from the microarray and RNAseq datasets, respectively, using the Network topology analysis and Network expansion method from WebGestalt. The gene
ontology biological processes (GO:BP) shown in yellow show other GO:BP related to any of the enriched GO:BP found in the subnetwork.
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(a) Microarray dataset

(b) RNAseq dataset

Figure 12: Directed acyclic graph showing the ten most relevant gene ontology biological
processes in the subnetwork created from the upregulated genes from the microarray and
RNAseq datasets, respectively, using the Network topology analysis and Network expansion
method from WebGestalt. The gene ontology biological processes (GO:BP) shown in yellow
show other GO:BP related to any of the enriched GO:BP found in the subnetwork.
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Figure 13: Directed acyclic graph showing the ten most relevant gene ontology biological
processes in the subnetwork created from the genes from the genomewide association study
summary statistics dataset using the Network topology analysis and Network expansion method
from WebGestalt. The gene ontology biological processes (GO:BP) shown in yellow, show other
GO:BP related to the enriched GO:BP found in the subnetwork shown in red.

6 Discussion

We found that the analysis of different types of biological data helped us to have
a better systemic understanding of AD because each type of biological data
provides us with different knowledge related to AD. Pathway and network
analysis together with the analysis of different types of biological data gave us a
functional and systemic insight into AD pathogenesis. Our results from pathway
analysis and network analysis are complimentary. Pathway analysis results
gave us a list of gene sets, which can be considered pathways, and that are
more related to AD than other genes that do not form part of those pathways;
and network analysis results extended our pathway analysis results providing us
with knowledge on how those pathways are connected between them and what
enriched pathways are found when taking into account the neighbours from the
genes that form part of those pathways. The results from the microarray dataset
showed us that synaptic signalling, neuronal development, and transmembrane
transport pathways or processes are enriched in downregulated genes in AD,
and that nucleic acid metabolic processes or pathways are enriched in
upregulated genes in AD. The results from the RNAseq dataset showed us that
pathways or processes related to the citric acid cycle, cellular respiration, and
metabolism are enriched in downregulated genes in AD, and that transcription,
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cell cycle, and metabolism of nucleic acids are enriched in upregulated genes in
AD. Lastly, the results from the GWAS summary statistics dataset showed us
that pathways related to intestinal lipid absorption, amyloidbeta peptide,
proteinlipid processes, and immunological responses are enriched in AD.

We obtained a different number of statistically significant results when analysing
the same data and using the same pathway analysis method but with different
software tools. Moreover, we found that if we had selected the same database to
base our analyses on while carrying out the same pathway analysis method but
with different tools, in general, the most relevant results obtained coincided
between tools but, with different levels of significance. In some cases, some of
the most relevant results obtained with ORA were also present in rankbased
pathway analysis methods. Nevertheless, we do not have enough evidence to
confirm which type of pathway analysis performs better because we could
conduct rankbased analysis with only three software tools and one of them
could only be applied to the RNAseq dataset. But the trend seems to indicate
that fewer significant results are obtained when rankbased methods are used.

There are several factors that could have had an effect on the different number
of significant results obtained with each software tool, apart from the usage of
different pathway analysis methods and the type of data supported by each
program. One factor is the usage of different versions of the databases the
programs rely on for the definition of biological pathways, GO categories,
diseases and other terms. A second factor, is the identifier match between
programs, databases, and the data submitted. Related to the latter, despite
submitting the same data to each program, the number of entities used for the
analyses can differ not only because some entities could not be found but also
because each program deals differently with entities that are duplicated or
entities that have ambiguous annotations. A third factor is the number of
parameters and what parameters users can change to perform their pathway
analysis. Lastly, a fourth factor is the usage of different multiple testing methods,
none, or the usage of algorithms to reduce biological redundancy within the
results.

Our results shown in Figures 5, 6 and 11a confirm part of the GO terms for
biological processes seen in [18] when downregulated genes were analysed.
However, our GO terms for biological processes do not coincide with the results
observed in [18] when we analysed upregulated genes. In addition, our results
shown in Figure 7, 11b and 12b confirm the GO terms for biological processes
obtained with DAVID in [19]. These findings also contribute to confirm that when
comparing the most relevant results obtained with different tools but using the
same type of pathway analysis method and datatabase, overall the results
coincide. Lastly, most of our results shown in Figure 10 confirm the GO terms for
biological processes obtained with MAGMA in [20]. Nevertheless, the results we
obtained with MAGMA do not coincide with the results observed in [20]. This
could be due to two reasons related to the methodology we applied. We did not
restrict the sizes of the gene sets for our pathway analysis nor used adaptive
permutation in the gene analysis step. In addition, with respect to the year when
[20] was published, we believe that we have used a different version of MAGMA.
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In the current version (v1.09a), an update of the SNPwise mean model (used
for the gene analysis step) has been made, which could have had an effect and
made our results differ from the results observed in [20].

While carrying out our pathway analyses we discovered that some software tools
give you the option to provide your own reference set or use the one provided by
each of them. For pathway analysis, the selection of the proper reference set is
essential to obtain nonmisleading results. The first software tool that we used
for our project was IPA and because of our lack of experience in conducting
pathway analyses and misinterpretation of the documentation, we selected the
incorrect reference set option for the analysis of the microarray dataset. The
selection of the reference set depends on the experiment that it has been carried
out. For example, if we have used a microarray chip with probesets only related
to cancer and we have all the results of the microarray, then we can upload all
the results to the program and select that we are also providing the reference set
(with probesets only related to cancer) for our pathway analysis. In this example,
if we select the knowledge of the database as the reference set, the results that
we will obtain will be biased enriched in cancer pathways. At the beginning of
the project, we did not understand in which pathway analysis cases we had to
select the usage of the knowledge database or our own.

For the microarray dataset analysis, we selected that we were providing our own
reference set for our pathway analysis, instead of selecting the IPA knowledge
as reference set because we were providing a regular gene list of interest but
not a whole reference set with some potential interesting genes in it. Despite of
this, we obtained significant results without adjusting the pvalues for multiple
testing. For this reason, we decided to discuss the results obtained with IPA to
show the importance of the correct selection of reference sets in pathway
analyses. The three most significant pathway results (pvalue<0.05) were:
cAMPmediated signaling, synaptic long term potentiation, and melatonin
signaling. In the analysis of the RNAseq data we selected the reference set of
IPA but we based our results on different species to start our analysis as general
as possible. The three most significant results (pvalue<0.05) were: TCA cycle
(eukaryotic), isoleucin degradation I, and valine degradation I.

Once submitted the data to IPA, IPA carries out automatically a pathway and
network analysis. The biological functions of the two networks with the highest
scores found for the microarray dataset were: (i) gene expression, RNA damage
and repair, and RNApost transcriptional modification, and (ii) infectious
diseases, neurological disease, and organismal injury and abnormalities. The
results for the RNAseq dataset were: (i) amino acid metabolism, small molecule
biochemistry and cellular assembly organisation, and (ii) protein synthesis,
amino acid metabolism, and cell cycle. Some of the results have appeared
among the results obtained with the rest of software tools. However, because of
the restrictions imposed while using an evaluation license of IPA we could not
repeat the analyses to compare results and their significance level when
choosing proper settings or similar settings to the rest of analyses carried out.
Therefore, the results obtained with IPA should be taken with caution and as an
example of what can happen if incorrect settings are selected.
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For the comparison of pathway analysis results between tools, we expected
heterogeneity in the results. Nevertheless, the difficulty to compare results
between programs from the syntactic, semantic, and biological point of view was
higher than expected. Moreover, biological redundancy of GO terms and
biological pathways also contributed to increase the difficulty in the comparison
of results between tools. Each software tool provided the results with different
data structures and different information. In addition, the description of the
pathways differed between databases.

The methods of the network analyses we selected to carry out in this project are
not comparable. In general, the approach and the results provided from
WebGestalt seem to be mirroring the approach of EnrichmentMap.
EnrichmentMap starts the analysis from pathway analysis results and finishes
creating networks and subnetworks with those results. Whereas, WebGestalt
starts the analysis creating a subnetwork from a network and ends giving, for
example, pathways that are enriched in the subnetwork. In addition,
WebGestalt uses proteinprotein interaction information to conduct its NTA;
EnrichmentMap does not use more biological information to conduct the network
analysis. Lastly, the final number of network analyses performed is too small to
conclude something else apart from the matching of some of our results with the
results seen in [18, 19, 20].

7 Conclusions

Pathway and network analysis together with the analysis of different types of
biological data gave us a global and functional understanding of AD
pathogenesis from lists of genes which seemed to be unrelated. The results
from our pathway and network analysis coincide with those obtained by Blalock
et al. [18], Nativio et al. [19] and Kunkle et al. [20]. Pathways related to synaptic
signalling, neuronal development, and transmembrane transport were found in
the analysis of the microarray dataset. Pathways related to citric acid cycle,
cellular respiration, nucleic acid metabolism, and cell cycle were found in the
analysis of the RNAseq dataset, and pathways related to amyloidbeta peptide,
intestinal lipid absorption, immunological responses, and proteinlipid processes
were found in the analysis of the GWAS summary statistics dataset. All of those
processes are among the results that are enriched in AD.

Our results show that a different number of statistically significant results is
obtained when using different software tools, despite analysing the same data
and using the same pathway analysis method. Nevertheless, in general, the
most relevant pathways coincide between tools when the same database and
pathway analysis method are selected, but not with the same level of
significance.

We need to conduct more network analyses to properly compare their methods
and results. With the current results, we only have evidence to conclude that
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most of the results obtained coincide with the results seen in [18, 19, 20].

7.1 Limitations

One of the limitations of this work is that we could not include in the analysis
more software tools and other AD data from which patient information could be
identified due to the short period of time available, data privacy, or lack of
funding. Due to the lack of funding, we had strict usage permission of proprietary
software to analyse the data selected. Therefore, we could not analyse the
GWAS summary statistics dataset with IPA nor repeat the analyses for the
microarray and RNAseq datasets selecting the appropriate settings for our
pathway and network analyses in the end.

One limitation of the analysis of the GWAS summary statistics dataset is that we
had to rely on the mapping step and gene analysis of MAGMA. The usage of
MAGMA was essential to obtain a list of genes (potentially related with AD)
which we could use for the rest of pathway and network analyses we wanted to
conduct with the other software tools selected. With the data available, MAGMA
was one of the software tools available that fulfilled our needs because it could
not only convert a list of SNPs into genes and perform a gene analysis but also it
could perform a geneset analysis. Nevertheless, the gene list used for our
pathway and network analyses could have been different if we had chosen a
different program.

Out of the five network analysis methods planned to be conducted, only two
could be carried out successfully. The network analysis from IPA could be
performed but we chose the incorrect settings for the analysis. The Induced
network modules from ConsensusPathDB could not be conducted due to
specific problems with this method and its server. WGCNA’s workflow could only
be applied to the microarray dataset but it required several modifications to
analyse the data with the tool. Some important steps of the analysis with
WGCNA had to be skipped due to the data available to conduct the analysis. As
a result of all the modifications done to the general workflow and the outcomes
obtained, we concluded that the results were not reliable. Therefore we decided
to exclude WGCNA from the project.

Related to our pathway analyses, the data available, and the time available to
carry out the project, several analyses could not be explored; many parameters
were left as default. Consequently, the effect of some of the parameters on the
results is unknown. In addition, for the pathway analyses, only two different
multiple testing correction methods were used: FDR and SCS (g:Profiler’s
algorithm). More analyses using SCS algorithm are needed to confirm the level
of significance of the results obtained.

A last constraint is that pathway annotation databases evolve rapidly and have
different update frequencies. Consequently, the results that we showed
correspond to the time frame when the project has taken place and they are
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subject to change.

7.2 Future perspectives

Future comparative studies should explore the usage of textclustering
algorithms to reduce biological redundancy and group similar results together —
from the biological, syntactic and semantic point of view. The usage of
textclustering algorithms might help to have a better control of the number of
coincident results between databases and tools. The comparative study that
finds a proper method to compare pathway results will have the opportunity to
create a database and unify pathway information from different sources using
key words and unique identifiers.

More software tools that provide topologybased and rankbased methods
should be included in other comparative studies. Due to data availability and
time restrictions, we could not explore and test more network analysis methods
nor topologybased and rankbased pathway analysis methods. In addition,
some of our analyses should be repeated using different parameters to verify
their effect on pathway and network analysis results.

Different multiple testing correction methods in pathway and network analysis
should be explored. Specially, methods such as the algorithm of g:Profiler, SCS,
which take into account the structure behind gene set definitions because
biological entities are not entirely independent from each other.

We would like to suggest to pathway analysis users that they use more than one
gene identifier for their gene lists of interest; and we would like to recommend to
current or future tool creators of pathway analysis methods that they consider
allowing users to upload more than one gene identifier for the same gene list.
Using more than one gene identifier for pathway analysis should help to increase
the matching of gene annotations between the database and the data provided
by the users.

7.3 Project deviations

As a result of prioritisation on the analyses, writing tasks were postponed.
Nevertheless, giving priority to the analyses gave us the opportunity to amend
some errors in time and rerun the analyses or look for alternatives.

As it has been explained in the Limitations section, one of deviations from the
original plan was the number of network analyses to be carried out. The network
analyses from ConsensusPathDB, WGCNA, and IPA could not be performed
successfully due to problems with their server, the data available to perform the
analyses, or restrictions in the number of analyses and time available to conduct
the analyses, respectively.
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At the beginning of the project, PINBPA [79] was chosen to be included in our
study. However, after looking for more information to start running some of the
analyses, we finally decided to exclude PINPBA from the project because it had
little documentation available and some of it was redundant or confusing.
Instead, we looked for another software tool to carry out enough number of
analyses for our comparative study. We found WebGestalt, which was more
known in the field, had more documentation, was recently updated, and could
perform several analyses such as: an ORA, a rankbased pathway analysis, and
a network analysis.

When we planned the software tools and analyses to be conducted, we
understood from the documentation of Cytoscape that we could conduct network
analyses with the pathway analysis results obtained from the software tools
already chosen. Nevertheless, Cytoscape plugins were needed to perform
network analyses and specific formats of data as well. After looking for more
documentation, we found a workflow to conduct pathway analyses with g:Profiler
and use the results obtained with specific formats (GMT files) to carry out
network analyses in EnrichmentMap, a Cytoscape plugin [15]. Therefore,
g:Profiler and EnrichmentMap were included in the project.

Lastly, the creation of figures and tables summarising in a representative way
the results from each of the software tools, methods, and databases selected
required more time than expected. However, dealing with different data
structures, tools, and information provided by each tool and database gave us
the opportunity to be aware of issues related to data integration of different
sources and comparison of results from the biological, syntactic, and semantic
point of view.

In conclusion, several modifications and amendments had to be done to carry
out the project. The enormous scope of the project was initially underestimated
during planning, and therefore several comparisons between datasets,
databases, software tools, methods, and settings, as mentioned in the
Discussion and Limitations sections, had to be left out.
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8 Glossary

– AD: Alzheimer’s disease

– DAG: Directed acyclic graph

– FDR: False discovery rate

– GO: Gene ontology

– GSEA: Gene set enrichment analysis

– GWAS: Genomewide association study

– IGAP: The International Genomics of Alzheimer’s Project

– kb: kilobase

– LOAD: Lateonset Alzheimer’s disease

– MMSE: MiniMental Status Exam

– NIAGADS: The National Institute on Aging Genetics of Alzheimer’s
Disease Data Storage Site

– NFT: Neurofibrillary tangle

– NTA: Network topologybased analysis

– ORA: Overrepresentation analysis

– QC: Quality control

– SNP: Single nucleotide polymorphism

– rsID: Reference SNP number
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10 Appendices

The results from DAVID (pages 6165) and Reactome (Page 66) will be shown
below. The rest of results due to their extent can be found on the following
repository: https://github.com/xim56/project2021
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Category Term Count PValue Pop Hits FDR Dataset

GOTERM_BP_DIRECT GO:0007268~chemical synaptic transmission 44 6.88E-08 240 0.000255 Down-Micro

GOTERM_BP_DIRECT GO:0007269~neurotransmitter secretion 17 5.16E-07 51 0.000955 Down-Micro

GOTERM_BP_DIRECT GO:0034220~ion transmembrane transport 38 8.51E-07 210 0.001050483372 Down-Micro

GOTERM_CC_DIRECT GO:0005829~cytosol 372 4.95E-19 3315 3.35E-16 Down-Micro

GOTERM_CC_DIRECT GO:0014069~postsynaptic density 51 2.08E-16 184 7.05E-14 Down-Micro

GOTERM_CC_DIRECT GO:0043209~myelin sheath 42 1.67E-13 152 3.77E-11 Down-Micro

GOTERM_CC_DIRECT GO:0030054~cell junction 78 8.12E-12 459 1.37E-09 Down-Micro

GOTERM_CC_DIRECT GO:0045211~postsynaptic membrane 47 2.11E-11 211 2.85E-09 Down-Micro

GOTERM_CC_DIRECT GO:0030425~dendrite 61 1.19E-10 335 1.34E-08 Down-Micro

GOTERM_CC_DIRECT GO:0005737~cytoplasm 487 5.76E-10 5222 5.57E-08 Down-Micro

GOTERM_CC_DIRECT GO:0030424~axon 45 1.44E-09 222 1.22E-07 Down-Micro

GOTERM_CC_DIRECT GO:0005739~mitochondrion 158 1.78E-09 1331 1.34E-07 Down-Micro

GOTERM_CC_DIRECT GO:0016020~membrane 223 4.55E-07 2200 3.08E-05 Down-Micro

GOTERM_CC_DIRECT GO:0043005~neuron projection 40 1.93E-06 237 0.000119 Down-Micro

GOTERM_CC_DIRECT GO:0005794~Golgi apparatus 102 2.41E-06 863 0.000136 Down-Micro

GOTERM_CC_DIRECT GO:0008021~synaptic vesicle 21 1.01E-05 92 0.000528 Down-Micro

GOTERM_CC_DIRECT GO:0043025~neuronal cell body 46 1.56E-05 315 0.000755 Down-Micro

GOTERM_CC_DIRECT GO:0032281~AMPA glutamate receptor complex 11 1.81E-05 28 0.000817 Down-Micro

GOTERM_CC_DIRECT GO:0048786~presynaptic active zone 11 2.58E-05 29 0.001091254851 Down-Micro

GOTERM_CC_DIRECT GO:0070062~extracellular exosome 261 4.10E-05 2811 0.00163220031 Down-Micro

GOTERM_CC_DIRECT GO:0045202~synapse 30 6.34E-05 181 0.002385173578 Down-Micro

GOTERM_CC_DIRECT GO:0043195~terminal bouton 15 0.000137 62 0.004895096284 Down-Micro

GOTERM_CC_DIRECT GO:0030672~synaptic vesicle membrane 14 0.000145 55 0.004895096284 Down-Micro

GOTERM_CC_DIRECT GO:0005874~microtubule 41 0.000436 311 0.0140436366 Down-Micro

GOTERM_CC_DIRECT GO:0005753~mitochondrial proton-transporting ATP synthase complex 8 0.00055 21 0.01693936691 Down-Micro

GOTERM_CC_DIRECT GO:0098793~presynapse 14 0.000703 64 0.02019358175 Down-Micro

GOTERM_CC_DIRECT GO:0005856~cytoskeleton 46 0.000716 371 0.02019358175 Down-Micro

GOTERM_CC_DIRECT GO:0030426~growth cone 20 0.000837 116 0.02267471949 Down-Micro

GOTERM_CC_DIRECT GO:0071782~endoplasmic reticulum tubular network 6 0.001120348856 12 0.02890589435 Down-Micro

GOTERM_CC_DIRECT GO:0048471~perinuclear region of cytoplasm 68 0.001152820011 621 0.02890589435 Down-Micro

GOTERM_CC_DIRECT GO:0032809~neuronal cell body membrane 7 0.001384519435 18 0.03347570205 Down-Micro

GOTERM_CC_DIRECT GO:0005743~mitochondrial inner membrane 51 0.001703623568 441 0.03905785072 Down-Micro

GOTERM_CC_DIRECT GO:0042734~presynaptic membrane 13 0.001730776251 62 0.03905785072 Down-Micro

GOTERM_CC_DIRECT GO:0031594~neuromuscular junction 12 0.002020757661 55 0.04413073989 Down-Micro

GOTERM_CC_DIRECT GO:0005622~intracellular 127 0.002198112435 1332 0.0465038162 Down-Micro

GOTERM_MF_DIRECT GO:0005515~protein binding 814 4.42E-19 8785 5.86E-16 Down-Micro

GOTERM_MF_DIRECT GO:0044325~ion channel binding 29 1.42E-08 113 9.40E-06 Down-Micro

GOTERM_MF_DIRECT GO:0005516~calmodulin binding 35 1.76E-06 189 0.000778 Down-Micro

GOTERM_MF_DIRECT GO:0044822~poly(A) RNA binding 127 4.36E-06 1129 0.00144694324 Down-Micro

GOTERM_MF_DIRECT GO:0005524~ATP binding 152 0.000103 1495 0.02740263126 Down-Micro

GOTERM_MF_DIRECT GO:0003924~GTPase activity 35 0.000173 234 0.03815365142 Down-Micro

GOTERM_MF_DIRECT GO:0008565~protein transporter activity 16 0.000262 72 0.04883419915 Down-Micro

GOTERM_MF_DIRECT GO:0004842~ubiquitin-protein transferase activity 44 0.000295 329 0.04883419915 Down-Micro

KEGG_PATHWAY hsa04724:Glutamatergic synapse 29 1.97E-08 114 2.37E-06 Down-Micro

KEGG_PATHWAY hsa04723:Retrograde endocannabinoid signaling 27 2.25E-08 101 2.37E-06 Down-Micro

KEGG_PATHWAY hsa04720:Long-term potentiation 21 5.08E-08 66 3.57E-06 Down-Micro

KEGG_PATHWAY hsa04728:Dopaminergic synapse 29 2.78E-07 128 1.47E-05 Down-Micro

KEGG_PATHWAY hsa05014:Amyotrophic lateral sclerosis (ALS) 17 4.89E-07 50 2.07E-05 Down-Micro

KEGG_PATHWAY hsa05033:Nicotine addiction 14 4.83E-06 40 0.00017 Down-Micro

KEGG_PATHWAY hsa04727:GABAergic synapse 19 6.02E-05 85 0.001782402194 Down-Micro

KEGG_PATHWAY hsa05010:Alzheimer's disease 29 6.76E-05 168 0.001782402194 Down-Micro

KEGG_PATHWAY hsa04024:cAMP signaling pathway 32 9.47E-05 198 0.002221062349 Down-Micro

KEGG_PATHWAY hsa04730:Long-term depression 15 0.000132 60 0.002795282395 Down-Micro

KEGG_PATHWAY hsa05032:Morphine addiction 19 0.000153 91 0.002928079106 Down-Micro

KEGG_PATHWAY hsa03060:Protein export 9 0.000199 23 0.003500253627 Down-Micro

KEGG_PATHWAY hsa04721:Synaptic vesicle cycle 15 0.00023 63 0.003740386273 Down-Micro

KEGG_PATHWAY hsa04713:Circadian entrainment 19 0.000269 95 0.004054673029 Down-Micro

KEGG_PATHWAY hsa05031:Amphetamine addiction 15 0.000385 66 0.005418549284 Down-Micro

KEGG_PATHWAY hsa05132:Salmonella infection 17 0.000476 83 0.00607826666 Down-Micro

KEGG_PATHWAY hsa04020:Calcium signaling pathway 28 0.00049 179 0.00607826666 Down-Micro

KEGG_PATHWAY hsa04071:Sphingolipid signaling pathway 21 0.000728 120 0.008531355184 Down-Micro

KEGG_PATHWAY hsa05131:Shigellosis 14 0.000953 64 0.01058659588 Down-Micro

KEGG_PATHWAY hsa04360:Axon guidance 21 0.001504350678 127 0.01587089965 Down-Micro
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Category Term Count PValue Pop Hits FDR Dataset

KEGG_PATHWAY hsa04010:MAPK signaling pathway 34 0.001690568774 253 0.01670647852 Down-Micro

KEGG_PATHWAY hsa04261:Adrenergic signaling in cardiomyocytes 22 0.001801949993 138 0.01670647852 Down-Micro

KEGG_PATHWAY hsa04114:Oocyte meiosis 19 0.001821085337 111 0.01670647852 Down-Micro

KEGG_PATHWAY hsa04022:cGMP-PKG signaling pathway 24 0.002034635579 158 0.0178878378 Down-Micro

KEGG_PATHWAY hsa04141:Protein processing in endoplasmic reticulum 25 0.002303447104 169 0.01944109356 Down-Micro

KEGG_PATHWAY hsa04540:Gap junction 16 0.00259684665 88 0.02107440935 Down-Micro

KEGG_PATHWAY hsa04922:Glucagon signaling pathway 17 0.003316274618 99 0.02591607202 Down-Micro

KEGG_PATHWAY hsa04666:Fc gamma R-mediated phagocytosis 15 0.004397603865 84 0.03046179248 Down-Micro

KEGG_PATHWAY hsa04725:Cholinergic synapse 18 0.00444837994 111 0.03046179248 Down-Micro

KEGG_PATHWAY hsa04726:Serotonergic synapse 18 0.00444837994 111 0.03046179248 Down-Micro

KEGG_PATHWAY hsa05120:Epithelial cell signaling in Helicobacter pylori infection 13 0.004475429227 67 0.03046179248 Down-Micro

KEGG_PATHWAY hsa04921:Oxytocin signaling pathway 22 0.004998055413 150 0.03176179042 Down-Micro

KEGG_PATHWAY hsa04664:Fc epsilon RI signaling pathway 13 0.005066933205 68 0.03176179042 Down-Micro

KEGG_PATHWAY hsa04810:Regulation of actin cytoskeleton 28 0.005268543434 210 0.03176179042 Down-Micro

KEGG_PATHWAY hsa04015:Rap1 signaling pathway 28 0.005268543434 210 0.03176179042 Down-Micro

KEGG_PATHWAY hsa04370:VEGF signaling pathway 12 0.006051406259 61 0.03457561255 Down-Micro

KEGG_PATHWAY hsa04914:Progesterone-mediated oocyte maturation 15 0.006063022106 87 0.03457561255 Down-Micro

KEGG_PATHWAY hsa04070:Phosphatidylinositol signaling system 16 0.007354017597 98 0.04083415034 Down-Micro

KEGG_PATHWAY hsa04931:Insulin resistance 17 0.007870059206 108 0.04257903827 Down-Micro

KEGG_PATHWAY hsa04924:Renin secretion 12 0.008738991388 64 0.04609817957 Down-Micro

KEGG_PATHWAY hsa04912:GnRH signaling pathway 15 0.009031414857 91 0.04647874475 Down-Micro

KEGG_PATHWAY hsa04722:Neurotrophin signaling pathway 18 0.009758251831 120 0.04706595405 Down-Micro

KEGG_PATHWAY hsa00620:Pyruvate metabolism 9 0.009805140289 40 0.04706595405 Down-Micro

KEGG_PATHWAY hsa05212:Pancreatic cancer 12 0.009814701319 65 0.04706595405 Down-Micro

REACTOME_PATHWAY R-HSA-212676:R-HSA-212676 10 3.10E-05 23 0.02283169138 Down-Micro

REACTOME_PATHWAY R-HSA-1445148:R-HSA-1445148 19 5.62E-05 83 0.02283169138 Down-Micro

REACTOME_PATHWAY R-HSA-438066:R-HSA-438066 8 0.000167 17 0.02966711836 Down-Micro

REACTOME_PATHWAY R-HSA-399719:R-HSA-399719 8 0.000167 17 0.02966711836 Down-Micro

REACTOME_PATHWAY R-HSA-977441:R-HSA-977441 7 0.000237 13 0.02966711836 Down-Micro

REACTOME_PATHWAY R-HSA-5628897:R-HSA-5628897 18 0.000255 85 0.02966711836 Down-Micro

REACTOME_PATHWAY R-HSA-181429:R-HSA-181429 8 0.000255 18 0.02966711836 Down-Micro

REACTOME_PATHWAY R-HSA-112314:R-HSA-112314 7 0.000387 14 0.03937511543 Down-Micro

UP_KEYWORDS Phosphoprotein 818 6.48E-40 8246 2.60E-37 Down-Micro

UP_KEYWORDS Alternative splicing 926 2.54E-24 10587 5.10E-22 Down-Micro

UP_KEYWORDS Acetylation 371 5.78E-20 3424 7.72E-18 Down-Micro

UP_KEYWORDS Synapse 78 2.49E-19 357 2.50E-17 Down-Micro

UP_KEYWORDS Cytoplasm 449 3.11E-12 4816 2.49E-10 Down-Micro

UP_KEYWORDS Cell junction 96 4.73E-11 675 3.16E-09 Down-Micro

UP_KEYWORDS Postsynaptic cell membrane 39 5.92E-10 179 3.39E-08 Down-Micro

UP_KEYWORDS Transport 202 2.53E-08 1978 1.27E-06 Down-Micro

UP_KEYWORDS Nucleotide-binding 185 4.80E-08 1788 2.14E-06 Down-Micro

UP_KEYWORDS Protein transport 80 8.42E-08 610 3.38E-06 Down-Micro

UP_KEYWORDS Epilepsy 28 1.71E-07 127 6.24E-06 Down-Micro

UP_KEYWORDS Mental retardation 45 2.37E-06 299 7.91E-05 Down-Micro

UP_KEYWORDS Lipoprotein 96 4.34E-06 852 0.000134 Down-Micro

UP_KEYWORDS ATP-binding 142 4.68E-06 1391 0.000134 Down-Micro

UP_KEYWORDS Coiled coil 273 6.12E-06 3036 0.000159 Down-Micro

UP_KEYWORDS Ubl conjugation pathway 80 6.36E-06 680 0.000159 Down-Micro

UP_KEYWORDS Calmodulin-binding 28 6.73E-06 152 0.000159 Down-Micro

UP_KEYWORDS Methylation 107 1.20E-05 1001 0.000249 Down-Micro

UP_KEYWORDS Mitochondrion 117 1.24E-05 1119 0.000249 Down-Micro

UP_KEYWORDS Membrane 602 1.24E-05 7494 0.000249 Down-Micro

UP_KEYWORDS Neurodegeneration 41 3.97E-05 293 0.000759 Down-Micro

UP_KEYWORDS Transferase 160 0.000112 1708 0.002044824611 Down-Micro

UP_KEYWORDS Kinase 79 0.00016 735 0.002790409099 Down-Micro

UP_KEYWORDS Prenylation 26 0.000284 168 0.004739264675 Down-Micro

UP_KEYWORDS Exocytosis 14 0.000674 67 0.01080512133 Down-Micro

UP_KEYWORDS Cytoskeleton 108 0.001080080271 1138 0.01665816111 Down-Micro

UP_KEYWORDS Cell projection 73 0.001502520959 721 0.02223987308 Down-Micro

UP_KEYWORDS Stress response 17 0.001552908843 100 0.02223987308 Down-Micro

UP_KEYWORDS Synaptosome 12 0.00178831374 57 0.0247280624 Down-Micro

UP_KEYWORDS Magnesium 58 0.002164957145 552 0.0289382605 Down-Micro

UP_KEYWORDS Microtubule 34 0.002388814974 280 0.03090047757 Down-Micro
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UP_KEYWORDS GTP-binding 39 0.003504935191 343 0.04392121911 Down-Micro

UP_KEYWORDS Golgi apparatus 78 0.004178299978 812 0.04904721287 Down-Micro

UP_KEYWORDS Ligase 39 0.004264798533 347 0.04904721287 Down-Micro

UP_KEYWORDS Serine/threonine-protein kinase 43 0.004280928804 393 0.04904721287 Down-Micro

GOTERM_BP_DIRECT GO:0006351~transcription, DNA-templated 238 1.28E-07 1955 0.000561 Up-Micro

GOTERM_BP_DIRECT GO:0006355~regulation of transcription, DNA-templated 182 7.67E-06 1504 0.01678586361 Up-Micro

GOTERM_BP_DIRECT GO:0007179~transforming growth factor beta receptor signaling pathway 23 1.27E-05 92 0.01854335813 Up-Micro

GOTERM_BP_DIRECT GO:0006397~mRNA processing 34 3.96E-05 179 0.04339125471 Up-Micro

GOTERM_CC_DIRECT GO:0005654~nucleoplasm 349 7.61E-15 2784 5.58E-12 Up-Micro

GOTERM_CC_DIRECT GO:0005737~cytoplasm 576 1.07E-13 5222 3.94E-11 Up-Micro

GOTERM_CC_DIRECT GO:0005634~nucleus 584 5.21E-12 5415 1.28E-09 Up-Micro

GOTERM_CC_DIRECT GO:0016020~membrane 258 4.57E-08 2200 8.39E-06 Up-Micro

GOTERM_CC_DIRECT GO:0005925~focal adhesion 65 3.12E-07 391 4.58E-05 Up-Micro

GOTERM_CC_DIRECT GO:0005829~cytosol 359 3.77E-07 3315 4.61E-05 Up-Micro

GOTERM_CC_DIRECT GO:0016607~nuclear speck 36 3.94E-05 201 0.004128314219 Up-Micro

GOTERM_CC_DIRECT GO:0005913~cell-cell adherens junction 50 5.73E-05 323 0.005256548451 Up-Micro

GOTERM_CC_DIRECT GO:0071141~SMAD protein complex 6 0.000204 8 0.0166311449 Up-Micro

GOTERM_CC_DIRECT GO:0005856~cytoskeleton 53 0.000272 371 0.019968261 Up-Micro

GOTERM_CC_DIRECT GO:0043231~intracellular membrane-bounded organelle 72 0.000452 558 0.02780516355 Up-Micro

GOTERM_CC_DIRECT GO:0030027~lamellipodium 28 0.000481 160 0.02780516355 Up-Micro

GOTERM_CC_DIRECT GO:0001725~stress fiber 14 0.000492 54 0.02780516355 Up-Micro

GOTERM_CC_DIRECT GO:0070062~extracellular exosome 287 0.000562 2811 0.02948330697 Up-Micro

GOTERM_CC_DIRECT GO:0015629~actin cytoskeleton 34 0.000909 218 0.04450094234 Up-Micro

GOTERM_MF_DIRECT GO:0005515~protein binding 936 1.17E-18 8785 1.54E-15 Up-Micro

GOTERM_MF_DIRECT GO:0044822~poly(A) RNA binding 163 2.05E-10 1129 1.35E-07 Up-Micro

GOTERM_MF_DIRECT GO:0003779~actin binding 49 5.00E-06 278 0.00218625267 Up-Micro

GOTERM_MF_DIRECT GO:0003682~chromatin binding 61 1.69E-05 391 0.005550125839 Up-Micro

GOTERM_MF_DIRECT GO:0003700~transcription factor activity, sequence-specific DNA binding 119 0.000133 961 0.03494416981 Up-Micro

GOTERM_MF_DIRECT GO:0031994~insulin-like growth factor I binding 7 0.000273 12 0.04633792148 Up-Micro

GOTERM_MF_DIRECT GO:0070410~co-SMAD binding 7 0.000273 12 0.04633792148 Up-Micro

GOTERM_MF_DIRECT GO:0030618~transforming growth factor beta receptor, pathway-specific cytoplasmic mediator activity 5 0.000283 5 0.04633792148 Up-Micro

KEGG_PATHWAY hsa04350:TGF-beta signaling pathway 21 2.07E-05 84 0.002868933681 Up-Micro

KEGG_PATHWAY hsa04068:FoxO signaling pathway 28 2.17E-05 134 0.002868933681 Up-Micro

KEGG_PATHWAY hsa04520:Adherens junction 18 7.94E-05 71 0.0069855959 Up-Micro

KEGG_PATHWAY hsa05200:Pathways in cancer 56 0.000178 393 0.01177757207 Up-Micro

REACTOME_PATHWAY R-HSA-1989781:R-HSA-1989781 25 7.09E-05 113 0.02765716326 Up-Micro

REACTOME_PATHWAY R-HSA-2470946:R-HSA-2470946 7 8.87E-05 10 0.02765716326 Up-Micro

REACTOME_PATHWAY R-HSA-2129379:R-HSA-2129379 13 9.33E-05 38 0.02765716326 Up-Micro

UP_KEYWORDS Phosphoprotein 944 5.37E-45 8246 2.54E-42 Up-Micro

UP_KEYWORDS Alternative splicing 1094 2.57E-33 10587 6.08E-31 Up-Micro

UP_KEYWORDS Nucleus 576 7.69E-18 5244 1.21E-15 Up-Micro

UP_KEYWORDS Acetylation 406 3.52E-17 3424 4.18E-15 Up-Micro

UP_KEYWORDS Cytoplasm 528 1.75E-15 4816 1.66E-13 Up-Micro

UP_KEYWORDS Ubl conjugation 231 2.76E-15 1705 2.18E-13 Up-Micro

UP_KEYWORDS Coiled coil 352 5.63E-13 3036 3.81E-11 Up-Micro

UP_KEYWORDS Transcription regulation 284 7.22E-13 2332 4.28E-11 Up-Micro

UP_KEYWORDS Transcription 289 1.54E-12 2398 8.10E-11 Up-Micro

UP_KEYWORDS Isopeptide bond 159 7.10E-12 1132 3.36E-10 Up-Micro

UP_KEYWORDS Zinc 268 3.52E-09 2348 1.51E-07 Up-Micro

UP_KEYWORDS Repressor 90 1.05E-08 592 4.15E-07 Up-Micro

UP_KEYWORDS Zinc-finger 210 2.04E-08 1781 7.42E-07 Up-Micro

UP_KEYWORDS Metal-binding 377 1.20E-07 3640 4.06E-06 Up-Micro

UP_KEYWORDS RNA-binding 88 6.59E-06 665 0.000208 Up-Micro

UP_KEYWORDS Cytoskeleton 135 7.14E-06 1138 0.000211 Up-Micro

UP_KEYWORDS Polymorphism 1063 1.01E-05 12043 0.000281 Up-Micro

UP_KEYWORDS Methylation 119 2.40E-05 1001 0.000632 Up-Micro

UP_KEYWORDS Proto-oncogene 39 3.81E-05 236 0.000951 Up-Micro

UP_KEYWORDS Host-virus interaction 55 5.77E-05 385 0.001367294883 Up-Micro

UP_KEYWORDS mRNA splicing 41 6.91E-05 260 0.001558851164 Up-Micro

UP_KEYWORDS Actin-binding 42 0.000106 274 0.002283775321 Up-Micro

UP_KEYWORDS Nucleotide-binding 189 0.000124 1788 0.00255110745 Up-Micro

UP_KEYWORDS Activator 82 0.000132 661 0.002573101311 Up-Micro

UP_KEYWORDS mRNA processing 48 0.000136 332 0.002573101311 Up-Micro
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UP_KEYWORDS Chromosomal rearrangement 48 0.000156 334 0.002852199151 Up-Micro

UP_KEYWORDS Guanine-nucleotide releasing factor 27 0.000165 149 0.002889103729 Up-Micro

UP_KEYWORDS Spliceosome 24 0.000218 127 0.003697683485 Up-Micro

UP_KEYWORDS Apoptosis 68 0.000276 536 0.004508161889 Up-Micro

UP_KEYWORDS Chromatin regulator 42 0.00029 287 0.00458757219 Up-Micro

UP_KEYWORDS DNA-binding 209 0.000369 2050 0.005649690177 Up-Micro

UP_KEYWORDS Transferase 177 0.000536 1708 0.007936026453 Up-Micro

UP_KEYWORDS Endosome 61 0.000593 481 0.008524102161 Up-Micro

UP_KEYWORDS Alternative promoter usage 18 0.000849 90 0.01182924589 Up-Micro

UP_KEYWORDS Bromodomain 11 0.000877 39 0.01187947458 Up-Micro

UP_KEYWORDS Alport syndrome 5 0.001249076398 7 0.01644617257 Up-Micro

UP_KEYWORDS Proteoglycan 12 0.001615370302 49 0.02069420332 Up-Micro

UP_KEYWORDS Cell projection 82 0.001854320439 721 0.02313020758 Up-Micro

UP_KEYWORDS mRNA transport 19 0.00215814745 106 0.02622979208 Up-Micro

UP_KEYWORDS ATP-binding 142 0.003304593268 1391 0.03915943023 Up-Micro

GOTERM_BP_DIRECT GO:0006099~tricarboxylic acid cycle 8 1.34E-06 29 0.002217213925 Down-RNA

GOTERM_BP_DIRECT GO:0006091~generation of precursor metabolites and energy 9 9.99E-06 53 0.008253151258 Down-RNA

GOTERM_BP_DIRECT GO:0055114~oxidation-reduction process 28 6.92E-05 592 0.03813263474 Down-RNA

GOTERM_CC_DIRECT GO:0005739~mitochondrion 68 6.77E-13 1331 2.22E-10 Down-RNA

GOTERM_CC_DIRECT GO:0070062~extracellular exosome 94 1.38E-07 2811 2.17E-05 Down-RNA

GOTERM_CC_DIRECT GO:0005743~mitochondrial inner membrane 28 1.99E-07 441 2.17E-05 Down-RNA

GOTERM_CC_DIRECT GO:0043209~myelin sheath 14 9.80E-06 152 0.000803 Down-RNA

KEGG_PATHWAY hsa01200:Carbon metabolism 13 1.39E-05 113 0.003005597319 Down-RNA

KEGG_PATHWAY hsa00020:Citrate cycle (TCA cycle) 7 6.19E-05 30 0.005726992237 Down-RNA

KEGG_PATHWAY hsa01100:Metabolic pathways 50 7.92E-05 1219 0.005726992237 Down-RNA

REACTOME_PATHWAY R-HSA-71403:R-HSA-71403 6 4.58E-05 19 0.01735516729 Down-RNA

UP_KEYWORDS Mitochondrion 54 5.48E-10 1119 1.92E-07 Down-RNA

UP_KEYWORDS Transit peptide 31 1.20E-07 536 2.10E-05 Down-RNA

UP_KEYWORDS Oxidoreductase 32 2.18E-07 582 2.55E-05 Down-RNA

UP_KEYWORDS Acetylation 104 3.85E-07 3424 3.38E-05 Down-RNA

UP_KEYWORDS Mitochondrion inner membrane 17 5.72E-05 270 0.004016016987 Down-RNA

UP_KEYWORDS Tricarboxylic acid cycle 6 7.25E-05 24 0.004242088891 Down-RNA

UP_KEYWORDS NADP 13 0.00022 186 0.01103486086 Down-RNA

UP_KEYWORDS Flavoprotein 10 0.000504 122 0.02213298575 Down-RNA

GOTERM_CC_DIRECT GO:0005654~nucleoplasm 70 8.44E-05 2784 0.01437238472 Up-RNA

GOTERM_CC_DIRECT GO:0005634~nucleus 117 0.000105 5415 0.01437238472 Up-RNA

UP_KEYWORDS Nucleus 124 3.39E-07 5244 9.30E-05 Up-RNA

UP_KEYWORDS Transcription regulation 63 2.15E-05 2332 0.002947865844 Up-RNA

UP_KEYWORDS Transcription 63 4.96E-05 2398 0.004526745462 Up-RNA

UP_KEYWORDS DNA-binding 54 0.000193 2050 0.01318680792 Up-RNA

UP_KEYWORDS Cell cycle 24 0.000263 650 0.01441811019 Up-RNA

UP_KEYWORDS Repressor 22 0.00047 592 0.02145023704 Up-RNA

GOTERM_BP_DIRECT GO:0002286~T cell activation involved in immune response 13 5.06E-08 22 0.000111 GWAS

GOTERM_BP_DIRECT GO:0033141~positive regulation of peptidyl-serine phosphorylation of STAT protein 12 8.11E-08 19 0.000111 GWAS

GOTERM_BP_DIRECT GO:0002323~natural killer cell activation involved in immune response 12 8.11E-08 19 0.000111 GWAS

GOTERM_BP_DIRECT GO:0033344~cholesterol efflux 13 3.18E-07 25 0.000325 GWAS

GOTERM_BP_DIRECT GO:0070328~triglyceride homeostasis 13 5.43E-07 26 0.000374 GWAS

GOTERM_BP_DIRECT GO:0043691~reverse cholesterol transport 11 5.47E-07 18 0.000374 GWAS

GOTERM_BP_DIRECT GO:0042100~B cell proliferation 14 1.11E-06 32 0.000648 GWAS

GOTERM_BP_DIRECT GO:0033700~phospholipid efflux 9 5.97E-06 14 0.003058936901 GWAS

GOTERM_BP_DIRECT GO:0030183~B cell differentiation 19 8.70E-06 66 0.003960350062 GWAS

GOTERM_BP_DIRECT GO:0034380~high-density lipoprotein particle assembly 7 1.03E-05 8 0.004210241428 GWAS

GOTERM_BP_DIRECT GO:0043330~response to exogenous dsRNA 13 1.60E-05 34 0.005951472193 GWAS

GOTERM_BP_DIRECT GO:0006959~humoral immune response 17 1.83E-05 57 0.00625583716 GWAS

GOTERM_BP_DIRECT GO:0060337~type I interferon signaling pathway 18 2.24E-05 64 0.006569725046 GWAS

GOTERM_BP_DIRECT GO:0042632~cholesterol homeostasis 18 2.24E-05 64 0.006569725046 GWAS

GOTERM_BP_DIRECT GO:0002250~adaptive immune response 30 2.57E-05 148 0.00703243608 GWAS

GOTERM_BP_DIRECT GO:0060338~regulation of type I interferon-mediated signaling pathway 11 3.47E-05 26 0.00888618101 GWAS

GOTERM_BP_DIRECT GO:0034375~high-density lipoprotein particle remodeling 8 0.000127 15 0.03072093765 GWAS

GOTERM_BP_DIRECT GO:0045087~innate immune response 61 0.000172 430 0.03913021977 GWAS

GOTERM_BP_DIRECT GO:0008203~cholesterol metabolic process 17 0.000186 68 0.0401647151 GWAS

GOTERM_BP_DIRECT GO:0051607~defense response to virus 30 0.000196 165 0.0401647151 GWAS

GOTERM_BP_DIRECT GO:0048261~negative regulation of receptor-mediated endocytosis 6 0.000221 8 0.04312454211 GWAS
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GOTERM_BP_DIRECT GO:0033081~regulation of T cell differentiation in thymus 5 0.000265 5 0.04888240629 GWAS

GOTERM_BP_DIRECT GO:0042157~lipoprotein metabolic process 12 0.000274 38 0.04888240629 GWAS

GOTERM_MF_DIRECT GO:0005132~type I interferon receptor binding 12 1.60E-08 17 2.10E-05 GWAS

GOTERM_MF_DIRECT GO:0004872~receptor activity 38 5.71E-05 217 0.03740726816 GWAS

KEGG_PATHWAY hsa05320:Autoimmune thyroid disease 18 8.56E-07 52 0.000222 GWAS

KEGG_PATHWAY hsa05168:Herpes simplex infection 35 1.36E-05 183 0.001767507616 GWAS

KEGG_PATHWAY hsa05152:Tuberculosis 33 4.30E-05 177 0.003642935069 GWAS

KEGG_PATHWAY hsa05162:Measles 27 5.79E-05 133 0.003642935069 GWAS

KEGG_PATHWAY hsa05164:Influenza A 32 7.54E-05 174 0.003642935069 GWAS

KEGG_PATHWAY hsa04620:Toll-like receptor signaling pathway 23 8.44E-05 106 0.003642935069 GWAS

KEGG_PATHWAY hsa04623:Cytosolic DNA-sensing pathway 16 0.000282 64 0.01043084834 GWAS

KEGG_PATHWAY hsa05160:Hepatitis C 25 0.000395 133 0.01278055514 GWAS

KEGG_PATHWAY hsa04622:RIG-I-like receptor signaling pathway 16 0.000783 70 0.02252401686 GWAS

KEGG_PATHWAY hsa04640:Hematopoietic cell lineage 18 0.001089870036 87 0.02822763393 GWAS

KEGG_PATHWAY hsa04975:Fat digestion and absorption 11 0.001390965164 39 0.03275090705 GWAS

KEGG_PATHWAY hsa04650:Natural killer cell mediated cytotoxicity 22 0.001669347106 122 0.03421659806 GWAS

KEGG_PATHWAY hsa04380:Osteoclast differentiation 23 0.001816977557 131 0.03421659806 GWAS

KEGG_PATHWAY hsa05150:Staphylococcus aureus infection 13 0.001849545841 54 0.03421659806 GWAS

REACTOME_PATHWAY R-HSA-912694:R-HSA-912694 11 5.12E-05 26 0.02929734955 GWAS

REACTOME_PATHWAY R-HSA-909733:R-HSA-909733 18 7.45E-05 67 0.02929734955 GWAS

REACTOME_PATHWAY R-HSA-933541:R-HSA-933541 12 9.98E-05 33 0.02929734955 GWAS

REACTOME_PATHWAY R-HSA-983231:R-HSA-983231 24 0.000156 112 0.03432145982 GWAS

UP_KEYWORDS Phosphoprotein 793 2.55E-08 8246 1.27E-05 GWAS

UP_KEYWORDS Alternative splicing 967 6.95E-06 10587 0.001629083992 GWAS

UP_KEYWORDS Polymorphism 1085 9.85E-06 12043 0.001629083992 GWAS

UP_KEYWORDS Immunity 68 6.66E-05 500 0.008255331787 GWAS

UP_KEYWORDS Lipid transport 21 0.000102 96 0.01015793538 GWAS

UP_KEYWORDS Sushi 15 0.000147 56 0.0121409963 GWAS

UP_KEYWORDS Antiviral defense 23 0.000202 116 0.01431515102 GWAS

UP_KEYWORDS Sugar transport 12 0.000385 41 0.02203312701 GWAS

UP_KEYWORDS Amyotrophic lateral sclerosis 10 0.0004 29 0.02203312701 GWAS

UP_KEYWORDS Host-virus interaction 52 0.00062 385 0.03075224533 GWAS

UP_KEYWORDS Complement pathway 10 0.000691 31 0.0311778076 GWAS
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Pathway identifier Pathway name #Entities found #Entities total Entities pValue Entities FDR Dataset

R-HSA-112314 Neurotransmitter receptors and postsynaptic signal transmission 53 231 5.46E-06 0.005190778659 Down-Micro

R-HSA-438066 Unblocking of NMDA receptors, glutamate binding and activation 14 27 5.94E-06 0.005190778659 Down-Micro

R-HSA-6794362 Protein-protein interactions at synapses 28 93 9.74E-06 0.005668613727 Down-Micro

R-HSA-112316 Neuronal System 91 487 1.46E-05 0.006376016045 Down-Micro

R-HSA-442755 Activation of NMDA receptors and postsynaptic events 31 113 1.98E-05 0.006918253698 Down-Micro

R-HSA-112315 Transmission across Chemical Synapses 68 341 2.61E-05 0.007605384493 Down-Micro

R-HSA-438064 Post NMDA receptor activation events 27 96 4.37E-05 0.01089276926 Down-Micro

R-HSA-9022702 MECP2 regulates transcription of neuronal ligands 6 13 8.40E-06 0.009004104465 Down-RNA

R-HSA-3371568 Attenuation phase 9 47 5.56E-05 0.02979663296 Down-RNA

R-HSA-877300 Interferon gamma signaling 85 250 4.01E-13 7.20E-10 GWAS

R-HSA-913531 Interferon Signaling 114 394 1.40E-12 1.26E-09 GWAS

R-HSA-909733 Interferon alpha/beta signaling 61 188 4.43E-09 2.65E-06 GWAS

R-HSA-1236977 Endosomal/Vacuolar pathway 35 82 1.70E-08 7.60E-06 GWAS

R-HSA-983170 Antigen Presentation: Folding, assembly and peptide loading of class I MHC 38 102 1.32E-07 4.74E-05 GWAS

R-HSA-933541 TRAF6 mediated IRF7 activation 21 43 1.51E-06 0.000451 GWAS

R-HSA-202427 Phosphorylation of CD3 and TCR zeta chains 20 45 1.03E-05 0.00263086831 GWAS

R-HSA-202430 Translocation of ZAP-70 to Immunological synapse 19 42 1.33E-05 0.002980270843 GWAS

R-HSA-389948 PD-1 signaling 19 45 3.34E-05 0.006650808541 GWAS

R-HSA-1236974 ER-Phagosome pathway 46 173 4.91E-05 0.008538288711 GWAS

R-HSA-202433 Generation of second messenger molecules 22 59 5.24E-05 0.008538288711 GWAS

R-HSA-9029569 NR1H3 & NR1H2 regulate gene expression linked to cholesterol transport and efflux 22 66 0.000248 0.03693960813 GWAS


