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  Resumen  del  Trabajo  (máximo  250  palabras): Con  la  finalidad,  contexto  de
aplicación, metodología, resultados y conclusiones del trabajo.

El  cáncer  de páncreas es uno de los  cánceres más agresivos  que afectan al  ser
humano con una tasa de supervivencia a los 5 años inferior al 10%. En el momento
del  diagnóstico,  para  muchos  pacientes  es  ya  demasiado  tarde  y  no  pueden  ser
sometidos a cirugía o no puede beneficiarse de tratamientos con quimioterapia.

El objetivo del presente trabajo es estudiar los perfiles de expresión génica des de
diferentes perspectivas, para generar varias firmas génicas con poder predictivo. Estas
firmas podrían ayudar a los médicos tanto en la prognosis de la enfermedaad como
para determinar tratamientos según el paciente.

Los  procesos  biológicos  de  los  genes  en  estas  firmas  génicas  también  han  sido
analizados, encontrando que la mayoría de ellos están relacionados con processos
celulares y metabólicos.

Además,  el  análisis  de  supervivencia  con  Kaplan-Meier  Plotter  ha  mostrado  que
muchos de estos genes están significativamente correlacionados con la supervivencia
en el cáncer de páncreas. 

Finalmente,  el  poder  predictivo de las diferentes  firmas génicas ha sido estudiado
mediante  un  algoritmo  de  Machine  Learning.  Concretamente,  varios  modelos  de
Random Forest han sido entrenados y evaluados con diferentes configuracions. La
mejor precisión (62%) se obtuve con la firma génica fruto de la intersección de las
firmas obtenidas a partir  de los dos grupos estudiados: Tratamiento vs resultado y
Expressión génica vs resultado.

  Abstract (in English, 250 words or less):
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PDAC is one of the most aggressive human cancers with a 5-year overall survival rate
lower than 10%. At the time of diagnose, it is already too late for many patients who
can’t benefit from surgical procedure or chemotherapy. 

The objective of the present work is to study the gene expression profiles from different
perspectives, and generate several signatures with predictive power. This could allow
physicians to improve prognosis and find better treatments according to each patient. 

The biological processes where the genes in these signatures participate were studied,
showing that most of the genes are related to cellular and metabolic processes.

The survival analysis with Kaplan-Meier Plotter showed that many of these genes had
a significant correlation with survival in pancreatic cancer.

Finally, the predictive power of the different signatures was assessed using a Machine
Learning  algorithm.  Specifically,  several  Random  Forest  models  were  trained  and
evaluated with different configurations. The best accuracy (62%) was obtained with the
common signature, which included the intersection of the genes in the signatures of
each of the groups studied, Treatment vs outcome and Gene expression vs outcome.
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1 Introduction

1.1 Keywords

Pancreatic  cancer,  personalized medicine,  gene expression,  data mining,  predictive
model. 

1.2 Abstract

Pancreatic ductal adenocarcinoma, is one of the most aggressive human cancers with
a  5-year  overall  survival  rate  lower  than  10%[1].  Traditional  treatments,  like
chemotherapy,  surgery  and  radiation,  have  not  proved  significant  to  improve
survival[2].  Only  some  chemotherapy  agents  (FOLFIRINOX,  gemcitabine)  and  one
targeted therapy (erlotinib)  have shown some degree of  efficacy,  but  a few rate of
patients responded to these drugs. On the other hand, developing new drugs will also
be needed, as there has not been much improvement in the treatment of the PDAC for
the last 10, or even 20 years[3].

This cancer is also very difficult to diagnose, most of the tumours can’t be resected, are
locally advanced or have metastasised by the time the disease is detected. There is a
variety of mutations involve in PDAC, and each of them is present in a small fraction of
patients, which makes very difficult to apply targeted therapies. Also, a small fraction
(0.5-1%) of the pancreatic cells are cancer stem cells (CSC), which have an increased
capacity  for  self-renewal  and  have  specific  properties,  e.g.  chemo-resistance,  that
allow them to escape treatments. This cancer also has, metastatic potential and an
overdeveloped tumour micro-environment (TME) which hinders drug activity because
they can’t penetrate the stroma.

For all these goals, developing new drugs, targeting treatments and early prognosis, it
is  necessary  to  molecularly  characterize  these  tumours.  So  far,  the  AJCC-  TNM  
classification is the only tool used by physicians to guide the treatment and evaluate
the survival rate of a patient. But this method constantly fails when evaluating this type
of cancer[4],[5].

In this project we want to study the relation between treatments, their outcome and
gene  expression  to  generate  a  predictive  gene  signature which  aims  at  helping
physicians choosing a specific treatment for each patient,  that  is,  applying targeted
therapy. 
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1.3 Description and justification

As PDAC has such a low survival rate, using targeted therapy might work better than
current  standard  treatments  and,  hopefully,  increase  the  survival  chances  of  the
patients. 

The purpose of this predictive gene signature is to predict an outcome based on the
gene expression and treatment. In order to generate this signature, we will try to find
the relevant processes and the best therapeutic window by analysing different datasets
which compare treatments and outcome, and gene expression and outcome.

If this project is successful and we develop a good predictive gene signature, it might
help physicians to decide what treatments they should use in each patient. 

On the other hand, the outcome of this project might not be of any help for current
patients, as expecting to generate a useful tool is probably too ambitious considering
the short amount of time that we have, but might be a base line for further research.

1.4 Personal motivation

I studied computer science, although I was also very interested in sciences in general
and biology in particular. My degree’s final year project was about building a Desktop
application  which could  compare a  pair  of  images from the surface of  Jupiter  and
calculate some metrics which were of interest to  astronomers studying this planet.

After finishing my degree, I worked in a couple of private companies, but the projects
were not meaningful enough to me, and I tried to find something different and more
interesting. Then,  I  started to work at  CRG (Centre de Regulació Genòmica1)  as a
software programmer. We are involve in many projects related to genomics and we
develop tools which can help the research community.

I chose this project because I think it is an opportunity to contribute to research, it is
challenging and, finally, it is about a topic which I am not familiar with, but I would like
to learn.

1 https://www.crg.eu/  
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1.5 Goals

The main goals of this project are:

• Generate three different signatures using gene expression data in studies with
different  approaches,  specifically  1)  Treatment  vs  outcome,  and  2)  Gene
expression vs outcome.

• Explore the biological processes of the genes in these signatures.

• Examine the prognostic significance of the genes in these signatures.

• Study the predictive power of these signatures for pancreatic cancer prognosis
using Machine Learning.

1.6 Planning

The following Figure 1 depicts the different phases of this project, which are described
below:

1. Definition and planning (11 days)

In this phase, the scope of this project is defined, as well as, the personal motivation.

2. State of the art (20 days)

First step was to analyse the state of the art of this topic. That  was, searching and
reading papers, studies, etc., which seemed to be related with what this project wants
to achieve.

3. Design and implementation (62 days)

Next step consisted in defining the tasks which need to be done in order to accomplish
the goals defined in phase 1.

3
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The following figure Figure 2 depicts these tasks and their ordering:

Each of these tasks is now briefly described:

i. Examine GEO DB: get familiar with this repository. Understand what data is
stored.

ii. Search GSE Series: using the GEO search tool, try to find series matching the
two groups of interest: 1) Treatment vs outcome, and 2) Gene expression vs
outcome.

iii. Download Series Matrix File:  download the expression data,  as well  as,  the
metadata.

iv. Check:  some series  didn’t  have the expression data available.  Other  series
didn’t have clinical data among the metadata.

v. Prepare data: some arrangements were necessary to be done in the data in
order to do the Differentially expressed genes analysis.

vi. Find upregulated/downregulated genes for each group: data was analysed in
order to find these DEGs.

vii. Find common signature: a gene signature was generated for each group, as
well as, a final signature.

4
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viii. Build model: different models were trained using the different signatures.

ix. Evaluate: the different models were evaluated using unseen data.

x. Generate  final  signature:  considering  the  model,  the  most  significant  genes
were selected for this final signature.

xi. Functional analysis: this allowed learning about the biological processes related
to the genes in the signatures.

xii. Kaplan-Meier survival analysis: this is an interesting tool to compute the effect
of different variables to the survival.

4. Preparation of the document (13 days)

In this step, final results are obtained and this document is finished.

5. Preparation of the presentation and defence (6 days)

Final phase consists of preparing and recording a presentation, and defend the project
in front of the committee.
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2 State of the art
During the last two decades there has been a huge progress in computing. Machine
Learning algorithms are  now available  for  anybody with  many languages providing
implementations of the most common ones. Hence, it is not strange to find so many
studies where these techniques have been used in some way or another.

In this chapter, we take a brief look at some studies related to finding predictive models
for pancreatic cancer, 

2.1 Gene expression studies

There  have  been  many  efforts  to  generate  a  predictive  model  based  on  gene
expression. 

Artificial Neural Networks were used to create a model to diagnose PDAC using the 5
best genes among all DEG which were found overexpressed in microarray expression
data.  The  model  generated  could  classify  samples  with  a  sensitivity  of  87.6,  and
specificity of 83.1[6].

Another study built  a predictive nomogram integrating  clinicopathological information
and the risk score based on survival-related genes through a univariate Cox regression
analysis. This study identified four new biomarkers, and the nomogram showed robust
performance, making it an effective and reliable guide for prognosis assessment and
treatment decision-making in the clinic[7].

There is a paper where a novel hybrid framework based on data mining techniques
was proposed. They also defined two methods of gene selection, and included the age
of patients as an additional factor. The results were very promising, and showed their
biological  validity.   Interestingly,  they also found that  the age is  not  relevant  in  the
expression  changes  of  the  selected  genes  when  the  pathology  has  already
developed[8].

There is also a very interesting study where they found a gene signature to identify
early-stage PDAC. They took  a different  approach based on within-sample  relative
expression  orderings  (REOs),  and  used  a  selection  technique  called  minimum
redundancy maximum relevance (mRMR) to pick out  the optimal  REOs.  They also
compared the performance of different classification algorithms, being SVM the best
one. Finally, they defined a 9 gene pairs’ signature, which was validated with data from
different platforms, namely,  microarray and RNA-Seq. This study was also interesting
because raised a concert regarding the existing diagnostic signatures. They claimed
that the batch effect could influence the choice of these signatures because they are
basically obtained by using signature genes’ absolute expression value. This is why
they  chose  using  REO,  which  is  highly  robust  to  experimental  batch  effects  and
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platform  differences,  and  has  already  been  successfully  used  to  identify  the  early
diagnosis signature of malignant carcinoma[9].

2.2 Other data sources studies

There are also some studies which built predictive models using microRNAs (miRNAs)
[10]–[12], long non-coding RNAs (lncRNAs)[3], and proteomics[13] data. 

For example, in one of these studies, they selected 27 miRNA signatures through a
differential expression analysis, and used these as the input data for two independent
feature selection algorithms (PSO + ANN, and NCA). The final model consisted of five
miRNAs  and  showed  great  diagnostic  results,  including  the  validations  set  (0.93
accuracy, and 0.93 sensitivity). However, they also claimed that experimental testing is
needed[11].

Other  studies  used  a  multi-omics  approach  to  the  problem,  integrating  data  from
different sources[10],[14]. One of these found five candidate genes what were mutated
in the early stages, and had high cellular prevalence (CP). They then integrated data
from different sources: RNA sequencing, microRNA sequencing, and DNA methylation.
They reduced the dimensions with an autoencoder, and used K-means to cluster the
patients in two subgroups. They found that patients in these subgroups had significant
differences in survival and recurrence. They finally developed a prediction model for
prognosis using two biological features (weather a sample had mutations in candidate
genes, and the subgroup assigned by K-means clustering), and 9 clinical features (e.g.
sex, grade, AJCC cancer stage, age, treatment, etc.). Among all the trained models,
logistic regression showed the best performance for both DFS and OS[10]. 

In  the  other  multi-omics  study  mentioned,  they  used  next-generation  sequencing,
transcriptome  meta-analysis,  and  immunohistochemistry,  combined  with  statistical
learning, to validate multiplex biomarkers candidates. They applied several statistical
methods  (Kaplan-Meier  survival  analysis,  multivariate  Cox  regression  analysis,
Pearson’s correlation analysis and Spearman’s rank correlation analysis), and, finally,
built  a  Random Forest classification model based on 11 potential genes. It  showed
excellent performance, and found that four genes were the most important variables of
the model. Also, an interesting fact they rose is that samples usually stem from patients
with  the  advanced  disease,  but  biomarkers  are  expected  to  be  for  early,  curable
stages, which could be a problem when generating these signatures[14].

We also found an interesting study where they used data from blood tests (comprising
cancer antigens,  hemoglobin,  leukocytes,  hematocrit,  and platelets),  to train a Twin
Support Vector Machine (TWSVM) model, giving an accuracy of 98%, and sensitivity of
100%. There was no validation with another dataset(s), but results seemed interesting
enough to further investigation, considering that blood tests are very easy to obtain and
non-invasive[15]. 

7



2.3 Application studies

A paper was found where they studied and listed the many applications of Artificial
Intelligence in pancreatic cancer: (1) in molecular/imaging/pathological diagnosis; (2) in
radiotherapy,  to  both  use  an  appropriate  dose  and  an  accurate  location;  (3)  in
chemotherapy,  to  guide it  based on the cancer  subtypes;  (4)  in  surgical  treatment
through  the  usage  of  robot-assisted  pancreatic  cancer  surgery  (RDP);  (5)  in
prognosis[16].

2.4 Other cancers

In the context of breast cancer, there is a very interesting study where they developed
several multi-gene expression signatures to help predicting different factors of interest
for  the  patient:  risk  factors  (e.g.  hereditary  cancer  predisposition),  recurrence  or
metastasis (e.g. probability for distant recurrence for 10 years, distant metastasis within
5 years), and response to therapies (e.g. guide chemotherapy decisions, detection of
deficiencies in some genes which produce a wrong activation of some drugs). These
signatures  have  improved  the  diagnose  of  breast  cancer,  prognosis  of  tumours,
identification of therapeutic targets, and prediction of response to adjuvant systemic
therapies[17]. 

There are also similar studies regarding lung cancer. In one of these, they used several
machine learning algorithms to investigate the gene expression profiles of two types of
lung cancer. They used MCFS to find the informative features, and fed this list into the
IFS method to extract the optimal features. Then, they constructed an optimal  SVM
classifier, which showed very high performance in distinguishing the two types of lung
cancer[18].

2.5 Summary of techniques

All  the  studies  mentioned  above,  used  different  methods  for  feature  selection,
algorithms to create the models, statistical measures, etc. In this section, we will list all
these tools, as they can be a very helpful source of ideas when developing our own
project.

2.5.1 Machine learning algorithms

• K-means  

• K-Nearest Neighbour (KNN)  

• Artificial Neural Network (ANN)  

• Support   Vector Machine (SVM)  

• Twin Super Vector Machine (TWSVM  )  
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• Random Forest (RF)  

• Logistic Regression   (with or without regularization, e.g. L2)

2.5.2 Dimensionality reduction

• Principal Component Analysis (PCA)  

• Neighbourhood Component Analysis (NCA)  

• Monte Carlo feature selection (MCFS  )  

• Incremental Feature Selection (IFS)  

• Particle Swarm Optimization (PSO)  

• Minimum Redundancy Maximum Relevance (mRMR)  

• Autoencoder  

2.5.3 Statistical measures

• Pearson’s correlation coefficient  

• Spearman’s rank correlation  

• Mann-Whitney test  

• Kruskal-Wallis test  

2.5.3.1 Survival analysis

• Kaplan-Meier  

• Cox regression  

9



3 Methodology

3.1 Data acquisition

All data expression used in this project to find the gene signatures has been retrieved
from the  Gene Expression  Omnibus  (  GEO  )   repository,  and has  been  downloaded,
processed and analysed using R programming language.

On the other hand, data (expression and clinical) used to train the Machine Learning
algorithm has been retrieved from the cBioPortal for Cancer Genomics repository. The
programming language used for this step has also been R.

3.1.1 Gene expression data for Treatment vs Outcome

• GSE1122822:  BET  inhibitor  GSK525762  and  MEK  inhibitor  trametinib
treatments. Array: Affymetrix Human Genome U133 Plus 2.0.

• GSE457573:  MEK  inhibitor  CI-1040  treatment.  Array:  Affymetrix  Human
Genome U133A 2.0.

• GSE144264: retinoic acid treatment. Array: Illumina human-6 v2.0 expression
beadchip.

Series Total samplesSamples used Array

GSE112282 48 48 Affymetrix Human Genome U133 Plus 2.0

GSE45757 141 132 Affymetrix Human Genome U133A 2.0

GSE14426 30 12 Illumina human-6 v2.0 expression beadchip

Table 1: Summary of the selected series in Treatment vs Outcome

2 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE112282  
3 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE45757  
4 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE14426  
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3.1.2 Gene expression data for Gene expression vs Outcome

• GSE215015: expression and clinical data. Array: Agilent-014850 Whole Human
Genome Microarray 4x44K G4112F.

• GSE287356:  expression and clinical data. Array: Affymetrix Human Gene 1.0
ST.

• GSE621657:  expression and clinical  data.  Array:  Affymetrix  Human Genome
U219.

• GSE717298: expression and clinical data. Array: Agilent-014850 Whole Human
Genome Microarray 4x44K G4112F.

• GSE565609: expression and clinical data. Array: Affymetrix Human Exon 1.0 ST.

Series Total Samples Samples used Array

GSE21501 132 102
Agilent-014850 Whole Human Genome 
Microarray 4x44K G4112F

GSE28735 90 42 Affymetrix Human Gene 1.0 ST

GSE62165 131 118 Affymetrix Human Genome U219

GSE71729 357 125
Agilent-014850 Whole Human Genome 
Microarray 4x44K G4112F

GSE56560 35 28 Affymetrix Human Exon 1.0 ST

Table 2: Summary of the selected series in Gene expression vs Outcome

5 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE21501  
6 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE28735  
7 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE62165  
8 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE71729  
9 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE56560  
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3.2 Data analysis

3.2.1 Differentially expressed genes analysis

In order to find a common signature with potential predictive power, gene expression
data was analysed to find the differentially expressed genes (DEG) for each of the
following types of study: 1) treatment vs outcome, and 2) gene expression vs outcome.

The steps followed to perform this analysis with limma package in R, were:

1. Verification that data is normalised and log2.

It could be easily verified by plotting a box plot of the data with boxplot() function from
graphics R package.

2. Selection of platform characteristics.

In most of the platforms (a.k.a. arrays), the ID column corresponded to the probe ID,
but we were interested in genes. The information available in the platforms was used to
convert from the probe ID to GenBankID. 

In some cases, it was also necessary to split one row into many because that probe
matched with more than one gene. For other series, it was also necessary to collapse
several rows pointing to the same gene into a single one. For the latter, the average
was calculated on the expression data using avereps() function from limma package.

3. Selection of sample and characteristics.

For  example,  in  some series only  samples  corresponding to tumour  samples were
selected, and the survival value was used to perform the DEG analysis. 

4. Design and execution of the DEG analysis.

The  DEG  analysis  was  performed  using  model.matrix() from  stats package,
makeContrasts(), lmFit(), eBayes(), and decideTests() functions from limma package in
R. Specific details about this and previous steps for each of the series can be found in
annex DEG analysis.

5. Intersection of DEG in common between series of each group.

This generated two lists of DEG, one for each of the groups.

6. Intersection of DEG in common between the two groups.

This intersection was done between the two lists produced in the previous step. The
signatures produced in both steps 6 and 7 can be found in annex Gene signatures.
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3.2.2 Correlation analysis

Several correlation analysis  were  performed using the different  signatures obtained
after  the  DEG  analyses  for  each  of  the  groups.  These  analyses  also  included
prognostic parameters like OS or PFS. In all cases, cor() function of stats package, as
well as, ggplot() function of tidyverse package, were used: the former to calculate the
correlation  matrix,  and the latter  to  nicely  print  it  as  a  heat  map.  Finally,  Pearson
coefficient was chosen as the test statistic.

3.2.3 Kaplan-Meier survival analysis

The effect of the genes of the different signatures on survival was assessed using the
Kaplan-Meier Plotter10 online tool[24]. The data sources of this tool include GEO, EGA
and TCGA databases. It includes gene expression and clinical data in order to analyse
the prognostic value of a particular gene by comparing the two patient cohorts (e.g.
high vs low expression) in a Kaplan-Meier survival plot, as well as, the hazard ratio with
95% confidence intervals and logrank P value.

3.2.4 Functional analysis with Panther

In order to understand the biological processes of the genes involved in the different
signatures,  the  Panther  Classification  System11 online  tool[25] was  used.  This  tool
classifies  the  provided  genes  by  the  function  of  the  protein,  considering  also  the
interaction  with  other  proteins  to  accomplish  some goal  at  the  level  of  the  cell  or
organism.

3.2.5 Machine Learning

The  algorithm  chosen  was  Random  Forest,  which is  a supervised  algorithm  for
classification and regression tasks.

In this project, classification was used in order to predict the class of interest. Different
proportions of training and test data were used, namely 60%/40%, 70%/30%, 80%/20%
and 90%/10%, respectively. Also, cross-validation method with 10 folds was used, in
conjunction with 3 and 10 repeats. Different values of  mtry and ntree were tried, and
default values were used for maxnode and nodesize. Finally, for the evaluation of the
different models, accuracy, specificity and sensitivity were calculated.

10 https://kmplot.com/  
11 http://pantherdb.org/  
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4 Results

4.1 DEG analysis

The DEG analysis was performed on 3 series for “Treatment vs outcome” and 5 series
for “Gene expression vs outcome”.

The goal was to detect the genes differentially expressed considering different criteria. 

4.1.1 Treatment vs Outcome

This table summarises the analyses performed on the three series:

Series
Sample 
characteristics

Contrasts p.value Total DEG

GSE112282
Cell line, replicate and 
treatment

BET - VEHICLE, 
BETMEK – VEHICLE, 
MEK - VEHICLE

0.05 1044

GSE45757 Treated with, cell line Untreated - Treated 0.05 5450

GSE14426
Source name (only 
24hr and 168hr)

Vehicle168h – ATRA168h, 
Vehicle24h - ATRA24h

0.3 19

Table 3: Summary of DEG analysis for Treatment vs Outcome

All the details about each of these analyses, as well as, the list of genes obtained can
be found in annex Treatment vs outcome.
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4.1.2 Gene expression vs Outcome

This table summarises the analyses performed on the five series:

Series
Sample 
characteristics

Contrasts p.value
Total 
DEG

GSE21501 Risk LowRisk - HighRisk 0.05 1205

GSE28735
Survival, tissue 
(only tumour)

Early - Advanced 0.25 46

GSE62165
Stage, tissue 
(only tumour)

Early - Advanced 0.6/0.4 199/49

GSE71729
Survival, tissue 
(only tumour)

Early - Advanced 0.6 83

GSE56560 Grade G3 - G2 0.99 153

Table 4: Summary of DEG analysis for Gene expression vs Outcome

The following Table 5 has been used to convert the survival value (matched to Median
Survival Time, MST) to a stage, based on the figure Figure 3 below[23]:

All the details about each of these analyses, as well as, the list of genes obtained can
be found in annex Gene expression vs outcome.
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Figure  3:  Stage-specific  survival  for  histologically  confirmed
PC derived from SEER data 

MST (months) Stage

21.44 I

11.84 II

8 III

3 IV

Table 5: MST vs Stage



4.1.3 Common signatures

Once the DEG analyses were run, a signature for each group was calculated. Several
approaches were tested in order to find the biggest overlap of genes:

• selecting top X genes (e.g. top 500 genes with lowest p.value)

• modifying the  p.value threshold applied in the  decideTests() function of  limma
package in R.

The best results were obtained with the latter, and two signatures with 9 (Treatment vs
outcome) and 17 (Gene expression vs outcome) genes were generated. 

Finally, a common signature to both groups was also calculated, producing a signature
of 17 genes.

These three signatures, and more details about the procedure followed, can be found
in annex Gene signatures.
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4.2 Kaplan-Meier survival analysis

A survival analysis for each signature (see annex Gene signatures) was performed with
the Kaplan-Meier Plotter online tool using pancreatic cancer data in order to asses their
correlation with prognostic parameters. 

Note that only significant genes are displayed in the following tables.

4.2.1 Treatment vs outcome signature

The survival analysis based on the expression data of the 9 genes in the signature (see
Treatment vs outcome signature) was done returning that the low expression of 5 of
them was significantly (p.value < 0.05) correlated with poor survival. Data is presented
in Table 6:

Gene
Hazard-Ratio

(HR)
logrank P

Median
survival in low

expression
cohort

(months)

Median
survival in high

expression
cohort

(months)

CREB1 0.85 (0.73 – 0.99) 0.039 35 42.05

IDS 0.87 (0.79 – 0.96) 0.0061 191.21 216.66

BCKDHB 0.75 (0.68 – 0.83) 3.8e-8 39 62.36

HNRNPA2B1 0.57 (0.49 – 0.66) 3.7e-13 122.64 171.43

MYO9A 0.84 (0.72 – 0.98) 0.0221 33 43

Table 6: Genes of “Treatment vs outcome” signature significantly correlated with poor survival 

In this case, low expression of  CREB1, IDS, BCKDHB, BCKDHB and MYO9A was
found to be related to a poorer median survival.
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4.2.2 Gene expression vs outcome signature

The survival analysis based on the expression data of the 17 genes in the signature
(see Gene expression vs outcome signature) was done returning that the high or low
expression of 9 of them was significantly (p.value < 0.05) correlated with poor survival.
Result is presented in Table 7:

Gene
Hazard-Ratio

(HR)
logrank P

Median
survival in low

expression
cohort

(months)

Median
survival in high

expression
cohort

(months)

HMGA2 0.84 (0.72 – 0.98) 0.0244 33.64 43

C1orf21 0.59 (0.53 – 0.68) <1e-16 184.04 216.66

CBX6 0.79 (0.71 – 0.87) 2.8e-6 42 60

E2F7 1.36 (1.17 – 1.59) 5.0e-5 49.2 30.42

KCNB1 0.77 (0.66 – 0.9) 0.0007 35 44

MAMSTR 0.61 (0.52 – 0.7) 7.3e-11 28 58

MT1H 1.18 (1.06 – 1.3) 0.0016 216.66 191.21

KIAA0238 0.73 (0.66 – 0.8) 5.7e-10 40.8 61.64

TSPAN3 0.69 (0.6 – 0.81) 2.1e-6 30.42 53.56

Table  7: Genes of “Gene expression vs outcome” signature significantly correlated with poor
survival. In orange, upregulated genes. In black, downregulated genes.

In this case, high expression of E2F7 and MT1H was found to be related to a poorer
median  survival,  whereas  low  expression  of  HMGA2,  C1orf21,  CBX6,  KCNB1,
MAMSTR, KIAA0238 and TSPAN3 was related to a poorer median survival.
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4.2.3 Common signature

The survival analysis based on the expression data of the 17 genes in the signature
(see  Common signature) was done returning that the high or low expression of 7 of
them  was  significantly  (p.value <  0.05)  correlated  with  poor  survival.  Result  is
presented in Table 8:

Gene
Hazard-Ratio

(HR)
logrank P

Median
survival in low

expression
cohort

(months)

Median
survival in high

expression
cohort

(months)

HMFT1638 1.18 (1.07 – 1.31) 0.001 216.66 228.85

CDT1 1.57 (1.35 – 1.83) 4.0e-9 57.6 28

C12ORF2 0.85 (0.77 – 0.94) 0.0012 228.85 216.66

F12 1.14 (1.03 – 1.26) 0.011 53.56 45

MAPK13 1.21 (1.09 – 1.34) 0.0002 59 41.42

RAB4B 0.77 (0.69 – 0.85) 2.8e-7 228.85 216.66

BCEI 0.71 (0.65 – 0.79) 6.0e-11 191.21 216.66

Table 8: Genes of the common signature significantly correlated with poor survival. In orange,
upregulated genes. In black, downregulated genes.

In this case, high expression of HMFT1638, CDT1, F12 and MAPK13 was found to be
related to a poorer median survival, whereas low expression of C12ORF2, RAB4B and
BCEI was related to a poorer median survival.
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4.3 Functional analysis

Each of the previous signatures generated was analysed with Panther Classification
System online  tool  in  order  to  learn  about  the biological  processes in  which these
genes participate.

4.3.1 Treatment vs outcome signature

The biological processes of the 9 genes in this signature (see annex  Treatment vs
outcome signature) were examined and summarised in Figure 4:

The  top  three  processes  were:  “cellular  process”  with  4  out  of  9  genes  involved,
“metabolic process” with 4 genes, and “response to stimulus” with 2 genes (note that
some genes are involved in several biological processes).
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Figure 4: Biological processes of genes in “Treatment vs outcome” signature



Details of the genes in category “cellular process” can be found in  Figure 5, where 4
genes are involved in “cellular metabolic process”.

In this  other  Figure 6,  the details  of  category “metabolic  process”  are displayed.  4
genes participate in “cellular metabolic process”, and 3 genes are involved in “nitrogen
compound metabolic  process”,  “organic  substance metabolic  process”  and “primary
metabolic process”.
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Figure 5: Details of “cellular process” category

Figure 6: Details of "metabolic process" category



4.3.2 Gene expression vs outcome signature

The biological processes of the 17 genes in this signature (see annex Gene expression
vs outcome signature) were examined and summarised in Figure 7:

The top three processes were: “cellular process” with 13 out of 17 genes involved,
“biological regulation” with  genes, and “metabolic process” with 7 genes (note that
some genes are involved in several biological processes).
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Figure 7: Biological processes of genes in “Gene expression vs outcome” signature



In the next figure  Figure 8 the details of the processes in “cellular process” category
were examined. 7 genes fell in the category of “cellular metabolic process”, while 3
genes  were  related  to  “cell  communication”  and  “cellular  response  to  stimulus”,
respectively. 

If further details are requested for category “cellular metabolic process”, 6 genes are
classified into “cellular macromolecule metabolic process”, as displayed in Figure 9.
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Figure 8: Details of "cellular process" category

Figure 9: Details of "cellular metabolic process" category



4.3.3 Common signature

The  biological  processes  of  the  17  genes  in  this  signature  (see  annex  Common
signature) were examined and summarised in Figure 10:

The top three processes were: “cellular process” with 13 out of 17 genes involved,
“metabolic process” with 10 genes, and “biological regulation” with 6 genes (note that
some genes are involved in several biological processes).

Requesting further details about the largest category, “cellular process”, genes were
classified into the following categories: “cellular metabolic processes” (8 genes out of
13),  “cellular  component  organization  or  biogenesis”  (3  genes),  and  the  rest  of
categories  comprised  1  or  2  genes,  like  “signal  transduction”  (2  genes),  “vesicle-
mediated transport” (2 genes),  “cellular localization” (1 gene), etc. All these categories
are presented in Figure 11:
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Figure 10: Biological processes of genes in common signature



The details about the genes in “cellular metabolic process” can be checked in  Figure
12, where 5 out of 8 genes were involved in “cellular nitrogen compound metabolic
process”,  and 4 out  8 genes participated in  “cellular  aromatic  compound metabolic
process”, “cellular biosynthetic process”, and “heterocycle metabolic process”.
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Figure 11: Details of “cellular process” category

Figure 12: Details of “cellular metabolic process” category



In the next Figure 13, the details regarding “metabolic process” are displayed. The 10
genes are classified into 7 categories, with some of them falling into more than one
category. For example, “organic substance metabolic process” concentrates 10 genes,
but “primary metabolic process”, “nitrogen compound metabolic process” and “cellular
metabolic process” have 8 genes each.
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Figure 13: Details of “metabolic process” category



4.4 Evaluation  of  signatures  as  predictive  models  for
prognosis using machine learning

After getting the three signatures, they needed to be tested with new data in order to
assess their predictive power. Therefore, the new data had to include gene expression
data  for  a  high  number  of  genes,  provide  some  prognostic parameters,  and  a
significant number of samples. 

In cBioPortal for Cancer Genomics a study was found which fulfilled this requirements.
The following Table 9 summarises the information available:

Pancreatic Adenocarcinoma (TCGA, PanCancer Atlas)

Cancer type Pancreatic Adenocarcinoma

Samples 177 (out of 184)

Genes 20531

Prognostic parameters OS_STATUS (living/deceased)

OS_MONTHS 

DSS_STATUS (alive or dead tumor free/dead with tumor)

DSS_MONTHS 

DFS_STATUS (disease free/recurred or progressed)

DFS_MONTHS 

PFS_STATUS (censored/progression)

PFS_MONTHS

Demographic parameters age, sex, race, ethnicity

Clinical parameters stage12

Table 9: Summary of the selected study in cBioPortal

12 Neoplasm Disease Stage American Joint Committee on Cancer Code
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4.4.1 Model selection

The objective is to assess the predictive power of the signatures, therefore supervised
algorithms seemed a valid choice. As shown in the previous section, the are numerical
and categorical variables, allowing to choose between a regression or a classification
model, depending on the data type of the variable to predict.

In the following sections, the available variables are analysed in different ways in order
to choose the best algorithm for this study.

4.4.1.1 Analysis of missing values

The following Table 10 shows the result of analysing the number of missing values for
the prognostic parameters available:

Considering  data  is  missing  for  most  of  the  samples  (115  out  of  177),  variables
DSS_STATUS and DFS_MONTHS were dropped from further analysis. 

On the other hand, DFS_STATUS was kept as only around 12% of the samples (7 out
of 177) were missing this value.
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OS_STATUS OS_MONTHS DSS_STATUS DSS_MONTHS

0 0 7 0

DFS_STATUS DFS_MONTHS PFS_STATUS PFS_MONTHS

115 115 0 0

Table 10: Analysis of missing values



4.4.1.2 Correlation analysis

This section presents all the correlation analyses performed using the three different
signatures (see annex Gene signatures for further information).

The  objective  of  these  analyses  is  to  find  what  prognostic  variables  are  better
candidates to be used in the machine learning phase.

Treatment vs outcome signature

A correlation analysis using the signature obtained for this group (see annex Treatment
vs outcome signature) was performed and represented in a graphical way which is
shown in Figure 14:

There  is  a  higher  (negative  in  most  cases)  correlation  with  PFS_MONTHS  than
OS_MONTHS or DSS_MONTHS. This correlation is specially high among the negative
correlations for SH3TC2. Among the positive, highest correlation is presented for IDS.
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Figure 14: Heat map of the correlation matrix using the signature of “Treatment vs outcome”
and all the samples available



This  plot  has been drawn using the whole  dataset,  which includes dead and alive
patients. The proportion of each status is shown in Table 11:

A second correlation analysis was performed using the fraction of deceased patients, to
assess if there was any difference in the correlation values using this subset.

In the following figure Figure 15, the new correlation matrix was plotted:

This new plot shows that correlation between PFS_MONTHS and SH3TC2 is slightly
stronger (-0.28 vs -0.26), but correlations with IDS are largely weaker (0.08 vs 0.33).
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Figure 15: Heat map of the correlation matrix using the signature of “Treatment vs outcome”
and samples corresponding to deceased patients

Living Deceased

85 99

Table 11: Proportion of
alive and dead patients



Gene expression vs outcome signature

A correlation analysis using the signature obtained for this group (see annex  Gene
expression vs outcome signature) was performed and represented in a graphical way
which is shown in Figure 16:

There  is  a  higher  (negative  in  most  cases)  correlation  with  PFS_MONTHS  than
OS_MONTHS or DSS_MONTHS. This correlation is specially high among the negative
correlations  for  HMGA2  (-0.4),  SLC6A14  (-0.39)  and  POF1B  (-0.34).  Among  the
positive, highest correlations are presented for KCNB1 (0.33) and SLC23A2 (0.31).
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Figure 16: Heat map of the correlation matrix using the signature of “Gene expression vs
outcome” and all the samples available



In the following figure  Figure 17, a new correlation matrix was plotted using only the
fraction of deceased patients, as explained in the previous section:

In  this  new  plot,  correlations  with  the  prognostic  variables  were  weaker  than  the
observed values when using the whole dataset (e.g. -0.24 vs -0.4 for HMGA2 and
PFS_MONTHS).
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Figure 17: Heat map of the correlation matrix using the signature of “Gene expression vs
outcome” and samples corresponding to deceased patients



Common signature

A correlation  analysis  using  the  final  signature  common  to  all  groups  (see  annex
Common signature) was performed and represented in a graphical way which is shown
in Figure 18:

There  is  a  higher  (negative  in  most  cases)  correlation  with  PFS_MONTHS  than
OS_MONTHS or DSS_MONTHS. This correlation is specially high among the negative
for  PLEK2 (-0.4),  PLBD1 (-0.39) and S100A14 (-0.34).  Among the positive, highest
correlations are presented for NSF (0.29) and RAB4B (0.26).

In the following Figure 19, a new correlation matrix was plotted using only the fraction
of deceased patients, as explained in the previous sections:
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Figure 18: Heat map of the correlation matrix using the common signature and all the samples
available



In this new plot, correlations with the prognostic variables were largely weaker than the
observed values when using the whole  dataset  (e.g.  -0.05 vs -0.4  for  PLEK2 and
PFS_MONTHS).
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Figure 19: Heat map of the correlation matrix using the common signature and samples
corresponding to deceased patients



Results

Considering the results of all these analyses, all samples were used in the following
sections.  Also,  a  classification  algorithm  seemed  a  good  candidate,  and  Random
Forest was selected. 

In  order  to  split  the  samples  in  two  classes  to  be  predicted  by  the  model,  the
distribution of values of PFS_MONTHS was further analysed, as shown in Figure 20:

According  to  this  and  the  median  12.03274,  data  was  split  into  the  following  two
groups:

• X0 or Good progression. Those patients with PFS_MONTHS >= 12.

• X1 or Bad progression. Those patients with PFS_MONTHS < 12.
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Figure 20: Histogram of PFS_MONTHS



4.4.2 Feature selection

In the following sections, the three signatures generated were analysed separately, in
order to find what genes could be included in the model, depending on factors like the
absence of values or the high/low correlation between some genes.

4.4.2.1 Analysis of missing values

Treatment vs outcome signature

Considering this signature (see annex Treatment vs outcome signature), it is analysed
if there are missing values for any of these genes. The result is shown in Table 12:

Gene expression vs outcome signature

Considering this signature (see annex  Gene expression vs outcome signature), it  is
analysed if there are missing values for any of these genes. The result is shown in
Table 13:
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BCKDHB CREB1 HNRNPA2B1 IDS KIDINS220

0 0 0 0 0

LAMP2 MYO9A PTEN SH3TC2

0 0 0 0

Table 12: Missing values in “Treatment vs outcome” signature

HMGA2 C1orf21 CBX6 CEACAM5 CNTN2 E2F7

0 0 0 0 0 0

GSDMB KCNB1 MAMSTR MAPK10 MT1H POF1B

0 0 0 0 0 0

SLC23A2 SLC6A14 TOP2B TRIM15 TSPAN3

0 0 0 0 0

Table 13: Missing values in “Gene expression vs outcome” signature



Common signature

Considering this signature (see annex Common signature), it is analysed if there are
missing values for any of these genes. The result is shown in Table 14:

Results

None of the signatures presented missing values for any of the genes, so no other
gene was excluded.
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ADI1 CDS1 CDT1 CHST6 CSRNP2 F12

0 0 0 0 0 0

FAR2 MAGOH MAPK13 MRPL2 NSF PLBD1

0 0 0 0 0 0

PLEK2 RAB4B S100A14 SORD TFF1

0 0 0 0 0

Table 14: Missing values in common signature



4.4.2.2 Correlation analysis

Treatment vs outcome signature

As previous step Analysis of missing values did not discard any gene, the correlation
matrix is the same shown in Figure 14.

Correlation with PFS_MONTHS

First, the correlation values of the genes with the prognostic variable PFS_MONTHS
was analysed. Values comprised a range between 0.04 and 0.33 among the positive
correlations, and between -0.06 and -0.26 among the negative.

Weakest correlations with PFS_MONTHS were discarded using a cut-off of 10%.

Correlations between genes

Second, the correlation values between genes was examined in order to find too strong
correlations among them. The correlation matrix after discarding those genes with a too
low correlation with PFS_MONTHS is showed in Figure 21:
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Figure 21: Correlation matrix with the subset of “Treatment vs outcome”
signature



Observing the values in the figure, the highest positive correlation (0.5) could be found
between  CREB1  and  PTEN,  and  the  highest  negative  (-0.3)  between  IDS  and
SH3TC2. 

As there is no correlation higher than 90%, no other gene was discarded. Therefore,
the final signature comprised the following 4 genes:

CREB1

IDS

PTEN

SH3TC2
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Gene expression vs outcome signature

As previous step Analysis of missing values did not discard any gene, the correlation
matrix is the same shown in Figure 16.

Correlation with PFS_MONTHS

First, the correlation values of the genes with the prognostic variable PFS_MONTHS
was analysed. Values comprised a range between 0.01 and 0.33 among the positive
correlations, and between -0.01 and -0.40 among the negative.

Weakest correlations with PFS_MONTHS were discarded using a cut-off of 10%.

Correlations between genes

Second, the correlation values between genes was examined in order to find too strong
correlations among them. The correlation matrix after discarding those genes with a too
low correlation with PFS_MONTHS is showed in Figure 22:
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Figure 22: Correlation matrix with the subset of “Gene expression vs outcome” signature



Observing the values in  the figure,  the  highest  positive  correlation  (0.79)  could  be
found  between  KCNB1  and  MAPK10,  and  the  highest  negative  (-0.66)  between
MAPK10 and GSDMB. 

As there is no correlation higher than 90%, no other gene was discarded. Therefore,
the final signature comprised the following 12 genes:

HMGA2

CBX6

CEACAM5

E2F7

GSDMB

KCNB1

MAPK10

MT1H

POF1B

SLC23A2   

SLC6A14

TRIM15
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Common signature

As previous step Analysis of missing values did not discard any gene, the correlation
matrix is the same shown in Figure 18.

Correlation with PFS_MONTHS

First, the correlation values of the genes with the prognostic variable PFS_MONTHS
was analysed. Values comprised a range between 0.01 and 0.33 among the positive
correlations, and between -0.08 and -0.46 among the negative.

Weakest correlations with PFS_MONTHS were discarded using a cut-off of 10%.

Correlations between genes

Second, the correlation values between genes was examined in order to find too strong
correlations among them. The correlation matrix after discarding those genes with a too
low correlation with PFS_MONTHS is showed in Figure 23:
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Figure 23: Correlation matrix with a subset of the common signature



Observing the values in  the figure,  the  highest  positive  correlation  (0.85)  could  be
found  between  PLEK2  and  S100A14,  and  the  highest  negative  (-0.45)  between
S100A14 and CSRNP2. 

As there is no correlation higher than 90%, no other gene was discarded. Therefore,
the final signature comprised the following 11 genes:

ADI1

CHST6

CSRNP2

FAR2

MAGOH

NSF

PLBD1

PLEK2

RAB4B

S100A14

TFF1
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4.4.3 Evaluation of the Random forest model

In  this  section,  the  results  from  training  and  evaluating  different  models  with  the
different signatures produced in the previous section Feature selection, are presented.

Specific details about the procedure followed can be found in annex ML model training
and evaluation. Although different combinations of parameters were tested (e.g.  mtry
and ntree), only the best models are showed here.

Finally, sizes of train and test sets used in the next subsections are displayed in Table
15:

Treatment vs outcome signature

Results of training and evaluating different models using this signature is showed in
Table 16:

Training/Test size mtry ntree Accuracy Sensitivity Specificity

60/40 4 2000 0.45 0.5 0.4

70/30 3 800 0.42 0.52 0.3

80/20 4 400 0.4 0.39 0.41

90/10 2 250 0.44 0.55 0.33

Table 16: Models’ metrics using “Treatment vs outcome” signature

Confusion matrix of the best model (60/40) is presented in Table 17 below:
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Prediction / Reference X0 X1

X0 18 21

X1 18 14

Table 17: Confusion matrix of 60/40 model

Train Test

60/40 106 71

70/30 124 53

80/20 142 35

90/10 159 18

Table 15: Sizes of train and test sets



Also, the importance of each predictor in this model is plotted in Figure 24:

The variable with major  importance is  IDS,  which is  consistent  with the correlation
analysis (see Treatment vs outcome signature) were IDS was the gene presenting the
highest correlation value with prognostic variable.
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Figure 24: Variable importance of 60/40 model



Gene expression vs outcome signature

Results of training and evaluating different models using this signature is showed in
Table 18:

Training/Test size mtry ntree Accuracy Sensitivity Specificity

60/40 10 600 0.4 0.36 0.46

70/30 4 550 0.58 0.7 0.46

80/20 2 500 0.49 0.61 0.35

90/10 5 2000 0.97 0.94 1

Table 18: Models metrics using “Gene expression vs outcome” signature

Confusion matrix of the best model (70/30) is presented in Table 19 below:

 Also, the importance of each predictor in this model is plotted in Figure 25:

46

Figure 25: Variable importance of 70/30 model

Prediction / Reference X0 X1

X0 19 14

X1 8 12

Table 19: Confusion matrix of 70/30 model



The variables with major importance are HMGA2 and TRIM15, followed by POF1B,
which is consistent  with the correlation analysis  (see  Gene expression vs outcome
signature) were HMGA2 was the gene presenting the highest correlation value with
prognostic variable (-0.4), and POF1B was the third one (-0.34).

Model 90/10 showed an awesome accuracy, but it cannot be considered as the best
without further validation due to the small size of the test set. This model should be
tested against new data with a larger size in order to validate its performance. 

However, its confusion matrix is presented in Table 20 below:

Also, the importance of each predictor in this model is plotted in Figure 26:

The variables with major importance are CEACAM5 and POF1B, followed by KCNB1
and TRIM15.
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Prediction / Reference X0 X1

X0 17 0

X1 1 17

Table 20: Confusion matrix of 90/10 model

Figure 26: Variable importance of 90/10 model



Common signature

Results of training and evaluating different models using this signature is showed in
Table 21:

Training/Test size mtry ntree Accuracy Sensitivity Specificity

60/40 11 1000 0.60 0.56 0.66

70/30 10 800 0.62 0.59 0.65

80/20 10 450 0.57 0.61 0.53

90/10 7 2000 0.5 0.33 0.67

Table 21: Models metrics using the common signature

Confusion matrix of the best model (70/30) is presented in Table 22 below:

Also, the importance of each predictor in this model is plotted in Figure 27:
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Prediction / Reference X0 X1

X0 16 9

X1 11 17

Table 22: Confusion matrix of 70/30 model

Figure 27: Variable importance of 70/30 model



The  variables  with  major  importance  are  RAB4B and  ADI1,  followed  by  MAGOH,
which is consistent with the correlation analysis (see Common signature) were RAB4B
was the gene presenting the highest positive correlation value with prognostic variable
(0.33).
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5 Conclusions
The impossibility of finding large datasets which included gene expression data, as well
as, prognostic variables, has been a big obstacle in order to train the model because,
the more data the better for any machine learning algorithm. As showed in section
Evaluation  of  the  Random forest  model,  the  training  and  test  sets  were  not  large
enough to train better models.

Also, during the DEG analyses of the gene expression data, it was really difficult to find
differentially  expressed  genes  among  the  data  in  the  series.  Many  series  were
analysed and later discarded, making this part of the project the hardest and longest in
both effort and time.  

Nevertheless, this project has drawn the following conclusions:

• Up to 4 genes out of 9 included in the signature obtained after analysing the
gene expression data grouped under the type “Treatment vs outcome”, showed
a correlation  higher  than  10% with  the  prognostic  variable  progression-free
survival  (PFS)  using  Pearson  coefficient.  Gene  showing  highest  correlation
value was IDS (0.33). 

• Up to 12 genes out of 17 included in the signature obtained after analysing the
gene expression data grouped under the type “Gene expression vs outcome”,
showed a correlation higher than 10% with the prognostic variable progression-
free  survival  (PFS)  using  Pearson  coefficient.  Genes  showing  highest
correlation values were HMGA2 (-0.4), SLC6A14 (-0.39) and KCNB1 (0.33). 

• Up to 11 genes out of 17 included in the signature generated after intersecting
the  signature  obtained  from  the  gene  expression  data  in  “Treatment  vs
outcome”  with  the  signature  obtained  from  data  in  “Gene  expression  vs
outcome”, showed a correlation higher than 10% with the prognostic variable
progression-free  survival  (PFS)  using  Pearson  coefficient.  Genes  showing
highest correlation values were PLEK2 (-0.46), PLBD1 (-0.43) and S100A14 (-
0.42), and RAB4B (0.33). 

• The three signatures analysed, comprising 4, 12 and 11 genes, obtained an
accuracy  of  45%,  58%  and  62%,  respectively.  Although  none  showed  a
significant performance to be used as a classifier,  the latter could be further
investigated (e.g. tested with other independent datasets).

50



6 Future work
There are different tasks that could be done in order to extend the work done in this
project:

• Find more expression data to be included in “Treatment vs outcome” group, in
order to obtain a larger signature and, at the same time, maximise the genes in
common.

• Add more variables to train the model. For example, age, sex and stage could
be interesting factors that could improve the prediction power of the signature(s)
for prognosis in pancreatic cancer.

• Train and test other Machine Learning algorithms, like KNN.
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7 Glossary
ANN, Artificial Neural Network: An ANN is based on a collection of connected units or
nodes called artificial neurons, which loosely model the neurons in a biological brain13.

Autoencoder: is a type of artificial neural network used to learn efficient data codings
in an unsupervised manner. The aim of an autoencoder is to learn a representation
(encoding)  for  a  set  of  data,  typically  for  dimensionality  reduction,  by  training  the
network to ignore signal “noise”14.

cBioPortal  for  Cancer  Genomics:   is  an  open-access,  open-source  resource  for
interactive  exploration  of  multidimensional  cancer  genomics  data  sets.  The  goal  of
cBioPortal  is  to significantly  lower the barriers between complex genomic data and
cancer researchers by providing rapid, intuitive, and high-quality access to molecular
profiles and clinical attributes from large-scale cancer genomics projects, and therefore
to empower researchers to translate these rich data sets into biologic  insights and
clinical applications15.

CG, Core genes: Genes identified to be differentially expressed (DEG) among the
datasets under study.

Cox regression: The log-rank test and KM curves don't work easily with quantitative
predictors  such  as  gene  expression,  white  blood  count,  or  age.  For  quantitative
predictor  variables,  an  alternative  method  is  Cox  proportional  hazards  regression
analysis16.

DEG, Differentially Expressed Genes: A gene is declared differentially expressed if a
difference or change observed in read counts or expression levels/index between two
experimental  conditions  is  statistically  significant.  Transcription  is  the  expression
analysis  of  population  of  genes  or  analysis  of  differences  in  expression  of  gene
populations under different environments, conditions, treatments, and stages. Several
statistical methods are there for gene expression analysis. Statistical distributions are
used  to  approximate  the  pattern  of  differential  gene  expression.  Such  genes  are
selected based on a combination of  expression change threshold and score cutoff,
which are usually generated by statistical modeling[19].

DFS, disease-free survival: The length of time after primary treatment for a cancer
ends that  the patient  survives  without  any  signs  or  symptoms of  that  cancer.  In  a
clinical trial, measuring the disease-free survival is one way to see how well a new
treatment works17.

13 https://en.wikipedia.org/wiki/Artificial_neural_network  
14 https://en.wikipedia.org/wiki/Autoencoder  
15 https://www.cbioportal.org/  
16 https://en.wikipedia.org/wiki/  

Survival_analysis#Cox_proportional_hazards_(PH)_regression_analysis
17 https://www.cancer.gov/publications/dictionaries/cancer-terms/def/dfs  
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Gene expression: Gene expression is the process by which information from a gene
is used in the synthesis of a functional gene product that enables it to produce protein
as the end product. These products are often proteins, but in non-protein-coding genes
such as transfer RNA (tRNA) or small nuclear RNA (snRNA) genes, the product is a
functional RNA18.

GEO,  Gene  Expression  Omnibus: GEO  is  a  public  functional  genomics  data
repository supporting MIAME-compliant data submissions. Array-and sequence-based
data are accepted19. 

GES,  gene  expression  signature,  gene  signature: A  gene  signature  or  gene
expression signature is a single or combined group of genes in a cell with a uniquely
characteristic  pattern  of  gene  expression  that  occurs  as  a  result  of  an  altered  or
unaltered  biological  process  or  pathogenic  medical  condition.  This  is  not  to  be
confused  with  the  concept  of  gene  expression  profiling.  Activating  pathways  in  a
regular  physiological process or a physiological response to a stimulus results in a
cascade  of  signal  transduction  and  interactions  that  elicit  altered  levels  of  gene
expression, which is classified as the gene signature of that physiological process or
response20.

GSEA, Gene Set Enrichment Analysis: It is a computational method that determines
whether  an a  priori  defined set  of  genes shows  statistically  significant,  concordant
differences between two biological states (e.g. phenotypes)21.

IFS, Incremental Feature Selection:  Feature selection is a problem of finding relevant
features. When the number of features of a dataset is large and its number of patterns
is huge, an effective method of feature selection can help in dimensionality reduction.
An incremental probabilistic algorithm is designed and implemented as an alternative to
the exhaustive and heuristic approaches[20]. 

K-means: The k-means algorithm is an unsupervised clustering algorithm. It takes a
bunch of unlabeled points and tries to group them into “k” number of clusters. It  is
unsupervised because the points have no external classification. The “k” in k-means
denotes the number of clusters you want to have in the end9.

Kaplan-Meier: It  s a non-parametric  statistic  used to estimate the survival  function
from lifetime data.  In  medical  research,  it  is  often used to measure the fraction  of
patients living for a certain amount of time after treatment22.

KNN,  K-Nearest  Neighbour: It  is  a  supervised  classification  algorithm.  It  takes  a
bunch of labeled points and uses them to learn how to label other points. To label a
new point, it looks at the labeled points closest to that new point which are its nearest
neighbors, and has those neighbors vote23.

18 https://en.wikipedia.org/wiki/Gene_expression  
19 https://www.ncbi.nlm.nih.gov/geo/  
20 https://en.wikipedia.org/wiki/Gene_signature  
21 https://www.gsea-msigdb.org/gsea/index.jsp  
22 https://en.wikipedia.org/wiki/Kaplan%E2%80%93Meier_estimator  
23 https://becominghuman.ai/comprehending-k-means-and-knn-algorithms-c791be90883d  
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Kruskal-Wallis test: is a non-parametric method for testing whether samples originate
from the same distribution. It is used for comparing two or more independent samples
of equal or different sample sizes. It extends the Mann–Whitney U test, which is used
for comparing only two groups. The parametric equivalent of the Kruskal–Wallis test is
the one-way analysis of variance (ANOVA)24.

Logistic Regression: It is used to model the probability of a certain class or event
existing such as pass/fail, win/lose, alive/dead or healthy/sick. This can be extended to
model several classes of events such as determining whether an image contains a cat,
dog, lion, etc. Each object being detected in the image would be assigned a probability
between 0 and 1, with a sum of one25.

Mann-Whitney test: is a non-parametric test of the null hypothesis that, for randomly
selected values X and Y from two populations, the probability of X being greater than Y
is equal to the probability of Y being greater than X26.

MCFS, Monte Carlo feature selection: It  is  an algorithm for feature selection and
attribute ranking[21]. 

Metastasis: The spread of  cancer  cells  from the place where they  first  formed to
another  part  of  the body.  In  metastasis,  cancer  cells  break away from the original
(primary) tumor, travel through the blood or lymph system, and form a new tumor in
other organs or tissues of the body. The new, metastatic tumor is the same type of
cancer as the primary tumor. For example, if breast cancer spreads to the lung, the
cancer cells in the lung are breast cancer cells, not lung cancer cells27,28.

mRMR, Minimum Redundancy Maximum Relevance: Feature selection, one of the
basic problems in pattern recognition and machine learning, identifies subsets of data
that are relevant to the parameters used and is normally called Maximum Relevance.
These  subsets  often  contain  material  which  is  relevant  but  redundant  and  mRMR
attempts to address this problem by removing those redundant subsets. mRMR has a
variety  of  applications  in  many  areas  such  as  cancer  diagnosis  and  speech
recognition29.

NCA, Neighbourhood Component Analysis: It is a supervised learning method for
classifying multivariate data into distinct classes according to a given distance metric
over the data30.

NGS: Massive parallel sequencing or massively parallel sequencing is any of several
high-throughput  approaches  to  DNA sequencing  using  the  concept  of  massively

24 https://en.wikipedia.org/wiki/Kruskal%E2%80%93Wallis_one-way_analysis_of_variance  
25 https://en.wikipedia.org/wiki/Logistic_regression  
26 https://en.wikipedia.org/wiki/Mann%E2%80%93Whitney_U_test  
27 https://www.cancer.gov/publications/dictionaries/cancer-terms/def/metastasis  
28 https://www.cancer.gov/types/metastatic-cancer  
29 https://en.wikipedia.org/wiki/Minimum_redundancy_feature_selection  
30 https://en.wikipedia.org/wiki/Neighbourhood_components_analysis  
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parallel  processing;  it  is  also  called  next-generation  sequencing  (NGS)  or  second-
generation sequencing31.

OS, overall survival: The length of time from either the date of diagnosis or the start of
treatment for a disease, such as cancer, that patients diagnosed with the disease are
still alive. In a clinical trial, measuring the overall survival is one way to see how well a
new treatment works32. 

PCA, Principal Component Analysis: It is used in exploratory data analysis and for
making  predictive  models.  It  is  commonly  used  for  dimensionality  reduction  by
projecting each data point onto only the first few principal components to obtain lower-
dimensional data while preserving as much of the data's variation as possible33.

PDAC, PAAD, pancreatic ductal adenocarcinoma: This is the most common form of
pancreatic cancer. In fact, it makes up more than 80 percent of diagnosed cases of
pancreatic cancer. A type of exocrine pancreatic cancer, PDAC, grows from cells lining
small  tubes,  called  ducts,  in  the pancreas.  These tubes carry  the  digestive  juices,
which contain enzymes, into the main pancreatic duct and then on into the first part of
the small intestine, called the duodenum34.

Pearson’s correlation coefficient: It is the covariance of two variables, divided by the
product of their standard deviations; thus it is essentially a normalised measurement of
the covariance, such that the result always has a value between −1 and 1. As with
covariance itself,  the measure can only reflect  a linear correlation of variables, and
ignores many other types of relationship or correlation35.

PFS, progression-free survival: The length of time during and after the treatment of a
disease, such as cancer, that a patient lives with the disease but it does not get worse.
In a clinical  trial,  measuring the PFS is one way to see how well  a new treatment
works36.

Prevalence: In medicine, a measure of the total number of people in a specific group
who have (or  had) a certain disease,  condition,  or  risk factor  (such as smoking or
obesity) at a specific point in time or during a given period of time. For example, the
prevalence of breast cancer may show how many women in the U.S. were diagnosed
with  breast  cancer  within  the  past  10  years,  including  those  who  are  receiving
treatment and those who are considered cured, and are still alive on a certain date37.

PSO, Particle Swarm Optimization: It  is  a computational method that optimizes a
problem by iteratively trying to improve a candidate solution with regard to a given
measure of quality. It solves a problem by having a population of candidate solutions,

31 https://en.wikipedia.org/wiki/Massive_parallel_sequencing  
32 https://www.cancer.gov/publications/dictionaries/cancer-terms/def/os  
33 https://en.wikipedia.org/wiki/Principal_component_analysis  
34 https://umiamihealth.org/sylvester-comprehensive-cancer-center/treatments-and-services/  

pancreatic-cancer/pancreatic-ductal-adenocarcinoma
35 https://en.wikipedia.org/wiki/Pearson_correlation_coefficient  
36 https://www.cancer.gov/publications/dictionaries/cancer-terms/def/pfs  
37 https://www.cancer.gov/publications/dictionaries/cancer-terms/def/prevalence  
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here  dubbed  particles,  and  moving  these  particles  around  in  the  search-space
according to simple mathematical formula over the particle's position and velocity. Each
particle's movement is influenced by its local best known position, but is also guided
toward the best  known positions in  the search-space,  which are updated as better
positions are found by other particles. This is expected to move the swarm toward the
best solutions38.

Recurrence: Cancer  that  has recurred (come back),  usually  after  a period of  time
during which the cancer could not be detected. The cancer may come back to the
same place as the original (primary) tumour or to another place in the body. Also called
recurrent cancer39,40.

Relapse: The return of  a disease or the signs and symptoms of  a disease after a
period of improvement41.

REO, Relative Expression Ordering: the within-sample relative expression orderings
(REOs) of gene pairs, which is also called Relative Expression Analysis (RXA), are
robust  against  experimental  batch  effects  and  invariant  to  monotone  data
transformation.  Besides,  the  within-sample  REOs of  gene  pairs  are  robust  against
variations of the tumor epithelial cell proportions in tissues sampled from different sites
of a tumor, partial RNA degradation in the sample preparation process and during the
storage stage and amplification bias for minimum specimens even with about 15–25
cancer cells, which are also important factors leading to the failure of validation and
clinical  application  of  the  quantitative  transcriptional  signatures.  The  robustness
property of the within-sample REOs enables researchers to integrate multiple datasets
produced by the same or similar platforms for selecting disease signatures and training
classifiers, which makes it more likely to find robust signatures[22].

RF,  Random  Forest: The  are  an  ensemble  learning  method  for  classification,
regression and other tasks that operate by constructing a multitude of decision trees at
training time and outputting the class that is the mode of the classes (classification) or
mean/average prediction (regression) of the individual trees42.

RFS, relapse-free survival: see Disease-free survival (DFS).

Spearman’s rank correlation:  The Spearman correlation between two variables is
equal to the Pearson correlation between the rank values of those two variables; while
Pearson's correlation assesses linear relationships, Spearman's correlation assesses
monotonic relationships (whether linear or not)43.

Stroma, stromal cell: In cancer, during normal wound healing processes, the local
stromal  cells  change  into  reactive  stroma  after  altering  their  phenotype.  However,

38 https://en.wikipedia.org/wiki/Particle_swarm_optimization  
39 https://www.cancer.gov/publications/dictionaries/cancer-terms/def/recurrence  
40 https://www.cancer.org/treatment/survivorship-during-and-after-treatment/understanding-  

recurrence/what-is-cancer-recurrence.html
41 https://www.cancer.gov/publications/dictionaries/cancer-terms/def/relapse  
42 https://en.wikipedia.org/wiki/Random_forest  
43 https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient  
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under certain conditions, tumor cells can convert these reactive stromal cells further
and transition them into tumor-associated stromal cells (TASCs). In comparison to non-
reactive  stromal  cells,  TACs  secrete  increased  levels  of  proteins  and  matrix
metalloproteinases (MMPs).  These proteins include fibroblast  activating  protein  and
alpha-smooth muscle actin. Furthermore, TACs secrete many pro-tumorigenic factors
such as vascular endothelial growth factor (VEGF), stromal-derived factor-1 alpha, IL-
6, IL-8, tenascin-C, and others. These factors are known to recruit additional tumor and
pro-tumorigenic cells.44

SVM,  Support  Vector  Machine: These  are  supervised  learning  models  with
associated  learning  algorithms  that  analyze  data  for  classification  and  regression
analysis45.

TME: Tumour micro-environment.

TNM: A system to describe the amount and spread of cancer in a patient’s body, using
TNM. T describes the size of the tumor and any spread of cancer into nearby tissue; N
describes  spread  of  cancer  to  nearby  lymph  nodes;  and  M  describes  metastasis
(spread of cancer to other parts of the body). This system was created and is updated
by  the  American  Joint  Committee  on  Cancer  (AJCC)  and  the  International  Union
Against Cancer (UICC). The TNM staging system is used to describe most types of
cancer. Also called AJCC staging system46.

TWSVM, Twin Support Vector Machine: aims to find two symmetry planes such that
each plane has a distance close to one data class and as far as possible from another
data class. On several benchmark data sets, TWSVM is not only fast, but shows good
generalization. The kernel functions commonly used for SVM methods are the linear
kernel, polynomial kernel, and radial basis function (RBF) kernel[15].

44 https://en.wikipedia.org/wiki/Stromal_cell#In_Cancer  
45 https://en.wikipedia.org/wiki/Support-vector_machine  
46 https://www.cancer.gov/publications/dictionaries/cancer-terms/def/tnm-staging-system  
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9 Annexes

9.1 DEG analysis

9.1.1 Treatment vs outcome

9.1.1.1 GSE112282

Total of 1044 unique DEG. 

Procedure

Verification that data is normalized:

Samples’ metadata selection (cell line, replicate and treatment):

  sampleInfo <- select(sampleInfo, 
                       "cell line:ch1", 
                       "replicate info:ch1", 
                       "treatment:ch1")
  sampleInfo <- rename(sampleInfo, 
                       line="cell line:ch1", 
                       replicate="replicate info:ch1", 
                       treatment="treatment:ch1")

Design (treatment, line, replicate) and contrasts for DEG analysis:

  design_colnames <- c("BET","BETMEK","MEK","VEHICLE","COLO201",
                       "HPAFII","NCIH510","RKO","Replicate2")
  design <- model.matrix(~0+sampleInfo$treatment
                         +sampleInfo$line
                         +sampleInfo$replicate)
  colnames(design) <- design_colnames
  contrasts <- makeContrasts(BET - VEHICLE, 
                             BETMEK - VEHICLE, 
                             MEK - VEHICLE, 
                             levels=design)

61

Figure 28: Box plot for GSE112282



Result of DEG analysis with default p.value=0.05:

> table(results)
results
    -1      0      1 
 18640 126966  18419 

Venn diagram:

There are 2147 unique GenBankIDs out of 2183, and they map to 1056 ENTREZIDs,
and to 1044 HGNC Ids.
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Figure 29: Venn diagram for GSE112282



9.1.1.2 GSE45757

Total of 5450 unique DEG.

Procedure

Verification that data is normalized after applying log2:

Samples’ metadata selection:

  sampleInfo <- select(sampleInfo, 
"treated with:ch1", "cell line:ch1")

  sampleInfo <- rename(sampleInfo, 
treated="treated with:ch1", 
line="cell line:ch1")

Design and contrasts for DEG analysis:

  design <- model.matrix(~0+sampleInfo$treated
                         +sampleInfo$line)
  colnames(design) <- design_colnames
  contrasts <- makeContrasts(Untreated - Treated, 
                             levels=design)

Result of DEG analysis with default p.value=0.05:

results
   -1     0     1 
 5510 13058  3709 

Venn diagram:

There are 8732 unique GenBankIDs out of 9219, and they map to 5498 ENTREZIDs,
and to 5450 HGNC Ids.
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Figure 30: Box plot for GSE45757

Figure 31: Venn diagram for
GSE45757



9.1.1.3 GSE14426

Total of 19 unique DEG. 

Procedure

Verification that data is normalized after applying log2:

Samples’ metadata selection (only 24hr and 168hr):

 sampleInfoSubset <- sampleInfo[str_detect(sampleInfo$source_name_ch1,
                                            "24hr|168hr"), ] 
 sampleInfo <- select(sampleInfoSubset, "source_name_ch1")
 sampleInfo <- rename(sampleInfo, source="source_name_ch1")

Design and contrasts for DEG analysis:

 design <- model.matrix(~0+sampleInfo$source)
 design_colnames <- c("ATRA168h","ATRA24h","Vehicle168h","Vehicle24h")
 colnames(design) <- design_colnames
 contrasts <- makeContrasts(Vehicle168h - ATRA168h, 
                             Vehicle24h - ATRA24h,
                             levels=design)

Result of DEG analysis with a modified p.value=0.3:

> table(results)
results
   -1     0     1 
 2770 91910  2722 

Venn diagram:

There are 565 unique GenBankIDs out of 577, and they map to 20 ENTREZIDs, and to
19 HGNC IDs.

Lower values (e.g. p.value=0.05) were also tried, returning 137 GenBankIDs, but they
mapped to only 2 HGNC IDs.
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Figure 32: Box plot for GSE14426

Figure 33: Venn diagram for GSE14426



9.1.2 Gene expression vs outcome

9.1.2.1 GSE21501

Total of 1205 unique DEG.

Procedure

Verification that data is normalized after applying log2:

Samples’ metadata selection (risk):

  sampleInfo <- dplyr::select(sampleInfo, 
                       "characteristics_ch2.5", 
                       "characteristics_ch2.6")
  sampleInfo <- dplyr::rename(sampleInfo, 
                       risk="characteristics_ch2.5", 
                       risk2="characteristics_ch2.6")
  
  # Information is misplaced in these samples
  sampleInfo["GSM536946","risk"] <- sampleInfo["GSM536946","risk2"]
  sampleInfo["GSM536892","risk"] <- sampleInfo["GSM536892","risk2"]
  sampleInfo <- dplyr::select(sampleInfo, risk)
  
  # Remove samples with empty value
  sampleInfo[sampleInfo == ""] <- NA
  sampleInfo <- na.omit(sampleInfo, "risk") # 102 samples

Design (risk) and contrasts for DEG analysis:

  design <- model.matrix(~0+sampleInfo$risk)
  design_colnames <- c("HighRisk","LowRisk")
  colnames(design) <- design_colnames
  contrasts <- makeContrasts(LowRisk - HighRisk, 
                             levels=design)

Result of DEG analysis with default p.value=0.05:

> table(results)
results
   -1     0     1 
 1093 43263   864 
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Figure 34: Box plot for GSE21501



Venn diagram:

There  are  1424  unique  IDs  out  of  the  1957  GenBankIDs,  and  they  map to  1235
ENTREZIDs, and to 1205 HGNC IDs.
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Figure 35: Venn diagram for GSE21501



9.1.2.2 GSE28735

Total of 2025 unique DEG.

Procedure

Verification that data is normalized after applying log2:

Samples’ metadata selection (survival and tissue):

  sampleInfo <- dplyr::select(sampleInfo, 
                              "survival_month:ch1", 
                              "tissue:ch1")
  sampleInfo <- dplyr::rename(sampleInfo,
                              OS="survival_month:ch1",
                              tissue="tissue:ch1")
  sampleInfo$OS <- as.numeric(sampleInfo$OS)
  sampleInfo <- na.omit(sampleInfo, "OS")
  # Select only Tumor samples
  sampleInfo <- sampleInfo[sampleInfo$tissue == "T", ] # 42 samples
  
  samples_to_keep <- row.names(sampleInfo)

 sampleInfo$stage[sampleInfo$OS <= stages_mst["III","MST+40%"]] 
<- 'Advanced'

 sampleInfo$stage[sampleInfo$OS > stages_mst["III","MST+40%"]] 
<- 'Early'

Design (stage) and contrasts (1) for DEG analysis:

  design <- model.matrix(~0+sampleInfo$stage)
  colnames(design) <- c("Advanced","Early")
  contrasts <- makeContrasts(Early - Advanced,
                             levels=design)

Result of DEG analysis with a modified p.value=0.4:

> table(results)
results
    -1      0      1 
  7459 128241   5966 
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Figure 36: Box plot for GSE28735



Venn diagram:

There are 13425 unique GenBankIDs, and they map to 2122 ENTREZIDs, and to 2025
HGNC Ids.
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Figure 37: Venn diagram for GSE28735



9.1.2.3 GSE62165

Total of 596 unique DEG.

Procedure

Verification that data is normalized:

Samples’ metadata selection (stage):

  sampleInfo <- dplyr::select(sampleInfo,
                              "Stage:ch1", "tissue:ch1")
  sampleInfo <- dplyr::rename(sampleInfo,
                              stage="Stage:ch1", 
                              tissue= "tissue:ch1")
  sampleInfo <- sampleInfo[sampleInfo$tissue == "pancreatic tumor", ] 

  sampleInfo$stage[sampleInfo$stage == "1a"] <- "Early"
  sampleInfo$stage[sampleInfo$stage == "1b"] <- "Early"
  sampleInfo$stage[sampleInfo$stage == "2a"] <- "Early"
  sampleInfo$stage[sampleInfo$stage == "2b"] <- "Early"
  sampleInfo$stage[sampleInfo$stage == "3"] <- "Advanced"
  sampleInfo$stage[sampleInfo$stage == "4"] <- "Advanced"

Design (stage) and contrasts (1) for DEG analysis:

  design <- model.matrix(~0+sampleInfo$stage)
  design_colnames <- c("Advanced","Early")
  colnames(design) <- design_colnames
  contrasts <- makeContrasts(Early - Advanced,
                             levels=design)

Result of DEG analysis with a modified p.value=0.8:

> table(results)
results
   -1     0     1 
  239 33101   136 

Venn diagram:
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Figure 38: Box plot for GSE62165



There are 1051 unique GenBankIDs, which map to 604 ENTREZID, and to 596 HGNC
Ids.
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Figure 39: Venn diagram for GSE62165



9.1.2.4 GSE71729

Total of 749 unique DEG.

Procedure

Verification that data is normalized:

Samples’ metadata selection (survival):

  sampleInfo <- dplyr::select(sampleInfo, 
                              "survival_months:ch2")
  sampleInfo <- dplyr::rename(sampleInfo,
                       OS="survival_months:ch2")
  sampleInfo$OS <- as.numeric(sampleInfo$OS)
  sampleInfo <- na.omit(sampleInfo, "OS") # 125 samples
  
  samples_to_keep <- row.names(sampleInfo)
  
  sampleInfo$stage[sampleInfo$OS <= stages_mst["III","MST+40%"]] 

<- 'Advanced'
  sampleInfo$stage[sampleInfo$OS > stages_mst["III","MST+40%"]] 

<- 'Early'

Design (stage) and contrasts for DEG analysis:

  design <- model.matrix(~0+sampleInfo$stage)
  colnames(design) <- c("Advanced", "Early")
  contrasts <- makeContrasts(Early - Advanced,
                             levels=design)

Result of DEG analysis with a modified p.value=0.7:

> table(results)
   -1     0     1 
  336 19000   413 

Venn diagram:

There are 749 unique HGNC IDs.
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Figure 40: Box plot for GSE71729

Figure 41: Venn diagram for GSE71729



9.1.2.5 GSE56560

Total of 153 unique DEG. 

Procedure

Verification that data is normalized:

Samples’ metadata selection (grading):

  sampleInfo <- dplyr::select(sampleInfo,
                              "grading:ch1")
  sampleInfo <- dplyr::rename(sampleInfo,
                       grading="grading:ch1")
  sampleInfo$grading[sampleInfo$grading == "N/A"] <- NA
  sampleInfo <- na.omit(sampleInfo, "grading") # 28 samples
  samples_to_keep <- row.names(sampleInfo)

Design (grading) and contrasts for DEG analysis:

  design <- model.matrix(~0+sampleInfo$grading)
  design_colnames <- c("G2", "G3")
  colnames(design) <- design_colnames
  contrasts <- makeContrasts(G3 - G2,
                             levels=design)

Result of DEG analysis with a modified p.value=0.99:

> table(results)
results
   -1     0     1 
  299 61676   200 

Venn diagram:

There are 499 unique GenBankIDs, and they map to 159 ENTREZIDs, and to 153
HGNC IDs.
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Figure 42: Box plot for GSE56560

Figure 43: Venn diagram for GSE56560



9.2 Gene signatures

The objective was to maximise the number of genes in common and obtain a signature
smaller than 25 genes. To accomplish this, several iterations were performed trying
different approaches:

• narrowing the number of DEG obtained in some series by selecting the top X
(e.g. top 500 genes with lowest p.value)

• modifying the p.value in decideTests() function of limma package in R, in order
to get a higher number of DEG

The latter worked better because was able to maximise the overlap of genes in all the
signatures that had to be generated. 

The next sections showed the results obtained, as well as, the full list of genes for each
signature.

9.2.1 Treatment vs outcome signature

The intersection  of  the DEG obtained for  each of  the  series,  produced the values
showed in Table 23:

There are 9 DEG in common to the three series in this group. The full list of genes
follows:

BCKDHB

CREB1

HNRNPA2B1

IDS

KIDINS220

LAMP2

MYO9A

PTEN

SH3TC2
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1 2 3

5998 742 9

Table 23: Common DEGs to
series in Treatment vs outcome



9.2.2 Gene expression vs outcome signature

The intersection  of  the DEG obtained for  each of  the  series,  produced the values
showed in Table 24:

There is 1 DEG in common to four series (out of 5) and 16 DEG in common to three
series in this group. The full list of genes follows: 

HMGA2

C1orf21

CBX6

CEACAM5

CNTN2

E2F7

GSDMB

KCNB1

MAMSTR

MAPK10

MT1H

POF1B

SLC23A2

SLC6A14

TOP2B

TRIM15

TSPAN3
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1 2 3 4

4016 330 16 1

Table 24: Common
DEGs to series in Gene
expression vs outcome



9.2.3 Common signature

Finally, a common signature was generated by doing the intersection between the two
groups. In order to maximise the number of genes in common, any gene in at least two
series (see Table 23 and Table 24) was considered. The result is shown in Table 25:

There are 17 genes in common between the two groups. The full list of genes follows:

ADI1

CDS1

CDT1

CHST6

CSRNP2

F12

FAR2

MAGOH

MAPK13

MRPL2

NSF

PLBD1

PLEK2

RAB4B

S100A14

SORD

TFF1
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1 2

1064 17

Table 25:
Common DEG
to both groups



9.3 ML model training and evaluation

Different tools of the caret package in R were used for this phase. The following steps
were followed to train and evaluate each model using the different signatures obtained
in Feature selection:

1. Split  data into training and test  sets using  sample.split() function of  caTools
package:

sample_final <- sample.split(my_data_signature_final$class, 
                             SplitRatio = .6)
training_common <- subset(my_data_signature_final, 
                          sample_final == TRUE)
test_common <- subset(my_data_signature_final, 
                      sample_final == FALSE)

The proportion of classes in each set was verified to confirm they were similar:

table(training_common$class)
table(test_common$class)

2. Define the control using trainControl() function of caret package:

trControl <- trainControl(method = "repeatedcv",
                          number = 10,
                          repeats = 10,
                          search = "grid")

3. Search best mtry using tuneGrid parameter in train() function of caret package:

tuneGrid <- expand.grid(.mtry = c(2,3,4,5,6,7,8,9,10,11))
rf_default <- train(class~.,
                    data = train,
                    method = "rf",
                    metric = "Accuracy",
                    trControl = trControl,
                    tuneGrid = tuneGrid,
                    importance = TRUE)

4. Search best ntree by manually running the train() function with different values
for this parameter:

tuneGrid <- expand.grid(.mtry = best_mtry)
store_maxtrees <- list()
for (ntree in c(250, 300, 350, 400, 450, 500, 550, 
                600, 800, 1000, 2000, 3000)) {
  # Run the model
  rf_maxtrees <- train(class~.,
                      data = train,
                      method = "rf",
                      metric = "Accuracy",
                      trControl = trControl,
                      tuneGrid = tuneGrid,
                      ntree = ntree,
                      importance = TRUE)
  key <- toString(ntree)
  store_maxtrees[[key]] <- rf_maxtrees
}
results_tree <- resamples(store_maxtrees)
summary(results_tree) 

5. Train model with best settings for mtry and ntree:

fit_rf <- train(class~.,
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                train,
                method = "rf",
                metric = "Accuracy",
                tuneGrid = tuneGrid,
                trControl = trControl,
                importance = TRUE,
                ntree = 1000)

6. Evaluate using predict() function and the test set:

prediction <- predict(fit_rf, test)

7. Get model metrics using confusionMatrix() function:

confusion_matrix <- confusionMatrix(prediction, test$class)
confusion_matrix$overall
confusion_matrix$byClass
confusion_matrix$table

8. Plot the importance of each variable using plot() and varImp() functions:

plot(varImp(fit_rf))
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9.4 Code repository

All the code used to process the data (e.g. perform the DEG analysis), generate the
signatures,  perform the correlation  analyses,  and train/evaluate  the models can be
found in this public repository: https://github.com/uruloki85/tfm
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