
Bidding support for computational resources

Xavier Vilajosana1, Joan Manuel Marqùes1, Ruby Krishnaswamy2, Angel A. Juan1, Nejla Amara-Hachmi2

Leandro Navarro3
1Universitat Oberta de Catalunya

2France Telecom R&D
3Universitat Polit̀ecnica de Catalunya

{xvilajosana,jmarquesp,ajuanp}@uoc.edu,{ruby.krishnaswamy,nejla.amarahachmi}@orange-ftgroup.com,
leandro@ac.upc.edu

Abstract

The paper presents a bidding specification language
and support tools for Grid-oriented open resource market-
places. The structure of bids is based on trees that per-
mit bidders to express their preferences for Grid resources
by means of logical operators. Additionally, our bidding
specification reduces the complexity of existing bidding lan-
guages since it permits imprecise description of user’s pref-
erences. One important issue not addressed so far is that
of flexible bidding and offer configuration in open resource
marketplaces where multiple market mechanisms cohabi-
tate. Besides, the paper presents a support tool to adapt
any bid to any type of market.[6]

1 Introduction

Open resource markets are increasingly used as medi-
ating processes for efficient resource allocation in Grids.
Grids are environments characterized by the heterogene-
ity and diversity of their resources, applications, applica-
tions behaviours, dynamicity and scale. One important is-
sue not addressed so far is that of flexible bidding and offer
configuration in open resource marketplaces where multi-
ple market mechanisms cohabitate. In those environments
buyer agents need to be able to describe their preferences
for resources that possibly are being sold in different mar-
ketplaces. Furthermore, seller agents need to set their initial
offers to be traded by specific market mechanisms. On the
one hand a desirable property for bidding specification is
that of a common bid/offer specification language that fa-
cilitates bid/offer description independently of the market
mechanism used to allocate the item. On the other hand,
the bidding specification may facilitate the winner determi-
nation problem resolution by providing an efficient organi-
zation of information.

0Work supported by MCYT-TSI2005-08225-C07-05 and
Grid4All(IST-2006-034567).

Combinatorial auctions are efficient mechanism devised
for the allocation of bundled items that only require an effi-
cient data structure to represent user’s preferences. In con-
trast, single item auctions such as English or Double auc-
tions; require specific item descriptions since they are only
able to trade in multiple units of one specific item. Given a
common bidding specification either for combinatorial auc-
tions and single item auctions, we recognize the need for
a set of bidding support tools that facilitate the bidder task
when dealing with multiple market institutions.

2 Grid Resources

This section aims to identify the main properties of Grid
resources for a correct bidding language design.

1. Divisibility and Shareability: Grid resources are
mainly continuous resources and are typically discre-
tised in some dimension by dividing it into a set of in-
divisible units. Processing capacity may be traded by
dividing in time-units where each time-unit is traded to
a single consumer, or multiple consumers may be al-
lowed to share the capacity; the latter is more often the
case of network bandwidth where different flows are
multiplexed, but with guarantees of requested band-
width being satisfied over a period of time. Hence di-
vision of continuous resources may occur both in time
and space. In this context, the consumers (buyers) and
providers (sellers) should be able to configure their of-
fers and bids in a way that best suits them.

2. Single Items or Multiple Items: A single item refers
to a resource that is traded as one atomic item. How-
ever the notion of what an ’item’ is should be config-
urable at the market. One seller may want to trade
bundles of 4 CPUs for 4 hours, as one indivisible set
and another 2 CPUs. Secondly the notion of ’compos-
ite’ resources are relevant in Grid settings: in a simple
case, it does not make sense to trade CPU and volatile
memory as separate resources and in more complex
cases, providers (or aggregating resellers), may want

1



to sell units of composite resources. For example, ag-
gregated processing, storage capacities, bundled with
a set of applications and middleware.

3. Single Unit or Multiple Unit: Markets may trade in
single or multiple units of an item. In the case of re-
source markets, it is more often the case where mul-
tiple units of anonymous and indistinguishable items
are traded, such as multiple units of CPUs for multiple
time-slots. Bidding support needs to provide a flexible
and compact way to represent the quantity preferences
for both buyers and sellers.

4. Time Factor: Grid resources are leased. Con-
sumers may have constraints on when the resources
are needed and the duration of allocation; similarly
providers may trade their resources only for spe-
cific times. Hence the bid (and offer) must be able
to specify the time ranges within which resources
are required and their duration. A typical bid that
needs to be supported is that of a consumer that
requires two CPUs satisfying attribute description
= CPU > 1 GHz, mem > 1GB, disk > 20GB for
10 time slots between 10:00 and 18:00 assuming that
time-slots are defined to be of 30 minutes. Within sin-
gle item auctions, the time-slot may also be considered
as the item.

5. Pricing: Linear pricing sets the same price for each
item of resource; bundle pricing sets the price for the
entire bundle. Bundle pricing increases the complexity
since allocation must choose those bundles that maxi-
mize the objective function.

3 Related Work on Bidding Languages

Bidding languages have focused on the compact spec-
ifications of bidder’s preferences in mainly combinatorial
auctions. This is also due to the fact that the optimiza-
tion problem (to generate the matching and winning bids)
is NP-Complete and hence heuristics are required to re-
duce the length of the problem by providing means to ex-
press compactly the preferences. ”Logical Bidding Lan-
guages” rely on standard logical operators to represent
user’s preferences[4, 5]. OR bidding languages allow bid-
ders to define non-overlapping bids for a set of resources
but not for substitute preferences. In these languages, bid-
ders may face a budget exposure problem. XOR languages,
allow bidders to express substitute preferences but all bids
from a bidder are mutually exclusive. When a bidder wants
any combination of items, he must explicitly bid on each
combination, so the process is not scalable since it requires
the expression of an exponential number of combinations
for even a small number of items. OR* languages provide
more expressiveness by means of ”phantom variables” how-
ever such languages may not be clear to bidders on how
to express their requirements [2]. [3] presents theLGB

language that allows the combination of goods with AND,
OR and XOR operators. They also extended the language

adding the clausek-of that allows bidders to express will-
ingness for somek items within a subset.LGB provides
complete expressiveness to bidders but requires the con-
struction of entire trees to bidders that may not know how
to express their requirements. As far as we know the most
recent work on bidding languages is TBBL, a tree based
bidding language for combinatorial exchanges [1]. TBBL
allows double sided exchanges, that is, not only provides
semantics for the allocation of goods but also for the re-
allocation. TBBL has been designed to be concise and
structured. It allows for specification of both bids and asks
in a single structure, and allows agents to specify upper and
lower bounds on their values for trades. TBBL also pro-
vides a compact way of representing bids in the tree. As our
understanding, TBBL trees will not be portable within dif-
ferent market structures. That is, given a formulated bid, it
requires a pre-process to adapt bidder’s preferences to spe-
cific market requirements.

4 Our approach

Our objective is to provide support for open grid resource
markets. In this context, an expressive and flexible bidding
specification language is of relevance. The bidding speci-
fication language needs to allow bidders to formulate their
preferences for Grid resources such the description of com-
plex combinations of items, time and quantity preferences
and requirements for full or partial satisfaction.

On the other hand the support to many types of markets
is required. For example, in single-item auctions only a
single value, the price is communicated. Multi-unit, multi-
item, and combinatorial auctions require generic preference
structures.

In the next section the descriptive language is presented,
section 6 presents how we deal with multiple types of mar-
kets.

5 A Tree Based Bidding Specification

Our envisioned bidding specification language repre-
sents bids in form of a tree where internal nodes contain
logical operators (OR, AND or XOR) and leaf-nodes con-
tain specification of bidder’s requirements. The use of log-
ical operators is relevant for the bidding language because
enables the users’ preferences elicitation. Specially, for the
case of bidding specification for Grid resources since Grid
applications usually have complex resource requirements.
For example, considering a typical application that requires
more than one type of resource (CPU and storage), and mul-
tiple quantities of each type of resource, bids should be able
to convey preferences on bundles of resources. XOR op-
erators permit the expression of substitute bids. By means
of OR operators bidders indicate their willingness to accept
partial satisfaction whilst AND operators indicate their re-
quirement for complete satisfaction. Details for Leaf-nodes
specification will be introduced in the following subsection.



Figure 2: tree representation of the example bid.

5.1 Leaf-Node Specification

Leaf-nodes have to provide expressiveness to capture ei-
ther bidders’ requirements or sellers’ offers. Two notions
for resource specification have been introduced, i.e. com-
posite resources and aggregate resources. An aggregate
resource represents multiple units of the same type of re-
source whilst a composite resource represents a bundle of
different resource types. These concepts provide flexibil-
ity to the market initiators so that they can easily decide
which is the product that they will offer in the market. Fur-
thermore, aggregated resources may be conjunctive, that is,
the traded item is an atomic aggregation of multiple units
of a basic resource that may be allocated entirely. In con-
trast disjunctive aggregated resources only require a subset
to be allocated. This differentiation addresses the AND and
OR notions introduced before as well. For example, a com-
pute node is a composite resource (CPU + Storage) and four
compute nodes are described as a conjunctive or disjunctive
aggregated resource depending on the type of satisfaction
required. In addition, leaf-nodes contain the specification
of lease times (i.e. start time, end time, time slot size and
number of time slots), prices, quantities and allocation con-
straints. In our design, leaf-nodes permit imprecise descrip-
tion of user’s preferences for a more compact representa-
tion of bids. For example, users are not required to build
the complete tree but only specify the time range and the
number of time slots that they require within the given time
range. Indeed, if a bidder wants two any consecutive time
slots within a time range, he is not required to build a com-
plete tree structure with an internal XOR node and as many
AND nodes as possible combinations of two consecutive
time slots within that time range but only build one leaf-
node with the lease imprecise description. (e.g. two time
slots within the specific time range).

5.2 Implementation

The bidding language is specified as an XML encoded
schema that represents the resources required(offered) by
buyers(sellers) and the preferences. A bid can be looked
upon as a tree where the non-leaf nodes represent opera-
tors such as AND, XOR, OR, and the leaf nodes specify
the exact item (resource) description. An item specified at
the leaf node should correspond to a resource item traded
at the market or as mentioned before be an imprecise item
description.

In the XML schema we refer to the non-leaf nodes as
NonPrimitiveBids and the leaf nodes as PrimitiveBids. The
leaf node includes attributes to indicate the desired quantity
of the item, the leasing attributes (start time, end time, du-
ration of time slot, and number of required time slots (for
imprecise bids)) and the price. The item may be either a
simple resource, a composite resource, or an aggregated re-
source. Each resource is of one type (CPU, Storage,...) that
encapsulates the main attributes of that type of resource.
Non-primitive nodes represent the relation between its chil-
dren nodes, i.e., XOR, AND, OR. Figure 1 contains a code
snipped of theitem element in the XML schema. Figure
2 and 3 present a example bid for one of two configura-
tions of resources to be used for a specified period of time
(3 hours from 12:00 to 15:00). The example bid expresses
that the buyer requires one of the following: one CPU of
400 FLOPS, 2 CPUs of 300 FLOPS, or one CPU of 600
FLOPS.

6 Support for multiple auction formats

Generally bidding languages have been developed to
support one type of auction, that is, they organize bids in
data structures that facilitate the WDP (Winner Determina-



Figure 1: code snipped for an item

Combinatorial Double Auction Iterative
Item Bundle and single Single Single
Units Multiple Single* Single
Time Multiple Single* Single*

Table 1: Requirements for the WDP.

tion Problem) resolution for a specific auction setting. One
of our intentions was to provide multi-auction bidding sup-
port able to hold up multiple types of auctions (from sin-
gle sided auctions to combinatorial auctions). However,
this does not of course imply that every market should sup-
port the complete bidding specification but only a subset of
the language. For example, a market employing an auction
mechanism that cannot guarantee complete allocation of a
request will not accept AND operators in the bid tree.

Table 1 presents the characteristics of the items able to
be traded by different auction mechanisms. Some auction
models, in particular combinatorial auction models resolved
using mixed or integer programming techniques allow spec-
ifications of constraints. Thus bidders can issue requests
such as requiring bundles of items for 2 continuous hours
of computational capacity between 12:00 and 19:00. Such
requests may nevertheless be imprecise in other auction for-
mats like iterative auctions and DA that neither allow the
trading of multiple time slots as individual units nor impre-

Figure 3: textual representation of an example bid.

cision in bid time ranges. They contrarily, require selling
items as a whole and for precise periods. Thus, multiple
time slots need to be allocated by multiple auctions.

Therefore, the bidding specification presented in section
5 can be directly used to represent bids for combinatorial
auctions because the WDP is able to handle imprecise bids.
In contrast, DA and iterative auctions require multi-item
bids to be pre-processed into single item bids as defined by
the auction setting.

6.1 Bid decomposition

In the later section the need for pre-processing multi-
item bids into single-item bids has been identified. Pre-
processing may be looked upon as an internal process that
returns semantically equivalent bids but able to be handled
by a specific allocation mechanism. There is the need to
point out that a given market (instance) regulates the oper-
ators that may be present at non-leaf nodes. For example,
a market employing an auction that cannot guarantee the
complete allocation of the request will not accept the AND
operator.

The following example will be used to illustrate the dif-
ferent possibilities of decomposition:

Let’s consider an auction that is trading one CPU of
400 FLOPS for the time range compressed within 9:00 and
19:00 where each time slot is 1 hour of duration.

The bids that users are able to formulate are of the fol-
lowing types:

1. Exact preference in quantity and time: A bid B3
requires one CPU of 400 FLOPS for 3 hours from
12:00 to 15:00, that is, the bidder is asking for a pre-
cise time range. Case 1 of figure 4a shows the com-
pact bid representation, that is the way user formulates
the bid. Note that for this example bid partial satis-
faction is required (OR constraint). Case 2, presents
the same case when complete satisfaction is required
(AND constraint). Figure 4b represents the same bid
but showing it fully pre-processed. Figures in this pa-
per will present either compact and full decomposition
trees except for the cases where the size of the full de-
composition prevents from a clear understanding.

0*The clearing process requires items to be single



(a) Compact representation

(b) Complete representation

Figure 4: Exact preferences in quantity and time.

2. Exact preference in quantity but not in time:

(a) Require time to be consecutive: A bid B4
requires one CPU of 400 FLOPS for 3 con-
secutive hours within 11:00 and 16:00. This
case requires the formulation of one XOR
bid with (number of available slots −
number of required slots + 1) AND (OR for
the case of partial satisfaction bids) sibling bids
each one with 3 precise leaf nodes. Case 1 of
Figure 5a shows the bid formulated by the bidder
for the case when partial satisfaction is required.
Case 2, presents the same case when full satis-
faction is required. Figure 5b presents the tree
completely pre-processed for the case of partial
satisfaction.

(b) Do not require time to be consecutive:A bid
B5 requires one CPU of 400 FLOPS for 3any
hours within 11:00 and 16:00. This case requires
to pre-process the bid into a tree withκ = Cm

n
leaf nodes. Due to its size a figure is not pro-
vided, however the case is very similar to the one
presented in figure 5. Indeed, the compact repre-
sentation is the same as the figure 5a.

3. Neither exact preference in quantity nor in time:

(a) Require time to be consecutive:

i. By excess:A bid B6 requires one CPU of
400 FLOPSat leastfor 2 consecutive hours

(a) Compact representation

(b) Complete representation (only for the partial satisfaction case)

Figure 5: Exact preferences in quantity but not in time con-
strained to be consecutive

within 11:00 and 16:00. In this case, the
auction provides complete satisfaction (the
auction only accept AND operators), other-
wise does not make sense the mandatory ’at
least’. The decomposition needs to generate
a bid tree of XOR(root node) and AND due
to impreciseness in time (multiple possibil-
ities). The maximum bound on number of
time-slots must be set by bidder. Due to the
size of the decomposition, the figure 6 only
show the decomposition of non-leaf nodes
whereas leaf nodes are kept in a compact
representation. For the example, the bids
are decomposed into precise bids for 2 time
slots, 3 time slots and 4 time slots (bound set
by the bidder). The complete decomposition
(including leaf nodes) would be similar to
the decomposition showed in figure 5b.

ii. By default: A bid B7 requires one CPU of
400 FLOPSat mostfor 2 consecutive hours
within 11:00 and 16:00. This case is simpler
and similar to the case illustrated in Case 1
of figure 4. Notice that the requirement ’at
most’ indicates partial satisfaction which is
expressed with an OR constraint.

(b) Do not require time to be consecutive:

i. By excess:A bid B7 requires one CPU of
400 FLOPS for at least 2 any hours within
11:00 and 16:00. The case is similar to the



Figure 6: Exact preferences in quantity but not in time

Figure 7: Neither exact preference in quantity nor in time.
Each leaf node is split in:(number of available slots −
number of required slots + 1) bids

one illustrated at figure 7. Though, the num-
ber of leaf nodes increases, in fact, the possi-
ble combinations areκ = Cm

n wherem rep-
resents the number of requested time slots
andn represents the total number of avail-
able time slots. The decomposition prob-
lem here requires to generate an exponen-
tial number of bids, however the bidding
language allows bidders to represent their
specific willingness for dis-contiguous time
slots by means of AND operators and not
only expressing an ”at least” condition.

ii. By default: A bid B8 requires one CPU of
400 FLOPS for at most 2 any hours within
11:00 and 16:00. This case needs to gen-
erate againκ = Cm

n leaf nodes. The tree
will be represented as XOR node in the root,
κ
n OR nodes as siblings where each sibling
has m leaf nodes. The case however, should
be simplified by the bidder requiring specific
time slots constrained by the OR operator.

6.2 Current status

The bid decomposition utilities have been developed as
a BidManagementcomponent developed using the Frac-
tal component model with Java language mapping that of-
fers a set of functionalities to decompose bids. The com-

ponent approach facilitates the integration with any auc-
tion platform since the component can be bound follow-
ing a straightforward approach consisting of static speci-
fication through the ADL (Architecture Description Lan-
guage) that describes the system composition and binding
of sub-components. Alternatively, standard interfaces like
Web Services can be used by any other component to ac-
cess the offered set of functionalities.

The decomposition functionality requires two parame-
ters, the bid formulated by the bidder using our bidding lan-
guage and the description what an item is for an specific
auction setting. The output for the process is a bid tree se-
mantically identical as the one formulated by the bidder but
following the structure required by the auction setting.

7 Conclusions

The paper characterized Grid resources with the aim to
provide a bidding language able to be supported by mul-
tiple auctions without any modification. The contributions
of our presented work, are twofold: Firstly, an expressive
Grid oriented bidding specification language developed as
an XML schema. Secondly a set of functionalities that pro-
vide automatic bid pre-processing for the adaptation of bid-
ders imprecise preferences to different types of auction set-
tings. Our future directions include the integration of the
bidding language components into a Grid resource market-
place that focuses on support for multiple auction formats
where market rules, algorithms and activities are encapsu-
lated as components.

References

[1] R. Cavallo, D. C. Parkes, A. I. Juda, A. Kirsch, A. Kulesza,
S. Lahaie, B. Lubin, L. Michael, and J. Shneidman. Tbbl:
A tree-based bidding language for iterative combinatorial ex-
changes. InMultidisciplinary Workshop on Advances in Pref-
erence Handling (IJCAI), 2005.

[2] Y. Fujishima, K. Leyton-Brown, and Y. Shoham. Taming
the computational complexity of combinatorial auctions: Op-
timal and approximate approaches. InProceedings of the
Sixteenth International Joint Conference on Artificial Intel-
ligence, pages 548–553. Morgan Kaufmann Publishers Inc.,
1999.

[3] H. H. Hoos and C. Boutilier. Solving combinatorial auctions
using stochastic local search. InAAAI/IAAI, pages 22–29,
2000.

[4] N. Nisan. Bidding and allocation in combinatorial auctions.
In ACM Conference on Electronic Commerce, pages 1–12,
2000.

[5] T. Sandholm. An algorithm for winner determination in com-
binatorial auctions. Artificial Intelligence, 135(1-2):1–54,
February 2002.

[6] X. Vilajosana, J. M. Marqùes, R. Krishnaswamy, A. A. Juan,
N. Amara-Hachmi, and L. Navarro. Bidding support for com-
putational resources. InSecond International Workshop on
P2P, Parallel, Grid and Internet Computing (3PGIC-2008),
Washington, DC, USA, 2008. IEEE Computer Society.


