

Master’s Degree in Computational and Mathematical
Engineering

Final Master Project (FMP)

Evoker: a scalable web-GUI visualizer and mesh
generator

Student: Francesc Costa Majó

Course instructor: Sergio Iserte Agut

Coordinating professor: Josep Jorba Esteve

Area of the FMP: High-Performance Computing

Date of Delivery: 06/06/2021

http://creativecommons.org/licenses/by-nc-sa/3.0/igo/

Francesc Costa

2

Attribution-NonCommercial-ShareAlike 3.0 IGO

 INDEX CARD OF THE FINAL MASTER PROJECT

Title of the FMP:
Evoker: a scalable web-GUI visualizer and mesh
generator

Name of the author: Francesc Costa Majó

Name of the TUTOR: Sergio Iserte Agut

Name of the PRA: Josep Jorba Esteve

Date of delivery (mm/aaaa): 06/2021

Degree: Master’s in Computational and Mathematical
Engineering

Area of the Final Work: High-Performance Computing

Language of the work: English

Keywords 3D scientific visualization, meshing, ParaView, CFD,
cloud computing, distributed computing

 Abstract:

Computational fluid dynamics (CFD) is a branch of fluid mechanics that uses numerical
analysis and data structure to analyze and solve problems that involve fluid dynamics. The
computations rely on a mesh that discretizes the physical domain. These are used by the CFD
solver to construct control volumes and to do simulations. Meshing is computer-intensive
and meshing tools are not easy to use, being a lot of them interactive shells without GUI. The
accuracy of the numerical solution depends on the quality of the computational mesh.

In this regard, this FMP presents Evoker, a platform as a Service (PaaS) solution, that will
allow to do 3D scientific visualizations and to generate and refine complex 3D meshes from
point cloud in a web-based zero-installation client-server architecture. Evoker is designed to
make good use of the compute nodes of the system leveraging High-Performance Computing
(HPC) techniques.

Evoker is launched as a customizable, cloud, meshing tool GUI adaptable to specific fluid-
related scientific fields. Concretely, in this work Evoker demonstrates its versatility when used
in waste water tanks, providing a friendly user interface and capable of leveraging underlying
computational resources.

Evoker

1

Table of contents
INDEX OF FIGURES ... 3

1. INTRODUCTION .. 5

1.1. CONTEXT AND JUSTIFICATION OF THE FINAL MASTER THESIS .. 5
1.2. OBJECTIVES .. 6
1.3. METHODOLOGY .. 7
1.4. THESIS ORGANIZATION .. 7

2. PROJECT DESCRIPTION ... 8

2.1. OVERVIEW ... 8
2.2. OUT OF SCOPE .. 10
2.3. STATE-OF-THE-ART .. 10
2.4. TRAINING ... 17
2.5. TECHNOLOGIES ... 17

2.5.1. VTK core (C++) ... 17
2.5.2. VTK in the web (VTK.js) .. 18
2.5.3. VTK based solutions evaluation ... 19
2.5.4. ParaView ... 19
2.5.5. Web Sockets .. 20
2.5.6 Vue.js .. 20
2.5.7. Azure.. 20

2.6. ICT TOOLS .. 21
2.7. RESOURCES .. 22
2.8. TEMPORAL PLANNING ... 22
2.9. PROJECT FINANCIALS .. 24

3. THREE-DIMENSIONAL SCIENTIFIC VISUALIZATION ... 28

3.1. 3D SCIENTIFIC VISUALIZATION WORKFLOWS .. 28
3.2. CLIENT CODE IMPLEMENTATION .. 32

3.2.1. Remove Sources button ... 32
3.2.2. Remove line width, contrast, and color selectors .. 32
3.2.3. Limit object rendering to WireFrame, Surface, Surface with Edges and Points .. 33
3.2.4. Remove ParaView Lite logo and About Logo ... 33

3.3. SERVER SET-UP .. 34
3.3.1. First approach: compiling ParaView from source .. 34
3.3.2. Final approach: installing VTK binaries ... 38

3.4. CHANGING DEFAULT REPRESENTATION ... 39
3.5. USAGE FROM TABLET AND SMARTPHONE .. 41

4. MESHING WORKFLOWS ... 44

4.1. OPENFOAM INTRODUCTION ... 44
4.2. MPI INSTALLATION .. 45
4.3. OPENFOAM INSTALLATION ... 46
4.4. PREREQUISITES .. 46
4.5. FILES PREPARATION .. 46
4.6. WORKFLOW ... 50
4.7. THE CLIENT-SERVER COMMUNICATION ... 53

Francesc Costa

2

4.8. OPENFOAM IN THE HPC CLOUD WITH MPI .. 53
4.8.1. Clone existing VM for OpenFOAM nodes .. 54
4.8.2. SSH connection between web server VM and OpenFOAM VM’s ... 56
4.8.3. Sharing data with Azure Files .. 58
4.8.4. Executing OpenFOAM in the cloud from the web app .. 59

5. TESTING AND COMPUTATIONAL RESULTS.. 61

5.1. THREE-DIMENSIONAL VISUALIZATION RESULTS ... 61
5.2. MESHING RESULTS ... 65

5.2.1. Meshing configuration .. 65
5.2.2. Performance analysis and evaluation ... 67

5.3. BROWSER SUPPORT .. 73

6. CONCLUSIONS .. 76

6.1. PAPER SUBMITTED IN SIMULTECH 2021 ... 76
6.2. SOURCE CODE ... 77

7. BIBLIOGRAPHY ... 79

Evoker

3

Index of Figures

Figure 1: Gamut volume of 2D printer .. 6
Figure 2: 3D printer job visualized in a computer .. 6
Figure 3: Architecture overview .. 9
Figure 4: SerpentineMerchant_SPLIT_05.stl .. 11
Figure 5: SerpentineMerchant_SPLIT_01_A.stl .. 11
Figure 6: MeshLabJS performance .. 12
Figure 7: MeshLab performance test 1 .. 12
Figure 8: MeshLab performance test 2 .. 12
Figure 9: OpenFlipper performance test 1 ... 13
Figure 10: OpenFlipper performance test 2 ... 13
Figure 11: ParaView Glance performance test 1 ... 14
Figure 12: ParaView Glance performance test 2 ... 14
Figure 13: ParaView desktop test 1 .. 14
Figure 14: ParaView desktop test 2 .. 15
Figure 15: VisIt performance ... 15
Figure 16: State-of-the-art comparison results table... 16
Figure 17: Overview of Evoker technologies .. 21
Figure 18:PEC1 planning ... 22
Figure 19: PEC2 planning .. 23
Figure 20: PEC3 planning .. 23
Figure 21: PEC4 planning .. 24
Figure 22: MSDN subscription .. 24
Figure 23: Cost analysis without Azure Files ... 25
Figure 24: Cost analysis with Azure Files ... 26
Figure 25: Spending limit reached .. 26
Figure 26: Files and Datasets in Evoker ... 29
Figure 27: A rendered Dataset in Evoker .. 29
Figure 28: Changing representation in Evoker ... 30
Figure 29: Clip command in Evoker .. 30
Figure 30: Cut command in Evoker ... 31
Figure 31: Dataset pipeline .. 31
Figure 32: ParaView build GUI options ... 36
Figure 33: ParaView desktop app version .. 37
Figure 34: Francesc Costa’s posted topics in the ParaView forum ... 38
Figure 35: Modifications in pvw-lite.py for changing default representation. 40
Figure 36: Modifications in lite_protocols.py for changing default representation 41
Figure 37: Running Evoker on a smartphone ... 42
Figure 38: Running Evoker on a tablet .. 42
Figure 39: Sharing an Evoker session on a tablet and smartphone ... 43
Figure 40: snappyHexMesh overview (original Figure from [55]) ... 45
Figure 41: Evoker GUI commands .. 51
Figure 42: Evoker meshing settings ... 51
Figure 43: Network security group of the new VM .. 55
Figure 44: Ports properly configured for Evoker .. 55

Francesc Costa

4

Figure 45: Resetting password of cloned VM .. 56
Figure 46: Shared storage scheme ... 58
Figure 47: Create an Azure file share ... 59
Figure 48: Evoker 3D visualization performance test 1 ... 61
Figure 49: Serpentine01A.stl rendered in Evoker ... 62
Figure 50: Evoker 3D visualization performance test 2 ... 63
Figure 51: Serpentine05.stl rendered in Evoker ... 63
Figure 52: CPU consumption in the server ... 64
Figure 53: Network consumption in the browser while rotating ... 65
Figure 54: HPC meshing study case GUI settings ... 66
Figure 55: Tabular results of mesh study case with 1.8M cells ... 67
Figure 56: Graphical results of mesh study case with 1.8M cells .. 67
Figure 57: Tabular results of mesh study case with 0.2M cells ... 68
Figure 58: Graphical results of mesh study case with 0.2M cells .. 68
Figure 59: Project meshed with cell size 0.1 ... 69
Figure 60: Surface with edges view with cell size 0.1 ... 70
Figure 61: Project meshed with cell size 0.2 ... 71
Figure 62: Surface with edges view with cell size 0.2 ... 72
Figure 63: Another OpenFOAM project in Evoker .. 73
Figure 64: Evoker running on Chrome .. 74
Figure 65: Evoker running on Firefox .. 74
Figure 66: Evoker running on Opera ... 75
Figure 67: Evoker running on Edge ... 75
Figure 68: Paper submitted to SIMULTECH 2021 ... 77
Figure 69: Evoker source code hosted in github .. 78

Evoker

5

1. Introduction

In this section, a context and justification of the FMP are presented along with the objectives and
methodology followed during the two semesters. Finally, an overview of the thesis organization is
detailed.

1.1. Context and justification of the final master thesis

The gateway of the Fourth Industrial Revolution is around the corner. The Fourth Industrial
Revolution introduces novel key pillars [1]. The areas that this technology revolution comprises are
growing as time passes and it will have a direct effect on the way we live and work. This is already
happening as this thesis is being written but the expected growth is massive. This project has the
aim of being interesting to the innovators and technologists of the Fourth Industrial Revolution as
involves the following aspects: it has a client-server architecture, it performs 3D scientific
visualization, it has cloud computing, it generates and refines 3D meshes that can be used in further
CFD simulations, and it is capable of visualizing 3D objects generated by third-party devices.

In this sense, this project encompasses below pillars of the Fourth Industrial Revolution:

1. Internet of Things: 3D printers and scanners can upload objects to a system server.
2. Simulation: use of OpenFOAM to refine meshes used in CFD.
3. Cloud Computing: in this project, there is a client-server architecture where all the

computational work is done in the cloud.
4. Additive Manufacturing: a 3D visualizer is key in any type of 3D printing, for instance,

additive manufacturing.

On top of that, the presented project is web-based requiring zero client installation and harnesses
HPC. After studying previous research, it can be followed that the implementation and conclusions
reached with this thesis can be of high interest to a wide audience.

The author of the project has a personal bond to choose this project due to his professional career
and background. Two years ago, he was working in a 3D printer manufacturing company, and
currently, he is working in a Color Science team. In this Color team, they sometimes use tools to
visualize the color gamut in 3D space (see Figure 1). Visualize a color gamut in 3D space is
important to assess the quality of color reproduction of a device, in this case, a printer: the greater
the volume the more colors it can reproduce. In Figure 2 a screenshot of a 3D printing job is shown.

Francesc Costa

6

Figure 1: Gamut volume of 2D printer

Figure 2: 3D printer job visualized in a computer

1.2. Objectives

The objectives of this project are to design, implement and evaluate a scalable client-server system
for remote visualization using ParaView and also to prepare a scalable HPC cloud for mesh
refinement with CFD software. The system must accept OpenFOAM projects with surfaces defining
the boundary domain, where a higher level of mesh refinement is usually required. The user will be
able to set the minimum and maximum refinement levels from a starting mesh and morphing the
resulting split-hex mesh to the surface.

Evoker

7

This project poses the following challenges:

1. Will the student be able to prepare a 3D visualizer with the time scheduled for an FMP (300
hours) with a consumer experience at the level of a commercial solution?

2. Will the solution be able to run in low-performance devices like tablets and mobiles?
3. Will the student be able to define, design, implement and test web front-end code for mesh

refinement?
4. Will the mesh refinement be scalable in an HPC cloud?

1.3. Methodology

FMP´s tutor Sergio Iserte and the author have been meeting online for one hour once a week during
the realization of this project. These meetings can be considered as a relaxed version of Agile Scrum
stand-up meetings: the author updates the tutor in terms of what he did last week, what he plans to
do this week, and if any roadblocks impede progress.

Sergio has been key during these meetings to guide the author in the usage of OpenFOAM. He has
been giving the author very good advice and feedback regarding many aspects of the project:
application front-end design, ParaView application to fork from, Azure vs AWS, or meshing
knowledge.

Notes were taken during the meetings and saved in Google Docs. Those notes have been helpful as
a task backlog and a progress history of this project.

1.4. Thesis organization

This thesis has seven sections. Section 1 is an introduction to the FMP and has the viewpoint of the
FMP’s subject without entering in describing the specific project in hand. Section 2 goes into the
description of the project in terms of the scope, state-of-the-art, resources, planning, and financials.
Section 2 also introduces the reader to the technologies used in this project to accomplish the goals:
VTK, ParaView, Web Sockets, Vue.js and Azure. Section 3 and 4 explain the 3D visualization and the
meshing functionality respectively. Section 5 shows the visualization results as well as performs a
performance analysis for meshing under different process topologies. Finally, Section 6 presents the
conclusions.

Francesc Costa

8

2. Project description

In this section, the project is described covering the scope, state-of-the-art, training, tools, resources,
planning, and financials.

2.1. Overview

This project aims to offer a tool for generating and refining complex 3D meshes from a point cloud,
as well as visualizing them in a client-server architecture through a web browser.

The tool will allow modifications of the meshes using refinement and filtering techniques as part of
a pipeline. It will also visualize a mesh (in VTK format or OpenFOAM point clouds) already created
and imported as a 3D model.

The software to be built has been named Evoker as per the definition of “to evoke”: bring (in this
case an object) to the conscious mind.

This type of system can be developed for both client-side and server-side visualization architecture,
to handle differing needs for performance and processing power. This is one of the most important
decisions when developing a web application for visualization – where the data processing will be
done. Both client and server-side processing have their advantages and drawbacks. It is important to
carefully understand parameters, such as the data size, the network capability, the number of
concurrent users, the type of rendering, the devices on which the application will run, and the types
of computation needed [2]. However, from the inception of this project it is aimed at doing the
rendering in the server for the below reasons:

1) This project is part of a Master's Thesis belonging to the HPC field. In this regard, it is crucial
to provide a scalable solution that leverages all the resources in the system. For this
purpose, the effort has to be made in the area of HPC in the server, leaving the client-side to
be instrumental.

2) The solution will be based on a modular design that allows the offloading of meshing
operations to an HPC cloud instead of overloading the webserver. That will be discussed
during the project and it will depend on the number of cores in the webserver. It will be
checked whether executing the meshing in the web server will overwhelm it in terms of
performance freezing the client views.

3) It will allow two or more users to share the same visualization and mesh modifications of the
same 3D model hosted on the server. For instance, the reader can imagine two doctors
remotely located sharing a patient 3D model and discussing online the best treatment.

4) Another benefit of the distributed architecture is that it can visualize the data where it is
generated, eliminating the need to move the data. It can be envisaged a set-up where
someone has a 3D printer factory with dozens of devices, all of them uploading their models
to a server as an ordinary procedure. In this scenario, the models are in one server and
different users can visualize them without moving files around.

5) Modular design that allows offloading meshing operations to an HPC cloud (transition from
interactive to batch mode). This design also addresses on and off-premises workflow. The
system is not bound to be only a cloud-based solution and is open to new paradigms such as

Evoker

9

Edge and Fog computing (leveraging the computing capabilities within a local network to
carry out computation tasks that would ordinarily have been carried out in the cloud [3]).

6) If the client runs on the web (being this one option of the project and another one to run on a
native desktop app) the system could be used from a mobile, touch-friendly interface without
strong processing power.

7) Security: having the data processing in the backend can ensure the code is not bad
intentionally modified and your data is not exposed to the client.

8) Ease of updating libraries and configurations. The client does not need to install any
software if she/he uses the web client option (not in the case of using ParaView client
desktop app).

So, the idea is that the client-side just handles the file browsing (hosted in the server), model
viewer, and mesh creation and processing interactivity, leaving the heavy lifting to the backend.
In this system, we will study the meshing functionality performance and analyze which is the
best process topology configuration for a case study, i.e, problem size.

In Figure 3 the reader can see an overview of the solution architecture. On the right side of it, the
web client is shown. The client can be running on a PC, tablet, or mobile phone. It is using the
VTK.js framework to develop the views and interactions and wslink to send and receive
commands to the backend. In the middle of the drawing lays the webserver and ParaView
backend. Its responsibilities are rendering the 3D models and serve the web pages. Finally, on
the left, the HPC cloud is shown. The HPC cloud cluster is in charge of performing a distributed
calculation of the meshing functionality in their nodes.

Figure 3: Architecture overview

There is a wide range of libraries for doing the different proposed tasks. During the project, active
monitoring of the different options has been performed, being open-minded, and changing rails if

Francesc Costa

10

better options are found during the lifetime of the project. The architecture is composed of the
below component libraries:

1) VTK.js and wslink libraries for the web client option.
2) ParaView desktop app connected to a server for the native client option.
3) OpenFOAM on the HPC server for the meshing operations.
4) ParaViewWeb with Python interface backend in the server for the 3D model visualization.
5) Message Passage Interface (MPI) to parallelize the computation.
6) The backend is hosted in the Azure cloud provider.

2.2. Out of scope

To focus the FMP´s effort on the HPC, meshing, and scientific visualization, the system will not be
multi-user. If two or more users access the web page, they will see the same in their browsers. In
other words, the apache web server will not instantiate a ParaView server per user; in fact, it will not
instantiate any ParaView server and it will count on that it is already running. It will not have user
logins, but we will have only ParaView server running and the apache server will just connect to this
one. If more than one user is connected, all of them will visualize the same.

The project won’t either do fluid temporal simulations limiting it to meshing and 3D visualization.

2.3. State-of-the-art

There are a lot of 3D scientific visualization toolkits of all sorts available: desktop native application,
web-browser running in the client, client-server rendering in the server, client-server rendering in the
client, small dataset models or mesh processing in the client. But there are not many examples of
solutions that fulfill the aim of this project, as said in the description, a customizable scalable HPC
3D scientific visualization and mesh generator with processing facilities of large datasets in a client-
server architecture. What makes it unique is the mesh generator and edition part.

For an overview of the different applications, a very basic test is being realized consisting of loading
two STereoLithography (STL) files of 250MB in total and an STL of 142MB (in case the app was not
able to load the former). The test is checking if the application can load it, if it uses GPU, the memory
consumption on the client-side, and general performance check (it can be rotated, zoomed, and
spaned smoothly).

The files used for the test are:

• SerpentineMerchant_SPLIT_05.stl: 108MB (Figure 4)
• SerpentineMerchant_SPLIT_01_A.stl: 142MB (Figure 5)

Evoker

11

Figure 4: SerpentineMerchant_SPLIT_05.stl

Figure 5: SerpentineMerchant_SPLIT_01_A.stl

Francesc Costa

12

and they have been downloaded from https://cults3d.com/es/modelo-3d/arte/serpentine-merchant-
bendansie.

Find below a list of related work:

1) MeshLabJS: A JavaScript, client-side, mesh processing tool. MeshLabJS is built using, for all
the mesh processing tasks, the C++ vcg library compiled into asm.js using emscripten and
relying on three.js for rendering. MeshLabJS is developed by the Visual Computing Lab of
the Institute of Information Science and Technologies - Italian National Research Council
(ISTI - CNR).

MeshLabJS was tried and it resulted in memory errors when added a big dataset (a couple of STL
files with 250MB in total). As said, everything is run on the client. Loading an STL of 142MB on disk
turn out in consuming 1.9GB of Memory in the browser and it is using the GPU to accelerate the
rendering (see Figure 6):

Figure 6: MeshLabJS performance

So MeshLabJs is not a good option for either large datasets and/or in devices with limited
processing power. There were not options either to create a mesh from a point cloud. MeshLabJs
has filters for modifying an existing mesh.

2) Meshlab: native desktop application version of MeshLabJS. Adding the same STL of 142MB
mentioned in MeshLabJS turn out to consume 772MB in MeshLab, significantly less than
MeshLabJs (see Figure 7):

Figure 7: MeshLab performance test 1

MeshLab was able to load the two STL files of 250 MB that were not possible with MeshLabJs
consuming 1.3GB of RAM (see Figure 8).

Figure 8: MeshLab performance test 2

Meshlab desktop performs better than MeshLabJS being the advantage of MeshLabJs the lack of
installation of software in the client computer.

https://cults3d.com/es/modelo-3d/arte/serpentine-merchant-bendansie
https://cults3d.com/es/modelo-3d/arte/serpentine-merchant-bendansie
http://www.meshlabjs.net/
http://vcg.sourceforge.net/
http://emscripten.org/
http://threejs.org/
http://www.meshlabjs.net/
https://github.com/cnr-isti-vclab/meshlabjs/blob/master/vcg.isti.cnr.it
https://github.com/cnr-isti-vclab/meshlabjs/blob/master/www.isti.cnr.it

Evoker

13

3) OpenFlipper [4] is an OpenSource multi-platform application and programming framework
designed for processing, modeling, and rendering of geometric data. Currently, supported
platforms are Windows, MacOS X, and Linux. Using OpenFlipper a variety of file formats are
supported (off, obj, ply, ...). OpenFlipper provides a highly flexible interface for creating and
testing its geometry processing algorithms. Basic functionality like rendering, selection, and
a lot of user interaction is provided by the system which significantly reduces the coding
effort for developing new geometry processing algorithms.

It has a Desktop interface. When trying to open a file several times with version v4.1 it consistently
failed (see Figure 9):

Figure 9: OpenFlipper performance test 1

On the other hand, OpenFlipper works ok when creating a primitive (a natively created object) as can
be seen in Figure 10:

Figure 10: OpenFlipper performance test 2

Francesc Costa

14

4) ParaView Glance [5] is a web-based visualization application built on VTK.js. It’s both
desktop- and mobile-ready. It demonstrates the power of VTK web capabilities and can be
customized to a variety of specific applications.

The rendering is done in the client as MeshLabJS. Adding the same STL of 142MB mentioned in
MeshLabJS turns out to consume 2GB in MeshLab and it is using the GPU to accelerate the
rendering (see Figure 11).

Figure 11: ParaView Glance performance test 1

ParaView glance was able to load the two STL files of 250 MB that were not possible with
MeshLabJs consuming 3GB of RAM (Figure 12).

Figure 12: ParaView Glance performance test 2

5) ParaView desktop: it is a native desktop application. ParaView desktop leverages
ParaView’s design with dynamic user interface (UI) generation based on Proxy
definitions. Relying on ParaView’s design has both benefits and drawbacks. The benefits are
that ParaView end-users are familiar with the application use and its overall organization.
However, for beginners or focused end-users, the dynamic UI may not be as useful for these
end-users.

Adding the same STL of 142MB mentioned in MeshLabJS turns out to consume 272MB in
the ParaView desktop and it is not using the GPU to accelerate the rendering (Figure 13).

Figure 13: ParaView desktop test 1

ParaView desktop was able to load the two STL files of 250 MB that were not possible with
MeshLabJs consuming 446MB of RAM (Figure 14).

Evoker

15

Figure 14: ParaView desktop test 2

6) ParaView Visualizer [6] provides a web user interface to ParaView in the browser. Visualizer

is a core web offering, and Kitware has been updating it throughout its evolving use of web
technologies.

There is not an available URL to test ParaView Visualizer. People interested in trying have to
download it and manually configure it. It uses a client-server architecture.

7) ParaView Lite [7] is a web-based client application that connects to a ParaView server to
perform data processing and visualization. It is designed to be customizable in terms of UI
and visualization workflow.

ParaView Lite is a replacement of ParaView Visualizer with the customizable, tailored UI available.
As Evoker is a fork of ParaView Lite, the reader will find a detailed explanation in Section 3.

8) VisIt [8]: VisIt is an Open Source, interactive, scalable, visualization, animation, and analysis

tool. From Unix, Windows, or Mac workstations, users can interactively visualize and analyze
data ranging in scale from small (<101 cores) desktop-sized projects to large (>105 core)
leadership-class computing facility simulation campaigns. Users can quickly generate
visualizations, animate them through time, manipulate them with a variety of operators and
mathematical expressions, and save the resulting images and animations for presentations.
VisIt contains a rich set of visualization features to enable users to view a wide variety of
data including scalar and vector fields defined on two- and three-dimensional (2D and 3D)
structured, adaptive and unstructured meshes. Owing to its customizable plugin design, VisIt
is capable of visualizing data from over 120 different scientific data formats.

VisIt is a desktop native app.

Adding the same STL of 142MB mentioned in MeshLabJS turns out to consume 900MB in Visit and
it is using the GPU to accelerate the rendering (Figure 15).

Figure 15: VisIt performance

9) 3DHOP (3D Heritage Online Presenter) [9] is an open-source framework for the creation of
interactive Web presentations of high-resolution 3D models, oriented to the Cultural Heritage
(CH) field. 3DHOP target audience ranges from museum curators with some IT experience to
experienced Web designers who want to embed 3D content in their creations, from students

Francesc Costa

16

in the CH field to small companies developing web applications for museums and CH
institutions. It is not suitable for this FMP.

10) GMSH [10]: GMSH is an open-source 3D finite element mesh generator with a built-in CAD
engine and post-processor. Its design goal is to provide a fast, light, and user-friendly
meshing tool with parametric input and advanced visualization capabilities. GMSH is built
around four modules: geometry, mesh, solver, and post-processing. The specification of any
input to these modules is done either interactively using the graphical user interface, in ASCII
text files using GMSH's scripting language (.geo files), or using the C++, C, Python, or Julia
Application Programming Interface (API).

11) SimScale [11]: holistic cloud-based simulation software, from preprocessing to
postprocessing through simulation. The full version requires the payment of a license.
SimScale is generalistic in simulations: heat transfer, solid mechanics, and fluid dynamics. It
cannot be customized for a specific field as Evoker.

12) Ingrid Cloud [12]: cloud-based CFD software specialized in wind simulations. The full version
requires the payment of a license. It cannot be customized for a specific field as Evoker

Figure 16 shows a cases summary of the results found:

Application 250MB file
memory

142MB file
memory

GPU Rendering Performance

MeshLabJS Error 2GB Yes Client Medium

MeshLab 1.3GB 0.7GB Yes Client Good(loading
time is slow)

OpenFlipper Error Error Error Client Bad

ParaView
Glance

3.1GB 2GB Yes Client Medium

ParaView
Visualizer

Not available Not available Not available Server Not available

ParaView
desktop

0.44GB 0.27GB Yes Client Good

ParaView Lite Not available Not available Not available Server Not available

VisIt 0.7GB 0.9GB Yes Client Medium(not
friendly)

3DHOP Not available Not available Not available Client Not available

GMSH Not available Not available Not available Client Not available

Figure 16: State-of-the-art comparison results table

Evoker

17

All in all, the studied solutions do not match the functionality of the system that this project is aiming
at. Applications and libraries from Kitware (VTK and ParaView developing and consulting company)
seem to have good quality and are a good starting point to achieve the project goals. Nonetheless, it
will require a good amount of dedication and skills (JavaScript, C++, web services, software
architecture, HPC, OpenFOAM, meshing …) to complete this project. That is why Kitware offers its
commercial consultancy and R&D services.

2.4. Training

Find below a list of areas where the student will grow his skills/knowledge:

1) Client-Server architecture, Ubuntu VM and web server infrastructure setup, firewall, network,
and Linux configuration.

2) SSH and key pair access.
3) Azure cloud.
4) VTK, VTK.js, ParaView.
5) OpenFOAM.
6) HPC subject from UOC Computational and Mathematical Engineering.
7) Python.
8) JavaScript frameworks (Angular, VUE) to modify Kitware example apps to add mesh

creation.

2.5. Technologies

In this subsection, the reader will be introduced to the technologies used in this project.

2.5.1. VTK core (C++)

The Visualization Toolkit is an open-source software system for 3D computer graphics, image
processing, and scientific visualization. VTK is distributed under the OSI-approved BSD 3-clause
License. It supports a wide variety of visualization algorithms and advanced modeling techniques,
and it takes advantage of both threaded and distributed memory parallel processing for speed and
scalability, respectively [13]. VTK is designed to be platform agnostic. This means that it runs just
about anywhere, including on Linux, Windows, and Mac; on the Web; and on mobile devices [13].

The core of VTK is a class library written in C++. To build an application based on VTK combining
different objects from this library will be needed. VTK was originally part of a textbook [14]. Will
Schroeder, Ken Martin, and Bill Lorensen were three graphics and visualization researchers who
wrote the book and companion software on their own time, beginning in December 1993, with legal
permission from their then-employer, GE R&D. The motivation for the book were to collaborate with
other researchers and develop an open framework for creating leading-edge visualization and
graphics applications [13].

https://en.wikipedia.org/wiki/Open-source_software
https://en.wikipedia.org/wiki/3D_computer_graphics
https://en.wikipedia.org/wiki/Image_processing
https://en.wikipedia.org/wiki/Image_processing
https://en.wikipedia.org/wiki/Scientific_visualization
https://en.wikipedia.org/wiki/Open_Source_Initiative
https://en.wikipedia.org/wiki/BSD_licenses
https://en.wikipedia.org/wiki/BSD_licenses

Francesc Costa

18

In 1998 Ken and Will left GE and founded Kitware that is currently the company that supports it.
Kitware offers custom solutions, collaboration, training, and support for those companies that want
to integrate VTK into their solutions.

VTK is a huge library that has a considerable learning curve. They have this portal [15] to submit
questions regarding support, issues, feedback.

2.5.2. VTK in the web (VTK.js)

Web technologies are evolving constantly. As so it is difficult to port a library that has decades of
history like c++ VTK to it; by the time someone has ported a functionality to the web, maybe its
technology has evolved so much that you enter the risk of being obsolete. So, there are two
approaches for using VTK from the browser: VTK.js and vtkWeb.

2.5.2.1. VTK.js

VTK.js is the counterpart of the C++ VTK core in the web browser realm.

VTK.js is a JavaScript library available for scientific visualization in the browser. The library is
available via NPM or unpkg.com CDN so it can directly be imported as a script tag inside your Web
page [15]. Its implementation consists of an ES6 JavaScript class library that can be integrated into
any web application. It adapts the VTK structure and expertise to bring high performance rendering
into the browser.

VTK.js is a re-implementation of VTK/C++ in JavaScript that leverages WebGL and focuses on
geometry rendering and volume rendering. On top of its rendering aspect, VTK.js offers the same
pipeline infrastructure as its C++ father. While VTK.js embraces JavaScript, it tries to keep the same
vocabulary and application programming interface as VTK, so it remains familiar to VTK users. In
terms of classes, VTK.js uses vtkPolyData and vtkImageData for its rendering pipeline. It also offers
a handful of readers (e.g., VTP, VTI, STL, OBJ, etc.) and filters [16]. An example application of VTK.js:
ParaView lite [7].

2.5.2.2. vtkWeb

vtkWeb drives the C++ implementation of VTK through a web server via its Python wrapper. As a full
package, it can leverage the complete input/output, data processing, and rendering capabilities of
VTK [16].

Based on its infrastructure, vtkWeb allows a front-end client and a server to communicate. In
particular, it enables method calls (RPCs) and publishes/subscribes types of communication. On top
of the generic communication infrastructure, vtkWeb provides a protocol for vtkRenderWindow
synchronization. As a result, interactions reflect both on the web page and on the server where the
data lives. An example application of vtkWeb: ParaView Visualizer [6].

https://www.npmjs.com/package/vtk.js
https://unpkg.com/vtk.js

Evoker

19

The decision for implementing Evoker was based on which current Kitware solution was closer and
more suitable for Evoker. As explained before, we choose ParaviewLite; and ParaviewLite was based
on VTK.js, so Evoker is using VTK.js as well

2.5.3. VTK based solutions evaluation

The first task that it was needed to do was to analyze all VTK web applications to decide which one
was the most suited project to fork from. ParaView Glance, ParaView Visualizer, and ParaView Lite
were analyzed. These applications have many similarities. ParaView Glance, as its name suggests, is
designed to visualize a 3D object and has very few commands to modify the geometry. ParaView
Glance is very basic. On the other side, ParaView Visualizer is very rich in features and it is kind of
the web counterpart of the Desktop VTK application. ParaView Visualizer is very complex. Between
these two applications lies ParaView Lite: it has a good amount of rendering options and a good
enough amount of geometry modification commands for our project (Clip, Cut, etc.).

So, it was decided that this FMP will a fork from ParaView Lite.

2.5.4. ParaView

ParaView is an open-source, multi-platform data analysis and visualization application. ParaView is
another toolkit different than VTK [18]. The goals of the ParaView team include the following:

• Develop an open-source, multi-platform visualization application.

• Support distributed computation models to process large data sets.

• Create an open, flexible, and intuitive user interface.

• Develop an extensible architecture based on open standards.

Paraview, as contrary to VTK, adds a layer of abstraction. This layer of abstraction is intended to
support larger data as it uses several CPU nodes simultaneously employing HPC techniques. Both
ParaView and VTK stem from the same underlying capabilities. ParaView adds a multi-machine
setup to the equation. VTK is the core library that can be integrated into stand-alone client
applications. ParaView has capabilities built-in (filters, rendering settings, …), prepared to be
deployed in the server for client-server architecture systems [19].

So, Kitware recommends VTK.js for the client-side and ParaView for the server-side. This is the
supported path and the most stressed and supported one. Having said that, as both libraries are
based on the same technologies, VTK can also be used on the server and ParaView Web on the
client. To do something like this should be based on whether the author knows and has experience
in one of these and wants to avoid a learning curve. In the Evoker case, as it is new, VTK.js is going
to be used for the client and ParaView for the server to minimize the errors and take maximum
support of Kitware support forums.

Francesc Costa

20

2.5.5. Web Sockets

The WebSocket API is an advanced technology that makes it possible to open a two-way interactive
communication session between the user's browser and a server. With this API, messages can be
sent to a server and receive event-driven responses without having to poll the server for a reply. The
WebSocket protocol was standardized by the IETF as RFC 6455 in 2011, and the WebSocket API in
Web IDL is being standardized by the W3C.

Before WebSocket discovery, it was difficult to have real-time two-way communication between a
client and server in the browser. Somehow it was based on polling: client requesting if there was
data available or if a command was completed every certain period. So, there were no events
available that could be fired by the server. If the user has to rely on polling she/he can have two
drawbacks: not having a good real-time experience or consuming a lot of network bandwidth by
sending polling requests very often.

With WebSockets, the server can start up a communication, i.e. fire an event, with the client. This is a
game-changer in Web Applications as it comes near to Native Desktop development.

2.5.6 Vue.js

Vue.js is a progressive framework for JavaScript used to build web interfaces and one-page
applications. Not just for web interfaces, Vue.js is also used both for desktop and mobile app
development with Electron framework [20].

Evoker uses Vue.js for its browser development.

2.5.7. Azure

Azure is a public cloud computing platform that lets you add cloud capabilities to your existing
network through its platform as a service (PaaS) model or entrust Microsoft with all of your
computing and network needs with Infrastructure as a Service (IaaS).

Evoker server is hosted in Azure. In the main server where we run our Apache Web Server and also
our ParaView backend. Then, we have a scalable number of HPC nodes to run our OpenFOAM
meshing functionality.

We also shared data between the different compute nodes with Azure Files.

Figure 17 shows an overview of Evoker technologies in each agent: client, server, and HPC cluster.

Evoker

21

Figure 17: Overview of Evoker technologies

2.6. ICT tools

Find below a list of ICT tools used during the project:

• Google Chrome: it is the most popular internet browser with 64% of the market share.
• Chrome Debugging tools: Chrome DevTools is a set of web developer tools built directly into

the Google Chrome browser. You can access it by pressing F12. It allows you to put
breakpoints in your source code, see your traces, monitor the memory and network
consumption.

• Chrome Task Manager: the Chrome web browser also has a task manager that helps the
developer stop troublesome tabs and extensions.

• Visual Studio Code: IDE for editing source code.
• Mendeley: it is a software that allows keeping track of all bibliography used in a thesis and

has an interface to import them to Word.
• Microsoft Office 365:

o Word: text editor used to write this thesis.
o Excel: spreadsheet software for data analysis and visualization.

• MobaXTerm: software for remote access with ssh, sftp, X11 forwarding.
• Google Workspace: usage of google docs to share documents between the author and the

tutor.

Francesc Costa

22

2.7. Resources

The author has been developing this project on an HP Zbook 15 G3 laptop. It does not pay a lot of
difference what computer you use as the heavy lifting is done on the server. The users need a good
internet connection to have a good experience when rendering and doing zoom, pan and rotate to
the 3D objects. The author has a fiber broadband connection with around 41 Mb/s of download
speed and 24 Mb/s of upload speed.

2.8. Temporal planning

1) PEC1 work (around 1 month):
a. Study of UOC tutorials about FMP: introduction to FMP, presentations, project

management, scientific writing: 1 day
b. State-of-the-art analysis: 7 days
c. Description, goals, and scope of the project: 7 days
d. Study the needed hardware infrastructure and solution performance: 7 days
e. FMP planning: 7 days

Figure 18:PEC1 planning

2) PEC2 work (around 3 months):

a. Evaluate VTK-based visualization solutions related to the project: 14 days
b. Implement an angular client app (named Evoker) emulating ParaView-Lite as a proof

of concept: 40 days
c. Evaluate and learn OpenFOAM meshing solutions: 21 days
d. List the client pipe-line filter operations wanted in the GUI: 5 days

Evoker

23

Figure 19: PEC2 planning

3) PEC3 work (around 3 months):

a. Install OpenFOAM and MPI in the server: 7 days
b. Extend Evoker client code to create and refine meshes in the server: 21 days
c. Implement mesh editor filters in the client and server: 14 days
d. Check the performance and bottlenecks of the system: 2 days
e. Study different process topologies comparing performance: 28 days
f. Testing, fine-tuning, and issue fixing: 7 days

Figure 20: PEC3 planning

4) PEC4 work (around 1 month)

a. Project documentation, user manual, and final report: 19 days
b. Video recording: 3 days
c. Presentation: 8 days

Francesc Costa

24

Figure 21: PEC4 planning

2.9. Project financials

As said this project has a client-server architecture with server-side rendering. Consequently, the
server should be powerful enough. The server is hosted in Azure using the author MSDN
subscription. The Azure scheme is of pay per use. Evoker is consuming credit when the servers are
running. It has a $150 monthly credit (Figure 22):

Figure 22: MSDN subscription

For the main ParaView and Web Server, an Ubuntu 18.04-LTS with Standard E16ds_v4 (16 vcpus,
128 GiB memory) is being used.

For the HPC cloud, up to four Ubuntu 18.04-LTS with Standard E4ds_v4 (4 vcpus, 32 GiB memory)
are being used.

Evoker

25

To not consume credit, the VM’s are being started and stopped for every development needed.
Before adding Azure Files, the consumption was far below the monthly credit as can be seen in
below November and December billings (Figures 23 and 24):

Figure 23: Cost analysis without Azure Files

But when storage for Azure Files to run OpenFOAM in parallel was added in different nodes the
consumption increase substantially:

Francesc Costa

26

Figure 24: Cost analysis with Azure Files

During the evolution of the project, the monthly credit was exceeded, and the account got disabled
(Figure 25):

Figure 25: Spending limit reached

This put the project at risk, and it was looked at ways to reduce consumption. It was perceived that
my Files Shares had a default provisioned capacity of 1000 GB and they were not needed. At this
point, the author reduced them to 10% of the original size. Fortunately, when the billing period
expires your account is re-enabled and you can continue using your Virtual Machines and Storage.
Azure user has the option to provide a credit card when she/he consumes all her/his monthly credit.

Evoker

27

Francesc Costa

28

3. Three-dimensional scientific visualization

In this section, the configuration and code development of the 3D visualization part of the project is
explained.

3.1. 3D scientific visualization workflows

As with other solutions analyzed, Evoker will not upload files to the server from the web app
(browser). It is expected that the files to visualize are already there (the user has uploaded by FTP,
SCP, …). The folder where the data files are stored will be passed to the ParaView backend process
with the data argument:

$ pvpython --force-offscreen-rendering ~/evoker/client/server/pvw-lite.py --data
~/3d_samples --port 49773

The client code connects to a VTK server with a known hardcoded IP static address behind the
scenes. The reason for this hardcoded IP address is that this is just an academic project and that we
want to ease the introduction of the web URL (avoid long typing for getting the same results). It is
also possible to pass another IP address as a query parameter. So, if the user enters the IP address
of the server in the browser without any parameter, the JavaScript code will connect through a web
socket to the ParaView server with the same IP address and using port 49773. But the user can also
pass a different socket to connect as a query parameter. So, we have these two options:

1) http://51.103.138.135:

JavaScript code will connect to session URL = ws://51.103.138.135:49773/ws

2) http://51.103.138.135/?sessionURL=ws://51.103.135.214:49773/ws:

JavaScript will connect to provided ParaView backend ws://51.103.135.214:49773/ws

Once the webserver and the VTK have been started you can enter the IP address of the webserver in
any browser and start your 3D scientific visualization. The app interaction through buttons and
menus is very easy. When the app has started there should not be any object to render. In the
application, there are the concepts of files and datasets. Files are any ParaView supported file (obj,
STL, etc.). Datasets are in-memory objects that ParaView has extracted from the files and converted
to their internal format. So, the first thing the user needs to do is to add a file to the app. When you
click the Files button the app will browse the folder configured in the server and will show the files
and directories on the left side of the app (Figure 26):

http://51.103.138.135/
http://51.103.138.135/?sessionURL=ws://51.103.135.214:49773/ws

Evoker

29

Figure 26: Files and Datasets in Evoker

Then the user can click any of the files and ParaView will generate a Dataset from it (Figure 27).

Figure 27: A rendered Dataset in Evoker

The user can change the rendering of the object through a combo box (Figure 28):

Francesc Costa

30

Figure 28: Changing representation in Evoker

Find below some of the operations the user can do with Evoker:

Clip: cutting the object and generating a new 3D object (Figure 29).

Figure 29: Clip command in Evoker

Evoker

31

Cut: generates a 2D contour that is the intersection of the object with a plane (Figure 30).

Figure 30: Cut command in Evoker

All these operations create a new dataset from the original. The user can show and hide any object
in the list by clicking at the red circle at the left of its name in the Dataset menu (Figure 31):

Figure 31: Dataset pipeline

The user can also delete a dataset with the Trash icon (Figure 31).

Once the object is rendered, it can be zoomed, panned, and rotated. The solution gives a good user
experience with no noticeable delays (latencies) when doing these visualization operations.

Francesc Costa

32

3.2. Client code implementation

After three more weeks, the project had a customized version of ParaView Lite up and running
having implemented the below changes with feedback from the instructor Sergio Iserte:

• Remove the Sources button (this was used to create cones, spheres, etc.).
• Remove line width, contrast, and color selectors.
• Limit object rendering to WireFrame, Surface, Surface with Edges and Points.
• Remove the About button.
• Remove the ParaView Lite logo.
• Remove Contour geometry commands.

So, discarding the work done in Angular and re-do it in Vue was a good decision.

ParaView Lite is implemented using the Vue.js JavaScript framework. As the author has some
experience with Angular development, he thought about implementing the client-side (rendering and
meshing in the browser) using this technology and use ParaView Lite as a reference for VTK
backend interactions. It did progress well for about 3 weeks and a good prototype was implemented
that was able to perform browsing of files hosted at the server and render them on the screen.
However, it reached a point in which the rendered objects did not respond to Zoom, Pan, and Rotate
and the author was unable to troubleshoot it. Help was requested from the Kitware company
through their forums, but they do not have a ParaView application implemented with Angular. So,
they told the requester that unfortunately, they could not help the Evoker project.

It was a tough moment for the Project as a good amount of time was invested with the Angular
implementation and because the author feels comfortable with Angular and he had zero experience
with Vue.js. But it was considered that VTK and ParaView codebase were huge and not very well
documented (at least it requires a considerable learning curve to master it). Sooner or later more
problems will appear with an Angular project interacting with the VTK backend, and it will not have
supported by Kitware. So, it was decided to restart the implementation with Vue.js. A Vue book [21]
was bought and an online course at Lynda [22].

3.2.1. Remove Sources button

In order to remove Sources button from the command toolbar, a change in file
src/modules/registerModules.js was needed. Below code lines were removed:

import Sources from 'paraview-lite/src/modules/Sources';
import sourcesModule from 'paraview-lite/src/modules/Sources/module';
store.commit(
 'PVL_MODULES_ADD',
 Object.assign({}, sourcesModule, { component: Sources })
);

3.2.2. Remove line width, contrast, and color selectors

Evoker

33

To remove these widgets from the GUI some lines of
src/components/core/RepresentationToolbar/template.html needed to be removed. Find below the
final code for this file:

<v-toolbar dense :class="$style.container">
 <v-layout row v-if="activeProxyData">
 <v-combobox
 :class="$style.comboboxFirst"
 dense
 single-line
 hide-details
 ref="representation"
 @input="blur('representation')"
 v-model="representation"
 :items="representationItems"
 label="Representation"
 />
 </v-layout>
 <div v-if="!activeProxyData" :class="$style.empty"></div>
</v-toolbar>

3.2.3. Limit object rendering to WireFrame, Surface, Surface with Edges and Points

To limit the object rendering to the required values, the file
src/components/core/RepresentationToolbar/script.js needs to be edited. A filter was added to
representationItems method as highlighted below:

 representationItems() {
 if (this.activeProxyData) {
 return this.activeProxyData.ui
 .find((prop) => prop.name === 'Representation')
 .values.filter(
 (value) =>
 value === 'Surface' ||
 value === 'Surface With Edges' ||
 value === 'Points' ||
 value === 'Wireframe'
);
 }
 return [];
 },

3.2.4. Remove ParaView Lite logo and About Logo

To remove the Logo and the About Logo some lines needed to be removed from
src/components/core/RootNode/template.html. Below you can find this code with commented lines
(removed in the final project) highlighted:

Francesc Costa

34

 <v-tooltip bottom>
 <a
 slot="activator"
 href="#"
 v-on:click.prevent="toggleLanding"
 >
 <!-- <svg-icon
 :icon="iconLogo"
 height="52px"
 style="margin-top: 6px"
 /> -->

 Go to app
 Back to landing page
 </v-tooltip>
 <v-spacer />
 <action-modules v-if="!landingVisible" :smallScreen="smallScreen" />
 <v-btn
 v-if="errors.length"
 key="if-has-errors"
 :class="$style.toolbarButton"
 flat
 color="error"
 v-on:click="errorDialog = true"
 >
 <v-icon>{{ $vuetify.icons.pvLite.error }}</v-icon>
 {{ errors.length }}
 error(s)
 </v-btn>
 <!-- <v-btn :class="$style.toolbarButton" flat v-on:click="aboutDialog
= true">
 <!- - width of other icons in toolbar - ->
 <svg-icon icon="kitware-logo" width="24px" />
 About
 </v-btn> -->
 </v-toolbar>

3.3. Server set-up

In this subsection, the set-up of the server is explained. The first approach is by compiling the source
code and then installing VTK binaries.

3.3.1. First approach: compiling ParaView from source

When someone starts approaching a huge, successful, and consolidated toolkit as VTK, she/he does
not find a short and straight tutorial that brings you from point A to point B. Instead, he/she read a
lot of online documentation not always connected and following a cohesive discourse. The engineer
is not sure what article he reads on the internet would be his tailored solution for the problem he has
in his hands. VTK and ParaView do not have an easy learning curve for new beginners.

Evoker

35

So, one of the articles the author read about VTK said that if you want to use a client-rendering
architecture with the data processing in the backend hosted on Ubuntu, you need to compile the
source code. This is not an easy task as you will see.

Mainly tutorials: [23], [24], and [25] have been followed.

And these are the notes I took during the installation:

 $ git clone --recursive https://gitlab.kitware.com/paraview/paraview.git

 cmake:
 $ sudo apt remove --purge cmake
 $ hash -r
 $ sudo snap install cmake --classic

 qt:
 $ sudo apt-get install qt5-default

 install mpi:
 $ sudo apt-get update -y
 $ sudo apt-get install -y mpi

 python:
 $ sudo apt update
 $ sudo apt install software-properties-common
 $ sudo add-apt-repository ppa:deadsnakes/ppa
 $ sudo apt update
 $ sudo apt install python3.8
 $ sudo ln -sf /usr/bin/python3.8 /usr/bin/python
 $ sudo apt install python3.8-venv python3.8-dev

 lib path: /usr/lib/x86_64-linux-gnu/libpython3.8.so
 $ sudo apt install python3-pip
 $ sudo pip3 install autobahn twisted
 $ sudo apt install python-autobahn

 mesa:
 $ sudo apt-get update -y
 $ sudo apt-get install -y libosmesa6-dev

Before building ParaView you need to configure it with ccmake:

$ cd paraview_build
$ ccmake ../paraview

and a graphical window like this will appear (Figure 32):

Francesc Costa

36

Figure 32: ParaView build GUI options

Where the engineer configures different options of the build.

After that you can go ahead and build it:

$ make -j 16

The building of ParaView from source has been a long process with lots of pitfalls in the way. Some
of them are because it is a completely new subject to the author. But when finally, the author got it to
make it work and try to connect it to the ParaView Desktop native app with version (Figure 33):

Evoker

37

Figure 33: ParaView desktop app version

An error mismatch appeared:

a) In the client (windows):

ERROR: In
C:\bbd\8fbebceb\build\superbuild\paraview\src\VTK\Parallel\Core\vtkSocketC
ommunicator.cxx, line 592
vtkSocketCommunicator (000001D7F58AAD50): Client/server version hash
mismatch.
ERROR: In
C:\bbd\8fbebceb\build\superbuild\paraview\src\Remoting\Core\vtkTCPNetworkA
ccessManager.cxx, line 333
vtkTCPNetworkAccessManager (000001D7EDDDB750):
__
Connection failed during handshake. vtkSocketCommunicator::GetVersion()
returns different values on the two connecting processes
(Current value: 100).
__

b) And in the ubuntu server:

(282.183s) [pvserver]vtkSocketCommunicator.c:481 ERR|
vtkSocketCommunicator (0x555a2fc3cde0): Client/server version hash
mismatch.
(282.183s) [pvserver]vtkTCPNetworkAccessMana:333 ERR|
vtkTCPNetworkAccessManager (0x555a2fb10ce0):
__
Connection failed during handshake. vtkSocketCommunicator::GetVersion()
returns different values on the two connecting processes
(Current value: 100).

Francesc Costa

38

I have submitted a lot of topics to the ParaView discourse page [26] as you can see in the below link
and screenshot in Figure 34:

https://discourse.paraview.org/u/francesc_costa/activity/topics

Figure 34: Francesc Costa’s posted topics in the ParaView forum

In the end, a support engineer from Kitware suggested to me that I do not need to compile ParaView
from Source but installed pre-compiled binaries in Ubuntu.

3.3.2. Final approach: installing VTK binaries

For the Ubuntu 18.04-LTS server, the following steps were needed:

1) Install ParaView:
a. $ wget -O paraview.taz.gz "https://www.paraview.org/paraview-

downloads/download.php?submit=Download&version=v5.8&type=binary&os=L
inux&downloadFile=ParaView-5.8.1-osmesa-MPI-Linux-Python3.7-
64bit.tar.gz"

https://discourse.paraview.org/u/francesc_costa/activity/topics

Evoker

39

b. edit .profile and add:
 PATH="$HOME/ParaView-5.8.1-osmesa-MPI-Linux-Python3.7-64bit/bin:$PATH"

2) Set up web app:
a. First install node v10.22.1

 $ curl -sL https://deb.nodesource.com/setup_10.x | sudo -E bash -
 $ sudo apt install nodejs
 $ node --version

b. Clone FMP code:
 $ git clone https://github.com/FrancescSM/evoker.git

c. Build client code
 $ cd evoker\client
 $ npm install
 $ npm run build

3) Set-up apache web server:
a. install

 $ sudo apt install apache2
b. copy dist

 $ cd ~/evoker/client
 $ mv /var/www/html /var/www/html_ori
 $ sudo rm -rf /var/www/dist
 $ sudo cp -r dist /var/www/dist

c. restart apache
 $ sudo /etc/init.d/apache2 restart

4) Create script for easing the start-up of the system. As the system is hosted in Azure and I

have a limited budget each month (150$) I only start the Ubuntu server and the ParaView
server under request. So, I create a shell script to avoid typing and errors:

a. $ touch run.sh
b. $ edit run.sh

$ pvpython --force-offscreen-rendering ./evoker/client/server/pvw-
lite.py --data ~/3d_samples --port 49773

c. $ chmod +777 ./run.sh
5) Run script:

a. $./run.sh

3.4. Changing default representation

The default representation of objects in ParaView is ‘Surface’. The FMP instructor and the author
agreed that for meshing workflows it will be more helpful to have ‘Surface with Edges’ instead of
‘Surface’ so the user of Evoker will be able to see the cubes of the mesh. As it is tiresome to change
the representation every time you select a new file, it was thought it would be nice to change the
default modifying the source code.

https://github.com/FrancescSM/evoker.git

Francesc Costa

40

The reason to mention this feature in the project memory is to raise awareness of the difficulty of
developing and extending the ParaView toolkit. One experienced programmer would think that
changing the default representation is an easy task just modifying a line of code of the Vue project.
But it turned out to not be so straightforward. The default representation is managed by the server
protocol. So, a developer needs to modify the python code that wraps the VTK library. After creating
a new topic in the ParaView Discourse web portal, one of the engineers replied that it was needed to
change the code in the protocol to override the default behavior when a new representation gets
created. Evoker developer needs to do some interactions with this code and request more support in
the Discourse portal but in the end, he/she makes it work. It is not easy and even Kitware engineers
have to think twice about how to achieve something.

To change the default representation, it was needed to modify two python files that run in the server.
In Figure 35 the reader can see the modifications needed in the pvw-lite.py file: it is needed to pass
ParaViewWebProxyManager object to ParaviewLite constructor.

Figure 35: Modifications in pvw-lite.py for changing default representation.

In Figure 36 the reader can see the modifications needed in the lite_protocols.py file: customCreate
and customOpen methods are overwritten by class inheritance.

Evoker

41

Figure 36: Modifications in lite_protocols.py for changing default representation

3.5. Usage from tablet and smartphone

Evoker does not need to install anything in the client to run. As proof of it, you can see it running
from a smartphone (Figure 37) and a tablet (Figure 38).

Francesc Costa

42

Figure 37: Running Evoker on a smartphone

Figure 38: Running Evoker on a tablet

Finally, simultaneous visualization is showed in Figure 39.

Evoker

43

Figure 39: Sharing an Evoker session on a tablet and smartphone

Francesc Costa

44

4. Meshing workflows

In this section, the configuration and code development of the meshing tool in Evoker through
OpenFOAM is explained.

4.1. OpenFOAM introduction

OpenFOAM is a collection of C++ libraries for solving partial differential equations for continuum
mechanics problems, most prominently including CFD. OpenFOAM has been developed for over two
decades and has reached a good level of maturity thanks to its large user community. OpenFOAM
code is fully open [41].

Covering an OpenFOAM project end to end is a huge engineering process that by no means it is
trying to be achieved in Evoker. As an overview of it, find below a list of the main steps of an
OpenFOAM project [27]:

1. Create an OpenFOAM case
2. Running applications
3. Mesh generation and conversion
4. Models and physical properties
5. Solving
6. Post-processing

Evoker will help the OpenFOAM user engineer with step #3 (Mesh generation and conversion). The
most typical use of OpenFOAM is from an interactive shell with the engineer having to edit text files
manually. Sometimes these tasks can be cumbersome, and Evoker can be handy.

In this project, one of the goals is to develop a web application that provides a web graphical user
interface for mesh settings (cell size, refinement iterations, and processor topology) edition and also
execute this job of generating a mesh from a geometry and boundary surfaces in an HPC cloud. The
term HPC cloud is being used instead of the HPC cluster because the number of compute nodes is
static per execution. Evoker administrator can change the number of compute nodes as a backend
administration task.

Evoker has to be configured its settings for a specific field to provide a user-friendly interface.
Evoker has a modular design allowing it to customize its settings (cell size, refinements, and
processor technology) to other ones modifying a class in the Vue.js front-end, and adding some
methods to the python backend.

As a prerequisite, the user must provide the OpenFOAM project (case) and Evoker expects to find
some files, folders, and settings in them to execute OpenFOAM meshing commands (i.e. blockMesh,
snappyHexMesh).

Find in Figure 40 depicts a schematic overview of the OpenFOAM process covered in Evoker:

Evoker

45

Figure 40: snappyHexMesh overview (original Figure from [55])

So, Evoker has a list of prerequisites (see Section 4.4), offers some settings, and allows to choose
the number of processors to parallelize the meshing in an HPC cloud.

4.2. MPI installation

MPI is necessary to parallelize the execution of the meshing in the HPC cloud.

MPI is a standard for message-passing between processes. It is highly used in HPC where the user
can run jobs in different compute nodes, and the framework provides the needed communication
between these jobs.

In Evoker we are using MPICH implementation [28].

Francesc Costa

46

Below are the steps to install it in Ubuntu [29]:

$ sudo apt-get update -y

$ sudo apt-get install -y mpich

4.3. OpenFOAM installation

Below are the steps to install OpenFOAM in Ubuntu [30]:

$ sudo sh -c "wget -O - https://dl.OpenFOAM.org/gpg.key | apt-key add -
"sudo add-apt-repository http://dl.OpenFOAM.org/ubuntu

$ sudo apt-get update

$ sudo apt-get -y install OpenFOAM7

4.4. Prerequisites

Evoker has below prerequisites from the OpenFOAM project to work:

1. The OpenFOAM project must be ready to execute blockMesh and snappyHexMesh
commands from an interactive shell in version 7 of OpenFOAM
(https://OpenFOAM.org/release/7/).

2. The OpenFOAM project must be uploaded to the server.
3. It has to have a file named foam.foam (this file can be empty, and it is just a convention to

open it with ParaView)
4. The /constant/triSurface directory has the surface definition files that specify your boundary

mesh.
5. The OpenFOAM project must have /constant/polyMesh/blockMeshDict file and inside this

file, the vertices must be defined without being references to other files utilizing the include
directive.

6. Evoker will extract the name of the refinement surfaces from
/constant/polyMesh/blockMeshDict file inside the boundary section. These surfaces can be
created with software such as SolidWorks [65] or HydroSludge [66]. This is a dynamic step
Evoker does: the number of refinement surfaces and the names of them are automatically
retrieved by the system reading this file.

4.5. Files preparation

Evoker needs to read and write values in the OpenFOAM project folder hosted in the backend to
operate. It needs to know the vertices and the surfaces that specify the boundary of the mesh and it
needs to write the user settings in some files so that blockMesh and snappyHexMesh take them
into account.

Evoker

47

Find below the tasks that Evoker automatically performs related to backend file preparation for
meshing:

1. First, it reads the boundary surfaces from /constant/polyMesh/blockMeshDict
2. It modifies /constant/polyMesh/blockMeshDict:

a. adding #include "../../UISettings"
b. Change explicit nodes to the variable $Nodes that will be written in file UISettings

3. It writes (or overwrites if already exists) /system/decomposeParDict:

FoamFile{
 version 2.0;
 class dictionary;
 format ascii;
 location "system";
 object decomposeParDict;}

#include "../UISettings"

numberOfSubdomains $numberOfSubdomains;
method simple;
simpleCoeffs
{
 n ($xTopology $yTopology $zTopology);
 delta 0.001;
}
hierarchicalCoeffs
{
 n (1 1 1);
 delta 0.001;
 order xyz;
}
metisCoeffs
{
 processorWeights (1 1 1 1);
}
manualCoeffs
{
 dataFile "";
}
distributed no;
roots ();

where we are using variables $numberOfSubdomains, $xTopology, $yTopology, $zTopology defined
in UISettings file.

4. It writes (or overwrites if already exists) /system/snappyHexMeshDict:

FoamFile{
 version 2.0;
 class dictionary;

Francesc Costa

48

 format ascii;
 location "system";
 object snappyHexMeshDict;}

#include "../UISettings"

castellatedMesh true;
snap true;
addLayers false;

geometry {
freeSurface.stl {
 name freeSurface;
 type triSurfaceMesh;}
inlet.stl {
 name inlet;
 type triSurfaceMesh;}
recirculacion.stl {
 name recirculacion;
 type triSurfaceMesh;}
tuboRec.stl {
 name tuboRec;
 type triSurfaceMesh;}
pasamuros.stl {
 name pasamuros;
 type triSurfaceMesh;}
outlet.stl {
 name outlet;
 type triSurfaceMesh;}
tubopared.stl {
 name tubopared;
 type triSurfaceMesh;}
Default.stl {
 name Default;
 type triSurfaceMesh;}
}
castellatedMeshControls {
 locationInMesh (2 2 -1);
 refinementSurfaces {
freeSurface{
 level ($minfreeSurface $maxfreeSurface); }
inlet{
 level ($mininlet $maxinlet); }
recirculacion{
 level ($minrecirculacion $maxrecirculacion); }
tuboRec{
 level ($mintuboRec $maxtuboRec); }
pasamuros{
 level ($minpasamuros $maxpasamuros); }
outlet{
 level ($minoutlet $maxoutlet); }
tubopared{
 level ($mintubopared $maxtubopared); }
Default{

Evoker

49

 level ($minDefault $maxDefault); }
}
 refinementRegions { }
 features ();
 minRefinementCells 0;
 maxGlobalCells 10000000;
 resolveFeatureAngle 5;
 nCellsBetweenLevels 1;
 maxLocalCells 500000;
 allowFreeStandingZoneFaces true;
}
snapControls {
 nSmoothPatch 3;
 tolerance 1;
 nSolveIter 300;
 nRelaxIter 5;
 nFeatureSnapIter 10;
 implicitFeatureSnap true;
 explicitFeatureSnap false;
}
addLayersControls {
 layers {
 freeSurface{
 nSurfaceLayers 0; }
 inlet{
 nSurfaceLayers 0; }
 recirculacion{
 nSurfaceLayers 0; }
 tuboRec{
 nSurfaceLayers 0; }
 pasamuros{
 nSurfaceLayers 0; }
 outlet{
 nSurfaceLayers 0; }
 tubopared{
 nSurfaceLayers 0; }
 Default{
 nSurfaceLayers 0; }
 }
 nSmoothSurfaceNormals 5;
 slipFeatureAngle 30.0;
 nBufferCellsNoExtrude 0;
 nRelaxIter 5;
 relativeSizes false;
 minMedianAxisAngle 90.0;
 maxFaceThicknessRatio 0.5;
 nSmoothNormals 3;
 maxThicknessToMedialRatio 0.3;
 nLayerIter 50;
 minThickness 0.05;
 nSmoothThickness 10;
 nGrow 10;
 nRelaxedIter 20;
 concaveAngle 90.0;

Francesc Costa

50

 featureAngle 60;
 firstLayerThickness 0.05;
 expansionRatio 1;
}
meshQualityControls {
 minTetQuality 1.0E-20;
 minVol 1.0E-14;
 maxInternalSkewness 4.0;
 maxBoundarySkewness 20.0;
 maxConcave 80.0;
 minFaceWeight 0.05;
 minVolRatio 0.01;
 minTwist 0.05;
 minArea -1.0;
 maxNonOrtho 65.0;
 minTriangleTwist -1.0;
 minDeterminant 0.01;
 errorReduction 0.75;
 nSmoothScale 4;
 relaxed {
 maxNonOrtho 75.0; }
}
mergeTolerance 1e-03;
debug 0;

where we are setting minimum and maximum refinement surfaces values defined in UISettings file
and we are settings castellatedMesh and snap to true, and addLayers to false.

5. Evoker will write user settings to be applied in the mesh job to UISettings file:

resolution 0.5;
NODES (54 16 54);
xTopology 2;
yTopology 2;
zTopology 1;
numberOfSubdomains 4;
min$sup[i] 0;
max$sup[i] 0;

and considering the cell size entered in Evoker front-end settings.

4.6. Workflow

A web-based client-server meshing generator is an innovative functionality that is not common in the
industry.

The workflow design will be as follows: users will be able to select OpenFOAM projects folders
through the current Files button and they need to select a file named foam.foam. This file is an

Evoker

51

empty file and it is a standard way of starting up an OpenFOAM project for visualization in the
ParaView realm. After the user has selected the foam.foam the application will render current
OpenFOAM with VTK backend and add it to the DataSet of the application like any other ordinary file
(obj, stl, etc.). At this point, the application will show a Mesh button (Figure 41) similar to ParaView
Lite's other commands like Clip, Cut, …

Figure 41: Evoker GUI commands

When the user clicks Mesh a meshing options menu will appear at the left of the rendering area.
These options will be the Cell size, the Refinement surfaces, and the Processor topology as you can
see in Figure 42:

Figure 42: Evoker meshing settings

Francesc Costa

52

From the cell size, Evoker calculates the number of cells that the OpenFOAM blockMesh operation
will have. The backend running at the server will read blockMeshDict file to get the vertices. From the
vertices, it will obtain the min and max values for the X, Y, Z axes. And with below formula it will
calculate the number of nodes:

Nodes_t = (max_t – min_t) / cell_size

where t can be X, Y, and Z

For the refinements, when the user clicks the Mesh button the number and the names of the
surfaces are read dynamically for each OpenFOAM project by the backend reading the
blockMeshDict file. After the cell size, the minimum, and the maximum refinement values are set, the
user can click the Create button. All these settings will be passed to the backend running on the
server. The backend will calculate the number of nodes and will write them in the UISettings file. Find
below a sample of the UISettings file:

resolution 340;
NODES (54 16 54);
xTopology 2;
yTopology 2;
zTopology 1;
minwalls 0;
maxwalls 0;
minSFango 1;
maxSFango 3;
minEntrada 0;
maxEntrada 1;
minSupLibre 0;
maxSupLibre 1;
minSAguaClar 1;
maxSAguaClar 3;
mincampana 2;
maxcampana 3;
minDefault 0;
maxDefault 0;
numberOfSubdomains 4;

The backend after saving the settings in the UISettings file will call blockMesh and snappyHexMesh
from OpenFOAM with the folder path passed from the web client (it is the folder of the foam.foam
file). During these executions, the UI will be waiting for completion. Once completed, the UI will open
foam.foam file again and the VTK will generate a DataSet to get rendered as we did before meshing
it. But this time VTK will use the new time step folders (0.1, 0.2, …) to render the OpenFOAM project
that will contain the results of our calls to blockMesh and snappyHexMesh. This is a nice extension
and integration of the Kitware sample app ParaView Lite with a mesh generator that executes
transparently and smoothly for the user.

Depending on the value of

numberOfSubdomains = xTopology * yTopology * zTopology

one of the below OpenFOAM api calls can be used:

Evoker

53

1) numberOfSubdomains = 1
a. blockMesh -case <fullPath>
b. snappyHexMesh -case <fullPath>

2) numberOfSubdomains > 1
a. blockMesh -case <fullPath>
b. decomposePar -case <fullPath>
c. mpirun -np <numberOfSubdomains> snappyHexMesh -parallel -case <fullPath>
d. reconstructParMesh -case <fullPath>

Every time we execute a mesh operation, we clean up previous mesh outputs from the last execution
in the server by removing timestamps and processor folders:

$ rm -rf /processor*

$ rm -rf /0.*

4.7. The client-server communication

For adding a new meshing workflow to the fork of ParaView Lite we need to provide a few new
remote procedure calls between client and server.

For this purpose, wslink library [31] is being used.

Wslink library was already being used by ParaView Lite. Evoker is extending the Lite protocol with
three new operations:

1) paraview.lite.mesh.surfaces: it returns the refinement surfaces as an array from the folder
path passed.

2) paraview.lite.mesh.run: it receives folder path, cell size, refinement surfaces, and processor
topology as parameters. It calculates the nodes and saves them together with refinement
surfaces maximum and minimum values to the UISettings file. It also saves in the UISettings
file the x, y, and z processor topology values and the number of processor subdomains that
is the multiplication of these 3 topology values. It calls blockMesh and snappyHexMesh from
the OpenFOAM library.

3) paraview.lite.mesh.persistence: it reads all meshing values (cell size, refinement surfaces
min and max values, x, y, and z processor topology) from the last meshing execution in the
folder path passed. This API improves the user experience of the app and also allows
iterating the meshing process with the helper of remembering the last values.

4.8. OpenFOAM in the HPC cloud with MPI

So far, Evoker has an Ubuntu server that runs the webserver, the ParaView backend, and the
OpenFOAM operations. Now it should make the system scalable and have an Ubuntu server for the
webserver and the ParaView but having a cloud of compute nodes to run OpenFOAM.

Francesc Costa

54

4.8.1. Clone existing VM for OpenFOAM nodes

As Evoker has already set up all needed applications and libraries for the first Ubuntu server in Azure,
it is desirable to clone that VM to mount the other compute nodes without needed to re-install them
again. The goal is to have four Ubuntu servers for our HPC cloud.

To clone the VM it is needed to create a snapshot to the attached disk. Then it is needed to create a
Managed Disk from the snapshot. Finally, a VM can be created from the Managed Disk.

This is the Powershell script to create the Managed Disk [32]:

$resourceGroupName ='ViewerServer_group'
$snapshotName = 'Disk_evoker_vm_february_10'
$diskName = 'Disk_evoker_vm_february_10_managed_disk'
$diskSize = '30'
$storageType = 'Premium_LRS'
$location = 'Switzerland North'
Select-AzureRmSubscription -SubscriptionId '5df15e35-36ef-4a33-bd49-
c415144b0283'
$snapshot = Get-AzureRmSnapshot -ResourceGroupName
$resourceGroupName -SnapshotName $snapshotName
$disk = New-AzureRmDiskConfig -AccountType $storageType -Location
$location -CreateOption Copy -SourceResourceId $snapshot.Id
New-AzureRmDisk -Disk $disk -ResourceGroupName $resourceGroupName -
DiskName $diskName

And this is the script to create the VM from the Managed Disk [32]:

$virtualNetworkName = 'ViewerServer_group-vnet'
$virtualMachineName = 'OpenFOAM1'
$virtualMachineSize = 'Standard_E4ds_v4'
$VirtualMachine = New-AzureRmVMConfig -VMName $virtualMachineName -
VMSize $virtualMachineSize
$VirtualMachine = Set-AzureRmVMOSDisk -VM $VirtualMachine -
ManagedDiskId /subscriptions/5df15e35-36ef-4a33-bd49-
c415144b0283/resourceGroups/ViewerServer_group/providers/Microsoft.C
ompute/disks/Disk_evoker_vm_february_10_managed_disk -CreateOption
Attach -Linux
$publicIp = New-AzureRmPublicIpAddress -Name
($VirtualMachineName.ToLower()+'_ip') -ResourceGroupName
$resourceGroupName -Location $snapshot.Location -AllocationMethod
Dynamic
$vnet = Get-AzureRmVirtualNetwork -Name $virtualNetworkName -
ResourceGroupName $resourceGroupName
$nic = New-AzureRmNetworkInterface -Name
($VirtualMachineName.ToLower()+'_nic') -ResourceGroupName
$resourceGroupName -Location $snapshot.Location -SubnetId
$vnet.Subnets[0].Id -PublicIpAddressId $publicIp.Id
$VirtualMachine = Add-AzureRmVMNetworkInterface -VM $VirtualMachine
-Id $nic.Id
New-AzureRmVM -VM $VirtualMachine -ResourceGroupName
$resourceGroupName -Location $snapshot.Location

Evoker

55

It is found out that the newly created VM may not have the Network security group of the NIC well
configured. It is needed to make sure to set it to the same group as your main Web Server:
ViewerServer-nsg (Figure 43).

Figure 43: Network security group of the new VM

After configuring the network security group for ViewerServer-nsg (or the name given to the main
VM), Azure user can check you have the needed ports open as can be seen in Figure 44:

Figure 44: Ports properly configured for Evoker

After these two steps for each desired new VM, Evoker admin can go ahead and start the new VM
from Azure Portal. This process of cloning the VM worked smoothly and the VM’s have all libraries
installed and ready to be executed.

Francesc Costa

56

4.8.2. SSH connection between web server VM and OpenFOAM VM’s

Before the end-to-end (client web app connecting to the webserver) workflow is changed to use HPC
cloud for meshing the admin should run OpenFOAM commands from an interactive shell from the
Web Server and make them work on the cloud compute nodes.

In the VM where you the connection destination (OpenFOAM3 hostname):

 Log in as root
 Edit ssh config:
 sudo vi /etc/ssh/sshd_config
 Change this line:
 PasswordAuthentication no
 to
 PasswordAuthentication yes
 Restart daemon:
 sudo systemctl restart sshd

It is also found out that cloned VM’s also need to restart their password in the Azure portal (this
seems an issue of Azure). This can be done as seen in Figure 45:

Figure 45: Resetting password of cloned VM

OpenFOAM cloud execution is based on SSH. So, the first task would be to enable SSH connection
from the Web Server machine to OpenFOAM nodes. This is a way to achieve that [33]:

1) Create RSA keys in the Web Server computer(the computer from where the user wants to
connect):

$ ssh-keygen

Evoker

57

2) Copy the public key from previous to the OpenFOAM nodes(the computer where the user
wants to connect):

$ ssh-copy-id username@remote_host

The reader can see above steps work, execute a bash command (i.e. lscpu) remotely with mpirun:

$ mpirun -n 2 --host 51.103.166.0,51.103.138.43 lscpu

You can see below the return from last command:

Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
CPU(s): 4
On-line CPU(s) list: 0-3
Thread(s) per core: 2
Core(s) per socket: 2
Socket(s): 1
NUMA node(s): 1
Vendor ID: GenuineIntel
CPU family: 6
Model: 85
Model name: Intel(R) Xeon(R) Platinum 8272CL CPU @ 2.60GHz
Stepping: 7
CPU MHz: 2593.905
BogoMIPS: 5187.81
Virtualization: VT-x
Hypervisor vendor: Microsoft
Virtualization type: full
L1d cache: 32K
L1i cache: 32K
L2 cache: 1024K
L3 cache: 36608K
NUMA node0 CPU(s): 0-3
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep
mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall
nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology cpuid pni
pclmulqdq vmx ssse3 fma cx16 pcid sse4_1 sse4_2 movbe popcnt aes
xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch
invpcid_single tpr_shadow vnmi ept vpid ept_ad fsgsbase bmi1 hle
avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap
clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1
xsaves avx512_vnni md_clear arch_capabilities
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
CPU(s): 4
On-line CPU(s) list: 0-3
Thread(s) per core: 2
Core(s) per socket: 2
Socket(s): 1
NUMA node(s): 1
Vendor ID: GenuineIntel
CPU family: 6

Francesc Costa

58

Model: 85
Model name: Intel(R) Xeon(R) Platinum 8272CL CPU @ 2.60GHz
Stepping: 7
CPU MHz: 2593.907
BogoMIPS: 5187.81
Virtualization: VT-x
Hypervisor vendor: Microsoft
Virtualization type: full
L1d cache: 32K
L1i cache: 32K
L2 cache: 1024K
L3 cache: 36608K
NUMA node0 CPU(s): 0-3
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep
mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall
nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology cpuid pni
pclmulqdq vmx ssse3 fma cx16 pcid sse4_1 sse4_2 movbe popcnt aes
xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch
invpcid_single tpr_shadow vnmi ept vpid ept_ad fsgsbase bmi1 hle
avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap
clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1
xsaves avx512_vnni md_clear arch_capabilities

4.8.3. Sharing data with Azure Files

Figure 46 is an overview of the shared storage scheme; you can see that the front-end and the
compute nodes have access to the same storage. This is fundamental to run mpi.

Figure 46: Shared storage scheme

To be able to mesh a project using different nodes we should have access to shared files. Azure
offers a feature called Azure Files that offers fully managed file shares in the cloud that are
accessible via the industry standard Server Message Block (SMB) protocol or Network File System
(NFS) protocol [34].

https://docs.microsoft.com/en-us/windows/win32/fileio/microsoft-smb-protocol-and-cifs-protocol-overview
https://en.wikipedia.org/wiki/Network_File_System
https://en.wikipedia.org/wiki/Network_File_System

Evoker

59

The first thing the administrator needs to do is to create an Azure file Share [35] as shown in Figure
47.

Figure 47: Create an Azure file share

Then it is needed to mount the Azure file share in Ubuntu. The administrator can do it on-demand
with mount or permanently with /etc/fstab [36]. In Evoker this has been done permanently.

4.8.4. Executing OpenFOAM in the cloud from the web app

Find below the code snippet of the backend that call OpenFOAM for 2 nodes:

 if numberOfSubdomains == 1:
 subprocess.run(["blockMesh", "-case", fullPath])
 subprocess.run(["snappyHexMesh", "-case", fullPath])
 else:
 subprocess.run(["blockMesh", "-case", fullPath])
 subprocess.run(["decomposePar", "-case", fullPath])
 command = "mpirun -n %d --host 51.103.138.43,51.103.166.0 --oversubscribe
bash /home/azureuser/remote.sh %s" % (numberOfSubdomains, fullPath)
 subprocess.run(command.split())
 subprocess.run(["reconstructParMesh", "-latestTime", "-case", fullPath])

If the number of processors is one, there is no need to use the HPC cloud and the mesh is done in
the main web server. In this case, there is no need to call decomposePar and reconstructParMesh
either. When there is more than 1 processor, it needs to call mpirun with ranks and hosts.

When using MPI it has been found that calling snappyHexMesh directly from the backend code did
not work because it was not finding libraries in the remote compute node path. It was possible to

Francesc Costa

60

solve this by calling remote.sh stored in the remote compute node. Find below the contents of
remote.sh:

. /usr/lib/OpenFOAM/OpenFOAM2012/etc/bashrc
snappyHexMesh -parallel -case $1

Evoker

61

5. Testing and computational results

In this section, Evoker has been tested against state-of-the-art tests, and also performance test is
being done for the meshing functionality in the HPC cloud with different process configurations.

5.1. Three-dimensional visualization results

Adding the same STL of 142MB mentioned in the state-of-the-art section of this thesis shows that
the evoker is using the GPU to accelerate the rendering, is not consuming a lot of CPU, and only 231
MB of memory in the browser (Figure 48).

Figure 48: Evoker 3D visualization performance test 1

The reader can see Serpentine01A.stl rendered in Figure 49.

Francesc Costa

62

Figure 49: Serpentine01A.stl rendered in Evoker

Adding the second test file (SerpentineMerchant_SPLIT_05.stl in Figure 51) and so having 250MB
loaded in total, only increases the memory in the browser to 244 MB. This low consumption in the
client is due to the fact of doing the rendering in the server (Figure 50).

Evoker

63

Figure 50: Evoker 3D visualization performance test 2

Figure 51: Serpentine05.stl rendered in Evoker

In Figure 52 the reader can see the percentage of CPU used in the server while rotating both
datasets (serpentine01 and serpentine05).

Francesc Costa

64

Figure 52: CPU consumption in the server

In Figure 53 you can see the network consumption in Chrome while rotating both datasets. The
reader can see that the server is sending multiple jpeg files to the client.

Evoker

65

Figure 53: Network consumption in the browser while rotating

5.2. Meshing results

In this subsection, a study case is presented for the meshing functionality of Evoker. First, the
configuration of the OpenFOAM project is explained, and then the results and the evaluation of the
recommended number of processes for this study case.

5.2.1. Meshing configuration

As explained in Section “4.5 Files preparation”, there is some values automatically configured by
Evoker behind the scenes. Particularly, Evoker has configured the project to work with
castellatedMesh and snap methods. The castellatedMesh execution of the pipeline will use the
refinement configuration set by the user in the GUI of Evoker. On top of that, the engineer using
Evoker will have configured OpenFOAM project with below snap configuration settings in
snappyHexMeshDict file:

snapControls {
 nSmoothPatch 3;
 tolerance 1;
 nSolveIter 300;
 nRelaxIter 5;
 nFeatureSnapIter 10;
 implicitFeatureSnap true;
 explicitFeatureSnap false;
}

Francesc Costa

66

For our study case, two problems size are defined. The problem size is set in the GUI of Evoker by
the cell size parameter:

1) Cell size = 0.1 meters. This is the big size problem definition and is using 185 x 55 x 185 cells, in
the X, Y, and Z coordinates respectively, for a total of 1.882.375 cells.

2) Cell size = 0.2 meters. This is the small size problem definition and is using 92 x 27 x 92 cells, in
the X, Y, and Z coordinates respectively, for a total of 228528 cells.

And in Figure 54 the reader can see a screenshot of the refinement surfaces values:

Figure 54: HPC meshing study case GUI settings

Evoker

67

5.2.2. Performance analysis and evaluation

The mesh functionality of Evoker has been executed with the below combinations and results:

5.2.2.1 Problem size: 1.8M cells

Topology 1 node 2 nodes 3 nodes 4 nodes Optimum
 ppn Time(s) ppn Time(s) ppn Time(s) ppn Time(s) Time(s) SpeedUp

1x1x1 1 665.75 665.75 1
2x1x1 2 459.02 1 549 459.02 1.45
2x1x2 4 456.15 2 350.17 2 355.42 350.17 1.9
4x1x2 4 326.65 3 324.18 324.18 2.05
4x1x3 3 281.55 281.55 2.36
4x1x4 4 262.9 262.9 2.53

Figure 55: Tabular results of mesh study case with 1.8M cells

Figure 56: Graphical results of mesh study case with 1.8M cells

For this problem size of 1.8M cells, the optimum processes configuration is with 4 processes. So,
with 1 to 4 processes we preserve a strong scaling concept, where if the number of
processes/streams is increased, the efficiency can be maintained without the need to increase the
size of the problem. Above 4 processes, the gain in performance is negligible and it does not pay off
to dedicate so much hardware resources for the problem at hand.

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

200

250

300

350

400

450

500

550

600

650

700

1 2 4 8 12 16
SP

EE
DU

P
(X

)

TI
M

E
(S

)

#PROCESSES

Problem size: 1.8 M cells

Execution Time SpeedUp

Francesc Costa

68

The graphical results show both time and speedup. SpeedUp is a commonly used metric for strong
scalability analysis. SpeedUp is defined as the quotient between the serial time and the parallel time
of the configuration being evaluated:

𝑆𝑆 =
𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

where Tserial is the time for the one process configuration and Tparallel is any configuration where
processes are greater than one.

6.2.2.2 Problem size: 0.2M cells

Topology 1 node 2 nodes 3 nodes 4 nodes Optimum
 ppn Time(s) ppn Time(s) ppn Time(s) ppn Time(s) Time(s) SpeedUp

1x1x1 1 121.82 121.82 1
2x1x1 2 94.16 1 111.56 94.16 1.29
2x1x2 4 90.57 2 77.84 2 85.18 77.84 1.57
4x1x2 4 86.5 3 84.03 84.03 1.45
4x1x3 3 77.51 77.51 1.57
4x1x4 4 86.67 86.67 1.4

Figure 57: Tabular results of mesh study case with 0.2M cells

Figure 58: Graphical results of mesh study case with 0.2M cells

For this problem size of 0.2M cells, the optimum processes configuration is also with 4 processes.
So, with 1 to 4 processes we preserve a strong scaling concept, where if the number of

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

70

80

90

100

110

120

130

1 2 4 8 12 16

SP
EE

DU
P

(X
)

TI
M

E
(S

)

#PROCESSES

Problem size: 0.2M cells

Execution Time SpeedUp

Evoker

69

processes/streams is increased, the efficiency can be maintained without the need to increase the
size of the problem. Above 4 processes, the gain in performance is negligible and it does not pay off
to dedicate so much hardware resources for the problem at hand.

Figure 59: Project meshed with cell size 0.1

Francesc Costa

70

Figure 60: Surface with edges view with cell size 0.1

Evoker

71

Figure 61: Project meshed with cell size 0.2

Francesc Costa

72

Figure 62: Surface with edges view with cell size 0.2

In Figure 63, the reader can see another OpenFOAM project different from the case study running in
Evoker.

Evoker

73

Figure 63: Another OpenFOAM project in Evoker

5.3. Browser support

Evoker has been run on Chrome, Firefox, Opera, and Edge browsers. As expected by its technology
and advanced JavaScript framework it has been executed successfully on those browsers (see
screenshots below).

Francesc Costa

74

Figure 64: Evoker running on Chrome

Figure 65: Evoker running on Firefox

Evoker

75

Figure 66: Evoker running on Opera

Figure 67: Evoker running on Edge

Francesc Costa

76

6. Conclusions

This FMP has had a two-fold objective. The first objective has been the analysis, design, build and
configuration of a web-based client-server 3D visualizer solution rendering in the backend using VTK
and ParaView frameworks. The solution performs very well from the user experience point of view
even in low-performance devices thanks to its architecture. It has been shown how to deploy it in
Azure and how to accommodate different performance results as per the available budget. The
solution has been used by a hydrodynamic engineer having not pinpoint that this was an academic
solution, and not developed by a software company.

The other objective of the project is mesh generation. This part of the project has been the
implantation of CFD technologies leveraging PaaS techniques in cloud computing environments.
Evoker’s users can configure the meshing parameters targeted to their needs. Evoker transparently
modifies OpenFOAM files in the user project for applying meshing refinements. A case study has
been performed looking at the best processes’ configuration for strong scalability. Evoker has been
found useful for increasing productivity in meshing tasks in targeted problems. It is worth
mentioning that Evoker can scale up and down considering the problem size, the resource
requirements, and the budget limitations. Meshing a CFD project is a complicated process that
requires iterations until the desired solution is achieved; this behavior of CDF projects makes
paramount a versatile tool with the capacity of scaling, and consequently, decreasing the
computation time. Performing a scalability analysis to determine an efficient processes’ topology,
and then using that configuration to generate the meshes quickly, can save a lot of time for the user.

6.1. Paper submitted in SIMULTECH 2021

As a result of this project, my colleagues Paloma Barreda, Sergio Iserte, and the author of this FMP
have submitted a paper to the 11th International Conference on Simulation and Modeling
(SIMULTECH 2021) as you can see in Figure 68. The paper has been accepted as Short Paper [67].

Evoker

77

Figure 68: Paper submitted to SIMULTECH 2021

6.2. Source code

The source code of Evoker is hosted in a private repository in github (Figure 69). The interested
reader can get access by requesting it from the author.

The repository has three main folders:

• client: Evoker current source code
• clientOri: ParaView code for reference
• ngclient: deprecated initial attempt to implement Evoker in Angular.

Find below the command to clone the repository:

$ git clone https://github.com/FrancescSM/evoker.git

https://github.com/FrancescSM/evoker.git

Francesc Costa

78

Figure 69: Evoker source code hosted in github

Evoker

79

7. Bibliography

[1] C. Senn, “The Pillars of Industry 4.0,” 2019.
https://www.idashboards.com/blog/2019/07/31/the-pillars-of-industry-4-0/.

[2] L. Rose, S. Jourdain, and P. O’Leary, “Vis on the Web,” 2019. https://blog.kitware.com/vis-on-
the-web/.

[3] K. Ismail, “Edge Computing vs. Fog Computing: What’s the Difference?” 2018.
https://www.winsystems.com/cloud-fog-and-edge-computing-whats-the-difference/.

[4] Dr. Leif Kobbelt, “Open Flipper” https://www.graphics.rwth-aachen.de/software/openflipper/

[5] Kitware, “ParaView Glance“: https://kitware.github.io/paraview-glance/app/

[6] Kitware, “ParaView Visualizer“: https://kitware.github.io/visualizer/

[7] Kitware, “ParaView Lite“: https://kitware.github.io/paraview-lite/index.html

[8] Weapon, “VisIt”: https://wci.llnl.gov/simulation/computer-codes/visit

[9] 3DHOP: https://3dhop.net/index.php

[10] GMSH: https://gmsh.info/

[11] SimScale. (2021). Simulation Software: https://www.simscale.com

[12] Ingrid Cloud. (2021). Professional Wind Simulations. https://www.ingridcloud.com/

[13] Kitware, “VTK overview.” https://vtk.org/about/#overview.

[14] W. J. Schroeder and K. M. Martin, “The Visualization Toolkit: An Object-Oriented Approach to
3D Graphics”, 4th Edition.

[15] Kitware, “VTK support.” https://discourse.vtk.org

[16] Kitware, “Visualize Your Data With VTK.js,” 2021. https://kitware.github.io/vtk-js/index.html

[17] Kitware, “VTK web,” 2018, [Online]. Available: https://vtk.org/flavors/

[18] Kitware, “Large Data Visualization Made Easier,” 2019. https://www.paraview.org/overview/

[19] Kitware, “Confusion with tool selection: VTK vs ParaView for Web-based volume rendering of
large data sets,” 2019. https://discourse.vtk.org/t/confusion-with-tool-selection-vtk-vs-
paraview-for-web-based-volume-rendering-of-large-data-sets/1384/2

[20] E. You, “Vue.js,” 2021. https://vuejs.org/

https://www.idashboards.com/blog/2019/07/31/the-pillars-of-industry-4-0/
https://blog.kitware.com/vis-on-the-web/
https://blog.kitware.com/vis-on-the-web/
https://www.winsystems.com/cloud-fog-and-edge-computing-whats-the-difference/
https://www.graphics.rwth-aachen.de/software/openflipper/
https://kitware.github.io/paraview-glance/app/
https://kitware.github.io/visualizer/
https://kitware.github.io/paraview-lite/index.html
https://wci.llnl.gov/simulation/computer-codes/visit
https://3dhop.net/index.php
https://gmsh.info/
https://vtk.org/about/#overview
https://discourse.vtk.org/
https://kitware.github.io/vtk-js/index.html
https://vtk.org/flavors/
https://www.paraview.org/overview/
https://discourse.vtk.org/t/confusion-with-tool-selection-vtk-vs-paraview-for-web-based-volume-rendering-of-large-data-sets/1384/2
https://discourse.vtk.org/t/confusion-with-tool-selection-vtk-vs-paraview-for-web-based-volume-rendering-of-large-data-sets/1384/2
https://vuejs.org/

Francesc Costa

80

[21] B. Nelson, Getting to Know Vue.js: Learn to Build Single Page Applications in Vue from Scratch.
2018.

[22] Michael Sullivan, “Learning Vue.js Get to know the Vue.JS Javascript framework.”
https://www.linkedin.com/learning/learning-vue-js-3/get-to-know-the-vue-js-javascript-
framework?u=2138274.

[23] Kitware, “Building ParaView,” 2021.
https://gitlab.kitware.com/paraview/paraview/blob/master/Documentation/dev/build.md.

[24] P. P. Wiki, “ParaView:Build And Install.”
https://www.paraview.org/Wiki/ParaView:Build_And_Install.

[25] VTK Public Wiki, “VTK/Building/Linux,” 2019. https://vtk.org/Wiki/VTK/Building/Linux.

[26] Kitware, “Discourse ParaView,” 2021, [Online]. Available: https://discourse.paraview.org/.

[27] OpenFOAM. (2021). The open source CFD toolbox:
https://www.OpenFOAM.com/documentation/user-guide/index.php.

[28] MPICH, “MPICH,” 2020. https://www.mpich.org/.

[29] ZoomAdmin, “How To Install ‘mpich’ Package on Ubuntu.”
https://zoomadmin.com/HowToInstall/UbuntuPackage/mpich.

[30] OpenFOAM, “Installation on Ubuntu.” https://OpenFOAM.org/download/7-ubuntu/

[31] Kitware, “Python/JavaScript library for communicating over WebSocket”
https://github.com/Kitware/wslink

[32] Garg, A. (2018). “How to Quickly Clone a VM in Azure !” https://www.techmanyu.com/how-to-
quickly-clone-a-vm-in-azure-c5299ff82496

[33] Jetha, H. (2018). “Cómo configurar las llaves SSH en Ubuntu 18.04. ”
https://www.digitalocean.com/community/tutorials/como-configurar-las-llaves-ssh-en-ubuntu-
18-04-es

[34] Microsoft. (2020). “What is Azure Files? ” https://docs.microsoft.com/en-
us/azure/storage/files/storage-files-introduction

[35] Microsoft. (2021). “Create an Azure file share.” https://docs.microsoft.com/en-
us/azure/storage/files/storage-how-to-create-file-share?tabs=azure-portal

[36] Microsoft. (2019). “Use Azure Files with Linux.” https://docs.microsoft.com/en-
us/azure/storage/files/storage-how-to-use-files-linux

[37] J. P. Ahrens, J. Woodring, D. E. DeMarle, J. Patchett, and M. Maltrud, “Interactive remote
large-scale data visualization via prioritized multi-resolution streaming,” in Proceedings of the

https://www.linkedin.com/learning/learning-vue-js-3/get-to-know-the-vue-js-javascript-framework?u=2138274
https://www.linkedin.com/learning/learning-vue-js-3/get-to-know-the-vue-js-javascript-framework?u=2138274
https://gitlab.kitware.com/paraview/paraview/blob/master/Documentation/dev/build.md
https://www.paraview.org/Wiki/ParaView:Build_And_Install
https://vtk.org/Wiki/VTK/Building/Linux
https://discourse.paraview.org/
https://openfoam.org/download/7-ubuntu/
https://github.com/Kitware/wslink

Evoker

81

2009 Workshop on Ultrascale Visualization - UltraVis ’09, 2009, pp. 1–10, doi:
10.1145/1838544.1838545.

[38] J. Ahrens et al., “The ParaView Guide Community Edition Utkarsh Ayachit With contributions
from,” 2020. [Online]. Available: http://paraview.orghttp//kitware.com.

[39] A. M. Boutsi, C. Ioannidis, and S. Soile, “INTERACTIVE ONLINE VISUALIZATION of COMPLEX
3D GEOMETRIES,” in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial
Information Sciences, Jan. 2019, vol. 42, no. 2/W9, pp. 173–180, doi: 10.5194/isprs-archives-
XLII-2-W9-173-2019.

[40] DigitalOcean, “ssh-copy-id not working Permission denied (publickey),” 2017.
https://www.digitalocean.com/community/questions/ssh-copy-id-not-working-permission-
denied-publickey.

[41] J. Doellner, B. Hagedorn, and J. Klimke, “Server-based rendering of large 3D scenes for mobile
devices using G-buffer cube maps,” in Proceedings, Web3D 2012 - 17th International
Conference on 3D Web Technology, 2012, pp. 97–100, doi: 10.1145/2338714.2338729.

[42] Finet Julien, “Kitware Web tools Webinar,” 2020. https://vimeo.com/467338846.

[43] FoamDude, “OpenFOAM: SnapyHexMesh - Castellated - YouTube,” 2017.
https://www.youtube.com/watch?v=ICJxysKTnVw.

[44] Francesc Costa, “Unknown argument: Support for 64 bit file systems,” 2021.
https://discourse.paraview.org/t/unknown-argument-support-for-64-bit-file-systems/5568.

[45] A. Garg, “How to Quickly Clone a VM in Azure !,” 2018, [Online]. Available:
https://www.techmanyu.com/how-to-quickly-clone-a-vm-in-azure-c5299ff82496.

[46] M. Garland and P. S. Heckbert, “Surface Simplification Using Quadric Error Metrics.” [Online].
Available: http://www.cs.cmu.edu/.

[47] C. Geuzaine and J.-F. Remacle, “gmsh_general_overview,” 2020.

[48] Hanif Jetha, “Cómo configurar las llaves SSH en Ubuntu 18.04,” 2018.
https://www.digitalocean.com/community/tutorials/como-configurar-las-llaves-ssh-en-
ubuntu-18-04-es.

[49] D. E. F. Holtom, Enjoy Writing Your Science Thesis or Dissertation! 1999.

[50] S. Jourdain, U. Ayachit, and B. Geveci, “ParaViewWeb: A Web Framework for 3D Visualization
and Data Processing,” 2011. [Online]. Available: http://www.mirlabs.net/ijcisim/index.html.

[51] József Nagy, “How to open OpenFOAM® results in ParaView - YouTube,” 2014.
https://www.youtube.com/watch?v=8J59CpaYnVc.

[52] Kitware, “Introduction to VTK on Vimeo,” 2011. https://vimeo.com/32232190.

https://www.digitalocean.com/community/questions/ssh-copy-id-not-working-permission-denied-publickey
https://www.digitalocean.com/community/questions/ssh-copy-id-not-working-permission-denied-publickey
https://vimeo.com/467338846
https://www.youtube.com/watch?v=ICJxysKTnVw
https://discourse.paraview.org/t/unknown-argument-support-for-64-bit-file-systems/5568
https://www.techmanyu.com/how-to-quickly-clone-a-vm-in-azure-c5299ff82496
http://www.cs.cmu.edu/
https://www.digitalocean.com/community/tutorials/como-configurar-las-llaves-ssh-en-ubuntu-18-04-es
https://www.digitalocean.com/community/tutorials/como-configurar-las-llaves-ssh-en-ubuntu-18-04-es
http://www.mirlabs.net/ijcisim/index.html
https://www.youtube.com/watch?v=8J59CpaYnVc
https://vimeo.com/32232190

Francesc Costa

82

[53] P. Lindstrom, “Out-of-Core Simplification of Large Polygonal Models,” 2000. [Online].
Available: www.cc.gatech.edu/.

[54] OpenFOAM, “OpenFOAM user guide,” no. December, 2020.

[55] OpenFOAM, “OpenFOAM: User Guide: snappyHexMesh,” 2006.
https://www.OpenFOAM.com/documentation/guides/latest/doc/guide-meshing-
snappyhexmesh.html.

[56] A. Razoumov, “Web-based 3D scientific visualization,” 2020. [Online]. Available:
https://www.youtube.com/watch?v=7aOF8BYll5A.

[57] A. Razoumov, “Using ParaViewWeb for 3D visualization and data analysis in a web browser,”
2017, [Online]. Available: https://www.youtube.com/watch?v=IUN5ln_XnA8.

[58] O. Rosquist, J. Luttu, K. Skolan, F. Datavetenskap, and O. Kommunikation, “Analysis of the
performance difference between server-side and client-side rendering for data visualization in
real-time using d3. js.”

[59] Sarangarjan V, “What is OpenFOAM? | Skill-Lync - YouTube,” 2018.
https://www.youtube.com/watch?v=lEOrwfu1xhs.

[60] B. Sawicki and B. Chaber, “Efficient visualization of 3D models by web browser,” in Computing,
May 2013, vol. 95, no. SUPPL.1, doi: 10.1007/s00607-012-0275-z.

[61] W. J. Schroeder, J. A. Zarge, and W. E. Lorensen, “Decimation of triangle meshes,” 1992, pp.
65–70, doi: 10.1145/133994.134010.

[62] VTK/Kitware, “Generating 3d body mesh from pointcloud - Support - VTK,” 2019.
https://discourse.vtk.org/t/generating-3d-body-mesh-from-pointcloud/545.

[63] O. Wiki, “Meshing,” 2020. https://wiki.OpenFOAM.com/Meshing.

[64] M. Yirci and I. Ulusoy, “A comparative study on polygonal mesh simplification algorithms,” in
2009 IEEE 17th Signal Processing and Communications Applications Conference, Apr. 2009,
pp. 736–739, doi: 10.1109/SIU.2009.5136501.

[65] https://www.solidworks.com

[66] https://www.facsa.com/idi-2/proyecto-hydrosludge

[67] Costa-Majó, F., Barreda, P. and Iserte, S. A Distributed Mesh Generation Study Case through a
Customizable Platform as a Service Framework. In Proceedings of the 11th International Conference
on Simulation and Modeling Methodologies, Technologies and Applications (SIMULTECH 2021)

http://www.cc.gatech.edu/
https://www.openfoam.com/documentation/guides/latest/doc/guide-meshing-snappyhexmesh.html
https://www.openfoam.com/documentation/guides/latest/doc/guide-meshing-snappyhexmesh.html
https://www.youtube.com/watch?v=7aOF8BYll5A
https://www.youtube.com/watch?v=IUN5ln_XnA8
https://www.youtube.com/watch?v=lEOrwfu1xhs
https://discourse.vtk.org/t/generating-3d-body-mesh-from-pointcloud/545
https://wiki.openfoam.com/Meshing
https://www.solidworks.com/
https://www.facsa.com/idi-2/proyecto-hydrosludge

Evoker

83

	Index of Figures
	1. Introduction
	1.1. Context and justification of the final master thesis
	1.2. Objectives
	1.3. Methodology
	1.4. Thesis organization

	2. Project description
	2.1. Overview
	2.2. Out of scope
	2.3. State-of-the-art
	2.4. Training
	2.5. Technologies
	2.5.1. VTK core (C++)
	2.5.2. VTK in the web (VTK.js)
	2.5.2.1. VTK.js
	2.5.2.2. vtkWeb

	2.5.3. VTK based solutions evaluation
	2.5.4. ParaView
	2.5.5. Web Sockets
	2.5.6 Vue.js
	2.5.7. Azure

	2.6. ICT tools
	2.7. Resources
	2.8. Temporal planning
	2.9. Project financials

	3. Three-dimensional scientific visualization
	3.1. 3D scientific visualization workflows
	3.2. Client code implementation
	3.2.1. Remove Sources button
	3.2.2. Remove line width, contrast, and color selectors
	3.2.3. Limit object rendering to WireFrame, Surface, Surface with Edges and Points
	3.2.4. Remove ParaView Lite logo and About Logo

	3.3. Server set-up
	3.3.1. First approach: compiling ParaView from source
	3.3.2. Final approach: installing VTK binaries

	3.4. Changing default representation
	3.5. Usage from tablet and smartphone

	4. Meshing workflows
	4.1. OpenFOAM introduction
	4.2. MPI installation
	4.3. OpenFOAM installation
	4.4. Prerequisites
	4.5. Files preparation
	4.6. Workflow
	4.7. The client-server communication
	4.8. OpenFOAM in the HPC cloud with MPI
	4.8.1. Clone existing VM for OpenFOAM nodes
	4.8.2. SSH connection between web server VM and OpenFOAM VM’s
	4.8.3. Sharing data with Azure Files
	4.8.4. Executing OpenFOAM in the cloud from the web app

	5. Testing and computational results
	5.1. Three-dimensional visualization results
	5.2. Meshing results
	5.2.1. Meshing configuration
	5.2.2. Performance analysis and evaluation
	5.2.2.1 Problem size: 1.8M cells
	6.2.2.2 Problem size: 0.2M cells

	5.3. Browser support

	6. Conclusions
	6.1. Paper submitted in SIMULTECH 2021
	6.2. Source code

	7. Bibliography

