
Empirical Software Engineering (2022) 27:18
https://doi.org/10.1007/s10664-021-10061-x

On the analysis of non-coding roles in open source
development

An empirical study of NPM package projects

Javier Luis Cánovas Izquierdo1 · Jordi Cabot2

Accepted: 28 September 2021
© The Author(s) 2021

Abstract
The role of non-coding contributors in Open Source Software (OSS) is poorly understood.
Most of current research around OSS development focuses on the coding aspects of the
project (e.g., commits, pull requests or code reviews) while ignoring the potential of other
types of contributions. Often, due to the assumption that these other contributions are not
significant in number and that, in any case, they are handled by the same people that are also
part of the “coding team”. This paper aims to investigate whether this is actually the case
by analyzing the frequency and diversity of non-coding contributions in OSS development.
As a sample of projects for our study we have taken the 100 most popular projects in the
ecosystem of NPM, a package manager for JavaScript. Our results validate the importance
of dedicated non-coding contributors in OSS and the diversity of OSS communities as,
typically, a contributor specializes in a specific subset of roles. We foresee that projects
adopting explicit policies to attract and onboard them could see a positive impact in their
long-term sustainability providing they also put in place the right governance strategies to
facilitate the migration and collaboration among the different roles. As part of this work, we
also provide a replicability package to facilitate further quantitative role-based analysis by
other researchers.

Keywords Open source · Role analysis · Repository analysis · Collaboration

Communicated by: Alexander Serebrenik

� Javier Luis Cánovas Izquierdo
jcanovasi@uoc.edu

Jordi Cabot
jordi.cabot@icrea.cat

1 UOC – IN3, Barcelona, Spain
2 ICREA – UOC, Barcelona, Spain

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-021-10061-x&domain=pdf
http://orcid.org/0000-0002-2326-1700
mailto: jcanovasi@uoc.edu
mailto: jordi.cabot@icrea.cat

 18 Page 2 of 32 Empir Software Eng (2022) 27:18

1 Introduction

Open Source Software (OSS) is the infrastructure on which our digital society relies (Eghbal
2016). Nevertheless, many critical Open Source projects suffer from grave sustainability
issues1 as many people use the software but very few contribute to it. Indeed, well-known
problems of other types of “public goods” like the tragedy of the commons (Schweik and
English 2007) and rich-club behaviour (Gasparini et al. 2020) also impact Open Source.

A large number of research works have studied how to optimize the collaboration of
existing contributors and the onboarding process to attract new ones (e.g., Steinmacher et al.
2019; Casalnuovo et al. 2015). However, the vast majority focus on the study of user profiles
aimed at contributing code and taking care of other technical tasks (e.g., review or merge
code) for the project. Nevertheless, this is only a partial view of what actually should consti-
tute (and make advances) an Open Source project, which generally builds upon a community
of users with a rich variety of profiles. Everybody is invited to help even if they cannot write
code, thus helping on the sustainability of OSS projects; not only to collaborate on market-
ing, promotion and design aspects but also to help writing documentation or participate in
the discussions about the future evolution of the project (e.g., features to implement next).

While the importance of non-coding contributors2 is more and more accepted (Rozas
et al. 2021; Cheng and Guo 2019; Carillo et al. 2017; Lima et al. 2016; Trinkenreich et al.
2020) there is a still a lack of quantitative analyses focusing on the study of this type of
contributors. For instance, is the number of non-coding contributors significant, or OSS
projects are still very much “code-driven”? And, what about the contributor diversity?, i.e.,
are these contributors only collaborating to the project in these non-coding roles, or are they
just the same group of core developers taking all types of roles depending on the needs of
the project? Or, are these non-coding contributors migrating to coding roles?

In this paper we perform a quantitative analysis of contributions to address the previ-
ous questions. More concretely, we explore these issues in the GitHub platform, one the
most relevant social coding platforms. In particular, we focused on repositories developing
packages for the NPM3 ecosystem. NPM is the package manager for the Node JavaScript
platform4 which provides a centralized solution to import and manage dependencies in
Node projects. By focusing on these repositories, we ensure similar development practices
and structure but also high variety on their purpose (there are more than 94K NPM pack-
ages). It is also important to note that GitHub is the default option to store and develop NPM
packages.

For each project we have classified all project actions and members based on a pre-
cise definition of possible contribution roles in the GitHub platform, and compute several
metrics related to role compositions, diversity and evolution. Among other results, our anal-
ysis reveals a high presence of actions related to non-coding activities (e.g., opening or
commenting on issue requests, or reacting to other’s contributions). A deeper analysis also
shows that these activities are usually performed by people not involved in coding roles,
uncovering the presence and importance of dedicated non-coding contributors in OSS. Fur-
thermore, contributors with single non-coding roles prevail, even when migrating from one

1https://sustainoss.org/
2non-coding from the point of view of the contributions to a specific project. A person could be a professional
developer but act as non-coding contributor in a certain Open Source project while being a core committer in
another one.
3https://www.npmjs.com
4https://nodejs.org

https://sustainoss.org/
https://www.npmjs.com
https://nodejs.org

Empir Software Eng (2022) 27:18 Page 3 of 32 18

role to the other, thus revealing a high community specialization and the need for projects
to put in place proper migration or collaboration paths to ensure the proper communication
and interaction among members playing different roles.

Besides the analysis itself, we also provide a replication package aimed to facilitate
quantitative role-based analysis of Open Source communities, opening the door to further
analysis in this area.

The rest of the paper is structured as follows. Section 2 presents the roles we consider in
this study. Section 3 describes the research methodology and Section 4 the results, which are
complemented with an additional discussion in Section 5. Section 6 describes the replicabil-
ity package. Sections 7 and 8 presents the threats to validity and related work, respectively.
Section 9 ends the paper and presents the future work.

2 Role Characterization in GitHub

The Open Source principles favor a rich variety of possible ways to contribute to the
project development and evolution beyond code contributions. Due to its community-driven
approach to development, users of the software can contribute feature requests and bug
reports, comment on those made by others or vote to help in the prioritization of the project
next steps, among others. Social coding platforms like GitHub provide the infrastructure to
facilitate these types of interactions.

Obviously, the same person can play different roles on a project, e.g., she can submit a
bug report (with a user hat on) while later committing some code that adds a new feature
(with a developer hat on).

To better understand the different types of contributions and their relative importance to
the overall project evolution, we defined a set of contributors’ roles targeting the specifici-
ties of the project development process enabled by GitHub and other similar social coding
platforms (see Section 8 for other previous role classification proposals). GitHub promotes
a pull-based development process, where new contributions to the code base are submitted
and reviewed via pull requests. This is specially true for external developers and occasional
contributors, as members of the project can (and usually do) directly push their code to any
branch in the repository. To facilitate the collaborative development of the project, GitHub
also offers an issue-tracker, a wiki system and project’s activity reports.

Based on this, we have identified six types of contributors’ roles in GitHub:

DEVELOPER The activity of this contributor’ role is mainly focused on submitting com-
mits and/or pull requests with code modifications. They may also comment on their pull
requests.

REVIEWER Code contributions can be revised by any GitHub user via pull request
reviews. This is the role of the REVIEWER, which is focused on reviewing others’ code
(and commenting on these reviews).

MERGER In GitHub, pull requests must be explicitly accepted and merged into the
project’s codebase to make the contribution effective. This is the role of the MERGER.
This typically happens after the REVIEWERs have completed their job and DEVELOPERs
have modified and resubmitted their code accordingly.

REPORTER The activity of this contributor’ role is devoted to contribute issues (and com-
ment on such issues) to help raising concerns on the project, give ideas for its future
evolution or influence its development.

 18 Page 4 of 32 Empir Software Eng (2022) 27:18

COMMENTER GitHub allows users to comment on any aspect of the project, in partic-
ular, on issues and/or pull requests. A COMMENTER is a person that enrich the project
discussion by commenting on other people’s opened issues. Comments on pull requests
fall instead into the REVIEWER category above.

REACTOR As any other social platform, GitHub allows users to react to contributions by
others (i.e., issues, pull requests, reviews and comments) via emojis (e.g., thumbs-up,
heart, etc.). This kind of reactions serves as a quick acknowledgment on a task (e.g.,
attaching a thumbs-up to a request in an issue comment) and can be considered a less
thoughtful contribution than a comment as they do not enrich the discussion but express
support (or disagreement) to a current line of thought. We call REACTORs to anybody
that uses this reaction feature.

A more precise description of the set of actions that correspond to each role is described
in Section 4.

It is worth noting that these six roles can be classified into two more generic categories:
coding and non-coding roles, based on the level of expertise required to be involved in cod-
ing activities. Thus, DEVELOPER, REVIEWER and MERGER are considered coding roles
as they require some expertise in software development (and generally in the GitHub plat-
form). On the other hand, REPORTER, COMMENTER and REACTOR can be regarded as
non-coding roles.

Note that coding and non-coding terms are also employed with a broader perspective in
other works (Rozas et al. 2021; Cheng and Guo 2019; Carillo et al. 2017; Lima et al. 2016;
Trinkenreich et al. 2020). However, in this work we define with precision such terms for the
specific context of GitHub and other social coding platforms with similar features.

3 ResearchMethod

In this section we discuss how our study has been set up. We first present our research
questions (Section 3.1), then we report on the dataset construction process and its main
descriptive statistics (Sections 3.2 and 3.3), and we end the section describing the statistical
method followed (Section 3.4).

3.1 Research Questions

Our objective is to grasp a better understanding of OSS community composition in terms of
the prominent types of roles involved in the projects and the number of users playing them.
More specifically, we have identified the following research questions:

RQ1 What is the role-based activity distribution in OSS? This research question aims to
cluster the actions around an OSS project using the role-based classification described
in the previous section. We are interested in identifying the most predominant role/s and
which would the average contributor profile be based on them.

RQ2 How specialized is the community around each role? In this research question we
are interesting in analyzing and comparing the subcommunities around each role. In
particular, we want to investigate whether, typically, contributors play a single role or,
on the contrary, play several of them and therefore role members overlap. If the lat-
ter, we want to study whether there is a significant amount of project members mixing
coding/non-coding roles, and the typical role changes among the lifespan of the project.

Empir Software Eng (2022) 27:18 Page 5 of 32 18

To answer each research question we propose to analyze OSS projects following a
general-to-specific approach. First, we analyze the full collection of projects in our study,
thus providing a general view. Second, we conduct a deeper analysis grouping the projects,
thus allowing us to uncover pieces of evidence in projects of specific groups.

Based on our knowledge and participation in different forums related to Open Source,
we propose two factors to analyze the projects as groups, namely: project type and commu-
nity size. On the one hand, we distinguish between two project types: those owned by an
individual and those owned by an organization. The former type of project lives in a user’s
GitHub profile, while the latter is developed within an organization account. Our hypoth-
esis is that there will be differences between individual and organization projects, as the
purposes of projects living in each account types are different.

On the other hand, we define three tiers for the project community size. To set the limits
of these tiers, we rely on the descriptive statistics of the project’ community sizes. Thus
the Tier 1 contains those projects with a number of contributors lower than the minimum
value of the interquartile, the tier 2 contains those projects with a number of contributors
which falls into the interquartile, and the tier 3 contains those projects with a number of
contributors higher than the maximum value of the interquartile. In this case, our hypothesis
is that projects in Tier 1 will behave different from those in Tiers 2 and 3; as they may
require more role overlapping among the contributors (the smaller the community size, the
higher the presence of contributors playing more than one role to cover all the required
project needs).

3.2 Dataset Construction

We built a dataset composed of the top 100 most starred GitHub repositories developing a
NPM module. The Github’s star mechanism (equivalent for a like in other social networks)
is a common proxy for the popularity of GitHub projects (Borges et al. 2016), and is often
used to create project datasets (e.g., works by Coelho et al. 2018 or Nakamaru et al. 2020)
when the analysis to be done does not require selection of projects based on a specific
dimension. Throughout this paper, we will use the terms repository and project indistinctly.
The construction of the dataset involved three phases: (1) retrieval and cloning, (2) analysis,
and (3) graph generation. In the following, we briefly describe how we conducted each phase.

Retrieval and Cloning This phase was in charge of obtaining a list the top most starred
repositories in GitHub which are developing a NPMmodule. The star mechanism is offered
by GitHub to allow users to mark their favorite repositories and can serve to measure the
popularity of GitHub repositories. To this aim, we relied on the GitHub REST API to list
repositories according to a set of constraints. In our case, we configured the API query
to order the results according to the number of stars and include npm-package as topic
of the repository.5 Once we obtained the list (see full list in Table 5 in Appendix), we
cloned the repositories to enable the next phase of the dataset construction process. This
step was performed on September, 23rd 2020, and therefore our results evaluate the state of
the repositories until this day.

Analysis Cloned repositories were analyzed using SOURCECRED,6 a measurement tool for
collaborative solutions such as GitHub repositories, among others. SOURCECRED is able to

5https://api.github.com/search/repositories?q=topic:npm-package&sort=stars&order=desc&per page=100
6https://sourcecred.io/

https://api.github.com/search/repositories?q=topic:npm-package&sort=stars&order=desc&per_page=100
https://sourcecred.io/

 18 Page 6 of 32 Empir Software Eng (2022) 27:18

analyze GitHub repositories and build a collaboration graph, where nodes represent assets
of the repository (e.g., users, comments, issues, pull requests, etc.) and edges represent rela-
tionships among those (e.g., a user authors a commit, a comment belongs to an issue, etc.).
An important issue to consider when retrieving information from git repositories is the spe-
cial support required for user disambiguation (i.e., different commit metadata information
can refer to the same committer). As SOURCECRED relies on the GitHub API, which uses
unique identifiers for users in commits, it ensures a proper disambiguation. To generate the
collaboration graph, SOURCECRED first needs to retrieve the metadata from the GitHub
repository. Therefore, we launched the tool for each repository of our dataset.

Graph Generation Collaboration graphs generated by SOURCECRED follow a proprietary
format and we needed to convert them into a standard graph representation format to
facilitate their analysis in our study. This phase performed transformation processes and
calculations to enable the rest of the study and address our research questions.

Our collaboration graphs include several node types apart from a main node representing
the repository: (1) users, (2) bots, (3) comments, (4) commits, (5) issues, (6) pull requests
and (7) reviews. On the other hand, the edges in our graphs can represent: (1) authoring
(e.g., a commit is authored by a user), (2) parenting (e.g., a comment has an issue as a
parent), (3) merging (e.g., when a commit is merged in other commit), (4) reactions (e.g.,
a user reacts with thumbs up to a comment), and (5) references (e.g., an issue references a
different issue). Table 1 lists these elements. Figure 1 shows an example of a collaboration
graph for a project of our dataset.

3.3 Dataset Descriptive Statistics

At the end of the dataset construction process, our dataset was composed of 100 GitHub
repositories for which we obtained the collaboration graphs. We collected a total number
of 28,468 users, 38,502 commits, 13,941 issues, 12,312 pull requests, 15,567 pull request
reviews and 89,484 comments. Table 2 shows the main descriptive statistics for the dimen-
sions of our dataset. Figure 2 shows the boxplots for these variables. For the sake of

Table 1 Node and edge type in collaboration graphs

Section Element Description

Nodes User A contributor to the GitHub repository

Bot A bot contributing to the GitHub repository

Comment A comment attached to an issue or pull request

Commit A commit on the Git of the repository

Issue An issue on the GitHub repository

Pull A pull request on the GitHub repository

Review A code review attached to a pull request

Edges [authors] A User/Bot authors a contribution (e.g., Issue or Comment)

[hasParent] A Comment may have an Issue (or Pull) as a parent

[mergedAs] A Pull is merged into the repository (a new Commit is created)

[reacts] A User/Bot reacts to a contribution (e.g., Issue or Comment)

[references] A contribution refers to other (e.g., and Issue refers to a Pull)

Empir Software Eng (2022) 27:18 Page 7 of 32 18

Comment

Commit

User

Issue

Pull

Review

Repo

Fig. 1 Collaboration graph for dalenguyen/firestore-backup-restore GitHub project

readability, boxplots do not show the outliers for the variables (Fig. 7 in Appendix shows
the boxplots including outliers).

Given this descriptive statistics, the tiers of the community size are the following. Tier 1
contains those projects with less than 31.5 contributors, Tier 2 contains those projects with
a number of contributors between 31.5 and 196, and the Tier 3 contains those projects with
a number of contributors higher than 196.

3.4 Statistical Method

We now describe the statistical method we apply when we study whether the distributions
of a variable are different for a given factor.

When we use the project type as factor, which has two levels (i.e., organization and
individual), we apply a two-sided Student’s t-test, which tests the null hypothesis that there

Table 2 Descriptive statistics of the main dimensions of our dataset

Dimension Min. Median Mean Std. Dev. Max.

Users 5 65.00 284.68 798.19 5,433

Commits 8 98.00 385.02 969.88 6,765

Issues 0 31.50 139.41 324.52 1,987

Pulls 0 23.00 123.12 330.37 2,349

Reviews 0 11.50 155.67 464.46 3,043

Comments 3 146.00 894.84 2,319.30 17,217

 18 Page 8 of 32 Empir Software Eng (2022) 27:18

Fig. 2 Distribution of the main dimensions of our dataset (with no outliers)

are not significant differences in the distributions. For instance, for the DEVELOPER role, it
would test the null hypothesis that there are not significant differences in the distribution of
the number of developer actions with regard to the project type. Student’s t-test assumptions
require the data to both follow a normal distribution and have homogeneity of variances,
which we check via the Shaphiro-Wilk normality test and the Barlett test, respectively. If
only the Shaphiro-Wilk normality test is passed, we apply the Behrens-Fisher problem,
which tests a global null hypothesis checking the difference between the means of two
normally distributed populations when the variances of the two populations are not assumed
to be equal. If only the Barlett test is passed, we apply Mann-Whitney-Wilcoxon test, which
is a nonparametric test where the null hypothesis checks that the population distributions
are identical without assuming them to follow the normal distribution. If no assumption is
met, we apply variable transformation (e.g., log or sqtr) and repeat the process.

When we use the community size as factor, which has more than 2 levels, we apply either
an ANOVA or Kruskal-Wallis test, depending on the assumptions the data met. The null
hypothesis in this case is similar to the previous case, for instance, for the DEVELOPER role,
we would test the null hypothesis that there are not significant differences in the distribution
of the number of developer actions with regard to the community size. If the variable under
study passes the normality and homogeneity of variances tests, we can trust on the ANOVA
test to check whether the distributions of the variable are different for the given factor. If the
variable only passes the homogeneity of variances tests, we apply the Kruskal-Wallis test.
As before, if no assumption is met, we transform the variable and repeat the process.

In both cases, for variables not passing the normality and equality of variances assump-
tions even after applying variable transformations, we cannot trust on the results of the tests.
We follow these procedures to rely first on parametric tests, as they are usually considered
to have more statistical power than nonparametric tests and therefore it is more likely to
detect a significant effect when one truly exists.

4 Results

4.1 RQ1. Role-based Activity Distribution

In this research question we want to study the activity distribution in OSS projects, grouping
the activities according to a fixed set of roles for a better analysis of the main driving forces
in OSS. To this aim, we need to first map the project activities appearing in the collaboration
graphs (cf. Table 1) to one of the roles we have predefined (cf. Section 2).

Empir Software Eng (2022) 27:18 Page 9 of 32 18

Table 3 Role detection in collaboration graphs. Evidences are expressed as sourceNode − [edge] → tar-
getNode. Nodes and edges have names following the format name:type when required. Refer to Table 1 for
node and edge types

Role Evidences

DEVELOPER
User − [authors] → Commit

User − [authors] → Pull

u1:User − [authors] → Comment − [hasParent] → Pull ← [authors] − u1:User

REVIEWER User − [authors] → Review

u1:User − [authors] → Comment − [hasParent] → Review ← [authors] − u1:User

MERGER User − [authors] → Commit ← [mergedAs] − Pull

REPORTER User − [authors] → Issue

u1:User − [authors] → Comment − [hasParent] → Issue ← [authors] − u1:User

COMMENTER u1:User − [authors] → Comment − [hasParent] → Issue ← [authors] − u2:User

REACTOR u1:User − [reacts] → Issue ← [authors] − u2:User

u1:User − [reacts] → Pull ← [authors] − u2:User

u1:User − [reacts] → Review ← [authors] − u2:User

u1:User − [reacts] → Comment ← [authors] − u2:User

4.1.1 Detecting Roles in Collaboration Graphs

Table 3 lists the proposed roles and the evidences that we use when mapping activities to
roles in collaboration graphs. Evidences follow a Cypher7-like graph query format. While
and reactions that are mapped differently depending on whether they are part of a contri-
bution (e.g., an issue or comment) started by that same user or not. For instance, one only
becomes reactor when reacts to contributions made by other users.

As we are focusing on community activities, evidences mainly refer to the User node
type plus the [authors] and [reacts] edges of the graph. Note that evidences for a role are
mutually exclusive. No activity will be ever assigned to two roles.8

4.1.2 Activity Distribution Analysis

Based on the previous table, we analyze all the projects of the dataset as a whole to obtain
the activity distribution of NPM projects.9 Figure 3a shows the results of the analysis using a
stacked bar. As can be seen, more than a half of the actions map to developer and commenter
roles, being the merger and reviewer roles the ones with less presence. Nevertheless, we can
observe how no single role is dominant and that, therefore, OSS is really a collective effort
involving a significant number of all types of actions around the project. Note also that

7https://neo4j.com/developer/cypher
8This is not in contradiction with the possibility of users playing multiple roles. Each user activity will be
assigned to a specific role but a user can perform actions that classify in different roles. For instance, a user
may daily commit code but also frequently review others’ contributions, thus classifying for DEVELOPER

and REVIEWER roles.
9Figure 8 of the Appendix show the boxplot for each variable.

https://neo4j.com/developer/cypher

 18 Page 10 of 32 Empir Software Eng (2022) 27:18

Fig. 3 Role-based action distribution of the analyzed projects (a) in the dataset, (b) grouped by project type,
and (c) grouped by community size

as the commenter role definition specifically refers to those users commenting on others’
issues, our results highlight the importance of collaboration among project’s members.

If we group the projects in the dataset according to the project type (i.e., organization and
individual), we obtain the results shown in Fig. 3b. Only the ratios of from reviewers’ and
reactors’ actions show differences between organizations and users. The ratio of reviewers’
actions is higher in individual projects than organization ones, and the contrary happens for
the ratio of reactors’ actions. Further statistical analysis tested the null hypothesis that there
are not significant differences in the distribution of the number actions for each role when
grouping by project type. The results rejected the null hypothesis and revealed that there are
significant differences between the distributions for the roles of developer, merger, reporter,
commenter and reactor actions with regard to the project type (cf. Table 6a in Appendix).

If we take into account the community size of a project to analyze the role-based action
distribution we obtain the results shown in Fig. 3c. It is particularly interesting how the ratio
of developers’ actions decreases as the community size increases and, in compensation, the
ratio of commenters’ and reactors’ actions grows. In particular, the ratio of commenters’
and reactors’ actions surpasses the 50% ratio in big projects (i.e., Tier 3). We also conducted
further statistical analysis to test the null hypothesis that there are not significant differences
in the distribution of the number of actions for each role but this time, when grouping by
community size. The results revealed that there are significant differences in the distribution
of the variables for these roles (cf. Table 6b in Appendix) when considering the community
size.

4.1.3 Prototypical Contributor Profile

As an alternative representation of the importance of each role and to better understand the
distributions described above, we now characterize the typical profile of an Open Source
contributor.

The profile is built by depicting the expected number of actions per role of this prototyp-
ical contributor.

Empir Software Eng (2022) 27:18 Page 11 of 32 18

To calculate the expected number of actions for a role ar , we measure the size of the r

cluster (i.e., the number of actions classified as belonging to that role) and divide it by the
total number of users.

Figure 4a shows the results as a radar plot. These are the overall values, so the radar
is based on the actions and users across all projects in the dataset. Obviously, results are
aligned with the stacked bar above, with commenters and developers (with approximately
2 expected actions) as main ones. However, this representation emphasizes even more how
balanced are all the roles.

Figure 4b and c show the results of the expected number of actions considering the
project type, resulting in similar profiles. Figure 4d, e and f show the results considering the
community size, which reveal a peak on developer actions for projects in Tier 1 and 2, and
a balance for projects in Tier 3 similar to the picture provided earlier in Fig. 4a.

4.2 RQ2. Role Diversity

This research question studies whether the prototypical contributor profile characterized in
the previous section has, in fact, any resemblance to the reality of OSS contributors. More
specifically, we want to study whether each role is mostly played by a specialized group of
people or, on the contrary, there is a large overlapping between the subcommunities playing
each role, especially including both coding and non-coding roles. If the former, projects may
consider putting in place specific onboarding strategies and governance policies to target
the users of each specific role so that they all feel part of the project.

To this aim, we first calculate the set of roles each user in our project dataset plays. We
say a user u plays a role r iff u has performed actions classified as belong to r according to
Table 3. As discussed before, u can play more than one role as long as the previous condition
holds for several roles.

4.2.1 Role Distribution

Once we know the roles each user plays, we can then analyze the role distribution of each
project in the dataset by calculating the ratio of members playing each role.10 Figure 5a
depicts this composition. Each bar states the percentage of members playing that role in

10Figure 9 of the Appendix show the boxplot for each variable.

 18 Page 12 of 32 Empir Software Eng (2022) 27:18

Fig. 4 Expected number of actions per user of the analyzed projects (a) in the dataset, grouped by project
type (i.e., (b) Organization and (c) Individual), and grouped by community size (i.e., (d) Tier 1, (e) Tier 2
and (f) Tier 3)

the set of analyzed projects and the average numbers of project members that percentage
corresponds to. Figure 5b and c shows this same analysis considering the project type and
the community size, respectively.

As can be seen, the most relevant roles are reporters, commenters and reactors. Among
these, except for Tiers 1 and 2 projects, the number of reactors is higher (double) than the
number of reporters and commenters. This may reveal that, in general, in the development
of the analyzed projects it is frequent to find users who socially engage and comment in
others’ contributions. Note that total percentages add up to more than one hundred per cent
in all cases, so we have always a number of project members that play more than one role.

Globally, we can also observe that there is a high presence of reactors. This is somehow
surprising as reactor actions were important but not the most dominant ones when we ana-
lyzed RQ1 (cf. Fig. 3a). This implies that while a large number of members of a project
play the role of a reactor they only play it very occasionally, not amounting for a lot of
reactor activity overall. The contrary happens for developers, as results show a relative low
presence of developers but they amount to a large number of project actions.

When grouping by project type, we did not observe a different behavior as for all the
NPM projects. This is confirmed by the statistical analysis, which did not allow us to reject
the null hypothesis, which is that there are not significant differences in the distributions of

Empir Software Eng (2022) 27:18 Page 13 of 32 18

Fig. 5 Role distribution of the analyzed projects (a) in the dataset, (b) grouped by project type, and (c)
grouped by community size

the number of contributors per role when grouping by project type. We therefore did not find
any significant difference in the distribution of the community size of each role (cf. Table 7a
in Appendix). If we group by community size, we observe a higher presence of developers,
in particular, in Tiers 1 and 2. Results for Tier 3 seem to return back to the distribution
obtained for NPM projects. In this case, we did rejected the null hypothesis when grouping
by community sice, thus confirming that there are significant differences in the distribution
of the community size for developer, reviewer, merger and commenter roles (cf. Table 7b in
Appendix).

4.2.2 Most Common Role Configuration

From the previous analysis, it is clear that some project members play different roles. We
now analyze what are the most common role configurations for those “multi-role” users. We
believe knowing what roles are typically played together, especially to see if the most com-
mon configurations mix coding and non-coding roles, helps to understand the community
composition of OSS projects.

Table 4 shows the top 10 most common user role configurations in the analyzed projects.
For the sake of space, only the first three letters of the name of the roles are used. In partic-
ular, Table 4a, b and c show the results for all the projects in the dataset, projects grouped
by project type, and projects grouped by community size, respectively. A role configuration
is titled as a hyphen-separated string composed of the name of the roles it refers.

 18 Page 14 of 32 Empir Software Eng (2022) 27:18

Table 4 Top 10 most common set of roles in (a) all projects, (b) projects according to their type, and (c)
projects according to the community size. For the sake of space, only first three letter of role names are shown

(a)

Size Group

11759 CHE

4988 REP

3565 COM

1900 COM-CHE

1093 REP-CHE

800 DEV

519 REP-COM-CHE

510 REP-COM

464 DEV-MER

184 DEV-REP-MER-REV-COM-CHE

(b)

Organization Individual

Size Group Size Group

8408 CHE 3351 CHE

2497 REP 2491 REP

2148 COM 1417 COM

1259 COM-CHE 641 COM-CHE

571 REP-CHE 522 REP-CHE

366 DEV 434 DEV

328 REP-COM-CHE 252 DEV-MER

307 REP-COM 203 REP-COM

212 DEV-MER 191 REP-COM-CHE

99 DEV-REP-MER-REV-COM-CHE 97 DEV-REP

(c)

Tier 1 Tier 2 Tier 3

Size Group Size Group Size Group

163 REP 1049 REP 10914 CHE

73 DEV 783 CHE 3776 REP

67 COM 631 COM 2867 COM

62 CHE 276 DEV 1658 COM-CHE

51 DEV-MER 221 COM-CHE 871 REP-CHE

39 REP-CHE 183 REP-CHE 460 REP-COM-CHE

21 COM-CHE 123 DEV-MER 451 DEV

13 DEV-MER-CHE 81 REP-COM 423 REP-COM

11 DEV-REP 78 DEV-COM 290 DEV-MER

10 DEV-CHE 62 DEV-REP-MER-REV-COM-CHE 119 DEV-REP

The results reveal that one-role configurations CHE, REP and COM are the most common
in all projects and groups, except for small projects, where the configuration DEV substitutes
to CHE in the top three. This finding states that for many contributors, the first and only

Empir Software Eng (2022) 27:18 Page 15 of 32 18

way to contribute to a project is by performing one of these tasks. Note that, especially
the reactor one, is also the easiest one (as it is just reacting to somebody else contribution)
showing that these roles are a good way to detect new project members that could later (with
the right onboarding strategies in place) migrate to more involving roles.

We also find interesting to remark that the developer role appears in sixth position when
studying the projects as a whole or according to the project type; only when studying the
projects according to the community size we see this role promotes to second position (in
small projects) or fourth position (in medium projects). And it does it alone, not in combi-
nation with other roles. Configurations of developers with other roles only shows up down
the list and, most often, starting with the developer-merger configuration, which is a purely
technical one.

4.2.3 Role Migration Paths

As we have seen before, non-coding roles have a high presence in the analyzed projects.
We now study the typical role migration paths followed by contributors11 While there is a
high number of one-role configurations (cf. previous section), we are interested in analyzing
how roles evolve in multi-role configurations. We believe this information may help us to
understand the contributor conversion rate, thus shedding some light on whether non-coding
roles may eventually become code-related contributors.

To analyze the role migration paths, we count all the different paths for each project in
the dataset. A role migration path is a list r1, r2, ..., rn where ri is one of the six roles of our
study. Each ri represents one or more actions of such role performed by a contributor of the
project, thus a path does not contain equal consecutive roles, i.e., ri <> ri+1. A path such
as reactor→reactor→commenter is invalid. However, a path can include non-consecutive
repeated roles, i.e., ri = rj where j > i + 1, for instance, reactor→commenter→reactor.

Figure 6 shows the role migration for all analyzed projects with a Sankey diagram.12

For the sake of clarity, we analyzed the first three actions of all the calculated paths (shown
as stages in the Sankey diagram). As can be seen, the vast majority of contributors just
performed one action (see how most flows go from FIRST ACTION stage directly to NO

MORE DIFFERENT ACTION) stage, which confirms the results of the previous section. It
is also important to note that contributors starting with a non-coding role mainly evolve
towards other non-coding roles. Very few moved to a coding role in the second action (i.e.,
5.93% from DEVELOPER, MERGER and REVIEWER roles in SECOND ACTION stage) and
even fewer in the third action (i.e., 3.76% from DEVELOPER, MERGER and REVIEWER

roles in THIRD ACTION stage).
We obtained similar results when grouping the projects according to their type and com-

munity size. For the sake of space, we do not show here the Sankey diagrams, but they can
be found in the Appendix (cf. Figs. 10 and 11).

11Note that in every project there is always a large number of occasional or one-time contributors (Lee and
Carver 2017; Pinto et al. 2016; Barcomb et al. 2019), which, as the name suggests, are not interested in having
a continuous active participation in the project and therefore do not take part in any role migration path.
12A Sankey diagram is a directional flow chart in which the width of the streams is proportional to the
quantity of flow, and where the flows can be combined, split and traced through a series of events or stages.

 18 Page 16 of 32 Empir Software Eng (2022) 27:18

Fig. 6 Role migration paths for all projects (percentages are calculated with regard to the full number of
users)

5 Discussion

Beyond the main conclusions reported so far, we would like to highlight some additional
insights derived from the results and the feedback we got when sharing these results with
a few developers involved in Open Source projects, including the leaders of three of the
projects analyzed in this study.

ImproveOnboarding The importance of non-coding contributors is not recognized enough
in many projects. For instance, in most OSS projects, efforts to attract and onboard new
contributors are clearly targeting developers, as it can be easily seen when looking at the
contributing.md files in the projects’ repositories (Elazhary et al. 2019). As such,
projects miss out on the opportunity to attract other types of profiles that, as we have just

Empir Software Eng (2022) 27:18 Page 17 of 32 18

seen, would indeed help in the advancement and long-term sustainability of the project.
Some of these non-coding contributors could even, for instance, be incentivized to partici-
pate in coding activities for those projects that also suffer a lack of coding contributors (Hata
et al. 2015). Moreover, onboarding mechanisms should address episodic contributors as
well, aiming at convincing them to stay in the project (Barcomb et al. 2019).

Governance of Non-coding Contributors Given our results, we advocate for specific
onboarding process for non-coding roles that include a clear definition of their tasks but
also rights (e.g., participation in the project governance, typically dominated by people in
the coding roles). Note that non-coding contributors actions are often less visible in the code
hosting platforms (Rozas et al. 2021) and therefore is up to the project managers to make
sure they are properly made visible in the community. Otherwise, their importance may be
dismissed by coding contributors.13

Define and Promote Migration Paths the Project is Interested in When roles are clearly
identified in OSS projects, it is easier to define and promote role migration paths. Informa-
tion on the roles of the project and how each role is welcome (and can evolve) could be
a positive signal for potential contributors (Qiu et al. 2019). A typical migration path goes
from onboarding as a non-coding role to becoming a developer with permission to merge
code. But this is not the only possible path. It is up to the project to identify its needs and
then define migration paths that help bringing more people to the roles that fulfill those
needs. With well-identified paths, contributors can clearly see and decide how to focus their
“career” within the project.

Importance of Member Identification and Contribution Visualization Mechanisms The
fact that there may exist overlap between the roles played by a contributor makes more dif-
ficult to identify the key leaders in each role and the overall top contributors to the project,
which could be useful when putting a representative governance strategy in place. In this
paper we have proposed to use radar and bar graphs to visualize the number of role actions
and distribution of roles, respectively, but other visualizations could also be applied. Fur-
thermore, we also provide these visualizations for each individual project (see Section 6)
with the aim of helping to understand the role contributions. Our conversations with the
developers confirmed that these visualizations help to understand their project’s commu-
nity. We hope to see social coding platforms integrating some of these visualizations as a
way to help project owners to understand and manage the project community.

Need for Temporal Analysis Most empirical analysis, including our own, focus on a project
snapshot. However, many of the community analysis could benefit from a temporal dimen-
sion that, as an example, helps to visualize whether new onboarding/governance strategies
do have an effect on the role distribution and migration paths. A temporal dimension could
also be used to cluster projects depending on their “maturity” to see if we can observe com-
mon patterns among them that help to predict and anticipate future challenges. Right now,
this type of analysis is lacking also on the social coding platforms that limit themselves to
basic activity graphs.

13This is easy to see when, for instance, suggesting governance models where non-coding roles have a saying
in the project evolution causes a strong reaction from core developers that want to keep the decision power
in their hands.

 18 Page 18 of 32 Empir Software Eng (2022) 27:18

6 Replicability Package

To facilitate the replication of our study, we have prepared a GitHub repository14 for
researchers interested in repeating or complementing our evaluations. The repository
includes the main elements of our dataset (i.e., graphs in different formats) together with
the data used in the study.

7 Threats to Validity

Our work is subjected to a number of threats to validity, namely: (1) internal validity,
which is related to the inferences we made; and (2) external validity, which discusses the
generalization of our findings.

Regarding the internal validity, the collaboration graph generation process relies on the
information provided by the GitHub API, which is queried by SOURCECRED to build the
graph. Sometimes the data requested to the API is not available and may cause the genera-
tion of dangling edges in the graph (e.g., when the author of a commit does not exist in the
platform anymore). Dangling edges are ignored in the study to avoid inconsistent results.
The ratio of dangling edges in the collaboration graphs of the dataset is lower than 9%.

The quality of the data is another internal threat. The first concern is regarding the dis-
tinction between users and bots. To answer our research questions we aim at GitHub users
representing actual developers and not bots. To address this issue, we relied on SOURCE-
CRED to distinguish the two. SOURCECRED uses information available from the GitHub
API to spot bot user accounts. However, this task is far from trivial (Golzadeh et al. 2020)
and sometimes not all the information is available via de the API, thus SOURCECRED may
have missed some bots.

Also related to the data quality, our study relies on the information provided by the
collaboration graphs which do not include the textual content of the user’s contribution (i.e.,
the text of the issue, the message of the commit or the content of the commit). This limits a
more detailed analysis of issues and comments.

Another threat is related to our choice of statistical methods and techniques. To minimize
this, we have carefully reported each step of our study and also provided a companion
package to promote replicability (cf. Section 6).

As for the external validity, note that our dataset is based on the set of GitHub projects
tagged with the npm-package label available as of September 23rd 2020, and therefore our
results should not be directly generalized to other types of Open Source projects without
proper comparison and validation.

8 RelatedWork

Open Source software development has been studied from a number of different perspec-
tives (Cosentino et al. 2017; Crowston et al. 2012; Kalliamvakou et al. 2016). For instance,
characterizing the size of projects and teams, the distribution of issues or the use of labels
to annotate them. In this section, we review previous related work on social factors and role

14http://hdl.handle.net/20.500.12004/1/J/ESEM/2021/001

http://hdl.handle.net/20.500.12004/1/J/ESEM/2021/001

Empir Software Eng (2022) 27:18 Page 19 of 32 18

characterization in Open Source development to better compare our contributions with these
previous works.

8.1 Social Factors in Open Source Development

Social factors are recognized as important in many aspects of the development pro-
cess (Lima et al. 2016; Dias et al. 2021). As an example, they influence the acceptance
of pull requests (Tsay et al. 2014a, b; Casalnuovo et al. 2015) depending, among other
things, of the connection between the submitter and other core members. Internal com-
munity dynamics are also useful, for instance, to determine how committers efforts are
distributed over the project files (Palazzi et al. 2019), to help in the discovery of implicit
subteams/subsystems in the project (Ashraf et al. 2020), facilitate the onboarding of new-
comers (Steinmacher et al. 2019) or its socialization (Carillo et al. 2017). Analysis of
internal dynamics can also be used to identify the most active members (Gasparini et al.
2019) and leaders (Li et al. 2012) or as a way to predict the future contributions of project
members (Decan et al. 2020). However, these works do not take into account the role dimen-
sion in their analysis and use a single global “activity” value as the key metric in the analysis
of the community.

8.2 Role Classification in Open Source Development

A few authors have tried to analyze and classify Open Source projects taking a higher-
level view of the organization and managerial aspects of the project (Capra and Wasserman
2008; Soto and Ciolkowski 2009; Samoladas et al. 2008; Adewumi et al. 2016; Vasilescu
et al. 2015). While some of these works study governance and community aspects, very few
classify the roles participating in the project and measure their importance in the project
development.

Among them, Yamashita et al. (2015) and Onoue et al. (2016) identify two kinds of users,
core and non-core developers (where the former are granted with write permission on the
project while the latter are not). A more fine-grained classification of roles in Open Source
has been proposed by Crowston and Howison (2006), Sack et al. (2006), Bhattacharya et al.
(2014), and Wang and Perry (2015). In all these works, roles are defined mostly from a
technical perspective (e.g., passive users, active users, co-developers, core developers and
project leaders), based on the technical level of the participants though it is also accepted
that there is some mixes and crossovers between the roles. A survey dataset by Robles et al.
(2014) performs user profiling including dimensions which go beyond non-technical fea-
tures, such as personal characteristics, education or level of English. Relationship between
roles could either follow a “classical” onion-like structure or adopt a more core-periphery
continuum structure (Christian and Vu 2020).

Relevant exceptions on this more technical-oriented classification are the works
by Cheng and Guo (2019), which aims to derive roles from the observed activity of con-
tributors, though it does not group roles in coding and non-coding roles; Barcellini et al.
(2014), that distinguishes between implementation roles and discussion roles; and the work
by Trinkenreich et al. (2020) that, through a series of interviews, validates the importance of
these non-coding roles in individual projects. The importance of non-coding contributions
has also been studied specifically for the Drupal project by Rozas et al. (2021).

A couple of authors have also covered role migration paths, e.g., the works by Jensen and
Scacchi (2007) and Jergensen et al. (2011) validate the existence of role migration in three
specific projects and the GNOME ecosystem respectively. Nevertheless, in both cases they

 18 Page 20 of 32 Empir Software Eng (2022) 27:18

focus on role migration through a classical onion model therefore covering only a subset of
the roles we have studied in this work.

8.3 Comparison with RelatedWork

Our paper also presents a role classification, grouping them into coding and non-coding
roles in the context of GitHub, but goes one step further by providing a precise description
of all roles (via a fine-grained definition of the tasks comprised in each role, especially in
the context of social coding platforms such as GitHub). This enables an automatic computa-
tion of several role-related metrics, covering both coding and non-coding roles, something
that was not possible with the more general and coarse-grained descriptions from previous
works.

Moreover, we perform ourselves a data-based analysis of a dataset of GitHub projects to
automatically (1) measure the contribution of each role in any given project, (2) identify and
compare the community members occupying such roles, mostly to see if we can observe a
diversity in the people taking each role and (3) study the role migration paths from one role
to the other.

9 Conclusion and FutureWork

This paper has analyzed the different roles participating in Open Source development by
providing a precise role definition for a quantitative role-based analysis of Open Source
projects. This opens the door to a number of other quantitative analysis of Open Source
communities to complement existing qualitative studies. Among these analysis, we have
focused on this paper in the study of non-coding roles visible in GitHub. For instance, our
results show that non-coding roles (e.g., commenter or reactor) have a high presence in
the analyzed projects and that those roles are often taken by people that specialize in con-
tributing to the project only on non-coding activities, complementing the work of coding
contributors that, on the contrary, have little involvement in non-coding tasks. This special-
ization highlights the importance of all types of roles in an OSS project, demystifying the
topic of few core coders driving the full spectrum of actions in the project. But at the same
time, the limited migration of members from non-coding to coding roles emphasizes the
need of better onboarding and governance strategies that facilitate this role evolution or, at
the very least, a better collaboration between the different roles.

We believe these results would be even more evident if we had analyzed other sources of
project data outside of the GitHub ecosystem (e.g., mailing lists, forums, twitter discussions,
etc) where other non-coding roles are also more visible (Trinkenreich et al. 2020). This is
part of our future work, together with the replication of the study on other sets of projects.
In this sense, we are especially interested in studying how these observations evolve when
moving to project ecosystems (Blincoe et al. 2015; Mockus et al. 2020) instead of single
projects.

Finally, we would like to enrich the analysis of some of the roles, for instance, studying
their typical internal collaboration patterns. We think it would be interesting to analyze the
subcommunity of contributors playing a certain role to see how they organize themselves.
As an example, we could study the emergent communication and governance patterns (e.g.,
are some members acting as leaders and controlling the role activities?), and the quality of
the discussions taking place among the role members. For the latter, we could cluster the

Empir Software Eng (2022) 27:18 Page 21 of 32 18

types of reactions (Sawant et al. 2019; Borges et al. 2019) and apply pretrained language
models to detect toxic individuals15 or developers’ burning out (Sarker et al. 2019).

Appendix

Table 5 List of repositories collected in our study ordered by number of stars

Rank Stars Owner Name Type

1 12575 netlify netlify-cms Organization

2 8302 sindresorhus got Individual

3 5819 sindresorhus ky . Individual

4 5541 sindresorhus np . Individual

5 5452 filamentgroup tablesaw Organization

6 5221 pastelsky bundlephobia Individual

7 5012 sindresorhus query-string Individual

8 4412 angular-translate angular-translate Organization

9 3718 mysticatea npm-run-all Individual

10 3671 ngx-translate core Organization

11 3422 sindresorhus speed-test Individual

12 3193 vuejs eslint-plugin-vue Organization

13 2966 niieani hashids.js Individual

14 2954 sindresorhus ow . Individual

15 2843 sindresorhus modern-normalize . Individual

16 2835 sindresorhus type-fest Individual

17 2666 ocombe ocLazyLoad Individual

18 2503 sindresorhus electron-store Individual

19 2041 sindresorhus trash Individual

20 1966 reactopt reactopt Organization

21 1926 sindresorhus slugify Individual

22 1899 sandoche Darkmode.js Individual

23 1880 sindresorhus fast-cli Individual

24 1454 yeoman update-notifier . . Organization

25 1445 susam texme Individual

26 1433 sindresorhus on-change Individual

27 1394 bokub chalk-animation . . Individual

28 1359 airtap airtap Organization

29 1335 teenyicons teenyicons Organization

30 1329 tulios kafkajs Individual

31 1318 sindresorhus pageres-cli Individual

32 1220 sindresorhus p-queue Individual

33 1096 sindresorhus emittery Individual

15There are a number of available language models that are fine-tuned for this type of classification tasks
like sentiment analysis or toxicity detection, see for instance https://github.com/unitaryai/detoxify

https://github.com/unitaryai/detoxify

 18 Page 22 of 32 Empir Software Eng (2022) 27:18

Table 5 (continued)

Rank Stars Owner Name Type

34 1016 styfle . packagephobia . Individual

35 988 ankeetmaini react-infinite-scroll-component Individual

36 964 sindresorhus is . Individual

37 947 sindresorhus capture-website Individual

38 903 afc163 . fanyi . Individual

39 849 sierra-library sierra . Organization

40 819 Annihil . github-spray . Individual

41 742 sindresorhus electron-util . Individual

42 736 sindresorhus terminal-image . Individual

43 690 mysticatea eslint-plugin-node Individual

44 653 sindresorhus node-module-boilerplate Individual

45 639 sindresorhus react-extras . Individual

46 636 waud . waud . Organization

47 623 sindresorhus conf . Individual

48 598 ziyasal . scientist.js . Individual

49 588 nastyox . Rando.js . Individual

50 580 nikhilk . node-tensorflow Individual

51 549 sindresorhus pretty-ms . Individual

52 546 madlabsinc mevn-cli . Organization

53 509 sindresorhus capture-website-cli Individual

54 499 75lb . command-line-args Individual

55 488 sindresorhus crypto-hash . Individual

56 471 sindresorhus strip-json-comments Individual

58 464 IgniteUI ignite-ui . Organization

59 460 imsnif . synp . Individual

60 441 ModelDepot tfjs-yolo-tiny . Organization

61 436 canonical-web-and-design vanilla-framework Organization

62 435 sindresorhus sindresorhus-cli Individual

63 421 sindresorhus electron-better-ipc Individual

65 415 sindresorhus negative-array . Individual

66 408 sindresorhus electron-reloader Individual

67 402 cloudinary cloudinary npm . Organization

68 378 Klemen1337 node-thermal-printer Individual

69 369 mysticatea cpx . Individual

70 364 sindresorhus ky-universal . Individual

71 360 flexdinesh npm-module-boilerplate Individual

72 358 sindresorhus eslint-formatter-pretty Individual

73 357 sindresorhus conduct . Individual

74 340 jkrup . meteor-now . Individual

75 339 kenshinji yddict . Individual

76 337 nobrainr typescript-webpack-starter Organization

78 330 sindresorhus terminal-link . Individual

Empir Software Eng (2022) 27:18 Page 23 of 32 18

Table 5 (continued)

Rank Stars Owner Name Type

79 327 lucagrulla . . node-tail . Individual

81 320 shuiRong vue-drag-tree . Individual

82 319 sindresorhus react-router-util . Individual

83 316 sindresorhus alfred-emoj . Individual

84 310 Rob-- memoryjs . Individual

85 307 squirrellyjs squirrelly . Organization

86 298 aravindnc A-to-Z-List-of-Useful-Node.js-Modules Individual

87 295 sindresorhus alfred-npms . Individual

88 291 sindresorhus grunt-php . Individual

89 287 wcoder highlightjs-line-numbers.js Individual

90 284 wasmerio wasmer-js . Organization

91 281 sindresorhus class-names . Individual

92 279 sindresorhus bitbar . Individual

93 278 sindresorhus electron-serve . Individual

94 274 sindresorhus term-img . Individual

95 272 tinify tinify-nodejs . Organization

96 268 crewdevio Trex . Organization

97 261 shelfio jest-mongodb . Organization

98 252 kabirvirji . . singlespotify . Individual

99 243 darlanrod input-range-scss . Individual

100 242 dalenguyen . . firestore-backup-restore Individual

Fig. 7 Distribution of the main dimensions of our dataset (including outliers)

 18 Page 24 of 32 Empir Software Eng (2022) 27:18

Fig. 8 Role-based action distribution of the analyzed projects (a) in the dataset, (b) grouped by project type,
and (c) grouped by community size

Empir Software Eng (2022) 27:18 Page 25 of 32 18

Table 6 Activity distribution analysis, grouped by the role they are attributed to, according to (a) project
type and (b) community size. TRANSF. indicates the transformation applied to the variable. NORM. TEST and
HOMG. TEST report whether the variable passes the Saphiro-Wilk and Barlett and tests, which are the main
assumptions of the following tests: T-TEST stands for Student’s T test, BF-TEST stands for Behrens-Fisher
problem and WX-TEST stands for Mann-Whitney-Wilcoxon test

(a)

VARIABLE TRANSF. NORM. TEST HOMG. TEST T-TEST BF-TEST WX-TEST

Developer log(x+1) � × N.A. �** N.A.

Reviewer (not found) – – N.A. N.A. N.A.

Merger log(x+1) × × N.A. N.A. �***

Reporter log(x+1) � � �** N.A. N.A.

Commenter log(x+1) � × N.A. �* N.A.

Reactor log(x+1) � � �* N.A. N.A.

(b)

VARIABLE TRANSF. NORM. TEST HOMG. TEST ANOVA KW-TEST

Developer log(x+1) × � N.A. �***

Reviewer (not found) – – – –

Merger (not found) – – – –

Reporter log(x+1) × � N.A. �***

Commenter log(x+1) × � N.A. �***

Reactor log(x+1) � � �*** N.A.

� means that the test is passed, × means that the test is not passed

No superscript corresponds to p-value ≥ 0.05, * corresponds to 0.01 ≤ p-value < 0.05

** corresponds to 0.001 ≤ p-value < 0.01 and *** corresponds to p-value < 0.001

If T-TEST, BF-TEST or WX-TEST are passed, there are significant differences in the distribution

If ANOVA or KW-TEST are passed, there are significant differences in the distribution (in all combinations)

 18 Page 26 of 32 Empir Software Eng (2022) 27:18

Fig. 9 Role distribution of the analyzed projects (a) in the dataset, (b) grouped by project type, and (c)
grouped by community size

Empir Software Eng (2022) 27:18 Page 27 of 32 18

Table 7 Role distribution analysis according to (a) project type and (b) community size. TRANSF. indicates
the transformation applied to the variable. NORM. TEST and HOMG. TEST report whether the variable passes
the Saphiro-Wilk and Barlett and tests, which are the main assumptions of the following tests: T-TEST stands
for Student’s T test, BF-TEST stands for Behrens-Fisher problem and WX-TEST stands for Mann-Whitney-
Wilcoxon test

(a)

VARIABLE TRANSF. NORM. TEST HOMG. TEST T-TEST BF-TEST WX-TEST

Developer log(x+1) � × N.A. × N.A.

Reviewer (not found) – – – – –

Merger (not found) – – – – –

Reporter log(x+1) × � N.A. N.A. ×
Commenter log(x+1) � × N.A. × N.A.

Reactor log(x+1) × � N.A. N.A. ×
(b)

VARIABLE TRANSF. NORM. TEST HOMG. TEST ANOVA KW-TEST

Developer sqrt(log(x+1)) × � N.A. �***

Reviewer sqrt(log(x+1)) × � N.A. �***

Merger sqrt(log(x+1)) × � N.A. �***

Reporter (not found) – – – –

Commenter sqrt(log(x+1)) × � N.A. �***

Reactor (not found) – – – –

� means that the test is passed, × means that the test is not passed

No superscript corresponds to p-value ≥ 0.05, * corresponds to 0.01 ≤ p-value < 0.05

** corresponds to 0.001 ≤ p-value < 0.01 and *** corresponds to p-value < 0.001

If T-TEST, BF-TEST or WX-TEST are passed, there are significant differences in the distribution

If ANOVA or KW-TEST are passed, there are significant differences in the distribution (in all combinations)

 18 Page 28 of 32 Empir Software Eng (2022) 27:18

Fig. 10 Role migration paths for (a) individual projects and (b) organization projects

Empir Software Eng (2022) 27:18 Page 29 of 32 18

Fig. 11 Role migration paths for (a) tier 1 community size projects, (b) tier 2 community size projects, (c)
tier 3 community size projects

 18 Page 30 of 32 Empir Software Eng (2022) 27:18

Funding Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Adewumi A, Misra S, Omoregbe N, Crawford B, Soto R (2016) A systematic literature review of open source
software quality assessment models. SpringerPlus 5(1):1936

Ashraf U, Mayr-dorn C, Egyed A, Panichella S (2020) A mixed graph-relational dataset of socio-technical
interactions in open source systems. In: International conference on mining software repositories,
pp 538–542

Barcellini F, Détienne F, Burkhardt J (2014) A situated approach of roles and participation in open source
software communities. Hum Comput Interact 29(3):205–255

Barcomb A, Stol K, Riehle D, Fitzgerald B (2019) Why do episodic volunteers stay in FLOSS communities?
In: International conference on software engineering, pp 948–954

Bhattacharya P, Neamtiu I, Faloutsos M (2014) Determining developers’ expertise and role: a graph
hierarchy-based approach. In: International conference on software maintenance and evolution, pp 11–20

Blincoe K, Harrison F, Damian DE (2015) Ecosystems in github and a method for ecosystem identification
using reference coupling. In: Working conference on mining software repositories, pp 202–211

Borges H, Hora AC, Valente MT (2016) Understanding the factors that impact the popularity of github
repositories. In: International conference on software maintenance and evolution, pp 334–344

Borges H, Brito R, Valente MT (2019) Beyond textual issues: understanding the usage and impact of github
reactions. In: Brazilian symposium on software engineering, pp 397–406

Capra E, Wasserman AI (2008) A framework for evaluating managerial styles in open source projects. In:
Open source development, communities and quality, IFIP 20th world computer congress, working group
2.3 on open source software, IFIP, vol 275, pp 1–14

Carillo K, Huff S, Chawner B (2017) What makes a good contributor? Understanding contributor behav-
ior within large free/open source software projects—a socialization perspective. J Strateg Inf Syst
26(4):322–359

Casalnuovo C, Vasilescu B, Devanbu P, Filkov V (2015) Developer onboarding in github: the role of
prior social links and language experience. In: International symposium on foundations of software
engineering, pp 817–828

Cheng J, Guo JLC (2019) Activity-based analysis of open source software contributors: roles and dynamics.
In: International workshop on cooperative and human aspects of software engineering, pp 11–18

Christian J, Vu AN (2020) Task-based structures in open source software: revisiting the onion model. R&D
Management

Coelho J, Valente MT, Silva LL, Shihab E (2018) Identifying unmaintained projects in github. In:
International symposium on empirical software engineering and measurement, pp 15:1–15:10

Cosentino V, Cánovas Izquierdo J, Cabot J (2017) A systematic mapping study of software development
with github. IEEE Access 5:7173–7192

Crowston K, Howison J (2006) Assessing the health of open source communities. Computer 39(5):89–91
Crowston K, Wei K, Howison J, Wiggins A (2012) Free/libre open-source software development: what we

know and what we do not know. ACM Comput Surv 44(2):7:1–7:35
Decan A, Constantinou E, Mens T, Rocha H (2020) Gap: forecasting commit activity in git projects. J Syst

Softw 165:110573
Dias E, Meirelles P, Castor F, Steinmacher I, Wiese I (2021) Pinto g what makes a great maintainer of open

source projects? In: International conference on software engineering, pp 982–994
Eghbal N (2016) Roads and bridges. The unseen labor behind our digital infrastructure
Elazhary O, Storey MD, Ernst NA, Zaidman A (2019) Do as i do, not as i say: do contribution guide-

lines match the Github contribution process? In: International conference on software maintenance and
evolution, pp 286–290

http://creativecommons.org/licenses/by/4.0/

Empir Software Eng (2022) 27:18 Page 31 of 32 18

Gasparini M, Cánovas Izquierdo J, Clarisó R, Brambilla M, Cabot J (2019) Analyzing rich-club behavior in
open source projects. In: International symposium on open collaboration, pp 6:1–6:9

Gasparini M, Clarisó R, Brambilla M, Cabot J (2020) Participation inequality and the 90-9-1 principle in
open source. In: International symposium on open collaboration, pp 6:1–6:7

Golzadeh M, Legay D, Decan A, Mens T (2020) Bot or not?: detecting bots in Github pull request activity
based on comment similarity. In: International conference on software engineering. ACM, pp 31–35

Hata H, Todo T, Onoue S, Matsumoto K (2015) Characteristics of sustainable OSS projects: a theoretical and
empirical study. In: International workshop on cooperative and human aspects of software engineering,
pp 15–21

Jensen C, Scacchi W (2007) Role migration and advancement processes in ossd projects: a comparative case
study. In: International conference on software engineering, pp 364–374

Jergensen C, Sarma A, Wagstrom P (2011) The onion patch: migration in open source ecosystems. In:
Symposium on the foundations of software engineering, pp 70–80

Kalliamvakou E, Gousios G, Blincoe K, Singer L, Germán DM, Damian DE (2016) An in-depth study of the
promises and perils of mining Github. Empir Softw Eng 21(5):2035–2071

Lee A, Carver JC (2017) Are one-time contributors different? A comparison to core and periphery developers
in floss repositories. In: International symposium on empirical software engineering and measurement,
pp 1–10

Li Y, Tan CH, Teo HH (2012) Leadership characteristics and developers’ motivation in open source software
development. Inf Manag 49(5):257–267

Lima T, dos Santos RP, Oliveira J, Werner C (2016) The importance of socio-technical resources for software
ecosystems management. J Innov Digit Ecosyst 3(2):98–113

Mockus A, Spinellis D, Kotti Z, Dusing GJ (2020) A complete set of related git repositories identified
via community detection approaches based on shared commits. In: International conference on mining
software repositories

Nakamaru T, Matsunaga T, Yamazaki T, Akiyama S, Chiba S (2020) An empirical study of method chaining
in java. In: International conference on mining software repositories, pp 93–102

Onoue S, Hata H, Monden A, Matsumoto K (2016) Investigating and projecting population structures in open
source software projects: a case study of projects in github. IEICE Trans Inf Syst 99-D(5):1304–1315

Palazzi MJ, Cabot J, Cánovas Izquierdo J, Solé-Ribalta A, Borge-Holthoefer J (2019) Online division of
labour: emergent structures in open source software. Sci Rep 9(1):1–11

Pinto G, Steinmacher I, Gerosa MA (2016) More common than you think: an in-depth study of casual
contributors. In: International conference on software analysis, evolution, and reengineering, pp 112–123

Qiu HS, Li YL, Padala S, Sarma A, Vasilescu B (2019) The signals that potential contributors look for when
choosing open-source projects. ACM Hum-Comput Interact 3:1–29

Robles G, Arjona Reina L, Serebrenik A, Vasilescu B, González-Barahona JM (2014) FLOSS 2013: a survey
dataset about free software contributors: challenges for curating, sharing, and combining. In: Working
conference on mining software repositories, pp 396–399

Rozas D, Gilbert N, Hodkinson P, Hassan S (2021) Talk is silver, code is gold? Beyond traditional notions
of contribution in peer production: the case of drupal. Front Hum Dyn 3:12

Sack W, Détienne F, Ducheneaut N, Burkhardt JM, Mahendran D, Barcellini F (2006) A methodological
framework for socio-cognitive analyses of collaborative design of open source software. Comp Sup Coop
Work 15(2–3):229–250

Samoladas I, Gousios G, Spinellis D, Stamelos I (2008) The Sqo-oss quality model: measurement based open
source software evaluation. In: Open source development, communities and quality, IFIP 20th world
computer congress, working group 2.3 on open source software, vol 275, pp 237–248

Sarker F, Vasilescu B, Blincoe K, Filkov V (2019) Socio-technical work-rate increase associates with changes
in work patterns in online projects. In: International conference on software engineering, pp 936–947

Sawant AA, Robbes R, Bacchelli A (2019) To react, or not to react: patterns of reaction to Api deprecation.
Empir Softw Eng 24(6):3824–3870

Schweik CM, English R (2007) Tragedy of the foss commons? Investigating the institutional designs of
free/libre and open source software projects. First Monday 12(2)

SotoM, Ciolkowski M (2009) The qualoss open source assessment model measuring the performance of open
source communities. In: International symposium on empirical software engineering and measurement,
pp 498–501

Steinmacher I, Treude C, Gerosa MA (2019) Let me in: guidelines for the successful onboarding of
newcomers to open source projects. IEEE Softw 36(4):41–49

Trinkenreich B, Guizani M, Wiese I, Sarma A, Steinmacher I (2020) Hidden figures: roles and pathways of
successful oss contributors. Proc ACM on Hum-Comput Interact 4(CSCW2):1–22

Tsay J, Dabbish L, Herbsleb J (2014a) Influence of social and technical factors for evaluating contribution in
github. In: International conference on software engineering, pp 356–366

 18 Page 32 of 32 Empir Software Eng (2022) 27:18

Tsay J, Dabbish L, Herbsleb J (2014b) Let’s talk about it: evaluating contributions through discussion in
github. In: International symposium on foundations of software engineering, pp 144–154

Vasilescu B, Filkov V, Serebrenik A (2015) Perceptions of diversity on github: a user survey. In: International
workshop on cooperative and human aspects of software engineering, pp 50–56

Wang Z, Perry DE (2015) Role distribution and transformation in open source software project teams. In:
Asia-pacific software engineering conference, pp 119–126

Yamashita K, McIntosh S, Kamei Y, Hassan AE, Ubayashi N (2015) Revisiting the applicability of the pareto
principle to core development teams in open source software projects. In: International workshop on
principles of software evolution. ACM, pp 46–55

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Javier Luis Cánovas Izquierdo received the B.Sc. and Ph.D. degrees
in computer science from the University of Murcia. He was a Post-
Doctoral Fellow in the AtlanMod team, at the Ecole des Mines de
Nantes, France. He is currently an associate professor at the IT, Mul-
timedia and Telecommunications Department of Universitat Oberta
de Catalunya (UOC). He is also a member of the SOM Research
Lab within the Internet Interdisciplinary Institute (IN3-UOC). His
research interests fall into the areas of software engineering, web
engineering and socio-technical analysis of software systems. You
can contact him at jcanovasi@uoc.edu or visit https://jlcanovas.es/.

Jordi Cabot received the B.Sc. and Ph.D. degrees in computer sci-
ence from the Technical University of Catalonia. He was a Leader of
an INRIA and LINA Research Group at Ecole des Mines de Nantes,
France, a Post-Doctoral Fellow with the University of Toronto, a
Senior Lecturer with the Open University of Catalonia, and a Visit-
ing Scholar with the Politecnico di Milano. He is currently an ICREA
Research Professor at Internet Interdisciplinary Institute. His research
interests include software and systems modeling, formal verifica-
tion and the role AI can play in software development (and vice
versa). He has published over 200 peer-reviewed conference and jour-
nal papers on these topics. Apart from his scientific publications, he
writes and blogs about all these topics in several sites like modeling-
languages.com and livablesoftware.com. He is also the co-founder
and CEO of Xatkit, an open-source chatbot development framework.

https://jlcanovas.es/

	On the analysis of non-coding roles in open source development
	Abstract
	Introduction
	Role Characterization in GitHub
	Research Method
	Research Questions
	Dataset Construction
	Retrieval and Cloning
	Analysis
	Graph Generation

	Dataset Descriptive Statistics
	Statistical Method

	Results
	RQ1. Role-based Activity Distribution
	Detecting Roles in Collaboration Graphs
	Activity Distribution Analysis
	Prototypical Contributor Profile

	RQ2. Role Diversity
	Role Distribution
	Most Common Role Configuration
	Role Migration Paths

	Discussion
	Improve Onboarding
	Governance of Non-coding Contributors
	Define and Promote Migration Paths the Project is Interested in
	Importance of Member Identification and Contribution Visualization Mechanisms
	Need for Temporal Analysis

	Replicability Package
	Threats to Validity
	Related Work
	Social Factors in Open Source Development
	Role Classification in Open Source Development
	Comparison with Related Work

	Conclusion and Future Work
	Appendix
	References

