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Introduction and planning
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Chapter 1

Problem statement

Electronic voting is a hot topic of discussion, not only in academia but also in public
opinion. The main question is whether this kind of system can have widespread use in
public elections in substitution of classical processes with physical polling stations, ballots,
ballot boxes, etcetera. Multiple electronic elections have been conducted in different
contexts, ranging from small private organizations to large nationwide, official-electing
polls [15][4][10]. However, trust in those elections is not always as high as it would be on
an election conducted with physical ballots.

Trust is the main obstacle in electronic voting — people who participate in those elec-
tions not only need to get some outcome on the electoral process but they need convincing
evidence that the provided results are correct and have not been tampered with. There
are many points of failure in which an election can be tampered with: whenever the vote
is cast, recorded, or tallied. Electronic elections that provide protections against those
points of failure are called end-to-end verifiable elections [2]. Also importantly, a fair
election must guarantee that voters are not coerced when they exercise their right to vote.

Classical paper-based elections have historically built that trust and they have a variety
of failsafe mechanisms to prevent tampering at all those stages. At the very least, they
have mechanisms to render attacks on a large scale impractical — a malicious actor can
target a few polling stations, but that will not significantly affect the overall results of the
election. That is not the case for electronic voting.

The motivation for altering elections is very high. It is easy to see how election results
can highly influence politics, society, and economics, to name a few. Electronic voting,
and especially voting systems that rely on the open Internet, make large-scale attacks
that were not feasible on other systems feasible. Even though electronic voting provides
several advantages over classical elections (faster tallying, voting is accessible for more
communities, operation costs are cheaper, . . . ), the fact that they are more vulnerable to
attacks turns them into a prime target for numerous groups of attackers.
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1.1 The problem with coercion

End-to-end verifiable elections provide protections through the use of a myriad of cryp-
tographic techniques to the casting, recording, and tallying steps of an election. That is,
any voter can prove independently that their vote has not been tampered and has been
correctly counted against the final result. As hinted in the previous section, coercion is a
problem that is not directly solvable by the methods above.

Coercion in an election is defined as the intervention of an adversary, who might or
might not be involved in the process, that influences a subset of voters with the purpose
of altering their vote. When an attacker is performing coercion in an election, it is usually
not compromising the voting system itself but forcing a human being to cast (or not cast)
a vote in a specific way. Thus, it is possible that an end-to-end verifiable election is
cryptographically correct but the results are not the ones the census would have intended
to be.

A basic ingredient to coercion is for the attacker to know if someone is voting. That
can be done by a simple packet inspection, which does not even need to go deep on
the packet contents, but only needs to inspect the metadata that goes through the wire.
It has been proven that by doing packet analysis, an attacker can identify an ongoing
election[12].

1.1.1 Coercion types

There are many ways of performing coercion [7]. Those include the following.

• Physical coercion. The attacker has physical access to the user’s device or can
physically interact with the voter. Possibly through the use of force, it can prevent
the voter from voting. It is very difficult to prevent but it also scales hardly.

• Randomization attack. The attacker coerces the voter by requiring them to
submit randomly composed balloting material. In this attack, the attacker (and
perhaps even the voter) is unable to learn what candidate the voter casts a ballot for.
The effect of the attack is to nullify the choice of the voter with a large probability.

• Simulation attack. The attacker forces the voter to divulge their private keying
material after the registration process but before the election process. These permit
an attacker to divulge private keys or to buy private keys from voters and then
simulate these voters at will, i.e., voting on their behalf.

• Forced-abstention attack. The attacker coerces a voter by demanding that they
refrain from voting. If an attacker can see who has voted, they can use this infor-
mation to threaten and effectively bar voters from participation.

• Social engineering. Instead of breaching a device through a vulnerability or
watching its behavior in the network, social engineering consists of tricking a user to
do something that goes against their will. In an election context, this might involve
credential-stealing or voting on a fake website.
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1.1.2 Forced-abstention attack

This thesis will focus on the forced-abstention attack. There are two straight forward
ways of an attacker to know if a person has voted.

• Given that the census is public and the list of people who has voted is public too,
its trivial to coerce a person about that. Most end-to-end verifiable voting systems
solve this by publishing a list of pseudonyms instead of actual names on the list of
voters.

• If an attacker has some degree of control over the network in which the voter it
performing the vote and/or where the voting system is hosted, it can infer through
traffic sniffing if somebody has voted.

Most basic attacks can be prevented with basic on-transit encryption. Systems are
still vulnerable to more advanced pattern-matching attacks, which will not actually
tell the attacker what the person has voted, but the signal that they have voted at
all might be a sufficient reason for coercion.

1.2 Preventing coercion through a desktop applica-

tion

In modern web browsers, it is very common that HTTPS encryption is used in all con-
nections to encrypt in-transit data. For that reason, man-in-the-middle attacks on (for
instance) local networks are not a big issue, since they should not be able to observe the
contents or modify the packets unless there is a compromised certificate.

To coerce a voter in an election, an attacker must observe the traffic and the packets
going from the voter’s device1 to the server(s) that is ingesting the votes for the election.
There are three kinds of packets that a traditional Internet-based voting system will use
and that an attacker might pattern-match against.

• Front-end assets. This is the page that the user loads in their browser containing
the front-end application2 that lets them vote. That typically includes an HTML
page plus some JavaScript, CSS, and image assets that are the same for all voters
and elections.

• Election data and metadata. This is the data that populates the election itself.
It ranges from the actual questions and answers options to some metadata including
title, description, and cryptographic keys.

• Vote casting. The packages that the client sends to the server contain the ballots.
They are usually already encrypted on the client.

1For simplicity, in this thesis it will be assumed that it is a desktop computer, but similar reasoning
could be applied to other devices, like tablets or smartphones.

2Sometimes also referred as voting booth.
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It is clear to see that the more packages circulate over the network (and the least
variance they have), the easier it is for an attacker to find a pattern and then conclude
that somebody is voting.

When using a desktop application, some of the above issues can be mitigated. No
assets need to be downloaded, since they are already contained in the binary. An attacker
might indeed detect or even block the download of the binary that contains the booth,
but there are multiple ways from the voter side to circumvent that.

This thesis will focus on two other issues: metadata and vote casting. A desktop
application will be developed in such a way that traffic cannot be detected hence an
attacker cannot prove that a person has participated in an election.

1.3 Goals

The goal of this thesis is to propose a solution to prevent an attacker who has some degree
of control over a network to impede voters which are using that network. That is a system
that is resistant to forced-abstention coercion attacks.

Although the goal for the thesis is forced-abstention attacks, indeed, such a system
will also help prevent (or at least, make them more difficult) the other described attacks.
The fact that an attacker cannot know when a voter did vote or even if they voted at all
adds a layer of complexity to the hypothetical attack.

Specifically, the goals of the thesis are the following.

• Provide a functional desktop application that can cast electronic votes.

• That application must provide a way to cast a vote that protects the voter of forced-
abstention coercion from an adversary.

• Integrate the desktop client with a voting system that can perform an end-to-end
verifiable election.

The following are non-goals for the thesis:

• Develop a novel voting system.

• Tackle end-to-end verifiable elections.

• Simulate a large scale network attack to pattern match an election.
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Chapter 2

State of the art

2.1 Tor

Tor [16][3][5] is an overlay network (on top of the open Internet) that uses the concept
of onion routing to provide privacy, anonymity, and communication security. Tor works
by tunneling a user’s traffic through several intermediate nodes on the network instead of
directly connecting to the other end (usually, a web service). Each step adds its layer of
encryption, thus the name onion routing.

With this system, a user’s traffic is anonymous and harder to track by any network
observers and by the receiving end of the transmission. This provides the user with a
higher degree of privacy. Figures 2.1, 2.2 and 2.3, courtesy of the Electronic Frontier
Foundation, illustrate how Tor works.

2.1.1 Bridges and pluggable transports

Although Tor provides a layer of privacy, the fact that somebody is using Tor might be
suspicious by itself in some contexts. Attackers might know and block IP addresses of
Tor nodes or even perform Deep Packet Inspection to identify and potentially block a Tor
connection.

Tor addresses the first issue by using bridges [8]. Bridges are secret Tor nodes which
IPs are unknown to an attacker and that change over time. Therefore, they cannot be
blocked.

To prevent traffic analysis, pluggable transports disguise Tor traffic by making it look
like something else (like a WebRTC connection from a videochat application).

Figure 2.4, courtesy of Ramzi A. Haraty, shows how Bridges work.

2.1.2 Snowflake

Snowflake is another tool to disguise Tor traffic in highly restrictive networks, such as
Internet users in the People’s Republic of China. Snowflake works by routing the traffic
through volunteer-run computers using a WebRTC connection.
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Figure 2.1: How Tor works (1)

Figure 2.2: How Tor works (2)
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Figure 2.3: How Tor works (3)

Figure 2.4: Tor Bridges schema
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Figure 2.5: Snowflake schematic

A schema of how Snowflake works, courtesy of the Tor project, can be seen in figure
2.5.

2.2 Helios Voting

Helios is an electronic voting system [1] that provides end-to-end verifiable elections. It
is a Django1 based web application that can be run in a self-hosted environment or their
public instance2. In a Helios instance, any registered user can set up an election and
anyone can cast a vote on that election (if the vote is counted or not will depend on
whether the election is public or private, i.e. it requires the voter to be on a census).

Helios provides a voting booth that displays the election questions, collects the answers
from the voter and creates an encrypted ballot for that election. The user can be convinced
that a vote is properly encrypted by decrypting it and discarding it afterward using the
tool provided by the system or something done on their own, since the algorithms used to
do so are open source. Once it is encrypted and cast, Helios stores the vote and the user
receives a receipt. Once the election is closed, the Helios server shuffles the votes using a
mixnet and produces a tally.

Helios publishes two boards. One board with all the encrypted votes, that cannot be
traced to who emitted that vote. The other with all people who voted with their receipts
(optionally, they can be hidden with pseudonyms).

Helios makes extensive use of email to communicate with the voters. In a normal
voting process, it sends at least an email with the credentials (username and randomly

1Very popular Python framework for web development.
2https://vote.heliosvoting.org/
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Figure 2.6: Helios Welcome Page
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Figure 2.7: Default Helios email credentials

generated, election unique password) as seen in figure 2.7 and another one to confirm
a cast vote. In terms of censorship, as long as an attacker does not have access to the
voter’s email server, those emails are a secure way of communicating election data.

2.3 NodeJS

NodeJS is an open-source JavaScript runtime based on Chromium’s V8 engine. Its main
function is to execute JavaScript code outside a web browser, that is, as a server-side
language, in a desktop application, or even inside a browser through a transpilation step.
Node also includes a variety of libraries that allow native access to system resources that
are not accessible through the browser, such as the filesystem.

This technology is usually tied to NPM or Node Package Manager, a package manager
to install and use libraries and third-party code in a project. The ecosystem is well known
to have an especially active community and provides a wide range of prebuilt code that
implements commonly used features. This is especially useful to speed up development.

NodeJS supports ES6. ES6, also known as ECMAScript 6 or ECMAScript 2015, is
a new JavaScript standard that supports many syntactic sugar improvements (such as
classes, arrow functions, or constants) that make the developer experience easier and less
bug-prone. ES6 is now compatible with all modern browsers and it is used as an industry
standard.

11



2.3.1 Electron

Electron is an open-source NodeJS development framework that enables the development
of cross-platform3 desktop applications using web technologies4. It packages a Chromium
engine together with the application’s code inside a binary, that can be executed without
any additional requirements on a desktop system. It also provides many additional APIs,
on top of Node’s, to interact with the host OS.

Electron is very popular to develop cross-platform applications because its compiler
can generate binaries for different platforms without having to change the code.

3Including macOS, Linux and Windows.
4HTML, JavaScript, CSS and derived technologies.
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Chapter 3

Methodology, tasks and, planning

In this section, we will describe an overview of the implementation and how the work
is going to be laid out to meet the goals stated in the first section. It is worth noting
that four milestones plus a video presentation are required by UOC, therefore, planning
is done around those.

3.1 Implementation of the solution

The complete voting solution that will be implemented consists of two parts: a desktop
application and a voting system. The goal of the thesis is to develop the first one, but
at the same time, a complete solution must be provided, so an open-source voting system
will be used1.

3.1.1 Voting System

The Helios Voting system will be used as a back-end for holding elections. Elections
will be set up on that side and the standard Helios’ procedures will be used to encrypt
the ballots and tally the votes.

Some small changes will be required from standard Helios to enhance privacy. The
changes are related to how Helios sends data to the client, including when it sends the
election metadata or when it sends a response to acknowledge a correct vote. Those
communications have the problem of being quite similar over time. The required changes
might involve dropping connections, not responding to some others, inserting randomness
to the packets, or sending noise.

The changes on Helios will be implemented in a fork of the Helios repository and they
will be deployed in a web server.

1The possibility of using a mock voting system was considered but discarded. A meaningful voting
experience should be provided, and that was not the case with a mock back-end.
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3.1.2 Desktop client

The Helios Voting system is already designed with a heavy reliance on the client. For
that reason, it ships with a voting booth, the Helios Booth, that is already a relatively
standalone JavaScript application. That booth is responsible for fetching the election
metadata, rendering the UI for the votes, encrypting the votes, and casting the votes
(sending the encrypted packets to Helios). It even contains a utility to validate votes.

The drawback of that JavaScript application is that is fairly complex, written in ”old”
JavaScript (not modern ES6) and the UI is not usable on mobile devices.

The goal of this project will be to package that JavaScript app into an Electron-based
desktop application. Deep changes will have to be made in the application itself since it
makes a lot of assumptions revolving around the fact that the application is served from
the Helios Django back-end and session cookies are available.

The approach of reusing the booth and not writing a new one from scratch is justified
by the fact that most of the crypto stack, in charge of encrypting the votes, can be reused.
It is not the goal of this thesis to get deep into the cryptography that enables end-to-end
verifiable elections.

A middleware layer will be placed between the Electron app and the Internet, which
will handle network connectivity from the app to the Helios server. That middleware will
be responsible for injecting and handling randomness to camouflage the packets sent. It
will also interact with the Tor network, making use of bridges and pluggable transports.

When a user wants to vote, they will have to select a Helios server by providing a
server location (a URL) and an election in which to vote. The front-end client will also
handle authentication in case the Helios election is set up in such a way.

3.2 Milestones

This is a high-level overview of the milestones with the official deadlines. Aside from
those, a weekly meeting between the author and the thesis supervisor will be held to
assess progress and gather feedback on smaller iterations.

3.2.1 First milestone (work plan)

Deadline: Setpember the 28th, 2021.

The first milestone consists of initial the work plan, which is this document. Research
has been made to evaluate the problem and come up with a proposed solution. The de-
scriptions in this document have some room for iteration and change, given that technical
challenges during the implementation phase will occur.

The goal of the first milestone is to deliver this document.

3.2.2 Second milestone

Deadline: October 26th, 2021.
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The second milestone is the first one where coding starts to happen. At this stage, the
goal is to have a working Electron application that can cast votes to a Helios instance.
No Tor implementation is needed yet at this point.

The deliverable at this stage will be a binary (and its source code).

3.2.3 Third milestone

Deadline: November 23rd, 2021.

The third milestone will take the previous desktop app and add the networking layer,
responsible for implementing Tor plus any noise and randomness necessary to camouflage
the packets.

The deliverable at this stage will be a binary (and its source code), but containing the
changes at this iteration.

3.2.4 Fourth milestone (memoir and source code)

Deadline: December 28th, 2021.

The final milestone will have two sides. On the coding side, it will wrap up the
desktop app and fix any outstanding issues, and will implement the changes mentioned in
the previous sections on the Helios/Django part. On the writing side, in this milestone,
the final document (memoir) will be written.

This final deliverable will consist of the document plus the binary/source code.
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Part II

Implementation
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Chapter 4

Decoupled Voting Booth

The goal of this section is to describe the design and implementation of the Helios Booth
that will be used in the project. Tor is not yet introduced, therefore, a tool is being built
such that a voter can participate in an election in a completely decoupled setup, that is,
without having to interact with pages rendered by the Helios Server (Django).

At the end of this section, a desktop application is available that casts votes into a
helios-server modified instance running in a local machine.

4.1 Electron Wrapper

The Booth (from now on, helios-desktop interchangeably) is a multi-platform desktop
application1. It has been built using the Electron framework plus Electron Forge2 as a
packaging tool. The codebase contains a combination of TypeScript and JavaScript as the
programming languages of choice plus HTML and CSS for building the User Interface.

Other languages (such as C++ and Rust through WebAssembly) can be used for this
purpose. TypeScript has been chosen as the main language for the wrapper code because
it is a superset of JavaScript that introduces type checking and thus, type safety. This is
an important feature to have when it comes to develop reliable and maintainable software
projects.

Another advantage of this setup is that it allows for TypeScript and JavaScript in-
teroperability. Most of the Booth’s code has been reused from what is available in the
open-source Helios project, which is written in legacy JavaScript. That codebase has
not been rewritten in TypeScript but can interact with the modern, ES6-based, typed
TypeScript wrapper.

ElectronForge is being used as a packaging tool for packaging the app (creating the
platform-specific binary bundles). It is a CLI tool that abstracts some of the logic that
ties together the different tools used in the development and build process of the desktop
app. More specifically, it orchestrates the transpilation of TypeScript code to JavaScript

1Can run on macOS, Linux and Windows
2https://www.electronforge.io/

17

https://www.electronforge.io/


Figure 4.1: Helios Desktop welcome screen

and the creation of executable binaries using those assets. To start up the project, the
TypeScript template from ElectronForge was used3.

The wrapper code contains some basic user interface outside the Helios Booth. Con-
cretely, the welcome screen 4.1 where voters introduce the election URL and their creden-
tials and the success screen 4.2, where users see a message letting them know that they
have completed the voting procedure.

The User Interfaces’s styling on the screens outside the booth has been done using the
Bulma4 framework. It has been chosen because it is a lightweight open-source package
that consists of a CSS file only. By using it, the interface can be styled, have good looks,
and be more usable and familiar from a user experience point of view by trivially adding
some CSS classes to the HTML elements.

The code has been formatted using the standard tool in NodeJS/TypeScript code-
bases, ESlint5 with the Automattic’s WordPress configuration6. This has been chosen to
enforce a code style and automatically format files, which produces better readable and
maintainable code. To keep parity with the Open Source Helios project, the Helios Booth
files are not being linted.

3https://www.electronforge.io/templates/typescript-template
4https://bulma.io/
5https://eslint.org/
6https://www.npmjs.com/package/@wordpress/eslint-plugin
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Figure 4.2: Helios Desktop success screen
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Figure 4.3: Empty field validation error

Figure 4.4: Invalid field validation error

NodeJS 16, LTS7 at the time of writing, and Electron 16 are the versions used to
develop this project.

4.1.1 Error Handling

Some basic validation has been added in the front-end to prevent users from inputting
invalid parameters. Since these validations are HTML5-based, they can be bypassed rela-
tively easily by a motivated attacker, but they are good enough for preventing involuntary
bad usages from normal users.

Validation consists on adding correct types and attributes to the HTML <input> tags.
The attributes can be seen in the following snippet:

1 <input class="input" id="election_url" name="election_url" type="url"

required />

2 <input class="input" id="voter_id" name="voter_id" type="text" minlength

="3" maxlength="64" required />

3 <input class="input" id="voter_password" name="voter_password" type="

password" minlength="8" maxlength="64" required />

Listing 4.1: Input field validation on welcome page

Note that the full use of those attributes is restricted to HTML5-compatible browsers,
which is the case with the modern Electron engine that is being used (Chromium).

Figures 4.3, 4.4 and 4.5 show how errors are rendered in the UI.

7Long Term Support.
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Figure 4.5: Invalid URL validation error

4.1.2 User-provided election URL

The Helios server expects the URLs to not end with a backslash. That is, if a user navi-
gates to http://www.example.com/page/ it will get an error 404 whereas http://www.example.com/page
will render correctly.

It is not expected that a voter is aware of this limitation. A simple parsing function is
added in the wrapper, on top of the validation explained in the previous section, to make
sure the requested URL is valid.

1 const parseElectionURL = (rawUrl: string): string => {

2 if (rawUrl.endsWith(’/’)) {

3 return rawUrl.slice(0, -1);

4 }

5 return rawUrl;

6 };

Listing 4.2: Election URL parser method

4.2 Changes to the Helios Booth

Although the goal is to not modify the Booth that comes with Helios, some minor changes
have been done to it to make it compatible with this project. Some of the changes are
not Helios Desktop specific, therefore can be ported to the upstream Helios project.

In this section, those changes will be discussed.

4.2.1 Responsive booth

As is, the Helios Booth is not responsive and it does not adapt to different screen sizes.
This is especially problematic on mobile devices, such as smartphones and tablets. This
is also important because desktop applications are usually resized and moved through
multiple monitors, often with varying sizes and resolutions. What is more, the default
Booth is using an old HTML version, HTML 4.

While maintaining the overall structure and appearance, the booth has been migrated
to HTML 5 and some layout changes have been made to support a responsive viewport.
The changes include repositioning buttons, tweaking CSS so <divs> and containers are
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centered and have a max-width8 instead of a fixed width9.
This update has been contributed to Ben Adida’s upstream Helios repository.

4.2.2 jQuery upgrade

Helios, as is, uses an old jQuery version, 1.2.6 in conjunction with jQuery JSON (an
add-on package that was used in jQuery to work with JSON). 1.2.6 was released in 2008
and has multiple security and performance issues. In terms of feature set, it cannot send
headers on AJAX requests (a feature that is needed in this project).

For those reasons, a jQuery update was needed. In version 1.5, jQuery introduced
built-in support for JSON and the possibility to send headers on requests. Given that the
current version of jQuery, 3.x, contains multiple breaking changes that would affect the
Helios Booth codebase, it has been decided that jQuery will be upgraded to the latest
version of the 1.x branch, 1.12.5 (released in 2016). Although it is not the latest version,
it is a fair compromise between new features and backward compatibility.

To perform the migration, jQuery JSON has been removed and all the code that was
using it has been replaced by the built-in jQuery/vanilla JS methods for JSON manipu-
lation. These were the only breaking changes of the upgrade.

This update has been contributed to Ben Adida’s upstream Helios repository.

4.2.3 Underscore update

The NodeJS proxy that will be introduced in further sections requires some advanced
NodeJS features plus the ability to move data through the main and the UI threads in
the Electron application.

This behavior is disabled by default in Electron, and it has to be enabled by adding
the following configuration:

1 const mainWindow = new BrowserWindow ({

2 width: 1280,

3 height: 800,

4 webPreferences: {

5 nodeIntegration: true ,

6 contextIsolation: false ,

7 },

8 });

Listing 4.3: Electron configuration that breaks old Underscore

Those changes are acceptable for the configuration of this project, but they break
compatibility with the included Underscore10 version, which is in a similar place to jQuery
(the Booth includes version 1.1.6, released in 2009). This is a library that provides general
utility functions for JS.

8https://developer.mozilla.org/en-US/docs/Web/CSS/max-width
9https://developer.mozilla.org/en-US/docs/Web/CSS/width

10https://underscorejs.org/
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Similar to jQuery, Underscore has been upgraded to a recent version, 1.13.1, which
fixes the compatibility errors that would not let the page render.

4.2.4 Custom JS minification script

The Helios booth uses a minified version of its own JS files plus the libraries, which boosts
performance. This includes the two upgraded libraries.

Helios provides a text file with a script to generate that file, but the script relies on
an old version of a minifier software plus has some broken paths. To compile the changes
from both previous sections, a custom (executable) bash script has been added:

1 #!/bin/bash

2
3 uglifyjs js/jquery -1.12.4. min.js js/jscrypto/class.js js/jscrypto/bigint

.dummy.js js/jscrypto/jsbn.js js/jscrypto/jsbn2.js js/jscrypto/sjcl.

js js/underscore -min.js js/jquery.query -2.1.5. js js/jquery -jtemplates

.js js/jscrypto/bigint.js js/jscrypto/random.js js/jscrypto/elgamal.

js js/jscrypto/sha1.js js/jscrypto/sha2.js js/jscrypto/helios.js -o

js /20211010 - helios -booth -compressed.js

Listing 4.4: Custom script to minify JavaScript code

4.2.5 Election exit button

The Booth contains an exit button that, in the web version, closes the booth and returns
the user to the election homepage (described as election url). If unchanged, this link would
bring the user back to a public URL hence performing network traffic that is susceptible
to being pattern-matched and thus giving away that a user might be participating in an
election.

In helios-desktop, the exit button has been changed so it redirects to the initial page
4.1 of the booth. The confirm dialog has been kept as is 4.6.

The email button has not been changed because it does not perform a request, it
simply opens an email window.

4.2.6 Error handling in the booth

The majority of the booth’s code regarding error handling has been left unchanged because
overall the booth itself is good enough communicating to the user that something went
wrong. However, there is one part of the code that no longer works with the current setup
– that is when a user requests to vote in an election with incorrect parameters, that is,
incorrect URL or credentials.

Standard Helios relies on redirections to the Django server to handle those cases. If
the user is not authenticated or requests an incorrect URL, it is redirected to a login page
within Django. In the decoupled setup, no such page exists.

In this implementation, the error cases are handled through HTTP status codes. The
Helios Booth fires two requests when loading an election, and a third one if they both
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Figure 4.6: Helios Desktop exit confirmation dialog

succeed. To prevent leaving the user in a dead state, the HTTP status code is checked.
Unless it is 200, which is the expected one, the user is redirected to the initial page with
an error message.

1 BOOTH.load_and_setup_election = function(election_url) {

2 $.ajax({
3 url: election_url ,

4 method: "GET",

5 complete: function(response) {

6 if (response.status === 200) {

7 // let’s also get the metadata

8 ...

9 } else {

10 alert(’Could not load the election.’);

11 window.location = "../ index.html";

12 }

13 }

14 });

15 ...

Listing 4.5: Loading election data in the booth

4.2.7 Authenticating requests through headers and parameters

Helios works by having a decoupled booth that displays the election questions and lets
the user create an encrypted payload containing the vote. However, this vote is sent in
a form (as a POST request) to a Django-rendered page (cast page). Then, Django is
responsible for displaying an authentication form and submitting the vote in the database
by redirecting the user to the cast confirm page. The issue with that is that Django relies
on a cookie-based session, which is a thing that is aimed to be avoided in this project.
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Figure 4.7: Helios Desktop custom authentication headers

Figure 4.8: Additional form parameters on the booth

Ideally, the booth should do a single request to Django containing the vote and the
user credentials.

Fetching the election metadata is also an issue. In public elections, the client can hit
the user-provided URL and Django will return the data (being the election data or the
randomness). Whenever a user hits a private election, Django will rely on a cookie-based
session to determine if the data can be returned or not.

In this case, a way of providing an authentication other than the cookie that is not
present in the Electron app to the request is needed.

In helios-desktop, the user has been asked for some credentials at the beginning of the
process, in conjunction with the election URL. Those credentials are being stored in the
local storage of the application11. Having them stored in localstorage means that the data
is available in all the views of the app. The local storage is cleared every time the main
application window is rendered.

The situation is fixed as follows:

• For the REST-like requests the client passes the authentication parameters through
HTTP headers, X-helios-voter and X-helios-voter-password (as seen in figure 4.7).
The affected requests are /election/id (metadata) and /election/id/get randomness,
both of them being GET requests.

• For the POST form, two additional hidden fields have been added (figure 4.8).

In both cases, it is safe to transmit the credentials because the requests go through an
encrypted connection (HTTPS).

11https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage
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The changes required in the Django side to support this newly-introduced authenti-
cation are described in the following sections.
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Chapter 5

Adapting Helios Django Server

The goal of this project is to change the open-source Helios project the least possible. That
has been the case for Helios Booth, as described in the previous section. The changes
in the back-end side, a Python/Django-based server are quite minimal and have to do
mainly with authentication.

None of these changes are contributed back to Ben Adida’s main project because they
are helios-desktop specific. It is worth noting that none of the changes break the normal
functionality of Helios, so elections without helios-desktop can still be held in a modified
system.

5.1 Reading authentication headers

Due to the decoupled nature of the client, the server is not able to keep track of sessions.
Therefore, the client sends non-standard authentication headers X-helios-voter and
X-helios-voter-password. They both contain a string.

The helios-server code includes a security.py file with security-related helper func-
tions. One of those functions is get_voter which is responsible to get a Voter object
from the database and it is commonly used across the views that return election data and
cast votes.

In lines 55 to 64 in figure 5.1 it can be seen how the headers are retrieved and then
used to search in the database. If a voter is found with those parameters, it is injected
into the current session.

5.2 Merging two-step cast confirmation

Helios casts votes using a two-step process, that is, the user goes through two endpoints.
When a normal booth finishes, a POST request is sent to elections/<election_id>/cast.
That view gets the user from the request and saves the encrypted vote in the session.
Then, the user is redirected on the second screen, elections/<election_id>/cast_confifm.
Crucially, this first view redirects the user to a login page in case they are not logged in.

Listing 5.1 shows the Helios logic of the view.
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Figure 5.1: Changes in the security.py file

1 @election_view ()

2 def one_election_cast(request , election):

3 """

4 on a GET , this is a cancellation , on a POST it’s a cast

5 """

6 if request.method == "GET":

7 return HttpResponseRedirect(settings.SECURE_URL_HOST + reverse(

url_names.election.ELECTION_VIEW , args = [election.uuid]))

8
9 user = get_user(request)

10 encrypted_vote = request.POST[’encrypted_vote ’]

11
12 save_in_session_across_logouts(request , ’encrypted_vote ’,

encrypted_vote)

13
14 return HttpResponseRedirect(settings.SECURE_URL_HOST + reverse(

one_election_cast_confirm , args=[ election.uuid]))

Listing 5.1: One election cast method in views.py

Casting the vote and saving it to the database happens in the second view. That view
expects to have the encrypted_vote in the session object, but that is only the case if the
first view got called.

Given that one of the goals of this thesis is to reduce the amount of traffic so it is
harder to trace for third parties, it has been decided that the first call is going to be
skipped and the booth will call cast_confirm directly.
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Figure 5.2: Changes in the views.py file

In figure 5.2 the changes performed to the view can be seen. Instead of redirecting
the user out when there is no encrypted vote in the session, the view tries to fetch it from
the POST request that the booth sent.

Since the booth lives in a different environment than the server, the csrf check has
been disabled.
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Chapter 6

Deploying Django to Heroku Cloud

Helios is a Django-based Python application that requires a web server, a database, and
a Celery1 worker system (a process plus storage to store the queue). This is a pretty
standard configuration that can be deployed in a myriad of cloud services and on-premise
servers.

To create a realistic election environment in this thesis (aside from a local instance for
development), the (modified) Django project has been deployed to the Heroku platform2.
A server on the Internet is needed to have the full Tor circuit3.

One of the main reasons to use Heroku is the fact that Helios is prepared to be deployed
there out-of-the-box and it has community support for being deployed there [11]. The
other reason is that Heroku has a very generous free plan4 that allows low-traffic services,
like this one for demo purposes, to run.

More specifically, this project has been deployed in the free tier using two dynos5 in
the Europe region. Deploys have been set up such every commit on a defined branch
in the project’s repository triggers a new build. The chosen database has been Postgres
(known to be the one that works best with Django) and Redis to power the Celery queue
(all those add-ons are also in the free tier).

In figure 6.1 the two Dynos that are being used in the demo configuration for this
project can be seen.

Helios manages authentication for administrators (not to be confused with voter au-
thentication) with third-party providers, such as Google, Facebook, or GitHub. For this
setup, Google has been chosen and a demo key pair for their OAuth system has been
created.

Heroku does not provide a built-in way to send emails. Helios makes intensive use
of emails to send different communications to the administrators (a voter file has been
processed, an election tally has been computed, etc.) and voters (voter credentials, vote
verification).

1https://docs.celeryproject.org/en/stable/
2https://www.heroku.com
3A local onion server could have been used, but it is not a scenario likely to happen in a real election.
4https://www.heroku.com/pricing
5Dynos are what Heroku calls their instances.
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Figure 6.1: Heroku Dyno set up

Amazon SES6, part of AWS has been used to send emails. Sending a low volume of
emails is free of charge, so the setup is good enough for the demo.

6Simple Email Server, https://aws.amazon.com/ses/
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Chapter 7

Sending network traffic through a
proxy

The key to this project is to disguise the traffic that the Helios Booth produces so it is not
easily identifiable by an attacker who might potentially have control over the network. A
myriad of ways of doing so are possible, but the constraint that has been running all over
this project comes up again – the Helios Booth code is old and it is difficult to modify.

As seen in previous sections, the Helios Booth performs HTTP over TLS (HTTPS)
AJAX calls, using the jQuery framework. A standard solution in the industry to introduce
modifications in a request is to run a proxy server. This way, the legacy app sends and
receives data as if it were communicating to a normal server while allowing a modern
codebase to treat that request.

Figure 7.1 illustrates how the network traffic flows in the application, from the local
Helios Booth to the public Helios Server living in the cloud. The diagram also introduces
Tor, which will be discussed in the next chapter.

7.1 Proxy architecture

The proxy used in this thesis is a NodeJS-based proxy, built around the ExpressJS frame-
work1 and the http-proxy-middleware library2. The proxy has been written in TypeScript.

The reason to use a NodeJS-based proxy is that the application container is Electron,
a NodeJS-based platform. Although a CLI process could be called from Electron, the
fact of calling other JS/TS code makes interoperability easier. This is crucial because
the Proxy and the UI need to exchange data during the life cycle of execution. This also
provides out-of-the-box logging in the application’s console, which helps a lot while to
debug.

The proxy is spawned as an HTTP server running in localhost, port 9051. That port
number has been chosen because it is one more than the default Tor proxy port. Since

1https://expressjs.com/
2https://github.com/chimurai/http-proxy-middleware
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Figure 7.1: Proxy network traffic

Figure 7.2: Proxy app life cycle

it is an HTTP server, that means is an HTTP proxy that all applications that can send
and receive HTTP traffic, like the Helios Booth, can talk to.

Figure 7.2 contains a diagram illustrating the life cycle of the proxy component of the
application. It can also be followed in listing 7.1.

It is important to point out that the proxy is spawned up for a specific election and is
shut down when it finishes. This is due to the proxy not knowing the election_url in
advance (before the user inputs it), so it does not know where to proxy to. Also, by not
actively running the proxy unless it is strictly needed, system resources are being saved.
For a similar reason, the user’s credentials are passed in this step.

Only when the server is up and ready, a signal is sent back to the front-end to render
the Helios Booth. This has to be done to prevent requests from failing because the forked
version of the booth triggers a request to localhost immediately after rendering.
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1 function createWindow () {

2 ...

3
4 const mainWindow = new BrowserWindow ({...});

5
6 mainWindow.loadFile(path.join(__dirname , ’../src/views/index.html’));

7
8 ipcMain.on(EVENT_STORE_DATA , function (event , store) {

9 ...

10 proxy = runProxy(target , voterId , voterPassword , () => {

11 mainWindow.webContents.send(’redirect ’);

12 });

13 });

14
15 ipcMain.on(EVENT_PROXY_KILL , () => {

16 ...

17 proxy.close ();

18 ...

19 });

20 }

Listing 7.1: Main function of the Electron application

7.2 Communicating processes

In Electron, the UI and the back-end run in separate system processes. That is, even
though it is all JavaScript/TypeScript code, the memory space is different for both com-
ponents and functions and variables can’t be directly accessed. What is more, some
functions are not available in all places (for instance, the window object is only available
in the front-end.

To overcome that limitation Electron exposes to the developer a publisher-subscriber
model, based in NodeJS’s EventEmitter3. Two objects are used, ipcRenderer 4 in the
front-end and ipcMain 5 in the back-end.

The two objects expose a simple API to subscribe to a channel, which provides a
callback function that is executed whenever an event occurs to the channel. That event
may also carry data. The same API also has the send function, which creates an event
and attaches optional data in a channel.

Listings 7.2 and 7.3 exemplify the process of sending and receiving data using the
model. This procedure is used to send the events in figure 7.2.

1 document.addEventListener(’DOMContentLoaded ’, function () {

2 ...

3
4 const form = document.getElementById(’election_initiator ’);

5 form.onsubmit = (event: Event) => {

3https://nodejs.org/api/events.html#events_class_eventemitter
4https://www.electronjs.org/docs/v14-x-y/api/ipc-renderer
5https://www.electronjs.org/docs/latest/api/ipc-main
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6 event.preventDefault ();

7
8 const electionUrl: string = (

9 document.getElementById(’election_url ’) as HTMLInputElement

10 ).value;

11 const target: string = parseElectionURL(electionUrl);

12
13 const voterId: string = (

14 document.getElementById(’voter_id ’) as HTMLInputElement

15 ).value;

16 const voterPassword: string = (

17 document.getElementById(’voter_password ’) as HTMLInputElement

18 ).value;

19
20 ipcRenderer.send(EVENT_STORE_DATA , {

21 target ,

22 voterId ,

23 voterPassword ,

24 });

25 };

26 });

Listing 7.2: Send data from the UI

1 document.addEventListener(’DOMContentLoaded ’, function () {

2 ...

3
4 const form = document.getElementById(’election_initiator ’);

5 form.onsubmit = (event: Event) => {

6 event.preventDefault ();

7
8 const electionUrl: string = (

9 document.getElementById(’election_url ’) as HTMLInputElement

10 ).value;

11 const target: string = parseElectionURL(electionUrl);

12
13 const voterId: string = (

14 document.getElementById(’voter_id ’) as HTMLInputElement

15 ).value;

16 const voterPassword: string = (

17 document.getElementById(’voter_password ’) as HTMLInputElement

18 ).value;

19
20 ipcRenderer.send(EVENT_STORE_DATA , {

21 target ,

22 voterId ,

23 voterPassword ,

24 });

25 };

26 });

Listing 7.3: Receive data in the main process
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7.3 Injecting headers to proxied requests

Departing from an initial implementation where the Helios Booth code was modified to
inject the authentication headers, with a proxy in place that change is no longer necessary.

Given that the user’s credentials are available from the front-end signal, at the proxy’s
startup time, they can be inserted automatically on every request. Therefore, the booth
front-end does not need to know the credentials nor it does need to insert additional fields
in the submission form.

Another header is inserted aside from authentication. That header is noise. This
header is ignored by the Helios server, so it does not affect the result of the request.
However, it does change the size of the request randomly, therefore making it more difficult
to identify a pattern in a packet – two voters voting the same options in the same elections
would have packets of different sizes.

Listing 7.4 shows how the additional data is injected into every request.

1 headers: {

2 ’X-helios -voter’: voterId ,

3 ’X-helios -voter -password ’: voterPassword ,

4 ’X-noise ’: crypto

5 .randomBytes(Math.floor(Math.random () * 1024))

6 .toString(’hex’),

7 },

Listing 7.4: Header modification in the proxy

7.4 Randomly delaying requests

To set up an election, the already mention three requests are fired from Helios. Two are
fired in parallel whereas the third one happens once the first one is done. This is a pattern
an attacker might match against.

As shown with the header injection, a good way of making pattern matching more
difficult is to add noise. For this reason, instead of a deterministic time between requests,
in this project, random delays are being inserted between requests.

This is accomplished by adding a simple middleware to the Express (proxy) server. A
middleware, in the Express framework, is a function that is put in the request/response
pipeline and takes three arguments: the request, the response object, and a next function,
which is the following function to be called in the pipeline. A middleware works by being
called by its previous function, altering the request and/or response objects, and then
calling the next function in the pipeline. The proxy library that is being used in the
project is essentially a middleware.

For randomly delaying requests, the middleware in listing 7.5 is inserted. This function
does not touch the request or response object, but it simply adds a random delay by
using a JavaScript timeout. The value of that timeout, as per setTimeout6 definition is
in milliseconds, which take a random value from 0 to 4096 (around 4 seconds).

6https://developer.mozilla.org/en-US/docs/Web/API/setTimeout
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This value has been chosen because introducing bigger delays could result in a subpar
user experience – there are (at least) four requests in an election, so it would mean at
worst 16 seconds of pure wait, plus the actual time that the request takes.

1 app.use((req , res , next) => {

2 setTimeout(next , Math.floor(Math.random () * 4096));

3 });

Listing 7.5: Randomly waiting to respond to requests
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Chapter 8

Integrating Tor in the client

Tor was intentionally left out from the previous chapter, even though it is technically a
proxy. Tor is designed to be a transparent layer for applications as long as they can talk
to a SOCKS proxy.

Since the Helios Booth does not support such a connection, the NodeJS-based proxy
is used to route the traffic through Tor. After it has done the header modification tasks,
instead of calling the webserver directly, it makes use of the tor CLI to route the traffic.

Tor is usually run using the Tor Browser, a modified version of Mozilla Firefox with
the Tor Proxy integrated. The Helios Booth does not need the Firefox rendering engine,
since that is being provided by Electron (Chromium). The other mainstream way of
running Tor is by using its command-line interface (CLI), tor. This tool is available on
the main desktop platforms and it has a straightforward way of running.

Running Tor as a containerized in Docker has also been evaluated, but discarded be-
cause it would not provide any benefits, especially given the wide availability of installers.
Docker Desktop also has a restrictive license in some platforms and adds a significant
weight on execution, that can be avoided.

The tor CLI has been chosen to run on the background. By default, when launched
this tool establishes a circuit and acts as a SOCKS proxy in port 9050 for all local traffic
that is thrown at it.

In contrast with the purpose-built HTTP proxy, this one is a compiled binary so it
cannot be interacted with easily from Node. This is not an issue, and this first version of
the desktop app assumes that as long as the Tor proxy is up, it will forward the traffic
correctly. Also, it assumes that the application is installed in the system. In the future,
Tor could be installed with the app’s installer if it were not detected.

Since Tor is designed to be a general-purpose proxy, its lifecycle is different from the
HTTP proxy. Whenever the Electron is launched, the Tor proxy is launched and when
the application quits (not to be confused with when the user finishes an election), the Tor
proxy quits.

Aside from simplicity, this approach has been chosen because Tor startup might take
some time. It depends on the current user network setup, but establishing a working
circuit is not instant. For this reason, when the application is launched, Tor starts this
process. While it happens in the background, the user is typically filling in the election
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details, which gives Tor enough time to be ready when it is needed (the time when the
first call to the election server happens).

Tor is run as a separate process spawned from the main Node process, using child_process.
Code can be seen in listing 8.1.

1 // main.ts

2 import * as child from ’child_process ’;

3 ...

4 child.exec(TOR_COMMAND);

5
6 // constants.ts

7 export const TOR_COMMAND = ’tor -f bridge .1’;

Listing 8.1: Tor execution within Node

8.1 Using bridges

By default Tor already proves a very good degree of anonymity. However, in hostile
environments bridges may give the user one step further in terms of anonymity.

Given the transparent nature of the Tor proxy, the rest of the booth is independent of
whether Tor is using bridges or not. As long as the Tor proxy functions correctly, bridges
are just a configuration detail of that proxy that happens to be more secure. The only
user-facing impact might be the connection speed.

Bridges are not a public, permanent list, but they keep rotating. That is the reason
why they must be set up and rotated in short periods by the user of the application. The
tor CLI accepts an argument, f, followed by the location of a bridges file (a file that holds
the addresses of the servers that the computer will connect to). That is a user-modifiable
text file and will be automatically picked up by the application when it starts.

Listing 8.2 holds a sample bridges file. Bridges can be obtained from https://

bridges.torproject.org/.

1 Bridge obfs4 188.126.94.109:8080

D734D62C13012A9B8E49F4BDCA98F355B71214DE cert=

cD8xzwtH9DWgXb21kMRulQIEUUE5pUyJqRUmB17r/zPnemkcJuHK /7

vMLAgCo0DaXlfsHg iat -mode=0

2 Bridge obfs4 85.2.43.214:3480 7DD0C82D0D2586673809338BFEC612951E4DC1AB

cert=+ WKZ74k2ARc876puYn49KRxFqN83REVwWcb8VT3T2Il44XOcIq4KlU+

cyygcqLkEjhotOg iat -mode=0

3 Bridge obfs4 81.174.147.57:53677 3

AF500006A1637D21B1F5D3E64F63882A9623717 cert=4 MKPza4o09lrOiAB +/ xcDqUx

/b51YbDj3mbnRA8eKlmqFIK/jCyh4PesG3kBvjN4UukrRg iat -mode=0

Listing 8.2: Sample bridges file

For this demonstration, Tor’s Snowflake has finally not been used. Following the same
reasoning made with bridges though, it could be added transparently to the rest of the
application as long as the tor CLI supports it.
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Part III

Conclusion
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Chapter 9

Revisiting coercion issues

According to the problem statement of this thesis, the goal of this thesis is to prevent
coercion in electronic elections. Coercion can be done by a third party if that third
party knows that somebody is voting in an election. Therefore, the focus during this
implementation has been to prevent a third party from obtaining that information.

In this chapter, the ways an attacker can detect that a person is voting will be evaluated
against the protections that this thesis has introduced.

9.1 Coercion issues

9.1.1 Application asset load

Internet-based electronic voting systems work by downloading a web page through a web
browser where the voting occurs. That includes classic Helios. The issue in this procedure
is that the static files (HTML, CSS, and JS) are the same or quite similar for all users,
so it is easy for an attacker to pattern-match a user that is connecting to a page.

The issue is also related to timing. When a user goes into those systems, the packets
that will probably follow after the application is loaded are the ones containing the voting
material.

Helios Desktop fixes this by using a desktop application. There is no need to connect
to the Internet to fetch the application because that is already in the computer of the
voter. If the voter downloads the binaries in a moment different from the one they are
voting, it is more difficult to correlate by the attacker. In a more sensitive scenario, the
voter does not even need to download the binaries – they can be transmitted by offline
means, for example, a USB stick.

9.1.2 Packet interception

Once a user has the voting application ready, it starts the voting process. A package
exchange occurs, which includes the election metadata from the server and the cast votes
from the user. An attacker might perform a man-in-the-middle attack and might be able
to intercept that exchange partially or completely.
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In the worst-case scenario, the attacker can read the contents of the package. That is
mitigated in Helios Desktop by forcing using HTTPS connections, so as long as the server
where the user is connecting to vote is compliant with TLS and certificates are correctly
issued, the contents of the connection should not be sniffed. On top of that, since Helios
Desktop uses Tor, this system also adds three layers of encryption to the packets.

At this point, the attacker might not know for sure what the user is voting, but the
sole fact that the user is voting might let the attacker infer what the user’s choices are.
This might be contextual data, for instance, a user lives in a neighborhood that typically
votes for a determined party. It is still important to prevent the attacker from knowing
that the user has voted at all.

Assuming an attacker has (at least) a partial control of the network in which the user
is interacting with the voting system, they can see that a device is sending packets towards
a server known to host an election. Hence, it can be inferred that somebody is voting.
This is the classical use case for Tor – to provide anonymity by routing the traffic through
several hops. Helios Desktop routes all traffic through the Tor network.

9.1.3 Traffic pattern matching

With the protections described so far, an attacker might suspect about a user, but the
only thing that they will know for sure is that a user is sending and receiving data using
the Tor network. That by itself might raise some suspicion if the user does not use Tor
frequently or if they are the single user in a network or geographical area using Tor.

The key concept is pattern matching [9]. Without knowing the actual contents of the
data, an attacker will attempt to learn more about the user by analyzing information that
is leaked by the connection. The goal of Helios Desktop is to minimize the amount of
information that is leaked and making the bits that are leaked meaningless or difficult to
analyze.

Knowing a user is using Tor is the simplest way of pattern matching some traffic – a
user talking to a well-known set of Tor nodes. There is plenty of literature [14] [17] and
work from the Tor Project about circumventing this issue, which is indeed not unique
to this thesis. The most usual way of going around it is by using bridges, which Helios
Desktop does use.

By using Tor bridges, the only thing that an attacker might analyze is the number of
packets, their size, or their frequency. This is why Helios Desktop injects randomness on
the headers of the requests, so size is not constant, even if two voters are casting the same
options in the same election using similar setups. Helios Desktop also introduces random
delays between requests, so time-based pattern matching is more difficult.

Some further improvements could be done on this front, as well. For instance, the
proxy could send or drop packets randomly, to further introduce noise on the wire. The
issue with this kind of behavior is that they go against a good user experience and require
additional error handling from the booth’s side.

Finally, the proxy could also cache duplicated requests, so in case a user asks for the
same piece of data twice, that does not emit a network request. Implementing this feature
is not trivial not only on the actual cache side but on the application lifecycle side because
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if the proxy gets killed every time a user starts an election, chances of repeating a request
during that period are low.

9.2 Threat modeling the attacks

A fundamental concept in cybersecurity is threat modeling – assessing a system’s security
taking into consideration the resources and willingness of a potential attacker. Simply
put, if it is more expensive for the attacker to perform an attack than the potential gain
when succeeding, the attacker has little to no incentive to carry it through.

This chapter has been laid out as a list of concerns that have been addressed. More
interestingly, those concerns can be seen as layers on top of each other, making an attack
increasingly more difficult. It is intuitive to see that a less resourceful attacker might not
be able to coerce an election even without any of the protections of this thesis, whereas a
very powerful one might render all the protections laid out noneffective.

The coercion attacks this thesis is fighting against are network-control related. That
means that an attacker that might want to coerce a voter needs to be able to do some
level of packet inspection. There are some scenarios where that might be possible:

• User voting from a compromised WiFi network. The server is somewhere else, thus
the attacker only sees some traffic going away. This is the lowest level of resources
and traffic will be disguised and encrypted with the current setup.

• A user is voting in an election held in a public institution, such as a university.
That voter might be connected to the University’s network and the Helios voting
server might be also located in that same network. Therefore, the user is effectively
performing all the voting procedures in a local network.

• Similar to the university example, a nation-state might control the traffic on all
Internet Service Providers. Thus, if the user and the voting server are located in
the same country, a correlation attack is also possible.

Timing or correlation attacks [13][6] are only possible if an attacker has full control of
the network. That if word is very important in these past examples because only if that
happens an attack has real chances of succeeding. It is important because achieving that
if is very often difficult and impractical.

This work introduces an enhanced version of Helios that helps prevent coercion. It
does improve the default Helios model to prevent coercion and it will help users in certain
scenarios. Like all software products, given enough time and resources, it will not be
enough.

The conclusion, therefore, is that in any electronic voting scenario, it is important to
assess what the threat model for each case is. Following that, the election officials and the
voters have to make an informed decision and decide if the protections provided by the
system are sufficient to prevent a potential attacker. It is only with open and transparent
systems that voters can make that assessment correctly and make sure they participate
in open and free elections.
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Chapter 10

Code availability

The code for this thesis is available as an open-source project on GitHub.

• Electron app. https://github.com/pauarge/helios-desktop

• Server. https://github.com/pauarge/helios-server/tree/helios-desktop

The testing server is hosted in Heroku and can be accessed (for a limited time) in:

• https://helios-server-tor.herokuapp.com
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