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Abstract

Knee Osteoarthritis (OA) is the most common type of arthritis and it is typically the result of

wear and tear, and progressive loss of articular cartilage which may eventually lead to disability.

OA diagnosis is typically conducted by performing a physical examination of the knee by means

of a visual inspection of radiographic imaging. Based on the presence of OA pathological

features of joint space narrowing, osteophyte formation or sclerosis, Kellgren-Lawrence (KL)

system is typically used to classify the severity of the disease into one of five ranked grades.

The conclusion regarding the presence and severity of knee OA may differ due to the subjective

nature of the assessment.

In this study, we present a computer-aided diagnosis method based on Convolutional Neural

Networks (CNN) to automatically locate and score knee OA severity from X-ray images accord-

ing to the KL grading scale. Location of the knee joints is achieved by considering a region of

interest (ROI) segmentation with U-Net architecture. Transfer learning from pre-trained CNN

architectures is considered for knee OA severity assessment.

Our method yields a quadratic Cohen Kappa coefficient of 0.87 and a weighted average

f1-score of 72%. In addition, we show attention maps highlighting the strongest contribution

to the network prediction. The visualization provides practitioners with information to assist

in the diagnosis decision-making processes.

We conclude that our methodology achieves high accuracy in localizing knee joints out of

plain X-ray images, as well as a very good performance in the OA diagnostic assessment of KL

grades.

Keywords: Knee Osteoarthritis, Convolutional Neural Networks, U-Net, X-Rays
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Resumen

La osteoartritis (OA) de rodilla es el tipo de artritis más común y es t́ıpicamente el resultado

del deterioro y pérdida progresiva del cart́ılago articular, que puede conllevar discapacidad. El

diagnóstico de la OA se realiza mediante una exploración visual de una radiograf́ıa de rodilla.

En base a la presencia de las patoloǵıas asociadas a la OA como son el estrechamiento de la

articulación, la formación de osteofitos o la esclerosis, se utiliza el sistema Kellgren-Lawrence

(KL) para clasificar la severidad de la enfermedad en una escala de cinco grados. La conclusión

sobre la existencia y severidad de la OA de rodilla puede diferir debido a la naturaleza subjectiva

de la valoración.

En este estudio, presentamos métodos de diagnósticos asistidos basados en redes neuronales

convolucionales (CNN) para localizar y diagnosticar automáticamente la severidad de la OA de

rodilla presente en una radiograf́ıa de acuerdo al sistema KL. La localización de la articulación

se consigue mediante la segmentación de una región de interés (ROI) con una arquitectura

U-Net. Para la evaluación de la severidad de la OA de rodilla, se aplica la técnica de transfer

learning sobre una serie de arquitecturas CNN pre-entrenadas.

Nuestro método obtiene un coeficiente Cohen Kappa cuadrático de 0.87 y una media pon-

derada de f1-score del 72%. Adicionalmente, se muestran mapas de atención que resaltan las

regiones de la imagen con mayor contribución a la predicción de la red. La visualización ofrece

información para ayudar en el proceso de evaluación del diagnóstico.

Se concluye que nuestro modelo alcanza una alta precisión en la localización de la articu-

lación sobre radiograf́ıas, además de un rendimiento muy bueno en el diagnóstico de OA de

rodilla según el sistema KL.

Keywords: Knee Osteoarthritis, Convolutional Neural Networks, U-Net, X-Rays
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Chapter 1

Introduction

1.1 Project description and justification

Knee Osteoarthritis (OA), also known as degenerative joint disease, is the most common

type of arthritis diagnosed and it is typically the result of wear and tear, and progressive loss

of articular cartilage, being most common in elderly people [1]. The intensity of the clinical

symptoms may vary for each individual; however, they typically become more severe, more

frequent, and more debilitating over time, and may eventually lead to disability.

Patients typically present knee pain; therefore, it is essential to obtain a detailed history

of their symptoms and to perform a physical examination of the knee by means of a visual

inspection. Radiographic imaging is considered the standard gold in clinical and epidemiological

analyses [2] and it is recommended as the major pathological features for OA could be present

in the image, i.e. joint space narrowing (JSN), osteophyte formation, and sclerosis.

Based on these indicators, Kellgren-Lawrence (KL) [3] system is typically used in order

to assess the severity of the disease. In this system, individual joints are classified into one of

five grades, with 0 representing normal and 4 being the most severe disease. Each KL grade

presents typical radiographic OA symptoms that are summarized in Table 1.1.

The conclusion regarding the presence and severity of knee OA may differ due to the sub-

jective nature of the assessment. Medical experts require a considerable amount of knowledge

and experience to make a valid diagnosis. Hence, computer-based tools for knee OA detection

based on X-ray images, while not meant to replace a human expert, can serve as a decision-

1



1.2. Personal motivation 2

supporting tool.

Table 1.1: Radiographic Osteoarthritis symptoms according to KL grade system

KL grade Radiographic Osteoarthritis Symptoms

0 Healthy - None
1 Doubtful JSN and possible osteophytic lipping
2 Definite osteophytes and possible JSN on anteroposterior weight-bearing radiograph
3 Multiple osteophytes, definite JSN, sclerosis, and possible bony deformity
4 Large osteophytes, marked JSN, severe sclerosis, and definite bony deformity

In this work, I will propose a model for automatic detection and quantification of knee OA

severity using CNNs. I will approach this work as an image classification problem, assessing

knee OA severity out of plain X-ray images. This process involves two main steps:

1. Automatically detecting and extracting the region of interest (ROI), i.e. localizing the

knee joints out of X-ray images.

2. Classifying the localized knee OA severity by assigning a KL grade.

Deep learning models automatically learn the relevant features to produce an output; how-

ever, the learnt features may not be relevant to the disease as the models may react to back-

ground noise or image artifacts [4]. It is important to examine the region where the network

is detecting the disease-relevant features. Therefore, should the time constrain allow it, I will

additionally define a methodology to obtain the class-discriminating activation maps which will

allow to examine where the model is focusing its attention in the classification process.

In order to use the model to obtain relevant insights, it needs to be deployed in a manner

that allows non-technical users to gain value from the previous work. Time permitting, I will

additionally deploy the model into a functional application which would take a knee X-ray image

as input, and would output a KL grade to support the expert in the diagnosis decision-making

process.

1.2 Personal motivation

One of the big decisions we need to face in life is which path to follow after school, no matter

whether the choice is the right one. Sometimes, one is not mature enough nor has the inform-
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ation required to make a conscious decision. Sometimes, we choose a path hoping to find a

bright future, but eventually just find dissatisfaction.

After getting my degree in Mechanical Engineering, I mainly got my working experience

in the aeronautic industry, specifically in aircraft structure analysis. However, what I thought

would be the perfect job for me, turned out to be something that I did not completely enjoy.

Luckily, I heard of optimization algorithms, some of them based on Neural Networks, in a

course I took at college, and that became a topic of interest for me. Some years after that, I

decided that I needed a change, so I got the courage to step a leap forward onto a path I hope

will lead to a new career full of opportunities.

Times are changing, and it is important to be part of that change in the most honest way

possible. This project is framed in the area of Medicine, which I consider to be one of the

better fields I could contribute to. By using Deep Learning, I intend to develop tools that may

help in the early diagnosis of knee osteoarthritis, so that patients quality of life is as best as it

can be.

1.3 Objectives definition

The main objective of this work is to implement a CNN-based methodology for Knee Os-

teoarthritis severity assessment based on the disease-relevant features present in knee radio-

graphic images.

The secondary objectives of this work define the understanding of the domain of know-

ledge studied and the techniques used. Each of these objectives will be considered met when a

key performance indicator (KPI) is met.

• Design and implementation of a CNN architecture to automatically detect and extract

the ROI of a knee X-ray image.

KPI: Functional scripts capable of generating cropped images of the ROI.

• Design and implementation of a CNN architecture to assign a OA severity grade to a

knee X-ray image.

KPI: Functional scripts capable of generating a prediction label of the localized ROI.

• Evaluation and interpretation of the classification output against the ground truth.
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KPI: Selection and justification of the best metric, and assessment of the model perform-

ance.

• Define a methodology to obtain the class-discriminating activation maps in order to ex-

amine the region where the network is detecting the disease-relevant features.

KPI: Being able to plot the activation maps obtained.

The code generated for the different implementations can be found in a dedicated GitHub

repository created for this study1.

1.4 Methodology

The main work of this project involves applying some type of analytical process to data (i.e.

X-ray images) to derive insight from it. The initial dataset may be subject to change in

terms of size, quality or availability; hence, a dynamic data environment scenario must be

considered.

Only after the first analyses and data exploration are completed, will it be possible to

define the scope of the problem and the line of action to accomplish the objectives. This

scenario requires a flexible and agile working process in order to accommodate the changing

environment.

This project is subject to a time constraint, therefore we will face the challenge of devel-

oping and releasing the work in a staged manner so that the progress is efficiently tracked and

reported.

Since this work is defined by its academic research nature, its ultimate goal is to con-

tribute with reproducible results and easily explained knowledge for the community to be able

to validate it.

For all these reasons, Guerrilla Analytics [5] is considered to be the most appropriate

data mining methodology for this project.

The basic Guerrilla Analytics workflow, as shown in Figure 1.1, is based on the following

data mining flow: Domain and Data understanding, Data preparation, Modeling, Evaluation,

and Deployment. There is no major differences from other data mining methodologies except

1https://github.com/d-duran/KOA-location-diagnose-CNN

https://github.com/d-duran/KOA-location-diagnose-CNN
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for the fact that any disruption is accommodated in the working process in a manner that the

project becomes iterative.

Figure 1.1: The Guerrilla Analytics Workflow (extracted from [5])

1.5 Planning

This section presents the different task that will be performed throughout the project using a

Gantt chart. Figure 1.2 shows the detailed schedule where the main tasks correspond to the

partial deliveries as per the university planning. These main tasks define the project milestones,

including the final presentation and defense.

All main tasks are breakdown in order to define the work-specific tasks, which may be

subject to minor modifications throughout the project.

1. Project definition and scope

This chapter serves as an introduction to the Master Thesis topic, where the scope and

objectives are presented, along with the personal motivation of the author and the meth-

odology that will be followed.

2. State of the art
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A through research will be carried out on published literature and studies in the field of

knee osteoarthritis. This research will cover the understanding of the disease, its context

and what are the most common detection methodologies. Finally. I will research on how

the detection methodologies intertwine with the field of Deep Learning by focusing on

how other researchers faced the detection and classification of knee OA. This will be the

seed for defining my own research line.

3. Project development

This is the main part of the thesis as it covers the development of the project. This step

is split into different sub-tasks:

• Analysis of the available data, which consist of several X-ray images.

• Development of the Python scripts to create the required models, i.e. a model to

automatically detect and extract ROIs, and a model for classification of the localized

knee assigning a KL grade.

• Training of the developed models.

• Evaluation of the results after the training step.

• Development of a class-discriminating activation map that will help on the model

performance assessment.

4. Report preparation

This step covers the documentation of the project development and the review process.

5. Project presentation and public defense

As final step, the project will be presented in public for a tribunal to evaluate.
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Figure 1.2: Gantt chart of the project schedule



Chapter 2

State of the art

2.1 Knee Osteoarthritis: definition, prevalence, incid-

ence and impact

Knee Osteoarthritis (OA) is a long-term chronic disease characterized by the damage and loss

of articular cartilage and many of its surrounding tissues. Although still under investigation, it

is accepted that the origin of OA is multi-factorial, i.e. both inflammatory and biomechanical

processes play an important role in the disease [6].

While knee OA is related to ageing, it is also associated with a variety of both modifiable and

non-modifiable risk factors, including: obesity, family history, diabetes, systemic inflammatory

mediators, joint shape and dysplasia, trauma, bone density, occupational injury, and gender

[6].

There have been research conducted into the potential link between occupation and the risk

of developing knee OA. Individuals whose knees have been subjected to significant loading of

the joint are far more likely to develop OA [7], with obesity adding further risk.

A., Cui et. al. [8] quantitatively synthesized the published epidemiological data of knee

OA in order to estimate the global/regional prevalence and incidence of knee OA. The authors

included any publication that provided meaningful data from 1990-2000’s to 2020; thus, cap-

turing the changes of demographic structure and lifestyle, as epidemiological data have also

changed. The study shows that the global prevalence of knee OA was 16.0% in individuals

over 15 years old, and 22.9% over 40 years old. As regards of incidence, there was 203 per

8
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Figure 2.1: Global prevalence of knee OA per country (extracted from [8])

10,000 person-years in individuals over 20 years old. In 2020, there are an estimate of 86.7

million individuals (20 years or older) with incident knee OA worldwide. Figure 2.1 shows the

global prevalence of knee OA per individual country, ranging from 1.6% to 46.3%. Moreover, as

part of the Global Burden of Disease 2010 [9], it was found that, globally, of the 291 conditions

considered, knee OA was ranked as the 11th highest contributor to global disability.

J. Salmon et. al. [10] carried out a systematic publication review in order to focus on the cost

of hip and knee OA. The authors included published literature that covered the burden of lower-

limb OA worldwide in terms of the economical impact. The study provides the mean annual

cost per patient (converted to 2013 Euro considering Consumer Price Index of the countries),

resulting in a total cost estimation of 0.7-12.0 k€/year per patient, with an average annual

direct cost of 6.8 k€/year per patient. Direct costs vary according to surgery consideration,

with average annual direct costs per patient without surgery, with surgery and awaiting surgery

of 6.7 k€/year, 3 k€/year and 7.4 k€/year, respectively.

Although there is a substantial heterogeneity in how the costs have been estimated during

the last decades, the total costs induced by knee OA could be as high as 408-817 billion €/year

in Europe [10]. The burden of knee OA to society is high and, with life expectancy and obesity

of the world’s population gradually increasing, the implications of knee OA are not to be

underestimated.
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2.2 Knee Osteoarthritis clinical imaging

Knee OA is characterized by cartilage degradation and bone change, becoming more severe,

more frequent, and more debilitating over time. Symptoms such as knee pain, stiffness and

swelling are typically present in patients suffering from OA. Since it may eventually lead to

disability, the detection of OA is relevant since early treatment could prevent cartilage and

bone loss.

Medical imaging examination is usually performed in order to confirm OA diagnosis,

to determine the involved parts of the joint, and to evaluate the stage of the disease. The

ideal imaging modality for the assessment of OA should provide data pertaining to all joint

structures, i.e. it should include a direct measure of both cartilage and bone.

Magnetic Resonance Imaging (MRI) is a technique in radiology that uses strong mag-

netic fields, magnetic field gradients and radio waves to generate images of the organs. Since

this technique provides images with a high contrast of soft-tissues, they enable the direct assess-

ment of cartilage as the main measure in the joint space narrowing phenomenon. Different MRI

output measures of cartilage are also considered in the assessment of OA such as morphological

properties (thickness, volume or surface defects) and biochemical composition [11].

MRI is a non-invasive and reliable technique that provides a whole view of the knee joint;

however, it is indeed an expensive and lengthy medical procedure. Although MRI imaging

modality is widely used in developed nations, the utilization of MRI is limited in most devel-

oping countries due to acquisition costs, lack of infrastructure and the expertise required for

maintaining and running the systems.

Ultrasonography is a procedure that uses high-energy sound waves to look at tissues and

organs inside the body. As a result, images of the tissues can be obtained from the echoes of

sound waves. With this method, articular cartilaginous and periarticular soft-tissues structures

can partially be visualized, and it is also a good method to assess inflammatory changes in

knee OA. This may be helpful for follow-up of the disease during therapy as well as to detect

early knee OA [2]. However, the main weakness of ultrasonography is the impossibility to

look at deeper structures and its limited reproducibility, making this technique a supporting

methodology to MRI or radiography.

Radiographic imaging (X-ray) is a modality that produces 2-dimensional images using

radiation which is projected towards the body part of interest. When exposed to radiation,
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denser anatomy has a higher rate of radiation absorption than anatomy that is less dense.

Therefore, the image receptor will receive more remnant radiation from soft-tissue areas and,

conversely, denser parts such as bone will underexpose the image.

In the context of knee OA detection, when examining knee X-ray images, the practitioner

should search for any of the pathological changes seen in OA joints, i.e. degradation of ar-

ticular cartilage resulting in joint space narrowing, formation of osteophytes and changes in

the subchondral bone. Osteophytes refer to bony lumps that grow around the joint (Figure

2.2), whereas subchondral bone refers to the bone lying immediately beneath the cartilage, and

can be separated into two distinct anatomic entities: subchondral bone plate and subchondral

trabecular bone (Figure 2.4). Based on the indicators listed above, Kellgren-Lawrence system

(KL) [3] allows the OA severity assessment, classifying individual joints into one of five grades,

with 0 representing normal and 4 being the most severe disease. Figure 2.2 shows four anterior-

posterior X-ray samples of a left knee, each one corresponding to a different KL grade. In Figure

2.2-(a), doubtful joint space narrowing (JSN) and possible osteophytic lipping is indicated by

the arrow, while (b) shows definite osteophytes and posible JSN indicated by the arrow. In

Figure 2.2 (c), the arrows show multiple osteophytes, definite JSN, sclerosis and possible bony

deformity; and, in (d), the image shows an osteophyte (right arrow), marked JSN (left arrow)

and severe bone sclerosis (asterisk).

As shown in Figure 2.2, X-ray is limited by its 2-dimensional nature in the bone structure

representation, its size and the cartilage defects as it cannot identify 3-dimensional changes in

the articular structures. Despite these limitations, X-ray provides an indirect measure of artic-

ular cartilage by means of an assessment of the radiological joint space. Moreover, depending

on the severity of the disease, should osteophytes or sclerosis be present, they would be visible

to the expert in the X-ray image.

X-ray imaging is, perhaps, the most versatile and accessible of the imaging techniques in

terms of procedure time involved and availability. It has been traditionally used as a cheaper

alternative to assess OA disease compared to other techniques, despite the limitations associated

with this approach. Radiography is considered the standard gold methodology when related to

knee OA diagnosis and, therefore, knee OA detection using X-ray will be explored in detail in

this study.
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Figure 2.2: Anterior-posterior radiograph of a left knee with (a) mild OA (KL grade 1), (b) moderate
OA (KL grade 2), (c) moderate to severe OA (KL grade 3) and (d) severe OA (KL grade 4). Extracted
from [6].

Figure 2.3: Medial compartment of OA knee with (a) early disease and (b) definite disease. Knee (b)
shows the increase of thickness of the subchondral cortical plate and subjacent horizontal trabeculae
resulting in a ladder-like appearance (extracted from [12]).
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Figure 2.4: Model representation of Knee Osteoarthritis at different stages (extracted from [13])

2.3 Knee Osteoarthritis detection using X-ray

Evidences suggest that changes in bone occur early in the development of OA prior to the

detection of radiographic abnormalities of JSN and osteophytes formation [12]. The earliest

changes detected are elevated bone remodeling and subchondral bone loss, considered as a

determinant of OA progression [13]. In the late stage of OA, increase in the thickness of the

subchondral bone and subjacent horizontal trabeculae is detected, i.e. changes in trabecular

structure: decrease of trabecular separation and transformation of trabeculae from rod-like into

plate-like. These changes lead to a less stiff and dense bone, which is mechanically weaker.
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2.3.1 Computer-aided diagnosis methods

Different computer-aided approaches to detection and analysis of OA using X-ray knee images

have been proposed in the literature. Since significant changes occur to knee bone at different

stages of the disease, some of these studies focus on the analysis of the knee bone texture

as valuable information may be extracted from the bone structural patterns.

G.W. Stachowiak et. al. [14] presented a method to analyze the trabecular bone texture

based on fractal analysis of the region of interest (ROI). The method calculates a set of fractal

dimensions of the ROI in order to study the characteristics of the bone surface. This allows to

quantify the roughness, the degree of surface anisotropy and direction of anisotropy. Then, a

logistic regression model based on the parameters evaluates the prediction of OA progression.

In [15], A. Brahim et. al.. proposed a spectral analysis approach as the aided diagnosis

method where the images are considered in the frequency domain instead of the spatial domain.

Power Spectral Density (PSD) over the ROI lines was used in order to display the power of the

variations in the image as a function of frequency. This analysis provides the mean periodogram

that presents two different regimes with different slopes, separated by a cut-off frequency (see

Figure 2.5-bottom). The cut-off frequency was then utilized as a high-pass filtering threshold

in order to enhance the high frequencies of the image (associated with changing signals, i.e.

texture border) before returning to the spatial domain (see Figure 2.5-top). Then, Naive Bayes

and random forest classifiers were used for the classification task.

What stands out from these methods is that they perform a very detailed analysis of par-

ticular ROI of the knee articulation, focusing on features and patterns that may not be visible

to the human eye. These methods, however, may be considerably affected by image noise, blur

or resolution; therefore, image processing may be required in order to get reliable results.

2.3.2 Deep Learning Based Diagnosis Methods

Besides the changes in the bone that occur during OA, other radiographic features may be

observed in X-ray images at different stages. Joint space narrowing and osteophytes formation

are typically identified by the practitioner in order to diagnose and assess the severity of the

disease. The assessment is traditionally approached as a classification problem by detecting

these radiographic features, being the KL grades the ground thruth. In this line, some studies

focus on developing methodologies that replicate the process that an expert would follow when
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Figure 2.5: A representative ROI of the tibial trabecular bone (top) and the spectral transformations
from (a) healthy subject and (b) a OA patient. Two representative periodograms (bottom) computed
over the ROI lines for a (a) healthy subject and (b) a OA patient (extracted from [16])

examining knee X-ray images, i.e. extracting the relevant features of the images and use them

to make a decision.

Recently, convolutional neural networks (CNNs) have outperformed other methods

based on feature analysis, and they are highly successful in many computer vision tasks such as

image recognition, automatic detection, segmentation, etc. Feature learning approaches such

as CNNs exploits the 2-dimension spatial structure of the images in order to learn translation

invariant features. These feature representations are particularly well-suited for fine-grained

classification tasks line knee OA classification.
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CNN Architectures for Knee Osteoarthritis Quantification

In [17], J. Antony et. al. quantify the severity of knee OA using different CNN models. The

authors fine-tuned the BVLC CaffeNet [18] and VGG-M-128 [19] pre-trained networks,

modifying the top layer to train the model for classification and regression, leading to integer

and real number label predictions, respectively.

Although they obtained good results (being the regression loss error lower than the classific-

ation one), the network architectures relied on off-the-shelf models that were previously trained

on the ImageNet dataset with a high number of trainable parameters. In a posterior work [20],

the authors presented a customized CNN architecture consisting of 5 convolutional layers

(each followed by batch-normalization and ReLU activation layers), max-pooling layers and a

fully connected layer (Figure 2.6). The network was trained from scratch for classification and

for classification-regression all together. For the later, the network optimized a weighted-ratio

of two loss functions, i.e. categorical cross-entropy (for classification) and mean squared error

(for regression). This optimization provides the network with information about ordering of KL

grades (penalizing high distance from the ground truth) and also with information about the

quantization of the grades. The results obtained were better than the previous work, proving

that multi-class classification and regression with the proposed methods provided a performance

improvement.

Figure 2.6: Network architecture for simultaneous classification and regression (extracted from [20])

Other authors [21, 22] followed the approach of using pre-trained models such as DenseNet



2.3. Knee Osteoarthritis detection using X-ray 17

[23] to make OA assessments. This network consists of a series of convolutional blocks where

each layer concatenates the feature maps of all preceding layers as input, keeping the output

number of feature maps the same (Figure 2.7). This sequence of operations allows the network to

learn from previous steps while keeping the number of learnable parameters low. Dense blocks

make use of residual connections which were previously presented with ResNet architecture

[24]. In contrast to ResNets, DenseNets do not combine features through summation but by

concatenation as a means to transfer information further deep into the network layers. As

stated in [23], DenseNet leads to better results than ResNet over ImageNet with the same

number of learnable parameters, making this architecture an interesting option for knee OA

classification.

Figure 2.7: A 5-layer dense block of DenseNet with growth rate of k=4. Each layer takes all preceding
feature maps as input (extracted from [23])

In [21, 22], the approach to knee OA classification is similar. The major difference is

that [22] trained multiple models in order to ensemble the ones with better validation results.

Among these models, the authors proposed variants which added demographic information to

the network output, i.e. age, sex and race are concatenated to the flatten output from the

DenseNet model.

All studies based on CNN presented above use X-ray images of the knees as input to the

network with either no pre-defined orientation or keeping a side orientation for consistency

(i.e. flipping one of right or left orientation). The later approach prevents the algorithm from

having to learn an additional feature of side. A.Tiulpin et. al. [4] addressed this by inputting



2.3. Knee Osteoarthritis detection using X-ray 18

Figure 2.8: Schematic representation of the proposed Siamese network’s architecture by [4]. First,
knee joint sides are cropped (lateral on the left, medial on the right side) and flipped to match
orientation. Then, the images are fed to each branch and the output is concatenated and fed to the
last fully-connected layer before prediction (extracted from [4])

both medial and lateral sides of a knee joint separately. The authors leveraged the apparent

symmetry of the knee joint by cropping medial and lateral sides of the knee and flipping the

medial crop to match the orientation of the lateral side. Hence, the input images are oriented

the same way prior to be fed to the network (Figure 2.8).

The other novelty of [4] relies on the utilization of Deep Siamese CNN network archi-

tecture. This architecture was originally intended for similarity comparison between pairs of

images [25]. Traditionally, it consists of two branches with identical networks (shared weights)

where each one corresponds to each of the input images. In this study, the authors modified

the architecture in order to learn the same features from each knee side instead of comparison

purposes. This approach follows the assumption that edge-detection features are not different

for the lateral and medial side. Afterwards, the output of each branch is concatenated and

fed to a fully-connected layer for the classification prediction. The branches share a custom

network architecture consisting of convolutional blocks, max-pooling and a softmax layer.

Since this work will utilize a CNN-based model approach for knee OA assessment, all related

works described in this chapter are shown in Table 2.1 for reference.

2.3.3 Automatic Detection of Knee Joints

The assessment of knee OA severity can be achieved by examining the radiographic features

shown in a X-ray image, i.e. joint space narrowing, osteophytes formation and bone changes.

The practitioner will search for knee OA features in particular regions of the joint; hence, it

is essential to isolate the Region of Interest (ROI) to ease the computer-aided classification
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Table 2.1: List of recent knee Osteoarthritis severity classification approaches using CNN-based models

Year Authors Methodology

2017 J. Antony et. al. [20]
Customized CNN architecture.
Trained for classification and classification-regression.

2020 K. A. Thomas et. al. [21]
DenseNet pretrained network architecture.
Trained for classification.

2018 B. Norman et. al. [22]
Ensemble of DenseNet pretrained network architecture.
Trained for classification.

2018 A. Tiulpin at. al. [4]
Deep Siamese network consisting of branches of customized
CNN network architectures.
Trained for classification.

Figure 2.9: Knee OA X-ray with the region of interest (extracted from [20])

process. By extracting the ROI, non-relevant information in the joint surroundings will not be

input to the network, it will make the image invariant to the position of the joint within the

original X-ray, as well as it will reduce the image size. Hence, the computation cost and the

model performance would be increased. Figure 2.9 shows a sample of a knee OA X-ray with

the ROI.

There are several approaches for detecting and segmenting knee joints or specific parts.

Their automation varies according to the manual intervention required, so developing fast and

accurate ROI detection methodologies is essential for computer-aided diagnosis. Although chal-

lenging, automatic ROI detection methods are beneficial since they can be integrated to

the classification pipeline, minimizing computation time, number of steps and human interven-

tion.
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L. Shamir et. al. [26] proposed a template matching approach in order to automatically

detect the knee joint center. Template matching utilizes patches of selected knee joints with

different KL grades and uses them as templates. Using a sliding windows over an image, the

Euclidean distance between all patches and each window is calculated so that the window with

the shortest distance is then recorded as the image center. After detecting the center, a segment

of the image is extracted around it and utilized as ROI for the classification. A. Tiulpin et. al.

[27] introduced a knee anatomy-based proposal that used Histogram of Oriented Gradients

(HOG) as feature descriptors in order to detect the changes of image intensity due to the space

between the bones. The location of the detected changes are used as region proposals and a

Support Vector Machine (SVM) is trained to locate the ROI. Both approaches reported good

results in knee joint ROI location.

Figure 2.10: Knee OA X-ray with the region of interest (extracted from [20])

K. Thomas et. al. [21] followed a CNN-based approach for knee OA classification where

the input images are not specific ROI as in other methodologies. In their study, the authors

input either the original single-leg X-ray image cropped to a square image (by removing upper

and lower rows) or an augmented version of it. The later is a subset of the cropped image where

additional rows and columns have been removed in an uniformly distributed manner to keep

70% to 95% of the image (Figure 2.10). The authors justify this approach to create a model

more robust to variability that, otherwise, would have been reduced with a cropped ROI.

J. Antony et. al. [20] proposed a methodology to automatically detect the ROI of the

knee joint by using a Fully Convolutional Network (FCN). The authors input a training

set of X-ray images with a binary mask that specifies the ROI as ground truth. The FCN

architecture (Figure 2.11) consists of convolutional stages followed by max-pooling layers, and
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Figure 2.11: Knee OA X-ray with the region of interest (extracted from [20])

a final stage of up-sampling and a fully-convolutional layer with a sigmoid activation function

for pixel classification. After the training, the bounding box is deduced by the contour of the

detected ROIs and, after up-scaling to the original resolution, it is extracted for classification.

According to the authors, FCN methodology is highly accurate with over 90% ROIs correctly

detected.

P. Chen et. al. [28] followed a different CNN detection architecture, YOLOv2 [29], con-

sidering the ROI detection as a regression problem. YOLOv2 architecture divides the input

image in a grid and refines the height, width, center coordinates, and confidence score for each

of the bounding boxes located. The grid-by-grid search approach is essentially the same as the

sliding window strategy but the advantage of CNN here is that the features of all proposals are

calculated all together in one forward operation. As result of an image forwarded through the

model, different bounding boxes will be proposed. The bounding box with a higher confidence

score is taken as the final detection result and re-scaled to the original image resolution (Figure

2.12).

2.3.4 Explainability of Neural Network Models

Deep Learning models automatically learn features from the images in order to produce the

output. Learnt features may not be relevant to knee OA diagnosis as the models may react

to background noise, image artifacts or other features that are not relevant to the disease. In

order to obtain a qualitative understanding of how the model arrived at a particular prediction,

it is helpful to visualize where the model is focusing its attention on the image.
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Figure 2.12: Region of interest for knees utilizing YOLOv2. Red bounding boxes correspond to
annotated knee joint region, green bounding boxes stand for the detected knee joint region and blue
scores are the intersection over union value between both boxes (extracted from [28])

Simonyan et. al. [30] proposed a methodology that relies on the back-propagation algorithm

to compute the gradient of the logits with respect to the input of the network. The magnitude of

the derivative indicates which pixels would need to be changed the least to affect the class score

the most. Hence, the saliency map is a pixel-wise representation that indicates the relevance of

a pixel for the class prediction, and such pixels would correspond to the relevant area locations

in the image. With the gradient values, a visualization, commonly refer to as Saliency Map,

can be obtain to highlight the class-relevant pixels. However, as shown in Figure 2.13, the

saliency map is a discrete pixel representation and it is not class discriminative, i.e. relevant

pixels may not correspond to the object but also other objects or background.

Figure 2.13: Example of saliency maps (bottom) for three images (top). Saliency map shows the
class-relevant pixels (extracted from [30])

Alternative methodologies have been proposed based on Attention Maps in order to ease

the category localization in the image. With this approach, the visualization typically consists

of a heat-map type of image that can be superimposed over the original image. The highlighted
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areas would correspond to the class-specific discriminative regions, i.e. the section of the image

where the network is focusing its attention to make a prediction. B. Zhou et. al. [31] introduced

Class Activation Mapping (CAM) as an alternative explanation method for CNNs. CAM

leverages the Global Average Pooling (GAP) layer that some networks architectures include

prior to the last fully-connected layers. GAP averages the activations of each feature map (from

the previous convolutional layer) and concatenates them in a vector of weights. By projecting

this vector of weights on the convolutional feature maps, the most relevant features will be

highlighted (Figure 2.14).

Figure 2.14: Class Activation Mapping (CAM). The CAM highlights the class-specific discriminative
regions (extracted from [31])

Figure 2.15: Grad-CAM overview (extracted from [32])

In order to be versatile and not rely on specific network architectures, R. Selvaraju et.

al. [32] proposed Gradient-weighted Class Activation Mapping (Grad-CAM). To obtain
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the Grad-CAM heat-map, the gradient of the score for the class (before the Softmax activa-

tion layer) is computed with respect to the feature maps (Figure 2.15). Then, the gradients are

global-average pooled over the dimensions of the feature maps to obtain the feature-importance

weights; hence, Grad-CAM does not need a GAP layer to obtain weights. A weighted combina-

tion between the feature maps and the weights is then performed, resulting in a heat-map with

the feature map size. After re-scaling to the original image size, the heat-map would highlight

the class-specific discriminative regions.

2.3.5 Methodology Proposal

In this work, a methodology for automatic detection and quantification of knee OA severity

will be proposed. This will be approached as an image classification problem, assessing the OA

severity out of plain X-ray images. The process will involve different steps:

1. Automatic detection and extraction of the ROI. A CNN-based approach will be

followed in order to detect the region of interest. The proposal consist on using the U-

Net architecture [33] to segment the ROI out of X-ray images. This process includes the

need for binary masks of the training and validation sets that will be generated for that

purpose. Extraction of the ROIs will be carried out by generating bounding boxes around

the contours of the detected knee joint areas.

2. Data set definition for classification. With the ability to detect and extract the

ROIs, a specific data set including isolated knee joints will be created from the original

data set. These images will define the input for the following steps.

3. Quantification of knee OA severity. A CNN-based approach will be followed in

order to assess the knee OA severity. As baseline models, DenseNet [23], EfficientNet [34]

and VGG [30] pre-trained architectures will be utilized as backbones for the classification

process.

4. Attention Map Visualization. In order to evaluate the relevant features for the net-

work to make a prediction, Grad-CAM methodology will be used to create a visual rep-

resentation of the network attention.



Chapter 3

Methodology

3.1 Workflow overview

This chapter presents the approach to automatically detect and quantify knee OA severity from

X-ray images. The methodology proposed in this work covers the entire pipeline from location

of the knee joint to the knee OA severity assessment based on KL grade system. This process

involves two main steps: 1) automatically detecting and extracting the ROI (by localizing the

knee joint out of X-ray images), and 2) classifying the localized knee OA severity by assigning

a KL grade.

Each of the steps will be described in depth in this chapter, including the introduction of

the dataset used for the experiments, the CNN-based architectures that allow the detection of

the knees and their OA severity classification, as well as the outcome of these methods and the

conclusions. The code generated for the different sections can be found in a dedicated GitHub

repository created for this study1.

3.2 Dataset

The dataset used in this work was obtained from the controlled access datasets distributed from

the Osteoarthritis Initiative (OAI), a data repository housed within the NIMH Data Archive

(NDA). The OAI dataset consists of progression and incidence cohort subjects under the knee

1https://github.com/d-duran/KOA-location-diagnose-CNN
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Figure 3.1: X-ray image from the OAI dataset

Figure 3.2: OAI dataset image distribution as per KL grades

OA study for which Kellgren & Lawrence (KL) grades have been assigned. Figure 3.1 shows a

X-Ray image sample from the OAI dataset.

After an initial evaluation. a total of 4007 subjects X-Ray images from the baseline data

was considered. Since each X-Ray image contains two knees and isolated knee images are

required for this study, a total of 8014 knee X-Ray images were utilized. Figure 3.2 shows the

distribution of the images as per KL grades.
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3.3 Preprocessing

Since the dataset was collected as part of a progression OA study, the images vary in terms

of contrast, brightness, etc. As a preprocessing step, a contrast limited adaptive histogram

equalization (CLAHE) is performed in order to improve contrast and normalize the image

levels.

In order to assess knee OA, medical practitioners examine only the knee joint region. Elim-

inating non-relevant information in the joint surroundings makes the image invariant to the

position of the joint withing the original X-Ray image. Focusing on ROIs reduces the im-

age size, hence the computation cost would be reduced and the model performance would be

increased.

3.3.1 Automatic Detection and Extraction of Knee Joints

In order to generate a set of knee ROI images from the original dataset, an automatic detection

of knee joints based on image segmentation is proposed. Image segmentation is the process of

assigning a label to every pixel in an image such that pixels with the same label share certain

characteristics. This process results in an image representation with multiple segments which

allows for object location.

In this study, a CNN-based approach is followed in order to detect the ROI. The proposal

consists on using the U-Net architecture [33] to segment the ROI out of the X-ray images.

U-Net architecture (Figure 3.3) consists of two paths. First path is the contraction path, or

encoder, which is used to encode the input image into feature representations at multiple

different levels, capturing the context. The encoder is a stack of convolutional and max pool

layers. The second path is a symmetric expanding path, or decoder, which semantically

project the discriminative features learnt by the encoder onto the pixel space to get a dense

classification. In order to get precise locations, skip connections are used at every step of the

decoder in which the output of the previous step is concatenated to the feature maps from the

encoder at the same level. As a result, the output is an image in which each pixel is classified

to a particular class, i.e. ROI or not ROI ; thus it is a pixel level image classification.

A subset of 200 X-ray images is extracted from the OAI datset. Each sample is then

manually annotated by defining binary masks around the knee joints (Figure 3.4). The subset

is randomly split into training (160 images) and test (40 images) sets. The ground truth for
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Figure 3.3: U-Net architecture representation [33]

Figure 3.4: Preprocessed X-ray image (top-left), knee joint ROI binary mask (top-right), detected
contour (bottom-left) and ROI bounding box (bottom-right)
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training the network are the binary masks which delimit the knee joints ROI.

For this study, ResNet50 [24] off-the-shelf CNN network is considered to be the backbone

of the U-Net. The network is pre-trained for general image classification on the ImageNet [18]

dataset, which contains images of 1000 different classes. The use of this pre-trained network

allows to leverage its already-learnt features such as edge detection, texture and patterns re-

cognition for the encoding path, so that the networks does not need to be trained from scratch.

For such purpose, segmentation-models library is used, which allow to chose among different

backbone pre-trained architectures, including ResNet50.

After the training step is completed, the following steps are followed in order to extract the

ROI:

• The output prediction of the U-Net is a binary image. Ideally, the areas corresponding

to the knee joints (positive) will have 1 as pixels value and the remaining pixels will serve

as background (negative), taking 0 as pixels value. The contours of the positive areas are

located, as well as their centroids.

• A bounding box is created around the centroids such that the contour is fully contained.

The bounding box is set to be square since this is the aspect ratio that forthcoming neural

networks will expect as input.

• The bounding box is resized to the original X-ray image resolution and extracted as the

ROI. Then, the image is resized to match the input size expected by the neural network.

Figure 3.5 shows a diagram with the complete process for detection and extraction of knee

joint ROI.

3.3.2 Data preparation

In order to prevent the forthcoming algorithms from the need to learn additional feature of

side, the ROI images from the left knees (located on the right side of the image) have been

flipped vertically to match the right knees orientation. This procedure leverages the symmetry

between the two knees in the original X-ray image. As a result, all extracted ROI images will

present the medial and lateral side of the knees on the left and right side, respectively. Figure

3.6 shows a sample of a ROI extracted by the trained U-Net model.
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Figure 3.5: Detection and extraction of ROI pipeline

Knee OA radiographic features such as presence of osteophytes, joint space narrowing or

bone deformity are relatively ease to identify to practitioners for late stages of the disease.

Regarding neural networks accuracy, previous studies introduced in section 2 report lower

misclassification rates for late stages (KL grades 2 to 4) in comparison to those corresponding

to early stages of the disease, i.e. KL 0 and 1. Reported results prove that early stages of the

disease are challenging for neural networks and special attention to those grades is required.

As stated previously, images of the dataset are imbalance as per KL grades. In order

to ease the forthcoming neural networks learning, data augmentation is applied to the ROI

dataset. Particularly, KL grades 0 and 1 are required to be as balanced as possible to reduce

misclassification at early stages which are the most challenging to predict. The augmentations

performed are as follows: the images are rotated a maximum of 20 degrees with a probability of

50%, and the brightness, contrast and gamma factor are randomly modified with a probability

of 50%. An example of augmented images is shown in Figure 3.6. The data augmentation

technique results in a new distribution as shown in Figure 3.7.

After the extraction and preprocessing of the knee joints ROIs, the new dataset needed to

be organized in such a way that each image is assigned to a KL grade. All images belonging to

the same class (KL grade 0 to 4) were automatically stored following the same directory. This
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process was carried out with the help of an auxiliary CSV file created for this purpose which

contains the X-ray image filename as well as the KL grades.

Figure 3.6: Knee joint ROI (left) with two augmentations (center and right)

Figure 3.7: OAI dataset image distribution as per KL grades after data augmentation

3.4 Network architectures for Classification

Despite of the application of data augmentation technique, there are still classes under-represented

in the dataset as depicted in Figure 3.7. To mitigate this issue, the associated weight to each

class was calculated by using the compute class weights method from the Sklearn’s class weight

library. By using these weigths, the batches fed to the classifier will not over-sample any

particular category.

In order to create the batches, Keras’ ImageDataGenerator class is utilized. At this point,

the required image preprocessing has already been applied, and the images size matches the
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input size expected by the neural network, i.e. 224 by 224 pixels. As common practice, the

input images need to be normalized prior to be input to the neural network. This process

includes rescaling pixel values from the range 0-255 to 0-1. The Keras’ preprocessing function

of the architectures considered is used for this step.

Additionaly, the validation split parameter is set to 0.2 to define the size of the validation

set. The ImageDataGenerator method flow from directory is used to specify the path of the

training and validation sets. The batch size is set to 16 and the shuffle parameter is set to False

for the validation set since, later on, class labels need to be access unshuffled for evaluation.

The image generator will then create batches that contains 16 preprocessed images and their

corresponding class labels, represented with a one-hot encoded vector (e.g. [1,0,0,0,0] for KL

grade 0).

For this study, off-the-shelf CNN architectures are considered to classify knee OA severity.

These networks are pre-trained for general image classification on the ImageNet [18] dataset,

which contains images of 1000 different classes. The pre-trained networks were fine-tuned for

knee OA image classification based on the transfer learning approach. In transfer learning,

the network is trained on external data (i.e. ImageNet dataset), and then the layers’ weights

are transferred to the target network. The lower layers of the network contain more generic

features such as edge or texture, whilst the upper layers progressively focus on more task specific

features. The top layers of the target network correspond to the final classification step, and

are customize so that the output matches this problem characteristics, i.e. 5 target classes

instead of 1000. During training on the new dataset, the layer weights of the target network

will be slightly tuned based on performance.

Three different CNN architectures are considered in order to keep the model that yielded

the best results possible. First, VGG19 [30] network architecture is considered. In VGG19,

the image is passed through a stack of convolutional layers where the filters use a very small

receptive field (3×3), which is the smallest size to capture the notion of left/right, up/down,

center. Since the model has over 144 million parameters, transfer learning is applied by using

a model pre-trained on the ImageNet [18] dataset in order not to train the model from scratch.

The layers placed after the convolutional blocks of the pre-trained model are replaced by a set

of layers that matches the output size of this problem, i.e. a Dense layer with ReLU activation

followed by a Drop-out layer, and a final Dense layer with 5 neurons and Softmax activation

function.

Next, the EfficientNet [34] family of neural networks is considered. The authors obtained

the baseline model, EfficientNet-B0, by means of balancing width, depth and resolution dimen-
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sions of the network. The dimensions search lead to a baseline model that allowed minimizing

convolutional operations while increasing accuracy. The EfficientNet family of networks (B0 to

B7) was constructed from the baseline model by scaling up the dimensions using the compound

coefficient, φ. Among the EfficientNet variants, EfficientNet-B4 was proven to yield the best

results for this problem and, therefore, that will be the architecture configuration used herein.

As described previously, the top layers that replace the original classifier are the same than

those used in VGG19.

Inspired by the good results achieved by K.A. Thomas [21] and B. Norman [22], the

DenseNet [23] architecture is also chosen to learn and extract the images features. This

network consists of a series of convolutional blocks where each layer concatenates the feature

maps of all preceding layers as input making use of residual connections. This architecture

allows the network to learn from previous steps while reducing the vanishing gradient problem

that deep networks usually present. Among the different implementations of the DenseNet

architecture, Keras’ DenseNet121 is utilized due to its lower number of trainable parameters

(8 million). In order not to train the model from scratch, transfer learning is applied by using

a model pre-trained on the ImageNet [18] dataset. The top layers that replace the original

classifier are the same than those used in VGG19 and described above.

3.5 Results evaluation

3.5.1 Automatic Detection of Knee Joints

Automatic detection of knee joints is carried out by solving an image segmentation problem.

As described in section 3.3.1, an U-Net architecture based on a ResNet50 backbone is utilized

for ROI detection.

The ground-truth images are binary masks corresponding to ROIs (positive regions) and

background (negative regions). In terms of number of pixels, the predominant class is the

background, hence, there is a class imbalance which may lead to unrealistic accuracy results.

The U-Net network is trained to minimise the binary cross entropy Jaccard loss function.

The motivation behind the combination of binary cross entropy loss and the Jaccard loss is that

the later computes the similarity between the ground truth and the prediction in a pixel-wise

manner by means of the Jaccard index. Hence, the potential model’s tendency to predict the
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predominant class to maximize accuracy is avoided.

The detection performance of the U-Net model is evaluated with the Jaccard Index. As

described above, this metric measures the similarity between two sample sets evaluating the

intersection over the union. In this context, the Jaccard index is calculated to compare all pixel

values of the mask (ground truth) against the model’s prediction, hence quantifying the ROI

overlap. Jaccard index varies from 0 to 1, hence the higher the value the closer the prediction

matches the mask ROI. A representation of the concept of intersection over union can be seen

in Figure 3.8.

J(A,B) =
|A ∩B|
|A ∪B|

Where A and B are the mask and the prediction images.

Figure 3.8: Jaccard index representation

3.5.2 Classification of Knee Osteoarthritis grade

3.5.2.1 Training loss and metrics

As mentioned before, the distribution of the examples across the dataset is not balanced. Eval-

uating neural networks performance in this scenario is not a trivial task since class imbalance

might lead to slight bias during the network training.

Besides the data augmentation techniques applied to the dataset, it is possible to address

the class imbalance problem by choosing a loss function that somehow considers the different

available images per class. The loss function drives the optimization of the neural network

weights, assessing the model performance during the training process.
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In classification problems, the categorical crossentropy loss function (CE loss) is commonly

used, which can be seen as the blue (top) curve in Figure 3.9. When using CE loss, even

examples that are easily classified (i.e. p ≥ 0.5) incur a loss with non-trivial magnitude. Over

a large number of easy examples, the summed loss values can overwhelm the rare classes. This

might be an issue when class imbalance is present in the problem as classes with more available

images will be easier to classify for the network, eventually leading to high losses.

In order to address class imbalance, focal loss function [35] will be utilized to evaluate the

classifier performance. Focal loss is an extension of CE loss that down-weight easy examples

and focus training on hard negatives. Focal loss adds the modulating factor (1 − pt)γ to the

cross entropy loss, with tunable focusing parameter γ ≥ 0. Focal loss is defined as:

FL(pt) = −αt(1− pt)γlog(pt)

Where αt ∈ [0, 1] is a weighting factor that may be set by inverse class frequency or treated as

a hyperparameter, γ is the focusing parameter, and pt is the model’s estimated probability for

the class with label y = 1, defined as:

pt =

{
p ify = 1

1− p otherwise

The γ parameter controls the shape of the curve (Figure 3.9). The higher the value of γ,

the lower the loss for well-classified examples, so the attention of the model turns more towards

examples which are hard to classify. Having higher γ extends the range in which an example

receives low loss.

Figure 3.9: Focal loss visualization for different values of γ [35]
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In order to assess whether the model obtains satisfactory results, different metrics can

be used to evaluate its prediction capability. Since the network will predict a disease level,

it is fundamental to ensure the agreement between the ground truth disease grade and the

model prediction. In this regards, Cohen Kappa index measures the agreement between two

raters who each classify samples into mutually exclusive categories. Cohen Kappa index is a

quantitative measure of two raters agreement corrected for how often the raters may agree by

chance.

Cohen Kappa score varies between -1 and 1, depending on the extent of agreement or

disagreement. A score of 0 means there is random agreement between raters, whereas a score

of 1 means that there is complete agreement. Therefore, a score lower than 0 means that there

is less agreement that random chance.

Cohen Kappa score is calculated over a contingency table. First, the agreement by chance is

computed (the sum of the products of the k marginal probabilities), and then this chance agree-

ment is subtracted from the total observed agreement (the sum of the diagonal probabilities)

before estimating the normalized agreement beyond chance.

kw =

∑k
i=1 pij −

∑k
i=1 pi+p+j

1−
∑k

i=1 pi+p+j

Where k is the number of classes, pij represents the proportion of all cases that receive

the rating of i from the first rater and the rating j from the second rater, pi+ is the marginal

distribution of the first rater’s ratings, and p+j is the marginal distribution of the second rater’s

ratings

In this particular problem, the classes are ranked as they correspond to different levels of

knee OA disease, i.e. KL grades 0 to 4. This sense of order is important if the model mislabel

a sample. For example, a model prediction of KL grade 0 with the ground truth being grade

4 should be considered differently than when ground truth and prediction are closer. This can

be addressed by introducing weights to the Cohen Kappa score calculation that penalize wrong

classifications based on the distance between the true value and the prediction, i.e. the higher

the disagreement the higher the weight.

kw =

∑k
i=1

∑k
j=1wijpij −

∑k
i=1

∑k
j=1wijpi+p+j

1−
∑k

i=1

∑k
j=1wijpi+p+j
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Where wij are the weights associated with disagreement.

In this study, Tensorflow’s Weighted Cohen Kappa metric implementation is used to

calculate the model’s performance. The weightage is chosen to be quadratic, hence penalizing

the disagreement quadratically the higher it gets.

3.5.2.2 Explainability of results

Besides the performance metrics that can be obtained from a neural network model, the inherent

complexity of architectures makes the results hard to interpret. In this work, a visualization

methodology is followed in order to explain where the model focus its attention to obtain a

categorical prediction.

As introduced in section 2.3.4, Grad-CAM methodology uses the gradients flowing from the

logits (before softmax layer) into the last convolutional layer to assign importance values for

a particular decision of interest. In order to obtain the class-discriminative localization, the

gradient of the score yc for a particular class c (e.g. KL grade 0) is computed with respect

to feature map activations Ak, of a convolutional layer, i.e. dyc

dAc . The gradients flowing back

are global-average pooled over the width and height (indexed as i and j, respectively) for each

activation map to obtain the neuron importance weight, αck.

αck =
1

Z

∑
i

∑
j

dyc

dAkij

A weighted combination is then performed between each weight-feature map pair in order to

obtain a heatmap. As a result, the heatmap will indicate the areas whose intensity should be

increased in order to increase yc. Therefore, these areas correspond to the locations where the

model focus its attention to detect class c.

The resulting heatmap size matches that of the last convolutional layer of the CNN; hence,

it needs to be resized to the input image size in order to be superimposed for visualization.



Chapter 4

Experimentation

4.1 Workflow overview

This chapter presents the approach followed in order to 1) train the model for knee ROI

detection and 2) to optimize the CNN-based architecture described in sections 3.3.1 and 3.4,

respectively. The optimization process involves a set of experiments which include different

CNN architectures, hyperparameters and training control techniques to find the best model.

4.2 Description of experiments

4.2.1 Automatic Detection of Knee Joints Experiments

As described in section 3.3.1, an U-Net architecture based on a ResNet50 pre-trained model is

utilized for ROI detection.

The training process consists on inputting X-Ray images which are encoded by the network

into feature representations at multiple different levels. Afterwards, the network decodes them

in a symmetric expanding path and connects every level to its corresponding encoder’s path

level. The output consists of a pixel-wise binary image which contains the ROI and background

regions. Prediction is then compared to the ground truth mask, evaluating the overlap with

the Intersection over Union metric score as described in section 3.5.1.
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The optimizer and hyperparameters set for training are chosen based on values commonly

utilized in literature [20]. The optimizer is Adam with learning rates ranging from 0.001 to

0.0001, and exponential decay ranging from 0.8 to 0.99. The network is trained for 50 epochs

and the batch size is 8. Figure 3.4 shows an instance of the test input, the ground truth and

the output prediction of the U-Net.

4.2.2 Classification of Knee Osteoarthritis Grade Experiments

As described in section 3.4, three different CNN architectures have been considered for analysis.

Since pre-trained networks are fine-tuned for knee OA image classification, a training strategy

that involve the transferred weights to the target network must be defined.

During the training process, the value of the transferred weights can be frozen so that only

those weights of the top classifier layers are learned and updated. Other option is to unfreeze

the transferred weights and let the whole network adjust to the new dataset. Following this

approach, the weights will slightly change, specially on the higher layers, in order to learn

problem-specific features.

Initial experimentation showed that freezing the transferred weights while only updating

the top layers ones conditioned the accuracy of the results. The approach of unfreezing the

transferred weights proved to be unstable at the beginning of the training for different hyper-

parameters configurations.

In order to make the training stable and lead to the best results possible, the following

alternative regarding the weights update is proposed:

• First, only the top layers weights are considered trainable during 3 epochs, hence the

transferred weights are frozen. This will make the top layers to be trained towards the

problem-specific characteristics.

• After the first 3 epochs, all layers weights are unfrozen and become trainable. This will

make the whole network to be trained in forthcoming epochs, including the backbone.

Regarding the duration of training, the first stage is set to 3 epochs based on experience as

it was observed that, after the third epoch, the validation loss and metrics kept stable and did

not improve over time. The optimizer is Adam with a fixed learning rate of 0.001.

The second stage duration is set to 50 epochs, with the following callbacks consideration:
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• Early stopping: training finishes when the validation loss does not improve over the last

3 epochs.

• Learning rate scheduler: learning rate is reduced by a factor of 0.1 when, for a given

epoch, there has been no progress in terms of the validation loss for the last 2 epochs.

The optimizer is Adam with the learning rate value being defined as per the scheduler above.

The initial learning rate value is given by the hyperparameter search as described in section

4.3.

4.3 Hyperparameter optimization

For knee OA classification, transfer learning approach has been followed for three different net-

work architectures. The networks overall performance might be considerably impacted by the

hyperparameters involved in the training process: learning loss getting stuck in local minimum

due to high/low learning rates, long training time due to a large number of learnable parameters

(number of neurons of Dense layers), etc.

In order to find the best hyperparameters possible, different techniques can be followed

such as Grid search and Random search. The former defines a grid of hyperparameters values

and the algorithm exhaustively searches this space in a sequential manner for every possible

combination. This approach can be very inefficient in computer power and time as the num-

ber of hyperparameters increase. The later, instead of providing an explicit set of possible

values, it provides a statistical distribution (e.g. exponential, normal, random,...) for each

hyperparameter from which values are sampled.

These approaches perform individual experiments by building multiple models with various

hyperparameters values. However, experiments are not able to use the performance inform-

ation from the other experiments to be improved. In order to make use of this information,

Bayesian hyperparameter optimization approach is used. Bayesian optimization is a se-

quential model-based optimization algorithm that uses the results from the previous iteration

to decide the next hyperparameter value candidates. In order to do that, the method defines

a probabilistic surrogate model to describe the objective function (loss or metric to be minim-

ized/maximized) mapping hyperparameters to a probability of a score on the objective function.

Based on this surrogate model, which updates in an iterative process, the algorithm balances

the exploration and exploitation of the hyperparameters space to find the best combination.
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In this work, the BayesianOptimization class from bayes opt library is utilized to find the

hyperparameters combination that leads to the best performance of the CNN architectures

studied. The hyperparameters considered for optimization are the learning rate, the number of

neurons in the top Dense layer and the dropout rate. The ranges of possible values have been

chosen based on performance and the values commonly used in the literature [20, 22, 27]:

• Learning rate range: [0.0001 - 0.001]

• Number of neurons range: [1024 - 2048]

• Dropout rate range: [0.2 - 0.5]

The remaining hyperparameter of batch size involved in the training process have been set

to 16 based on performance and computation capability.



Chapter 5

Results analysis

5.1 Automatic Detection of Knee Joints

The image segmentation model is trained using the U-Net architecture following the procedure

described in section 3.3.1. Figure 5.1 shows the best performing model, corresponding to a

learning rate of 0.0001 and exponential decay of 0.8. As shown in the figure, the learning

curves converging to small loss when training this model.

Jaccard index (JI) is used to quantify the automatic detection of knee joint ROI. Intuitively,

it can be interpret as the percentage of overlap between the ROI defined on the mask and that

of the prediction. Per reference, JI ≥ 0.8 means that the predicted ROI overlaps with 80% of

the ROI defined on the mask. ROI masks are defined in a way that surrounding pixels are not

part of the knee joint, hence a prediction with 80% of overlap would still include the joint and

considered valid.

Table 5.1 shows the percentage of validation samples with knee joints correctly detected

based on the Jaccard index values. As shown, the model is highly accurate with all of the

samples overlaping at least 80% of the ROI area (JI ≥ 0.8), and more than 2/3 of the samples

overlaping at least 90% (JI ≥ 0.9).

The high detection accuracy obtained with this model sets the base for the ROI detection

and extraction pipeline followed in order to create the image dataset utilized for classification.
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Figure 5.1: Evolution of BCE Jaccard loss (left) and Jaccard score (right) during U-Net model training.

Table 5.1: Evaluation of U-Net detection based on Jaccard Index (JI). Number of validation images
which predicted ROI overlaps at least 50%, 80% and 90% with the ROI mask.

Validation Data JI ≥ 0.5 JI ≥ 0.8 JI ≥ 0.9

40 images 40/40 40/40 31/40

5.2 Classification of Osteoarthritis KL Grade

The resulting hyperparameter search carried out on the three CNN architectures and the metrics

obtained can be seen in Table 5.2. This table shows the models hyperparameters which led

to the best results for categorical crossentropy and focal loss functions. Loss and metrics are

evaluated for the validation set.

From Table 5.2 it can be observed that EfficientNet and DenseNet architectures results are

similar and higher to those of VGG. Based on the Cohen kappa score, EfficientNet-B4 has

slightly better performance than DenseNet121. Despite the quantitative measure of similarity

Table 5.2: Hyperparameters obtained after Bayesian Optimization for VGG19, EfficientNet-B4 and
DenseNet121 architectures. Results shown for categoriacal crossentropy and categorical focal loss
functions evaluated on the validation set.

Loss function Architecture dropout learning rate neurons loss cohen kappa avg f1-score weighted f1-score

categorical
crossentropy

VGG19 0.33 0.0008 1228 1.013 0.75 0.55 0.55
EfficientNet-B4 0.45 0.0003 1210 0.699 0.88 0.70 0.68
DenseNet121 0.38 0.0002 1183 0.702 0.86 0.72 0.70

categorical
focal

VGG19 0.45 0.0003 1210 0.321 0.82 0.68 0.66
EfficientNet-B4 0.41 0.0001 2017 0.261 0.87 0.69 0.68
DenseNet121 0.33 0.0003 1650 0.248 0.87 0.75 0.72
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Figure 5.2: Evolution of loss (left) and Cohen kappa score (right) during DenseNet121 model training.

showed by the kappa score, the weighted F1-score has been also obtained to understand the

models performance per class. In this regards, DenseNet121 shows the best results with a

weighted f1-score of 0.72. Based on the results from Table 5.2, DenseNet121 is considered as

the best model due to its metrics scores.

Figure 5.2 shows the evolution of the categorical focal loss and Cohen kappa metric for the

training and validation sets. During the training process, the model seems to converge to an

optimal solution in less than 10 epochs. The overfitting is avoided thanks to the early stopping

condition set to the training.

The resulting metrics for the model, including specific values per class, are shown in Table

5.3 whilst Table 5.4 shows the confusion matrix for the multi-class classification. The model

achieves an accuracy score of 72% on the validation set, as well as 72% of f1-score weighted

average. This metrics show a good performance of the model in the classification task.

It can be noted that classification of ranked grades is challenging, particularly in KL grades

0 and 1, where misclassification is higher compared to the other grades. As previously in-

troduced, variation of OA disease features such as joint space and osteophyte formation are

hardly distinguishable in the early phases of the disease and it and can be easily misclassified

as similarly reported by other studies.

Nevertheless, the results show that the network is able to learn a good representation of the

different knee OA disease features resulting in high accuracy classification performance and low

mislabeling rates as shown in Table 5.4.
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Table 5.3: Metrics of DenseNet121 with categorical
focal loss function for classification

Class Precision Recall f1-score

0 0.71 0.73 0.73
1 0.71 0.59 0.64
2 0.56 0.73 0.64
3 0.91 0.79 0.85
4 0.79 0.99 0.88

accuracy 0.72
macro avg 0.74 0.77 0.75

weighted avg 0.73 0.72 0.72
cohen kappa 0.87

Table 5.4: Confusion matrix for multi-class
classification using DenseNet121 model

Predicted class

T
ru

e
cl

as
s

0 1 2 3 4

0 480 110 36 0 0
1 170 460 140 15 0
2 31 57 310 25 0
3 0 14 63 430 35
4 0 0 0 1 130

In order to contextualize the results, Table 5.5 compares the results obtained in this work

with recent state-of-the-art studies. The table collects different metrics reported by the authors,

including precision, recall and f1-score, as well as average scores. Note that some metrics values

(such as weighted average values) needed to be obtained from their reported confusion matrices.

As shown in Table 5.5, results obtained by our DenseNet121 outperform the other authors

results. Particularly, our DenseNet121 performs a better job in per-class metrics, with higher

weighted average precision, recall and f1-score.

A particular characteristic on B. Norman et. al. [22] work is that KL grades 0 and 1 are

considered as a single disease grade. The authors made this choice per recommendation of their

internal clinical radiologist since the clinical response for these two grades are usually the same.

Under this assumption, our DenseNet121 also presents better results in global and per-class

metrics.

Table 5.5: Classification of knee OA grade metrics for DenseNet121. Results are compared to collected
or calculated data from reported results.

Ours J. Antony [20] K. Thomas [21] B. Norman [22]
Class Precision Recall f1-score Precision Recall f1-score Precision Recall f1-score Precisoin Recall f1-score

0 0.71 0.77 0.74 0.68 0.80 0.74 0.73 0.87 0.79
0.89* 0.84* 0.86*

1 0.72 0.59 0.65 0.32 0.15 0.20 0.38 0.27 0.31
2 0.56 0.73 0.63 0.53 0.63 0.58 0.71 0.67 0.69 0.58 0.70 0.63
3 0.91 0.79 0.85 0.78 0.74 0.76 0.82 0.81 0.81 0.80 0.69 0.77
4 0.79 0.99 0.88 0.81 0.75 0.78 0.87 0.86 0.87 0.81 0.86 0.83

accuracy - - 0.72 - -
0.64

(2797/4400)
- -

0.71
(2890/4090)

- -
0.78

(4217/5381)

macro avg 0.74 0.77 0.75 0.62 0.61 0.61 0.70 0.69 0.70 0.77 0.77 0.77
weighted avg 0.73 0.72 0.72 0.60 0.63 0.61 0.69 0.71 0.69 0.80 0.78 0.79
cohen kappa - - 0.87 - - - - - - - - -

*The authors considered KL grades 0 and 1 as a single class.



5.3 Explainability of classification

Grad-CAM visualizations were obtained as described in section 3.5.2.2 for the trained model

and input images. Figure 5.3 shows an example of Grad-CAM visualization for each KL grade.

The figure shows that the strongest network activation comes from the medial and lateral joint

margins as well as the area between the joint bones, providing the highest contribution to the

model’s prediction. The most probable reason is that the model learnt knee OA radiological

features such as presence of osteophytes and joint space narrowing in order to assess the grade

of the disease.

Figure 5.3: Visualization of attention maps of classified examples for each KL grade.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

This Master’s thesis focuses on robust methods used for localization of knee joints out of a X-ray

image and prediction of knee Osteoarthritis diagnosis. The main goal is to develop computer

aided diagnostic tools to assist professionals on the assessment of knee Osteoarthritis (OA)

severity by developing deep learning based automatic methods.

A summary of the investigations, research findings, experimental results, and the proposed

solutions in this thesis is as follows.

Chapter 1 introduced knee OA degenerative joint disease, the diagnostic features and grad-

ing index. The motivations for this thesis are described, the research objectives are presented,

as well as the project development steps that set this thesis structure.

Chapter 2 deeper describes knee OA disease and its prevalence, incidence and economical

impact, concluding that the burden of knee OA to society is high and that the implications of

knee OA are not to be underestimated. In this chapter the literature in knee OA assessment is

reviewed, including clinical imaging utilized, the computer aided approaches for diagnostics of

knee OA, as well as the necessary technical and terminology background are introduced.

Chapter 3 presented the approach to automatically localise and extract knee joints in radio-

graphs. An image segmentation approach was implemented for the automatic localisation of

knee joints. The segmentation is based on binary masks as ground truth which set the region

of interest where the knee joint is located within the X-ray image.
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Chapter 3 also presented the approach to classify the knee OA severity grade from the loc-

alized knee joints. Pre-processing of the images, including the data augmentation techniques

applied to address the class imbalance problem are described. The pre-trained CNN architec-

tures considered for the classification task are introduced. Based on the available knee OA

grade labels, the metrics and loss functions considered to evaluate the models performance

are presented. As part of the model performance evaluation, the visualization methodology

used to explain where the model focus its attention to obtain a prediction of disease severity is

described.

In Chapter 4, different CNN architectures were tested, including the architecture trained

for the image segmentation of the knee joints ROI, as well as the architectures for knee OA

severity classification. The hyperparameters optimization methodology followed to select the

optimal architecture and hyperparameters is described.

In Chapter 5 the outcome of the experiments are shown for the localization of knee joints

and for the knee OA severity classification. A significant outcome of this thesis is a methodology

that achieves high accuracy in localizing knee joints out of plain X-ray images, as well as a very

good performance in the OA diagnostic assessment of KL grades, outperforming recent studies

in macro and per-class metrics.

The following is a brief summary of the research contributions of this thesis.

• Proposing a highly accurate technique to automatically detect and localise the knee joints

from the X-ray images by means of a U-Net neural network architecture, considering

the task as a segmentation problem.

• Developing a classifier based on pre-trained convolutional neural networks (CNN) to assess

knee OA severity that is highly accurate and outperforms recent studies.

• Proposing an approach to train a CNN with a focal loss function to account for the

inherent problem of class imbalance.

• Implementing a Bayesian hyperparameter optimization to account for previous ex-

periments in the CNN hyperparameter search.

• Evaluating the performance of the models with Cohen Kappa index to measure the

agreement between the predictions and the ground truth and account for misclassification

according to the rank of KL grades.
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• Developing a Grad-CAM visualization methodology to explain where the model focus

its attention to obtain a prediction of disease severity.

Table 6.1 summarizes the accomplishment of the objectives that were defined in section 1.3.

All of the objectives are considered as accomplished through the complete development of the

study and experiments that have been carried out.

Table 6.1: Summary of objectives accomplishment

Objective KPI Accomplished Comments

Design and implementation of a CNN
architecture to automatically detect
and extract the ROI of a knee
X-ray image.

Functional scripts capable of
generating cropped images of the ROI.

Yes

The model is highly accurate with all of the
samples overlapping at least 80% of the ROI
area (JI ≥ 0.8), and 2/3 of the samples overlapping
at least 90% (JI ≥ 0.9).

Design and implementation of a CNN
architecture to assign a OA severity
grade to a knee X-ray image.

Functional scripts capable of
generating a prediction label of the
localized ROI.

Yes
The model achieves a Cohen kappa score of 0.87,
an accuracy score of 72% on the validation set,
as well as 72% of f1-score weighted average.

Evaluation and interpretation of the
classification output against the
ground truth.

Selection and justification of
the best metric, and
assessment of the model performance.

Yes

Jaccard index utilized to measure the similarity
between the ground truth mask and the segmented
prediction evaluating the intersection over the union.
Weighted Cohen kappa index utilized to measure
the agreement between the ground truth and class
prediction.

Define a methodology to obtain the
class-discriminating activation maps
in order to examine the region where
the network is detecting the
disease-relevant features.

Being able to plot the activation
maps obtained.

Yes

Grad-CAM visualizations show that the strongest
network activation comes from the medial and
lateral joint margins as well as the area between
the joint bones.

6.2 Future Work

During the development of this study, new lines of work have been identified that relate to

improving the performance of the knee OA severity assessment as well as to serving as the

foundation for a supporting diagnosis tool.

The main goal is to develop computer aided diagnosis tools that assist practitioners in

assessing knee OA severity. This study has set the foundation to that purpose by defining a

workflow and a methodology that allow to localize and extract a knee joint from X-ray images,

and to perform a prediction of disease severity. Further steps would consist of combining all

individual steps into a single pipeline, i.e. image pre-processing, knee location and extraction,

disease severity prediction and visualization. The resulting workflow can be contained into an

API hosted on a cloud-based website. This would allow non-technical users to benefit from the

model’s prediction capability by uploading a single image.

As regards the network architectures considered in this study, the usage of pre-trained
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networks on the ImageNet dataset proved to be beneficial in terms of the results achieved

when transfer learning was applied. Nevertheless, there are other alternatives that would be

interesting to be explored for the classification task such as training a custom CNN from scratch

or adopting a different type of architecture, i.e. Vision Transformers. The former would require

a time-consuming optimization process as well as longer computation time. The later would

consider the images as a sequence where network’s attention and memory are the foundation

for feature learning.

Since the OAI image dataset utilized in this study is part of a progression knee OA study,

there are available multiple images for each pacient at different time periods. With the achieved

ability of disease severity prediction, it would be interesting to consider the problem as a time-

dependent sequence. Therefore, exploring the progression of the disease by analyzing the X-ray

images would lead to a risk assessment. Here, different deep learning based approaches could

be follow such as RNN or LSTM architectures, although Visition Transformers have recently

be proven as a potential better candidate when sequential inputs are considered.

As it was introduced in section 2, knee OA is characterized by cartilage degradation and bone

change, hence early detection of OA is relevant since early treatment could prevent cartilage

and bone loss. Since evidences suggest that changes in bone occur early in the development of

OA, it is interesting to explore a methodology that allow for early detection of OA by focusing

the analysis on bone structure.

Early phases of knee OA are related to KL grades 0 and 1. According to the results reported

in section 5, these KL grades are particularly challenging to predict since variation of OA disease

features are hardly distinguishable in the early phases of the disease.

Some studies in the literature have explore the analysis of bone texture to get insights from

the specific bone patterns at different disease phases. Inspired by this studies, a new line of

investigation has been followed after the completion of this thesis regarding the analysis of

subcondral bone texture. This process involves the following steps:

1. Defining a methodology to locate keypoints in the knee joints that allow to locate the

region of interest. This methodology consists of creating a set of ground truth keypoints

located at the left and right sides of the tibia, and each of the two intercondylar eminence

(spines) on the center area (see Figure 6.1).

2. Training a neural network, i.e. MobileNet-V2, to be able to automatically locate the

keypoints.



3. Locating the trabecular bone region of interest at the medial side of the knee. The ROI is

defined as a square with its right side on the vertical of the medial intercondylar eminence

and the top side low enough to avoid the subchondral cortical plate (top edge of the tibia)

where sclerosis appear (see Figure 6.1).

4. Extracting the bone ROI and pre-process the image to enhance the bone texture (see

Figure 6.1).

Figure 6.1: Keypoints of knee joint for bone ROI location (left), extracted bone ROI (center) and
pre-processed bone ROI (right)

Despite this investigation is not yet been concluded, it is worth sharing that results show

bone texture analysis is promising for disease severity prediction when utilized as input for

a CNN neural network. Further investigation is required in regards to pre-processing of the

bone ROI as well as the possibility of combining this approach with this thesis study. The

assessment of knee OA severity might be improved by the combination of different features,

i.e. radiological features such as presence of osteophytes and joint space narrowing; and the

analysis of bone texture. Particularly, it is interesting to study the effect of this new source of

information in regards to the early stages of the disease (often framed within KL grades 0 and

1) in order to reduce the misclassification for lower grades and provide early detection capability.
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Glossary

backbone Feature extracting network which is used within the neural network architecture.

This feature extractor is used to encode the network’s input into a certain feature repres-

entation..

cartilage Cartilage, or cartilaginous tissue, is a resilient and smooth elastic tissue, rubber-like

padding that covers and protects the ends of long bones at the joints and nerves..

osteoarthritis Osteoarthritis is a degenerative joint disease that affects both the cartilage and

the bone and soft tissues of the joint. It is part of rheumatic diseases and, within this

classification, it is a type of arthritis..

osteophyte Bony lumps that grow around the knee joint.

sclerosis Slow-growing lesions to the bone that happen very gradually over time..

subchondral bone Bone lying immediately beneath the articular cartilage.

subchondral bone plate Subchondral bone plate is a thin cortical lamella, lying immediately

beneath the calcified cartilage in a joint..

subchondral trabecular bone Trabecuale are small tissue elements in the form of a small

beam, strut or rod that supports or anchors a framework of parts within a body or organ.

Subchondral trabecular bone refers to trabeculae in subchondral bone..
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