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  Resumen  del  Trabajo  (máximo  250  palabras): Con  la  finalidad,  contexto  de
aplicación, metodología, resultados y conclusiones del trabajo.

ANTECEDENTES: El mieloma múltiple (MM) es a día de hoy un cáncer letal, por
lo que urge encontrar nuevos fármacos que permitan tratar esta enfermedad de manera
más efectiva. Varios tipos de análisis in silico permiten encontrar fármacos actualmente
disponibles para reposicionarlos en enfermedades diferentes de aquéllas para las que
originalmente fueron diseñados, siendo el análisis  computacional  basado en redes uno
de los más comunes.

METODOLOGÍA:  Se  ha  hecho un  estudio  de  reposicionamiento  para  MM
mediante  la  implementación  en  R del  algoritmo  SAveRUNNER,  el  cual  realiza  un
análisis  basado  en  redes  para  generar listas  de  fármacos  candidatos  a
reposicionamiento.  Entre dichos  candidatos,  únicamente  aquéllos validados   por la
herramienta ´Query´  de CMap a partir  de los genes diferencialmente  expresados  en
muestras de MM se consideraron como los más prometedores.

RESULTADOS:  Se obtuvo una lista final de 22 candidatos  a reposicionamiento
para MM pertenecientes a diferentes categorías, muchos de los cuales se habían usado
previamente  con  otros  tipos  de  cánceres.  Finalmente,  se  presentan  análisis  de
acoplamiento  molecular  de los candidatos  ponatinib y axitinib con la  proteína  KIT,
sobreexpresada en MM según este estudio,  con el  fin de comparar sus afinidades y
valorar cual sería preferible para una posible línea de tratamiento de MM.

   CONCLUSIÓN:  En este estudio se muestra la exactitud de  SAveRUNNER  para
generar fármacos para tratar MM al sugerir candidatos que actualmente ya se usan para
tratar  esta  enfermedad.  Además,  SAveRUNNER  sugiere nuevos  candidatos  a
reposicionamiento que podrían mejorar el actual mal prognosis del MM. 
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 Abstract (in English, 250 words or less):

BACKGROUND: Multiple myeloma (MM) remains a lethal blood malignancy, so new
drugs are necessary in order to treat this cancer more effectively. Different types of in
silico analyses make it possible to repurpose currently available drugs to diseases other
than  those  they  were  originally  designed  for,  with  network-based  analyses  being  a
commonly chosen approach. 

METHODOLOGY: In this work, a drug repurposing study for MM was carried out by
implementing in R the recently published algorithm SAveRUNNER, which performs
network-based  analyses  to  generate  lists  of  potentially  repurposable  candidates  for
diseases  of  interest.  Among  the  candidates  to  repurpose  to  MM  suggested  by
SAveRUNNER, only those validated by differential gene expression analyses in MM
samples followed by CMap queries were considered as most promising. 

RESULTS:  A  final  list  of  22  drugs  for  MM  repositioning  belonging  to  different
categories,  such as enzyme inhibitors or steroids, was obtained,  with many of them
being already used to treat other types of cancers. Finally, molecular docking analyses
of the potentially repurposable candidates ponatinib or axitinib with the KIT protein,
overexpressed in MM according to this study, are presented to compare affinities of a
protein for drugs of the same type in order to assess which would be preferable if
included in a potential line of MM treatment. 

CONCLUSION:  This  study  shows  the  accuracy  of  SAveRUNNER  by  suggesting
drugs currently used to treat  MM, and suggests new candidates for repositioning that
may improve MM's current poor prognosis.
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1. INTRODUCTION

1.1. Context and rationale for this thesis

    Cancer causes one out of six deaths worldwide, and is thus the second leading cause
of death globally1. As earlier mentioned, MM remains as one of the incurable types of
cancer, with current treatments being able to modestly extend patients’ lives2. Therefore,
finding new therapeutics capable of improving existing approaches to treat this disease
is imperative. 

    On the  other  hand,  and unlike the  resource  and time consuming  de novo drug
discovery process, drug repurposing  via computational analyses stand as a promising
alternative to find new therapeutics with a considerably smaller budget and time frame. 

    Thus, considering the urge to find new therapeutics for MM and the potential of in
silico drug repurposing to suggest new candidates to treat diseases in a relatively short
time, carrying out a study that implements a computational algorithm to find approved
drugs with novel indications for MM seems well justified. Although scarce, a couple of
studies on this direction have actually already been performed in the past, but rather
than using an algorithm to find candidates to repurpose, the approach in both instances
found differentially expressed genes (DEGs) in MM to upload them to CMap in order to
find  compounds to  repurpose to  this  disease3,4.  In  this  thesis,  however,  a  somewhat
different  methodology  is  used  to  find  repurposable  compounds  for  MM  by
implementing  the  novel  algorithm  SAveRUNNER,  leaving  the  differential  gene
expression/CMap analyses  as  a  validation/filtering  step for  the resulting list  of  drug
candidates  instead,  as  recently  done  for  other  diseases5.  It  is  worth  noting  that
SAveRUNNER seems to have better performance than previous top algorithms5,6, which
might raise the possibility of finding new drugs that can help improve the outcome of
current MM treatments. 

1.2. Objectives

1.2.1. Main Objectives

   The main goal of thesis is finding drug candidates with reposition potential for MM 
that can be added to the currently available set of drugs used to treat this disease by 
implementing the network-based computational algorithm SAveRUNNER.

1.2.2. Specific Objectives

    In  order  to  achieve  the  main  objective,  the  following  specific  objectives  were
accomplished:

1.  Executing the following SAveRUNNER implementations in R:

• Implementation 1  : Generation of a drug-disease subnetwork for MM by using
this  disease  together  with  all  blood  related  malignancies  available  in  the
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Phenopedia7 database  as  input  in  the  configuration  file  of  SAveRUNNER
(config.R file). 

• Implementation 2  : Generation of a drug-disease subnetwork for MM by using
this disease together with diseases related to MM symptoms8 available in the
Phenopedia database as input in the config.R file. 

• Implementation  3  :  Generation  of  a  drug-disease  subnetwork  for  a  disease
seemingly unrelated to MM (Obsessive Compulsive Disorder, OCD) as negative
control for the two previous implementations by using OCD together with a set
of diseases also unrelated to MM as input in the config.R file. 

Only  compounds  obtained  simultaneously  in  both  implementation  1  and
implementation  2  will  be  selected  for  further  validation  and  therefore with
possibility to be considered as drug candidates with repurposing potential.

2. Full RNAseq DEA of the dataset GSE175384 containing samples from MM and
healthy  subjects  by  following  the  pipeline  provided  at
https://github.com/ASPteaching/Omics_data_analysis-Case_study_2-RNA-seq ,
which was provided to students of the Master’s degree in Bioinformatics and
Biostatistics  from  the  University  Oberta  of  Catalonia  and  University  of
Barcelona during the first part of the virtual class ‘Omics data analyses’. Among
other results, this analysis yielded a list of annotated DEGs for MM subjects
included in this dataset.

3. Full microarrray DEA of the dataset GSE47552 containing samples from MM
and  healthy  subjects  by  following  the  pipeline  provided  at
https://github.com/ASPteaching/Omics_Data_Analysis-Case_Study_1-
Microarrays ,  which  was  provided  to  students  of  the  Master’s  degree  in
Bioinformatics and Biostatistics from the University Oberta  of Catalonia and
University of Barcelona during the second part of the virtual class ‘Omics data
analyses’. Among other results, this analysis yielded a list of annotated DEGs for
MM subjects included in this dataset.

4. Independent Queries of DEGs found in DEAs of GSE175384 and GSE47552
datasets  by using the CMap Query tool (www.  clue.io/query  )  in order to  find
compounds that counteract regulation of DEGs for these datasets,  and would
thereby have potential to treat patients included in these studies.

5. Generation of a final list of validated drugs with repurposable potential for MM
by selecting compounds generated by SAveRUNNER for this disease that:

a) Are also part of at least one of the DEA/CMap analyses performed in this
study,

b) At the time of writing this thesis, have not been found as part of any study
related to MM in the literature. 

6. An example of  molecular  docking analysis  by using the  KIT kinase domain
protein (target) corresponding to a DEG found in GSE175384, and the validated
repurposable candidates  ponatinib  and axitinib (ligands)  with similar  binding
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sites to compare their affinities to their common target, thereby assessing which
one would be preferable.

1.3. Planning with tasks, milestones, and calendar 

    This  study was carried out during the first semester of the academic year 2021/22,
with start date on the 15th of September, and going through different evaluation tests
(pruebas  de  evaluación  contínua  (PECs)),  until  its  public  defense  during  the
second/third  week  of  January  2022.  Each  PEC  was considered  a  milestone,  and
consisted of different tasks to be  completed in order to  achieve the  project objectives
successfully.  The  dates  for  the  completion  of  the  different  tasks  in  each  of  the
PECs/milestones can be found in the following chronogram (Figure 1): 

 Made with GanttProject9.
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Figure 1: Gantt chronogram for PECs (milestones) and corresponding tasks.



  

  In  the  corresponding  gantt  chart  (Figure  2),  the  different  milestones  with  their
respective tasks achieved during the development of this project are represented with
different colors for better identification . 

Made with GanttProject9. 

1.4. Brief summary of obtained products

The following products have resulted upon completion of this master’s final project:

• A thesi  s (  this   document  )  , which mainly includes introductions to MM and drug
repurposing, followed methodology, as well as results and discussion related to
the objectives mentioned in section 2.

• Supporting  information  files   uploaded  in  github  at
https://github.com/appropiate/TFM_UoC, which consist of compound and DEG
tables, DEA reports, as well as docking analyses that have all been generated as
part of the results, but are too large to be completely included in  the main text of
this thesis.

• Thesis presentation and defence (PEC5a and PEC5b)  : A brief introduction to
the research topic of the project followed by a summary of the results has been
ellaborated with LibreOffice Impress or similar tool to present and defend the
thesis.
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Figure 2: Gantt chart for PECs (milestones) and corresponding tasks.
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1.5. Brief description of other sections 

Upon  describing the  rationale for  this  thesis,  its objectives  with their
corresponding timelines, and a summary of the obtained products, the remaining
sections of this work are briefly explained next:

• Background on MM and the SAveRUNNER algorithm to help the reader gain
basic  knowledge  on  concepts  regarding  the  main  topics  of  this  thesis,  thus
facilitating its understanding.

• Materials and methods, where a description of the hardware, software, data,
and methodology used in this work to produce the presented results is presented.

• Results  showing  drug  candidates  for  reposition  to  MM  generated  by
SAveRUNNER,  validation  of  these  using DEA/CMap  analyses,  selection  of
compounds  that were not previously found associated to MM treatment in the
literature, and a molecular docking example of ligands (ponatinib and axitinib)
with a common binding site in a protein differentially expressed in a MM dataset
used in this study (KIT kinase domain).

• Conclusions,  where  the  main  findings,  changes  on initial  plans  due  to
unforeseen difficulties, as well as brief ideas of future projects following up on
this study are presented. 

• Glossary with the meaning of all the abbreviations used throughout this thesis.

• References, consisting of a list of all the scientific articles, official websites, and
repositories that have been referred to on the different sections of this work.

• Supplementary  information  listing  the  different  files  and  directories  with
reports, tables and other files produced throughout this work that were too large
to be completely included in this thesis, reason for which they have been made
available via GitHub at https://github.com/appropiate/TFM_UoC . 

2. BACKGROUND

    This thesis is focused on implementing the network-based algorithm SAveRUNNER 
to find repurposable drug candidates for Multiple Myeloma (MM). Therefore, a general 
background for both MM and drug repurposing is presented in this section.

2.1. Background on Multiple Myeloma: A brief description

    Although  important  advances  have  been  made  in  recent  years,  MM is  still  an
incurable and deadly type of blood cancer that encompasses 10% of all hematological
malignancies10 and  0.9% of all  cancer diagnoses11.  It is therefore paramount to keep
elucidating  new aspects  and molecular  mechanisms that  may help  create  better  and
more specific therapeutical interventions in the future. 
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2.1.1. Diagnosis 

   Up to 74 years old, the cumulative risk of suffering MM worldwide is approximately
0.21 (approximately 1 in 500)12, and the median age at diagnosis is 66-70 years13. In
order  to  diagnose  MM,  the  patient  must  meet  certain  criteria  (Table  1).  First, the
population  of  clonal  bone  marrow  plasma  cells  must  be  greater  than  10%  or,
alternatively, a bony or extramedullar plasmacytoma must exist.  The second criteria to
be met is that the patient has either a) Calcium elevation, Renal dysfunction, Anemia
and Bone disease (altogether known as ‘CRAB’ criteria), b) high percentage of clonal
bone marrow cells, c) overabundance of involved serum-free light chains (secreted by
myeloma cells), or d) lesions detected by magnetic resonance of at least 5 mm14.

Adapted from14.

2.1.2. Clinical manifestations

  Symptoms experienced by MM patients include constipation, leg weakness/numbness,
fatigue, reduced appetite, weight loss, or bone pain among others8, with the latter being
related to myeloma cells promoting the release of different factors, such as RANKL,
TNF-a,  IL-6,  and  VEGF,  which  all promote  the  activity  of  the  osteoclast  and  its
precursors,  as well as the release of factors, such as DKK1, SFRP3, HGF, TGF-Beta,
Sclerotin, or Activin A, that inhibit the activity of osteoblasts and precursors. Osteoclast
activation  and  osteoblast  inhibition  cause  disruption  of  the  balance  between  bone
formation  versus bone  resorption,  and leads  to osteolytic  lesions15 that  MM patients
often experience (Figure 3). 
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Table 1. Diagnosis criteria for MM. 



    Osteoclast activity is enhanced whereas osteoblast activity is inhibited by abnormal plasma cells during MM15.

2.1.3. MM classification, staging and stratification

    MM is originated in the bone marrow and affects a type of white blood cell known as
plasma cell,  which  normally  makes  antibodies  to  fight  infections.  An antibody  is  a
molecule made of two equal heavy chain proteins (α, δ, ε, γ, and μ) and two  light chain
proteins (κ and λ), which all belong to the immunoglobulin (Ig) superfamily16 (Figure
4). 

The structure of the antibody consists of two heavy and two light chains, each of which contains different regions
with different functions17.

              7

Figure 4: Antibody structure.

Figure 3: Bone activity influenced by plasma cells.



    Different combinations of heavy chains and light chains will result in different types
of  antibodies,  with  each  plasma  cell  producing  a  specific  type  of  antibody  only.
Therefore, having different plasma cells equips a healthy organism  with a repertoire of
different antibodies and enables it to fight infections. However, during MM, a plasma
cell becomes dysregulated, proliferates abnormally,  and over time outcrowds the rest of
plasma cells, which makes the patient more susceptible to infections because abnormal
plasma  cells  in  a  myeloma  originally  come  from  the  same  plasma  cell  clone  and
therefore make the same antibody or the same free light chain  (FLC), which becomes
predominant18. The secreted antibody or FLC type can in turn be used as a biological
marker to help classify the type of MM17, although non secretory myeloma also exist,
and are harder to diagnose19.

   In order to classify MM attending to its stage, the International Staging System (ISS)20

is  commonly  used  as  staging  criteria,  which  divides  MM cases  in  three  categories
attending to levels  of albumin,  b2-microglobulin, and lactate dehydrogenase (LDH) or
cytogenetics analyses (Table 2). However, other systems with different criteria, such as,
myeloma cell mass21, or serum free light chain ratio (sFLCR)22 also  have prognostic
value. 

Adapted from20.

  Different genetic alterations found in MM, such as deletions and translocations, are
strongly associated to the aggressiveness of MM. Therefore, the prognosis for a patient
will significantly depend on the type(s) of cytogenetic abnormality present in the plasma
cell clone that is responsible for a given myeloma (Table 3). 
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Table 2. Staging criteria for Multiple Myeloma



                             Adapted from20.

   In  addition,  MM  can  also  be  classified  as  newly  diagnosed  (NDMM)  or
relapsed/refractory  MM  (RRMM), with the  latter  referring to  reappearance  of  MM
signs and symptoms after a period of partial remission23.    

2.1.4. Current treatments 

Different types of drugs are commonly  included as part of MM treatment (Figure  5),
including:

• Proteosome inhibitors (PIs), such as bortezomib (usually named in treatments
as Velcade®) or cafilzomib (kyprolis®),  which basically  work by inhibiting
degradation of proteins that need to be eliminated so that myeloma cells  can
thrive and keep proliferating24,25. 

• Derivatives of thalidomide, lenolinamide26,27 (Revlimid®) and pomalydomide28,
which are known as  immunomodulatory drugs (IMdDs). They seem to help
fighting myeloma cells differently, with the mechanism of action of the latter yet
to be elucidated28. 

• Alkylating  agents,  such  as  cyclophosphamide,  whose cytotoxic  activity
involves DNA and RNA cross-linking and inhibition of protein synthesis29.  

• Monoclonal antibodies  (immunotherapy) can also be part of a treatment. For
example,  Daratumumab30 is used as part  of second line treatment  and targets

              9

      Table 3.  mSMART risk stratification.



CD38, which is overexpressed by at least a subset of MM cells, thus causing
them to go into apoptosis31.   

• Glucocorticoids,  such  as  dexamethasone  or  prednisone,  are  usually  also
included in the combination of drugs to treat MM as anti-inflammatory, although
dexamethasone is also used due to its cytotoxicity on myeloma cells32,33.

IMiDs:  immunomodulatory  drugs;  MAbs:  monocolonal antibodies;  PARP:  poly  A  ribose  polymerases;  HDAC:
histone deacetylase; Hsp-90: heat shock protein 90; IL: interleukin; FGFR3: fibroblast  growth factor receptor 3;
PDGFR: platelet-derived growth factor receptor; VEGFR: vascular endothelial growth factor receptor; IGF: insulin-
like growth factor; EGF: epidermal growth factor; PD-1: programmed cell death protein 1; BAFF: B cell activating
factor;  KSP:  kinesin  spindle  protein;  MAPK:  mitogen-activated  protein  kinase;  MTORC:  mammalian  target  of
rapamycin complex. Adapted from 34.

   Although the landscape to treat  NDMM or RRMM is evolving relatively often, and
once  the possibility  of a clinical trial is discarded, patients would normally undergo a
bone marrow transplant as a first line of treatment, provided they are eligible (Figure 6).
This procedure consists  of destroying the patient’s bone marrow cells with high-dose
chemotherapy  to  eliminate  myeloma and bone marrow cells35.  The  next  step  would
consist  of  restoring  bone  marrow  stem cells with  cells  from the  patient  that  were
collected  before  chemotherapy  (autologus  transplant36),  or  from  a  healthy  and
compatible  donor  (allogeneic  transplant37).  After  considering  this  step,  a  specific
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Figure 5: Compounds overview to treat MM.



combination of the above mentioned drugs would usually follow depending on the case
to maximize the efficacy of the treatment (Figure 6).

(*)  KRd  under  investigation;  four  drug  combinations  under  investigation  (eg,  Dara-IRd).  ASCT,
autologous  stem-cell  transplantation;  BIRD,  clarithromycin-lenalidomide-dexamethasone;  Bort,
bortezomib;  CyBorD,  cyclophophosphamide-bortezomib-dexamethasone;  Dara-IRd,  daratumumab-
ixazomib-lenalidomide-dexamethasone;  Dara-KPd,  daratumumab-carfilzomib-pomalidomide-
dexamethasone;  Dara-RVd,  daratumumab-lenalidomide-bortezomib-dexamethasone;  DCEP,
dexamethasone-cyclophosphamide-etoposide-cisplatin;  DPd,  daratumumab-pomalidomide-
dexamethasone;  DRd,  daratumumab-lenalidomide-dexamethasone;  DT-PACE,  dexamethasone-
thalidomide-cisplatin-doxorubicin-cyclophosphamide-etoposide;  DVd,  daratumumab-bortezomib-
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Figure 6: Treatment algorithm for NDMM and RRMM.



dexamethasone;  Elo-PVd,  elotuzumab-pomalidomide-bortezomib-dexamethasone;  EPd,  elotuzumab-
pomalidomide-dexamethasone;  ERd,  elotuzumab-lenalidomide-dexamethasone;  EVd,  elotuzumab-
bortezomib-dexamethasone;  HD-cyclophosphamide,  high-dose  cyclophosphamide;  ICd,  ixazomib-
cyclophosphamide-dexamethasone;  IPd,  ixazomib-pomalidomide-dexamethasone;  IRd,  ixazomib-
lenalidomide-dexamethasone; KCd, carfilzomib-cyclophosphamide-dexamethasone; KPd, carfilzomib-
pomalidomide-dexamethasone;  KRd,  carfilzomib-lenalidomide-dexamethasone;  Len,  lenalidomide;
PCd,  pomalidomide-cyclophosphamide-dexamethasone;  Pd,  pomalidomide-dexamethasone;  PVd,
pomalidomide-bortezomib-dexamethasone; RCd, lenalidomide-cyclophosphamide-dexamethasone; Rd,
lenalidomide-dexamethasone;  RVd,  lenalidomide-bortezomib-dexamethasone;  Vd,  bortezomib-
dexamethasone;  VDT-PACE,  bortezomib-dexamethasone-thalidomide-cisplatin-doxorubicin-
cyclophosphamide-etoposide; VMP, bortezomib-melphalan-prednisone; VTd, bortezomib-thalidomide-
dexamethasone35.

   Although the current  plethora of treatments  has greatly  contributed to  increasing
survival time for MM patients, finding new therapeutics that can further improve the
prognosis of MM  is necessary since this disease still remains lethal. One reason that
could contribute to explain such lethality even under treatment is the fact that myeloma
cells can become resistant to therapeutics due to genetic/epigenetic alterations, abnormal
drug transport/metabolism,  or dysregulation of apoptosis among other mechanisms38.
These  changes  as  myeloma  cells  proliferate  lead  to  heterogeneous  sub  populations
(hence the term multiple myeloma), some of which can be unaffected by the patient’s
treatment and become the more predominant sub-type leading to RRMM39,40.

2.1.5. Prognosis

    The median  age at  death for  MM is 75 years old41,  but  the survival  rates  vary
significantly worldwide due to age, staging, ethnicity, lifestyle, and disparities in access
to health  care for  different  countries2.  In  general,  the outcome of  MM is  better  the
earlier,  (regarding age42 (Figure  7)  and stage)  it  is  detected.  In  any  case,  the  great
increase in survival time achieved in the last decades42 (Figure 7) sheds hope on finding
a definite cure for this disease in a not so distant future.
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Cumulative percent survival in the last decades by age42.

2.2. Background on drug repurposing: A brief description

    Drug repurposing consists of finding clinically available drugs with potential to treat
diseases  other  than  those  they  were  initially  approved  for.  The  beginnings  of  drug
repurposing  consisted  of using  drugs  on  a  new disease  based  on indirect  empirical
evidence,  such  as  off  target  effects, or  hypotheses  about  their  potential  to  treat  a
different illness. However, rather than repurposing a drug at at time, recent advances in
computational analyses now allow the processing of ‘big data’ in a relatively short time,
which  can  be  used  to  generate  lists  of  drug-target-interactions  and  thereby  find
therapeutics that could be novelly applied to a disease. Thus, in silico drug repurposing
has contributed to a new avenue on the discovery of therapeutics that consists of shifting
from the ’one drug -> one target -> one disease’ approach to a ‘several drugs  -> several
targets -> several disesases’  paradigm43,44.  This allows finding novel drug candidates
without having to go through the ‘de novo’ drug discovery process, thereby saving a
considerable amount of time, human and financial resources, which makes it a desirable
approach  for  both  patients  and pharmaceutical  companies43.  Depending  on the  data
resources used in the analysis45, in silico drug repurposing methods can be grouped into
different  categories,  with docking-based, machine learning-based, and network-based
methods being considered as major groups.
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Figure 7: Evolution of MM prognosis. 



2.2.1. Docking-based methods

      Molecular docking is a type of computational analysis that makes simulations and
predictions  about  the  best  energetically  and  geometrically  binding  conformation
between two or more molecules. Multiple analyses using different candidates thus give
the  possibility  to  assign  a  score  to  each  docking  and  thereby  obtain  a  final  rank
indicating  the most  suitable  drug for  a  given molecule  according to  docking-related
criteria46. Among other applications (Figure 8)47, docking-based methods can be used to
perform drug repurposing, where docking scores will suggest the most appropriate drug
to be used for a protein of known 3D structure and that is suspected to be key in the
development  of the disease of interest.  In this  thesis,  docking analyses  will  only be
performed as a representative example of two potentially  repurposable candidates to
MM (ponatinib and axitinib) binding to a common target (KIT’s kinase domain), and
which one could be more suitable based on their respective affinity scores.

Adapted from47.

2.2.2. Machine learning-based methods

    Machine learning (ML) consists of using computational algorithms and statistical
models to find patterns in data that will allow making inferences and predictions. When
it comes to drug repurposing, different types of data can be used to build ML models
based on algorithms such as network propagation, matrix factorization, or deep learning,
which have been used with relative success45,48. Suggested candidates are, as in other
drug repurposing methods, further validated via in vitro / in vivo experimentation before
using them on clinical  trials49 (Figure  9).  ML models will  generally be classified as
supervised or unsupervised, with the former being characterized by using labeled data45
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Figure 8: Applications of molecular docking include drug repositioning.



(i.e.  with  known  values  for  the  variable  of  interest)  to  build  models,  unlike  the
unsupervised model approach50.

SAR: structure activity relationship49.

2.2.3. Network-based methods

    Different but yet complementary types of biological data (such as protein, metabolite,
drug, or disease data) related to a given organism can be integrated into a network to
model their interactions and gain information on  their interconnection strength. Thus,
molecular  interaction networks,  such as gene-protein interaction networks,  metabolic
networks, or protein-protein interaction networks, have been used for this purpose, and
have lead to different types of network-based drug repurposing methods51,52. A recently
published  network-based  algorithm  known  as  SAveRUNNER  (Searching  off-lAbel
dRUg aNd NEtwoRk), integrates drug-target interactions and disease-gene associations
in  the  human  interactome  (the  cellular  network  of  all  known  physical  molecular
interactions) to generate a drug-disease network that suggests new repurposable drug
candidates for diseases of interest. Based on premises of network medicine51,53 that

1. Diseases are not usually caused by a single gene mutation, but rather the deregulation
of a network of genes interconnected to each other.

2.  The  human  interactome  can  be  interpreted  as  a  map,  with  diseases  being  local
perturbations of it, and where genes associated with the a given disease therefore tend to
aggregate nearby in the network, forming, “disease modules”.
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Figure 9: Overview of ML approaches for drug repurposing. 



3. Specific drugs can perturb common proteins and also act as local perturbations in the
human interactome.

   SAveRUNNER calculates proximity and similarity scores between disease and drug
modules by using a similarity measure that gives priority to associations between drugs
and diseases located nearby within the human interactome5,6. The material and methods
section  of  this  thesis  contains  a  more  thorough description  on  the  different
computational  steps  implemented by SAveRUNNER that  lead  to  the  generation  of
repurposable drug candidates (also summarized in Figure 10).

3. MATERIALS AND METHODS

3.1. Hardware

  The  computer  (laptop)  used  to  write  this  thesis  and  perform  the  necessary
computations has the following specifications:

• Processor:  Intel® CoreTM i7-7700

• RAM memory: 32 GB DDR4

• Hard drive: SSD 512 GB

3.2. Software

The following tools will be used to generate the master’s thesis:

• Windows 10 Home as operative system. 
(https://www.microsoft.com/en-gb/software-download/windows10)

• LibreOffice as text editor (https://www.libreoffice.org/discover/libreoffice/).

• Ganttproject to make the chronogram and ganttchart shown in this thesis. 
(https://www.ganttproject.biz/).

• Zotero for reference management (https://www.zotero.org/).

• R as programming language (https://www.r-project.org/).

• Rstudio as integrated development environment (IDE, 
https://www.rstudio.com/).

• SAveRUNNER for computational analyses of drug repurposing in R 
(https://github.com/giuliafiscon/SAveRUNNER.git ).

• Different packages in R for microarray and RNAseq DEAs as well as generation
of lists and Venn diagrams (provided as supplementary information in the 
corresponding reports).

• Connectivity Map (CMap) Query tool (https://clue.io/ ) to validate drug 
candidates generated by SAveRUNNER.
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• BIOVIA Discovery Studio Visualizer (BDSV, 
https://discover.3ds.com/discovery-studio-visualizer-download ) for graphical 
representation of protein-ligand interactions.

• Open Babel (http://openbabel.org/wiki/Main_Page ) to convert files from .sdf 
format to .pdb format.

• AutoDock Vina and AutoDock Tools (https://autodock.scripps.edu/ ) for 
docking analyses.

3.3. Network-based drug repurposing algorithm: SAveRUNNER

3.3.1. Brief description

    As described in the original articles5,6, the SAveRUNNER algorithm hypothesizes
that the drug-associated targets (drug module) and the disease-associated genes (disease
module) should be nearby in the human interactome for a drug to be effective against a
given disease. Briefly, it uses lists of drug-targets and disease-associated genes to create
a network-based similarity  measure in order  to  make predictions  about  drug-disease
associations by performing the following steps:

1. Network proximity (p) computation by implementing the formula:

(Equation 3.1)

where p represents the average shortest path length between drug targets  t in the drug
module T and the closest disease genes s in the disease module S51. 

2. The network proximity values are then z-score normalized, considering as proximal
(significant) in this study only drug-disease associations with normalized z-score ≤ 1.65,
which are used for further computations.

3. Translation of the z-score normalized network proximity measure into the network
similarity measure within the range [0-1]:

(Equation 3.2)

   The greater  the similarity measure the closer a drug and a disease  module will be
within the human interactome  since the  network proximity between them (p) will be
smaller. 

4.  Cluster  detection,  using  an  algorithm  based  on  greedy  optimization  of  network
modularity54     that  groups  drugs  and  diseases  upon  their  similarity.  To  evaluate  the
quality of the clusters, SAveRUNNER computes a quality cluster (QC) score:
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(Equation 3.3)

with Win denoting the total weight of edges within a cluster, Wout denoting total weight
of edges connecting different clusters, and P being the fraction of nodes within each
cluster, which penalizes too large and not well define clusters.

5.  Network  similarity  adjustment,  by  increasing  similarity  values  for  drug-disease
associations by a factor proportional to QC: 

(Equation 3.4)

    Associations that fall within the same cluster will thus have a greater increase of their
similarity values,  highlighting the suitability of repurposing the corresponding drug for
the respective disease.

6. Network similarity normalization by applying the sigmoid function:

(Equation 3.5)

where  x  represents adjusted  similarity  (Equation  3.4),  d the  sigmoid  midpoint
(max(x)/2), and c is the sigmoid steepness (set as 10). 

  Once completed the above steps (summarized in Figure 10, and more comprehensively
described  in  the  user  guide  at  https://github.com/sportingCode/SAveRUNNER),
SAveRUNNER generates a .txt file that contains a list of drug-disease associations as a
weighted bipartite network, where nodes will correspond to either a disease or a drug.
There will be an edge/link in the network between each disease and drug with a z-score
proximity  ≤ 1.65  (p  ≤ 0.05),  with  the  corresponding  normalized  similarity  value
representing  the  weight  of  their  interaction.  SAveRUNNER  will  also  generate
additional  files  and folders,  such as  disease specific  subnetwork,  if  specified  in  the
config.R file. (see the section 3.3.3. on implementation below). This subnetwork also
contains a .txt file consisting of a list with the associated drugs to a disease of interest,
in the case of this study being MM. Given that the scope of this thesis is focused on
finding drug candidates to be repurposed for MM, only the .txt file containing the list of
drug  candidates  created  for  the  MM subnetwork  will  be  used  to  select  drugs  with
statistically significant (p ≤ 0.05) drug-MM association.
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 Adapted from6.

3.3.2. Databases used by SAveRUNNER

    All the databases used for the analyses performed in this thesis are included as part of
the folder with the SAveRUNNER algorithm coded in R, and available as a .zip file in
the GitHub repository specified in section 3.2. Briefly, SAveRUNNER comes with the
following three databases

   1. The disease-gene network was obtained from the Phenopedia database7  which, as
for  27-04-2020, contains gene associations for 3255 diseases. This database is currently
part of the HuGe Navigator55, and provides data about genes being linked to a given
disease or phenotype

   2.  The drug-target  database  released from DrugBank56 on 22-04-2020 consists  of
13,563  compounds,   of  which  2627  are  approved  small  molecule  drugs,  1373  are
approved biologics, 131 are nutraceuticals, and more than 6370 are experimental drugs.
The Uniprot IDs for targets provided by DrugBank were mapped to Entrez gene IDs
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Figure 10:  SAveRUNNER algorithm to generate lists of drug-disease associations. 



with the BioMart – Ensembl tool (https://www.ensembl.org/ ). Drugs of interest without
targets in DrugBank were integrated with drug-target interactions from the Therapeutic
Target Database. 

   3. The human protein–protein interactome provided with SAveRUNNER consists of
217,160  protein–protein  interactions  connecting  15,970  unique  proteins,  and  was
obtained from Cheng and coauthors51. They assembled their own human protein–protein
interactome and 15 commonly used databases containing several types of experimental
evidence,  such  as  binary  PPIs  from  3D  protein  structures;  literature-curated  PPIs
identified  by  affinity  purification  followed  by  mass  spectrometry;  literature-derived
PPIs from low-throughput experiments from BioGRID57, HPRD58, MINT, IntAct59, or
InnateDB60;  signaling  networks  from  literature-derived  low-throughput  experiments;
and  kinase-substrate  interactions  from  literature-derived  low-throughput  and  high-
throughput experiments. 

3.3.3. Implementation of SAveRUNNER

   The  user  guide  for  SAveRUNNER,  which can  be  downloaded  at
https://github.com/sportingCode/SAveRUNNER , explains in detail the steps to follow
to implement the algorithm. Briefly, provided the working directory has been specified
in the main.R file, and  since SAveRUNNER  includes by default the  necessary  drug-
target, disease-gene, and human interactome lists as input files to perform the analysis,
it is the file config.R where the user needs to configure the different parameters, such as
disesases  of  interest  to  build  the  drug-disease  network,  p-value  threshold,  type  to
interaction to consider (proximity or similarity), whether or not adjust similarity, or the
subnetwork with drug-disease entries for one of the specified diseases (MM in this case)
among others (Figure 11). The subnetwork for MM will be created for this thesis, from
where the best drug candidates for MM according to adjusted similarity values will be
selected.

Representative slide explaining how to configure some parameters in the config.R file61.
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Figure 11: User guide for SAveRUNNER.
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Once all the parameters are configured, SAveRUNNER can be launched by executing
the file main.R.

    As mentioned in the user guide, the creation of the main drug-disease network and
creation of the corresponding file by SAveRUNNER is computationally intensive, so
the diseases included for the different planned implementations may vary depending on
their duration in order to fit the deadline of delivery for the corresponding PEC.

3.4. Differential expression analyses (DEAs) in MM samples

    A dataset with microarray data as well as another one with RNAseq data from the
Gene Expression Omnibus (GEO) will be used to perform DEA in R. The pipelines to
be used in the respective analyses were provided to students of this master’s degree in
the  class  ‘Omics  data  analyses’,  and  are  available  at
https://github.com/ASPteaching/Omics_Data_Analysis-Case_Study_1-Microarrays  for
microarray  data,  and  https://github.com/ASPteaching/Omics_data_analysis-
Case_study_2-RNA-seq for RNAseq data. Whereas lists with top DEGs in each dataset
will be presented on this thesis, the corresponding full lists with DEGs as well as the
respective DEAs reports will be available as supplementary information in github. At
https://github.com/appropiate/TFM_UoC.

3.5. CMap query of DEGs in MM samples

    DEGs for each of the MM datasets will be uploaded to the Query tool of CMap
(https://clue.io/), which will yield lists containing different types of information for all
the available compounds on their database (Touchstone). For this study, a relevant piece
of  information  is  how similarly/dissimilarly  these  compounds regulate  the  uploaded
DEGs, which is shown through a parameter known as normalized connectivity score
(ncs).  Only  compounds  with  negative  ncs  will  be  considered  as  they  will  tend  to
regulate the uploaded DEGs in the opposite manner as they were presented in the Query
tool,  i.e. they will theoretically counteract the regulation of at least some of those DEGs
and thus treat MM. As indicated by the CMap Query tool tutorial (connectopedia)62, to
increase  reliability  of  selected  compounds  to  counteract  uploaded  DEGs,  such
compounds will need to have a negative ncs as well as values beyond a certain threshold
for other parameters, such as significant adjusted p-value (fold discovery rate or fdr) or
signature  signal  strength  among  others.  In  this  work,  the  following  parameters  and
threshold values will be used for the selection of compounds generated by the CMap
Query tool:

• ncs < 0   : Regulation of DEGs in opposite manner as uploaded in CMap Query
tool.

• pert_type  =  trt_cp  :  Filtering  of  CMap  list  to  show  only  experiments
corresponding to cells treated with compounds.

• fdr_q_nlog10 > 1  : Adjusted p-value < 0.1
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• cc_q75   >     0.  2  : Replicate Correlation Coefficient,  the higher the value, the more
consistent the response induced by the compound.

• ss_ngene > 200  : Signature Strength, representing the number of landmark genes
with absolute z-score ≥ 2.

Threshold values for cc_q75 and ss_ngene are set so that only compounds with a strong
and  reproducible  transcriptional  activity,  i.e.  a  high  transcriptional  activity  score
(TAS)63, are selected (Figure 12).

TAS for penicilin and tetracycline in different cell lines (red dots)
is low since these compounds are antibacterial drugs. Adapted from

CMap Website63.

   Only compounds that meet the above criteria will be selected in order to validate drug
candidates generated by SAveRUNNER.

3.6. Molecular Docking analyses

The 3D structure for the KIT kinase domain in a complex with ponatinib and ID 4u0i
was  downloaded  in  .pdb  format  from  the  protein  data  bank  (PDB,
https://www.rcsb.org/),  whereas  the  compounds  ponatinib  and  axitinib  were
downloaded  in  3D-SDF  format  from  drugbank
(https://go.drugbank.com/structures/search/small_molecule_drugs/structure),  and
converted  to .pdb  format  using  Open  Babel64.  Protein  and  ligand  preparation  was
performed  with  AutoDock  Tools65 or  BDSV,  3D  structures  and  interactions  were
visualized with BDSV, and docking analyses were performed using AutoDock Vina
(see section 4.4.2 for a more detailed explanation and see the followed workflow).
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Figure 12: Transcription activity score (TAS).
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4. RESULTS 

4.1. Generation of drug candidates with SAveRUNNER 

    As  earlier  mentioned,  in  order  to  obtain  drugs  to  be  repurposed to  MM using
SAveRUNNER, MM together with several other diseases need to be selected from the
Phenopedia database and included in the  config.R file of SAveRUNNER to  generate
drug candidates with potential for repositioning on MM (Figure 11).  To do so, and as
mentioned in  section  1.2.2,  two different  criteria  have  been followed in  this  thesis,
which yielded two different lists of drug candidates with potential to be repurposed for
MM. Only compounds included in both lists will be considered for further validation. A
third  implementation  was  also  used  as  a  negative  control  for the  reliability  of  this
method to generate specific candidates for to be repurposed to MM, as presented below.

4.1.1. Blood lineage diseases-based network  

    Since MM is a type of cancer affecting a cell type from the blood line (plasma cell),
as  a  first  criteria  diseases  related  to  blood  cells  were  extracted  in  R  from  the
Disease_gene  database  by Phenopedia  (Figure  13),  and  included  as  references  in
SAveRUNNER’s configuration in order to generate potential repurposable candidates.

Diseases were obtained from the Phenopedia database by using the keyword ’Lymphoma’ and the partial keywords
’kemia’ and ’yelo’ to include all possible leukemias and myeloma/myeloid related diseases, respectively.
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Figure 13: Blood related diseases to generate the first drug-disease network in SAveRUNNER.



     The implementation of SAveRUNNER with these diseases as reference yielded a list
of 360 candidates, among which most of the typical drugs used for MM treatment, such
as lenalinomide66, dexamethasone67 or bortezomid67, were included (Figure 14, Table 4,
and Supplementary information     1  )

360 compounds, such as bortezomib or lenalidomide, were generated by SAveRUNNER when using blood -related
diseases to generate the disease-drug network. The full list of candidates can be found as supplementary information

1.

Candidates ordered in terms of adjusted similarity. The full list of candidates can be found as supplementary
information   1  .

4.1.2. MM symptoms-based network

     As a second analysis, diseases related to symptoms often experienced during MM
were selected for a new implementation of SAveRUNNER (Figure 15). 
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Figure 14: Extract of drug candidates generated by the first implementation of SAveRUNNER.

Table 4: Top 20 drugs for MM generated by SAveRUNNER when  blood related diseases were used to generate the drug-

disease network.
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 Diseases were included in the config.R file to generate the corresponding disease-drug
network.

    In this case, 354 drug candidates were generated, with many of them being also
present in the previous list (Figure 16, Table 5, and supplementary information   2  ).

354 drug candidates to be repurposed in MM, such as bortezomib or lenalidomide, were generated by SAveRUNNER
when using MM-related symptoms to generate the disease-drug network. The full list of candidates can be found as

supplementary information   2  .
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Figure 16: Extract of drug candidates generated by the second implementation of SAveRUNNER.

Figure 15: Diseases related to MM symptoms used for the second implementation of
SAveRUNNER.
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Candidates are ordered by adjusted similarity. The full list of candidates can be found as supplementary information
2.

4.1.3. Network without MM as negative control

     A new implementation of SAveRUNNER as a negative control was executed with
the  aim of showing that  the  generation  of  drugs  by  SAveRUNNER  seems disease
specific. For this purpose, diseases with a similar number of genes associated as MM
and that, at the same time, have as few genes in common with MM as possible were
included in the config.R file of SAveRUNNER to run the implementation that generates
the main drug-disease network.  These diseases,  ordered from less to  more common
genes  with  MM,  were  COVID-19  with  2  genes  in  common,  obsessive  compulsive
disorder  OCD  with  12,  panic  disorder  with  15,  attention  deficit  disorder  with
hyperactivity with 23, ataxia with 26, and psychotic disorders with 34 genes in common
with MM (Figure 17). Due to having the lowest number of genes in common with MM,
COVID-19  was  first  selected  to  generate  the  corresponding  specific  drug-disease
subnetwork, yielding only around 100 candidates vs approximately 360 generated for
each of  the implementations  for  MM (data not shown).  That  is  why a drug-disease
subnetwork for OCD was next generated (Figure  17),  which yielded 736 candidates
(Figure  18 and  19), of which 45 (approximately 6%) were also generated for the two
specific subnetworks for MM with the corresponding SAveRUNNER implementations
(Figure 19). Therefore, the subnetwork generated for OCD using MM unrelated diseases
contains  mostly  diseases  that  were  not  part  of  the  subnetworks  generated  for  MM,
which demonstrates that SAveRUNNER mainly generates disease-specific candidates
with potential for reposition.
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Table 5: Top 20 drugs for MM generated by SAveRUNNER when  diseases related to MM symptoms were used to
generate the drug-disease network.
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Diseases unrelated to MM were selected to generate a disease-drug network as well as drug-
disease subnetwork with candidates to be repurposed for OCD.

736 drug candidates for OCD obtained when using MM-unrelated diseases to generate the
disease-drug subnetwork. The full list of candidates can be found as supplementary information   3  .
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Figure 17: Negative control for SAveRUNNER implementation. 

Figure 18: Implementation of SAveRUNNER as negative control.
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The first two analyses (supplementary information   1     and supplementary information   2  ,
respectively) involved diseases somewhat related to MM and MM symptoms, and yielded

similar lists of drug candidates, unlike the negative control implementation, where MM was
not included in the configuration file to generate both the general drug-disease network and

the subnetwork for OCD.

Thus,  344  compounds  have  been  commonly  generated  by  the  first  two
implementations of SAveRUNNER, and will be further validated/filtered out to
obtain a final list of candidates by using DEA/CMap analyses, outlined in the
next section.

4.2.  Validation of candidates via DEA/CMap analyses

The  workflow  followed  in  this  study  to  validate  candidates  for  MM  generated  by
SAveRUNNER is described in the next subsections.

4.2.1. Differential expression analysis (DEA) 

This step consists of:

1. Collection of data on MM vs healthy plasma cells from the gene expression omnibus
(GEO) repository. RNAseq data under the accession number GSE175384 (read counts
table for 41 healthy adults and 32 MM patients68) and mRNA microarray data under
GSE47552 (5 Normal plasma cell samples and 41 clonal plasma cell samples69) were
collected for this work. 

2. Implementation of DEA in R to find DEGs for the GSE175384 RNAseq dataset
(Figure  20) and GSE47552 microarray dataset (Figures  21), which will represent  the
gene signature or transcription profile for the respective datasets. For an adjusted p-
value < 0.05 and log2 fold change >1,  4424 DEGs were found for GSE175384 (Table 6
and  supplementary  information    4  and  5  )  whereas 768  DEGs  were  obtained  for
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Figure 19: Venn diagram for compounds generated by SAveRUNNER
implementations.
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GSE47552 (Table  7 and  supplementary information    6 and 7   ). The difference in the
number  of  DEGs  between  RNAseq  and  microarray  analyses  is  somewhat  expected
given the superiority of RNAseq technology to detect DEGs70.

The full report and corresponding R code is available as suplementary information 4.

The complete DEA and a full list of DEGs in MM can be found as supplementary information   4 and   5  ,
respectively.

              29

Figure 20:  DEA for the RNAseq dataset GSE175384. 

Table 6: The 20 most significant DEGs in MM samples for the GSE175384 dataset.
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The full report and corresponding R code is available as suplementary information   6.  

The complete DEA of the corresponding microarray data, and a full list of DEGs can be found
as supplementary information   6 and   7  , respectively.
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Figure 21: DEA for the mRNA microarray dataset GSE47552.

Table 7: The 20 most significant DEGs in MM samples for the GSE47552 dataset.
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4.2.2. Query of DEGs in Connectivity Map (CMap)  

     Drug candidates to be repurposed on a new disease should be able to counteract at
least some of  the disease’s dysregulated genes (which would correspond here to MM
DEGs) and pathways in order to treat such disease effectively. In this regard, one way to
find the strongest drug candidates generated by SAveRUNNER is to  select those that
oppositely regulate the highest number of differentially DEGs in MM. For example, if
only  genes  A,  B  and  C  were  upregulated in  MM,  then  a  good  candidate  to  be
repurposed to MM would be expected to downregulate at least one of those genes. The
best candidates would thus be those counteracting more MM DEGs. This is an in silico
procedure  used  in  previous  studies  to  validate  drugs  that  have  been  obtained  via
computational  analyses5.  In  this  study,  the  compounds  in  the  lists  generated  by
SAveRUNNER  which  meet  this  validation  criteria  in  at  least  one  of  the datasets
containing MM samples from the GEO repository (GSE175384 and GSE47552) will be
considered as the strongest candidates for drug repurposing in MM.

4.2.2.1. Use of the Query tool from CMap

     In order to implement the above described criteria to validate drug candidates, DEGs
obtained for a given dataset of  healthy vs MM samples  (together  considered as gene
signature or transcription profile) would be uploaded to the query tool offered by CMap
(https://clue.io/query ).  Once the set of genes of interest have been uploaded and the
query  has  been executed,  a  table  containing several  parameters  for compounds  that
belong to the CMap database and regulate different genes and pathways is generated71.
One  of  these  parameters  is  known  as  connectivity  score  (CS),  which  reflects  how
similarly/dissimilarly  a compound regulates  the set  of genes the user has entered as
input (DEGs for each MM dataset in this case). The more positive the CS is for a given
compound, the more similarly the compound regulates the DEGs the user has provided,
i.e  the  compound  will  cause  a  similar  transcription  profile  upon treatment  and will
therefore tend  to  upregulate  the  majority  of  the  genes  that  are  upregulated  in  the
uploaded DEG set, and downregulate the majority of genes that are dowregulated on the
uploaded DEG set. In contrast, compounds with a negative CS would cause an opposite
transcription profile upon treatment, i.e. they will tend to downregulate the majority of
the genes that are upregulated in the uploaded DEG set and upregulate the majority of
genes that are downregulated in the uploaded DEG set. Therefore, according to the goal
of this thesis, the compounds of interests will be those with negative CS since they will
tend to counteract the uploaded DEGs (dysregulated genes) in MM, i.e. they will have
most  potential  to  treat  MM. A normalized  version  of  CS (ncs)  together  with  other
parameters  is actually a better criteria to use since it accounts for cell type and other
conditions in which transcription profiles caused by these compounds were obtained by
CMap72. Thus, for this thesis, the query tool in the CMap website was used two times by
uploading DEGs for either GSE175384 (RNAseq) or GSE47552 (microarray) in order
to find drugs with gene signatures that are most dissimilar to these sets of DEGs (Figure
22), i.e. we would be selecting compounds based on the criteria earlier specified in to
come up with a set of drug candidates that would counteract the transcription profile for
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https://clue.io/query


each of the MM used in this thesis (Tables 8 and 9 and supplementary information   8 and  
9).

Top upregulated and downregulated genes for each DEA (GSE175384 and GSES47552) were introduced in the
GUI of the CMap query tool to generate the corresponding lists of compounds with their corresponding drug

signatures and connectivity scores (supplementary information 8 and 9, respectively).
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Figure 22: CMap Query tool.
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The full list is available as supplementary information   8  .

The full list is available as supplementary information   9  .
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Table 8: Top 20 compounds with most dissimilar normalized connectivity scores (norm_cs) for DEGs in
GSE175384.

Table 9: The 20 compounds with most dissimilar  normalized connectivity scores (norm_cs) for DEGs in
GSE47552. 
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4.2.3. Intersection of compounds lists found via CMap and SAveRUNNER

     Drugs present in all the lists earlier presented, i.e. compounds generated by both
SAveRUNNER implementations for MM  and  further validated by both DEAs/CMap
analyses, would be considered as the strongest candidates for drug repurposing to MM
in this study. Seven drugs met this criteria (Figure 23 and Table 10),  of which only the
antibiotic sparfloxacin could be considered as candidate for drug repurposing  in MM
because  the  rest  of  these  validated  drugs  have  already  been  used  in  at  least  one
published study aiming at treating MM (Supplementary information 10). 

DEGs for GSE175384 and GSE47552 datasets were used in the CMap Query tool to obtain drug
signatures with ncs values. 

    Drugs resulting from the intersection of lists generated by the two SAveRUNNER implementations and the two
DEG/CMap analyses using the GSE175384 and GSE47552 datasets. 

    In order to increase the number of candidates generated by SAveRUNNER that could
be considered for repurposing in MM, a validation by one DEA/CMap analysis,  i.e.
partial  validation,  was  also  performed.  In  this  case, 62 compounds  were  validated
(Figure  23,  Table  11,  and  supplementary  information  1  1  ).  As in  the  case of  totally
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Figure 23:  Venn diagram for compounds obtained with SAveRUNNER and CMap.

Table 10: Totally validated candidates generated by SAveRUNNER.
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validated drugs, partially validated candidates included several compounds used in MM
treatments,  such  as  polimalidomide67,  daunorubicin73,  or  ifosfamide74 (Table  11 and
supplementary information   1  1  ).

 The full list can be found as supplementary information   1  1  .

     However, in this case 21 of those 62 compounds were not found to be used in studies
related to MM at the time this study was carried out, and could thus be considered as
repurposable candidates for MM (Table 12 and supplementary information   1  1  )

Table ordered according to their mean adjusted similarity. 
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Table 11: Top twenty candidates validated by either GSE175384 or GSE47552 datasets.

Table 12: Novelly repurposable candidates validated by either the GSE175384 or GSE47552 datasets.
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4.3. Repurposable drugs for MM generated by SAveRUNNER

     Twenty two candidates  generated by SAveRUNNER have thus met the criteria of
total or partial validation approach, and are therefore considered as drugs with potential
to be novelly repurposed to MM (Table 13). 

The above compounds can be grouped attending to their function:

• Non-steroid anti-inflammatory drugs (NSAIDs), which are generally used to
treat pain or fever among other inflammatory events75, but have also been shown
to help in several types of cancer76. However, in the case of MM, they should be
handled with  caution due to potential complications related to kidney failure77.
According  to  SAveRUNNER  implementations  and  subsequent  validated
approach  followed  in  this  thesis, balsalazide,  ketoprofen,  oxaprozin  and
tenoxicam  are the NSAID candidates that may be repurposed for MM patients
to help treat this disease (Figure 24).

Compounds generated by both SAveRUNNER and validated via DEA/CMap analyses. Structures were obtained from
DrugBank78.

• Antibiotics, which are widely used to selectively treat bacterial infections given
their capacity to target bacterial specific processes, such as the building of their
cell wall, provided that the bacteria has not become resistant to the antibiotic79.
In  addition  to  this  role,  some antibiotics  have  previously  been  used  to  treat
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Figure 24: Molecular structures of the indicated  NSAIDs.

Table 13: Repurposable  candidates validated by GSE175384 and/or GSE47552 datasets and their
annotated targets in CMap. 



cancer, hence the possibility that those obtained in this thesis might be eligible
for MM treatment. However, the potential adverse effects of antibiotics, such as
changes  in  the  intestinal  microbiota,  needs  to  be  taken  into  account  when
considering  their  use  in  cancer  patients80.  According  to  the  performed
bioinformatic  analyses  in  this  thesis,  the  antibiotics  sparfloxacin,  cefdinir,
levofloxacin,  and triclosan (Figure  25)  are  suggested to  have potential  to  be
repurposed to MM.

Compounds generated by both SAveRUNNER and validated via DEA/CMap analyses. Structures were
obtained from DrugBank78.

• Antifungal agents, which are compounds that specifically target pathogens of
fungal origin, and are divided into different classes according to their molecular
structure and targets81. In the context of cancer, Itraconazole, which belongs to
the azole antifungal subgroup, and has recently been repurposed to  treat  this
disease82.  Thus, another azole compound, oxiconazole,  which has come up in
this  study  together  with  triclosan  as  a  potential  agent,  might  be  relevant  if
repurposed to MM (Figure 26).

Compounds generated by both SAveRUNNER and validated via 
DEA/CMap analyses. Structures were obtained from DrugBank78.

• Antihistamines, often used to alleviate symptoms, have in some cases also been
repurposed for  cancer  treatments  given  their  capacity  to  revert  multidrug
resistance83. Therefore, the antihistamines doxylamine and meclizine (Figure 27)
obtained  upon  implementation  of  SAveRUNNER  might  be  candidates  to
consider when testing for drugs novelly applied to MM treatment. In the case of
meclizine, it actually has been  already used against several types of cancer84,85.
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Figure 25: Molecular structures of the indicated antibiotics.

Figure 26: Molecular structures of the indicated antifungals.



Compounds generated by both SAveRUNNER and validated via
DEA/CMap analyses. Structures were obtained from DrugBank78.

• Steroids,  are  compounds  that  include both  laboratory-synthesized
(corticosteroids)  and  naturally  produced  hormones  with  anti-inflammatory
properties and modulatory effects on the immune system86,  which makes them
useful on  a  variety  of  diseases,  such  as  multiple  sclerosis  or  autoimmune
diseases87.  They can also be used in  cancer  treatment,  with prednisone88 and
dexamethasone33 actually  being  currently  used  for  MM therapy.  In this  drug
category,  SAveRUNNER  analyses  implemented  in  this  study  suggests the
steroids mifepristone and pregnenolone as potential candidates to be repurposed
to MM (Figure  28),  which  would  expand the  applications  these compounds
currently have in cancer89,90.

Compounds generated by both SAveRUNNER and validated via
DEA/CMap analyses. Structures were obtained from DrugBank78.

• Enzyme inhibitors,  which usually  block the biological reactions their named
after,  can  also  be  used  for  cancer  treatment  provided  they  target  enzymes
involved in cancer key events, such as cell cycle dysregulation91 or apoptosis
inhibition92 among  other  events.  In  this  study,  the  decarboxylase  inhibitor
carbidopa,  the  selective  COX-2  inhibitors  etoricoxib  and  parecoxib,  and  the
tyrosine kinase inhibitors axitinib and ponatinib  (Figure  29)  have emerged as
potential candidates to be repurposed for MM treatment. Thus, these compounds
may have capacity to treat other cancers than those they have been already used
against93–97.
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Figure 27: Molecular structures of the indicated antihistamines.

Figure 28: Molecular structures of the indicated steroids.



Compounds generated by both SAveRUNNER and validated via
DEA/CMap analyses. Structures were obtained from DrugBank78.

• Lastly,  Floxuridine, rilpivirine,  valrubicin,  and flutamide,  not belonging to
any of the above mentioned categories, have also been obtained in this study as
repurposable  candidates to MM (Figure  30). Floxuridine inhibits cell division,
thus being useful to target cells that divide rapidly,  such as cancer cells98. This
may make floxuridine potentially beneficial in the treatment of MM. Rilpivirine
is a non-nucleoside reverse transcriptase inhibitor typically used to treat patients
infected with the HIV-1 virus that has also shown toxic effects on pancreatic
cancer cells99. Thus, MM cells may also benefit from this drug, and experimental
validation might be worth a try. Valrubicin has been used for bladder carcinoma,
and is  one of  the  topoisomerase inhibitors  (TIs)  used  in  cancer  treatment100.
Since TOP2A is upregulated in a subset of MM patients101, TIs appear useful
when treating this MM subgroup. However, the DEAs for the patient samples
included in the datasets  analyzed in  this  thesis  show downregulation TOP2A
(supplementary  information  5 and  7),  which  may  make  valrubicin  less
appropriate for these patients. Flutamide is a drug that prevent testosterone to
bind the target cell receptor and has thus been used in the treatment of advanced
prostate cancer102. Since MM patients seem to have low levels of testosterone, it
seems unclear how flutamide could be beneficial in this scenario.

Compounds generated by both SAveRUNNER and validated via DEA/CMap analyses. Structures
were obtained from DrugBank78.
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Figure 30: Molecular structures of the indicated compounds.

Figure 29:  Molecular structures of the indicated enzyme inhibitors .
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4.4. Molecular affinity example: docking of ponatinib or axitinib with KIT 

4.4.1. Selection criteria for drugs and target

     As discussed earlier, when entering DEGs obtained via DEAs (Tables 6 and 7, and
supplementary information  5 and 7, respectively)  as input in the query tool of CMap,
the  corresponding  .gct  files  were generated  (supplementary  information    8  and  9  ,
respectively).  These files contain different  parameters, such as ncs scores, for which
threshold values have been used as filters in order to select compounds that potentially
counteract the transcription profiles (DEGs) of the MM datasets used for DEAs in this
thesis.  This means that  such compounds would have the potential  to  treat MM.  In
addition  to  these  parameters  (specified  in  section  3.5),  these  .gct  files  also  contain
annotated genes for each compound, i.e genes that can be regulated by each compound
according  to  what  is  published  on  the  literature,  and  independently  of  the  query
performed  using  the  DEGs  introduced  by  the  user  (Table  13 and  supplementary
information   8 and 9  ). These annotated genes for each compound present in the final list
of candidates to repurpose to MM has been used as a filter of all the DEGs found via
DEAs in order to select a gene (target) to perform molecular docking as a representative
example of  which drugs could have more affinity for this given target. The selected
gene was KIT, since it is involved in cell survival/proliferation103, promotes cancer in its
mutated  forms104,  it appeared  significantly  upregulated  in  the  GSE175384  dataset
(supplementary information   5  ), is expressed in plasma cells in at least a subset of MM
patients105, and, according to the CMap analyses performed in this thesis as well as to
previous studies106,107, is a target for the anticancer drugs axitinib and ponatinib, both
present in the final table of repurposable candidates (Table 13). Axitinib has been used
to inhibit tumor growth in renal carcinoma108 or breast cancer109, whereas ponatinib is
better  known as a drug against  leukemia110.  Although both drugs have already been
shown to interact with the KIT’s kinase domain via docking studies106,107,  a question
about which one could have more affinity and might therefore be used on a lower dose
could  be  clinically  relevant  in  MM.  This  could  be  addressed  by  comparing  the
corresponding  docking  analyses,  which  is  shown  in  the  next  subsection  as a
representative  example  of an approach  to  follow when selecting  a candidate  among
available drugs with common targets.

4.4.2. Molecular Docking analyses: Workflow and results

      The crystal structure of the KIT kinase domain as a complex with ponatinib was
downloaded  in  .cif  format  from the  protein  data  bank  (PDB,  ID 4u0i),  and further
processed  in  BIOVIA  Discovery  Studio  Visualizer  software  (BDSVS,
https://discover.3ds.com/discovery-studio-visualizer-download)  by  removing ponatinib
and water molecules to be left with only the KIT kinase domain. In addition, BDSVS
detected three active sites for KIT in the .cif file, with Active Site 1 containing residues
that belong to the ATP, selectivity, and DFG pockets (Figure  31), which are directly
involved in KIT-ponatinib107 and KIT-axitinib106 interactions to explain the KIT kinase
domain inhibition. However, no information on ponatinib or axitinib interaction with the
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other active sites was found in the literature. For this reason, the docking analyses were
only performed for active site 1, whose center coordinates were assigned based on a
sphere generated by BDSVS that spanned this site (Figure 32). 

Active sites are highlighted in yellow (3D structure) and black (amino acid sequence). Only  active site 1 appears to
interact with ponatinib and axitinib in the current literature.

The sphere radius and center determine
coordinates for the active site 1 in human KIT
kinase domain, which were used as reference

for molecular docking analyses in ATS. 

    The center coordinates for the sphere together with 2 times the respective radius used
to set the size of each dimension of the grid-box used as reference in the configuration
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Figure 31: Active sites for KIT's kinase domain detected by BDSVS.

Figure 32: Active site 1 coordinates
determined by BDSV.



files (Figure  33)  needed by Autodock Vina and AutoDock  Tools Software (ATS)65 to
perform the docking analyses of KIT with either ponatinib or axitinib (Figure 34).  

Each file with the respective coordinates
and grid box size can be found as
supplementary information 12.

     Prior to running docking analyses, preparation of KIT, poxatinib and axitinib as well
as  subsequent  creation  of  the  corresponding  .pdbqt  files  was  carried  out.  KIT was
prepared mostly in ATS (unless specified otherwise), and consisted of:

• Removing water molecules and ponatinib including in the initial  .cis file  and
saving output as .pdb file  for further use in Autodock Vina and ATS (done in
BDSVS).

• Adding polar hydrogens.
• Adding Kolmann charges and computing Gaisteger charges.
• Set atoms in format AD4.
• Save molecule in .pdbqt format.

    Regarding  preparation  of  the  ligands, ponatinib  and  axitinib  structures  were
downloaded from  Drugbank78 in  3D-SDF format,  transformed into .pdb format  with
Open Babel64, and loaded onto ATS as ligands, where: 

• Gasteiger charges were added.
• Non-polar hydrogens were merged.
• Rotatable bonds were detected.
• Number  of  torsional  degrees  of  freedom  in  the  ligand  (TORSDOF)  were

detected.
• Root was automatically detected and selected to set the torsion tree.
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Figure 33: Config.txt file used by
Autodock Vina for docking

analyses.
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• Molecules were saved in .pdbqt format.

    Docking  analyses  were  all performed  from the  Windows  command  line  using
vina.exe and the corresponding parameters,  which yielded different  poses with their
respective  affinity  scores  for  each  docking  analysis  (Figure  34 and  supplementary
information 12 ). 

Representative example of molecular docking analysis yielding affinity scores for different poses between active site
1 in KIT and ponatinib.  Docking analyses for both ponatinib and axitinib with active site 1 in KIT are available as

supplementary information 12.

   The output file for each docking analysis contained affinity scores for different ligand
poses (Figure 34), and was further splitted into .pdqt files, each corresponding to a pose,
by using  vina_split.exe (Figure  35) in order to be able to use the best ponatinib and
axitinib poses individually with KIT’s active site 1 for docking visual representation
(Figure 36 and Figure 37, respectively). 

All .pdbqt files for individual poses can be found as supplementary information 12. 
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Figure 34: Execution of AutoDock Vina in Windows Command line.

Figure 35: Creation of pdbqt.files for individual poses in each docking analysis.
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A,3D representation for the best pose  (lowest affinity score) between residues in active site 1 of KIT kinase domain
and ponatinib (yellow). B, 2D representation of A. Images generated with BDSVS.
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Figure 36: Molecular docking between KIT and ponatinib.



A,3D representation for the best pose  (lowest affinity score) between residues in active site 1 of KIT kinase domain
and axitinib (yellow). B, 2D representation of A. Images generated with BDSVS.

The best (lowest) affinity score corresponded to the Active Site 1-ponatinib interaction
(Figure 34 and 36, Table 1  4  , and supplementary information 12). Therefore, due to its
greater  affinity,  ponatinib  might  be  preferable  over  axitinib  to  inhibit  KIT’s  kinase
domain  according  to  this  analysis.  In  this  case,  since  KIT  appeared  differentially
expressed in the GSE175384 dataset used in this study (supplementary information   5  ),
at  least  some MM patients  might  find  more  beneficial  to  undergo a  treatment  that
includes ponatinib rather than axitinib for KIT inhibition, i.e. they may have less side
effects  with ponatinib than with axitinib since a  lower dose would be needed.  It  is
however worth noting that, even though the active site 1 contains the residues involved
in both KIT-ponatinib and KIT-axitinib interactions available in the literature106,107,  the
interactions  generated  by BDSVS (Figure  36 and Figure  37)  upon running docking
analysis with ATS (Figure 34 and supplementary information 12) do not exactly match
what is shown in the corresponding publications106,107. Thus, further optimization of the
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Figure 37: Molecular docking between KIT and axitinib.
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obtained structures, a more detailed docking analysis as well as experimental validation
(all  out  of  the  scope  of  this  work)  are  possibly  necessary  in  order  to  address  this
question with more certainty.

Values for the best pose of each docking analysis
between KIT’s active site in the kinase domain and
axitinib or ponatinib. Scores for all poses in each
docking analysis are available as supplementary

information 12.

5. CONCLUSIONS

    New drugs to treat MM are necessary  given its currently poor prognosis.  In silico
drug repurposing stands as a valuable tool since it helps with the reposition of drugs that
are currently being used for other diseases in a relatively fast and inexpensive manner.
In this regard, this thesis presents some candidates  that might be repurposed to MM,
thereby helping improve the, as for today, lethal final outcome of this malignancy.

5.1. Goals achieved

   In this  study, the initial  aim of finding candidates to repurpose to MM has been
accomplished: A final list of twenty two candidates belonging to different drug classes
are suggested to have the potential to be repurposed to MM. This has been achieved by:

1.  Implementing SAveRUNNER, a network-based algorithm to that performs in silico
analyses in R that yields candidates with repurposing potential for a given disease5,6.
These  candidates  appear  to  be  specific  for  MM (and perhaps  also for  MM related
diseases)  when compared to  drugs  obtained  through an independent  SAveRUNNER
implementation that served as negative control (Figure 19).

2.  Validating/filtering  the  compounds  generated  by  SAveRUNNER via  DEA/CMap
analyses in order to select those that counteract the dysregulation of DEGs in MM.    

    In addition, molecular docking analyses between two compounds of the final list,
ponatinib and axitinib, and the KIT’s kinase domain was performed as an example of
candidates  with a common target  that  could be important  in MM. Indeed, KIT  was
significantly  upregulated  in  the  GSE175384  dataset  (supplementary  information    5  ),
favors cancer in its mutated forms104, was shown to be expressed in plasma cells in some
MM patients105, and is a target for the anticancer drugs axitinib and ponatinib according
to previous studies106,107.

              46

Table 14: Protein-ligand Affinity scores (Kcal/mol) 

https://github.com/appropiate/TFM_UoC
https://github.com/appropiate/TFM_UoC
https://github.com/appropiate/TFM_UoC
https://github.com/appropiate/TFM_UoC


5.2. Planning and methodology

    Although the objectives for each milestone (PEC) have been accomplished,  the work
plan had to be somewhat modified along the way. A step that has taken longer than
expected  was the implementation of the SAveRUNNER algorithm in R, which took
several  weeks  of  computational  processing  when  nearly  60  diseases  (blood  related
diseases)  were  used  to  generate  the  final  disease-drug  network  and  MM-drug
subnetwork. Therefore, far fewer diseases were used for the second implementation of
SAveRUNNER (using diseases related to MM symptoms) in order to meet the initially
planned  timeline.  Interestingly,  the  implementation  with  this  second implementation
yielded  a  similar  number  of  drug candidates.  Therefore,  future  implementations  for
other diseases could probably generate relatively good results when few diseases are
used together with the malignancy of interest in the corresponding config.R file. It is
also worth noting that alternative databases can be used with SAveRUNNER provided
they are placed in the corresponding folder (‘input files’ folder)  and in the required
format. This would allow to change outdated databases or using others that  might be
more comprehensive in the future.

   DEA/CMap analyses,  however, could be performed  faster than  anticipated, which
allowed to perform molecular docking analyses that were considered as an extra task in
case there was extra time.    

5.3. Future perspectives

   The final list of repurposable candidates suggested by this study can serve as the basis
for future projects aiming at experimentally and/or clinically validating their suitability
for reposition to MM. For example, a logical next step could consist of treating a panel
of MM cell lines111 with some of these candidates to assess their ability to inhibit cell
growth and/or  induce apoptosis.  At  this  stage, combinations  of  different  candidates,
perhaps also including currently available drugs for MM treatment, could also  be tested
to try to find potent cocktails that may help fight this plasma cell malignancy. As a next
step, successful candidates/cocktails could be used in an  in vivo  scenario, such as an
adequate MM mouse model112, to verify their potentially beneficial effects, or in a small
clinical  trial  since  all  the  candidates  are  already  approved  for  use  in  patients  with
diseases other than MM, once potential side effects have been taken into consideration.
Furthermore, if the repurposable drugs suggested by SAveRUNNER in this study were
indeed proven to experimentally/clinically help treat MM, then perhaps lines of research
similar to those above mentioned could also be done for COVID-19 and Amyotrophic
Lateral Sclerosis, since SAveRUNNER has also suggested some candidates for these
diseases5,113.

    As a different approach, SAveRUNNER could also be modified in different ways in
order to obtain new candidates given that SAveRUNNER’s code is readily available
online61.  For  example,  as  earlier  mentioned,  different  drug-target  or  disease-genes
databases  could  be  used  provided they  are  specified  in  the  corresponding  directory
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(SAveRUNNER-main\code\input_files),  or  the  proximity  mathematical  formula  to
calculate  proximity  scores  could  be  changed,  which  could  modify  the  final  list  of
compounds to be considered for repositioning generated by SAveRUNNER.

6. GLOSSARY

Akt Protein kinase B
ASCT Autologous Stem Cell Transplant
ATS Autodock Tools Software
BAFF B cell Activation Factor
BDSVS BIOVIA Discovery Studio Visualizer software
BiRd Biaxin-Revlimid-dexamethasone
BMSC Bone Marrow Stem Cells
Bort Bortezomib
CCL3 Chemokine (C-C motif) Ligand 3
CD38 Cluster of Differentiation 38
CDK Cyklin D Kinase
CFU-GM Colony Forming Unit-Granulocyte-Macrophage
cKit Tyrosine-Protein Kinase Kit
CRBN Cereblon 
CS Connectivity score
CUL4A Cullin 4 A
BDSVS BIOVIA Discovery Studio Visualizer software
CyBorD Cyclophophosphamide-Bortezomid-dexamethasone
Dara-IRd Daratumumab-ixazomib-Revlimid-dexamethasone
Dara-KPd Daratumumab-Kyprolis-Pomalidomide-dexamethasone
Dara-RVd Daratumumab-Revlimid-Velcade-dexamethasone
DCEP Dexamethasone-Cyclophosphamide-Etoposide-Platinum
DDB1 Damage Specific DNA Binding Protein 1
DKK1 Dickkopf WNT Signaling Pathway Inhibitor 1
DNA Deoxyribonucleic Acid
DPd Daratumumab-Pomalidomide-dexamethasone
DRd Daratumumab-Revlimid-dexamethasone
DTI Drug-Target Interaction
DT-PACE Dexamethasone-thalidomide-Platinum-Adriamycin -Cyclophosphamide-

Etoposide
BDSVS BIOVIA Discovery Studio Visualizer software
DVd Daratumumab-Velcade-dexamethasone
EGF-R Epidermal Growth Factor Receptor
Elo-PVd Elotuzumab-Pomalidomide-Velcade-dexamethasone
EPd Elotuzumab-Pomalidomide-dexamethasone
ERd Elotuzumab-Revlimid-dexamethasone
EVd Elotuzumab-Velcade-dexamethasone
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Fab Fragment antigen-binding
Fc Fragment, crystallizable
FGFR3 Fibroblast Growth Factor Receptor 3
FLC Free Light Chain
GEO Gene Expression Omnibus
GUI Graphic user interface
HD-cyclophosphamide High-dose cyclophosphamide

HGF Hepatocyte Growth Factor
Hsp Heat shock protein
ICd Ixazomib-Cyclophosphamide-dexamethasone
Ig Immunoglobulin
IGF-1R Insulin Growth Factor 1 Receptor
IKZF1/3 IKaros Zinc Finger
IL-6 Interleukin-6
IMdDs Immunomodulatory drugs
IPd Ixazomib-Pomalidomide-dexamethasone
IRd Ixazomib-Revlimid-dexamethasone
ISS International Staging System
JNK c-Jun N-terminal Kinase
KCd Kyprolis-cyclophosphamide-dexamethasone
KIR Killer cell Immunoglobulin-like Receptor
KPd Kyprolis-Pomalidomide-dexamethasone
KRd Kyprolis-Revlimid-dexamethasone
KSP Kinesin Spindle Protein
LDH Lactate Dehydrogenase
Len Lenalidomide
MAPK Mitogen-Activated Protein Kinase
MEK Mitogen-activated protein Kinase kinase
MM Multiple Myeloma
MPI-1 alpha MacroPhage Inflammatory protein 1-alpha
mTORC Mammalian Target of Rapamycin Complex
ncs Normalized connectivity score
NDMM Newly Diagnosed Multiple Myeloma
PARP Poly ADP-Ribose Polymerase
PCd Pomalidomide-Cyclophosphamide-dexamethasone
Pd Pomalidomide-dexamethasone
PD-1 Programmed cell Death protein 1
PDGFR3 Platelet-Derived Growth Factor Receptor 3
PEC Prueba de evaluación contínua
PI Proteasome Inhibitor
PDB Protein Data Bank
PKC Protein Kinase C
PVd Pomalidomide-Velcade-dexamethasone
Raf Rapidly accelerated fibrosarcoma
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RANKL Receptor Activator of Nuclear factor kappa beta (NFkB ligand)
RCd Revlimid-Cyclophosphamide-dexamethasone
Rd Revlimid-dexamethasone
RNA Rybonucleic Acid
ROC1 Rotamase CYP 1
RRMM Relapsed/refractory multiple myeloma
RVd Revlimid-Velcade-dexamethasone
SAveRUNNER Searching off-lAbel dRUg aNd NEtwoRk
sFLCR Serum free light chain ratio
SFRP3 Secreted frizzled-related protein 3
SLAMF-7 Signaling Lymphocytic Activation Molecule Family 7
TAS Transcription activity score
TGF-Beta Transforming growth factor-Beta
TI Topoisomerase inhibitor
TNF-a Tumor necrosis factor-alpha
Vd Velcade-dexamethasone
VDT-PACE Velcade-Dexamethasone-Thalidomide-Platinum-Adriamycin-

Cyclophosphamide-Etoposide
VEGF Vascular Endothelial Growth Factor
VEGFR Vascular Endothelial Growth Factor Receptor
VMP Velcade-Melphalan-Prednisone
VTd Velcade-Thalidomide-dexamethasone
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SUPPLEMENTARY INFORMATION

All the supplementary information cited throughout this thesis is available in the Github
repository created for this TFM at https://github.com/appropiate/TFM_UoC, and consist
of:

• Supplementary information 1
Full list of drug candidates for repurposing in MM generated by SAveRUNNER
when using a network based on blood related diseases:  
Drug_Disease_network_blood.txt

• Supplementary information 2
Full list of drug candidates for repurposing in MM generated by SAveRUNNER
when using a network based on MM symptom related diseases: 
Drug_Disease_network_symptoms.txt 

• Supplementary information 3
Full  list  of  drug candidates  for  repurposing in  ocular  albinism generated  by
SAveRUNNER  when  using  a  network  based  on  random  diseases  (negative
control for previous MM based networks generated by SAveRUNNER) :
Drug_Disease_network_control.txt

• Supplementary information 4
Full report and pipeline with code to do GEA for the GSE175384 dataset:
Carracedo_Huroz_Sergio_DEGs_in_MM_GSE175384.html

• Supplementary information 5
Full list of DEGs with log2FC > 1 and padj < 0.05 for the GSE175384 dataset:
Annotated_DEGs_Healthy_vs_MM_Log2FC_1_Padj0.05_GSE175384.csv

• Supplementary information 6
Full report and pipeline with code to do GEA for the GSE47552 dataset:
Carracedo_Huroz_Sergio_DEGs_MM_GSE47552.html

• Supplementary information 7
Full list of DEGs with log2FC > 1 and padj < 0.05 for the GSE47552 dataset:
Annotated_DEGs_Healthy_vs_MM_Log2FC_1_Padj0.05_GSE47552.csv

• Supplementary information 8
Full list of compounds in CMap database for GSE175384 gene signature:
query_result_CMap_DEGs_GSE175384.gct

• Supplementary information 9
Full list of compounds in CMap database for GSE47552 gene signature:
query_result_Cmap_DEGs_GSE47552.gct

• Supplementary information 10
Full list of compounds totally validated by DEAs/CMap analyses:
totally_validated_drug_candidates.csv
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• Supplementary information 11
Full list of compounds partially validated by DEAs/CMap analyses:
Partially_validated_drug_candidates_new2.csv

• Supplementary information 12
Molecular docking analyses  of the active site 1 of  the KIT’s kinase domain as
protein  with the  candidates  for  reposition  to  MM  ponatinib  and  axitinib  as
ligands.
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