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ANTECEDENTES: El mieloma multiple (MM) es a dia de hoy un cancer letal, por
lo que urge encontrar nuevos farmacos que permitan tratar esta enfermedad de manera
mas efectiva. Varios tipos de analisis in silico permiten encontrar farmacos actualmente
disponibles para reposicionarlos en enfermedades diferentes de aquéllas para las que
originalmente fueron disefiados, siendo el analisis computacional basado en redes uno
de los mas comunes.

METODOLOGIA: Se ha hecho un estudio de reposicionamiento para MM
mediante la implementacion en R del algoritmo SAveRUNNER, el cual realiza un
analisis basado en redes para generar listas de farmacos candidatos a
reposicionamiento. Entre dichos candidatos, unicamente aquéllos validados por la
herramienta "Query” de CMap a partir de los genes diferencialmente expresados en
muestras de MM se consideraron como los mas prometedores.

RESULTADOS: Se obtuvo una lista final de 22 candidatos a reposicionamiento
para MM pertenecientes a diferentes categorias, muchos de los cuales se habian usado
previamente con otros tipos de canceres. Finalmente, se presentan analisis de
acoplamiento molecular de los candidatos ponatinib y axitinib con la proteina KIT,
sobreexpresada en MM seglin este estudio, con el fin de comparar sus afinidades y
valorar cual seria preferible para una posible linea de tratamiento de MM.

CONCLUSION: En este estudio se muestra la exactitud de SAveRUNNER para
generar farmacos para tratar MM al sugerir candidatos que actualmente ya se usan para
tratar esta enfermedad. Ademas, SAveRUNNER sugiere nuevos candidatos a
reposicionamiento que podrian mejorar el actual mal prognosis del MM.
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Abstract (in English, 250 words or less):

BACKGROUND: Multiple myeloma (MM) remains a lethal blood malignancy, so new
drugs are necessary in order to treat this cancer more effectively. Different types of in
silico analyses make it possible to repurpose currently available drugs to diseases other
than those they were originally designed for, with network-based analyses being a
commonly chosen approach.

METHODOLOGY: In this work, a drug repurposing study for MM was carried out by
implementing in R the recently published algorithm SAveRUNNER, which performs
network-based analyses to generate lists of potentially repurposable candidates for
diseases of interest. Among the candidates to repurpose to MM suggested by
SAveRUNNER, only those validated by differential gene expression analyses in MM
samples followed by CMap queries were considered as most promising.

RESULTS: A final list of 22 drugs for MM repositioning belonging to different
categories, such as enzyme inhibitors or steroids, was obtained, with many of them
being already used to treat other types of cancers. Finally, molecular docking analyses
of the potentially repurposable candidates ponatinib or axitinib with the KIT protein,
overexpressed in MM according to this study, are presented to compare affinities of a
protein for drugs of the same type in order to assess which would be preferable if
included in a potential line of MM treatment.

CONCLUSION: This study shows the accuracy of SAveRUNNER by suggesting
drugs currently used to treat MM, and suggests new candidates for repositioning that
may improve MM's current poor prognosis.
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1. INTRODUCTION

1.1. Context and rationale for this thesis

Cancer causes one out of six deaths worldwide, and is thus the second leading cause
of death globally'. As earlier mentioned, MM remains as one of the incurable types of
cancer, with current treatments being able to modestly extend patients’ lives®. Therefore,
finding new therapeutics capable of improving existing approaches to treat this disease
is imperative.

On the other hand, and unlike the resource and time consuming de novo drug
discovery process, drug repurposing via computational analyses stand as a promising
alternative to find new therapeutics with a considerably smaller budget and time frame.

Thus, considering the urge to find new therapeutics for MM and the potential of in
silico drug repurposing to suggest new candidates to treat diseases in a relatively short
time, carrying out a study that implements a computational algorithm to find approved
drugs with novel indications for MM seems well justified. Although scarce, a couple of
studies on this direction have actually already been performed in the past, but rather
than using an algorithm to find candidates to repurpose, the approach in both instances
found differentially expressed genes (DEGs) in MM to upload them to CMap in order to
find compounds to repurpose to this disease®®. In this thesis, however, a somewhat
different methodology is used to find repurposable compounds for MM by
implementing the novel algorithm SAveRUNNER, leaving the differential gene
expression/CMap analyses as a validation/filtering step for the resulting list of drug
candidates instead, as recently done for other diseases®. It is worth noting that
SAveRUNNER seems to have better performance than previous top algorithms>®, which
might raise the possibility of finding new drugs that can help improve the outcome of
current MM treatments.

1.2. Objectives
1.2.1. Main Objectives

The main goal of thesis is finding drug candidates with reposition potential for MM
that can be added to the currently available set of drugs used to treat this disease by
implementing the network-based computational algorithm SAveRUNNER.

1.2.2. Specific Objectives

In order to achieve the main objective, the following specific objectives were
accomplished:

1. Executing the following SAveRUNNER implementations in R:

* Implementation 1: Generation of a drug-disease subnetwork for MM by using
this disease together with all blood related malignancies available in the



Phenopedia’ database as input in the configuration file of SAveRUNNER
(config.R file).

Implementation 2: Generation of a drug-disease subnetwork for MM by using
this disease together with diseases related to MM symptoms® available in the
Phenopedia database as input in the config.R file.

Implementation 3: Generation of a drug-disease subnetwork for a disease
seemingly unrelated to MM (Obsessive Compulsive Disorder, OCD) as negative
control for the two previous implementations by using OCD together with a set
of diseases also unrelated to MM as input in the config.R file.

Only compounds obtained simultaneously in both implementation 1 and
implementation 2 will be selected for further validation and therefore with
possibility to be considered as drug candidates with repurposing potential.

. Full RNAseq DEA of the dataset GSE175384 containing samples from MM and
healthy subjects by  following  the pipeline provided at
https://github.com/ASPteaching/Omics data analysis-Case study 2-RNA-seq ,
which was provided to students of the Master’s degree in Bioinformatics and
Biostatistics from the University Oberta of Catalonia and University of
Barcelona during the first part of the virtual class ‘Omics data analyses’. Among
other results, this analysis yielded a list of annotated DEGs for MM subjects
included in this dataset.

Full microarrray DEA of the dataset GSE47552 containing samples from MM
and healthy subjects by following the pipeline provided at
https://github.com/ASPteaching/Omics Data Analysis-Case Study 1-
Microarrays , which was provided to students of the Master’s degree in
Bioinformatics and Biostatistics from the University Oberta of Catalonia and
University of Barcelona during the second part of the virtual class ‘Omics data
analyses’. Among other results, this analysis yielded a list of annotated DEGs for
MM subjects included in this dataset.

Independent Queries of DEGs found in DEAs of GSE175384 and GSE47552
datasets by using the CMap Query tool (www.clue.io/query) in order to find
compounds that counteract regulation of DEGs for these datasets, and would
thereby have potential to treat patients included in these studies.

Generation of a final list of validated drugs with repurposable potential for MM
by selecting compounds generated by SAveRUNNER for this disease that:

a) Are also part of at least one of the DEA/CMap analyses performed in this
study,

b) At the time of writing this thesis, have not been found as part of any study
related to MM in the literature.

. An example of molecular docking analysis by using the KIT kinase domain
protein (target) corresponding to a DEG found in GSE175384, and the validated
repurposable candidates ponatinib and axitinib (ligands) with similar binding


http://www.clue.io/query
http://www.clue.io/query
https://github.com/ASPteaching/Omics_Data_Analysis-Case_Study_1-Microarrays
https://github.com/ASPteaching/Omics_Data_Analysis-Case_Study_1-Microarrays
https://github.com/ASPteaching/Omics_data_analysis-Case_study_2-RNA-seq

sites to compare their affinities to their common target, thereby assessing which
one would be preferable.

1.3. Planning with tasks, milestones, and calendar

This study was carried out during the first semester of the academic year 2021/22,
with start date on the 15th of September, and going through different evaluation tests
(pruebas de evaluacién continua (PECs)), until its public defense during the
second/third week of January 2022. Each PEC was considered a milestone, and
consisted of different tasks to be completed in order to achieve the project objectives
successfully. The dates for the completion of the different tasks in each of the
PECs/milestones can be found in the following chronogram (Figure 1):

am— ~—
iags > S

Olutline n| m ‘ Begin date End date Duration
1 @ PECO: MASTER'S FINAL PROJECT PROPOSAL 15/08/2021 22/09/2021 8
2 E @ PEC1: WORK PLAN 23/09/2021 04/10/2021 12
2.1 @ Bibliography search on Multiple Mieloma 23/09/2021 25/00/2021 3
2.2 & Bibliography search on drug repurposing 26/09/2021 28/09/2021 3
23 © Familiarization with SAveRUNNER 29/09/2021 30/109/2021 2
24 @ Ellaboration of the PEC1 repont 01/10/2021 04102021 4
i B @ PECZ: WORK DEVELOPMENT - PHASE 1 01072021 081172021 35
3.1 = @ Implementations of SAveRUNNER 05/10/2021 06/11/2021 33
311 @ Network with MM and blood related diseases 051072021 281072021 24
. P @ Metwork with MM and symptoms related diseases 29/10/2021 021172021 3
% B @ Network without MM and with random diseases 03/11/2021 06112021 4
iz @ Ellaboration of the PEC2 report 071172021 081172021 2
4 B e PEC3: WORK DEVELOPMENT - PHASE 2 09/11/2021 06/12/72021 28
41 B e Differential expression analyses (DEAs) 09/11/2021 22117201 14
411 B e DEA for RNAseq GSE173384 dataset 09/11/2021 131172021 7
4111 @ Full gene expression analysis 09/11/2021 151172021 7
4112 @ List with DEGs 15/11/2021 1511/2021 1
41.2 B e DEA for Microarray GSE47552 dataset 16/11/2021 221172021 7
4121 o Full gene expression analysis 16/11/2021 22112021 7
4122 @ List with DEGs 221172021 221112021 1
4.2 E @ CMap drug signatures 23/11/2021 26111/2021 4
421 @ CMap drug signature for DEGs in GSE175384 23/11/2021 24/11/2021 2
422 @ CMap drug signature for DEGs in GSE47552 25/11/2021 26111/2021 2
43 El @ Lists of validated drug candidates 271112021 281112021 2
4.31 @ Drug candidates fully validated 2711/2021 27111/2021 1
432 @ Drug candidates partially validated 28/11/2021 281172021 1
44 @ Examples of molecular docking to compare drug-target affinities  20/11/2021 02122021

4.5 @ Ellaboration of the PEC3 report 031272021 061272021 4
] @ PEC4: FINAL REPORT 07112/2021 2412201 18
6 @ PECS5a: PRESENTATION ELLABORATION 27122021 03/01/2022 8
7 @ PECS5b: THESIS DEFENCE 13/01/2022 21/01/2022 9

Figure 1: Gantt chronogram for PECs (milestones) and corresponding tasks.
Made with GanttProject’.



In the corresponding gantt chart (Figure 2), the different milestones with their
respective tasks achieved during the development of this project are represented with
different colors for better identification .

2021 Ill]ZZ
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Familiarization with SaveRUNNER [l [2Day(s)]
Ellaboration of the PECL report (I (4 Day(s) ]
PEC2: WORK DEVELOPMENT - PHASE 1 [35Day(s) ]
Implementations of SAveRUNNER [33 Day(s) ]

Network with MM and blood related diseases 124 Day(s) ]

Network with MM and symptoms related diseases [_] [5Day(s) ]

Network without MM and with random diseases [ [4 Day(s)]

Ellaboration of the PEC2 report [] [2Day(s)]

PEC3: WORK DEVELOPMENT - PHASE 2 RG————— | 15 Day(s) |

Differential expression analyses (DEAs) [P | 14 pay(s) |

DEA for RNAseq GSEL75384 dataset Y [ 7 Day(s) |

Full gene expression analysis [ [ 7 Day(s)]

ustwith DeGs [l [10ay(s)]

DEA for Microarray GSE47552 dataset Y | 7 pay(c) |
Full gene expression analysis [ 17 oavis))
tistwith eGs | [1Dayis)]
CMap drug signatures P[4 Day(s) ]
CMap drug signature for DEGs in GsE175384 [l [2Dayis))
CMap drug signature for DEGs in Gse47552 [l [ 2 payis))
Lists of validated drug candidates P} [ 2 Day(s)]
Drug candidates fully validated | [1pay(s)]
Drug candidates partially validated [| (1 Day(s)]
Examples of molecular docking to compare drug-target affinities [l 14 pavis)]

Ellaboration of the PEC3 report [l 14 Davis) )

peca: FiNAL ReporT (NN [ 15 Dayis) ]

PECSa: PRESENTATION ELLABORATION [ ] [8Day(s)]

pecsh: THests perence [ | ° Day(s) ]
Figure 2: Gantt chart for PECs (milestones) and corresponding tasks.
Made with GanttProject’.

1.4. Brief summary of obtained products

The following products have resulted upon completion of this master’s final project:

* A thesis (this document), which mainly includes introductions to MM and drug
repurposing, followed methodology, as well as results and discussion related to
the objectives mentioned in section 2.

* Supporting information files uploaded in github at
https://github.com/appropiate/TEM_UoC, which consist of compound and DEG

tables, DEA reports, as well as docking analyses that have all been generated as
part of the results, but are too large to be completely included in the main text of
this thesis.

» Thesis presentation and defence (PEC5a and PEC5b): A brief introduction to

the research topic of the project followed by a summary of the results has been
ellaborated with LibreOffice Impress or similar tool to present and defend the
thesis.


https://github.com/appropiate/TFM_UoC

1.5. Brief description of other sections

Upon describing the rationale for this thesis, its objectives with their
corresponding timelines, and a summary of the obtained products, the remaining
sections of this work are briefly explained next:

* Background on MM and the SAveRUNNER algorithm to help the reader gain
basic knowledge on concepts regarding the main topics of this thesis, thus
facilitating its understanding.

* Materials and methods, where a description of the hardware, software, data,
and methodology used in this work to produce the presented results is presented.

* Results showing drug candidates for reposition to MM generated by
SAveRUNNER, validation of these using DEA/CMap analyses, selection of
compounds that were not previously found associated to MM treatment in the
literature, and a molecular docking example of ligands (ponatinib and axitinib)
with a common binding site in a protein differentially expressed in a MM dataset
used in this study (KIT kinase domain).

* Conclusions, where the main findings, changes on initial plans due to
unforeseen difficulties, as well as brief ideas of future projects following up on
this study are presented.

* Glossary with the meaning of all the abbreviations used throughout this thesis.

» References, consisting of a list of all the scientific articles, official websites, and
repositories that have been referred to on the different sections of this work.

* Supplementary information listing the different files and directories with
reports, tables and other files produced throughout this work that were too large
to be completely included in this thesis, reason for which they have been made
available via GitHub at https://github.com/appropiate/TEFM UoC .

2. BACKGROUND

This thesis is focused on implementing the network-based algorithm SAveRUNNER
to find repurposable drug candidates for Multiple Myeloma (MM). Therefore, a general
background for both MM and drug repurposing is presented in this section.

2.1. Background on Multiple Myeloma: A brief description

Although important advances have been made in recent years, MM is still an
incurable and deadly type of blood cancer that encompasses 10% of all hematological
malignancies' and 0.9% of all cancer diagnoses'. It is therefore paramount to keep
elucidating new aspects and molecular mechanisms that may help create better and
more specific therapeutical interventions in the future.


https://github.com/appropiate/TFM_UoC

2.1.1. Diagnosis

Up to 74 years old, the cumulative risk of suffering MM worldwide is approximately
0.21 (approximately 1 in 500)", and the median age at diagnosis is 66-70 years™. In
order to diagnose MM, the patient must meet certain criteria (Table 1). First, the
population of clonal bone marrow plasma cells must be greater than 10% or,
alternatively, a bony or extramedullar plasmacytoma must exist. The second criteria to
be met is that the patient has either a) Calcium elevation, Renal dysfunction, Anemia
and Bone disease (altogether known as ‘CRAB’ criteria), b) high percentage of clonal
bone marrow cells, c) overabundance of involved serum-free light chains (secreted by
myeloma cells), or d) lesions detected by magnetic resonance of at least 5 mm™,

Multiple Myeloma Both criteria must be met:
. Clonal bone marrow plasma cells >10% or biopsy-proven bony or extramedullary plasmacytoma
. Any one or more of the following myeloma defining events:

- Evidence of end organ damage that can be attributed to the underlying plasma cell
proliferative disorder, specifically:

. Hypercalcemia: serum calcium >0-25 mmol/L (>1 mg/dL) higher than the upper
limit of normal or >2-75 mmol/L (>11 mg/dL)

¢ Renal msufficiency: creatinine clearance <40 mL per minute or serum creatinine
>177 ymol/L (>2 mg/dL)

* Anemia: hemoglobin value of >2 g/dL below the lower limit of normal, or a
hemoglobin value <10 g/dL

¢ Bone lesions: one or more osteolytic lesions on skeletal radiography, computed
tomography (CT), or positron emission tomography-CT (PET-CT)

- Clonal bone marrow plasma cell percentage >60%

- Involved: uninvolved serum free light chain (FLC) ratio >100 (involved free light chain level
must be >100 mg/L)

- >1 focal lesions on magnetic resonance imaging (MRI) studies (at least Smm 1n size)

Table 1. Diagnosis criteria for MM.
Adapted from™.

2.1.2. Clinical manifestations

Symptoms experienced by MM patients include constipation, leg weakness/numbness,
fatigue, reduced appetite, weight loss, or bone pain among others®, with the latter being
related to myeloma cells promoting the release of different factors, such as RANKL,
TNF-a, IL-6, and VEGF, which all promote the activity of the osteoclast and its
precursors, as well as the release of factors, such as DKK1, SFRP3, HGF, TGF-Beta,
Sclerotin, or Activin A, that inhibit the activity of osteoblasts and precursors. Osteoclast
activation and osteoblast inhibition cause disruption of the balance between bone
formation versus bone resorption, and leads to osteolytic lesions' that MM patients
often experience (Figure 3).
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Figure 3: Bone activity influenced by plasma cells.

Osteoclast activity is enhanced whereas osteoblast activity is inhibited by abnormal plasma cells during MM ",

2.1.3. MM classification, staging and stratification

MM is originat

ed in the bone marrow and affects a type of white blood cell known as

plasma cell, which normally makes antibodies to fight infections. An antibody is a
molecule made of two equal heavy chain proteins (q, §, €, y, and p) and two light chain
proteins (k and M), which all belong to the immunoglobulin (Ig) superfamily'® (Figure

4).
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Figure 4: Antibody structure.

The structure of the antibody consists of two heavy and two light chains, each of which contains different regions

with different functions”.



Different combinations of heavy chains and light chains will result in different types
of antibodies, with each plasma cell producing a specific type of antibody only.
Therefore, having different plasma cells equips a healthy organism with a repertoire of
different antibodies and enables it to fight infections. However, during MM, a plasma
cell becomes dysregulated, proliferates abnormally, and over time outcrowds the rest of
plasma cells, which makes the patient more susceptible to infections because abnormal
plasma cells in a myeloma originally come from the same plasma cell clone and
therefore make the same antibody or the same free light chain (FLC), which becomes
predominant’®, The secreted antibody or FLC type can in turn be used as a biological
marker to help classify the type of MM", although non secretory myeloma also exist,
and are harder to diagnose®.

In order to classify MM attending to its stage, the International Staging System (ISS)*
is commonly used as staging criteria, which divides MM cases in three categories
attending to levels of albumin, (3,-microglobulin, and lactate dehydrogenase (LDH) or
cytogenetics analyses (Table 2). However, other systems with different criteria, such as,
myeloma cell mass®', or serum free light chain ratio (SFLCR)* also have prognostic
value.

Stage [
All of the following:
Serum albumin > 3.5 gm/dL
Serum B-2-microglobulin < 3.5 mg/L
No high-risk cytogenetics
Normal serum LDH
Stage II
Not fitting into stages I or III
Stage II1
Both of the following:
Serum B-2-microglobulin > 5.5 mg/L
High-risk cytogenetics [#(4:14), #(14:16), or del(17p)]

or elevated serum LDH

Table 2. Staging criteria for Multiple Myeloma
Adapted from™.

Different genetic alterations found in MM, such as deletions and translocations, are
strongly associated to the aggressiveness of MM. Therefore, the prognosis for a patient
will significantly depend on the type(s) of cytogenetic abnormality present in the plasma
cell clone that is responsible for a given myeloma (Table 3).
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#11;14)
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Intermediate risk
H4:14)
Gain(1q)

High risk
#{14;16)
£ 14;20)
Del(17p)

TP53 mutation
High-risk GEP signarurc
R-IS55 stage 11

High plasma cell S-phase

Table 3. mSMART risk stratification.
Adapted from®.

In addition, MM can also be classified as newly diagnosed (NDMM) or

relapsed/refractory MM (RRMM), with the latter referring to reappearance of MM
signs and symptoms after a period of partial remission®.

2.1.4. Current treatments

Different types of drugs are commonly included as part of MM treatment (Figure 5),
including:

Proteosome inhibitors (PIs), such as bortezomib (usually named in treatments
as Velcade®) or cafilzomib (kyprolis®), which basically work by inhibiting
degradation of proteins that need to be eliminated so that myeloma cells can
thrive and keep proliferating®<.

Derivatives of thalidomide, lenolinamide®*” (Revlimid®) and pomalydomide®®,
which are known as immunomodulatory drugs (IMdDs). They seem to help
fighting myeloma cells differently, with the mechanism of action of the latter yet
to be elucidated™.

Alkylating agents, such as cyclophosphamide, whose cytotoxic activity
involves DNA and RNA cross-linking and inhibition of protein synthesis®.

Monoclonal antibodies (immunotherapy) can also be part of a treatment. For
example, Daratumumab® is used as part of second line treatment and targets



CD38, which is overexpressed by at least a subset of MM cells, thus causing
them to go into apoptosis®'.

*  Glucocorticoids, such as dexamethasone or prednisone, are usually also
included in the combination of drugs to treat MM as anti-inflammatory, although
dexamethasone is also used due to its cytotoxicity on myeloma cells®**%,
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Figure 5: Compounds overview to treat MM.

IMiDs: immunomodulatory drugs; MAbs: monocolonal antibodies; PARP: poly A ribose polymerases; HDAC:
histone deacetylase; Hsp-90: heat shock protein 90; IL: interleukin; FGFR3: fibroblast growth factor receptor 3;
PDGFR: platelet-derived growth factor receptor; VEGFR: vascular endothelial growth factor receptor; IGF: insulin-
like growth factor; EGF: epidermal growth factor; PD-1: programmed cell death protein 1; BAFF: B cell activating
factor; KSP: kinesin spindle protein, MAPK: mitogen-activated protein kinase; MTORC: mammalian target of
rapamycin complex. Adapted from *.

Although the landscape to treat NDMM or RRMM is evolving relatively often, and
once the possibility of a clinical trial is discarded, patients would normally undergo a
bone marrow transplant as a first line of treatment, provided they are eligible (Figure 6).
This procedure consists of destroying the patient’s bone marrow cells with high-dose
chemotherapy to eliminate myeloma and bone marrow cells®. The next step would
consist of restoring bone marrow stem cells with cells from the patient that were
collected before chemotherapy (autologus transplant®™), or from a healthy and
compatible donor (allogeneic transplant®). After considering this step, a specific
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combination of the above mentioned drugs would usually follow depending on the case
to maximize the efficacy of the treatment (Figure 6).
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Figure 6: Treatment algorithm for NDMM and RRMM.

(*) KRd under investigation; four drug combinations under investigation (eg, Dara-IRd). ASCT,
autologous stem-cell transplantation; BIRD, clarithromycin-lenalidomide-dexamethasone; Bort,
bortezomib; CyBorD, cyclophophosphamide-bortezomib-dexamethasone; Dara-IRd, daratumumab-
ixazomib-lenalidomide-dexamethasone; Dara-KPd, daratumumab-carfilzomib-pomalidomide-
dexamethasone; Dara-RVd, daratumumab-lenalidomide-bortezomib-dexamethasone; DCEP,
dexamethasone-cyclophosphamide-etoposide-cisplatin; DPd, daratumumab-pomalidomide-
dexamethasone; DRd, daratumumab-lenalidomide-dexamethasone; DT-PACE, dexamethasone-
thalidomide-cisplatin-doxorubicin-cyclophosphamide-etoposide; DVd, daratumumab-bortezomib-
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dexamethasone; Elo-PVd, elotuzumab-pomalidomide-bortezomib-dexamethasone; EPd, elotuzumab-
pomalidomide-dexamethasone; ERd, elotuzumab-lenalidomide-dexamethasone; EVd, elotuzumab-
bortezomib-dexamethasone; HD-cyclophosphamide, high-dose cyclophosphamide; ICd, ixazomib-
cyclophosphamide-dexamethasone; IPd, ixazomib-pomalidomide-dexamethasone; IRd, ixazomib-
lenalidomide-dexamethasone; KCd, carfilzomib-cyclophosphamide-dexamethasone; KPd, carfilzomib-
pomalidomide-dexamethasone; KRd, carfilzomib-lenalidomide-dexamethasone; Len, lenalidomide;
PCd, pomalidomide-cyclophosphamide-dexamethasone; Pd, pomalidomide-dexamethasone; PVd,
pomalidomide-bortezomib-dexamethasone; RCd, lenalidomide-cyclophosphamide-dexamethasone; Rd,
lenalidomide-dexamethasone; RVd, lenalidomide-bortezomib-dexamethasone; Vd, bortezomib-

dexamethasone; VDT-PACE, bortezomib-dexamethasone-thalidomide-cisplatin-doxorubicin-
cyclophosphamide-etoposide; VMP, bortezomib-melphalan-prednisone; VTd, bortezomib-thalidomide-
dexamethasone™.

Although the current plethora of treatments has greatly contributed to increasing
survival time for MM patients, finding new therapeutics that can further improve the
prognosis of MM is necessary since this disease still remains lethal. One reason that
could contribute to explain such lethality even under treatment is the fact that myeloma
cells can become resistant to therapeutics due to genetic/epigenetic alterations, abnormal
drug transport/metabolism, or dysregulation of apoptosis among other mechanisms®.
These changes as myeloma cells proliferate lead to heterogeneous sub populations
(hence the term multiple myeloma), some of which can be unaffected by the patient’s
treatment and become the more predominant sub-type leading to RRMM?**%,

2.1.5. Prognosis

The median age at death for MM is 75 years old", but the survival rates vary
significantly worldwide due to age, staging, ethnicity, lifestyle, and disparities in access
to health care for different countries®. In general, the outcome of MM is better the
earlier, (regarding age® (Figure 7) and stage) it is detected. In any case, the great
increase in survival time achieved in the last decades** (Figure 7) sheds hope on finding
a definite cure for this disease in a not so distant future.
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Figure 7: Evolution of MM prognosis.
Cumulative percent survival in the last decades by age®.

2.2. Background on drug repurposing: A brief description

Drug repurposing consists of finding clinically available drugs with potential to treat
diseases other than those they were initially approved for. The beginnings of drug
repurposing consisted of using drugs on a new disease based on indirect empirical
evidence, such as off target effects, or hypotheses about their potential to treat a
different illness. However, rather than repurposing a drug at at time, recent advances in
computational analyses now allow the processing of ‘big data’ in a relatively short time,
which can be used to generate lists of drug-target-interactions and thereby find
therapeutics that could be novelly applied to a disease. Thus, in silico drug repurposing
has contributed to a new avenue on the discovery of therapeutics that consists of shifting
from the ’one drug -> one target -> one disease’ approach to a ‘several drugs -> several
targets -> several disesases’ paradigm**. This allows finding novel drug candidates
without having to go through the ‘de novo’ drug discovery process, thereby saving a
considerable amount of time, human and financial resources, which makes it a desirable
approach for both patients and pharmaceutical companies®. Depending on the data
resources used in the analysis®, in silico drug repurposing methods can be grouped into
different categories, with docking-based, machine learning-based, and network-based
methods being considered as major groups.
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2.2.1. Docking-based methods

Molecular docking is a type of computational analysis that makes simulations and
predictions about the best energetically and geometrically binding conformation
between two or more molecules. Multiple analyses using different candidates thus give
the possibility to assign a score to each docking and thereby obtain a final rank
indicating the most suitable drug for a given molecule according to docking-related
criteria*. Among other applications (Figure 8)*, docking-based methods can be used to
perform drug repurposing, where docking scores will suggest the most appropriate drug
to be used for a protein of known 3D structure and that is suspected to be key in the
development of the disease of interest. In this thesis, docking analyses will only be
performed as a representative example of two potentially repurposable candidates to
MM (ponatinib and axitinib) binding to a common target (KIT’s kinase domain), and
which one could be more suitable based on their respective affinity scores.

DOCKING

Target fishing and profiling Prediction of %dverse Drug
Prediction of targets for compounds Reactions
on the basis of ligand-receptor Prediction and rationalization of drug off-
complementarity target activities based on the complementarity

. @\K between ligands and targets
— i é‘,g
@‘ : 5 9/
P /

Virtual Screening \ /\i
Identification of compounds / P_‘?ly_l:’harmac_"l“’gy
/i \ Tdentification and optimization of
MOLECULAR ‘ compounds that simultaneously
A modulate a set of targets involved in
DOCKING / g
/ the same disease

modulating disease-related targets and
their optimization
» it
it

Ligand-Target binding
rationalization
Identification of the structural
determinants necessary for the
efficient ligand-receptor binding

Drug Repositioning
Identification of novel therapeutic-
relevant targets for already marketed
drugs, and known chemical and
natural entities

Figure 8: Applications of molecular docking include drug repositioning.
Adapted from™.

2.2.2. Machine learning-based methods

Machine learning (ML) consists of using computational algorithms and statistical
models to find patterns in data that will allow making inferences and predictions. When
it comes to drug repurposing, different types of data can be used to build ML models
based on algorithms such as network propagation, matrix factorization, or deep learning,
which have been used with relative success®*. Suggested candidates are, as in other
drug repurposing methods, further validated via in vitro / in vivo experimentation before
using them on clinical trials® (Figure 9). ML models will generally be classified as
supervised or unsupervised, with the former being characterized by using labeled data®
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(i.e. with known values for the variable of interest) to build models, unlike the
unsupervised model approach™.

FDA Drugs/ A
Clinical Candidates
Lenalidomide

Machine Learning

Approved drugs for
potential repurposing

Prioritized list

In vitro/In vivo _ Clinical
\ of d{;’s i testing  Patient trials
(compount Jrurk sesce 1
owe | 053 |
Vﬁe tor A
Receptor B
Receptor < More data for public domain

Figure 9: Overview of ML approaches for drug repurposing.
SAR: structure activity relationship®.

2.2.3. Network-based methods

Different but yet complementary types of biological data (such as protein, metabolite,
drug, or disease data) related to a given organism can be integrated into a network to
model their interactions and gain information on their interconnection strength. Thus,
molecular interaction networks, such as gene-protein interaction networks, metabolic
networks, or protein-protein interaction networks, have been used for this purpose, and
have lead to different types of network-based drug repurposing methods>">*. A recently
published network-based algorithm known as SAveRUNNER (Searching off-1Abel
dRUg aNd NEtwoRKk), integrates drug-target interactions and disease-gene associations
in the human interactome (the cellular network of all known physical molecular
interactions) to generate a drug-disease network that suggests new repurposable drug
candidates for diseases of interest. Based on premises of network medicine®"* that

1. Diseases are not usually caused by a single gene mutation, but rather the deregulation
of a network of genes interconnected to each other.

2. The human interactome can be interpreted as a map, with diseases being local

perturbations of it, and where genes associated with the a given disease therefore tend to
aggregate nearby in the network, forming, “disease modules”.
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3. Specific drugs can perturb common proteins and also act as local perturbations in the
human interactome.

SAveRUNNER calculates proximity and similarity scores between disease and drug
modules by using a similarity measure that gives priority to associations between drugs
and diseases located nearby within the human interactome>®. The material and methods
section of this thesis contains a more thorough description on the different
computational steps implemented by SAveRUNNER that lead to the generation of
repurposable drug candidates (also summarized in Figure 10).

3. MATERIALS AND METHODS

3.1. Hardware

The computer (laptop) used to write this thesis and perform the necessary
computations has the following specifications:

* Processor: Intel® Core™ i7-7700
*  RAM memory: 32 GB DDR4
* Hard drive: SSD 512 GB
3.2. Software
The following tools will be used to generate the master’s thesis:

* Windows 10 Home as operative system.
(https://www.microsoft.com/en-gb/software-download/windows10)

e LibreOffice as text editor (https://www.libreoffice.org/discover/libreoffice/).

* Ganttproject to make the chronogram and ganttchart shown in this thesis.
(https://www.ganttproject.biz/).

» Zotero for reference management (https://www.zotero.org/).

* R as programming language (https://www.r-project.org/).

* Rstudio as integrated development environment (IDE,
https://www.rstudio.com/).

* SAveRUNNER for computational analyses of drug repurposing in R
(https://github.com/giuliafiscon/SAveRUNNER.git ).

* Different packages in R for microarray and RNAseq DEAs as well as generation
of lists and Venn diagrams (provided as supplementary information in the
corresponding reports).

* Connectivity Map (CMap) Query tool (https://clue.io/ ) to validate drug
candidates generated by SAveRUNNER.
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* BIOVIA Discovery Studio Visualizer (BDSV,
https://discover.3ds.com/discovery-studio-visualizer-download ) for graphical
representation of protein-ligand interactions.

* Open Babel (http://openbabel.org/wiki/Main Page ) to convert files from .sdf
format to .pdb format.

* AutoDock Vina and AutoDock Tools (https://autodock.scripps.edu/ ) for
docking analyses.

3.3. Network-based drug repurposing algorithm: SAveRUNNER
3.3.1. Brief description

As described in the original articles>®, the SAveRUNNER algorithm hypothesizes
that the drug-associated targets (drug module) and the disease-associated genes (disease
module) should be nearby in the human interactome for a drug to be effective against a
given disease. Briefly, it uses lists of drug-targets and disease-associated genes to create
a network-based similarity measure in order to make predictions about drug-disease
associations by performing the following steps:

1. Network proximity (p) computation by implementing the formula:
p(T, |TH me d(t, s) (Equation 3.1)

where p represents the average shortest path length between drug targets t in the drug
module T and the closest disease genes s in the disease module S°'.

2. The network proximity values are then z-score normalized, considering as proximal
(significant) in this study only drug-disease associations with normalized z-score < 1.65,
which are used for further computations.

3. Translation of the z-score normalized network proximity measure into the network
similarity measure within the range [0-1]:

maz(p) — p

similarity = o)
mazx(p

(Equation 3.2)

The greater the similarity measure the closer a drug and a disease module will be
within the human interactome since the network proximity between them (p) will be
smaller.

4. Cluster detection, using an algorithm based on greedy optimization of network

modularity54 that groups drugs and diseases upon their similarity. To evaluate the
quality of the clusters, SAveRUNNER computes a quality cluster (QC) score:
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Wi
QRC = W+ W. 1P (Equation 3.3)
n out

with Wi, denoting the total weight of edges within a cluster, W, denoting total weight
of edges connecting different clusters, and P being the fraction of nodes within each
cluster, which penalizes too large and not well define clusters.

5. Network similarity adjustment, by increasing similarity values for drug-disease
associations by a factor proportional to QC:

similarity = (1 + QC) - similarity (Equation 3.4)

Associations that fall within the same cluster will thus have a greater increase of their
similarity values, highlighting the suitability of repurposing the corresponding drug for
the respective disease.

6. Network similarity normalization by applying the sigmoid function:

1

A

(Equation 3.5)

where x represents adjusted similarity (Equation 3.4), d the sigmoid midpoint
(max(x)/2), and c is the sigmoid steepness (set as 10).

Once completed the above steps (summarized in Figure 10, and more comprehensively
described in the user guide at https:/github.com/sportingCode/SAveRUNNER),
SAveRUNNER generates a .txt file that contains a list of drug-disease associations as a
weighted bipartite network, where nodes will correspond to either a disease or a drug.
There will be an edge/link in the network between each disease and drug with a z-score
proximity < 1.65 (p < 0.05), with the corresponding normalized similarity value
representing the weight of their interaction. SAveRUNNER will also generate
additional files and folders, such as disease specific subnetwork, if specified in the
config.R file. (see the section 3.3.3. on implementation below). This subnetwork also
contains a .txt file consisting of a list with the associated drugs to a disease of interest,
in the case of this study being MM. Given that the scope of this thesis is focused on
finding drug candidates to be repurposed for MM, only the .txt file containing the list of
drug candidates created for the MM subnetwork will be used to select drugs with
statistically significant (p < 0.05) drug-MM association.
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Figure 10: SAveRUNNER algorithm to generate lists of drug-disease associations.
Adapted from®.

3.3.2. Databases used by SAveRUNNER

All the databases used for the analyses performed in this thesis are included as part of
the folder with the SAveRUNNER algorithm coded in R, and available as a .zip file in
the GitHub repository specified in section 3.2. Briefly, SAveRUNNER comes with the
following three databases

1. The disease-gene network was obtained from the Phenopedia database’” which, as
for 27-04-2020, contains gene associations for 3255 diseases. This database is currently
part of the HuGe Navigator™, and provides data about genes being linked to a given
disease or phenotype

2. The drug-target database released from DrugBank® on 22-04-2020 consists of
13,563 compounds, of which 2627 are approved small molecule drugs, 1373 are
approved biologics, 131 are nutraceuticals, and more than 6370 are experimental drugs.
The Uniprot IDs for targets provided by DrugBank were mapped to Entrez gene IDs
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with the BioMart — Ensembl tool (https://www.ensembl.org/ ). Drugs of interest without
targets in DrugBank were integrated with drug-target interactions from the Therapeutic
Target Database.

3. The human protein—protein interactome provided with SAveRUNNER consists of
217,160 protein—protein interactions connecting 15,970 unique proteins, and was
obtained from Cheng and coauthors®'. They assembled their own human protein—protein
interactome and 15 commonly used databases containing several types of experimental
evidence, such as binary PPIs from 3D protein structures; literature-curated PPIs
identified by affinity purification followed by mass spectrometry; literature-derived
PPIs from low-throughput experiments from BioGRID*’, HPRD®, MINT, IntAct®, or
InnateDB®’; signaling networks from literature-derived low-throughput experiments;
and kinase-substrate interactions from literature-derived low-throughput and high-
throughput experiments.

3.3.3. Implementation of SAveRUNNER

The user guide for SAveRUNNER, which can be downloaded at
https://github.com/sportingCode/SAveRUNNER , explains in detail the steps to follow
to implement the algorithm. Briefly, provided the working directory has been specified
in the main.R file, and since SAveRUNNER includes by default the necessary drug-
target, disease-gene, and human interactome lists as input files to perform the analysis,
it is the file config.R where the user needs to configure the different parameters, such as
disesases of interest to build the drug-disease network, p-value threshold, type to
interaction to consider (proximity or similarity), whether or not adjust similarity, or the
subnetwork with drug-disease entries for one of the specified diseases (MM in this case)
among others (Figure 11). The subnetwork for MM will be created for this thesis, from
where the best drug candidates for MM according to adjusted similarity values will be

selected.
Configuration file @

Initial settings

©mainR « ©configR [ Environment History Connections =
Source onSave A/~ SRun | % Source ~ g # Import Dataset ~ & List ~

~ config <- function(){ 7k Global Environment ~

# for executing SAveRUNER launch:

# source('~/SaveRUNNER/Code/src/main.R")

network with edge-weight = proximity .
Insert names of diseases to be
9  diseases <- c("COVID-19", "Severe Acute Respiratory Syndrome", €
10 "Arthritis, Rheumatoid","Diabetes Mellitus", tested
1 "Respiratory Distress Syndrome, Adult", "Arrhythmia","Athero]
12 "Cardiomyopathies", "Heart Arrest", "Hypertension",
13 "HIV Infections", "Multiple Sclerosis", "Hemorrhagic Fever, Ebola",
14 "Influenza, Human", "Malaria") o
Fr— PR Caveat: The disease names should be exactly
16 # parameters for computing end ne . 5 9 %
7| Insert name of the same as reported in the input files of Disease |~
18 dirRes <- "Results/" € .
o . : . Output folder Genes (e.g., Phenopedia)
20 interaction = "similarity” # edgq — — —
21 pval_thr = 0.05 # seleCT STONITICATIVE Orug-drsease associatron e, ize Hocine
22 adjust_link = T # adjust similarity or not .
23 new_link = F # add new drug-disease association or not (without compute pval) @7 config.R 2KB Sep 19, 2020, 10:50 AM
24~ #HHHH R BB RBR BB BBRRRRRRRR & i .
inputFiles.R 1KB Sep 18, 2020, 7:28 PM

25  # parameters for making figure

27 if( (interaction == "proximity") ) distance = "proximity"

28 if( (interaction = imilarity") & (adjust_link = F) ) distance = "similarity"

29 ifC i similarity") & (adjust_link == T) ) distance = "adjusted_similarity"
30~ #u#H RIS

17:3 (Untitled)

R Script

Figure 11: User guide for SAveRUNNER.
Representative slide explaining how to configure some parameters in the config.R file®.
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Once all the parameters are configured, SAveRUNNER can be launched by executing
the file main.R.

As mentioned in the user guide, the creation of the main drug-disease network and
creation of the corresponding file by SAveRUNNER is computationally intensive, so
the diseases included for the different planned implementations may vary depending on
their duration in order to fit the deadline of delivery for the corresponding PEC.

3.4. Differential expression analyses (DEAs) in MM samples

A dataset with microarray data as well as another one with RNAseq data from the
Gene Expression Omnibus (GEO) will be used to perform DEA in R. The pipelines to
be used in the respective analyses were provided to students of this master’s degree in
the class ‘Omics data analyses’, and are available at

https://github.com/ASPteaching/Omics Data Analysis-Case Study 1-Microarrays for

microarray data, and https://github.com/ASPteaching/Omics data analysis-
Case study 2-RNA-seq for RNAseq data. Whereas lists with top DEGs in each dataset

will be presented on this thesis, the corresponding full lists with DEGs as well as the
respective DEAs reports will be available as supplementary information in github. At
https://github.com/appropiate/TFM UoC.

3.5. CMap query of DEGs in MM samples

DEGs for each of the MM datasets will be uploaded to the Query tool of CMap
(https:/clue.io/), which will yield lists containing different types of information for all
the available compounds on their database (Touchstone). For this study, a relevant piece
of information is how similarly/dissimilarly these compounds regulate the uploaded
DEGs, which is shown through a parameter known as normalized connectivity score
(ncs). Only compounds with negative ncs will be considered as they will tend to
regulate the uploaded DEGs in the opposite manner as they were presented in the Query
tool, i.e. they will theoretically counteract the regulation of at least some of those DEGs
and thus treat MM. As indicated by the CMap Query tool tutorial (connectopedia)®, to
increase reliability of selected compounds to counteract uploaded DEGs, such
compounds will need to have a negative ncs as well as values beyond a certain threshold
for other parameters, such as significant adjusted p-value (fold discovery rate or fdr) or
signature signal strength among others. In this work, the following parameters and
threshold values will be used for the selection of compounds generated by the CMap
Query tool:

* ncs < 0 : Regulation of DEGs in opposite manner as uploaded in CMap Query
tool.

e pert type = trt cp: Filtering of CMap list to show only experiments
corresponding to cells treated with compounds.

* fdr g nlogl0 > 1: Adjusted p-value < 0.1
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* cc_q75 > 0.2: Replicate Correlation Coefficient, the higher the value, the more
consistent the response induced by the compound.

* ss _ngene > 200: Signature Strength, representing the number of landmark genes
with absolute z-score > 2.

Threshold values for cc_q75 and ss_ngene are set so that only compounds with a strong
and reproducible transcriptional activity, i.e. a high transcriptional activity score
(TAS)®, are selected (Figure 12).
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Figure 12: Transcription activity score (TAS).
TAS for penicilin and tetracycline in different cell lines (red dots)
is low since these compounds are antibacterial drugs. Adapted from
CMap Website®.

Only compounds that meet the above criteria will be selected in order to validate drug
candidates generated by SAveRUNNER.

3.6. Molecular Docking analyses

The 3D structure for the KIT kinase domain in a complex with ponatinib and ID 4u0i
was downloaded in .pdb format from the protein data bank (PDB,
https://www.rcsb.org/), whereas the compounds ponatinib and axitinib were

downloaded in 3D-SDF format from drugbank
(https://go.drugbank.com/structures/search/small molecule drugs/structure), and

converted to .pdb format using Open Babel®. Protein and ligand preparation was
performed with AutoDock Tools®® or BDSV, 3D structures and interactions were
visualized with BDSV, and docking analyses were performed using AutoDock Vina
(see section 4.4.2 for a more detailed explanation and see the followed workflow).
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4. RESULTS
4.1. Generation of drug candidates with SAveRUNNER

As earlier mentioned, in order to obtain drugs to be repurposed to MM using
SAveRUNNER, MM together with several other diseases need to be selected from the
Phenopedia database and included in the config.R file of SAveRUNNER to generate
drug candidates with potential for repositioning on MM (Figure 11). To do so, and as
mentioned in section 1.2.2, two different criteria have been followed in this thesis,
which yielded two different lists of drug candidates with potential to be repurposed for
MM. Only compounds included in both lists will be considered for further validation. A
third implementation was also used as a negative control for the reliability of this
method to generate specific candidates for to be repurposed to MM, as presented below.

4.1.1. Blood lineage diseases-based network

Since MM is a type of cancer affecting a cell type from the blood line (plasma cell),
as a first criteria diseases related to blood cells were extracted in R from the
Disease_gene database by Phenopedia (Figure 13), and included as references in
SAveRUNNER’s configuration in order to generate potential repurposable candidates.

> #Filter diseases to use in the analysis

> disease genes <- read.csv('C:/Users/Ouner/Google Drive/Master Bioinformatica UoC/TFM/SAveRUNMER-main/c
ode/input_files/Phenopedia.txt’, header = T, sep = "\t")

> disease_genes <- as.data.frame(unique(disease_genes$disease))

> disease_genes <- disease_genes[grep('Lymphoma|kemia|yelo',disease_genes[,1]),] # Keywords to obtain de
sired diseases

> disease genes

[1] "Burkitt Lymphoma" "Leukemia"
[3] "Leukemia, B-Cell™ "Leukemia, B-Cell, Acute”
[5] "Leukemia, B-Cell, Chronic™ "Leukemia, Biphenotypic, Acute”
[7] "Leukemia, Erythroblastic, Acute” "Leukemia, Experimental”
[9] "Leukemia, Hairy Cell™ "Leukemia, Large Granular Lymphocytic”
[11] "Leukemia, Lymphocytic" "Leukemia, Lymphocytic, Acute”
[13] "Leukemia, Lymphocytic, Acute, L1" "Leukemia, Lymphocytic, Acute, L2"
[15] "Leukemia, Lymphocytic, Chronic" "Leukemia, Mast-Cell"”
[17] "Leukemia, Megakaryocytic, Acute" "Leukemia, Monocytic, Acute”
[19] "Leukemia, Myelocytic, Acute™ "Leukemia, Myeloid"
[21] "Leukemia, Myeloid, Chronic™ "Leukemia, Myeloid, Chronic-Phase"
[23] "Leukemia, Myelomonocytic, Acute" "Leukemia, Myelomonocytic, Chronic™
[25] "Leukemia, Myelomonocytic, Juvenile” "Leukemia, MNeutrophilic, Chronic"
[27] "Leukemia, MNonlymphocytic, Acute" "Leukemia, Plasma Cell"
[29] "Leukemia, Pre-B-Cell" "Leukemia, Prolymphocytic™
[31] "Leukemia, Promyelocytic, Acute" "Leukemia, Radiation-Induced”
[33] "Leukemia, T-Cell, Acute"” "Lymphoma™
[35] "Lymphoma, AIDS-Related” "Lymphoma, B-Cell"
[37] "Lymphoma, Extranodal MK-T-Cell" "Lymphoma, Follicular"
[39] "Lymphoma, Large-Cell" "Lymphoma, Large-Cell, Diffuse”
[41] "Lymphoma, Large-Cell, Immunoblastic” "Lymphoma, Large-Cell, Ki-1"
[43] "Lymphoma, Lymphoblastic™ "Lymphoma, Mantle-Cell"
[45] "Lymphoma, Mucosa-Associated Lymphoid Tissue" "Lymphoma, Non-Hodgkin"
[47] "Lymphoma, T-Cell™ "Lymphoma, T-Cell, Cutaneous”
[49] "Lymphoma, T-Cell, Peripheral” "Lymphomatoid Granulomatosis™
[51] "Meningomyelocele” "Multiple Myeloma"
[53] "Myelodysplastic Syndromes™ "Myelofibrosis"
[55] "Myeloproliferative Disorders” "Precursor T-Cell Lymphoblastic Leukemia-Lymphoma™
[57] "Preleukemia" "Primary Myelofibrosis"

[59] "Pyelonephritis”
>

Figure 13: Blood related diseases to generate the first drug-disease network in SAveRUNNER.
Diseases were obtained from the Phenopedia database by using the keyword ’Lymphoma’ and the partial keywords
’kemia’ and ’yelo’ to include all possible leukemias and myeloma/myeloid related diseases, respectively.
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The implementation of SAveRUNNER with these diseases as reference yielded a list
of 360 candidates, among which most of the typical drugs used for MM treatment, such
as lenalinomide®, dexamethasone®_or bortezomid®, were included (Figure 14, Table 4,
and Supplementary information 1)

> # SAveRUNNER compounds for MM using blood related diseases:

> mm_subnetwork <- read.csv('C:/Users/Ouner/Google Drive/Master Bioinformatica UoC/TFM/SAveRUNNER-main/code/Results2/subnetwork/MultipleMy
eloma/txtFile/Drug_Disease_network.txt', header = T, sep = "\t")

>

> # Order alphabetically

> mm_subnetwork <- mm_subnetwork[order(mm_subnetwork$adjusted_similarity,decreasing = T),]
>

> # First candidates in the list:

> head(mm_subnetwork)

disease drug proximity pval similarity adjusted_similarity
256 Multiple Myeloma cantharidin 9 0.003356958 1 0.960023
257 Multiple Myeloma denosumab 9 0.003497314 1 0.960023
258 Multiple Myeloma ibandronate 9 0.002037600 1 0.960023
259 Multiple Myeloma lepirudin 9 0.0914299424 1 0.960023
260 Multiple Myeloma pamidronic acid @ 0.001863521 1 0.960023
261 Multiple Myeloma proflavine 9 0.001317948 1 9.960023
>
> # Number of drug candidates:
> length(mm_subnetwork$drug)
[1] 360
>
>
> all (c('bortezomib®, 'cyclophosphamide’,'carfilzomib', ' dexamethasone’, 'lenalidomide’) %in% mm_subnetwork$drug)
[1] TRUE

>

Figure 14: Extract of drug candidates generated by the first implementation of SAveRUNNER.
360 compounds, such as bortezomib or lenalidomide, were generated by SAveRUNNER when using blood -related
diseases to generate the disease-drug network. The full list of candidates can be found as supplementary information

1
Disease Drug Proximity P val Similarity  Adj. similarity
Multiple Myeloma cantharidin 0 0.0033570 1 0.9600230
Multiple Myeloma denosumab 0 0.0034973 1 0.9600230
Multiple Myeloma ibandronate 0 0.0020376 1 0.9600230
Multiple Myeloma lepirudin 0 0.0142994 1 0.9600230
Multiple Myeloma pamidronic acid 0 0.0018635 1 0.9600230
Multiple Myeloma proflavine 0 0.0013179 1 0.9600230
Multiple Myeloma risedronic acid 0 0.0022835 1 0.9600230
Multiple Myeloma romosozumab 0 0.0000004 1 0.9600230
Multiple Myeloma ximelagatran 0 0.0066476 1 0.9600230
Multiple Myeloma abiraterone 0 0.0026319 1 0.8884007
Multiple Myeloma adalimumab 0 0.0174099 1 0.8884007
Multiple Myeloma alclofenac 0 0.0034104 1 0.8884007
Multiple Myeloma anakinra 0 0.0086742 1 0.8884007
Multiple Myeloma argatroban 0 0.0072982 1 0.8884007
Multiple Myeloma axicabtagene ciloleucel 0 0.0033690 1 0.8884007
Multiple Myeloma belimumab 0 0.0000861 1 0.8884007
Multiple Myeloma bivalirudin 0 0.0043944 1 0.8884007
Multiple Myeloma  brentuximab vedotin 0 0.0000861 1 0.8884007
Multiple Myeloma brolucizumab 0 0.0035184 1 0.8884007
Multiple Myeloma calcifediol 0 0.0007785 1 0.8884007

disease network.

Table 4: Top 20 drugs for MM generated by SAveRUNNER when blood related diseases were used to generate the drug-

Candidates ordered in terms of adjusted similarity. The full list of candidates can be found as supplementary

information 1.

4.1.2. MM symptoms-based network

As a second analysis, diseases related to symptoms often experienced during MM
were selected for a new implementation of SAveRUNNER (Figure 15).
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config <- function(){

# for executing SAveRUNER launch:
# source("~/SAveRUNNER/ code/src/main.R™)

BHEFHERHA T AR RS R R AR SRR RS g
# parameters for computing start network with edge-weight = proximity

diseases <- c(

"Multiple Myeloma™,
"Osteoporosis” ,
"Leukopenia”,
"Anemia",
"Kidney Failure",
"Constipation”,
"Dehydration”,
"Hypercalcemia"
b

BHEFHERHA T AR RS R R AR SRR RS g

Figure 15: Diseases related to MM symptoms' used for the second implementation of
SAveRUNNER.
Diseases were included in the config.R file to generate the corresponding disease-drug
network.

In this case, 354 drug candidates were generated, with many of them being also
present in the previous list (Figure 16, Table 5, and supplementary information 2).

> # SAveRUMNER compounds for MM using MM-related symptoms:

> mm_subnetwork2 <- read.csv('C:/Users/Owner/Google Drive/Master Bioinformatica UoC/TFM/Supplementary inform
ation/SAveRUNNER/ResultsSymptoms/subnetwork/MultipleMyeloma/txtFile/Drug_Disease_network.txt', header = T, s
ep = "\t')

>
> # Order on adjusted similarity:
> mm_subnetwork2 <- mm_subnetwork2[order(mm_subnetwork2$adjusted_similarity,decreasing = T),]
>
>
> # First candidates in the list:
> head(mm_subnetwork2)

disease drug proximity pval similarity adjusted_similarity
4 Multiple Myeloma abiraterone @ 4.865967e-03 1 ©.9987696
11 Multiple Myeloma alclofenac @ 6.49274%¢-03 1 ©.9987696
20 Multiple Myeloma anakinra 9 1.21716%e-02 1 ©.9987696
26 Multiple Myeloma argatroban @ 9.366160e-03 1 ©.9987696
31 Multiple Myeloma axicabtagene ciloleucel @ 8.154217e-@3 1 ©.9987696
38 Multiple Myeloma belimumab @ 8.221664e-07 1 ©.9987696

>
> # Number of drug candidates:
> length{mm_subnetwork2$drug)
[1] 354
>
> all(c('bortezomib', 'lenalidomide"’) %in% mm_subnetwork2%$drug)
[1] TRUE
>
Figure 16: Extract of drug candidates generated by the second implementation of SAveRUNNER.
354 drug candidates to be repurposed in MM, such as bortezomib or lenalidomide, were generated by SAveRUNNER

when using MM-related symptoms to generate the disease-drug network. The full list of candidates can be found as
supplementary information 2.
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Disease Drug Proximity P val Similarity  Adj. similarity

Multiple Myeloma abiraterone 0 0.0040660 1 0.9987696
Multiple Myeloma alclofenac 0 0.0064027 1 0.9987696
Multiple Myeloma anakinra 0 0.0121717 1 0.9987696
Multiple Myeloma argatroban 0 0.0093662 1 0.9987696
Multiple Myeloma axicabtagene ciloleucel 0 0.0081542 1 0.9987696
Multiple Myeloma belimumab 0 0.0000008 1 0.9987696
Multiple Myeloma bivalirudin 0 0.0205429 1 0.9987696
Multiple Myeloma  brentuximab vedotin 0 0.0013691 1 0.9987696
Multiple Myeloma brolucizumab 0 0.0034973 1 0.9987696
Multiple Myeloma capecitabine 0 0.0012342 1 0.9987696
Multiple Myeloma carbocisteine 0 0.0044159 1 0.9987696
Multiple Myeloma cefazolin 0 0.0000000 1 0.9987696
Multiple Myeloma cenegermin 0 0.0000974 1 0.9987696
Multiple Myeloma cyclophosphamide 0 0.0035843 1 0.9987696
Multiple Myeloma dabigatran etexilate 0 0.0077595 1 0.9987696
Multiple Myeloma denosumab 0 0.0024347 1 0.9987696
Multiple Myeloma econazole 0 0.0100851 1 0.9987696
Multiple Myeloma emapalumab 0 0.0006167 1 0.9987696
Multiple Myeloma encorafenib 0 0.0000481 1 0.9987696
Multiple Myeloma enoxacin 0 0.0035254 1 0.9987696

Table 5: Top 20 drugs for MM generated by SAveRUNNER when diseases related to MM symptoms were used to
generate the drug-disease network.
Candidates are ordered by adjusted similarity. The full list of candidates can be found as supplementary information
2.

4.1.3. Network without MM as negative control

A new implementation of SAveRUNNER as a negative control was executed with
the aim of showing that the generation of drugs by SAveRUNNER seems disease
specific. For this purpose, diseases with a similar number of genes associated as MM
and that, at the same time, have as few genes in common with MM as possible were
included in the config.R file of SAveRUNNER to run the implementation that generates
the main drug-disease network. These diseases, ordered from less to more common
genes with MM, were COVID-19 with 2 genes in common, obsessive compulsive
disorder OCD with 12, panic disorder with 15, attention deficit disorder with
hyperactivity with 23, ataxia with 26, and psychotic disorders with 34 genes in common
with MM (Figure 17). Due to having the lowest number of genes in common with MM,
COVID-19 was first selected to generate the corresponding specific drug-disease
subnetwork, yielding only around 100 candidates vs approximately 360 generated for
each of the implementations for MM (data not shown). That is why a drug-disease
subnetwork for OCD was next generated (Figure 17), which yielded 736 candidates
(Figure 18 and 19), of which 45 (approximately 6%) were also generated for the two
specific subnetworks for MM with the corresponding SAveRUNNER implementations
(Figure 19). Therefore, the subnetwork generated for OCD using MM unrelated diseases
contains mostly diseases that were not part of the subnetworks generated for MM,
which demonstrates that SAveRUNNER mainly generates disease-specific candidates
with potential for reposition.
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HRBRRHRIRIR R R PR LSRR R
# parameters for computing start network with edge-weight = proximity

diseases «<- c("coviDp-19",
"Obsessive-Compulsive Disorder”,
"Panic Disorder”,
"attention Decifit Disorder with Hyperactiwvity",
"ataxia”,
"psychotic pisorders”

FARRHHAARR AR AR R
# parameters for computing end network

dirres =- "ResultsControl3/"

interaction = "similarity” # edge-weight = similarity or proximity

pval_thr = 0.05 # select significative drug-disease association

adjust_link = T # adjust similarity or not

new_link = F # add new drug-disease association or not (without compute pval)

FHRRRA AR EAHR RS
# parameters for making figure

if( (interaction == "proximity”) ) distance = "proximity”
if( (interaction "similarity™) & (adjust_Tlink == F) ) distance = "similarity”
if( (interaction == "similarity") & (adjust_Tink == T) ) distance = "adjusted_similarity”

FHRRRA AR EAHR RS
# parameters for computing subnetwork

# sel_drug = "tocilizumab”
# sel_disease = "severe Acute Respiratory Syndrome”
sel_drug = nuLL
sel_disease = "obsessive-Compulsive Disorder”
#HFHFARFRHFAFRFAAFFEFEF S S
Figure 17: Negative control for SAveRUNNER implementation.
Diseases unrelated to MM were selected to generate a disease-drug network as well as drug-

disease subnetwork with candidates to be repurposed for OCD.

> ### SAveRUNNER compounds for Obsessive-Compulsive Disorder and unrelated diseases to MM:

> mm_subnetwork? <- read.csv('C:/Users/Owner/Google Drive/Master Bioinformatica UoC/TFM/SAveRUNNER-m
ain/code/ResultsControl3/subnetwork/Obsessive-CompulsiveDisorder/txtFile/Drug_Disease_network.txt',h
eader = T, sep = "\t")

>
> # Order on adjusted similarity:
> mm_subnetwork7 <- mm_subnetwork?[order(mm_subnetwork7$adjusted_similarity,decreasing = T),]
>
>
> # First candidates in the list:
> head({mm_subnetwork?)

disease drug proximity pval similarity adjusted_similarity
1 Obsessive-Compulsive Disorder abarelix © 5.233279e-088 1 0.9992862
3 Obsessive-Compulsive Disorder acebutolol @ 8.118189%=-04 1 ©.9992862
9 Obsessive-Compulsive Disorder  adenosine 0 4.943644e-14 1 0.9992862
14 Obsessive-Compulsive Disorder almotriptan @ 1.487887e-07 1 8.9992862
15 Obsessive-Compulsive Disorder  alosetron 0 3.436059%9e-086 1 0.9992862
19 Obsessive-Compulsive Disorder  alvimopan @ 5.57121@e-07 1 ©.9992862

>

> # Number of drug candidates:
> length(mm_subnetwork7$drug)
[1] 736

>

Figure 18: Implementation of SAveRUNNER as negative control.
736 drug candidates for OCD obtained when using MM-unrelated diseases to generate the
disease-drug subnetwork. The full list of candidates can be found as supplementary information 3.
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SAveRUNNER_MM_blood_related_diseases SAveRUNNER_MM_Symptoms_related_diseases

SAveRUNNER_OCD

Figure 19: Venn diagram for compounds generated by SAveRUNNER
implementations.

The first two analyses (supplementary information 1 and supplementary information 2,
respectively) involved diseases somewhat related to MM and MM symptoms, and yielded

similar lists of drug candidates, unlike the negative control implementation, where MM was
not included in the configuration file to generate both the general drug-disease network and
the subnetwork for OCD.

Thus, 344 compounds have been commonly generated by the first two
implementations of SAveRUNNER, and will be further validated/filtered out to
obtain a final list of candidates by using DEA/CMap analyses, outlined in the
next section.

4.2. Validation of candidates via DEA/CMap analyses

The workflow followed in this study to validate candidates for MM generated by
SAveRUNNER is described in the next subsections.

4.2.1. Differential expression analysis (DEA)

This step consists of:

1. Collection of data on MM vs healthy plasma cells from the gene expression omnibus
(GEO) repository. RNAseq data under the accession number GSE175384 (read counts
table for 41 healthy adults and 32 MM patients®) and mRNA microarray data under
GSE47552 (5 Normal plasma cell samples and 41 clonal plasma cell samples®) were
collected for this work.

2. Implementation of DEA in R to find DEGs for the GSE175384 RNAseq dataset
(Figure 20) and GSE47552 microarray dataset (Figures 21), which will represent the
gene signature or transcription profile for the respective datasets. For an adjusted p-
value < 0.05 and log2 fold change >1, 4424 DEGs were found for GSE175384 (Table 6
and supplementary information 4 and 5) whereas 768 DEGs were obtained for
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GSE47552 (Table 7 and supplementary information 6 and 7 ). The difference in the
number of DEGs between RNAseq and microarray analyses is somewhat expected
given the superiority of RNAseq technology to detect DEGs”.

RNAseq analysis for healthy vs multiple myeloma cells from GSE175384

TFM: Drug repurposing for multiple myeloma using SAveRUNNER in R
Master en Bioinformatica y Bioestadistica
UoCy UB

Sergio Carracedo Huroz

s 1 Abstract
s 2 Materials and Methods
o 2.1 Software
o 2.2 Data and study design
* 3 Results
o 3.1 Identification of groups and samples
o 3.2 Quality control of raw data
= 3.2.1 Data pre-filtering
= 3.2.2 Normalization
= 3.2.3 Distances among samples (heatmap)
= 3.2.4 PCAplot
= 3.2.5 MDS plot
o 3.3 Identification of differentially expressed genes (DEGs)
= 3.3.1 Volcano plot
o 3.4 Gene annotation
o 3.5 Graphical representations of results.
= 3.5.1 Counts plot
= 3.5.2 MA plot
= 3.5.3 Heatmap for DEGs
o 3.6 DEGs for multiple comparisons
o 3.7 Gene Set Enrichment Analysis (GSEA)
s References

Figure 20: DEA for the RNAseq dataset GSE175384.
The full report and corresponding R code is available as suplementary information 4.

ENTREZID SYMBOL GENENAME log2FoldChange pad
28825 IGLV1-40 immunoglobulin lambda variable 1-40 -7.443295 0
28820 IGLV1-51 immunoglobulin lambda variable 1-51 -6.686168 0
28784 IGLV4-69 immunoglobulin lambda variable 4-69 -6.900870 0
28774 IGLVE-61 immunoglobulin lambda variable 8-61 -5.619471 0
81873 ARPC5L actin related protein 2/3 complex subunit 5 like 1.929150 0
28775 IGLV7-46 immunoglobulin lambda variable 7-46 -6.556131 0

(gene/pseudogene)
28822 IGLV1-47 immunoglobulin lambda variable 1-47 -5.670269 0
28772 IGLV10- immunoglobulin lambda variable 10-54 -7.080012 0
54
28797 IGLV3-19 immunoglobulin lambda variable 3-19 -5.696330 0
28776 IGLV7-43 immunoglobulin lambda variable 7-43 -6.108259 0
5970 RELA RELA proto-oncogene, NF-kB subunit 1.767951 0
53942 CNTN5 contactin 5 6.712467 0
28434 IGHV3-33 immunoglobulin heavy variable 3-33 -4.921755 0
3507 IGHM immunoglobulin heavy constant mu -6.412635 0
7866 IFRD2 interferon related developmental regulator 2 1.287167 0
939 CD27 CD27 molecule -3.126071 0
28448 IGHV3-15 immunoglobulin heavy variable 3-15 -5.517794 0
28461 IGHV1-69 immunoglobulin heavy variable 1-69 -5.564210 0
219285 SAMDYIL sterile alpha motif domain containing 9 like -3.907078 0
51028 VPS36 vacuolar protein sorting 36 homolog -1.855504 0

Table 6: The 20 most significant DEGs in MM samples for the GSE175384 dataset.
The complete DEA and a full list of DEGs in MM can be found as supplementary information 4 and 5,
respectively.

29


https://github.com/appropiate/TFM_UoC
https://github.com/appropiate/TFM_UoC
https://github.com/appropiate/TFM_UoC
https://github.com/appropiate/TFM_UoC
https://github.com/appropiate/TFM_UoC
https://github.com/appropiate/TFM_UoC

mRNA microarray analysis for MM vs healthy samples from GSE47552

TFM: Drug repurposing for multiple myeloma using SAveRUNNER in R
Master en Bioinformatica y Bioestadistica
UoCy UB

Sergio Carracedo Huroz

« 1 Abstract
* 2 Materials and Methods
o 2.1 Software
2.2 Data and study design
2.3 Methods
* 3 Results
3.1 Preparation of working directories and folders to store data
3.2 Reading .CEL files and quality control of raw data
3.3 Normalization and quality control of normalized data
3.4 Batch detection
3.5 Detection of genes with highest variability
3.6 Filtering of genes with lowest variability
3.7 Saving normalized and filtered data
3.8 Model estimation to obtain differentially expressed genes
= 3.8.1 Design matrix
= 3.8.2 Contrast matrix
= 3.8.3 Estimation of the model to select genes
3.9 Expressed gene lists order by p-value
3.10 Gene Annotation
3.11 Visualization of differential expression
= 3.11.1 Volcano plot
= 3.11.2 Multiple comparisons and selection of differentially expressed genes
= 3.11.3 Heatmaps
o 3.12 Gene set enrichment analysis (GSEA)
» References

Figure 21: DEA for the mRNA microarray dataset GSE47552.
The full report and corresponding R code is available as suplementary information 6.

o o
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ENTREZID SYMBOL GENENAME logFC adj.P.Val
28904 IGKVI1D- immunoglobulin kappa variable 1D-8 -3.968053 0e+00
8
55252 ASXL2 ASXL transcriptional regulator 2 -2.413374 0e+00
644714 LIMD1- LIMD1 antisense RNA 1 -2.777854 Oe+00
AS1
91768 CABLES1 Cdk5 and Abl enzyme substrate 1 -1.991807 0e+00
11276 SYNRG synergin gamma -2.079914 0e+00
3738 KCNA3 potassium voltage-gated channel subfamily A -2.572281 2e-07
member 3
158747 MOSPD2 motile sperm domain containing 2 -2.420246 2e-07
167838 TXLNB taxilin beta -2.427357 2e-07
23595 ORC3 origin recognition complex subunit 3 -2.066035 2e-07
28923 IGKV2-24 immunoglobulin kappa variable 2-24 -5.035069 2e-07
9321 TRIP11 thyroid hormone receptor interactor 11 -2.504162 2e-07
344787 ZNF860 zinc finger protein 860 -2.080445 2e-07
84272 YIPF4 Yipl domain family member 4 -1.569583 3e-07
55763 EXOC1 exocyst complex component 1 -1.716421 4e-07
56242 ZNF253 zinc finger protein 253 -1.743651 4e-07
6218 RPS17 ribosomal protein S17 1.336183 4e-07
3660 IRF2 interferon regulatory factor 2 -1.826822 6e-07
2820 GPD2 glycerol-3-phosphate dehydrogenase 2 -1.998799 Te-07
9847 C2CD5 C2 calcium dependent domain containing 5 -1.632152 8e-07
11196 SEC23IP SEC23 interacting protein -1.843214 9e-07

Table 7: The 20 most significant DEGs in MM samples for the GSE47552 dataset.
The complete DEA of the corresponding microarray data, and a full list of DEGs can be found

as supplementary information 6 and 7, respectively.
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4.2.2. Query of DEGs in Connectivity Map (CMap)

Drug candidates to be repurposed on a new disease should be able to counteract at
least some of the disease’s dysregulated genes (which would correspond here to MM
DEGs) and pathways in order to treat such disease effectively. In this regard, one way to
find the strongest drug candidates generated by SAveRUNNER is to select those that
oppositely regulate the highest number of differentially DEGs in MM. For example, if
only genes A, B and C were upregulated in MM, then a good candidate to be
repurposed to MM would be expected to downregulate at least one of those genes. The
best candidates would thus be those counteracting more MM DEGs. This is an in silico
procedure used in previous studies to validate drugs that have been obtained via
computational analyses®. In this study, the compounds in the lists generated by
SAveRUNNER which meet this validation criteria in at least one of the datasets
containing MM samples from the GEO repository (GSE175384 and GSE47552) will be
considered as the strongest candidates for drug repurposing in MM.

4.2.2.1. Use of the Query tool from CMap

In order to implement the above described criteria to validate drug candidates, DEGs
obtained for a given dataset of healthy vs MM samples (together considered as gene
signature or transcription profile) would be uploaded to the query tool offered by CMap
(https:/clue.io/query ). Once the set of genes of interest have been uploaded and the
query has been executed, a table containing several parameters for compounds that
belong to the CMap database and regulate different genes and pathways is generated’.
One of these parameters is known as connectivity score (CS), which reflects how
similarly/dissimilarly a compound regulates the set of genes the user has entered as
input (DEGs for each MM dataset in this case). The more positive the CS is for a given
compound, the more similarly the compound regulates the DEGs the user has provided,
i.e the compound will cause a similar transcription profile upon treatment and will
therefore tend to upregulate the majority of the genes that are upregulated in the
uploaded DEG set, and downregulate the majority of genes that are dowregulated on the
uploaded DEG set. In contrast, compounds with a negative CS would cause an opposite
transcription profile upon treatment, i.e. they will tend to downregulate the majority of
the genes that are upregulated in the uploaded DEG set and upregulate the majority of
genes that are downregulated in the uploaded DEG set. Therefore, according to the goal
of this thesis, the compounds of interests will be those with negative CS since they will
tend to counteract the uploaded DEGs (dysregulated genes) in MM, i.e. they will have
most potential to treat MM. A normalized version of CS (ncs) together with other
parameters is actually a better criteria to use since it accounts for cell type and other
conditions in which transcription profiles caused by these compounds were obtained by
CMap’. Thus, for this thesis, the query tool in the CMap website was used two times by
uploading DEGs for either GSE175384 (RNAseq) or GSE47552 (microarray) in order
to find drugs with gene signatures that are most dissimilar to these sets of DEGs (Figure
22), i.e. we would be selecting compounds based on the criteria earlier specified in to
come up with a set of drug candidates that would counteract the transcription profile for
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each of the MM used in this thesis (Tables 8 and 9 and supplementary information 8 and

Query

Query CMap for reference perturbagen signatures

most similar {(or dissimilar) to your samples.

Note that choosing 'Latest’ from the query parameters section below, will run
the query against our beta dataset released on (Dec 17, 2020)

1) Name your query

Please note that names must contain only alphanumeric characters. Any non-alphanumeric characters will be stripped.

Top 300 log2FC genes in MM

2) Query parameters

Gene expression (L1000) hd Touchstone - Individual query

Latest hd

3) Load a collection of Entrez Gene IDs from Listmaker for up-regulated gene sets (and

to fill in the boxes for the individual query.

© UP-regulated genes © DOWN-regulated genes (ooticnal)
Load from my lists Enter 10-150 genes for optimal results. Load from my lists Please note that 150 is & teck
| @ 26050 | © 256236
i L@ 28919
| @ 22903 !
! 1O 3127
i @ 10158 |
! | & 1436
| @ 79400 ' @ 920
i O 148398 | ® 56146
| @ 106479880 § O 57480
| @ 3437 E
| @ 91513 | @ 125803
Ay ADDEATIAY e : I- -’Q- g ESE— ------------------------------------------

@ Invalid gene

@ Valid gene

O Valid but not used in query

More information can be found in this Connectopedia article

4) Reviewr and submit. Only valid genes will be used in your query.

SUBMIT

Query 'Top 300 log2FC genes in MM' successfully submitted!
The results will be viewable to you from the History table once complete.

Figure 22: CMap Query tool.
Top upregulated and downregulated genes for each DEA (GSE175384 and GSES47552) were introduced in the
GUI of the CMap query tool to generate the corresponding lists of compounds with their corresponding drug
signatures and connectivity scores (supplementary information 8 and 9, respectively).
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pert_iname pert_type ss ngene cc_ 75 fdr g nlogl0 norm cs

BRD-K02581333 trt_cp 316 0.2300 15.6536 -1.5901
BRD-K79797751 trt_cp 237 0.3600 15.6536 -1.5751
HG-6-64-01 trt_cp 219 0.4500 15.6536 -1.5629
BRD-K20986251 trt_cp 209 0.3600 15.6536 -1.5044
AS-605240 trt_cp 278 0.5114 15.6536 -1.4929
BRD-A19037878 trt_cp 210 0.4900 15.6536 -1.4820
BRD-U43867373 trt_cp 280 0.3469 15.6536 -1.4769
BRD-K04465546 trt_cp 334 0.4700 15.6536 -1.4724
BRD-K58547240 trt_cp 210 0.2500 15.6536 -1.4722
MW-STK33-2A trt_ep 209 0.4000 15.6536 -1.4710
triamcinolone trt_cp 221 0.3400 15.6536 -1.4681
ML-179 trt_cp 309 0.3700 15.6536 -1.4548
BRD-K48225424 trt_cp 233 0.2200 15.6536 -1.4436
erlotinib trt_cp 251 0.4200 15.6536 -1.4376
sparfloxacin trt_cp 310 0.2576 15.6536 -1.4373
BRD-K64447917 trt_cp 252 0.2300 15.6536 -1.4276
GSK-269962 trt_cp 263 0.4400 15.6536 -1.4215
dexamethasone-acetate trt_cp 264 0.5700 15.6536 -1.4107
diltiazem trt_cp 203 0.3000 15.3525 -1.4059
BRD-K 75999307 trt_cp 286 0.3600 15.3525 -1.4025

Table 8: Top 20 compounds with most dissimilar normalized connectivity scores (norm_cs) for DEGs in
GSE175384.
The full list is available as supplementary information 8.

pert_ iname pert_type ss_ngene cc_q75 fdr g nlogl0 norm_ cs
alvocidib trt_cp 396 0.6500 15.6536 -1.8626
BRD-K67778494 trt_cp 212 0.2278 15.6536 -1.8146
BRD-K20718732 trt_cp 314 0.2500 15.6536 -1.7691
dactinomycin trt_cp 664 0.5500 15.6536 -1.7634
BRD-K31108633 trt_cp 278 0.2700 15.6536 -1.7463
AZD-5438 trt_cp 249 0.3049 15.6536 -1.7370
WII-4023 trt_cp 268 0.4300 15.6536 -1.7203
radicicol trt_cp 304 0.5300 15.6536 -1.7182
BRD-K64062072 trt_cp 246 0.3200 15.6536 -1.7115
GS-9973 trt_cp 248 0.5300 15.6536 -1.7086
fludarabine trt_cp 519 0.6000 15.6536 -1.6926
BRD-K96072942 trt_cp 415 0.3500 15.6536 -1.6826
rebastinib trt_cp 210 0.4741 15.6536 -1.6754
BRD-K16826857 trt_cp 598 0.5900 15.6536 -1.6591
BRD-K34974324 trt_cp 300 0.3200 15.6536 -1.6460
ibrutinib trt_cp 313 0.5175 15.6536 -1.6412
BRD-K27161987 trt_cp 322 0.3100 15.6536 -1.6367
BRD-K17722419 trt_cp 676 0.7800 15.6536 -1.6354
dicyclohexylurea trt_cp 357 0.4200 15.6536 -1.6338
dantron trt_cp 232 0.2400 15.6536 -1.6284

Table 9: The 20 compounds with most dissimilar normalized connectivity scores (norm_cs) for DEGs in
GSE47552.
The full list is available as supplementary information 9.
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4.2.3. Intersection of compounds lists found via CMap and SAveRUNNER

Drugs present in all the lists earlier presented, i.e. compounds generated by both
SAveRUNNER implementations for MM and further validated by both DEAs/CMap
analyses, would be considered as the strongest candidates for drug repurposing to MM
in this study. Seven drugs met this criteria (Figure 23 and Table 10), of which only the
antibiotic sparfloxacin could be considered as candidate for drug repurposing in MM
because the rest of these validated drugs have already been used in at least one
published study aiming at treating MM (Supplementary information 10).

SAveRUNNER_Symptoms CMap_Top_GSE175384

9
(0.2%)

SAVeRUNNER_blood CMap_Top_GSE47552

Figure 23: Venn diagram for compounds obtained with SAveRUNNER and CMap.
DEGs for GSE175384 and GSE47552 datasets were used in the CMap Query tool to obtain drug
signatures with ncs values.

Disease Drug Adj. similarity A Adj. similarity B mean_adj similarity
Multiple Myeloma  mitoxantrone 0.8884007 0.9987696 0.9435852
Multiple Myeloma  sparfloxacin 0.8884007 0.9987696 0.9435852
Multiple Myeloma  lenalidomide 0.8284254 0.9969081 0.9126668
Multiple Myeloma erlotinib 0.8884007 0.8728060 0.8806034
Multiple Myeloma etoposide 0.7454534 0.9922521 0.8688527
Multiple Myeloma sunitinib 0.6398028 0.5127472 0.5762750
Multiple Myeloma dexamethasone 0.6164503 0.4815084 0.5489794

Table 10: Totally validated candidates generated by SAveRUNNER.
Drugs resulting from the intersection of lists generated by the two SAveRUNNER implementations and the two
DEG/CMap analyses using the GSE175384 and GSE47552 datasets.

In order to increase the number of candidates generated by SAveRUNNER that could
be considered for repurposing in MM, a validation by one DEA/CMap analysis, i.e.
partial validation, was also performed. In this case, 62 compounds were validated
(Figure 23, Table 11, and supplementary information 11). As in the case of totally
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validated drugs, partially validated candidates included several compounds used in MM
treatments, such as polimalidomide®, daunorubicin”, or ifosfamide™ (Table 11 and

supplementary information 11).

Disease Drug Adj. similarity A Adj. similarity B mean adj similarity
Multiple Myeloma argatroban 0.8884007 0.9987696 0.9435852
Multiple Myeloma cyclophosphamide 0.8884007 0.9987696 0.9435852
Multiple Myeloma etoricoxib 0.8884007 0.9987696 0.9435852
Multiple Myeloma floxuridine 0.8884007 0.9987696 0.9435852
Multiple Myeloma idarubicin 0.8884007 0.9987696 0.9435852
Multiple Myeloma ifosfamide 0.8884007 0.9987696 0.9435852
Multiple Myeloma levofloxacin 0.8884007 0.9987696 0.9435852
Multiple Myeloma moxifloxacin 0.8884007 0.9987696 0.9435852
Multiple Myeloma norfloxacin 0.8884007 0.9987696 0.9435852
Multiple Myeloma rilpivirine 0.8884007 0.9987696 0.9435852
Multiple Myeloma trifiuridine 0.8884007 0.9987696 0.9435852
Multiple Myeloma trovafloxacin 0.8884007 0.9987696 0.9435852
Multiple Myeloma valrubicin 0.8884007 0.9987696 0.9435852
Multiple Myeloma bortezomib 0.8877775 0.9922521 0.9400148
Multiple Myeloma mesalazine 0.8180334 0.9964737 0.9072536
Multiple Myeloma flutamide 0.8034253 0.9957985 0.8996119
Multiple Myeloma cefdinir 0.8884007 0.8728060 0.8806034
Multiple Myeloma oxiconazole 0.8884007 0.8728060 0.8806034
Multiple Myeloma pomalidomide 0.8884007 0.8728060 0.8806034
Multiple Myeloma rifampicin 0.8884007 0.8728060 0.8806034

Table 11: Top twenty candidates validated by either GSE175384 or GSE47552 datasets.
The full list can be found as supplementary information 11.

However, in this case 21 of those 62 compounds were not found to be used in studies
related to MM at the time this study was carried out, and could thus be considered as
repurposable candidates for MM (Table 12 and supplementary information 11)

Disease Drug Adj. similarity_ A Adj. similarity B mean_ adj_ similarity
Multiple Myeloma etoricoxib 0.8884007 0.9987696 0.9435852
Multiple Myeloma floxuridine 0.8884007 0.9987696 0.9435852
Multiple Myeloma  levofloxacin 0.8884007 0.9987696 0.9435852
Multiple Myeloma rilpivirine 0.8884007 0.9987696 0.9435852
Multiple Myeloma valrubicin 0.8884007 0.9987696 0.9435852
Multiple Myeloma flutamide 0.8034253 0.9957985 0.8996119
Multiple Myeloma cefdinir 0.8884007 0.8728060 0.8806034
Multiple Myeloma  oxiconazole 0.8884007 0.8728060 0.8806034
Multiple Myeloma  balsalazide 0.7454534 0.9922521 0.8688527
Multiple Myeloma parecoxib 0.7454534 0.9922521 0.8688527
Multiple Myeloma tenoxicam 0.7454534 0.9922521 0.8688527
Multiple Myeloma  doxylamine 0.7226858 0.9528403 0.8377631
Multiple Myeloma  ketoprofen 0.6772528 0.9857551 0.8315039
Multiple Myeloma carbidopa 0.5186185 0.9528403 0.7357294
Multiple Myeloma triclosan 0.8636750 0.6049181 0.7342966
Multiple Myeloma meclizine 0.7454534 0.6628453 0.7041493
Multiple Myeloma oxaprozin 0.7454534 0.6628453 0.7041493
Multiple Myeloma axitinib 0.6772528 0.5644724 0.6208626
Multiple Myeloma  mifepristone 0.6398028 0.5127472 0.5762750
Multiple Myeloma ponatinib 0.5844759 0.4401220 0.5122990
Multiple Myeloma pregnenolone 0.5186185 0.3603143 0.4394664

Table 12: Novelly repurposable candidates validated by either the GSE175384 or GSE47552 datasets.

Table ordered according to their mean adjusted similarity.
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4.3. Repurposable drugs for MM generated by SAveRUNNER

Twenty two candidates generated by SAveRUNNER have thus met the criteria of
total or partial validation approach, and are therefore considered as drugs with potential
to be novelly repurposed to MM (Table 13).

Drug Target(s)
axitinib KDR|FLT1|FLT4|CYP2C19|CYP3A5|KIT|[PDGFRB|CSF1|PLK4
balsalazide PTGS1|PTGS2|ALOX5|PPARG
carbidopa DDC
cefdinir MPO
doxylamine HRH1|CHRM1
etoricoxib PTGS2
floxuridine TYMS
flutamide -
ketoprofen PTGS2|PTGS1|CXCR1|SLCHA8
levofloxacin TOP2A
meclizine NR1I3|HRH1
mifepristone PGR|NR3C1|AR|CYP2B6|CYP2C8|CYP3A5|CYP3AT|NR1I2
oxaprozin PTGS1/PTGS2
oxiconazole -
parecoxib PTGS2|LTF
ponatinib ABL1|BCR|FLT3|RET|FGFR1|FGFR2|FGFR3|FGFR4|KIT| TEK|CYP2C8|CYP3A5| FGF2|FLT1|[KDR|LCK|LYN|PDGFRA|SRC
pregnenolone PGR|CYP17A1|SULT2B1
rilpivirine CYP2C19|CYP3A5|NR1I2|[SCN10A
sparfloxacin TOP2A
tenoxicam PTGS2|PTGS1
triclosan DNMT1
valrubicin TOP2A

Table 13: Repurposable candidates validated by GSE175384 and/or GSE47552 datasets and their
annotated targets in CMap.

The above compounds can be grouped attending to their function:

* Non-steroid anti-inflammatory drugs (NSAIDs), which are generally used to
treat pain or fever among other inflammatory events”, but have also been shown
to help in several types of cancer’. However, in the case of MM, they should be
handled with caution due to potential complications related to kidney failure”.
According to SAveRUNNER implementations and subsequent validated
approach followed in this thesis, balsalazide, ketoprofen, oxaprozin and
tenoxicam are the NSAID candidates that may be repurposed for MM patients
to help treat this disease (Figure 24).
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Figure 24: Molecular structures of the indicated NSAIDs.
Compounds generated by both SAveRUNNER and validated via DEA/CMap analyses. Structures were obtained from
DrugBank”,

» Antibiotics, which are widely used to selectively treat bacterial infections given
their capacity to target bacterial specific processes, such as the building of their
cell wall, provided that the bacteria has not become resistant to the antibiotic”.
In addition to this role, some antibiotics have previously been used to treat
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cancer, hence the possibility that those obtained in this thesis might be eligible
for MM treatment. However, the potential adverse effects of antibiotics, such as
changes in the intestinal microbiota, needs to be taken into account when
considering their use in cancer patients®. According to the performed
bioinformatic analyses in this thesis, the antibiotics sparfloxacin, cefdinir,
levofloxacin, and triclosan (Figure 25) are suggested to have potential to be
repurposed to MM.

SV ORI o
o Ho—N L

Sparfloxacin Cefdinir Levofloxacin Triclosan

Figure 25: Molecular structures of the indicated antibiotics.
Compounds generated by both SAveRUNNER and validated via DEA/CMap analyses. Structures were
obtained from DrugBank’,

Antifungal agents, which are compounds that specifically target pathogens of
fungal origin, and are divided into different classes according to their molecular
structure and targets®. In the context of cancer, Itraconazole, which belongs to
the azole antifungal subgroup, and has recently been repurposed to treat this
disease®. Thus, another azole compound, oxiconazole, which has come up in
this study together with triclosan as a potential agent, might be relevant if
repurposed to MM (Figure 26).

Oxiconazole Triclosan

Figure 26: Molecular structures of the indicated antifungals.
Compounds generated by both SAveRUNNER and validated via
DEA/CMap analyses. Structures were obtained from DrugBank.

Antihistamines, often used to alleviate symptoms, have in some cases also been
repurposed for cancer treatments given their capacity to revert multidrug
resistance®. Therefore, the antihistamines doxylamine and meclizine (Figure 27)
obtained upon implementation of SAveRUNNER might be candidates to
consider when testing for drugs novelly applied to MM treatment. In the case of
meclizine, it actually has been already used against several types of cancer®*®,

37



HC o
=N N—CH, B O O
| /
b

Doxylamine Meclizine

Figure 27: Molecular structures of the indicated antihistamines.
Compounds generated by both SAveRUNNER and validated via
DEA/CMap analyses. Structures were obtained from DrugBank’®,

Steroids, are compounds that include both laboratory-synthesized
(corticosteroids) and naturally produced hormones with anti-inflammatory
properties and modulatory effects on the immune system™®, which makes them
useful on a variety of diseases, such as multiple sclerosis or autoimmune
diseases””. They can also be used in cancer treatment, with prednisone® and
dexamethasone® actually being currently used for MM therapy. In this drug
category, SAveRUNNER analyses implemented in this study suggests the
steroids mifepristone and pregnenolone as potential candidates to be repurposed
to MM (Figure 28), which would expand the applications these compounds

currently have in cancer®>%.

Mifepristone Pregnenolone

Figure 28: Molecular structures of the indicated steroids.
Compounds generated by both SAveRUNNER and validated via
DEA/CMap analyses. Structures were obtained from DrugBank’®.

Enzyme inhibitors, which usually block the biological reactions their named
after, can also be used for cancer treatment provided they target enzymes
involved in cancer key events, such as cell cycle dysregulation® or apoptosis
inhibition® among other events. In this study, the decarboxylase inhibitor
carbidopa, the selective COX-2 inhibitors etoricoxib and parecoxib, and the
tyrosine kinase inhibitors axitinib and ponatinib (Figure 29) have emerged as
potential candidates to be repurposed for MM treatment. Thus, these compounds
may have capacity to treat other cancers than those they have been already used
against™ .
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Figure 29: Molecular structures of the indicated enzyme inhibitors .
Compounds generated by both SAveRUNNER and validated via
DEA/CMap analyses. Structures were obtained from DrugBank™.

Lastly, Floxuridine, rilpivirine, valrubicin, and flutamide, not belonging to
any of the above mentioned categories, have also been obtained in this study as
repurposable candidates to MM (Figure 30). Floxuridine inhibits cell division,
thus being useful to target cells that divide rapidly, such as cancer cells®. This
may make floxuridine potentially beneficial in the treatment of MM. Rilpivirine
is a non-nucleoside reverse transcriptase inhibitor typically used to treat patients
infected with the HIV-1 virus that has also shown toxic effects on pancreatic
cancer cells®. Thus, MM cells may also benefit from this drug, and experimental
validation might be worth a try. Valrubicin has been used for bladder carcinoma,
and is one of the topoisomerase inhibitors (TIs) used in cancer treatment'®.
Since TOP2A is upregulated in a subset of MM patients'®!, TIs appear useful
when treating this MM subgroup. However, the DEAs for the patient samples
included in the datasets analyzed in this thesis show downregulation TOP2A
(supplementary information 5_and 7), which may make valrubicin less
appropriate for these patients. Flutamide is a drug that prevent testosterone to
bind the target cell receptor and has thus been used in the treatment of advanced
prostate cancer'®. Since MM patients seem to have low levels of testosterone, it
seems unclear how flutamide could be beneficial in this scenario.

Floxuridine Rilpivirine Valrubicin Flutamide

Figure 30: Molecular structures of the indicated compounds.
Compounds generated by both SAveRUNNER and validated via DEA/CMap analyses. Structures
were obtained from DrugBank’.
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4.4. Molecular affinity example: docking of ponatinib or axitinib with KIT

4.4.1. Selection criteria for drugs and target

As discussed earlier, when entering DEGs obtained via DEAs (Tables 6 and 7, and
supplementary information 5_and 7, respectively) as input in the query tool of CMap,
the corresponding .gct files were generated (supplementary information 8 and 9,
respectively). These files contain different parameters, such as ncs scores, for which
threshold values have been used as filters in order to select compounds that potentially
counteract the transcription profiles (DEGs) of the MM datasets used for DEAs in this
thesis. This means that such compounds would have the potential to treat MM. In
addition to these parameters (specified in section 3.5), these .gct files also contain
annotated genes for each compound, i.e genes that can be regulated by each compound
according to what is published on the literature, and independently of the query
performed using the DEGs introduced by the user (Table 13 and supplementary
information 8 and 9). These annotated genes for each compound present in the final list
of candidates to repurpose to MM has been used as a filter of all the DEGs found via
DEAs in order to select a gene (target) to perform molecular docking as a representative
example of which drugs could have more affinity for this given target. The selected
gene was KIT, since it is involved in cell survival/proliferation'®, promotes cancer in its
mutated forms'™, it appeared significantly upregulated in the GSE175384 dataset
(supplementary information 5), is expressed in plasma cells in at least a subset of MM
patients'®”, and, according to the CMap analyses performed in this thesis as well as to
previous studies'®'”, is a target for the anticancer drugs axitinib and ponatinib, both
present in the final table of repurposable candidates (Table 13). Axitinib has been used
to inhibit tumor growth in renal carcinoma'® or breast cancer'”, whereas ponatinib is
better known as a drug against leukemia'’. Although both drugs have already been
shown to interact with the KIT’s kinase domain via docking studies'*®'””, a question
about which one could have more affinity and might therefore be used on a lower dose
could be clinically relevant in MM. This could be addressed by comparing the
corresponding docking analyses, which is shown in the next subsection as a
representative example of an approach to follow when selecting a candidate among
available drugs with common targets.

4.4.2. Molecular Docking analyses: Workflow and results

The crystal structure of the KIT kinase domain as a complex with ponatinib was
downloaded in .cif format from the protein data bank (PDB, ID 4u0i), and further
processed in BIOVIA Discovery Studio Visualizer software (BDSVS,
https://discover.3ds.com/discovery-studio-visualizer-download) by removing ponatinib
and water molecules to be left with only the KIT kinase domain. In addition, BDSVS
detected three active sites for KIT in the .cif file, with Active Site 1 containing residues
that belong to the ATP, selectivity, and DFG pockets (Figure 31), which are directly
involved in KIT-ponatinib'” and KIT-axitinib'® interactions to explain the KIT kinase
domain inhibition. However, no information on ponatinib or axitinib interaction with the
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other active sites was found in the literature. For this reason, the docking analyses were
only performed for active site 1, whose center coordinates were assigned based on a
sphere generated by BDSVS that spanned this site (Figure 32).

Active site 1 Active site 2 Active site 3
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Figure 31: Active sites for KIT's kinase domain detected by BDSVS.
Active sites are highlighted in yellow (3D structure) and black (amino acid sequence). Only active site 1 appears to
interact with ponatinib and axitinib in the current literature.

Active site 1

Figure 32: Active site 1 coordinates
determined by BDSV.

The sphere radius and center determine
coordinates for the active site 1 in human KIT
kinase domain, which were used as reference

for molecular docking analyses in ATS.

The center coordinates for the sphere together with 2 times the respective radius used
to set the size of each dimension of the grid-box used as reference in the configuration
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files (Figure 33) needed by Autodock Vina and AutoDock Tools Software (ATS)® to
perform the docking analyses of KIT with either ponatinib or axitinib (Figure 34).

36
36
36

size x
size v
size z

34.6539
10.825
45,7185

center x
center_ vy
center_z

energy_range = 4
exhaustiveness= 8

Figure 33: Config.txt file used by
Autodock Vina for docking
analyses.

Each file with the respective coordinates
and grid box size can be found as
supplementary information 12.

Prior to running docking analyses, preparation of KIT, poxatinib and axitinib as well
as subsequent creation of the corresponding .pdbqt files was carried out. KIT was
prepared mostly in ATS (unless specified otherwise), and consisted of:

* Removing water molecules and ponatinib including in the initial .cis file and
saving output as .pdb file for further use in Autodock Vina and ATS (done in
BDSVS).

* Adding polar hydrogens.

* Adding Kolmann charges and computing Gaisteger charges.

* Set atoms in format AD4.

* Save molecule in .pdbqt format.

Regarding preparation of the ligands, ponatinib and axitinib structures were
downloaded from Drugbank” in 3D-SDF format, transformed into .pdb format with
Open Babel®, and loaded onto ATS as ligands, where:

* Gasteiger charges were added.

* Non-polar hydrogens were merged.

* Rotatable bonds were detected.

* Number of torsional degrees of freedom in the ligand (TORSDOF) were
detected.

* Root was automatically detected and selected to set the torsion tree.
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* Molecules were saved in .pdbqt format.

Docking analyses were all performed from the Windows command line using
vina.exe and the corresponding parameters, which yielded different poses with their
respective affinity scores for each docking analysis (Figure 34 and supplementary
information 12 ).

C:\Docking>vina.exe --config config.txt --log log.txt --out output.txt --receptor kit.pdbgt --ligand ponatinib.pdbqgt

If you used AutoDock Vina in your work, please cite:

0. Trott, A. J. Olson,

AutoDock Vina: improving the speed and accuracy of docking
with a new scoring function, efficient optimization and

# #
# #
# #
# #
# #
# multithreading, Journal of Computational Chemistry 31 (2818) #
# 455-461 #
# #
# #
# #
# #

DOI 18.18e2/jcc.21334

Please see http://vina.scripps.edu for more information.
SRR R R

WARNING: The search space volume > 27088 Angstrom"3 (See FAQ)
Detected 8 CPUs

Reading input ... done.

Setting up the scoring function ... done.

Analyzing the binding site ... done.

Using random seed: -559531552

Performing search ...

% 1@ 28 EL:] 4a e (1] 78 ge el 188%

done.

Refining results ... done.

mode | affinity | dist from best mode

| (kcal/mol) | rmsd 1.b.| rmsd u.b.

————— R s e e e T e
1 -11.9 G.eee B.6668
2 -11.4 1.882 2.862
3 -11.3 1.655 2.516
4 -11.1 2.8a79 3.886
5 -11.1 1.988 2.742
6 -16.8 2.378 3.464
7 -16.5 1.814 2.663
8 -18.1 11.736 17.358
9 -1e.1 11.574 14.237

Writing output ... done.

Figure 34: Execution of AutoDock Vina in Windows Command line.
Representative example of molecular docking analysis yielding affinity scores for different poses between active site
1 in KIT and ponatinib. Docking analyses for both ponatinib and axitinib with active site 1 in KIT are available as

supplementary information 12.

The output file for each docking analysis contained affinity scores for different ligand
poses (Figure 34), and was further splitted into .pdqt files, each corresponding to a pose,
by using vina_split.exe (Figure 35) in order to be able to use the best ponatinib and
axitinib poses individually with KIT’s active site 1 for docking visual representation
(Figure 36 and Figure 37, respectively).

C:\Docking»vina split.exe --input output.txt
Prefix for ligands will be output.txt_ligand_
Prefix for flexible side chains will be output.txt_flex_

Figure 35: Creation of pdbqt.files for individual poses in each docking analysis.
All .pdbqt files for individual poses can be found as supplementary information 12.
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Figure 36: Molecular docking between KIT and ponatinib.
A,3D representation for the best pose (lowest affinity score) between residues in active site 1 of KIT kinase domain
and ponatinib (yellow). B, 2D representation of A. Images generated with BDSVS.
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Figure 37: Molecular docking between KIT and axitinib.
A,3D representation for the best pose (lowest affinity score) between residues in active site 1 of KIT kinase domain
and axitinib (yellow). B, 2D representation of A. Images generated with BDSVS.

The best (lowest) affinity score corresponded to the Active Site 1-ponatinib interaction
(Figure 34 and 36, Table 14, and supplementary information 12). Therefore, due to its
greater affinity, ponatinib might be preferable over axitinib to inhibit KIT’s kinase
domain according to this analysis. In this case, since KIT appeared differentially
expressed in the GSE175384 dataset used in this study (supplementary information 5),
at least some MM patients might find more beneficial to undergo a treatment that
includes ponatinib rather than axitinib for KIT inhibition, i.e. they may have less side
effects with ponatinib than with axitinib since a lower dose would be needed. It is
however worth noting that, even though the active site 1 contains the residues involved
in both KIT-ponatinib and KIT-axitinib interactions available in the literature'**'"’, the
interactions generated by BDSVS (Figure 36 and Figure 37) upon running docking
analysis with ATS (Figure 34 and supplementary information 12) do not exactly match
what is shown in the corresponding publications'®'”’. Thus, further optimization of the
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obtained structures, a more detailed docking analysis as well as experimental validation
(all out of the scope of this work) are possibly necessary in order to address this
question with more certainty.

Active Site 1

Ponatinib -11.9
Axitinib 94

Table 14: Protein-ligand Affinity scores (Kcal/mol)

Values for the best pose of each docking analysis
between KIT’s active site in the kinase domain and
axitinib or ponatinib. Scores for all poses in each
docking analysis are available as supplementary
information 12.

5. CONCLUSIONS

New drugs to treat MM are necessary given its currently poor prognosis. In silico
drug repurposing stands as a valuable tool since it helps with the reposition of drugs that
are currently being used for other diseases in a relatively fast and inexpensive manner.
In this regard, this thesis presents some candidates that might be repurposed to MM,
thereby helping improve the, as for today, lethal final outcome of this malignancy.

5.1. Goals achieved

In this study, the initial aim of finding candidates to repurpose to MM has been
accomplished: A final list of twenty two candidates belonging to different drug classes
are suggested to have the potential to be repurposed to MM. This has been achieved by:

1. Implementing SAveRUNNER, a network-based algorithm to that performs in silico
analyses in R that yields candidates with repurposing potential for a given disease™°.
These candidates appear to be specific for MM (and perhaps also for MM related
diseases) when compared to drugs obtained through an independent SAveRUNNER
implementation that served as negative control (Figure 19).

2. Validating/filtering the compounds generated by SAveRUNNER via DEA/CMap
analyses in order to select those that counteract the dysregulation of DEGs in MM.

In addition, molecular docking analyses between two compounds of the final list,
ponatinib and axitinib, and the KIT’s kinase domain was performed as an example of
candidates with a common target that could be important in MM. Indeed, KIT was
significantly upregulated in the GSE175384 dataset (supplementary information 5),
favors cancer in its mutated forms'*, was shown to be expressed in plasma cells in some

MM patients'®, and is a target for the anticancer drugs axitinib and ponatinib according
106,107

to previous studies
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5.2. Planning and methodology

Although the objectives for each milestone (PEC) have been accomplished, the work
plan had to be somewhat modified along the way. A step that has taken longer than
expected was the implementation of the SAveRUNNER algorithm in R, which took
several weeks of computational processing when nearly 60 diseases (blood related
diseases) were used to generate the final disease-drug network and MM-drug
subnetwork. Therefore, far fewer diseases were used for the second implementation of
SAveRUNNER (using diseases related to MM symptoms) in order to meet the initially
planned timeline. Interestingly, the implementation with this second implementation
yielded a similar number of drug candidates. Therefore, future implementations for
other diseases could probably generate relatively good results when few diseases are
used together with the malignancy of interest in the corresponding config.R file. It is
also worth noting that alternative databases can be used with SAveRUNNER provided
they are placed in the corresponding folder (‘input files’ folder) and in the required
format. This would allow to change outdated databases or using others that might be
more comprehensive in the future.

DEA/CMap analyses, however, could be performed faster than anticipated, which
allowed to perform molecular docking analyses that were considered as an extra task in
case there was extra time.

5.3. Future perspectives

The final list of repurposable candidates suggested by this study can serve as the basis
for future projects aiming at experimentally and/or clinically validating their suitability
for reposition to MM. For example, a logical next step could consist of treating a panel
of MM cell lines'" with some of these candidates to assess their ability to inhibit cell
growth and/or induce apoptosis. At this stage, combinations of different candidates,
perhaps also including currently available drugs for MM treatment, could also be tested
to try to find potent cocktails that may help fight this plasma cell malignancy. As a next
step, successful candidates/cocktails could be used in an in vivo scenario, such as an
adequate MM mouse model'?, to verify their potentially beneficial effects, or in a small
clinical trial since all the candidates are already approved for use in patients with
diseases other than MM, once potential side effects have been taken into consideration.
Furthermore, if the repurposable drugs suggested by SAveRUNNER in this study were
indeed proven to experimentally/clinically help treat MM, then perhaps lines of research
similar to those above mentioned could also be done for COVID-19 and Amyotrophic
Lateral Sclerosis, since SAveRUNNER has also suggested some candidates for these
diseases>"2,

As a different approach, SAveRUNNER could also be modified in different ways in
order to obtain new candidates given that SAveRUNNER’s code is readily available
online®. For example, as earlier mentioned, different drug-target or disease-genes
databases could be used provided they are specified in the corresponding directory
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(SAveRUNNER-main\code\input_files), or the proximity mathematical formula to
calculate proximity scores could be changed, which could modify the final list of

compounds to be considered for repositioning generated by SAveRUNNER.

6. GLOSSARY

Akt
ASCT
ATS
BAFF
BDSVS
BiRd
BMSC
Bort
CCL3
CD38
CDK
CFU-GM
cKit
CRBN

CS
CUL4A
BDSVS
CyBorD
Dara-IRd
Dara-KPd
Dara-RVd
DCEP
DDB1
DKK1
DNA

DPd

DRd

DTI
DT-PACE

BDSVS
Dvd
EGF-R
Elo-PVd
EPd
ERd
Evd

Protein kinase B

Autologous Stem Cell Transplant

Autodock Tools Software

B cell Activation Factor

BIOVIA Discovery Studio Visualizer software
Biaxin-Revlimid-dexamethasone

Bone Marrow Stem Cells

Bortezomib

Chemokine (C-C motif) Ligand 3

Cluster of Differentiation 38

Cyklin D Kinase

Colony Forming Unit-Granulocyte-Macrophage
Tyrosine-Protein Kinase Kit

Cereblon

Connectivity score

Cullin 4 A

BIOVIA Discovery Studio Visualizer software
Cyclophophosphamide-Bortezomid-dexamethasone
Daratumumab-ixazomib-Revlimid-dexamethasone
Daratumumab-Kyprolis-Pomalidomide-dexamethasone
Daratumumab-Revlimid-Velcade-dexamethasone
Dexamethasone-Cyclophosphamide-Etoposide-Platinum
Damage Specific DNA Binding Protein 1

Dickkopf WNT Signaling Pathway Inhibitor 1
Deoxyribonucleic Acid
Daratumumab-Pomalidomide-dexamethasone
Daratumumab-Revlimid-dexamethasone
Drug-Target Interaction

Dexamethasone-thalidomide-Platinum-Adriamycin -Cyclophosphamide-

Etoposide

BIOVIA Discovery Studio Visualizer software
Daratumumab-Velcade-dexamethasone

Epidermal Growth Factor Receptor
Elotuzumab-Pomalidomide-Velcade-dexamethasone
Elotuzumab-Pomalidomide-dexamethasone
Elotuzumab-Revlimid-dexamethasone
Elotuzumab-Velcade-dexamethasone
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Fab

Fc
FGFR3
FLC
GEO
GUI

HD-cyclophosphamide

HGF
Hsp

ICd

Ig
IGF-1R
IKZF1/3
IL-6
IMdDs
IPd

IRd

ISS

JNK
KCd
KIR
KPd
KRd
KSP
LDH
Len
MAPK
MEK
MM
MPI-1 alpha
mTORC
ncs
NDMM
PARP
PCd

Pd

PD-1
PDGFR3
PEC

PI

PDB
PKC
Pvd
Raf

Fragment antigen-binding

Fragment, crystallizable

Fibroblast Growth Factor Receptor 3

Free Light Chain

Gene Expression Omnibus

Graphic user interface

High-dose cyclophosphamide

Hepatocyte Growth Factor

Heat shock protein
Ixazomib-Cyclophosphamide-dexamethasone
Immunoglobulin

Insulin Growth Factor 1 Receptor

IKaros Zinc Finger

Interleukin-6

Immunomodulatory drugs
Ixazomib-Pomalidomide-dexamethasone
Ixazomib-Revlimid-dexamethasone
International Staging System

c-Jun N-terminal Kinase
Kyprolis-cyclophosphamide-dexamethasone
Killer cell Immunoglobulin-like Receptor
Kyprolis-Pomalidomide-dexamethasone
Kyprolis-Revlimid-dexamethasone
Kinesin Spindle Protein

Lactate Dehydrogenase

Lenalidomide

Mitogen-Activated Protein Kinase
Mitogen-activated protein Kinase kinase
Multiple Myeloma

MacroPhage Inflammatory protein 1-alpha
Mammalian Target of Rapamycin Complex
Normalized connectivity score

Newly Diagnosed Multiple Myeloma

Poly ADP-Ribose Polymerase
Pomalidomide-Cyclophosphamide-dexamethasone
Pomalidomide-dexamethasone
Programmed cell Death protein 1
Platelet-Derived Growth Factor Receptor 3
Prueba de evaluacion continua

Proteasome Inhibitor

Protein Data Bank

Protein Kinase C
Pomalidomide-Velcade-dexamethasone
Rapidly accelerated fibrosarcoma
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RANKL Receptor Activator of Nuclear factor kappa beta (NFkB ligand)

RCd Revlimid-Cyclophosphamide-dexamethasone

Rd Revlimid-dexamethasone

RNA Rybonucleic Acid

ROC1 Rotamase CYP 1

RRMM Relapsed/refractory multiple myeloma

RVd Revlimid-Velcade-dexamethasone

SAveRUNNER Searching off-IAbel dRUg aNd NEtwoRk

sFLCR Serum free light chain ratio

SFRP3 Secreted frizzled-related protein 3

SLAMF-7 Signaling Lymphocytic Activation Molecule Family 7

TAS Transcription activity score

TGF-Beta Transforming growth factor-Beta

TI Topoisomerase inhibitor

TNF-a Tumor necrosis factor-alpha

vd Velcade-dexamethasone

VDT-PACE Velcade-Dexamethasone-Thalidomide-Platinum-Adriamycin-
Cyclophosphamide-Etoposide

VEGF Vascular Endothelial Growth Factor

VEGFR Vascular Endothelial Growth Factor Receptor

VMP Velcade-Melphalan-Prednisone

VTd Velcade-Thalidomide-dexamethasone
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