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Abstract: Brain volumetric software is increasingly suggested for clinical routine. The present study
quantifies the agreement across different software applications. Ten cases with and ten gender-
and age-adjusted healthy controls without hippocampal atrophy (median age: 70; 25–75% range:
64–77 years and 74; 66–78 years) were retrospectively selected from a previously published cohort
of Alzheimer’s dementia patients and normal ageing controls. Hippocampal volumes were com-
puted based on 3 Tesla T1-MPRAGE-sequences with FreeSurfer (FS), Statistical-Parametric-Mapping
(SPM; Neuromorphometrics and Hammers atlases), Geodesic-Information-Flows (GIF), Similarity-
and-Truth-Estimation-for-Propagated-Segmentations (STEPS), and Quantib™. MTA (medial temporal
lobe atrophy) scores were manually rated. Volumetric measures of each individual were compared
against the mean of all applications with intraclass correlation coefficients (ICC) and Bland–Altman
plots. Comparing against the mean of all methods, moderate to low agreement was present con-
sidering categorization of hippocampal volumes into quartiles. ICCs ranged noticeably between
applications (left hippocampus (LH): from 0.42 (STEPS) to 0.88 (FS); right hippocampus (RH): from
0.36 (Quantib™) to 0.86 (FS). Mean differences between individual methods and the mean of all
methods [mm3] were considerable (LH: FS −209, SPM-Neuromorphometrics −820; SPM-Hammers
−1474; Quantib™ −680; GIF 891; STEPS 2218; RH: FS −232, SPM-Neuromorphometrics −745;
SPM-Hammers −1547; Quantib™ −723; GIF 982; STEPS 2188). In this clinically relevant sample
size with large spread in data ranging from normal aging to severe atrophy, hippocampal volumes
derived by well-accepted applications were quantitatively different. Thus, interchangeable use is
not recommended.

Keywords: magnetic resonance imaging; brain; software; hippocampus; atrophy

1. Introduction

Assessment of atrophy aids in distinguishing clinically and cognitively deteriorating
subjects and allows prediction of those who will have a less favorable clinical outcome
in various neurological diseases [1]. Hippocampal size can be measured from brain MRI
scans with visual assessment [2,3], linear measurements [2,4], manual volumetry [4] and
automated volumetry [3,5]. With the advance of precision medicine, numerous open source
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and commercial software applications have evolved to allow automated and thus poten-
tially fast and unbiased measurement of brain volumes. To date, none of these approaches
has emerged as a gold standard in clinical routine or research. Hence, the measurement
of atrophy in routine clinical practice remains an unmet need. Additionally, while these
applications have repeatedly been shown to be highly consistent within themselves when
applied repeatedly to the same MRI acquisition, consistency has remained less clear when
the same subject is scanned twice within the same imaging session using similar MRI pa-
rameters [6]. Even more, and this point is most relevant for consistency across both clinical
care providers and across research groups, their relative performance against each other is
rarely investigated. For reasons of availability of cerebral regions similarly segmented by all
included applications, the analyses of the present study were limited to the hippocampus.
While differences in other anatomical areas might have been smaller or larger, this is an
anatomically well-defined and circumscribed area with overall good segmentation results.
Further, the hippocampal volume is a biomarker for multiple neurological conditions [7],
including major depressive disorder [8,9], epilepsy [7,10,11], post-traumatic stress disor-
der [12] and Alzheimer’s Disease [13–15], as well as normal aging [16–21], and is also
one of the major brain sites of neuroplasticity [22]. We therefore aimed to quantify the
extent of agreement between a set of well-established brain volumetric software applica-
tions (FreeSurfer (FS), statistical parametric mapping (SPM) using two different atlases,
Quantib™, Geodesic Information Flows (GIF), and Similarity and Truth Estimation for
Propagated Segmentations (STEPS)) in a sample size and an anatomical area that is relevant
for a clinical setting.

2. Materials and Methods

The study was conducted in accordance with the Declaration of Helsinki and approved
by the local Ethics Committee of the Medical University of Innsbruck (AN2016-0099). All
participants provided written informed consent to participate in the study.

2.1. Study Population

FS has been additionally applied in our clinic for many years during diagnostic work
up of patients with memory deficits, and measurements derived from this method were
therefore chosen as inclusion criteria. Based on hippocampal z-scores < −1.96, measured by
FS, we retrospectively selected 10 cases and 10 gender- and age-adjusted healthy controls
without hippocampal atrophy from a previously published cohort of Alzheimer’s dementia
patients and normal ageing controls [23,24]. Z-scores were derived by individually age- and
gender-matched control datasets, which were characterized by normal cognitive functions
determined by neuropsychological tests and had no history of neurological or psychiatric
disorders with an age range of 44 to 85 years. Out of this healthy control cohort, sex-matched
groups of at least 35 subjects with an age range of ±5 years of the individual subject to
be analyzed was drawn to serve as healthy subjects’ sample to enable z-transformation of
regional morphometric measures for every single study participant [25]. Z-transformations
provide the fractional number of standard deviations, by which each observed value is
above or below the mean value of a group. Additionally, 10 sex- and age-matched healthy
controls (HC) were recruited prospectively. Subjects with evidence of structural brain
lesions such as territorial ischemia, mass lesions, etc. were excluded.

2.2. Magnetic Resonance Imaging Protocol and Image Analysis

High-resolution isovoxel T1-weighted magnetization-prepared rapid gradient-echo
(MPRAGE) sequences (TR = 2210 ms, TE = 3 ms, flip angle (FA) = 8◦, field of view
(FOV) = 220 mm× 179 mm, acquisition time (TA) = 3:37) were acquired for all individuals
using a 3 Tesla MR-scanner (MAGNETOM Skyra, Siemens Healthcare GmbH, Erlangen,
Germany) with a standard 64-channel head coil. MRI acquisition (scanner and parameters)
for this dataset were consistent for all examined subjects.
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2.3. Volumetric Measurements

Volumetric analyses were performed with the following five programs: FS, SPM apply-
ing two different atlases (Neuromorphometrics and Hammers), GIF, STEPS and the commer-
cially available Quantib™. Volumetric analysis with FS was conducted using the software
package version 6.0 (http://surfer.-nmr.mgh.harvard.edu (accessed on 12 December 2020),
Harvard University, Boston, MA, USA). Data was further processed by z-transformation
using mean centering and unit-variance scaling of in-house gender- and age- adjusted HC
cohorts. Using SPM 12 (http://www.fil.ion.ucl.ac.uk/spm (accessed on 12 December 2020),
Institute of Neurology, London, UK) the estimation of TIV was conducted while running
MATLAB 9.5 (R2018b; MathWorks, Natick, MA, USA). For the extraction of hippocampal
volumes, we used the manually annotated Neuromorphometrics atlases (Neuromorpho-
metrics, Inc. under academic subscription, http://Neuromorphometrics.com (accessed
on 12 December 2020)) and the Hammers atlas [26]. Quantib™ (Quantib B.V., Rotterdam,
Netherlands) was used as instructed by the vendor and necessitated the import of data
from our routine clinical image software via a locally already established data node only.
GIF [27,28] and STEPS [29] required the export of anonymized image data and subse-
quent upload on a cloud-based server (http://niftyweb.cs.ucl.ac.uk/program.php?p=GIF
(accessed on 12 December 2020), http://niftyweb.cs.ucl.ac.uk/program.php?p=BRAIN-
STEPS (accessed on 12 December 2020). No pre- and postprocessing were necessary
for the application of GIF and STEPS. Due to its clinical applicability, the visual MTA
(medial temporal lobe atrophy) score was performed on MRI of the brain using coronal
(reconstructed from isovoxel) T1 weighted images on a slice through the hippocampus at
the level of the anterior pons for each hemisphere separately as reported previously [30,31].
The analysis was performed in consensus by S.M. and L.L. In case of disagreement, expert
decision was considered (E.G.).

2.4. Statistical Analysis

In a first step, subjects were assigned to quartiles (within all data available in this
cohort) according to their volumetric measure for each method, in order to investigate,
whether different software applications categorized them in the same quartiles. In a
second step, volumetric measures of both hippocampi between each volumetric software
application and the mean of all values were compared with intraclass correlation coefficients
(ICC), implementing two-way consistency analysis. The comparison against the mean of
all methods was chosen because of the lack of a generally accepted gold standard. In a
third step, Bland–Altman statistics and plots were calculated to assess the amount of
disagreement between methods across the spread of the data, again comparing against the
mean of all methods.

3. Results

The median age in subjects selected based on low z-scores in our FS data base
was 70 years (25–75% range: 64–77 years; f:m = 4:6) and 74 years in the control group
(66–78 years; f:m = 5:5:). One subject could not be processed with Quantib™ due to
software-related reasons but was otherwise assessed with all other applications. There
was no visually perceivable image alteration such as image acquisition-related artefacts or
structural brain lesions in this scan. Volumetric values in mm3 of all analyzed applications
and the MTA scores are visualized in Table 1.

Noteworthy, the observed differences between several methods were greater than
the measurements themselves. The differentiation between the two groups (individuals
selected via FS z-scores< −1.96 and matched HC) via quartile ratings was best reproduced
by STEPS and MTA scores. SPM, Quantib™ and GIF have statistical outliers, as some
HC are categorized in the quartile with the most atrophy. Quantib™ and GIF generally
tend to categorize subjects to lower quartiles. Observations were nearly the same for both
hemispheres (Figure 1).

http://surfer.-nmr.mgh.harvard.edu
http://www.fil.ion.ucl.ac.uk/spm
http://Neuromorphometrics.com
http://niftyweb.cs.ucl.ac.uk/program.php?p=GIF
http://niftyweb.cs.ucl.ac.uk/program.php?p=BRAIN-STEPS
http://niftyweb.cs.ucl.ac.uk/program.php?p=BRAIN-STEPS
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All ICC were statistically significant with the exception of Quantib, which missed
the preset level of statistical significance in the right hippocampus with 0.36 (95%CI:
−0.10–−0.69), p = 0.059. The highest ICC was reached by FS in the left hippocampus with
0.88 (95%CI: 0.73–0.95), p < 0.001 and the right hippocampus with 0.86 (95%CI: 0.68–0.94),
p < 0.001. The second highest ICC was reached by SPM (Neuromorphometrics) in the
left hippocampus with 0.73 (95%CI: 0.44–0.89), p < 0.001 and the right hippocampus with
0.62 (95%CI: 0.25–0.83), p = 0.001 (Table 2).
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Figure 1. Attribution of left and right hippocampus to color-coded quartiles which were defined
within each method. Legend: whether subjects are assigned to the same category by means of
different software applications is visualized. For example, for subject P5 right hippocampus is
assigned to Q1 in FreeSufer and STEPS, while the same structure is attributed to the highest quartile
in GIF. Abbreviations: SPM = Statistical Parametric Mapping software; GIF = Geodesic Information
Flows software; STEPS = Similarity and Truth Estimation for Propagated Segmentations.
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Table 1. Demographic and volumetric data of subjects with hippocampus volume loss and healthy controls.

ID Age
[y] Gender Free Surfer

z-Value
FreeSurfer

[mm3]

SPM
Neuromor-
phometrics

[mm3]

SPM
Hammers

[mm3]

Quantib™
[mm3] GIF [mm3] STEPS

[mm3] MTA

LH RH LH RH LH RH LH RH LH RH LH RH LH RH LH RH

P1 68 m −3.45 −2.42 2258 2593 1852 2390 1393 1703 2180 2540 3499 3896 3368 3242 3 2

P2 65 f −3.03 −1.33 2615 3063 2318 2868 1588 1982 2590 2840 4053 4831 2985 2718 3 2

P3 74 f −1.82 −2.42 2500 2307 2204 2097 1512 1421 2170 2060 3642 3335 3368 3383 1 2

P4 71 f −4.59 −4.34 1942 2119 1522 1667 1161 1190 - - 3146 3548 3920 4001 3 2

P5 58 m −3.33 −2.64 3009 3279 2414 2756 1765 1964 3020 3170 4341 4793 3124 3149 3 3

P6 61 m −2.66 −2.79 3142 3136 2454 2855 1799 1953 2890 3070 4567 4723 3088 3274 2 2

P7 81 f −3.12 −2.17 2048 2527 1848 2485 1437 1709 2110 2590 3545 4053 3713 3711 3 2

P8 66 m −2.79 −2.27 2688 2966 2265 2833 1761 1987 2430 2730 3874 4259 2471 2571 3 2

P9 77 m −2.14 −1.65 2922 3293 2440 2664 1834 1961 2700 2990 4547 4583 3779 3728 3 3

P10 77 m −2.27 −1.92 2764 2989 2159 2492 1520 1714 2470 2730 4089 4502 3791 3661 3 2

C1 81 f 1.79 0.81 3725 3653 2636 2742 1851 1857 2700 2710 4126 4404 6880 7348 0 0

C2 74 m 0.71 0.67 3643 3636 2576 2563 1740 1688 2510 2260 4155 4319 7395 7798 2 2

C3 74 m −0.19 −0.48 3559 3371 2240 2244 1662 1578 2480 2570 4910 4879 6504 5911 2 2

C4 71 m −1.23 −1.41 3186 3376 2961 3215 2169 2312 3130 3220 4618 4859 6338 6610 1 1

C5 82 m 1.13 1.15 3447 3685 2063 2178 1558 1561 2310 2520 3787 3947 9005 9366 2 2

C6 76 f −0.47 −0.22 3118 3189 2225 2524 1677 1793 2390 2610 3654 4034 8318 8366 1 1

C7 77 m −0.38 0.23 2776 3039 2728 2942 2023 2117 2910 2920 4439 4606 6715 7042 1 1

C8 74 f 0.08 0.35 2923 2991 2027 2259 1365 1501 2070 2200 3488 3708 7796 7875 2 2

C9 49 f 0.98 1.23 3561 3671 3169 3336 2147 2171 3010 3070 4434 4824 8423 9695 0 1

C10 49 f 0.44 0.70 3631 3840 3137 3346 2194 2256 3100 3140 4540 4895 7024 7667 0 1

Legend: P(1–10) subjects with hippocampal z-scores < 1.96 in our FS database (highlighted in grey); C(1–10) = matched
healthy controls. Abbreviations: m = male; f = female; LH = left hippocampus; RH = right hippocampus;
SPM = Statistical Parametric Mapping software; GIF = Geodesic Information Flows software; STEPS = Similarity
and Truth Estimation for Propagated Segmentations; MTA = medial temporal lobe atrophy score.

Table 2. Intraclass correlation coefficient between the mean of a single method and the mean of all methods.

Method ICC Lower CI Upper CI p-Value

LH

FreeSurfer 0.88 0.73 0.95 <0.001
SPM Neuromorphometrics 0.73 0.44 0.89 <0.001

SPM Hammers 0.58 0.20 0.81 0.003
Quantib™ 0.49 0.05 0.76 0.015

GIF 0.57 0.18 0.80 0.004
STEPS 0.42 −0.02 0.72 0.030

RH

FreeSurfer 0.86 0.68 0.94 <0.001
SPM Neuromorphometrics 0.62 0.25 0.83 0.001

SPM Hammers 0.48 0.06 0.76 0.013
Quantib™ 0.36 −0.10 0.69 0.059

GIF 0.54 0.13 0.79 0.006
STEPS 0.38 −0.07 0.70 0.046

Abbreviations: LH = left hippocampus; RH = right hippocampus; SPM = Statistical Parametric Mapping soft-
ware; GIF = Geodesic Information Flows software; STEPS = Similarity and Truth Estimation for Propagated
Segmentations; ICC = intraclass correlation coefficient; CI =confidence interval.

In the Bland–Altman plots (Figure 2) the means of left and right hippocampal volumes
were plotted against the differences of the individual method minus the overall mean of all
methods, to visualize the relation of one single method to the overall methods. Measures
from Quantib™ and SPM Neuromorphometrics were closely similar. Both SPM measures
using Neuromorphometrics and Hammers were below the group mean. Volumetric esti-
mates from FS were closest to the mean measure. Values obtained from GIF and STEPS
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were above the mean, with highest values measured in the latter. Mean differences between
individual methods and the mean of all methods in mm3 was considerable (LH: FS −209,
SPM-Neuromorphometrics −820; SPM-Hammers −1474; Quantib™ −680; GIF 891; STEPS
2218; RH: FS −232, SPM-Neuromorphometrics −745; SPM-Hammers −1547; Quantib™
−723; GIF 982; STEPS 2188).

Biomedicines 2022, 10, x FOR PEER REVIEW 7 of 16 
 

 

Figure 2. Bland–Altman plots of the relation of hippocampal volumetric measurements resulting 

from one single method to the overall methods. Legend: The transversal color-coded continuous 

line parallel to the x- axis visualizes the mean of differences of single method means to the overall 

mean. A line along the 0 values would be the optimum, as it is near the mean of all methods. The 

discontinuous line depicts the limitations of agreement, which varies substantially between the 

methods. STEPS reveals a great spread in data and measures the highest values compared with the 

mean. However, this method forms two clusters, one including subjects, the other controls, therefore 

yielding a good separation between pathological and normal. Abbreviations: SPM = Statistical Par-

ametric Mapping software; GIF = Geodesic Information Flows software; STEPS = Similarity and 

Truth Estimation for Propagated Segmentations. 

4. Discussion 

Brain atrophy occurs in various neurological diseases and is one of the best investi-

gated imaging biomarkers, due to its promising correlation with present and future disa-

bility [1]. Important technical improvements for quantification of brain atrophy have been 

Figure 2. Bland–Altman plots of the relation of hippocampal volumetric measurements resulting
from one single method to the overall methods. Legend: The transversal color-coded continuous line
parallel to the x- axis visualizes the mean of differences of single method means to the overall mean. A
line along the 0 values would be the optimum, as it is near the mean of all methods. The discontinuous
line depicts the limitations of agreement, which varies substantially between the methods. STEPS
reveals a great spread in data and measures the highest values compared with the mean. However,
this method forms two clusters, one including subjects, the other controls, therefore yielding a good
separation between pathological and normal. Abbreviations: SPM = Statistical Parametric Mapping
software; GIF = Geodesic Information Flows software; STEPS = Similarity and Truth Estimation for
Propagated Segmentations.
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4. Discussion

Brain atrophy occurs in various neurological diseases and is one of the best inves-
tigated imaging biomarkers, due to its promising correlation with present and future
disability [1]. Important technical improvements for quantification of brain atrophy have
been achieved and several software applications, with differing requirements on technical
ability and levels of operator intervention, have been developed. Despite extensive research,
their application in clinical routine settings is limited.

This is in part due to small group differences that become apparent on a group basis but
provide limited applicability on a patient level [32,33]. To some extent, it also reflects the fact
that comparative studies between different methods are sparse [34]. It is thus unknown to
what extent different software applications agree regarding the same anatomical areas [35].
This issue is not only of academic interest, as volume segmentation in different software
products may lead to significantly different results in the individual patient and may
thus seriously influence therapeutic decisions, as was recently shown for automated MRI
perfusion-diffusion mismatch volume estimation and the consecutive decision for or against
mechanical thrombectomy [36]. In this study, we therefore investigated the quantitative
agreement between well-established volumetric applications in a well-separated cohort
and found major differences.

There are several freely available and commonly applied tools for brain volumetry
including FS, SPM, Quantib™, GIF and STEPS. These software programs can automati-
cally pre-process and segment T1-weighted images of the brain. FS combines volumetric-
and surface-based approaches and uses a computationally demanding, template-driven
approach to provide a detailed parcellation and segmentation of cortical and subcortical
structures [37]. SPM is computationally less demanding and based on spatial normalization
of the individual brain in the same stereotactic space (Montreal Neurological Institute (MNI)
space), which allows the segmentation of brain tissues by assigning tissue probabilities
per voxel [38]. For voxel-based ROI extraction, SPM offers a selection of volume-based
atlases in the predefined template space [39]. Quantib™ is a commercially available soft-
ware, which implements a fully automated brain tissue classification procedure, in which
k-Nearest-Neighbor (kNN) training is automated. This is achieved by non-rigidly regis-
tering the MR data with a tissue probability atlas to automatically select training samples,
followed by a post-processing step to keep the most reliable samples [40–42]. GIF algorithm
is a brain extraction, tissue segmentation and parcellation tool, which assumes probabilities
for a specific voxel to belong to a certain brain structure [27,28]. STEPS is a multi-atlas
segmentation propagation and fusion technique that generates probabilistic masks using a
template library with associated manual segmentations [27,29].

Both, FS and SPM, are scientifically well-established software programs. FS has been
additionally applied in our clinic for many years during diagnostic work up of patients with
memory deficits. FS and SPM have been extensively used at our center in various studies,
and therefore a profound knowledge of these programs is present in our team [23,24,43–46]).
Quantib™ was chosen as an example of a commercially available software program and
was provided to us during a trial period. GIF [27,28] and STEPS [29] were chosen as they
are server-based non-commercial tools for which no preprocessing is necessary, and the raw
exported and anonymized data are processed on a cloud-based server. The research of MR
volumetric imaging markers for neurodegenerative disease, especially of those resulting in
cognitive decline, [47], and their potential bias induced by the choice of method [48,49] are
of ongoing major interest in both, clinical and scientific communities. Advances in neu-
roimaging techniques have contributed greatly to the development of novel morphometric
methods [50]. Automated imaging techniques, such as SPM, have led to the possibility
of characterizing neuroanatomical structures and measuring regional brain alterations
in aging, learning, development and neurodegenerative diseases [51]. Quantitative MRI
analysis was shown to be useful for the radiological assessment of altered brain structures
when implemented in the clinical routine workflow [52]. As regional cerebral atrophy is
typically associated with neurodegenerative diseases, quantitative brain measures such as
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SPM have been utilized as an independent morphometric biomarker to evaluate morpho-
metric changes in the structure of the premorbid brain [53–57]. SPM has been used for the
discrimination of Alzheimer’s disease from cognitively normal population [49] and for the
detection of atrophy patterns in the premorbid brain of Alzheimer’s disease patients [58].
Along with age and gender, TIV is an important covariate that should be corrected for in
regression analysis investigating progressive neurodegenerative brain disorders, such as
Alzheimer’s disease, normal aging and cognitive impairments [59]. While a very promi-
nent and scientifically applied function of FS is whole-brain segmentation [60,61], FS is
constantly being extended with updated tools for accurate cross-modal intra-subject reg-
istration [62], combined volume and surface cross-subject registration [63], probabilistic
estimation of cytoarchitectonic boundaries [64], automated tractography [65], and longi-
tudinal analysis [66,67]. It has further enabled the comprehension of many neurological
disorders [37], the genetic influence of neuroanatomical diversity and change [68,69], phys-
iological development [70] as well as the underlying process of aging [71]. The Quantib™
algorithm has been evaluated and applied in studies focusing on cognitive impairment and
dementia, and further cerebral small vessel disease [72–74]. GIF [27,28] and STEPS [29] use
a template library with associated manual segmentations including 682 brain and 110 hip-
pocampal manual segmentations, which makes it reliable for hippocampal segmentations
and could thus also be considered as an alternative to manual segmentations by the user.

In this study, image acquisition, processing and volumetric applications were per-
formed according to current scientific standards. While all volumetric applications under
consideration in the present study are scientifically well established and highly consistent
within themselves, there is no generally accepted automated MR volumetric gold stan-
dard [33]. We therefore operationalized the mean of all values to be closest to the unknown
ground truth.

In a first step, we asked a clinically relevant question, namely, to which extent different
applications attribute subjects concordantly into the same categories of atrophy. Patients
and controls were best separated in this approach by FS and STEPS. In a second step,
we investigated whether all methods correlate with each other, and found that highest
correlations with the mean of all groups was present for FS and SPMS. In the last step, the
extent of absolute volumetric differences was quantified with Bland–Altman statistics. We
found that the differences between some absolute values were larger than the measurement
themselves e.g., in the healthy control (C2), STEPS revealed a hippocampal volume of
7395 mm3 and FS of 3643 mm3. Generally speaking, results obtained by Quantib™ and
SPM are close to each other, FS is close to the overall mean with the smallest deviation from
zero value, STEPS “overestimates” the value, SPM Hammers “underestimates” the value.
However, the zero line, reflecting the mean of all values, might change depending on the
potential for an additionally applied method and atlas.

Likely, this reflects the underlying segmentation protocols that include different
anatomical areas under the term “hippocampus”. The Dementia Research Centre pro-
tocol used for STEPS includes the dentate gyrus, the hippocampus proper, the subiculum
and the alveus. Contrarily, the protocol used for GIF cuts the tail of the hippocampus
when the tail turns dorsally (“Crura and Tail End”) [27]. While the investigation of such
differences is not the subject of the current investigation, it does point to the fact that serious
differences are present in areas that are considered clearly defined from a neuroradiological
point of view.

In our present study, we observed larger hippocampal volumes measured by FS
and STEPS, compared with SPM or Quantib™. This is in line with a large multicenter
observational study, which reported that absolute ROI volumes of total intracranial volume,
total white matter and grey matter volume, total ventricular volume, right and left volumes
for the basal ganglia, amygdala and hippocampus derived from FS 6.0 differed significantly
from those obtained using version 5.3 [75]. FS consistently reports larger volumes than
manual tracing. This difference is smaller in larger hippocampi or older people, with
weaker biases in version 6.0.0 than prior versions. All methods tested agree qualitatively on
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rightward asymmetry and increasing atrophy in older people. FS approximates the same
atrophy measures as manual tracing, but it introduces biases that could require statistical
adjustments in some studies.

While reliability between the two segmenting tools NeuroQuant® and FS is fair to
excellent, volumetric outcomes are statistically different between the two methods [76]. Due
to these known observations, as suggested by developers of FS and NeuroQuant®, structure
segmentation should be visually verified prior to clinical use and rigor should be used when
interpreting results generated by either method [76]. We have recently shown that MR
planimetric measurements are highly predictive for volumetric measurements, thus even
if absolute measurements of cerebral atrophy are different between volumetric software
applications, this finding does not mean that one method could not predict another.

A clinically feasible method for the evaluation of medial temporal lobe atrophy that is
useful in diagnostic work-up of Alzheimer’s disease is the medial temporal lobe atrophy
(MTA) score, which was shown to be equally good regarding diagnostic properties to
volumetric measurements [77]. In subjects with Alzheimer’s dementia, and clinically
non proven forms of dementia (non-dementia), the NeuroQuant® total measure yielded
a comparably higher AUC (0.88, “good”) compared with the MTA mean measure (0.80,
“good”) in the comparison of subjects with Alzheimer’s disease and non-dementia. The
accuracy, however, was in favor of the MTA scale. Therefore, both methods reached equally
“good” power and correlated highly with each other [77]. Contrarily to Quantib™, MTA
categorized the subjects in quartiles similarly to FS and STEPS.

This study has several limitations. First, there is no gold standard to compare with.
While the comparison against the mean of all groups is likely to include a fairly appropriate
estimate of the ground truth based on the inclusion of five well-established applications,
the inclusion or exclusion of applications clearly exerts a strong bias. However, as inclusion
or exclusion of other applications will shift the mean and change the correlation coefficients
or render their significance levels, it does not affect the observation that there are major
differences in the absolute values between these different key applications, and we do not
draw any conclusions form our data that exceed this fact. We do point out in this context
that the software applications considered in this manuscript, while representative, are
not entirely exhaustive as several, especially commercially available, applications were
not included.

Second, sample size is small in absolute numbers, but highly representative for a
memory clinic setting, where decisions are made on an individual subject basis and not
on large sample sizes. As the discussion is currently moving towards integrating MR
volumetric tools in the clinical setting, the observed differences in this cohort cannot be
neglected irrespective of the sample size. Contrarily, it is likely that our cohort of 10 subjects
with severe hippocampal atrophy and 10 healthy controls will oversimplify any diagnostic
test to separate the two groups. As this separation was largely absent in our derived data
set, it is likely that in a cohort with less pronounced group differences, the agreement
would be even weaker than reported here, especially considering the fact that confounding
factors such as structural brain lesions were excluded in the present analysis. Furthermore,
while correlations across methods would increase with sample size, we consider it highly
relevant to point out that on an individual patient level this association is obviously not
given, and methods should not be used interchangeably.

Patients typically receive scans at different institutions, and with the advance of
volumetric tools in clinical practice it is likely that a patient will be confronted with reports
providing significantly different values for the same MR scan. We believe that it is important
for the research community to be aware of this, and to transport this message to clinicians.

While FS leads in our investigation concerning concordance with the overall means,
we cannot conclude whether this is due to superior performance or simply due to the
fact that subjects were initially recruited based on z-scores obtained from FS segmenta-
tions. Potentially, measurement errors from FS-derived volumes have contributed to false
misclassification of this cohort as having low hippocampal volume. FS was chosen as an
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instrument for applying inclusion criteria, as this software program has been additionally
applied in our clinic for many years during diagnostic work-up of dementia.

It is, however, important to stress at this point, that this study does not intend to
support one method or the other, but merely to point out a major issue regarding variability
in volumetry. One case could not be analyzed with QuantibTM, which further limited the
sample size for the comparison including this method. We, however, did not exclude this
case from the analysis, as there were no visually perceivable reasons for this, such as image
acquisition-related artefacts or structural brain lesions.

In this study, we used a large, but finite, number of volumetric methods and certain
methods, including manual segmentations, were not included. The DRC hippocampus
volumetry is, however, based on expert hippocampal segmentations, and FS approximates
the same atrophy measures as manual tracing [78].

ICC were calculated based on the mean of a single method and the mean of all
methods. This calculation results in the mean of the method being represented in the
mean of all methods, thereby increasing the consistency of the two measurements and
potentially overestimating the amount of agreement. Another possibility would have been
comparing the mean of a single method to the mean of the other five methods included.
The reason for choosing the reported approach of method comparison is that, by including
all methods at all times, we gain a homogeneous “mean method/surrogate gold standard”
across all comparisons throughout the entire analysis. The alternative approach would
create six different “surrogate gold standards“ by always omitting the method compared,
consequently hindering comprehensive presentation and interpretation. Furthermore,
given the presumption that the methods investigated cover the ground truth, the true mean
should contain the method under investigation. Otherwise, if we would not suppose that
a certain method could potentially cover the ground truth, it should not be included in
the analysis anyhow, especially not for “surrogate gold standard“ calculations serving as
comparison for other methods.

As the specific research question of this manuscript is to quantify the amount of agree-
ment across well-established software applications in their assessment of hippocampal
volume within the same data set, we did not focus on other related aspects such as usability,
hardware requirements, reproducibility with varying acquisition parameters, patient hy-
dration status and cardiac output, the presence of structural brain alterations, or different
imaging time points [79]. However, all those factors will play a considerable role in the
real-life application of volumetric brain analysis and are currently poorly controlled for. It
is thus likely that our study significantly overestimates the amount of agreement between
volumetric software applications that will be encountered in a clinical setting.

The compared software packages apply different segmentation algorithms for calcula-
tion of the hippocampal volume. The exact underlying algorithm which might potentially
influence measurements is often not known [36]. Since the application of such software
programs in clinical routine is regarded to be without user interaction, the missing in-depth
comprehension of the underlying algorithms does not influence the results of our study.
Lastly, we did not attempt to comment on clinical applicability. In general, non-commercial
software programs tend to require more expenditure of work and more experience and
training compared with commercial software solutions. The time to produce individual
reports, however, will depend on computer skills and computational resources. Hence,
computation times might vary depending on the infrastructure.

The aim of our study was to measure the amount of agreement, yet we found signif-
icant disagreement. Any radiologist who would want/need to compare measurements
across volumetric methods, such as during follow-up examinations, should be aware of
this, and maybe consider using a mix of them. In the end, it is, however, irrelevant if the
mean of all methods (which of course is arbitrary based on the included methods) does or
does not outperform individual methods.

If one specific method would indeed outperform the mean of all methods, yet still
not establish the ground truth, we could still not reliably conclude that the use of a mix of
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well-established methods is inferior to this single method. Especially as we now know that
the real issue lies in inter-software disagreement, and therefore refrain from commenting
on the accuracy of one or the other. Further, assuming a physiological loss of brain volume
of about 0.3% per year in healthy adult subjects [80], which may even double in some
neurological diseases [81,82], even with a volumetry software program with the highest
accuracy, reliable estimation of brain atrophy in individual patients has been suggested
to only be possible over periods of at least five years [83]. Considering the substantial
disagreement between software programs for longitudinal patient follow-up, the expected
effect size of hippocampal atrophy should exceed the size of differences between individual
methods observed in this study.

5. Conclusions

Consistency across centers is viable for any diagnostic test. In the view of our finding
and the lack of a generally accepted gold standard in the foreseeable future, we suggest the
implementation of a spectrum of measurements obtained from a set of applications, rather
than of focusing on a single solution.
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