

Diseño de sistema Smart Beach para la accesibilidad, sostenibilidad y seguridad en las zonas costeras de baño

AUTOR: BORJA DE FRUTOS GARAYALDE

TITULACIÓN: MASTER UNIVERSITARIO EN INGENIERÍA DE TELECOMUNICACIÓN

TUTOR: DAVID CRESPO GARCÍA

ÍNDICE

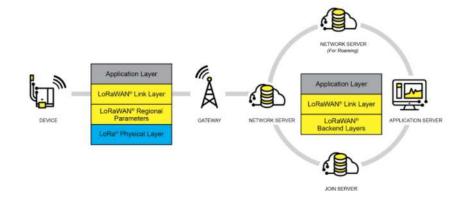
- 1. INTRODUCCIÓN
 - ✓ Motivación
 - ✓ Objetivos
- 2. ESTADO DEL ARTE
 - ✓ Solución Smart Beach
 - ✓ Referencias Smart Beach
- 3. DISEÑO SISTEMA SMART BEACH
 - ✓ Arquitectura física
 - ✓ Arquitectura lógica
- 4. PRESUPUESTO
 - ✓ Sensores y actuadores
 - ✓ Comunicaciones y gestión de datos
- 5. CONCLUSIONES
 - ✓ Lecciones aprendidas
 - ✓ Líneas de trabajo futuras

1. INTRODUCCIÓN - Motivación

La propuesta de este trabajo es diseñar un sistema completo que consiga mejorar los siguientes puntos:

- AGUA: mejorar calidad del agua.
- ARENA: mejorar calidad de la arena.
- AIRE: mejorar calidad del aire e información meteorológica.
- > SEGURIDAD: videoanalítica de video para conteo de personas y drones de vigilancia.
- > INFORMACIÓN: proporcionar información turística relevante.

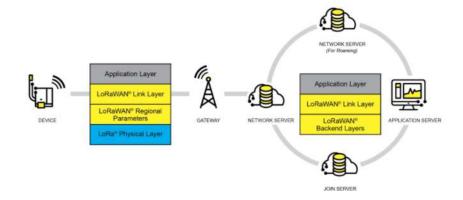
El sistema loT se regula de manera autónoma recogiendo información de los sensores y dispositivos finales, que se mostrará en los actuadores correspondientes.



1. INTRODUCCIÓN - Objetivos

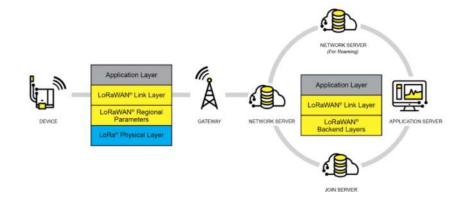
- Analizar las necesidades tecnológicas de los municipios costeros con zonas de playa
- > Estudiar los sensores, actuadores y dispositivos existentes
- Seleccionar las soluciones hardware y de comunicaciones IoT
- Análisis de la capa de almacenamiento y gestión de datos de la solución
- Realizar presupuesto del sistema de caso teórico

- ➤ Hardware Sensores y actuadores
- Comunicaciones IoT LoRaWAN



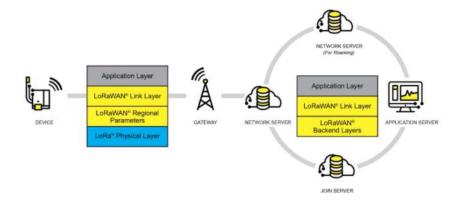
Almacenamiento y gestión de datos - AWS

- ➤ Hardware Sensores y actuadores
- > Comunicaciones IoT LoRaWAN



Almacenamiento y gestión de datos - AWS

- ➤ Hardware Sensores y actuadores
- Comunicaciones IoT LoRaWAN

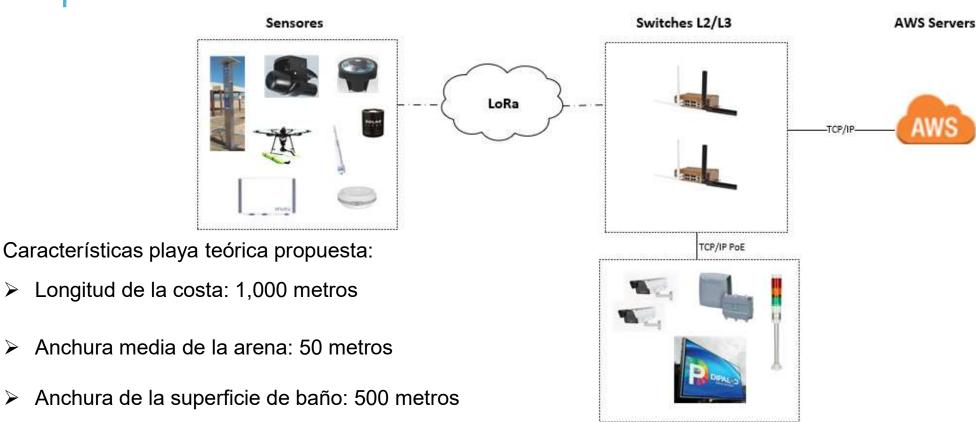


Almacenamiento y gestión de datos - AWS

- ➤ Hardware Sensores y actuadores
- Comunicaciones IoT LoRaWAN

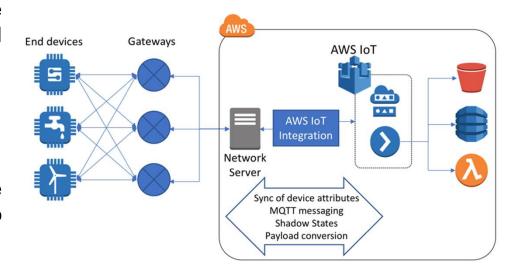
> Almacenamiento y gestión de datos - AWS

2.ESTADO DEL ARTE – referencias Smart Beach


➤ Benidorm Smart Beach

► Las Canteras Smart Beach

3. DISEÑO SISTEMA SMART BEACH — Arquitectura física

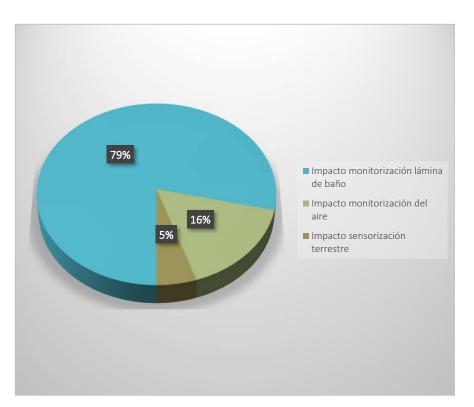


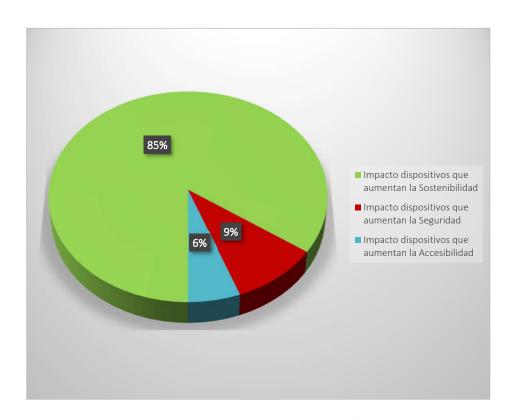
Cámaras y Actuadores

3. DISEÑO SISTEMA SMART BEACH – Arquitectura lógica

Integración AWS IoT con TTN server:

- Sincronizar la información y los atributos de los dispositivos entre el servicio de administración de dispositivos de AWS IoT y el servidor de red LoRaWAN (TTN).
- Admitir la comunicación bidireccional
- Establecer en todo momento el estado de cosas de AWS IoT a través de la red LoRaWAN al dispositivo habilitado.
- Convertir datos LoRaWAN a un documento JSON que se espera del servicio AWS IoT.
- > Ser confiable, escalable y apto para su propósito.




4. PRESUPUESTO – Sensores y Actuadores

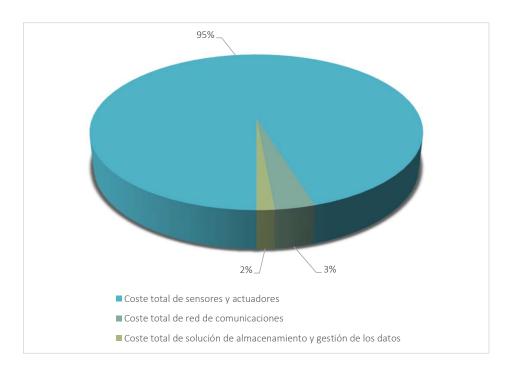
Descripción	Cantidad	Coste Unitario	Coste Total
Sensor de sustrato	100	15€	1.500 €
Dron autónomo de vigilancia y salvamento con base de carga inalámbrica	3	7.000 €	21.000 €
Cámara de videovigilancia y control de aforos	6	2.000 €	12.000 €
Batimetría inteligente	5	40.000 €	200.000 €
Boya inteligente	5	3.000 €	15.000 €
Sensor UVA	2	200 €	400 €
Sensor de temperatura	4	80€	320 €
Sensor de humedad	4	30€	120 €
Sensor de calidad del aire	3	400 €	1.200 €
Ducha inteligente	6	500€	3.000 €
Bandera inteligente	3	250 €	750 €
Pantalla de información al turista	5	1.800 €	9.000 €
Atril de información táctil	3	1.600 €	4.800 €
Puntos de acceso WiFi	10	450 €	4.500 €
iBeacon	6	40 €	240 €
Coste tot	273.830€		

4. PRESUPUESTO

4. PRESUPUESTO — Comunicaciones y gestión de datos

Descripción	Cantidad	Coste Unitario	Coste Total
Router L2/L3 LoRaWAN PoE	3	1.500 €	4.500 €
Cableado UTP PoE (Metros)	300	0,70€	210 €
Configuración de la red LoRA	1	4.800 €	4.800 €
Coste total de red de con	9.510€		

Descripción	Cantidad	Coste Unitario	Coste Total
AWS IoT Core (coste mensual)	12	250€	3.000€
Network Server TTN	1	1.220€	1.220€
Coste total de solución de almacenamie	4.220€		



4. PRESUPUESTO

➤ El coste total de materiales y configuración de red de la smart beach teórica de este trabajo es 287.560€.

➤ El foco tecnológico de la Smart Beach con estas características debe ir orientado a una buena elección de dispositivos.

5. CONCLUSIONES - Lecciones aprendidas

- Gran reto de implementación real
- Objetivos de diseño cumplidos
- Uso de nuevas tecnologías
- Conocimientos y experiencia adquiridos
- Diseño integral propuesto

5. CONCLUSIONES – Líneas trabajo futuro

- Integración en redes 5G
- Realización de prototipo sistema integral
- Aplicación móvil para los usuarios
- Realización de predicciones Big data
- Completar análisis económico proyecto real

¡MUCHAS GRACIAS POR SU ATENCIÓN!

AUTOR: BORJA DE FRUTOS GARAYALDE

TITULACIÓN: MASTER UNIVERSITARIO EN INGENIRÍA DE TELECOMUNICACIÓN

TUTOR: DAVID CRESPO GARCÍA

