

Cloud based serverless web application

Daniel Perez Lorenzo
Grado de Ingenieria informatica

Gregorio Robles Martinez
09-06-2022

2022 Daniel Perez Lorenzo

Reconocimiento-NoComercial-
SinObraDerivada.

 FICHA DEL TRABAJO FINAL

Título del trabajo:

Cloud based serverless web application

Nombre del autor: Daniel Perez Lorenzo

Nombre del consultor: Gregorio Robles Martinez

Fecha de entrega (mm/aaaa): 06/2022

Área del Trabajo Final: Desarrollo web

Titulación: Grado de Ingenieria informatica

 Resumen del Trabajo (máximo 250 palabras):

El propósito de este proyecto es desarrollar un aplicativo web serverless y auto
escalable.

Con la actual situación de mercado y la tendencia hacia el uso de tecnologías
cloud junto a las ventajas que este ofrece en términos de coste, rendimiento,
escalabilidad y facilidad del despliegue de la infraestructura. El Desarrollo en la
nube se ha convertido en una solución perfecta para construir casi cualquier
tipo de aplicativo.

Por las razones escritas anteriores he decidido utilizar AWS (Amazon Web
Services) para construir toda la infraestructura utilizando IaC (Infrastructure as
Code), configurando CI/CD y control de versión junto con una arquitectura de
micro servicios, NodeJS, ReactJS y Python.

La conclusión de este proyecto, aparte de haber alcanzado el objetivo
tecnológico principal y cumpliendo el caso de uso del mismo, también puedo
concluir que el uso de tecnologías cloud, para el desarrollo web, puede ser
fácilmente justificado por el gran número de beneficios que este aporta en
cuanto a infraestructura, coste y rendimiento.

 Abstract (in English, 250 words or less):

The purpose of this project is to develop a self-scalable, serverless cloud web
application.

With the current market trending towards cloud infrastructure and its
advantages in terms of cost, performance, scalability and ease of deployment,
cloud development has become a perfect solution for building almost any web
application.

For that reason, I have chosen to use AWS (Amazon Web Services) for
building the entire infrastructure, using IaC (Infrastructure as Code), setting up
an entire development flow with CI/CD and version control together with a
microservices design in mind, NodeJS, ReactJS and Python.

The conclusion of this project is that, apart from fulfilling the use case of the
web application, cloud technologies can be easily justified for any type of web
development for the number of benefits it brings when it comes to
infrastructure, costs, and performance.

 Palabras clave (entre 4 y 8):

AWS, Cloud, Microservices, NodeJS, ReactJS, IaC, Python

Contents

1 INTRODUCTION ... 1

1.1 CONTEXT .. 1
1.2 PROJECT GOALS .. 1
1.3 APPROACH AND METHODOLOGY .. 2

1.3.1 Tech stack .. 2
1.3.1.1 Front end ... 2
1.3.1.2 Back end .. 2
1.3.1.3 Infrastructure.. 2
1.3.1.4 Test coverage .. 3

1.4 PLANNING ... 4
1.5 PROJECT RESULTS SUMMARY ... 5
1.6 FOLLOWING CHAPTERS SUMMARY ... 5

2 PROJECT REQUIREMENTS .. 6

2.1 FUNCTIONAL REQUIREMENTS .. 6
2.1.1 Use cases .. 7

2.2 NON-FUNCTIONAL REQUIREMENTS .. 11

3 PROJECT DESIGNS .. 12

3.1 AWS ARCHITECTURE ... 12
3.2 DATA MODELLING .. 13
3.3 FE DESIGN .. 14

3.3.1 Home page ... 14
3.3.2 Login .. 14
3.3.3 My Studies tab ... 15
3.3.4 Create/Modify Study ... 15
3.3.5 Questionnaire view ... 16
3.3.6 Add question .. 16
3.3.7 Get access link ... 17
3.3.8 Filling in questionnaire data .. 17

3.4 FE ARCHITECTURE .. 18
3.5 BE LAMBDAS ARCHITECTURE ... 19
3.6 BE PYTHON ARCHITECTURE ... 20
3.7 JIRA STORIES .. 20

4 DEVELOPMENT ... 21

4.1 REPOSITORIES .. 21
4.2 AWS COGNITO CONFIGURATION ... 21
4.3 SETTING UP DYNAMODB .. 23
4.4 NODEJS LAMBDA .. 24

4.4.1 Development environment ... 24
4.4.1.1 Installing NodeJS ... 24
4.4.1.2 Installing brew .. 24
4.4.1.3 Installing Docker .. 24
4.4.1.4 Installing sam-cli .. 24
4.4.1.5 Installing PAW ... 24

4.4.1.6 Creating the first Lambda .. 25
4.4.2 Setting up CodePipeline ... 27
4.4.3 Setting up buildspec.yml .. 33
4.4.4 Development NodeJS .. 36

4.4.4.1 Architecture.. 36
4.4.4.2 Code base ... 37
4.4.4.3 Setting up API Gateway ... 41
4.4.4.4 Testing ... 44

4.5 REACT JS ... 46
4.5.1 Development environment ... 46
4.5.2 Setting up an S3 bucket for web access .. 46
4.5.3 Setting up CodePipeline ... 49
4.5.4 AWS CloudFront .. 52
4.5.5 Setting up deployment with webpack and Babel 54

4.5.5.1 Webpack .. 54
4.5.5.2 Babel ... 55
4.5.5.3 Deployment.. 56

4.5.6 Development .. 57
4.5.6.1 Architecture.. 57
4.5.6.2 Code .. 58
4.5.6.3 Website .. 60

4.6 PYTHON .. 66
4.6.1 Development environment ... 66
4.6.2 Setting up CodePipeline ... 66

4.7 ACCEPTANCE TESTING ... 67
4.8 DESIGN CHANGES .. 68

4.8.1 Major changes .. 68
4.8.2 Minor changes .. 68

5 FINANCIAL EVALUATIONS .. 69

6 CONCLUSIONS .. 70

6.1 LESSONS LEARNT .. 70
6.2 GOALS ACHIEVED .. 70
6.3 PLANNING ... 70
6.4 FUTURE VISION .. 71

7 GLOSSARY .. 72

7.1 AWS .. 72
7.2 CLOUD ... 72
7.3 MICROSERVICES.. 72
7.4 IAC .. 72
7.5 TECH STACK.. 72
7.6 FRAMEWORK ... 72
7.7 API .. 72

8 BIBLIOGRAPHY ... 73

9 ANNEX .. 75

Figures

Figure 1: Gantt ... 4
Figure 2: AWS Architecture .. 12
Figure 3: Home page design .. 14
Figure 4: Login design .. 14

Figure 5: My studies tab design .. 15
Figure 6: Create/modify study design ... 15
Figure 7: Questionnaire view design .. 16
Figure 8: Add question design .. 16
Figure 9: Get access link design .. 17

Figure 10: Filling in questionnaire data design ... 17
Figure 11: FE architecture .. 18
Figure 12: Jira stories ... 20

Figure 13: Cognito configuration 1 ... 21
Figure 14: Cognito configuration 2 ... 22
Figure 15: Final Cognito configuration .. 22

Figure 16: DynamoDB table creation ... 23
Figure 17: First Lambda code ... 25

Figure 18: First Lambda CloudFormation definition .. 26
Figure 19: First Lambda testing code ... 27
Figure 20: CodePipeline configuration 1 .. 27

Figure 21: CodePipeline configuration 2 .. 28
Figure 22: CodePipeline configuration 3 .. 28

Figure 23: CodePipeline configuration 4 .. 29
Figure 24: CodePipeline configuration 5 .. 29
Figure 25: CodePipeline configuration 6 .. 30

Figure 26: CodePipeline configuration 7 .. 30

Figure 27: CodePipeline configuration 8 .. 31
Figure 28: CodePipeline configuration 9 .. 32
Figure 29: Buildspec configuration 1 .. 33

Figure 30: Buildspec build stage .. 34
Figure 31: API Gateway ... 34
Figure 32: Lambda test .. 35

Figure 33: NodeJS architecture .. 36
Figure 34: NodeJS code base .. 37

Figure 35: Code base ... 38
Figure 36: NodeJS code base use cases ... 38
Figure 37: NodeJS code base delete questionnaire ... 39

Figure 38: NodeJS code base repositories .. 39
Figure 39: NodeJS Code base use case example ... 40

Figure 40: CORS template.yml ... 41
Figure 41: API Gateway authorizer .. 42

Figure 42: CORS pre-flight ... 43
Figure 43: Disable authorization ... 43
Figure 44: NodeJS testing .. 44
Figure 45: NodeJS setting up automated testing during build 44
Figure 46: NodeJS CodePipeline test results ... 45
Figure 47: NodeJS PAW .. 45

Figure 48: CodePipeline configuration 1 .. 46

Figure 49: CodePipeline configuration 2 .. 47

Figure 50: CodePipeline configuration 3 .. 47
Figure 51: CodePipeline configuration 4 .. 48
Figure 52: CodePipeline configuration 5 .. 49
Figure 53: CodePipeline configuration 6 .. 50
Figure 54: CodePipeline configuration 7 .. 50

Figure 55: CodePipeline configuration 8 .. 51
Figure 56: S3 public url .. 51
Figure 57: ReactJS running on public site .. 51
Figure 58: CloudFront configuration 1 .. 52
Figure 59: CloudFront configuration 2 .. 53

Figure 60: Cloudfront public url .. 53
Figure 61: Deployment webpack Babel 1 ... 54
Figure 62: Deployment webpack Babel 2 ... 55

Figure 63: Deployment webpack Babel 3 ... 56
Figure 64: ReactJS architecture ... 57
Figure 65: ReactJS folder structure .. 58

Figure 66: Axios request .. 59
Figure 67: ReactJS home page .. 60

Figure 68: ReactJS login .. 60
Figure 69: ReactJS wrong credentials .. 61
Figure 70: ReactJS my studies tab ... 61

Figure 71: ReactJS create/modify .. 62
Figure 72: ReactJS questionnaire .. 62

Figure 73: ReactJS add question ... 63
Figure 74: ReactJS questionnaire link .. 63
Figure 75: ReactJS filling in desktop .. 64

Figure 76: ReactJS filling in mobile .. 64

Figure 77: ReactJS .csv file .. 65
Figure 78: CodePipeline ... 66
Figure 79: Python Lambda ... 66

Figure 80: Major changes ... 68

 1

1 Introduction

1.1 Context

After some years working in a research centre leading multiple web
development projects, I understood how crucial it is for such centres to have a
tool for gathering data from patients.

While there are existing tools, such as SurveyMonkey, Google Forms or Lime
Survey which allows their users to survey customers, this project is oriented
towards providing a comfortable and easy to use tool to create surveys for
scientific studies, with exporting data functionalities.

The long-term vision is to be able to offer data analysis and automatic reports.
Although these will not be part of the scope of this project, the project will be a
starting point for developing such services.

1.2 Project goals

This project has two very distinct goals. On one side, the creation of a web
application tool that can be used by students and researchers to fulfil their
necessities to gather data from participants. And on the other, explore the
advantages of cloud development, building a cloud infrastructure with auto-
scale capabilities and serverless.

These main goals can be summarized as follows:

• Provide a survey creation tool with exportable data options aimed for the
educational and scientific community.

• Use scalable cloud infrastructure.

However, the target audience of this project can be quite diverse, from young
researchers or students, that might be more comfortable with the usage of web
applications, to more senior researchers that might not be that up to date.

For that reason, the web application must be very easy to use, and rely on
simplicity. It needs to get the job done, without confusing their users.

From the technological perspective, to ensure a long-lasting life for the web
application, using the latest front end and back end technologies is a must.

Secondary goals

• Easy and simple to use.
• Use latest front end and back end technologies.
• Options to export raw data in csv format.
• Test coverage.

2

1.3 Approach and methodology

The approach for this project was to use the latest web development
frameworks and the latest cloud technologies offered by AWS. As one of the
leading cloud providers, Amazon Web Services offers one of the best solutions
in this field.

1.3.1 Tech stack

1.3.1.1 Front end

For the front end development, I used ReactJS [1] a modern free and open-
source front end JavaScript library that allows the developer to build user
interfaces based on components. Its capabilities for re-rendering the DOM
elements only when they have changed their state makes it very efficient.

Semantic UI [2] was used for adding styling to each component. It is a CSS
framework with already in-built classes to style components.

Finally, to have backwards compatible JS code, I used Babel [3], and to
compress the JS and CSS code, webpack [4].

1.3.1.2 Back end

Regarding the back end, the code lives on AWS Lambdas [5]. AWS Lambdas
are serverless, event-driven compute services that run code without
provisioning or managing servers. Once one Lambda gets triggered it will
spawn the code, run it and then shut down.

Although Lamba’s that are recently executed stay in a ‘warm’ state, where the
code is still loaded in case there are more consequents executions, if that is not
the case it will shut down and repeat the same process once it is needed again.

My set of AWS Lambdas contains NodeJS [6], a JavaScript runtime
environment for back end development. Because Lambdas are small functions
that have a brief lifetime, NodeJS is light enough for the Lambda to start up,
execute the code and die in a short period, as well as for the Python [7]
application to handle the reports.

1.3.1.3 Infrastructure

The application infrastructure is in AWS. Several services are used to achieve
the most serverless [8] application possible, and to have a fully scalable
architecture.

For the user’s authentication, AWS Cognito [9] is used. This service offers user
sign-up, sign-in and access control.

3

As an entry point for the backend APIs, AWS API Gateway [10] is used. This
allowed me to create REST APIs [11] and connect them to Lambda functions. It
was also integrated with AWS Cognito to manage the permissions of each
request.

For the database, I made use of AWS DynamoDB [12], a NoSQL database
prepared for high concurrency and connections with in-memory cache and
excellent performance.
The front end of the application needed to be located somewhere; in this case,
instead of using an EC2 instance which would be running 24/7 even when no
users are connected to it, I used an S3 bucket with CloudFront.

AWS S3 buckets [13] can behave as web servers for static websites. But,
because the back end is located behind an API Gateway, I could run the static
client-side rendering ReactJS on a simple S3 bucket which accommodates as
many requests as it receives. If none, the cost of the S3 bucket would be 0.

But ReactJS it is not a typical static website; everything is managed by the
framework itself using one single html file as an entry point. This can be a
problem with S3 because it will try to map any route /whatever to the some S3
file. To solve this problem and make it compatible with ReactJS, AWS
CloudFront [14] was used in front of the S3 bucket to redirect all traffic to the
index.html.

Finally, to be able to deploy all the previously mentioned architecture
components I used 2 more services from AWS.

I used AWS Code Pipeline [15] for automating the deployment. I created hooks
in the repositories of each service so whenever a new merge is performed to
master branch, it will trigger the code pipeline. This process creates the
application, runs tests or any other actions needed and finally pushes it to AWS
CloudFormation [16], the latter will take care of the deployment to the different
AWS components.

1.3.1.4 Test coverage

The test coverage was done for both back end and front end. For the Lambdas
in NodeJS I used Jest [17]. No automated test was done for Python due to the
small size of the application (1 single lambda). Finally, Jest was also used for
ReactJS.

4

1.4 Planning

During the planning (Figure 1) some risks were identified.

Figure 1: Gantt

Most risk were related to the configuration and setup of the entire AWS Cloud
infrastructure:

• Unexpected issues with AWS deploying the applications, either due to
some misconfiguration or lack of knowledge.

• Issues with pipelining ReactJS + Webpack + Babel, making an
automated pipeline that executes webpack with Babel and can deliver
the application to CloudFormation can be challenging to configure.

To address these issues, I had an AWS developers associate course at my
disposal.

5

1.5 Project results summary

The result of the project is a set of microservices based on different
technologies and frameworks, with a CI/CD and a simple, intuitive, and easy to
use web interface for the users.

1.6 Following chapters summary

• Project requirements: Listing the functional and non-functional
requirements of the project.

• Project designs: Listing the design prototypes for each page of the
website.

• Development: Description of the most relevant parts of the development
phase such as: Infrastructure, NodeJS, ReactJS and Python.

• Financial evaluations: small evaluation of the development and
infrastructure costs.

• Conclusions: my conclusions about this project

6

2 Project requirements

2.1 Functional requirements

The functional requirements are split into two groups: Admins and Users. In the
scope of this project the web application only contains admin users, normal
users will not need to register to fill in any of the questionnaires. So, during this
document any reference to ‘users’ would be under the premise of non-logged-in
users.

• As an admin I want to be authenticated via Cognito.
• As an admin I want to create studies.
• As an admin I want to create several types of questions:

o Dropdown question.
o Checkbox question.
o Input text question.

• As an admin I want to create a unique sharable link for each
questionnaire.

• As an admin I want to download a .csv file with the results of any of my
questionnaires.

• As a user I want to access a particular study via its unique id link.
o Answer to all the questions.
o Submit the responses.

More details about the functional requirements can be found in the next section.

7

2.1.1 Use cases

Overview

Title As an admin I want to be authenticated via
Cognito.

Description An admin must be able to authenticate in the
website through Cognito

Actors Admin

Initial status and preconditions The admin user must exist in Cognito

Basic flow

1: Admin click on ‘login’ button
2: Admin fills in the form with the username and password
3: Admin is logged in and sees the ‘my studies’ tab

Alternative flow(s)

2a: Admin fills in the wrong credentials
 2a1: The system will show an error message

Overview

Title As an admin I want to create studies.

Description An admin must be able to create studies

Actors Admin

Initial status and preconditions The admin must be logged in

Basic flow

1: Admin clicks on the ‘my studies’ tab
2: Admin clicks on the ‘Create study’ button
3: Admin fills in the form
4: A study is created and stored in the database

Alternative flow(s)

8

Overview

Title As an admin I want to create several types of
questions - Dropdown

Description An admin must be able to create dropdown
questions

Actors Admin

Initial status and preconditions The admin must be logged in and have an
existing study created

Basic flow

1: Admin clicks on the ‘my studies’ tab
2: Admin clicks on the ‘Questionnaire’ button
3: Admin clicks on ‘Add question’ button
4: Admin fills in the question name and description
5: Admin selects the type ‘Dropdown’
6: Admin adds a label and a value for the dropdown options
7: Admin clicks Submit
8: The question is created and stored in the database

Alternative flow(s)

6a: The admin makes a mistake and wants to delete the dropdown option
 6a1: The admin clicks on the bullet point for that option
 6a2: The icon will change to a red garbage icon
 6a3: The admin clicks on the icon and the option is deleted

Overview

Title As an admin I want to create several types of
questions - Checkbox

Description An admin must be able to create checkbox
questions

Actors Admin

Initial status and preconditions The admin must be logged in and have an
existing study created

Basic flow

1: Admin clicks on the ‘my studies’ tab
2: Admin clicks on the ‘Questionnaire’ button
3: Admin clicks on ‘Add question’ button
4: Admin fills in the question name and description
5: Admin selects the type ‘Checkbox
6: Admin adds a label and a value for the checkbox options
7: Admin clicks Submit
8: The question is created and stored in the database

Alternative flow(s)

6a: The admin makes a mistake and wants to delete the checkbox option
 6a1: The admin clicks on the bullet point for that option
 6a2: The icon will change to a red garbage icon
 6a3: The admin clicks on the icon and the option is deleted

9

Overview

Title As an admin I want to create several types of
questions - Text

Description An admin must be able to create text
questions

Actors Admin

Initial status and preconditions The admin must be logged in and have an
existing study created

Basic flow

1: Admin clicks on the ‘my studies’ tab
2: Admin clicks on the ‘Questionnaire’ button
3: Admin clicks on ‘Add question’ button
4: Admin fills in the question name and description
5: Admin selects the type ‘Text
6: Admin adds a label and a value for the text options
7: Admin clicks Submit
8: The question is created and stored in the database

Alternative flow(s)

Overview

Title As an admin I want to create a unique
sharable link for each questionnaire

Description An admin must be able to get unique sharable
links for any study

Actors Admin

Initial status and preconditions The admin must be logged in and have an
existing study created

Basic flow

1: Admin clicks on the ‘my studies’ tab
2: Admin clicks on the ‘Link’ button
3: The system returns the new link in a popup
4: The new link is also stored in the database

Alternative flow(s)

3a: There is already an existing link for that study
 3a1: The system will retrieve the existing link and return it

10

Overview

Title As an admin I want to download a .csv file with
the results of any of my questionnaires.

Description An admin must be able to download a .csv file
with all the answers to a study

Actors Admin

Initial status and preconditions The admin must be logged in, have an existing
study

Basic flow

1: Admin clicks on the ‘my studies’ tab
2: Admin clicks on the ‘CSV’ button
3: The system returns a CSV file downloaded to the admin desktop

Alternative flow(s)

3a: There is no data yet for that study
 3a1: The csv file will be empty

Overview

Title As a user I want to access a particular study
via its unique id link.

Description Any user must be able to access any study

Actors User

Initial status and preconditions The user must have a valid link

Basic flow

1: User access the link in their browser
2: The system loads all the questions related with that study
3: The user answers all the questions and clicks submit
4: The system shows a thank you message page
5: The answers are stored in the database

Alternative flow(s)

3a: The user forgets to answer one or more questions
 3a: The system will show an error message and highlight all the forgotten
questions

11

2.2 Non-functional requirements

• The system must be based on a cloud AWS architecture.
• The system must be auto scalable.
• The system performance must be good.
• The code must follow good practises:

o ReactJS good practices.
o Design patterns.

• The web design must be responsive for mobile devices and tablets (only
the questionnaire response part, the administration will be only supported
on desktop).

• There must be an automated CI/CD for each aspect of the architecture.
• The website must be easy to use without prior knowledge needed.
• There must be a clear development flow.

12

3 Project designs

3.1 AWS architecture

As can be seen in Figure 2, I used an S3 bucket to contain the ReactJS. The S3
bucket will receive the requests and serve the application through its own web
server.

To secure the user data and have a login system in place, the ReactJS
application in S3 will use Amazon Cognito to authenticate and store the users.
At the same time, the API Gateways will authenticate against Cognito as well to
secure the API calls made from ReactJS.

To serve the ReactJS application, I have added an Amazon CloudFront service
in front of the S3 bucket. This optimizes the speed the website is delivered, and
offers important redirects needed to have ReactJS working on an S3 bucket.

Next to the S3, I have the Amazon API Gateways with REST APIs for which
one contains the NodeJS Lambdas for the customer facing APIs and the other
one contains the Python Lambda for the csv report.

Finally, both APIs are connected to a DynamoDB database to store and retrieve
all the necessary data.

Figure 2: AWS Architecture

13

3.2 Data modelling

Amazon DynamoDB is a fully managed NoSQL database service that provides
fast and predictable performance with seamless scalability. Each item in a
DynamoDB table can be simple (a partition key) or composite (partition key and
sort key).

Per design, I used a composite key, PK for the primary key and SK for the Sort
Key.

I will describe the several types of ‘Entities’ and how they are represented in the
DynamoDB table.

AWS recommends a single table design [18] and I use their PK and SK to query
them.

Entity PK SK

Questionnaire USERID#userid QUESTIONNAIRE#questionaireId

Question QUESTIONNAIRE#questionnaireid QUESTION#questionid

Answer QUESTIONNAIRE#questionnaireid ANSWER#answerid#QUESTION#questionid

QuestionTypes QUESTIONTYPE ID

Public Link LINK#questionnaireId userId

14

3.3 FE design

3.3.1 Home page

The home page (Figure 3) will contain some logo or image and the login button

Figure 3: Home page design

3.3.2 Login

The login form (Figure 4) will require the users to enter their email and
password. Since this will be a tool for research and medical centres, registration
is not possible through the website.

Figure 4: Login design

15

3.3.3 My Studies tab

On the ‘My Studies’ tab (Figure 5) there will be a list of all the created studies,
with an option to access the questionnaire and create questions, to get a public
access link, download the csv report or to delete it.

Figure 5: My studies tab design

3.3.4 Create/Modify Study

The creation of the study (Figure 6) is quite simple; it just requires a study name
and a description.

Figure 6: Create/modify study design

16

3.3.5 Questionnaire view

On the questionnaire view (Figure 7) the users will be able to see the list of all
the questions that are contained inside the questionnaire. Along with the option
to edit, delete and add new questions.

Figure 7: Questionnaire view design

3.3.6 Add question

There will be 3 types of questions: text, dropdown and checkbox. Each type of
question will show a distinct set of options below ‘Type’. For example, dropdown
will allow the user to enter several types of options and their values. (Figure 8).

Figure 8: Add question design

17

3.3.7 Get access link

The access link button (Figure 9) will generate a unique link for that specific
study which will be publicly accessible. If the link was previously created
already, it will show the same one.

Figure 9: Get access link design

3.3.8 Filling in questionnaire data

All the questions will be loaded vertically (Figure 10) and there will be validation
to ensure all questions are answered.

Figure 10: Filling in questionnaire data design

18

3.4 FE Architecture

React works on a component level basis (Figure 11), each component has one
responsibility and it can contain child components. The set of immutable values
are passed to the components rendered as properties in its HTML tags. So the
child component itself cannot modify the properties but a call-back is used
instead to communicate with the parent component.

Figure 11: FE architecture

React JS does not define a way to structure your components files. There are
some common ways listed on the ReactJS website, but it is up to the developer.

For this reason, I went with the following structure:

• components
o This folder contains all the individual atomic components, such as

the AWS Cognito login, questions (create, edit questions… etc.)
and studies related components.

• pages
o This folder contains the components related to the web pages

itself; for example, the login page.
• services

o Any service that talks with the BE will be stored here
• tests

o Unit testing

19

3.5 BE Lambdas architecture

For the Lambdas I used NodeJS in this case because I used CloudFormation to
deploy them all, they all live in the same repository, with each folder containing
its set of CRUD [19] operations for each API.

There is also a middleware folder, that contains common middleware used in all
the lambdas for handling CORS [20].

• Lambdas
o answer
o public
o question
o questionnaire
o types

• middlewares
o cors

• repositories
• tests
• use_cases
• template.yml
• buildspec.yml

Answer folder that contains a single Lambda operation that can be accessed
without login to post the answers to a questionnaire.

Public folder that contains Lambdas associated with retrieving questionnaires
and questions for the shared link, this also does not require authentication.

Question folder that contains necessary CRUD operations and an operation to
get all the questions related to a questionnaire.

Questionnaire folder that contains basic CRUD operations for questionnaires.

Type folder that contains a simple get operation to get all the distinct types of
questions (text, dropdown, checkbox, etc…).

Middlewares folder that contains the middleware responsible to return proper
response headers for cors available and used by all the lambdas.

Repositories folder that contains a repository per entity with its database
operations.

Use_cases folder that contains the use cases with the business logic.

Finally, cloudformation.yml and buildspec.yml are the files in charge of building
the CI/CD.

20

3.6 BE Python architecture

For the Lambda responsible for generating the CSV [21], I used Python. Due to
the simplicity of the task, this is one single Lambda with all the logic needed
inside.

The repository was also set up as the previous ones, with code pipeline and
automatic deployments, so it can be scaled up with more lambdas and more
diverse types of reports.

3.7 Jira stories

As can be seen in Figure 12, the basic stories for the development and the
documentation phases of the project are written. During the following phases,
each story was refined before getting picked up, and split into several smaller
stories if necessary.

Figure 12: Jira stories

Once there were enough stories for a week’s worth of work, I created a sprint so
that I could work on them and repeat the process until the project was finished.

I used a ‘light’ version of Scrum. Because I am the only one developing, I just
used some strategies from the framework to make my life easier and more
efficient.

21

4 Development

4.1 Repositories

For this project I decided to have three different repositories in Github:

1- Back end repository, project-pi-be-less: for the back end serverless
application, meaning NodeJS Lambdas and its CloudFormation files.

2- Back end repository, project-pi-be-reports: for the back end Lambda

Python application and its CloudFormation files.

3- Front end repository project-pi-fe: for the front end React application
and its CloudFormation files.

4.2 AWS Cognito configuration

The entire project revolves around a microservice architecture, for which the
main challenge to be addressed is the authentication and authorization.

To guarantee the security of the data, each microservice needs to be able to
secure its requests and responses. However, because its services are
independent and do not contain any user data, we need to have a way to sign
and verify the requests.

Cognito offers this functionality; once a user is logged in, it returns an
authentication token which can be validated later on by any other service that
has access to it. This makes it possible to sign and send the request with the
token from ReactJS to any of the API Gateways, and then API Gateway will
check for the validity of the token.

In this step, I configured the AWS Cognito so it could be used by the rest of the
services.

First, I had to create a user pool in AWS (Figure 13) to provide sign-up and
sign-in options for the web application users.

Figure 13: Cognito configuration 1

22

When it came to the configuration, I went with the default settings (Figure 14).

The required attribute is the email with a strong password policy.

Figure 14: Cognito configuration 2

Once the pool was created, I got a pool id (Figure 15). This pool id was used
later in the component responsible for the authentication in ReactJS.

Figure 15: Final Cognito configuration

23

4.3 Setting up DynamoDB

DynamoDB can also be specified through CloudFormation, but there is one
issue with that: the possibility of having the stack updated and the DynamoDB
table being deleted and recreated.

For that reason, I created the table manually through the AWS web console
(Figure 16).

Figure 16: DynamoDB table creation

24

4.4 NodeJS Lambda

4.4.1 Development environment

Lambdas are run in AWS infrastructure, but there is a command line available
called sam-cli for developing and testing Lambdas locally

Sam-cli requires brew and docker. I installed them first.

4.4.1.1 Installing NodeJS

The installation of NodeJS can be done through https://nodejs.org/.

4.4.1.2 Installing brew

/bin/bash -c "$(curl -fsSL
https://raw.githubusercontent.com/Homebrew/install/master/install.sh)"

4.4.1.3 Installing Docker

In my case I already had Docker installed in my machine, but it can be
downloaded from https://www.docker.com/

4.4.1.4 Installing sam-cli

brew tap aws/tap
brew install aws-sam-cli

4.4.1.5 Installing PAW

PAW is a full-featured HTTP client that lets me test and describe the APIs calls I
built. It is an especially useful tool for testing the API endpoints and to create
documentation about them.

It can be installed through https://paw.cloud/

https://www.docker.com/
https://paw.cloud/

25

4.4.1.6 Creating the first Lambda

AWS Lambdas are triggered by AWS when an event occurs, those events can
range from database events to manual triggers to, in this case, an API call.

AWS will always look for a handler function in our lambdas to trigger, and it will
always pass 2 objects: event and context.

The object event contains the data that is passed to the function upon
execution, such as http method, headers, query params… etc.

The object context contains methods and properties that provide information
about the invocation, function, and execution environment.

So it was time to create a basic HelloWorld Lambda (Figure 17) to correctly test
the development environment, and to have a starting point to set up the
infrastructure of the API Gateway and their Lambdas.

Figure 17: First Lambda code

26

Sam-cli checks for a .yml file where the CloudFormation is contained to know
how to run a specific Lambda.

A CloudFormation file is needed to set up a CI/CD in CloudFormation, it is part
of the IaC [22] (Infrastructure as code). AWS uses these templates as blueprints
for building the AWS resources.

In the following example (Figure 18) I am building a serverless API, with one
Lambda attached to the /helloworld endpoint.

This Lambda will use nodejs12 runtime, with a default memory size of 128mb
and a max timeout of 30 seconds.

Figure 18: First Lambda CloudFormation definition

27

Once I made sure it worked locally (Figure 19) by running the sam-cli
command, it was time to set up the deployment so it would be created in AWS.

Figure 19: First Lambda testing code

4.4.2 Setting up CodePipeline

This project uses CodePipeline to create a CI/CD for all the repositories I
previously mentioned.

CodePipeline uses 2 .yml files: one for the building phase where I specified
what to install and which commands to run during the building phase, as well as
post-build scripts, for example for running tests. And finally, one last yml file
where I described the resources I needed to be created in AWS during the
deployment phase (Figure 18).

The first step was to create the CodePipeline in the AWS console.

CodePipeline uses S3 buckets to build the application so I had to create an S3
bucket first (Figure 20). As AWS Region I chose EU (Ireland).

Figure 20: CodePipeline configuration 1

28

Then I could create a new pipeline (Figure 21). A service role is required for
each pipeline. The service role contains policies with permissions to perform
actions in resources, I allowed the pipeline to create its own service role.

Figure 21: CodePipeline configuration 2

On the following step I had to choose which source provider I wanted. Because
my code is stored in GitHub, I choose it as a source provider (Figure 22). A new
connection to GitHub is required, authorizing AWS to connect to our Github
accounts.

Once the connection was created, I was able to select the repository that
contained the code and selected which branch would trigger the pipeline every
time a new change gets merged into.

Figure 22: CodePipeline configuration 3

29

For the next step, I had to create a build project (Figure 23). This is the step in
CodePipeline where we will do the build of our application so it can be
deployed.

Figure 23: CodePipeline configuration 4

To build the NodeJS lambdas I choose to run it in a standard AWS Linux
environment (Figure 24).

Figure 24: CodePipeline configuration 5

30

Next, in the buildspec section I used the default configuration (Figure 25). By
default, CodePipeline will look for a ‘buildspec.yml’ file to run the build
commands.

Figure 25: CodePipeline configuration 6

At this point I could continue to the deployment stage (Figure 26).

Figure 26: CodePipeline configuration 7

31

Next, it was time to set up the deployment. As a deployment provider I chose
CloudFormation (Figure 27) and the option to create or update the stack so any
latest changes will trigger an infrastructure update.

For the BuildArtifact file name, I used outputtemplate.yml which will be the
output .yml file from the build phase.

Next, some required capabilities (IAM and AUTO_EXPAND) for the deployment
phase, and a CloudformationServiceRole with permissions for deployment.

Figure 27: CodePipeline configuration 8

32

Before I could move to the next phase, it was important to give the right
permissions (Figure 28) to the CodeBuild role I created in the first step so it
could have access to the S3 bucket I created. Attaching the
AmazonS3FullAccess policy was enough.

Figure 28: CodePipeline configuration 9

By this point I had CodePipeline configured, but I still had to set up the
buildspec file.

33

4.4.3 Setting up buildspec.yml

Next step was to prepare the buildspec.yml (Figure 29) file so it could build the
application.

Here I specified the NodeJS version, and the commands needed to run during
the build phase.

• Npm install: to install all the dependencies needed.
• AWS CloudFormation package: this creates the output .yml file to be

used during the deployment.

This step will make sure that the application can be build. For NodeJS this
means it can install the npm packages correctly.

During the setup of the development environment, I had created a template.yml
file with the HelloWorld Lambda example, that is the CloudFormation file that
will be used during the buildspec to generate the outputtemplate.yml that will be
used by CloudFormation to create the resources.

Figure 29: Buildspec configuration 1

34

Once I pushed these changes to master, the pipeline triggered automatically,
built and deployed the stack (Figure 30).

Figure 30: Buildspec build stage

At that point I could see the newly created API with its Lambda in API Gateway
(Figure 31).

Figure 31: API Gateway

35

and could test the response from the /helloWorld endpoint (Figure 32).

Figure 32: Lambda test

Finally, I was ready to start the back end development.

36

4.4.4 Development NodeJS

4.4.4.1 Architecture

The architecture of the application (Figure 33) is as follows:
Each Lambda is grouped by its entity: question, public, questionnaire, types
and answer.

Public and answer are publicly accessible, so non-logged-in users can answer
questionnaires, the rest are protected via Cognito.

Each set of lambdas uses ‘use cases’ to perform actions, each use case
contains only the business logic, and all the database operations are in
repositories.

Figure 33: NodeJS architecture

37

4.4.4.2 Code base

For each entity there is a folder with all the Lambdas needed for the CRUD
operations (Figure 34). These Lambdas are responsible for getting the
necessary information from the request (ids and user data), then calling the use
case that it is needed and finally returning the data.

Figure 34: NodeJS code base

38

Example of postAnswers Lambda (Figure 35).

Figure 35: Code base

As can be seen in the previous image (Figure 35), Lambdas do not contain
business logic; that is the responsibility of the use cases (Figure 36).

Figure 36: NodeJS code base use cases

39

A clear example is the deleteQuestionnaire action (Figure 37) from the
questionnaire use case. It takes care of deleting the questionnaire, using its
repository and calling the questions use case to delete all questions.

Figure 37: NodeJS code base delete questionnaire

This takes me to the repositories folder (Figure 38). The repositories contain all
the operations to the database for each entity. Repositories should only be
called from use cases, as I did in this application.

Figure 38: NodeJS code base repositories

40

Example of a repository (Figure 39) for creating an answer.

Figure 39: NodeJS Code base use case example

41

4.4.4.3 Setting up API Gateway

I have shown in previous steps how I set up the template.yml that describes the
AWS resources. During the development I added all the extra Lambdas
following the same pattern as the HelloWorld Lambda.

But there were a few issues to take care of after that. First, configuring CORS in
API Gateway and enabling the authorization of each request against Cognito.

4.4.4.3.1 CORS

To configure CORS in API Gateway I just had to add a CORS configuration
parameter in the template.yml file (Figure 40). The allowed methods are POST,
GET, DELETE and OPTIONS. Allowing all headers and for the origin, I allowed
any for the purpose of developing locally against the public API.

In normal circumstances, this would only happen in testing environments, and
production would only allow the ReactJS site as origin.

Figure 40: CORS template.yml

42

4.4.4.3.2 Cognito authorization

I wanted to have most of the requests to be verified against Cognito. All those
requests that comes from a logged-in user will require authentication. However,
users do not need to be logged in to fill in the answers of a study; for these non-
logged-in users, no authorization is required.

Once again, some configuration was needed in the template.yml file.

First, I had to enable the user pool as an Authorizer (Figure 41).

Figure 41: API Gateway authorizer

This would enable the authorization in ALL endpoints and actions (POST, GET,
DELETE, OPTIONS).

43

The main issue is to have the authorization also enabled for OPTIONS. Pre-
flights CORS OPTIONS calls are not performed with authorization headers so I
added a small configuration line (Figure 42) to disable it for those.

Figure 42: CORS pre-flight

Finally, I had to disable the authorization for the public endpoints (Figure 43).

Figure 43: Disable authorization

44

4.4.4.4 Testing

Finally, I created tests for all Lambdas and uses cases (Figure 44). The tests
are under the ‘tests’ folder and they can be run locally.

Figure 44: NodeJS testing

The most important requirement for tests is to run them every time something
gets pushed to master branch in GitHub and before it gets deployed (Figure
45). For that I added an extra step in CodePipeline, in the buildspec.yml file I
added a post_build step that will run the npm test.
If any test fails during the building phase it will stop and not deploy.

Figure 45: NodeJS setting up automated testing during build

45

This is how it looks during the build phase:

Figure 46: NodeJS CodePipeline test results

To be able to test these operations in the AWS environment I used “PAW”
(Figure 47) and API Client, which can also be used as documentation for the
API.

Figure 47: NodeJS PAW

46

4.5 React JS

4.5.1 Development environment

React can be installed through npx a package runner from npm (Node Packet
Manager). Because I already had npm installed from the previous steps, I just
had to run npm i -g npx

and then create the react app using npx with:
npx create-react-app project-pi-fe

ReactJS offers a development environment when running the npm start
command.

4.5.2 Setting up an S3 bucket for web access

As mentioned in the AWS architecture, the ReactJS application is served from
an S3 Bucket. This bucket needed to have a specific configuration to allow
public access and to have the option to serve a static website enabled.

First, I created an S3 bucket that contained the static React site (Figure 48).

Figure 48: CodePipeline configuration 1

47

I allowed public access (Figure 49).

Figure 49: CodePipeline configuration 2

Once the bucket was created, I went to the properties of the bucket where at
the bottom there was an option to enable the bucket for hosting static websites
(Figure 50).

Figure 50: CodePipeline configuration 3

48

It was also important to attach an appropriate bucket policy to allow get actions
on the bucket publicly (Figure 51).

Figure 51: CodePipeline configuration 4

49

4.5.3 Setting up CodePipeline

To deploy the ReactJS application to the publicly accessible S3 bucket I had to
create a new pipeline (Figure 52), the main steps are also explained in the
NodeJS CodePipeline and differ only slightly, so I will only show those different
steps.

Figure 52: CodePipeline configuration 5

50

The main difference was the deployment stage step where I choose the S3
bucket as the deployment provider (Figure 53).

Figure 53: CodePipeline configuration 6

At this point, the pipeline ran for the first time but failed during the build phase. I
later added the buildspec.yml file (Figure 54) and pushed it to master so it
triggered again.

Figure 54: CodePipeline configuration 7

51

The deployment was then successful (Figure 55).

Figure 55: CodePipeline configuration 8

Once the application was deployed, I needed to make sure the ReactJS website
was accessible. I went to the S3 bucket and below the S3 properties I could get
the static URL (Figure 56).

Figure 56: S3 public url

The website was publicly accessible (Figure 57).

Figure 57: ReactJS running on public site

52

4.5.4 AWS CloudFront

At that point I had the website already running on the S3 bucket, it was time to
add CloudFront with the default settings (Figure 58).

Figure 58: CloudFront configuration 1

One last crucial step was to configure some redirects because the S3 bucket
together with react routing has a small issue:

When accessing any other URL different than the home page, I would get a 404
error.

S3 static web hosting serves static HTML files. React serves only one HTML file
index.html, and React Router oversees serving the content based on what we
query in the URL. So, technically the 404 ERROR CODE is correct since the
only HTML file is index.html.

53

The solution was simple, I just had to add some redirects in CloudFront (Figure
59), to redirect any 404, 403 and 502 errors to the index.html, so ReactJS can
take care of it.

Figure 59: CloudFront configuration 2

And get the CloudFront public site url (Figure 60).

Figure 60: Cloudfront public url

54

4.5.5 Setting up deployment with webpack and Babel
Now that the ReactJS application could be deployed to the S3 bucket and be
able to access it publicly through CloudFront, it was time to set up the
compression of the JS and CSS with webpack and to convert the JS code into a
backwards compatible one using Babel.

4.5.5.1 Webpack

For this step, I had to create a webpack.config.js file with the appropriate
configuration for a React app along with a development and production mode
(Figure 61).

The entry of the application is the index.js file from React, and it needs to output
into the public folder the bundle.js with all the compressed js code.

Figure 61: Deployment webpack Babel 1

There are more options configured in this file, such as CSS and node_modules
folder compression and optimizations for production.

55

4.5.5.2 Babel

For Babel I just had to add some presets (Figure 62) for React and some
additional required plugins.

Figure 62: Deployment webpack Babel 2

56

4.5.5.3 Deployment

Finally, for the deployment I had to build webpack during the build phase in
CodePipeline so It could produce the bundle.js and deploy. The buildspect.yml
file (Figure 54) was already running npm run build during the build phase. That
command is specified in the package.json from npm in the root of my project,
and by default it runs the build command from npm.

To execute the webpack build I just had to adjust the command in the
package.json (Figure 63).

Figure 63: Deployment webpack Babel 3

57

4.5.6 Development

4.5.6.1 Architecture

Figure 64: ReactJS architecture

58

As can be seen in the previous image (Figure 64), the yellow classes are the
‘pages’, these are the React components that are responsible for managing
each page site, they will use the necessary components (blue) to construct the
page.

Each component can call other child components and, at the same time, call
services (green).

Services are responsible for fetching data from the REST APIs. Each service
uses a pre-configured Axios client.

This structure can also be found in the code under the src folder (Figure 65).

Figure 65: ReactJS folder structure

4.5.6.2 Code

This section contains important aspects to mention about the code:

4.5.6.2.1 Cognito authentication

To authenticate the ReactJS user with Cognito I used an npm package from
AWS called ‘amazon-cognito-identity-js’ which takes care of the authentication
part. I still had to implement all the actions such as log in, log out, get session
data and token and the action for when a new password is required.
The details of this implementation can be found in the Accounts.js file

4.5.6.2.2 Maintaining logged-in user

To maintain the logged-in user information across the entire application, I used
the ‘Context’ provider from React. Context provides a way to share values such
as the logged-in user data between components without having to explicitly
pass a prop through every level of the tree.
The details of this implementation can be found in the Accounts.js file

59

4.5.6.2.3 Sending authentication token to APIs

Every request is being sent with the authentication token in the Axios request
from Cognito to the APIs (Figure 66).

Figure 66: Axios request

60

4.5.6.3 Website

4.5.6.3.1 Home page

The home page contains a small logo and an extra login button to make it more
appealing (Figure 67). Every page of the website also uses the same
background image.

Figure 67: ReactJS home page

4.5.6.3.2 Login

The login form is very straight forward, comprising an email field and a
password field (Figure 68).

Figure 68: ReactJS login

61

In case the email or password are not correct, an error message is shown
(Figure 69).

Figure 69: ReactJS wrong credentials

4.5.6.3.3 My studies tab

For the logged-in users, they can find all their studies under the ‘My Studies’
tab. Each user can only see their own studies (Figure 70).

Figure 70: ReactJS my studies tab

62

4.5.6.3.4 Create/modify study

Studies can be created or modified; the view remains the same for both use
cases (Figure 71).

Figure 71: ReactJS create/modify

4.5.6.3.5 Questionnaire view

Each study has one questionnaire associated with it, for which the information
such as the name is shown and all the questions which have been created for it
(Figure 72).

Figure 72: ReactJS questionnaire

63

4.5.6.3.6 Add question

When creating a new question, apart from the question name and description
which are common to all question types, once the type of question is selected a
separate set of options are shown (Figure 73).

For the dropdown and checkbox types, the creator needs to add the options
that will be shown to the respondent. With a Label (what the user will see) and a
Value (what creators of the questionnaire will get in the CSV file).

Any of those values can be removed by clicking on the bullet point.

If the question type is text, no options are needed because it will show an input
text.

Figure 73: ReactJS add question

4.5.6.3.7 Get access link

The link is available in a pop-up once the button ‘Link’ is clicked (Figure 74).

Figure 74: ReactJS questionnaire link

64

4.5.6.3.8 Filling in questionnaire data in desktop

This is an example of the questionnaire view filled in by an anonymous
customer (Figure 75).

Figure 75: ReactJS filling in desktop

4.5.6.3.9 Filling in questionnaire data in mobile

The filling in of the questionnaire data is also available for mobile devices
(Figure 76).

Figure 76: ReactJS filling in mobile

65

4.5.6.3.10 Download CSV file

The CSV button will download all the answers for a particular study (Figure 77).

Figure 77: ReactJS .csv file

66

4.6 Python

4.6.1 Development environment

For the development of the Python application, I used Python 3.10.4 which was
already installed in my mac OS.

4.6.2 Setting up CodePipeline

The configuration of CodePipeline was the same as shown for the NodeJS
application to keep configurations consistent across all the applications.

The only difference is, instead of using NodeJS runtime, I used the latest
available version in AWS: Python 3.9 (Figure 78).

Figure 78: CodePipeline

4.6.3 Development

This was a quite simple Python Lambda, so all the code is contained in the
same file (Figure 79). This function is responsible for querying all the answers
for a particular questionnaire, creating a csv file, and returning the file.

Figure 79: Python Lambda

67

4.7 Acceptance testing

For the acceptance testing, I did a manual test for each required action.

ADMIN

Action Expected result Result

Log in Admin is logged in and can see the ‘My studies’ tab Ok

Create study Admin can create a new questionnaire Ok

Edit study Admin can edit the questionnaire title and description Ok

Delete study Admin can delete any questionnaire Ok

Create question Admin can create a new question for the questionnaire Ok

Edit question Admin can edit any question Ok

Delete question Admin can delete any question Ok

Get link for study Admin can get a public link to the study Ok

Get csv file Admin can download a csv file with the answers Ok

USER

Action Expected result Result

Access public
study

User can access a study by using the public link Ok

Form validation User will get error messages if any of the questions is not
answered

Ok

Answer questions User can answer any type of question Ok

Answers are
stored

User answers are stored in database Ok

68

4.8 Design changes

There have been 2 major changes and 1 minor change.

4.8.1 Major changes

CloudFront addition to AWS architecture

As mentioned previously in this document: for ReactJS to be able to work
together with React routing, CloudFront was needed (Figure 80).

Figure 80: Major changes

API Gateway + Lambda for the Python application

The original idea was to have an EC2 instance for the Python application,
however, during the development of this part I found it was an overkill solution
for a simple problem such as fetching data and creating a csv file.
The deployment of an EC2 instance with all the server configurations would
have taken too much time. Instead, I did the same approach as I did with
NodeJS.

Lambdas are short lived, 15 min max, but this should be sufficient for
processing a csv file.

4.8.2 Minor changes
1. All questions are required

a. All questions part of a questionnaire are required instead of the
admin being able to decide which ones are and which are not.

b. The code can be extended to allow this functionality nevertheless.

69

5 Financial evaluations

AWS offers a free tier for most of their services; if the free tier limit is not
reached the costs are 0.

During the development I had barely reach that limit in 1 service (CodeBuild);
for the rest I always kept below that threshold.

The free tier for the services I used are the following:

API Gateway

- 1 million API calls received per month.
AWS CodeBuild

- 100 build minutes free per month .
AWS CodePipeline

- 1 active pipeline per month.
AWS Cognito

- 50,000 MAUs per month.
AWS DynamoDB

- 25GB of storage and 200 million read/write requests per month.
AWS Lambda

- 1 million requests per month.

Month API Gateway CodeBuild CodePipeline Cognito DynamoDB Lambda

April 0$ 0$ 0$ 0$ 0$ 0$

May 0$ 0.5$ 0$ 0$ 0$ 0$

Total 0.5$
21% VAT 0.105$

Total inc. VAT 0.605$

As can be seen, the total cost amount for setting up the infrastructure and
development was 0.605$

It is important to mention that if the tier limit is not reached, the website will be
fully functional at 0 cost. Once the limit is reached, the billing for those extra
services will start, but because the infrastructure is completely serverless the
cost will remain exceptionally low.

70

6 Conclusions

6.1 Lessons learnt

During this project I learnt how to deploy an entire cloud infrastructure in AWS
and deep dived into its diverse types of services and how to interconnect them.

Regarding other technologies, I grasped the power of front end frameworks
such as ReactJS to build interfaces, as well as using NodeJS for the back end
side.

Going through all the development processes, starting with the design, planning
and culminating with this document also taught me how to be more organized,
methodical and appreciative of the technical documentation.

6.2 Goals achieved

All main and secondary goals have been achieved during this project and it was
possible thanks to:

- Using the knowledge that was obtain during my studies as a software
engineer student as well as using my professional experience as a
developer.

- Being aware of the time that was available to develop the code, focusing
on developing only the most important aspects of an MVP (Minimum
Viable Product) and setting up the basis for what it could become in the
future: a marketable product.

- Using existing technologies and frameworks available in the market.

6.3 Planning

The methodology used during this project was of a pseudo-scrum approach.
Because I was the only one working on it, I thought it unnecessary to do a full
scrum approach and instead I did a more lightweight version where I was
working on small achievable stories and re-evaluating the results and the next
steps after each one was completed.

The planning was followed as specified in Figure 1 and achieved successfully.

71

6.4 Future vision

A big part of this project was setting up the infrastructure, including a
development life cycle with the inclusion of a CI/CD and automatic deployment.
This was done with the idea of setting up the basics for what could potentially
become a marketable product.

There are still improvements that can be made:

Improvements

- Investigate the speed of the site to make it faster.
- Having also testing and acceptance environments.
- Having *optional questions in the questionnaires.
- Being able to reorganize the order of the questions.
- Add the secrets (such as the API gateway URLs) as part of the

deployment so they do not need to be hardcoded in the code itself.

Future vision

- Add a reports system with more options to download the data such as
pdfs, raw data, ...etc

- Use machine learning to analyse the data automatically for each study.
- Add new types of questionnaires, such as randomized studies.

72

7 Glossary

7.1 AWS
Amazon Web Services (AWS) is the world’s most comprehensive and
universally adopted cloud platform, offering over 200 fully featured services
from data centres globally. Millions of customers—including the fastest-growing
start-ups, largest enterprises, and leading government agencies—are using
AWS to lower costs, become more agile, and innovate faster.

7.2 Cloud
Cloud computing is the delivery of different services through the Internet. These
resources include tools and applications such as data storage, servers,
databases, networking, and software.

7.3 Microservices
Microservices - also known as microservice architecture - is an architectural
style that structures an application as a collection of services that are:

• Highly maintainable and testable.

• Loosely coupled.

• Independently deployable.

• Organized around business capabilities.

• Owned by a small team.

7.4 IaC
Infrastructure as code (IaC) is the process of managing and provisioning
computer data centres through machine-readable definition files, rather than
physical hardware configuration or interactive configuration tools.

7.5 Tech stack
A tech stack is the combination of technologies a company uses to build and
run an application or project

7.6 Framework
An abstraction in which software, providing generic functionality, can be
selectively changed by additional user-written code, thus providing application-
specific software. It provides a standard way to build and deploy applications
and is a universal, reusable software environment that provides functionality as
part of a larger software platform to facilitate the development of software
applications, products and solutions.

7.7 API
API stands for Application Programming Interface. A Web API is an application
programming interface for the Web. A Browser API can extend the functionality
of a web browser. A Server API can extend the functionality of a web server.

73

8 Bibliography

[1] react.org, “Getting started,” 2022. [Online].
Available: https://reactjs.org/docs/getting-started.html.

[2] semantic-ui.com, “Getting started,” 2022. [Online].
Available: https://semantic-ui.com/introduction/getting-started.html.

[3] babeljs.io, “What is Babel?,” 2022. [Online].
Available: https://babeljs.io/docs/en/.

[4] webpack.js.org, “Concepts,” 2022. [Online].
Available: https://webpack.js.org/concepts/.

[5] nodejs.org, “About Node.js,” [Online].
Available: https://nodejs.org/en/about/.

[6] python.org, “About,” [Online].
Available: https://www.python.org/about/.

[7] aws.amazon.com, “Building applications with serverless architectures,” [Online].
Available: https://aws.amazon.com/lambda/serverless-architectures-learn-more/.

[8] L. Gupta, “What is REST,” [Online].
Available: https://restfulapi.net/.

[9] docs.aws.amazon.com, “What is Amazon DynamoDB,” [Online].
Available:
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Introduction.html.

[10] docs.aws.amazon.com, “What is AWS Lambda,” [Online].
Available: https://docs.aws.amazon.com/lambda/latest/dg/welcome.html.

[11] docs.aws.amazon.com, “What is Amazon API Gateway,” [Online].
Available: https://docs.aws.amazon.com/apigateway/latest/developerguide/welcome.html.

[12] docs.aws.amazon.com, “What is Amazon Cognito?,” [Online].
Available: https://docs.aws.amazon.com/cognito/latest/developerguide/what-is-amazon-
cognito.html.

[13] docs.aws.amazon.com, “What is Amazon S3?,” [Online].
Available: https://docs.aws.amazon.com/AmazonS3/latest/userguide/Welcome.html.

[14] docs.aws.amazon.com, “What is Amazon CloudFront?,” [Online].
Available:
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/Introduction.html.

[15] docs.aws.amazon.com, “What is AWS CodePipeline?,” [Online].
Available: https://docs.aws.amazon.com/codepipeline/latest/userguide/welcome.html.

[16] docs.aws.amazon.com, “What is AWS CloudFormation?,” [Online].
Available:
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/Welcome.html.

[17] jestjs.io, “Getting Started,” [Online].
Available: https://jestjs.io/docs/getting-started.

[18] J. Beswick, “Creating a single-table design with Amazon DynamoDB,” aws.amazon.com,
26 07 2021. [Online].
Available: https://aws.amazon.com/blogs/compute/creating-a-single-table-design-with-
amazon-dynamodb/.

[19] sumologic.com, “What is CRUD?,” [Online].
Available: https://www.sumologic.com/glossary/crud/.

74

[20] developer.mozilla.org, “Cross-Origin Resource Sharing (CORS),” [Online].
Available: https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS.

[21] en.wikipedia.org, “Comma-separated values,” [Online].
Available: https://en.wikipedia.org/wiki/Comma-separated_values.

[22] S. J. Bigelow, “Infrastructure as code,” [Online].
Available: https://www.techtarget.com/searchitoperations/definition/Infrastructure-as-Code-
IAC.

75

9 Annex

Website url: https://dnbjqdte2wiuk.cloudfront.net/

Available users

Username Password

user1@user.com User1Pass!
user2@user.com User2Pass!
user3@user.com User3Pass!
user4@user.com User4Pass!

