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Alejandro Keymer Gausset

Abstract
First episode psychosis (FEP) is the first manifestation of some of the mean mental
disorders; Mainly schizophrenia, and Bipolar disorder. Though longitudinal studies
of FEP have focused mainly at symptom remission, currently there is a growing
interest in functional outcome Likewise„ the relation between symptom remission
and functional recovery in matter of current debate. Despite the fact of its pragmatic
nature, functional assessment is not standardised, and different studies use different
measures. On the other hand, longitudinal studies involve a handful of different
methodologies, mainly derived from clustering methods, or an extension of mixed
model theory.
This study explores different longitudinal latent growth models for the modelling of
both functional and symptomatic outcomes for a sample of 335 FEP cases followed
for a period of two years. The functional outcomes were measured by the Functioning
Assessment Short Test (FAST) and symptoms outcome as scored by the positive,
negative and general PANSS scale.
The results showed heterogeneous trajectories for both functional and symptom out-
comes. There was an appreciable association between poor symptoms remission and
impoverished functional recovery, specially within negative symptoms. Furthermore
the study depicts a strong relation between some socio demographic characteristics,
such as the educational levels, and some beeline variables such as the premorbid
adjustment scale, IQ and days of untreated psychosis to both poor functional and
negative symptoms outcomes. Moreover, more severe symptoms onset, especially in
regards to negative and depressive symptoms, was related to both poor functional
and symptomatic outcomes. Baseline functional assessment per the WHODAS,
geopte and GAF scale also proves to be strongly related to both functional and
symptomatic outcomes.
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Chapter 1

Introduction

1.1 Context and justification
First Episode of Psychosis (FEP) is the first manifestation of some of the main severe mental
disorders like Schizophrenia, Bipolar or Major Depressive Disorder, being their clinical char-
acteristics often indistinguishable at illness onset. Traditionally, FEP studies were focused on
schizophrenia and were mainly addressed to find effective treatments to achieve promptly re-
mission of positive symptoms and prevention of relapses, aiming at better outcomes (Lieberman
et al., 1993). In this line, longitudinal analysis have been noted as useful in FEP research as
they can identify and model different outcome trajectories with most evidence suggesting that
these trajectories are heterogeneous (Austin et al., 2015; Levine, Lurie, Kohn, & Levav, 2011;
Schennach et al., 2012). Moreover, the analysis of longitudinal outcome variables proves to
be challenging, especially in what regards mental health data; There is usually a rather large
number of incomplete cases as missing data is frequently encountered, there are life events
that should be accounted for, such as dropouts or death, and lastly, it usually is the case that
outcome variables do not fit a Gaussian distribution.

In the last years, other important aspects of the disorder, such as cognitive impairment and
functional outcome, have received greater attention (Miguel Bernardo & Bioque, 2014; Miguel
Bernardo et al., 2017), mainly due to the fact that up to 60% of FEP patients have an un-
favourable course of illness in spite of achieving high rates of symptomatic remission (Menezes,
Arenovich, & Zipursky, 2006). The relationship between symptomatic and functional remis-
sion is still a matter of debate (Lambert, Karow, Leucht, Schimmelmann, & Naber, 2010), as
it has been suggested by several groups that both outcomes are needed to achieve full recov-
ery (Emsley, Chiliza, Asmal, & Lehloenya, 2011; Harvey & Bellack, 2009). While there is an
agreement on clinical remission criteria (Andreasen et al., 2005), there is no consensus yet to
define functional remission, as shown by a variety of criteria and scales that are used in the
field (Liberman & Kopelowicz, 2005; Mausbach, Moore, Bowie, Cardenas, & Patterson, 2009;
Wunderink, Sytema, Nienhuis, & Wiersma, 2009). Despite that impairment in functioning is
a core feature in schizophrenia, it seems less evident in other disorders that may arise out of a

10
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FEP.

Studies tend to use different tool to asses functioning. Recent works have reported that first-
admission patients with a psychotic disorder had different social functioning trajectories in a 20-
year follow-up, where schizophrenia spectrum disorders showed more severe and persistent social
impairment compared to other diagnoses such as depression or bipolar disorder with psychotic
symptoms (Velthorst et al., 2017). Although these authors suggested a stable trajectory after
illness onset, this study only examined social functioning, missing other relevant domains of
functioning as vocational or self-maintenance activities (Law & Morrison, 2014). Additionally,
there was no assessment of affective symptoms (which may be present in other disorders out of
schizophrenia-spectrum) or cognitive performance that might influence remission, relapse and
functioning (White et al., 2009). Other findings regarding functional prognosis have also found
heterogeneous trajectories using different approaches to measure functional outcome, such a s
the GAF scale (Abdin et al., 2017) or a measure of social cognition (Hodgekins et al., 2015)

The heterogeneity of the functionality measurement tools used in different study proves to be
problematic. On the one hand some of the tools can assess a restricted domain of functionality
(e.g. social functioning), while others may be too general for the task (e.g. GAF). In this regard,
the Functional Assessment Short Test (FAST), may provide a good measure of functioning
problems experienced by psychiatric patients. The FAST scale is comprised of 24 items that
can assess functional impairment id 6 different domains; autonomy, occupational functioning,
cognitive functioning, financial issues, interpersonal relationships and leisure time. (González-
Ortega et al., 2010)

With regard to predictor variables, there are studies that provide evidence of how different vari-
ables relate to different FEP trajectories. Among the most replicated factors, baseline negative
symptoms (Verma, Subramaniam, Abdin, Poon, & Chong, 2012), female gender (Álvarez-
Jiménez et al., 2012; Wing Chung Chang et al., 2016), duration of untreated psychosis (DUP)
(W. C. Chang et al., 2012; Keshavan et al., 2003; Pelayo-Terán et al., 2014), and social,
academic or occupational adjustment at illness onset A. K. Malla, Norman, Manchanda, &
Townsend (2002) were related with functional outcomes. Cognitive impairment has also been
extensively studied, as it is present in the majority of individuals with psychosis (Cuesta et al.,
2015).

Therefore, we believe there is a need for more outcome trajectory studies, specifically for studies
that may identify the different functional trajectories. The FAST scale may provide a coherent
approach to assess functioning on different domains. Demographic, symptomatic and other
baseline variables can then be related to the different trajectories in order to analyse the relation
between them.

11
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1.2 Objetives
1.2.1 General objetives
The intent of the present work is to determine functional trajectories of a cohort of FEP
subjects over a two year follow-up, using a trajectory analysis methodology. Further analysis
aims to characterize and differentiate the established classes with regard to the baseline and
demographic variables.

1.2.2 Specific objectives
1. Establish a state of the art knowledge regarding functional trajectories in FEP.
2. Cleaning and transformation of raw data for further processing.
3. Missing data analysis and imputation.
4. Exploratory data analysis.
5. Identification of functional trajectories and their analysis of their relation to other relevant

variables.

1.3 Planning
In order to properly fulfil the propose objectives, the following tasks are proposed:

1. Bibliographical research to establish background and state of the art knowledge about
FEP prognosis and trajectories.

a. Introduction

2. First examination and cleaning of raw data.

b. Data import
c. Error correction
d. Data selection

3. Descriptive information of data.

a. Descriptive statistics
b. Exploratory data analysis

4. Analysis of missing information and assessment of possible data imputation.

a. Descriptive statistic of NA values
b. Multiple imputation model creation

5. Multiple imputation and assessment of imputed datasets.

a. Multiple imputation.
b. imputed data validation.

12
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Figure 1.1: Project Gantt chart

6. Trajectories modelling.

a. simple models
b. complex models
c. Identification of trajectory classes.

7. Trajectory analysis

a. Relation of classes with other relevant variables.

8. Writing

The bibliographical research will be performed using traditional search engines such as Pubmed
and Google Scholar, using key terms related to the current project (first episode psychosis, recov-
ery, functional recovery, remission, trajectories) Data reading, exploratory analysis, descriptive
statistic, data imputation and further data analysis will be performed using R programming
language (R Core Team, 2021) The raw data has been obtained with the online application of
the digital data records used by the research group. Raw data is in Microsoft Excel xlsx format,
and is composed of up to a total of 30 files, which must be read, examined, and converted for
further handling.

The proposed planning is pictured as a Gantt chart in fig 1.1.
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Chapter 2

State of the Art

2.1 Trajectory Analysis
Population variables that change along time may elicit a challenge when analysed. Currently
there is a handful of approaches that have been used in the fields of neurological and mental
health diseases. More specifically, FEP trajectory studies have usually used some kind a person
centred analysis, in contrast with variable centred analysis such as factor analysis (FA) or
principal component analysis (PCA). Person centred analysis aims to provide ways to determine
the trajectory of a variable, addressing both changes between as well as within the subjects
themselves (Jung & Wickrama, 2007).

While some of the methodologies encountered in FEP trajectory analysis studies come from
the family of cluster methods, such as longitudinal k-means analysis (Genolini & Falissard,
2009), most of the algorithms applied on current studies are related to mixed models and are
globally references to as Longitudinal Latent Growth Models (LGM).

2.1.1 Longitudinal latent growth models
LLGM comprise a family of model strategies for modelling longitudinal data. Presently there
is some overlap in the terms that refer to similar models, as there is a confluence of similar
algorithms that come from diverse disciplines and are termed differently.

A clear overview of the different approaches can be is described by Nest, Lima Passos, Candel,
& Breukelen (2020) and is visually synthesised in Figure 2.1.

A first categorical divergence between models is depicted by a population assumption accepted
by the model. Firstly, single class models consider that the population is homogeneous with
regard of the outcome trajectory, hence differences in individual trajectories will only denote
intra-subject differences, plus an error term. Secondly, many class models, presuppose that
the population is hetereogenic in nature, with 𝑛 different subgroups, where predictors tend to
evolve similarly over time.

14
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Figure 2.1: Interrelatedness of longitudinal LGM models (Nest et al., 2020).

2.1.1.1 Single class models

Models that presuppose an homogeneous populations are sometimes designated as; Growth
Curve Models (GCM), Latent Growth Models (LGM), or just Mixed Models (MM).

In general these models aim to model the relation between predictor variables and a repeatedly
measured outcome. In the case of GCM they are designed to model both fixed and random
effects on the outcome, aiming to express both differences between and within individuals. The
matrix equation can be seen in (2.1)1

𝑦𝑖 = 𝑋𝛽 + 𝑍𝑏𝑖 + 𝜖𝑖, (2.1)

where, 𝑋 ∶ 𝑇 × 𝑝 design matrix of constant plus 𝑝 − 1 predictors at time points 𝑡 = 1, … , 𝑇 ,
for fixed effects, 𝛽 ∶ 𝑝 × 1 vector of fixed effects coefficients, 𝑍:design matrix for random effects.
Usually a sub matrix of 𝑋 obtained by leaving out those columns representing predictors
with fixed slope, 𝑅: error covariance matrix, 𝑏𝑖: vector of random effects coefficients, 𝑦𝑖 ∼
𝑀𝑉 𝑁(𝜇, Σ), 𝑏𝑖 ∼ 𝑁(0, 𝐷), where 𝐷 is a covariance matrix, 𝜖𝑖 ∼ 𝑁(0, 𝑅), 𝜇 = 𝑋𝛽, Σ =
𝑅 + 𝑍𝐷𝑍′

1General Equation Assumptions 𝑘 = 1, … , 𝐾 is the class. 𝑡 = 1, … , 𝑇 is the time point. 𝑖 = 1, … , 𝑛 is the
subject.
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Although single class model can only model one class trajectories, they can be extended to
model a difference between two categorical groups.

2.1.1.2 Many class models

Models that aim to detect more than one trajectories of the outcome variable are globally
known as finite mixture models (FMM). While the a priori number of classes is unknown, it
can be established using a different criteria such as the Bayesian information criteria (BIC), the
Akaike information criteria (AIC), and the post classification probabilities. Class assignment
of each individual is then based on the similarity of de trajectories. Furthermore, post-hoc
methods can be applied to assess the relations between classes and different variables.

Within FMM there, are mainly two different families that differ with regard of the random effect
in the regression model. Firstly, latent class growth analysis (LCGA) do not include random
effects (Jung & Wickrama, 2007). LCGA assumes that within a specific class, the repeated
measures observed within individuals are independent. Therefore, as they do not account for
between subject variability, few parameters need to be estimated, they usually find more classes
and may be particularly useful in models that fail to converge, or have a smaller size (Equation
(2.2))

𝑦𝑘
𝑖 = 𝑋𝛽𝑘 + 𝜖𝑘

𝑖 , (2.2)

where, 𝑦𝑘
𝑖 ∼ 𝑀𝑉 𝑁(𝜇𝑘, Σ𝑘),

𝜖𝑘
𝑖 ∼ 𝑁(0, 𝑅𝑘),

𝜇𝑘 = 𝑋𝛽𝑘, Σ𝑘 = 𝑅𝑘 is assumed diagonal.

In contrast, growth mixture models (GMM), and latent class mixed models (LCMM) both
do account for between-subject difference. While, both GMM and LCGA are derived from
the latent growth models usually developed in psychometrics, LCMM are derived from mixed
model theory in biostatistics.

Thus, LCMM/GMM can be seen as an amalgamations of the former two approaches. It aims to
detect many class trajectories as LCGA, including in its regression modelling the use of random
effects, as GCM (Equation (2.3))

𝑦𝑘
𝑖 = 𝑋𝛽𝑘 + 𝑍𝑏𝑘

𝑖 + 𝜖𝑘
𝑖 , (2.3)

where
𝑏𝑘

𝑖 ∼ 𝑁(0, 𝐷𝑘)
Σ𝑘 = 𝑅𝑘 + 𝑍𝐷𝑘𝑍′
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(a) Cluster distribution at the baseline. (b) Cluster distribution at the 2-year follow-up

Figure 2.2: Distribution of clinical subgroups of subjects with first-episode psychosis at baseline
and at 2-years using fuzzy clustering algorithm (Amoretti et al., 2021).

2.2 Current FEP trajectory analysis studies
Firstly, with regard of clustering methods, one study uses a specific k-means clustering method
designed to work on longitudinal data, and is implemented in R packages kml and kml3d. One
advantage of the kml3d approach is its ability to model the interaction of two or more vari-
ables over time, providing an efficient alternative to existing parametric algorithms (Genolini,
Alacoque, Sentenac, & Arnaud, 2015). The study included a total of 369 FEP patients that
were followed for one year. K-means cluster modelling for longitudinal data was used to model
functional outcome trajectories using the GAF scale as a proxy of functional outcome, using
psychotic symptoms scales as predictors. The results showed four distinct functional trajecto-
ries (“poor,” “intermediate,” “high,” and “catchup”) . The study found a correlation between
low functioning and male gender, ethnic minority status, a low premorbid adjustment a low ex-
ecutive function or IQ, previous personality disorder or substance abuse (Hall, Holton, Öngür,
Montrose, & Keshavan, 2019)

A similar approach that uses clustering methods, is developed in by (Amoretti et al., 2021).
In this study 149 FEP patients where followed up to 2 years. A Fuzzy clustering method was
utilized using information form the baseline and the 2 years follow up assessments, using R
package cluster(Maechler, Rousseeuw, Struyf, & Hubert, 2021). This data was used to build a
PCA model which identified dimension. The PCA information was then fed to the clustering
methods to identify different subgroups of patients. At baseline, there were 3 subgroups iden-
tified; (mild; negative and moderate; and positive and severe symptom), whereas in the 2 year
follow up, the best fit was achieved by a 5 cluster solution (minimal; mild; moderate; negative
and depressive; and severe symptoms) (Figure 2.2). The main limitation of this approach is
that the variability within subject is not accounted for.

With regard on proper trajectory modelling, there are more examples of current studies that
use some kind of longitudinal growth model. Abdin et al. (2017) used the Singapore Early
Psychosis Intervention Programme clinical database, and applied a a latent class growth anal-
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(a) Positive Symptoms (b) Negative Symptoms

(c) General Symptoms (d) GAF

Figure 2.3: Latent class trajectory of PANSS symptoms (Abdin et al., 2017).

ysis to identify distinct trajectories for positive, negative, general psychopathology symptom
severity (PANSS positive, negative and general symptom scale) and functioning (GAF) over
the 2-year follow-up period. In this approach, missing data was assumed to be missing at
random (MAR) and was handled using full maximum likelihood ratio. BIC and AIC criteria
were used to select the model with the best fit. In this case, posterior analysis were made using
multinomial logistic regression, to explore the relation with other variables, as Age, gender, ed-
ucation level, employment status, marital status, ethnicity and DUP. The results identified two
positive symptoms trajectories (early response and stable trajectory and delayed response tra-
jectory) , four negative and general symptoms trajectories (early response and stable trajectory,
early response and relapse trajectory, slower response and no response trajectory and delayed
response trajectory) and three functional trajectories (high functioning trajectory, moderately
stable functioning trajectory and deterioration in functioning trajectory, Figure 2.3).

A similar approach can be seen in Austin et al. (2015), where a large cohort of 496 patients
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(a) Positive Symptoms (b) Negative Symptoms

Figure 2.4: Symptom trajectories for 10 year period. (SAPS scoring: 0 - absent, 1 - questionable,
2 - mild, 3 - moderate, 4 - marked, 5 - severe). (Austin et al., 2015)

Figure 2.5: Trajectories of the course of illness (Levine et al., 2011).

where followed up to 10 years. The study used latent class analysis to model trajectories of
positive end negative symptoms using the SPAS and SANS scales, in order find homogeneous
classes of symptoms trajectories. As previous works, optimal number of classes where identified
using BIC. With regard on the missing information, it was assumed that missing values where
missing at random and, as LCA is tolerant to missing information, no imputation was made.
Baseline variables where firstly modelled in univariate analysis with the obtained classes as
outcomes to assess the individual variables contribution. Secondly, multivariate logistic models
were fitted to see which of the variables still predicted the outcome with the shared variance.
The results showed a total of five different positive symptoms classes and four classes for negative
symptoms (Figure 2.4 ). The regression analysis showed that longer DUP and substance abuse,
where associated with worst positive symptoms progression, while poor social functioning ans
disorganization symptoms were correlated with worst negative symptoms trajectories.

On the same line, Levine et al. (2011) uses a mixed-model latent class regression modelling
approach. The optimal number of classes was identified using BIC criteria. In this approach the
models where age - adjusted, and all available data at each age was used. A main limitation
of this study is that the study did not have access to a formal estimates of illness severity,
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so disease severity could only be assumed using de length of the hospitalizations as proxy.
ON the other hand, the longitudinal variable used was age, which may account for a more
naturalistic approach, and may be less biased than other studies with a more rigid follow-up
course. Differences between demographic variables where calculated for the identified classes.
The study identified 4 class groups; a typical course with a first hospitalization at age 20, with
mild deterioration until 23 and then amelioration. A second group with an earlier onset, a third
group with a later onset and a longer deterioration period and finally a fourth group with an
early onset and a refractory illness course (Figure 2.5)
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Chapter 3

Methodology

3.1 Implementation of LCMM in R: the LCMM package
There are several implementation of the longitudinal model framework available. In the present
work we will be using the approach of LGC as described in Cécile Proust-Lima, Philipps, &
Liquet (2017) and implemented in the R package lcmm Cecile Proust-Lima, Philipps, Diakite,
& Liquet (2022). The lcmm package includes both function to implement single-class and multi-
class LCMM models. As noted by the package author, lcmm can also implement LCGA models,
by specifying no random effect in the model design.1 Moreover, it provides a straightforward
strategy to deal with non-Gaussian outcome variables.

3.1.1 Linear mixed model
The linear mixed model (LMM) depicts the most basic approach for a longitudinal model,
with a one class framework that aims to model the relation between predictor variables and
outcomes measured along time, assuming a homogeneous population, that is, without trying
to asses differential patterns of change. Furthermore, the outcome variable must fit a Gaussian
distribution. Within this model, for each subject 𝑖 in a sample of 𝑁 we can consider a vector of
𝑛𝑖 repeated measures of an outcome 𝑌𝑖 = (𝑌𝑖1, … , 𝑌𝑖𝑗, … , 𝑌𝑖𝑛)⊺ having 𝑌𝑖𝑗 a certain outcome
value at occasion 𝑗 that is measured at time 𝑡𝑖𝑗. The difference between occasion 𝑗 and time
allows the model to correctly deal with the fact that the number of measurements may vary
from between subjects, therefore allowing for subjects to have missing data (Equation (3.1)).

The model represents an outcome variable across time. The type of relation can be modelled as
linear or polynomial. Fixed effects denote the average growth overtime of the outcome variable
among individuals. Then, individual differences from average time trend are expressed by the
sum of the random effects (inter-individual) plus the error.

1https://github.com/CecileProust-Lima/lcmm/issues/44#issuecomment-600601121
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𝑌𝑖𝑗 = X𝐿𝑖(𝑡𝑖𝑗)⊺𝛽 + Z𝑖(𝑡𝑖𝑗)⊺𝑢𝑖 + 𝑤𝑖(𝑡𝑖𝑗) + 𝜖𝑖𝑗, (3.1)

where, 𝑋 points to the 𝑡×𝑝 matrix for fixed effects of 𝑝−1 predictors, at times 𝑡 with a 𝛽 vector
of fixed effect coefficients. 𝑍 is the random effect matrix with a vector of 𝑏𝑡 random effects which
have a 𝐷 random effect covariance matrix, representing the inter individual random variability
(between subjects). And 𝑅 is the error covariance matrix which represent intra individual
random variability.

The main limitations of the linear model is that outcomes have to be continuous and have
Gaussian random deviations, and covariate effects Β are constant across time, which is not
usually the norm in psychological studies.

3.1.2 Latent process
To overcome LMM limitations, a first extension of the model uses a latent variable framework,
that allows for the separation of the structural model itself from a measurements model, which
links the quantities of interest with the actual observations. In this regard, the latent process is
defined in the same way as standard linear mixed model, but without the error measurements
(Equation (3.2))

Λ𝑖(𝑡) = 𝑋𝐿𝑖(𝑡)⊺𝛽 + 𝑍𝑖(𝑡)⊺𝑢𝑖 + 𝑤(𝑡) , ∀𝑡 ∈ ℝ (3.2)

Then, an 𝑌𝑡𝑗 measurement model can be defined as a linking model between the the actual
measurement 𝑌𝑡𝑗 at time 𝑡𝑖𝑗 and the latent process Λ (Equation (3.3))

𝑌𝑖𝑗 = 𝐻( ̃𝑌𝑖𝑗; 𝜂) = 𝐻(Λ𝑖(𝑡𝑖𝑗) + 𝜖𝑖𝑗; 𝜂) (3.3)

The term 𝜖 corresponds to the standard error with variance of 𝜎2
𝑒 . The term 𝐻 correspond to

the link function utilized and the term ̃𝑌𝑖𝑗 is the latent process with noise at time 𝑡𝑖𝑗

When the markers are quantitative there are different link function that can be used; a linear
transformation, a re scaled cumulative distribution function (CDF) of a Beta distribution, and
several quadratic I-splines with 𝑚 knots.

3.1.3 Latent classes
A further extension of the latent process mixed model as described in section 2.1.1.2, aims
at the proper treatment of heterogeneous populations. While the latent process assumes a
homogeneous populations with a profile determined by 𝑋𝐿𝑖(𝑡)⊤𝛽, latent class mixed models
can model an heterogeneous population comprised of 𝐺 number of different classes which have
a 𝐺 determined profile (Equation (3.4))
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𝑌𝑖𝑗|𝑐𝑖=𝑔 = 𝑋𝐿1𝑖(𝑡𝑖𝑗)⊺𝛽 + 𝑋𝐿2𝑖(𝑡𝑖𝑗)⊺𝑣𝑔 + 𝑍𝑖(𝑡𝑖𝑗)⊺𝑢𝑖𝑔 + 𝑤𝑖(𝑡𝑖𝑗) + 𝜖𝑖𝑗 (3.4)

Each subject belong to only one class, and the class memberships can be characterized by a
random variable 𝑐𝑖 which is a latent variable. Then 𝑐𝑖 is equal to 𝑔 for subject 𝑖 belonging to
class 𝑔. The probability of 𝑐𝑖 is described by (3.5)

𝜋𝑖𝑔 = 𝑃(𝑐𝑖 = 𝑔|𝑋𝑐𝑖) = 𝑒𝜉0𝑔 + 𝑋⊺
𝑐𝑖𝜉1𝑔

∑𝐺
𝑙=1 𝑒𝜉0𝑙 + 𝑋⊺

𝑐𝑖𝜉1𝑙
(3.5)

Just as for the one class models, the many class approach can use a latent process to outweigh
the Gaussian assumption limitation regarding the outcome variable. For 𝐺 classes the latent
process equation is (3.6):

Λ𝑖(𝑡)|𝑐𝑖=𝑔 = 𝑋𝐿1𝑖(𝑡)⊺𝛽 + 𝑋𝐿2𝑖(𝑡)⊺𝑣𝑔 + 𝑍𝑖(𝑡)⊺𝑢𝑖𝑔 + 𝑤𝑖(𝑡𝑖𝑗) (3.6)

3.1.4 Posterior classification
Moreover, in models involving latent classes, a posterior classification of the subjects in each
latent class can be made. It is based on the posterior calculation of the class-membership
probabilities and is used to characterize the classification of the subjects as well as to evaluate
the goodness-of-fit of the model.

Consequently, class memberships probabilities van be calculated using the Bayes theorem.
Thus, with the information assessed in the model the probability of class 𝑔 membership can be
determined for each individual 𝑖 (3.7)

̂𝜋(𝑌 ,𝑇 )
𝑖𝑔 = 𝑃 (𝑐𝑖 = 𝑔|𝑋𝐿𝑖, 𝑋𝐶𝑖, 𝑌𝑖, 𝑇𝑖, 𝐸𝑖, ̂𝜃𝐺) = 𝜋𝑖𝑔𝜙𝑖𝑔(𝑌𝑖|𝑐𝑖 = 𝑔; ̂𝜃𝐺)

∑𝐺
𝑙=1 𝜋𝑖𝑙𝜙𝑖𝑙(𝑌𝑖|𝑐𝑖 = 𝑙; ̂𝜃𝐺)

, (3.7)

where,
̂𝜃𝐺 is the vector of parameters estimated in the G latent class model.

3.2 Missing data handling
In the fields of health studies it is not rare to encounter missing information. This missing
information has to be dealt with in some manner as it can reveal some kind of selection bias
of the sample. Furthermore, most statistical algorithms need complete data. A first simple
approach to deal with missing data is to eliminate all cases with one or more missing values.
This approach provides just a few advantages; While it is straightforward and fast, the total
number of cases can be reduced dramatically loosing statistical power. Moreover, if missing
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data is associated with some characteristic of the sample, this strategy could inject a selection
bias to the study.

A second approach is to use only complete pairwise data. This may provide a solution for
certain statistical approaches which can properly deal with incomplete data. As examined in
section 3.1, this is the case with LCMM modelling.

A third approach is to impute the missing information with the objective to try to use all of the
available data. There are several imputation strategies, from the most straightforward ones that
just replace missing values with the mean or the median of the variable, to more sophisticated
strategies, that assume that the missing data has a certain underlying mechanism.

3.2.1 Missing data mechanisms
The question with regards of missing data has to do with the necessity of an imputation
procedure. To solve this issue a first approach must define the pattern of missing data (Rubin,
1976). A first scenario of missing data is where missingness is completely at random (MCAR),
which implies that the missing data does not depend neither on the observed nor on unobserved
data. In this cases the imputation of the missing data would not provide much information
gain. On the one hand imputation may be beneficial with a gain on statistical power. On the
other hand, some noise in the form of uncertainty is added with the imputation process. In real
life scenarios, specially in health sciences, MCAR cases are not really common, as most of the
missing data found in them follow some kind of pattern. Thus, missing data is usually related
to other observed variables.

When the missingness of a variable is related to the variable itself, the pattern is considered to be
Missing Not at Random (MNAR). However, if the missingness does not depend on unobserved
values, but is related to other observed variable, the data is treated as Missing at Random
(MAR) (Schafer & Graham, 2002). Furthermore a MAR pattern implies that after controlling
for all available data, the remaining missingness is completely random (Figure 3.1 adapted from
(Schafer & Graham, 2002))

Both of the later patterns (MNAR & MAR) would be benefited from an imputation approach;
While an incomplete dataset that follows a MAR can be imputed using other variable to model
the missing values, a MNAR dataset proves to be much more problematic to impute.

3.2.2 Single v/s Multiple imputation
The most simple approach to impute is to use one of many single imputation strategies, using
the mean, median or the mode for categorical, variables as a replacement for missing data. It
may prove some benefit when dealing with MAR an MCAR datasets, but the main disadvantage
is that single imputation methodologies can not distinguish between imputed and true values,
giving no account for the uncertainty of the imputation methods. Furthermore, the use of
central measure statistic should be avoided.
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Figure 3.1: Graphical representations of (a) missing completely at random (MCAR), (b) missing
at random (MAR), and (c) missing not at random (MNAR) in a univariate missing-data pattern.
X represents variables that are completely observed, Y represents a variable that is partly
missing, Z represents the component of the causes of missingness unrelated to X and Y, and R
represents the missingness.

Multiple imputation strategies are based on the idea to of creating multiple “complete”
datasets., thus creating a straightforward measure of uncertainty given by the standard error
of the imputed variables. Multiple imputation by chained equations (MICE) describes a
procedure in which the imputed values are modelled using 𝑛 observed variables.

The unobserved variables are calculated iterating through regression models using all (or just
some, if specified) observed variables as predictors. The number of iterations should be high
enough to stabilize the regression parameters. This procedure then is repeated for 𝑛 specified
number of times to obtain 𝑛 complete datasets.

3.2.3 Longitudinal imputation
When dealing with a repeated reassure dataset, multiple imputation of missing values can follow
different approaches (Buuren, 2018). A first method would be to impute the data in the long
format, with a separate column taking into account de time variable. In this format each row
correspond to one case in time 𝑡 . This approach is straightforward, but may not provide the
best means, as it would not take into account properly the intra-subject variability of the same
measures along time. A second approach uses a wide format, spreading the time measure into
different columns. In this way each row corresponds to one case, and the different measures
across time are repeated in different columns.

Then, to reduce the number of predictors, for each imputed variable only variables of the same
time point are included. Furthermore, same variable at different time points are also admitted
to properly account for the repeated measures variability. This strategy can accurately portray
predictions for longitudinal data as it provides a feasible imputation for a repeated data model,
leaving out degrees of freedom for residual variation.

Following this later approach we can develop an example. Let MADRS be 𝑌 𝑝
𝑎 , the YMRS 𝑌 𝑝

𝑏
and the GEOPTE 𝑌 𝑝

𝑏 , the conditional prediction would be defined by (3.8)

𝑃(𝑌 𝑝
𝑎,1|𝑌 𝑝

𝑏,1, 𝑌 𝑝
𝑐,1, 𝑌 𝑝

𝑎,2, 𝑌 𝑝
𝑎,3, 𝑌 𝑝

𝑎,4) (3.8)
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In this way, the prediction matrix for the former data would be (3.9):

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑌 𝑝
𝑎1 𝑌 𝑝

𝑏1 𝑌 𝑝
𝑐1 𝑌 𝑝

𝑎2 𝑌 𝑝
𝑏2 𝑌 𝑝

𝑐2 𝑌 𝑝
𝑎3 𝑌 𝑝

𝑏3 𝑌 𝑝
𝑐3

𝑌 𝑝
𝑎1 0 1 1 1 0 0 1 0 0

𝑌 𝑝
𝑏1 1 0 1 0 1 0 0 1 0

𝑌 𝑝
𝑐1 1 1 0 0 0 1 0 0 1

𝑌 𝑝
𝑎2 1 0 0 0 1 1 1 0 0

𝑌 𝑝
𝑏2 0 1 0 1 0 1 0 1 0

𝑌 𝑝
𝑐2 0 0 1 1 1 0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3.9)

In summary, the proposed strategy to select the predictors for each variable is:

1. Keep all baseline data as predictors.

2. Keep all other variables of the same time point.

3. Of each variable, keep the different time points

3.2.4 Imputation and longitudinal latent modelling
Assuming the missing data follows a MAR pattern, there is less of a need to impute for class
membership and a more strong need to do it for proper modelling of covariates and post-
hoc modelling. What is more important is that both MICE imputation and Raw-maximun
likelihood imputation that could also be used, make rather strong assumptions that the data to
be imputed come from a single population. In contrast, as developed in the 2.1.1.2 section, many
class LCMM is based on the hypothesis that data comes from multiple latent sub-populations.

The literature is heterogeneous with regards to the best approach of this problem. In the one
hand, there is a strong case respecting the use of only complete data for latent class modelling
(Colder et al., 2001). There are few specific approaches that are being developed that can deal
with missing information, but they are still in an early stage. with this in mind, currently the
best approach seems to be to first build the longitudinal models with the available data, and
then, with the class information obtained by the models, impute the missing values in order to
gain information for the post-hoc analyses.

3.3 Data cleaning
All data was obtained from the data managers of the FEP Project (Miquel Bernardo, Bioque,
Parellada, Ruiz, et al., 2013). The raw data was distributed in a series of Excel files, which had
one of two general schemes.

1. A baseline structure was used for data collected once at the baseline assessment (BA),
such as demographic information (birth age, education…), baseline scales (PAS, LEWIS,
…), arranged with first column with the subjects id number and the rest of the data in
different columns.
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ID 𝑋 𝑌 𝑍 ⋯
id x y z ⋯

2. A follow-up structure, for repeated data obtained data from further assessments in time,
with a first column with the subjects id and the repeated measures distributed along
different columns, in what is known as a wide data format.

ID 𝑋𝑡1 𝑌𝑡1 𝑍𝑡1 𝑋𝑡2 𝑌𝑡2 𝑍𝑡2 ⋯
id x y z x y z ⋯

A first visual inspection of the raw files allowed the identification of transcription errors and
inconsistencies in the repeated variables measured. On the one hand, many inconsistencies in
the coding of missing values where detected (e.g. missing values where sometimes coded as
“NA,” “NP,” “np”…). Furthermore, in some of the scales (CGI and WHODAS, for example)
missing values where coded as “0,” or “999.”

The Excel files where imported using the readxl R package (Wickham & Bryan, 2022).
All corrections detected in the visual inspection were explicitly stated in the attached script
clean_data.R. The scripts manges to read the different Excel files and correct the visual in-
spection errors detected. The repeated measures data is transformed to a long format, that is,
one row for each observation with an added column to asses the time of the assessment (“BA,”
“2m,” “6m,” “1yr,” “2yr” ), and finally the data is exported in a csv format.

At the baseline assessment (BA), patients would have experienced different time periods from
their illness onset. As the objective of the study is to study functionality along illness onset,
it seems reasonable to account for this differences in the longitudinal variable. Therefore, the
variable “Time from onset” (TFO) was calculated using the SOS scale, which recorded the
illness onset date, for each patient at every assessment time.

Structured data sets were built using the clean data .csv files. all data was read into tidyverse
tibbles (Wickham, 2021). Baseline data was entered into one tibble ( df_bs), and the timely
assessments data in two different tibbles, both in the long (df_tb) and wide formats (df_wide).

Table 3.3: Long data format

ID 𝑡 𝑋 𝑌 𝑍 ⋯
id 1 x y z ⋯
id 2 x y z ⋯
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3.4 Exploratory analysis methodlogy
Variable distribution for both baseline variables and primary & secondary outcomes were visu-
ally inspected and test for normality. Both outcome variables were visually examined in regards
to the different predictors. Correlation between predictor and outcome variables was calculated
using the Spearman correlation index. Outliers for the primary and secondary outcome vari-
ables where proposed as measures greater than 1.5 time the interquartile range (IQR).

3.5 Longitudnal modelling
Longitudinal models where built for both the primary (FAST) and the secondary outcomes
(PANSS sub-scales), using a LCMM and a LCGA approaches. The general strategy followed
for building the models was the one proposed in Nagin, Jones, Passos, & Tremblay (2016); The
models were built using only the time variable. For the LCMM models both random and fixed
effect where specified as the time variable. For LCGA, no random effect was specified. This
strategy provides a simple approach which provides both a more comprehensible model and
the possibility to further post-hoc analysis.

As both primary and secondary outcomes follow a non-normal distribution, the models were
first built using a one-class approach with different link functions. The best model was selected
using the BIC and AIC criteria.

Once the best link function was selected, models for 𝑛 classes where built for all outcomes. A
theoretical maximum number of 10 classes was favoured for all models. The optimal number
of classes for each model was selected using the BIC and AIC criteria, as well as the post
probabilistic classification of the 𝑛 class model with a clinical criteria in mind.

3.6 Data imputation
The longitudinal imputation strategy followed the methodology exposed in section
@ref(Longitudinal imputation). The prediction matrix can be seen in Figure 3.2.

The number of imputations needed was calculated using a two step approach; A first step with
a “pilot” model with 5 to 10 imputed datasets, and a second step that uses the pilot results
to calculate the imputations needed to establish a final analysis whose SE estimates will have
a established level of replicability (von Hippel, 2018). The number of imputation obtained by
this procedure is 136

Multiple imputation was made using mice function of the mice libary (van Buuren & Groothuis-
Oudshoorn, 2021). The custom prediction matrix was used to predict 136 complete datasets,
using the Predictive mean matching method (van Buuren & Groothuis-Oudshoorn, 2011).
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Figure 3.2: Prediction matrix for data imputation (fragment)
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3.7 Statistical analysis
For both univariate and multivariate analysis the imputed datasets where used. The statistic for
both univariate and multivariate models was calculated and then pooled using Rubins algorithm
(Rubin, 1976).

A univariate analysis for both categorical and numerical variables was made between the dif-
ferent identified classes of the primary outcomes. For two level outcome classification, the
Wilcoxon signed-rank test was used to assess mean differences of numerical variables. Where
the outcome had more than two levels, the Kruskal Wallis rank test was used. For categorical
variables, the Chi-square test was used. When categorical variables had levels with a low count
(less than 5) Fishers exact test was preferred.

Furthermore, for outcomes with more than two levels, pairwise comparison were made for each
pair of classes, using the Dunn test and correcting for multiple comparison using the False
discovery rate methodology (Benjamini & Hochberg, 1995)
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FEP functional trajectories

Chapter 4

Results

4.1 Sample description
The study sample is part of the “PEP National Study,” which is a naturalistic, prospective,
multi centre approach to assess variables from different domains (clinical, neuropsychological,
neuroimaging, environmental, pharmacological) in a cohort of FEP patients. The full method-
ology of the study is described in Miquel Bernardo, Bioque, Parellada, Saiz Ruiz, et al. (2013).

The sample comprised a total of 335 subjects with a diagnosis of a FEP, who met the inclusion
criteria for a first episode of psychosis, assessed by a semi-structured interview appropriate to
the patient’s age: the Spanish translation of the K-SADS-PL for children and adolescents and
Spanish translation of the SCID-I and II for the adult population. Inclusion criteria were: a) age
between 9 and 35 years at baseline assessment, b) presence of psychotic symptomatology of less
than 1 year and c) fluent use of Spanish. Exclusion criteria included: a) DSM-IV-TR diagnosis
of mental retardation (Intelligence Quotient (IQ) below 70 and/or impaired functioning), b)
history of head trauma with loss of consciousness and c) systemic diseases with secondary mental
symptomatology. All subjects provided written informed consent after receiving a complete
description of the study. In case of children under 16 years of age, parents or legal guardians
gave written informed consent before the beginning of their participation in the study.

At baseline, demographics such as gender, age and educational level were collected from all pa-
tients, as well as the retrospective assessment of the premorbid adjustment with the Pre-morbid
Adjustment Scale (PAS). The scales used for the longitudinal assessments were: the Positive
and Negative Symptoms Scale (PANSS), the Clinical Global Impression Severity Scale (CGI-S),
the Global Assessment of Functioning scale (GAF), the Young Mania Rating Scale (YMRS),
the Montgomery-Asberg Depression Rating Scale (MADRS), the Scale of Social Cognition for
Psychosis (GEOPTE), the World Health Organization Disability Assessment Schedule scale
(WHO-DAS) and the Functioning Assessment Short Test (FAST). The estimated premorbid
IQ was measured with the Wechsler Adult Intelligence Scale-III (WAIS-III) Vocabulary Test.
DUP was also measured as the time from the first onset of psychotic symptoms to first an-
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Table 4.1: Socio-demographic categorical variables

N %

Gender Men 225 67.2
Woman 110 32.8

Prev.Psych.dg. No 198 59.1
Not assessable 19 5.7
Yes 117 34.9

Education Primary 79 23.6
Secondary 202 60.3
University studies 51 15.2
Other 1 0.3

Substance abuse FALSE 72 21.5
TRUE 262 78.2
NA 1 0.3

tipsychotic treatment. The longitudinal assessments were performed at baseline, 2, 6, 12 and
24 months after study entry.

At study entry the subjects had different times from illness onset. This was collected with the
Symptom Onset in Schizophrenia (SOS) inventory, and the variable time from onset (TFO)
was calculated for the different follow-up assessments.

Following the definition by the Remission Schizophrenia Working Group (RSWG) (Andreasen
et al., 2005), we used the term ‘clinical remission’ for patients that fulfilled the proposed PANSS
sub-items criteria for at least 1 year. This lag-time is more strict than the RSWG one, as the
latter required sustained remission for only 6 months.

4.2 Data description
The cleaned data was composed of two data frames. A first “socio-demographic” data frame
comprised of 12 variables, 5 of them categorical (1 of them, “Education” ordinal) and 6 nu-
merical. The second was composed of repeated measures of 19 numerical variables in the long
format, with a columns specifying “assessment time.”

Socio-demographic categorical variables consisted in; Previous psychiatric diagnosis
(‘Prev.Psych.dg’), Gender, level of education (‘Education’), Diagnosis, and previous substance
abuse 4.1.

On the the hand, socio demographic numerical variables were consisted in; Age, IQ, Days of
untreated psychosis (DUP), Pre-morbid Adjustment Scale sub-scales (PAS), Lewis pregnancy
risk scale, an the Birth weight (BW). The full description of baseline numerical variables can
be seen in table 4.2

In what regard to the “follow up” longitudinal data numerical data was composed of 19 vari-
ables; CGI, GAF, FAST 6 sub-scales, FES 3 sub-scales, GEOPTE 2 sub-scales, MADRS,
PANSS 3 sub-scales, WHODAS and YMRS 4.3.
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Table 4.2: Socio demographic numerical variables

Unique (#) Missing (%) Mean SD Min Median Max

Age 26 0 23.6 6.0 9.0 23.0 36.0
IQ 17 12 91.8 15.2 55.0 92.5 140.0
DUP 149 14 103.6 119.5 0.0 59.0 807.0
PAS (childhood) 22 6 6.1 4.1 0.0 6.0 21.0
PAS (early adol.) 27 7 8.4 5.3 0.0 8.0 27.0
PAS (late adol.) 29 12 9.5 5.9 0.0 9.0 28.0
PAS (adult) 14 21 3.3 3.0 0.0 3.0 12.0
PAS (general) 49 6 19.8 11.2 0.0 19.0 54.0
Pregnany risk scale 11 2 0.8 1.5 0.0 0.0 10.0
Birth Weight 51 30 3280.4 532.8 2000.0 3200.0 5000.0

Table 4.3: Numerical variables of repetaed meassures at: study entry (BA), 2, 6, 12 and 24
months.

Unique (#) Missing (%) Mean SD Min Median Max

CGI 8 20 3.5 1.3 1.0 4.0 7.0
GAF 66 20 64.3 17.9 10.0 65.0 100.0
FAST (autonomy) 14 21 3.6 3.2 0.0 3.0 12.0
FAST (occupational) 17 21 6.1 5.3 0.0 5.0 15.0
FAST (cognitive) 17 21 4.8 3.8 0.0 5.0 15.0
FAST (financial) 8 21 1.3 1.7 0.0 0.0 6.0
FAST (interpersonal) 20 21 5.5 4.6 0.0 5.0 18.0
FAST (leisure) 8 21 2.0 1.8 0.0 2.0 6.0
FES (relationship) 21 31 15.0 3.1 4.0 16.0 27.0
FES (development) 30 31 18.4 4.4 5.0 18.0 36.0
FES (stability) 19 31 9.9 3.1 1.0 10.0 18.0
GEOPTE (basic cognitive skills) 28 24 12.7 5.2 7.0 11.0 35.0
GEOPTE (social cognition) 30 25 14.8 5.8 7.0 14.0 36.0
MADRS 44 18 9.0 8.3 0.0 7.0 44.0
PANSS (PS) 34 17 12.6 6.6 7.0 10.0 41.0
PANSS (NS) 37 17 16.2 7.2 7.0 16.0 47.0
PANSS (GS) 58 17 29.8 11.4 16.0 27.0 85.0
WHODAS 23 20 7.4 4.6 1.0 7.0 23.0
YMRS 41 18 4.1 7.1 0.0 0.0 49.0
All numeric variable types are ”double”, aside from CGI which is an ”integer”
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Table 4.4: Baseline variables

Variable Overall, N = 335 Men, N = 225 Woman, N = 110 p-value

Age 23.0 (19.0, 28.0) 22.0 (18.0, 28.0) 24.0 (20.0, 30.0) 0.014
Education 0.5

Primary 79 (24%) 53 (24%) 26 (24%)
Secondary 202 (61%) 140 (62%) 62 (57%)
University studies 51 (15%) 30 (13%) 21 (19%)

Other 1 (0.3%) 1 (0.4%) 0 (0%)
Substance abuse/dep 262 (78%) 186 (83%) 76 (69%) 0.004
LEWIS 0.00 (0.00, 1.00) 0.00 (0.00, 1.00) 0.00 (0.00, 1.00) 0.5
IQ 92 (80, 100) 95 (85, 105) 90 (80, 100) 0.018
DUP 59 (24, 138) 61 (22, 146) 49 (26, 135) 0.6

PAS 41 (27, 62) 42 (28, 63) 40 (26, 61) 0.4
1 Median (IQR); n (%)
2 Wilcoxon rank sum test; Fisher’s exact test; Pearson’s Chi-squared test

4.3 Exploratory analysis
4.3.1 Socio-demographic variable univariate analysis
A total of 335 subject where initially included in the study, with most of them being males (67.2
%). The majority had at least finished secondary studies (99.4 %). Over half of the sample
did not have a psychiatric previous diagnosis (59.3 %) while the 35% that did have one, was
mainly diagnosed with anxiety disorders.

The mean DUP of the sample was 103.63 which is slightly over the mean DUP described in
other FEP studies. Furthermore, the DUP distribution has a long right tail, as depicted by the
fact that median is much higher than the mean.

There were signficative differences in age of onset along gender, which is coherent with the
current evidence. Furthermore, gender differences can also be seen in the IQ median (95 for
Men, 90 for Women). There is also a significative difference between Gender in what regards
to substance abuse/dependence with 186 (83%) for men, and 76 (69%) for women (p=0.004)
4.4.

The univariate analysis of the socio-demographic variables show that most variables (‘Age,’
‘IQ,’ ‘PAS’ and ‘BW’) differ slightly from the normal distribution. On the other hand, ‘DUP’
and ‘LEWIS’ follow a left skewed distribution, with a long right tail (Figure 4.1). Nevertheless,
in all of the numerical socio -demographic variable the Shapiro-Wilk test discarded de null
hypothesis, meaning that these variables do not fit a normal distribution A. These results
suggest the use of non-parametric statistics when dealing with these variables.
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Table 4.5: Follow-up longitudinal variables

Variable Overall, N = 1,675 BA, N = 335 2m, N = 335 6m, N = 335 1yr, N = 335 2yr, N = 335

CGI 4.00 (3.00, 4.00) 4.00 (4.00, 5.00) 4.00 (3.00, 4.00) 3.00 (2.50, 4.00) 3.00 (2.00, 4.00) 3.00 (2.00, 4.00)
GAF 65 (55, 80) 51 (35, 65) 60 (55, 70) 70 (60, 80) 75 (60, 85) 75 (65, 85)
MADRS 7 (2, 14) 12 (5, 19) 8 (4, 15) 6 (2, 11) 4 (1, 10) 4 (0, 9)
PANSS (PS) 10.0 (7.0, 16.0) 19.0 (12.0, 25.0) 10.0 (7.0, 15.0) 9.0 (7.0, 12.0) 8.0 (7.0, 11.0) 8.0 (7.0, 13.0)
PANSS (NS) 16 (10, 21) 18 (12, 24) 17 (11, 21) 14 (10, 20) 13 (9, 19) 12 (8, 19)

PANSS (GS) 27 (21, 37) 37 (28, 47) 28 (22, 37) 25 (20, 32) 23 (19, 30) 23 (19, 31)
SWR remission criteria 772 (56%) 82 (25%) 178 (58%) 177 (63%) 185 (73%) 150 (74%)
WHODAS 7.0 (4.0, 10.0) 8.0 (5.0, 12.0) 7.0 (4.0, 11.0) 5.0 (3.0, 10.0) 6.0 (3.0, 9.0) 6.0 (3.0, 9.0)
YMRS 0.0 (0.0, 6.0) 6.0 (0.0, 15.0) 1.0 (0.0, 4.0) 0.0 (0.0, 2.0) 0.0 (0.0, 2.0) 0.0 (0.0, 3.0)
FAST 22 (10, 35) 27 (16, 40) 24 (13, 35) 20 (9, 34) 19 (7, 30) 19 (6, 30)

PANSS 54 (40, 73) 75 (57, 91) 56 (42, 70) 50 (39, 64) 46 (37, 60) 44 (35, 62)
GEOPTE 25 (19, 33) 30 (22, 38) 26 (20, 34) 24 (19, 32) 22 (18, 30) 22 (18, 29)
FES 44 (39, 49) 43 (38, 48) 43 (38, 48) 44 (39, 49) 44 (39, 49) 44 (40, 50)
1 Median (IQR); n (%)

4.3.2 Follow up clinical variables univariate analysis
A first glimpse into the structure of the follow-upo variables returns some insights which are
further developed in this work. Firstly, most of the numerical variables tend to drop as the
time of the assessments progresses, excluding the ‘GAF’ scale. While most of the clinical and
functional scales used measure severity with a higher score, the ‘GAF’ index is reversed; the
lower the score the more severe impairment. Secondly, most measurements have left skewed
distribution, as their median is near the lower IQR score 4.5.

Further analysis of the follow-up variables reveal that most deviate from normal distribution.
While CGI, GAF and FES have a distribution that nearly fits a Gaussian, the MADRS, YMRS,
all PANSS scores, GEOPTE and WHODAS have a strongly left skewed distribution as depicted
in figure 4.2. Regardless of the visual fit, the Shapiro-Wilk test rejects de null Hypothesis of
normality A.

4.3.3 Variable correlations
Overall, while there are some variables that exhibit correlation, such as CGI and GAF or the
PANSS negative and general sub scales, there does not seem to exist a pattern of excessive
interrelationship. The highest degree of correlation is between the PANSS general and negative
sub scales, with a Spearman correlation index of 0.71, that on the one hand may indicate a
moderate to strong correlation, but on the other, dos not take into account the longitudinal
distribution of the variables (Figure 4.3).

4.3.4 Outcomes and longitudinal time variable analysis
A special attention has to be put on the outcome variables, and the longitudinal time variable.
On the first hand, the distribution of the primary outcome (FAST scale) and the secondary
outcomes (PANSS sub-scales) markedly differ from the Gaussian distribution, at all time points
where information was gathered. Moreover, as the time from study entry lengthens, all outcome
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Figure 4.3: Variable correlations

variables tends to skew to the left. This has a clinical explanations, as both FAST and PANSS
scores measure disease severity, and the general trend of PEP cases is towards the amelioration.
Nonetheless, the pattern by which the different outcomes evolve in time has visible differences.
While the PANSS(PS) shows a marked left skewness which translates as symptom remission,
both PANSS(NS) and PANSS(GS) show a slower deviation. Likewise, the FAST scale, tends
to skew to the left with time, but much slower than all of the PANSS sub scales. Besides, the
distribution of the last assessment times has a bivariate shape, which is not as conspicuous as
in the PANSS sub scales (Figure 4.4).

In what regards to the dependant time variable (TFO) from which the outcomes are measured,
its distribution has a long right tail. A square root transformation of the TFO reveals a much
better fit to a Gaussian distribution and will be preferred for further modelling (Figure 4.5).

4.3.5 Bivariate outcome analysis
The relation between the primary (FAST) and secondary (PANSS) outcomes is noticeable in
the bivariate scatter plot (4.6). While at the study entry (BA) the relation between FAST
and all PANSS sub scales is almost direct, the association weakens along time, specially in the
positive and, slightly less, in the general symptom scales. Although, the negative symptom
scale, seems to hold the correlation onward in time.

Furthermore, the analysis of the distribution along the time from onset (TFO) variable does
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Figure 4.6: Relation between primary (FAST) and secondary (PANSS) outcomes along assess-
ment from study entry

reveal the same trends seen on previous analysis. While both positive and general PANSS
scores tend to fall along time, the FAST scale and to negative PANSS scores, decline in a
slower fashion (Figures A).

4.4 Outliers
Outliers for both the primary and secondary outcomes were defined as measures greater than
1.5 times de inter quantile range (IQR) and are visually depicted in figure 4.7. Most of these
cases were kept in the study, as thorough analysis revealed that the outlier measurement was
coherent with other measures of illness severity. This was not the case for ID’s “1318” and
“208” at the “1yr” and “2yr” assessment respectively, which displayed an aberrant pattern
which was not coherent with the rest of the clinical measures of severity and were thus deemed
as probable errors, and accordingly, were discarded from further analysis.

On the other hand, TFO outliers where discarded as they where regarded as being at a clinically
different stage of illness from rest of the sample, along the whole length of the study.
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Figure 4.7: Boxplot of variables along the different assessment visits, with possible outliers.

4.5 Missing data analysis
Firstly, all data was analysed in regard of missing values. On the one hand, a drop-out cases
was characterised as a case for which all information was unavailable from a time point 𝑡 and
further time points. Moreover, if at a certain point there was only some missing values, or
there was available data from further time points, cases where not considered as drop-outs,
but as missing values cases. This contrast is important as imputation for the former was not
considered as advantageous, but for the later was.

Furthermore, early drop-out cases, defined as having less than 2 time repeated measurements
on all variables, were eliminated from the study.

Comparison between baseline variables (Age, Gender, BW, LEWIS, PAS, Diagnosis, Education,
IQ, DUP, subst_use, CGI, GAF, MADRS, YMRS, PANSS, GEOPTE, FAST, FES) between
drop-outs and kept cases was made, using the Wilcoxon rank-sum test to asses if there were
significant differences between the two groups.

There where 13 cases of patients with only 1 assessment along time, that were dropped from
the study. Table 4.6 shows that baselines demographic and baseline assessment data does not
differ siggnficantly between the kept cases and dropouts.

The missing data patterns were visually depicted for inspection for baseline and the follow-up
variables in the 5 time points. Furthermore, analysis regarding missing values in the main and
secondary outcome variables (FAST, PANSS PS, PANSS NS and PANSS GS) was made. The
relation between missing v/s not missing groups was examined using the Wilcoxon rank-sum
test to asses significant differences. In addition, the association between the time variable (TFO)
with the outcome primary and secondary variables was established visually and statistically
with the Wilcoxon rank-sum test.

Furthermore missing data analysis concerning the baseline data, reveals no identifiable pattern;
missing values seem to be distributed randomly and do not seem related (Figure 4.8)

In what respect the follow up information, missing values do display a an increase in their
number further from the study entry. This was expected as information quality in longitudinal
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Table 4.6: Descriptive table of basline variables of kept cases versus dropouts

Variable Kept, N = 317 Dropout, N = 13 p-value

Age 22.0 (19.0, 28.0) 25.0 (19.0, 30.0) 0.3
Gender 0.4

Men 214 (68%) 7 (54%)
Woman 103 (32%) 6 (46%)

BW 3,200 (3,000, 3,600) 3,300 (3,000, 3,750) 0.9

LEWIS 0.00 (0.00, 1.00) 0.00 (0.00, 1.00) 0.7
PAS 40 (26, 62) 51 (27, 72) 0.6
Diagnosis 0.3

Toxic psychosis 14 (4.4%) 1 (7.7%)
Schizophrenia disorders 260 (82%) 12 (92%)

Affective disorders 43 (14%) 0 (0%)
Education >0.9

Primary 75 (24%) 3 (25%)
Secondary 190 (60%) 8 (67%)
University studies 50 (16%) 1 (8.3%)

Other 1 (0.3%) 0 (0%)
IQ 95 (80, 100) 72 (71, 74) 0.060
DUP 61 (25, 138) 9 (6, 171) 0.3
subst_use 247 (78%) 10 (77%) >0.9
CGI 4.00 (4.00, 5.00) 4.00 (4.00, 5.50) >0.9

GAF 51 (35, 65) 56 (41, 70) 0.5
MADRS 12 (5, 18) 12 (8, 20) 0.6
YMRS 6 (0, 15) 8 (2, 12) 0.8
PANSS 75 (58, 90) 72 (56, 92) 0.8
GEOPTE 30 (22, 38) 28 (26, 38) 0.7

FAST 26 (16, 39) 27 (17, 46) 0.7
FES 43 (38, 48) 45 (42, 50) 0.2
1 Median (IQR); n (%)
2 Wilcoxon rank sum test; Fisher’s exact test
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Figure 4.8: Missing values map and missing values pattern of baseline variables

Table 4.7: Comparison of missing versus not missing FAST

Variable Missing, N = 290 Not missing, N = 1,295 p-value

CGI 4.00 (3.00, 5.00) 4.00 (3.00, 4.00) 0.6
GAF 60 (41, 75) 65 (55, 80) 0.026
PANSS 58 (38, 76) 54 (40, 73) 0.3
MADRS 6 (1, 12) 7 (2, 14) 0.3
YMRS 4.0 (0.0, 10.0) 0.0 (0.0, 5.0) <0.001

WHODAS 5.5 (3.0, 9.2) 7.0 (4.0, 10.0) 0.3
FES 44 (39, 48) 44 (39, 49) >0.9
1 Median (IQR)
2 Wilcoxon rank sum test

studies tends to decay along the length of the study 4.9).

4.5.0.1 Missing outcome variables and predictors

Missing data pattern from the primary outcome variable FAST reveals there is little difference
between cases with or without missing FAST values. While there is a significative difference in
the YMRS scale, further analysis proves that the difference is probable due to a high number of
YMRS missing values. Moreover, there is a significant difference in the GAF scale (60 (41, 75)
v/s 65 (55, 80), p=0.026) with the missing FAST group having a slightly lower GAF that the
non-missing. This could point to the fact that the patient with better functional outcomes
are the ones that have more missing information 4.7.

In the case of PANSS score the different in missing v/s not missing reveals there are differences
in both the CGI score (2.50 (1.75, 3.00) vs 4.00 (3.00, 4.00), p=0.015) and the GAF (81 (81,
85) vs 65 (55, 80), p=0.041). Both differences show that cases with missing PANSS scores seem
to have a milder symptoms 4.8, and on the other hand, better functional outcomes.
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Figure 4.9: Missing values map and missing values pattern of follow up assessments

Table 4.8: Comparison of missing versus not missing PANSS

Variable Missing, N = 235 Not missing, N = 1,350 p-value

CGI 2.50 (1.75, 3.00) 4.00 (3.00, 4.00) 0.015
GAF 81 (81, 85) 65 (55, 80) 0.041
FAST 18 (2, 38) 22 (10, 34) 0.8
MADRS 2 (1, 2) 7 (2, 14) 0.059
YMRS 1.5 (0.0, 4.2) 0.0 (0.0, 5.0) >0.9

WHODAS 3.0 (3.0, 3.0) 7.0 (4.0, 10.0) <0.001
FES 45 (44, 46) 44 (39, 49) 0.6
1 Median (IQR)
2 Wilcoxon rank sum test
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Table 4.9: FAST models with different link functions.

Model logLik AIC BIC

linear -5136.17 10284.34 10306.89
beta -4984.02 9984.03 10014.11
5q-splines -5009.65 10041.30 10082.65
7q-splines -4996.42 10018.83 10067.70
5e-splines -5024.58 10071.17 10112.52

5m-splines -4912.36 9846.73 9888.07

Table 4.10: FAST models with different number of latent classes.

G logLik AIC BIC %class1 %class2 %class3 %class4 %class5 %class6
LCMM

2 -4907.91 9843.81 9896.44 42.27 57.73
3 -4901.77 9837.54 9901.44 57.41 41.32 1.26
4 -4898.45 9836.89 9912.07 48.90 45.11 4.73 1.26

LCGA
2 -4986.91 9995.82 10037.17 46.37 53.63
3 -4952.37 9932.74 9985.36 44.79 12.30 42.90
4 -4937.72 9909.44 9973.34 37.22 35.65 19.24 7.89
5 -4916.39 9872.79 9947.96 32.49 3.47 23.66 33.44 6.94
6 -4908.79 9863.59 9950.04 31.86 3.47 25.24 4.10 29.02 6.31

4.6 Longitudinal models
4.6.1 Primary outcome
The parameters of the primary outcome, one class models built with their different functions
can be seen in table 4.9. The model with the better fit uses a I-spline link function, with 5
manually set splines. The link function takes into account the non-linearity of the PANSS sub
scores and allow the use of the longitudinal model algorithms. The QQ plots of both the “beta”
and the “5-splines” solution show an overall fit, with a slightly better adjustment of the later
(QQ plot are available in [Appendix A])

Both LCGA and LCMM many-class models where built using the optimal link function. Table
4.10 shows the different values for BIC and AIC. with regards to the LGCA model, the best
solution was achieved by a 4-class model. While a 5 class models showed the lowest BIC values,
some of the classes accounted for less than 5% of the cases. The LCMM best model was achieved
by a 2-class model, based on the BIC and AIC criteria.

Posterior classification showed just a moderate classification power for the LCGA 4-class model.
Two of the 4 classes classified less than 70% of cases with a probability of 0.7 or more. Moreover
these percentages dropped considerably when the posterior probability of classification was
raised 4.11. Nevertheless, the LCMM 2 class model achieved higher percentages for a posterior
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Table 4.11: Posterior probability of FAST class assignment

Class prob. class1 class2 class3 class4
LCGA

prob>0.7 81.36 60.18 68.85 76
prob>0.8 71.19 49.56 42.62 68
prob>0.9 49.15 23.01 27.87 52

LCMM
prob>0.7 77.61 82.51
prob>0.8 68.66 71.58
prob>0.9 48.51 55.19
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Figure 4.10: FAST classes predictions along time.

probability of 0.7 for both classes.

The LCGA posterior prediction shows a four class solution with stable trajectories. Two classes
show two levels of a maintained dysfunction ( “1. sustained poor function” and “2. poor
function recovery”) and two classes show two levels of recovery and good functional outcome (
“4. very good function” and “NA”).

On the other hand the trajectory prediction for the LCMM FAST model, shows that the two
classes have distinct trajectories; a first class called “B. fair function” that shows a moderate
recovery and a sustained dysfunction group, and a second class named “A. poor function” with
“58%” of cases, that shows an early recovery and overall good function (4.10).

Cross validation between the two models further reveal their complimentary nature. While the
LCMM model “A. poor function” class comprises both the “1. sustained poor function” and “2.
poor function recovery” LCGA classes, the “A. poor function” is mostly composed of LCGA
“3. good function recovery” and “3. good function recovery” classes 4.12.

Furthermore, the visual depiction of both solutions graphically depict their complimentary
status. In this case while the 2 class LCMM model seem both feasible and parsimonious, the
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Table 4.12: Cross validation between LCGA and LCMM FAST classification models

FAST(LCMM)

Classes A. poor function B. fair function

FAST(LCGA)
1. sustained poor function 61 (100%) 0 (0%)
2. poor function recovery 109 (96%) 4 (3.5%)
3. good function recovery 13 (11%) 105 (89%)
4. very good function 0 (0%) 25 (100%)
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Figure 4.11: FAST trajectories along time

4 class model further broadens the identification of trajectories with clinical relevance. This is
specially true for the “ ” class that is differentiated from the “A. poor function” group; it has
a distinct trajectory and it can be differentiated from the “2. poor function recovery” class
(Figure 4.11). Thus, both models were kept for further analysis as they were considered to be
complimentary.

4.6.2 Secondary outcomes
4.6.2.1 PANSS positive symptoms [PANSS(PS)]

For the positive symptoms from the PANSS scale the best fit was also achieved using a manually
set 5 spline solution 4.13, albeit it shows just a fair adjustment as seen on the qq-plot A.

In what concerns the many class solution, while the LCGA model finds 3 classes, the LCMM
model settles for 2 4.14. Posterior classification of both models shows that, even thou the
PANSS LCGA model has a better fit, as for the BIC criteria, the proportion of cases classified
with a probability above .8 drops markedly, while the LCMM model maintains acceptable
percentages at higher classifications probabilities 4.15.

Furthermore, the posterior trajectory prediction shows that the LCMM 2-class model has one
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Table 4.13: PANSS positive models with different link functions.

Model logLik AIC BIC

linear -4304.05 8620.10 8642.65
beta -3494.81 7005.62 7035.70
4q-splines -3403.53 6827.05 6864.64
5m-splines -3386.27 6794.54 6835.89

Table 4.14: PANSS(PS) models with different number of latent classes.

G logLik AIC BIC %class1 %class2 %class3 %class4
LCGA

2 -3390.23 6802.46 6843.81 50.79 49.21
3 -3372.31 6772.62 6825.24 45.43 12.93 41.64
4 -3364.11 6762.21 6826.11 31.55 33.75 23.97 10.73

LCMM
2 -3373.59 6775.18 6827.80 55.84 44.16
3 -3365.05 6764.10 6828.00 46.06 8.83 45.11

Table 4.15: Posterior probability of PANSS (PS) class assignment

Class prob. class1 class2 class3
LCGA

prob>0.7 86.11 78.05 72.73
prob>0.8 80.56 51.22 52.27
prob>0.9 72.22 29.27 35.61

LCMM
prob>0.7 82.49 82.86
prob>0.8 73.45 77.14
prob>0.9 61.58 62.86
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Figure 4.12: PANSS(PS) classes predictions along time form onset.
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Figure 4.13: PANSS positive symptom trajectories along time from onset

“B. fast PS remission” class with a rapid remission of symptoms versus a second class that
falls gradually (“3. few PS symptoms”). The 3 class LCGA model constructs two analogous
classes to the the LCMM model, though, this solutions identifies a third class, named “3. few
PS symptoms” that has a lower starting PANSS (SP) scores, with maintained low PS values
(Figure 4.12).

Moreover, the graphical depiction of the classes reveals that the “third” identified LCGA class
does not appear to have a distinct pattern and seems difficult to differentiate from the others.
Likewise, the clinical interpretation results cumbersome (Figure 4.13). Despite the fact that
the 3 class LCGA model has a better fit according to the BIC criteria, the 2 class LCMM model
has better probabilities capabilities. Moreover, the 2-class model is both clinically more feasible
and parsimonious, whereas the three class model does not appear to add relevant information.
Therefore, the 2-class model was the one used for further analysis.
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Table 4.16: PANSS negative models with different link functions.

Model logLik AIC BIC

linear -4283.62 8579.24 8601.79
beta -4044.62 8105.25 8135.32
5q-splines -4021.37 8064.74 8106.09
5m-splines -3933.63 7889.26 7930.61

Table 4.17: PANSS negative LCMM and LCGA many-class models.

G logLik AIC BIC %class1 %class2 %class3 %class4 %class5 %class6
LCGA

2 -4031.58 8085.16 8126.51 43.22 56.78
3 -3987.55 8003.09 8055.71 49.53 34.70 15.77
4 -3959.05 7952.10 8016.01 38.49 48.58 4.73 8.20
5 -3941.29 7922.58 7997.76 16.72 26.50 4.42 45.43 6.94
6 -3919.85 7885.71 7972.16 22.71 4.42 36.28 6.94 11.04 18.61

LCMM
2 -3929.26 7886.52 7939.14 65.62 34.38
3 -3926.92 7887.85 7951.75 55.21 27.13 17.67

4.6.2.2 PANSS negative symptoms [PANSS(NS)]

With regard on the negative symptoms and, just as is the case with the positive symptom scale,
the best one-class model fit is achieved by a 5 manual spline solution 4.16, QQ plots in figure
A.3, [Appendix A]).

In what regards the many class models, both the solutions given by the LCGA and LCMM
models, provide a moderately good fit. The best LCGA many-class solution, returns a 3 class
solution, as when more classes where identified, some comprise less than 5% of cases. On the
other hand the LCMM model provides a 2 class solution which has a better fit (a lower BIC),
is simpler and is clinically sensible 4.17.

Moreover, both models show a good posterior classification ability. Nonetheless, even thou
the LCGA model offers 3 classes, it has a better classification percentage at higher probability
thresholds.

Class trajectory prediction further expands the results from both PANSS(NS) models. The 2
class LCMM solutions provides two somehow divergent classes, one with persistent negative
symptoms and a second one with a symptom remission past the first year. On the other hand,
the LCGA model, gives a complimentary solution, with 3 distinct classes (Figure 4.14).

Cross validation between the two classification models further expand their relation. While
the LCGA “1. poor NS remission” class is just present in the LCMM “A. poor NS remission”
LCMM class, the “2. moderate NS remission” is mainly construed by the former, with a lesser
account of the “B. fast NS remission” class. In contrast, the “3. few NS symptoms” class is
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Table 4.18: Posterior probability of PANSS(NS) class assignment

Class prob. class1 class2 class3
LCGA

prob>0.7 82.80 92.73 74
prob>0.8 71.34 86.36 62
prob>0.9 54.78 74.55 52

LCMM
prob>0.7 80.29 71.56
prob>0.8 67.79 58.72
prob>0.9 49.04 37.61
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Figure 4.14: PANSS(NS) classes predictions along time.
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Table 4.19: Cross validation between LCMM and LCGA FAST models

PANSS(NS) LCMM

Classes A. poor NS remission B. fast NS remission Total

PANSS(ns)
1. poor NS remission 50 (100%) 0 (0%) 50 (100%)
2. moderate NS remission 134 (85%) 23 (15%) 157 (100%)
3. few NS symptoms 24 (22%) 86 (78%) 110 (100%)

Total 208 (66%) 109 (34%) 317 (100%)
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Figure 4.15: PANSS negative symptoms trajectories along time from onset

primary built with cases that fall into he LCMM “B. fast NS remission” class.

When the two model solutions are depicted in time, it can be seen the the 3 class LCGA model
offers a good differentiation between classes (Figure 4.15). In contrast from what is seen in the
PANSS(PS) models, the PANSS(NS) LCGA seems to provide a sensible and accurate depiction
that is both a statistically sound and clinically feasible. Therefore, the LCGA 3 class model
was kept and used for furether analysis.

4.6.2.3 PANSS general symptoms [PANSS(GS)]

In the same line as the previous one class analysis of the PANSS sub-scales, the best model is
offered by a 5 manual spline model 4.20, QQ plots in figure A.

The many class solution offered a very similar pattern as the one seen for the PANSS(NS) case.
Both the LCMM and LCGA serves a moderately good fit for a 2 and 3 class model respectively
4.21. The 3 class LCGA solution has a slightly lower BIC, and predicts trajectories that seem
feasible.

Moreover, the LCGA 3-class model displays a better posterior probability classification that
the one of the 2 class LCMM model, with higher percentage of classifications with a probability

52



Alejandro Keymer Gausset 4.6 Longitudinal models

Table 4.20: PANSS general models with different link functions.

Model logLik AIC BIC

linear -4953.88 9919.76 9942.31
beta -4629.45 9274.91 9304.98
5q-splines -4655.17 9332.33 9373.68
5m-splines -4600.09 9222.18 9263.53

Table 4.21: PANSS General symptoms many-class models.

G logLik AIC BIC %class1 %class2 %class3 %class4
LCGA

2 -4674.08 9370.16 9411.51 58.36 41.64
3 -4614.21 9256.43 9309.05 57.41 16.09 26.50
4 -4606.09 9246.18 9310.09 7.57 15.77 26.18 50.47

LCMM
2 -4621.74 9271.48 9324.11 45.11 54.89
3 -4621.74 9277.48 9341.38 0.00 56.15 43.85

threshold of 0.7 or more.

In a similar fashion, the posterior prediction of the class trajectories for the 2 class model
builds 2 divergent classes. A first class with a fast remission rate, and a second with a slower
progression to remission. In contrast, the 3 class model distinguishes 3 different trajectories. A
first class of maintained general symptoms, an intermediate class with moderate remission and
a third group of less general symptoms and a faster remission rate.

Table 4.22: Posterior probability of PANSS(GS) class assignment

Class prob. class1 class2 class3
LCGA

prob>0.7 91.76 90.20 86.90
prob>0.8 85.16 74.51 83.33
prob>0.9 68.13 64.71 71.43

LCMM
prob>0.7 62.94 74.71
prob>0.8 53.15 56.32
prob>0.9 38.46 40.23
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Figure 4.16: PANSS(GS) classes predictions along time.
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4.7 Primary and secondary class relationships
A first analysis of the relation between the primary and secondary classes reveals a close relation
of the two domains. The cross tabulation of the functional and symptomatological classes
affirms the relations between the two domains. As expected, there is a strong association
between the poorer symptomatic trajectories and a poor functional outcome for all of the
PANSS sub-scale, and specially in what regards the negative and general symptom scales. As
table 4.23 shows, the “1. sustained poor function” class is mainly composed of “slow remission”
symptons classes, especilly in what regards to the PANSS(NS) where up to 95% of the poor
functional outcome belong to the “1. poor NS remission” or “1. poor NS remission” PANSS(NS)
groups. In contrast, for the “4. very good function” class, both PANSS(PS) and PANSS(NS)
models classify more than 90% of the cases as “B. fast PS remission” or “3. few NS symptoms”

In what regards the relation between the PANSS sub-scores classes identified, there is a strong
relation between the negative and positive symptom classes, specially between the “3. few NS
symptoms” class and the “A. slow PS remission” group.

54



Alejandro Keymer Gausset 4.8 Baseline characterization of modelled classes

Table 4.23: Cross validation between PANSS and FAST models

FAST(LCGA)

1. sustained poor function 2. poor function recovery 3. good function recovery 4. very good function

PANSS(ps)
A. slow PS remission 47 (34%) 59 (42%) 33 (24%) 1 (0.7%)
B. fast PS remission 14 (7.9%) 54 (31%) 85 (48%) 24 (14%)

PANSS(ns)
1. poor NS remission 26 (52%) 18 (36%) 6 (12%) 0 (0%)

2. moderate NS remission 32 (20%) 78 (50%) 45 (29%) 2 (1.3%)
3. few NS symptoms 3 (2.7%) 17 (15%) 67 (61%) 23 (21%)

PANSS(gs)
1. slow GS remission 34 (40%) 40 (48%) 10 (12%) 0 (0%)
2. moderate GS remission 26 (14%) 71 (39%) 77 (42%) 8 (4.4%)

3. few GS symptoms 1 (2.0%) 2 (3.9%) 31 (61%) 17 (33%)
a Row-wise perecentages

Table 4.24: Cross validation between PANSS negative symptoms and positive subscores

PANSS(ps)

A. slow PS remission B. fast PS remission p-value

PANSS(ns) <0.001
1. poor NS remission 38 (76%) 12 (24%)
2. moderate NS remission 87 (55%) 70 (45%)
3. few NS symptoms 15 (14%) 95 (86%)

1 Pearson’s Chi-squared test
a Row-wise perecentages

The relation within PANSS sub scores can also seen within the negative and general classes,
mostly within the negative “1. poor NS remission” class and both the “1. slow GS remission”
“2. moderate GS remission” general symptoms classes

4.8 Baseline characterization of modelled classes
For the class characterization, the imputed data was used. Firstly, a visual check of the imputed
datasets was made, in order to establish deviation of the imputed data from the original data
dsitribution. Figure 4.17 shows a close fit of the imputed data to the original data.

Table 4.25: Cross validation between PANSS negative symptoms and general subscores

PANSS(gs)

1. slow GS remission 2. moderate GS remission 3. few GS symptoms p-value

PANSS(ns) <0.001
1. poor NS remission 31 (62%) 19 (38%) 0 (0%)
2. moderate NS remission 52 (33%) 101 (64%) 4 (2.5%)
3. few NS symptoms 1 (0.9%) 62 (56%) 47 (43%)

1 Pearson’s Chi-squared test
a Row-wise perecentages
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Figure 4.17: Density plot of original and imputed datasets

4.8.1 Primary outcome (FAST score)
The univariate analysis of the LCMM primary outcome classification acknowledges differences
in many of the baseline variables along the two classes. Firstly, in what regards to prior
adjustment, the “B. fair function” class has a lower level of education; the proportion of primary
education is higher in this group, with regards to Secondary and higher education number on
the “A. poor function” group (corr.p<0.001).

Furthermore, there is a mean 10 point difference between both classes IQ (90 (80, 100) v/s 100
(85, 105), corr.p=0.001.

The pre-morbid adjustment scale for the “B. fair function” also showed a significant difference,
with a mean score of 52 (39, 72) for the poor outcome group, and 33 (22, 48) for the “A. poor
function” class (corr.p=<0.001. All of WHODAS, GAF and the GEOPTE scale also displayed
significant differences between both groups.

Regarding symptom scales, all PANSS sub scales where higher in the poor outcome group. as
well as baseline CGI

Strikingly, the MADRS scale revealed a strong and significant difference between groups, with
a value as high as 15 (8, 21) for the “B. fair function” class, while the A. poor function was
much lower (7 (3, 13), corr.p<0.001). One other finding is that there is a significant difference
between the days of untreated psychosis (DUP) between the two FAST classes (91 (31, 175)
v/s 37 (13, 106), corr.p<0.001). Although there were more affective disorders as final diagnosis
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Table 4.26: Univariate differences of socio-demographic and baseline functional and symp-
tomatic assessment variabels within FAST LCMM classes

Variable A. poor function, N =
183 (58%)

B. fair function, N =
134 (42%)

pooled p-value pooled sd corrected p-value

Age 23.0 (20.0, 28.0) 22.0 (18.0, 28.0) 0.5 0.00 0.5
Woman 67 (37%) 36 (27%) 0.070 0.00 0.089
Education <0.001 0.00 <0.001

Primary 53 (29%) 22.213 (17%)
Secondary 116 (63%) 74.61 (56%)

University studies 14 (7.7%) 36.176 (27%)
Other 0 (0%) 1 (0.7%)

Diagnosis 0.12 0.01 0.14
Toxic psychosis 7 (3.8%) 7 (5.2%)
Schizophrenia disorders 157 (86%) 103 (77%)

Affective disorders 19 (10%) 24 (18%)
IQ 90 (80, 100) 100 (85, 105) <0.001 0.00 0.001
DUP 91 (31, 175) 37 (13, 106) <0.001 0.00 <0.001
Subst. abuse 142.801 (78%) 105 (78%) >0.9 0.04 >0.9
PAS 52 (39, 72) 33 (22, 48) <0.001 0.00 <0.001

FES 43 (36, 48) 44 (39, 48) 0.2 0.08 0.2
CGI 5.00 (4.00, 5.00) 4.00 (4.00, 5.00) 0.002 0.00 0.002
PANSS (PS) 20 (14, 25) 16 (9, 23) <0.001 0.00 <0.001
PANSS (NS) 21 (15, 26) 14 (9, 19) <0.001 0.00 <0.001
PANSS (GS) 41 (32, 48) 30 (23, 41) <0.001 0.00 <0.001

MADRS 15 (8, 21) 7 (3, 13) <0.001 0.00 <0.001
YMRS 8 (0, 16) 4 (0, 14) 0.031 0.00 0.042
GAF 50 (31, 60) 60 (45, 70) <0.001 0.00 <0.001
FAST 36 (26, 45) 16 (10, 22) <0.001 0.00 <0.001
WHODAS 10.0 (7.0, 14.0) 5.0 (3.0, 8.0) <0.001 0.00 <0.001

GEOPTE 33 (27, 42) 23 (19, 33) <0.001 0.00 <0.001
1 Median (IQR); n (%)
2 Wilcoxon signed-rank test; Fisher’s exact test; Pooled values from imputed datasets
3 False discovery rate correction for multiple testing

in the “A. poor function” group, the differences were not significant. There were no differences
between substance abuse, nor within sex or Age 4.26.

The univariate analysis using the LCGA FAST 4 classes maintain a similar pattern of differences
between the four groups 4.27.

Further pairwise analysis gives a comprehensive view. Firstly the differences in “Education” is
significant between the “4. very good function” and both the “2. poor function recovery” and
“1. sustained poor function” classes (p=0.0972 & p=0.374, respectively, Figure 4.18)

Whereas significant differences between IQ where only seen between the “4. very good function”
and “1. sustained poor function” classes, DUP was significantly lower for the “1. sustained poor
function” class, in contrast with the “3. good function recovery” and “4. very good function”
classes, and between “3. good function recovery” class and the “1. sustained poor function”
class. In what regards the PAS score, significant differences where seen in all class comparisons;
As classes expressed a worst functional outcome, the PAS score showed a poorer adjustment
(Figure 4.19).

In what regards the symptoms scales, the study entry PANSS positive symptom score indicate
significant higher figures for the “1. sustained poor function” class than both “3. good function
recovery” and “4. very good function” classes. Similarly to what is seen with the PAS score,
the PANSS negative symptom scale illustrate significant differences in all comparisons, with
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Table 4.27: Univariate differences of socio-demographic and baseline functional and symp-
tomatic assessment variabels within FAST LCGA classes

Variable 1. sustained poor
function, N = 61 (19%)

2. poor function
recovery, N = 113 (36%)

3. good function
recovery, N = 118 (37%)

4. very good function,
N = 25 (7.9%)

pooled p-value pooled sd corrected p-value

Age 23.0 (20.0, 30.0) 22.0 (19.0, 27.0) 21.5 (18.0, 28.0) 23.0 (20.0, 29.0) 0.2 0.00 0.2
Woman 22 (36%) 39 (35%) 31 (26%) 11 (44%) 0.2 0.01 0.2
Education 0.003 0.00 0.006

Primary 19 (31%) 30 (27%) 24.213 (21%) 2 (8.0%)
Secondary 38 (62%) 72 (64%) 66.61 (56%) 14 (56%)

University studies 4 (6.6%) 11 (9.7%) 26.176 (22%) 9 (36%)
Other 0 (0%) 0 (0%) 1 (0.8%) 0 (0%)

Diagnosis 0.2 0.01 0.2
Toxic psychosis 2 (3.3%) 4 (3.5%) 7 (5.9%) 1 (4.0%)
Schizophrenia disorders 56 (92%) 94 (83%) 90 (76%) 20 (80%)

Affective disorders 3 (4.9%) 15 (13%) 21 (18%) 4 (16%)
IQ 90 (80, 100) 90 (80, 100) 95 (80, 105) 100 (90, 105) 0.014 0.01 0.023
DUP 92 (42, 264) 78 (30, 150) 50 (15, 127) 27 (7, 75) <0.001 0.00 0.001
Subst. abuse 43 (70%) 94.801 (84%) 90 (76%) 20 (80%) 0.2 0.03 0.2
PAS 63 (45, 79) 48 (35, 66) 37 (25, 53) 19 (12, 36) <0.001 0.00 <0.001

FES 42 (34, 49) 43 (38, 48) 43 (38, 48) 46 (41, 48) 0.3 0.07 0.3
CGI 5.00 (4.00, 5.00) 5.00 (4.00, 5.00) 4.00 (4.00, 5.00) 4.00 (3.00, 5.00) 0.019 0.01 0.028
PANSS (PS) 21 (17, 26) 19 (14, 25) 17 (10, 24) 10 (7, 20) <0.001 0.00 0.001
PANSS (NS) 23 (18, 29) 20 (15, 25) 16 (10, 21) 8 (7, 16) <0.001 0.00 <0.001
PANSS (GS) 43 (37, 51) 40 (32, 48) 32 (24, 43) 25 (20, 32) <0.001 0.00 <0.001

MADRS 15 (9, 21) 15 (8, 23) 8 (4, 15) 2 (0, 8) <0.001 0.00 <0.001
YMRS 7 (0, 14) 9 (0, 17) 4 (0, 14) 0 (0, 14) 0.2 0.00 0.2
GAF 50 (35, 55) 50 (30, 60) 55 (41, 70) 70 (50, 85) <0.001 0.00 <0.001
FAST 40 (33, 50) 32 (23, 43) 17 (12, 26) 3 (0, 12) <0.001 0.00 <0.001
WHODAS 13.0 (8.0, 15.0) 10.0 (7.0, 12.0) 6.0 (4.0, 9.0) 2.0 (1.0, 5.0) <0.001 0.00 <0.001

GEOPTE 39 (30, 46) 32 (26, 39) 24 (20, 33) 20 (17, 28) <0.001 0.00 <0.001
1 Median (IQR); n (%)
2 Kruskal-Wallis test; Fisher’s exact test; Pooled values from imputed datasets
3 False discovery rate correction for multiple testing
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p = * < 0.05; ** < 0.01; *** < 1e−04; **** < 1e−05

Figure 4.18: Pairwise differences of Educational level within the 3 class LCGA FAST model.
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Figure 4.19: Pairwise differences between the 3 class LCGA FAST model, for the premorbid
IQ, the days of untreated psychosis (DUP) and the premorbid adjustment scale (PAS)
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Figure 4.20: Pairwise differences of the 5 class LCGA FAST model, of baseline PANSS positive
(PS), negative (NS), general (GS) , and the Montgomery–Åsberg Depression Rating Scale
(MADRS).

higher symptom in the more impaired functional classes.

For the functional and social cognition scales, significant differences where found between the
“4. very good function” class and all other classes for the FAST, WHODAS and GEOPTE.
Moreover the FAST and GeOPTE scores was significantly different between all classes, as well
as for the GEOPTE scale which only lacked a difference between the “4. very good function”
and “3. good function recovery” class.
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4.8.1.1 Secondary outcome (PANSS subscores)

In what regards to the PANSS(PS) classes, there where significant differences in the educational
level, with a marked lower educational level for the “1. slow PS remission” class. Distinctly,
there was a difference in what regard to diagnosticgroup, with a higher proportion of affective
disorders in the “2. fast remission” group. Further differences were seen in all of IQ, DUP,
the PAS score, the CGI at study entry, all three PANSS subscales, the MADRS and YMRS,
with significantly more impaired values for the “1. slow PS remission” class. Additional, all
functional scale were significantly different, with a better functional baseline assessment for the
“2. fast remission” class, with lower scores for the FAST, GAF, WHODAS and in the social
cognition scale (GEOPTE).

For the negative symptom PANSS score, the three classes displayed a similar pattern. For
instance, a lower educational level was associated to the more impaired negative symptom
classes. Additional, there was a slight but significant difference in the proportion of affective
disordered within the “2. moderate NS remission” and specially the “1. poor NS remission”
class Premorbid IQ levels showed a marked relation with the PANSS(NS) classes, as the “3. few
NS symptoms” presented 10 more points in than the “2. moderate NS remission” which had
an average of 90 (80, 100). Likewise, the value dropped 5 points for the “1. poor NS remission”
group. Similarly, the DUP augmented and the PAS score was lower the more impaired the
class. For all of the baseline PANSS sub-scores, the MADRS and CGI there was a declining
trend the better level of remission of the class. The same was true for All of the funcional and
social cognition score 4.29.

Pairwise analysis between the 3 PANSS(NS) classes for Educational level and Diagnostic group,
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Table 4.28: Univariate differences of socio-demographic and baseline functional and symp-
tomatic assessment variabels within PANSS positive symptoms LCMM classes

Variable A. slow PS remission,
N = 140 (44%)

B. fast PS remission,
N = 177 (56%)

pooled p-value pooled sd corrected p-value

Age 22.0 (19.0, 27.0) 23.0 (19.0, 29.0) 0.12 0.00 0.14
Woman 39 (28%) 64 (36%) 0.15 0.00 0.2
Education 0.001 0.00 0.003

Primary 44.213 (32%) 31 (18%)
Secondary 83.61 (60%) 107 (60%)

University studies 12.176 (8.7%) 38 (21%)
Other 0 (0%) 1 (0.6%)

Diagnosis 0.027 0.00 0.037
Toxic psychosis 7 (5.0%) 7 (4.0%)
Schizophrenia disorders 122 (87%) 138 (78%)

Affective disorders 11 (7.9%) 32 (18%)
IQ 90 (80, 100) 95 (85, 105) 0.003 0.00 0.004
DUP 123 (52, 243) 35 (14, 90) <0.001 0.00 <0.001
Subst. abuse 103.801 (74%) 144 (81%) 0.13 0.01 0.14
PAS 55 (38, 74) 37 (24, 52) <0.001 0.00 <0.001

FES 42 (37, 49) 44 (38, 48) 0.8 0.15 0.8
CGI 5.00 (4.00, 5.00) 4.00 (4.00, 5.00) 0.003 0.00 0.005
PANSS (PS) 21 (17, 26) 16 (9, 23) <0.001 0.00 <0.001
PANSS (NS) 21 (15, 25) 16 (9, 22) <0.001 0.00 <0.001
PANSS (GS) 41 (34, 50) 32 (25, 43) <0.001 0.00 <0.001

MADRS 14 (8, 21) 10 (4, 17) 0.001 0.00 0.003
YMRS 9 (1, 15) 4 (0, 14) 0.023 0.00 0.034
GAF 50 (40, 60) 55 (35, 70) 0.033 0.00 0.042
FAST 32 (18, 42) 22 (13, 35) <0.001 0.00 <0.001
WHODAS 10.0 (7.0, 13.0) 7.0 (4.0, 11.0) <0.001 0.00 <0.001

GEOPTE 33 (26, 42) 26 (20, 34) <0.001 0.00 <0.001
1 Median (IQR); n (%)
2 Wilcoxon signed-rank test; Fisher’s exact test; Pooled values from imputed datasets
3 False discovery rate correction for multiple testing
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Table 4.29: Univariate differences of socio-demographic and baseline functional and symp-
tomatic assessment variabels within PANSS negative symptoms LCGA classes

Variable 1. poor NS remission,
N = 50 (16%)

2. moderate NS
remission, N = 157

(50%)

3. few NS symptoms,
N = 110 (35%)

pooled p-value pooled sd corrected p-value

Age 22.5 (17.0, 28.0) 23.0 (19.0, 28.0) 22.0 (19.0, 28.0) >0.9 0.00 >0.9
Woman 14 (28%) 51 (32%) 38 (35%) 0.7 0.01 0.8
Education <0.001 0.00 0.001

Primary 17 (34%) 39.213 (25%) 19 (17%)
Secondary 30 (60%) 101.61 (65%) 59 (54%)

University studies 3 (6.0%) 16.176 (10%) 31 (28%)
Other 0 (0%) 0 (0%) 1 (0.9%)

Diagnosis 0.004 0.00 0.006
Toxic psychosis 1 (2.0%) 11 (7.0%) 2 (1.8%)
Schizophrenia disorders 47 (94%) 129 (82%) 84 (76%)

Affective disorders 2 (4.0%) 17 (11%) 24 (22%)
IQ 85 (75, 95) 90 (80, 100) 100 (85, 110) <0.001 0.00 <0.001
DUP 125 (34, 246) 92 (39, 180) 30 (9, 55) <0.001 0.00 <0.001
Subst. abuse 32.801 (66%) 127 (81%) 88 (80%) 0.077 0.02 0.10
PAS 69 (47, 87) 47 (34, 66) 33 (21, 44) <0.001 0.00 <0.001

FES 42 (38, 48) 43 (37, 48) 44 (38, 48) 0.6 0.15 0.6
CGI 5.00 (4.00, 5.00) 5.00 (4.00, 5.00) 4.00 (4.00, 5.00) 0.017 0.01 0.023
PANSS (PS) 20 (14, 26) 20 (14, 25) 15 (9, 23) 0.001 0.00 0.002
PANSS (NS) 29 (24, 34) 20 (16, 24) 11 (8, 16) <0.001 0.00 <0.001
PANSS (GS) 44 (37, 52) 39 (32, 47) 28 (22, 39) <0.001 0.00 <0.001

MADRS 16 (10, 23) 13 (8, 19) 7 (2, 14) <0.001 0.00 <0.001
YMRS 4 (0, 13) 7 (0, 15) 4 (0, 15) 0.4 0.00 0.5
GAF 41 (30, 55) 50 (35, 60) 60 (40, 70) <0.001 0.00 <0.001
FAST 39 (20, 48) 32 (19, 40) 17 (11, 28) <0.001 0.00 <0.001
WHODAS 12.0 (7.0, 15.0) 9.0 (6.0, 12.0) 6.0 (3.0, 10.0) <0.001 0.00 <0.001

GEOPTE 38 (30, 45) 32 (26, 39) 22 (19, 33) <0.001 0.00 <0.001
1 Median (IQR); n (%)
2 Kruskal-Wallis test; Fisher’s exact test; Pooled values from imputed datasets
3 False discovery rate correction for multiple testing

kept significant differences between the “3. few NS symptoms” class and both the “1. poor NS
remission” and “2. moderate NS remission” classes (Figure 4.21).

In what regards with the IQ and the PAS score, the differences expressed in table 4.29 where
significant for all class comparisons. However, for DUP differences were only significant between
the “3. few NS symptoms” class and the other two.

In line with previous results, the symptomatic baseline scores reflected de differences within
the negative symptoms classes. While both the negative and the general PANSS sub scores
maintained significant differences along all comparisons between the three classes, the positive
symptoms score differences were only significant between the “3. few NS symptoms” and the
other two. Likewise, the baseline MADRS score was significantly higher in both the “1. poor
NS remission” and “2. moderate NS remission” groups is contrast to the “3. few NS symptoms”
class.

Finally, the baseline assessment of the CGI was only significantly different between the “1. poor
NS remission” and “3. few NS symptoms” classes

The functional baseline profile also maintained significative differences within the class compar-
isons. Both the WHODAS and GEOPTE social cognition score displayed differences between
all classes, while both the GAF and FAST saw differences between the “3. few NS symptoms”
and both the “1. poor NS remission” and “2. moderate NS remission” groups.
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Figure 4.21: Pairwise differences between the 3 class LCGA PANSS negative symptoms model.
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Figure 4.22: Pairwise differences between the 3 class LCGA PANSS negative symptoms model,
for the premorbid IQ, the days of untreated psychosis (DUP) and the premorbid adjustment
scale (PAS).
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Figure 4.23: Pairwise differences between the 3 class LCGA PANSS negative symptoms model
for the baseline PANSS positive (PS), negative (NS) and general (GS) symptom scale, and the
Montgomery-Asberg Depression Rating scale (MADRS)
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Figure 4.24: Pairwise differences between the 3 class LCGA PANSS negative (NS) symptom
model for the baseline Global Assessment of Function (GAF), the Functioning Assessment
Short Test (FAST), the WHO Disability Assessment Schedule (WHODAS) and the GEOPTE
Scale of social cognition for psychosis.
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Table 4.30: Univariate differences of socio-demographic and baseline functional and symp-
tomatic assessment variabels within PANSS general symptoms LCGA classes

Variable 1. slow GS remission,
N = 84 (26%)

2. moderate GS
remission, N = 182

(57%)

3. few GS symptoms,
N = 51 (16%)

pooled p-value pooled sd corrected p-value

Age 23.0 (20.0, 27.0) 22.0 (19.0, 28.0) 22.0 (19.0, 28.0) >0.9 0.00 >0.9
Woman 21 (25%) 62 (34%) 20 (39%) 0.2 0.01 0.2
Education 0.027 0.00 0.039

Primary 23 (27%) 42.213 (23%) 10 (20%)
Secondary 53 (63%) 112.61 (62%) 25 (49%)

University studies 8 (9.5%) 27.176 (15%) 15 (29%)
Other 0 (0%) 0 (0%) 1 (2.0%)

Diagnosis 0.3 0.01 0.3
Toxic psychosis 4 (4.8%) 8 (4.4%) 2 (3.9%)
Schizophrenia disorders 71 (85%) 152 (84%) 37 (73%)

Affective disorders 9 (11%) 22 (12%) 12 (24%)
IQ 90 (75, 100) 95 (80, 105) 100 (85, 110) <0.001 0.00 0.001
DUP 128 (36, 247) 61 (26, 136) 27 (5, 45) <0.001 0.00 <0.001
Subst. abuse 62 (74%) 147.801 (81%) 38 (75%) 0.3 0.02 0.3
PAS 58 (40, 80) 42 (30, 60) 30 (17, 43) <0.001 0.00 <0.001

FES 43 (37, 49) 43 (38, 47) 46 (41, 50) 0.032 0.02 0.044
CGI 5.00 (4.00, 5.00) 5.00 (4.00, 5.00) 4.00 (3.00, 5.00) 0.008 0.00 0.014
PANSS (PS) 22 (17, 26) 18 (12, 24) 11 (7, 22) <0.001 0.00 <0.001
PANSS (NS) 23 (19, 27) 18 (12, 24) 9 (7, 17) <0.001 0.00 <0.001
PANSS (GS) 47 (41, 53) 35 (28, 43) 24 (20, 31) <0.001 0.00 <0.001

MADRS 18 (12, 25) 10 (5, 17) 5 (1, 8) <0.001 0.00 <0.001
YMRS 8 (1, 17) 6 (0, 14) 2 (0, 14) 0.080 0.00 0.10
GAF 50 (40, 60) 50 (31, 61) 60 (40, 80) 0.013 0.00 0.020
FAST 34 (18, 43) 27 (17, 38) 16 (7, 23) <0.001 0.00 <0.001
WHODAS 11.0 (7.8, 15.0) 8.0 (6.0, 12.0) 5.0 (2.0, 9.0) <0.001 0.00 <0.001

GEOPTE 35 (27, 45) 30 (23, 37) 20 (17, 28) <0.001 0.00 <0.001
1 Median (IQR); n (%)
2 Kruskal-Wallis test; Fisher’s exact test; Pooled values from imputed datasets
3 False discovery rate correction for multiple testing

The PANSS general symptom scores classes presented a similar pattern of differences as ob-
served for the other two PANSS sub-scores. Firstly differences in Educational level were also
seen with a lower level for the more impaired classes, although the differences were less evident
that the ones seen in th FAST and both PANSS(PS) and PANSS(NS) scores. Nonetheless there
were no significant differences between the diagnosis categories within classes.

Moreover, significant differences within classes were seen in the IQ, the DUP and in the premor-
bid adjusted scale. In what regards baseline symptom scales, there were significant differences
in all of PANSS sub-scores, the CGI and the MADRS. Additionally, the baseline functional
profile was different between the PANSS(GS) classes 4.30.

Pairwise comparison only were significant between the “3. few GS symptoms” and the “1. slow
GS remission” class (Figure 4.25).

Further difference for IQ, the DUP and the PAS score were significant for all class comparison
within the PANSS(GS) classes (Figure 4.26)

In what regards to the baseline symptom scales, a significant difference between all clases
was seen for both the PANSS sub scores, and the MADRS, while for the CGI, a signfficative
difference was seen only between the “3. few GS symptoms” and both “2. moderate GS
remission” and “1. slow GS remission” classes

Finally, significant distinctions within the groups were also kept for the FAST, and WHODAS
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Figure 4.25: Pairwise differences in Educational level within the 3 class LCGA PANSS general
symptoms model.
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Figure 4.26: Pairwise differences between the 3 class LCGA PANSS general (GS) model, for
IQ Premorbid adjustment scale (PAS) and Days of untreated psychosis (DUP).
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Figure 4.27: Pairwise differences between the 3 class LCGA PANSS general symptoms model
for the baseline PANSS positive (PS), negative (NS) and general (GS) symptom scale, and the
Montgomery-Asberg Depression Rating scale (MADRS)
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Figure 4.28: Pairwise differences between the 3 class LCGA PANSS general symptoms model
for the baseline Global Assessment of Function (GAF), the Functioning Assessment Short Test
(FAST), the WHO Disability Assessment Schedule (WHODAS) and the GEOPTE Scale of
social cognition for psychosis.

functional scale. Likewise the GEOPTE social cognition score was also different for all thee
classes. The GAF baseline score showed differences between the “3. few GS symptoms” and
both “1. slow GS remission” and “2. moderate GS remission”groups.
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Chapter 5

Discussion

A first point addressed by this work concerns the benefit that medical sciences can find by using
methodologies that portray an accurate characterization of the longitudinal patterns of disease
progression. This kind of profiling can provide means to early detect and personalize the medical
approach and manage resources with an evidence based attitude. The longitudinal modelling
accounted on this work, whereas by latent mixed models (LCMM), or growth analysis (LCGA),
supports a valid method to model the trajectories of FEP, with a focus on both functional
and symptomatic outcomes. Furthermore, longitudinal modelling is capable of appropriate
discrimination of heterogeneous trajectories in an unsupervised fashion. Besides, a further
characterization of the predicted classes in what regard to socio demographic and other baseline
variables provides a means to further differentiate and describe classes, though it needs to be
kept in mind that this type of modelling can account only for associative relations and not a
causal link.

Secondly, with regards on the missing data problem, there was not an straightforward solu-
tions found. On the one hand, missing data in health science is pervasive, and moreover, in
longitudinal studies frequently suffer from more loss of data along time. Currently, imputation
of missing data is an accepted strategy specially when missing data follows a MCAR or MAR
pattern, as it can contribute to raise the power of the study and eventually can help surpass
possible selection bias. In addition, multiple imputation methods are regarded as an adequate
paradigm for missing data as it provide a means to measure the uncertainty added by the
imputed data.

Nevertheless, an early problem encountered in the development of this work, was that there
was no straightforward answer found with regard of the use of imputed data with longitudinal
modelling. While there is current work in some specific imputation mechanism, multiple im-
putation was found to be discourage, as one of its main premises is that the population from
where the imputed data needs to be calculated is homogeneous. On the contrary, multi class
longitudinal modelling assumes just the contrary; that the population is heterogeneous with
regard to their trajectories.
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The strategy followed was in line with some other similar works (Colder et al., 2001). Firstly,
the longitudinal model can properly deal with incomplete cases, so all available information was
used to build the longitudinal models. Secondly, missing data was imputed for the univariate
analysis, using the classifications found in the longitudinal modelling to account for the different
populations. In any case, the univariate analysis was focused on the socio-demographic and
the sudy entry data, which as seen in the EDA (chapter 4.5), had few missing data.

This study was able to describe and characteristic different distinct functional and symptomatic
trajectories for FEP in a 2 year follow-up period. Moreover, both primary and secondary
outcome trajectories provided clinically feasible and comprehensive progressions. Furthermore,
cross tabulation of functional and symptomatic classes showed a strong relation within the
symptomatic and functional domains, specially with regard on the relation between sustained
negative psychotic symptoms and a poor functional outcome. Moreover, baseline analysis of
the predicted functional and symptomatic outcomes indicated a strong relations between socio
demographic and premorbid variables within classes, as well as with distinct severity of both
depressive and psychotic symptoms at baseline assessment. Although this study can not prove
a causal relation, the strong association rises the need for further analysis to properly establish
causality.

5.1 Longitudinal models
In what regard to the longitudinal modelling methodology, the link function used by the latent
modelling was able to properly fit both longitudinal outcomes. For both primary and secondary
measures, a custom 5 I-spline link function was used. This approach allowed the extension of
longitudinal modelling to account for left skewed non-Gaussian outcomes, as was the case for
both outcomes (Chapter (4.3.4)

Secondly, the selection of the best number of classes for the many-class models was achieved
by following several strategies. On the one hand, in what regards the FAST scale, the selection
of the best model for the LCMM approach was straightforward as the 2 class model had the
lowest BIC, was clinically feasible, and provided a good post probability differentiation between
classes. On the other hand, for the LCGA approach models with classes that accounted for less
than 5% were discarded, resulting in a 4 class model, which was both clinically relevant and
provided good post probabilities of class membership. Moreover, this 4 functional classes are
coherent with similar studies (Abdin et al., 2017; Levine et al., 2011).

The FAST modelling proves the complimentary nature of both LCMM and LCGA modelling.
While the LCMM resulted in less classes, with a more parsimonious and simple model, the
LCGA provides a more detailed classification which in this case produced clinical relevant
classes. While the 2 class LCMM accounts for a bigger “A. poor function” class, the LCGA
further differentiates it into two groups, which in addition, have distinct baseline characteristics.

Nevertheless, a 2 class model provides advantages, specially from a statistical point of view, as
its simplicity support straightforward extension capability.
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For the secondary outcomes notwithstanding, the complementation of both modelling strate-
gies was less apparent. For the PANSS (PS) a 3 class LCGA model was selected using a
similar approach as de one described earlier. Although the model had a low BIC, the posterior
probability classification was less accurate. When depicted in the “spaghetti” plot, the third
class identified was poorly differentiated from the other two, and was deemed irrelevant from
a clinical stand (Figure 4.13).

On the other hand, for PANSS(NS) and PANSS(GS) both LCMM and LCAG provided 2 and
3 class models with good posterior classification profiles, and clinical feasibility. While the 2
class model provides a more simple and parsimonious solution, the 3 class model had a lower
BIC and better differentiated the trajectories along time.

This two scenarios endorse the importance of a thorough domain knowledge. Thou the statis-
tical criteria for model selection has straightforward value, the underlying domain knowledge
should drive the analysis and model selection.

5.2 Clinical relevance
From a clinical standpoint the results of the study show that overall, most FEP have a slow
functional recovery along time. Furthermore, the result suggest heterogeneous outcomes that
can be associated with baseline characteristics. In line with other works, a poor functional
outcome was strongly related with the premorbid adjustment, in this cases, measured with the
PAS score (Jordan et al., 2017; A. Malla, 2005). Furthermore, even thou the study was not
able to find causation, the relation depicted was a direct one, meaning that the more impaired
the premorbid functioning, the association with poor functional outcomes was stronger.

Functional outcome was also associated with a prolonged DUP (Craig et al., 2000; Valmaggia
et al., 2015), as well as for the IQ, thou less strongly. In what regards to the clinical onset
and he functional outcome, this study points to a relation between the severity of symptoms
at onset and a poor functional outcome, as poorer functional classes where more associated
to a more severe clinical picture specially in what regards the PANSS(NS), PANSS(GS) and
the MADRS. This findings are coherent with the prevalent evidence in regard to the relation
between persistence of negative symptoms and a poor functional outcome. (Jordan et al., 2017;
Tamminga, Buchanan, & Gold, 1998). Moreover the baseline functional assessment, in this case
determined with the FAST scale, the WHODAS, and the GAF, exhibited a clear relation with
the functional outcomes.

A first interpretation of this finding could relate to a rather deterministic assumption, were
functionality is “fixed” at illness onset, which is counter-intuitive and not what is usually seen
on a clinical setting. On the other hand, it is probably related to one of the main limitation of
the study which has to do with the established fact that functional recovery varies in a time
frame longer the the one measured in this study. Nevertheless, the findings regarding functional
outcome support the neurodevelopmental hypothesis of schizophrenia (McGrath, Féron, Burne,
Mackay-Sim, & Eyles, 2003) which states that clinical symptoms onset of the PEP is preceded
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by a process of brain development disruption. This disturbances could be expressed earlier as
a poor adjustment.

Furthermore there is cumulative evidence that tend to support the relationship between symp-
tom remission and functional recovery (Dazzan et al., 2019). Within this matter, on the first
hand the symptom trajectory found for all of positive, negative and general symptoms are
coherent with concurrent evidence.

For the positive symptoms slightly more than half of the cases belonged to the “B. fast PS
remission” class, which in turn, were classified as “3. good function recovery” or “4. very good
function” in 62% of the cases. While being just associative in nature, this fact support the
ideas that an early remission is related to better functional outcome.

This is highly more noticeable towards the relation between negative symptoms and a poor
functional outcome, where the “1. poor NS remission” group was associated to both the “2.
poor function recovery” and “1. sustained poor function” functional outcome classes on 88%
percent of the named negative symptoms group. Likewise, in what regards to the general symp-
toms, which gathers symptoms from different domains such as anxiety or depressive syndromes,
the association between a slow symptoms remission with a poor functional outcome was also
unmistakeable.

In what regards to PANSS symptoms trajectories, the findings are also in line with other works.
Positive symptoms, in contrast with both negative an general symptoms, tend to remit fast in
time in almost half of the cases. Negative and general symptoms had more “fixed” trajectory
, probably with a slower rate of change. Nevertheless, in what regards the negative symptoms
trajectories there was an apparent relation, firstly in what regards to a poor pre-onset adjusted
by means of both the PAS and the IQ, which conformed a relation with the rate of remission.
Secondly a more sever onset, specially in what regards negative, general an depressive symptoms
was associated to a poor remission rate.

The causality behind the relation between symptom remission and functional outcome is ought
to be complex in nature and beyond the aims of this study. Nevertheless, there seems to
be a clear association between a more a sever developmental disruption with further more
difficulties in adjustment, more educational challenges which can result in a lower education
level. Furthermore, there is evidence that suggest that symptoms that are onsets that are
gradual, with more negative symptoms are associated with longer DUP, a fact which has also
been associated with worst functional outcomes. Moreover, a lower educational levels is often
associate to a lower social status which itself can be related to a worst access to mental health
services further prolonging the DUP. this last point, is fundamentally important as it is one of
the few variables which can be addressed and modified. In this regard, early identification of
“poor recovery profiles” could make it possible to improve their functional outcomes.

Finally, one of the pervasive associations in both functional and symptoms trajectory classi-
fication was related to a baseline functional assessment. The functional assessment that in
this study comprised the FAST scale, the WHODAS scale, the GAF and the GEOPTE social
cognition scale, maintained a clear association and difference within both functional and symp-
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tomatic outcomes. This instrument s are pragmatic in nature; they utilization requires less
training than clinical symptom scales. they could provide a good measure of assessment are
associated to the functional outcome, so they may prove some means stratify and operationalize
early detection and personalized interventions.

5.3 Study limitations
As introduced earlier, the main limitation of the study relates to the short follow up period
of the study. A difficult obstacle in what regards functional outcome studies of FEP relates
to the extensive time frame that the different functional trajectories seem to occupy. One the
hand hand, there are studies that depict that an early remission is related to a long-term better
functional recovery, a model detailed trajectory modelling can only be achieved with long term
follow.up studies.

In what regards the missing information, although we were able to analysis the patterns and
mechanism of missing data, the missing information compromised the findings by reducing the
sample and potentially introducing selection bias, as the missingness could be associated in an
indirect and complex way to our studied variables. On the other hand, algorithms for imputing
data for methodologies which imply an heterogeneous populations are being developed, but we
were not able to use them in this study, as they are still in an early period of development.

In what regards to the findings, these methodologies can only account to association but not
causation. Even thou it is suggested that is an timely relation between described socio de-
mographic and clinical variables with a certain type of progression, a causal link can not be
established. Nevertheless, the description of these relationships is a necessary step for the
proper evidencing the causal link.
Finally, comparable to other modelling studies, longitudinal modelling is sensible to the sample
size. All thought the sample size in this study is not small, dropouts, a missing data along time
can be problematic. A larger sample size and a more rigurous treatmetn of the follow up data
would be advantageous for both statistical power and more solid clinical description.
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Table A.1: Shapiro-Wilk normality test for baseline continuous variables

name statistic p.value method

ID 0.92 <0.001*** Shapiro-Wilk normality test
Age 0.97 <0.001*** Shapiro-Wilk normality test
IQ 0.98 0.0028** Shapiro-Wilk normality test
DUP 0.78 <0.001*** Shapiro-Wilk normality test
LEWIS 0.59 <0.001*** Shapiro-Wilk normality test
BW 0.96 <0.001*** Shapiro-Wilk normality test
PAS 0.97 <0.001*** Shapiro-Wilk normality test

Table A.2: Shapiro-Wilk normality test for baseline continuous variables

name statistic p.value method

CGI 0.94 <0.001*** Shapiro-Wilk normality test
GAF 0.97 <0.001*** Shapiro-Wilk normality test
MADRS 0.89 <0.001*** Shapiro-Wilk normality test
TFO 0.94 <0.001*** Shapiro-Wilk normality test
WHODAS 0.95 <0.001*** Shapiro-Wilk normality test
YMRS 0.64 <0.001*** Shapiro-Wilk normality test
FAST 0.97 <0.001*** Shapiro-Wilk normality test
PANSS 0.93 <0.001*** Shapiro-Wilk normality test
GEOPTE 0.92 <0.001*** Shapiro-Wilk normality test
FES 0.98 <0.001*** Shapiro-Wilk normality test
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Figure A.1: QQ plots of FAST outcome
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Figure A.2: QQ plots of PANSS(PS) outcome
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Figure A.3: QQ plots of PANSS(NS) outcome
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Figure A.4: QQ plots of PANSS(GS) outcome
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