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Abstract
La estimación del tamaño mı́nimo de la muestra es una técnica útil para producir
experimentos rentables y, al mismo tiempo, significativos. Sin embargo, esta es-
timación no es sencilla en machine learning, donde tenemos una etapa de entre-
namiento y otra de prueba. La primera es el objeto de este estudio, ya que es-
tablece una relación entre los datos predictores y los datos predichos. En este
proyecto abordamos el problema del machine learning supervisado para la clasi-
ficación, considerando varias técnicas de aprendizaje automático (kNN, regresión
loǵıstica, naive Bayes y random forest), mediante el desarrollo de un algoritmo,
basado en metodoloǵıas ya existentes, que obtiene una curva de aprendizaje en la
que el tamaño del conjunto de entrenamiento es la variable independiente y la vari-
able dependiente es una métrica: la precisión o la κ de Cohen, obtenida en el paso
de test. El algoritmo ajusta una ley de potencia inversa a la curva de aprendizaje
y resulta eficaz para estimar el tamaño mı́nimo de la muestra en el paso de entre-
namiento para algunos conjuntos de datos y algoritmos de aprendizaje automático.
Sin embargo, cuando aumentamos el tamaño muestral en el paso de entrenamiento
vemos como la curva de aprendizaje tiende a desviarse de la fórmula de potencia
inversa inicial, que aumenta sin parar. Proponemos otras direcciones posibles para
mejorar la disminución de la precisión y la κ de Cohen a medida que el tamaño
de la muestra supera un umbral. Sin embargo, está claro que existe un ”punto
óptimo” tras el cual aumentar el tamaño de la muestra de entrenamiento no mejora
las predicciones.
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Abstract
Minimum sample size estimation is a useful technique to produce cost-effective and,
at the same time, significant experiments. However, this estimation is not straight-
forward in machine learning, where we have a training and a testing step. The
former is the object of this study, as it establishes a relationship between the pre-
dictor and predicted data. In this project we tackle the supervised machine learning
problem for classification, considering several machine learning techniques (kNN,
logistic regression, naive Bayes, and random forest), by developing an algorithm,
based on already-existing methodologies, that obtains a learning curve where the
training set size is the independent variable and the dependent variable is a metric:
either accuracy or Cohen’s κ, obtained in the testing step. The algorithm fits an
inverse power law to the learning curve and proves effective in estimating minimum
sample size in the training step for some datasets and machine learning algorithms.
However, when we increase the number of different training sizes we see the ten-
dency of the learning curve to deviate from the ever-increasing initial inverse power
formula. We propose other possible directions to improve the decrease in accuracy
and Cohen’s κ as the sample size surpasses a threshold. However, it is clear that
there is a ”sweet spot” where increasing the training sample size does not improve
predictions further.
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Chapter 1

Summary

Machine learning has recently experienced a surge in use [1]. Recent advancements in compu-
tational power have made these techniques more affordable for researchers. However, machine
learning implementation is usually treated as a black-box problem, where little is known about
its inner work. This fact makes it necessary to develop tools to make a useful set of techniques
such as machine learning easier to use for researchers from different backgrounds.

In this project, we tackle the problem of minimum sample size estimation in machine learn-
ing. In general, minimum sample size estimation is useful to produce experiments that are both
conclusive and economically and time-efficient. However, the equivalent problem in machine
learning has not been fully developed, even though a set of techniques have been implemented
in order to study this problem [2] the question remains open.

We choose to follow the methodology of [3], where a learning curve is obtained that plots the
accuracy of a machine learning classification problem (kNN, logistic regression, naive Bayes, and
random forest) against the corresponding training set size. We extend this learning technique
to a more general metric, Cohen’s κ, which is useful in multiple class classification problems.
This learning curve is fitted with a formula that gives the shape of an inverse power law curve.
Once we have estimated the formula through regression, we can calculate the minimum sample
size given a threshold metric.

Said formula is shown to be useful to estimate the minimum sample size in some machine
learning algorithms and datasets. On the other hand, it fails to adjust to the metric and sample
size spread tends to decrease as the sample size reaches a certain, large value. We propose other
formulas that may be useful to improve the generalization of fitting our data, such as high-order
polynomials.

Even though our fitting curve fails to predict the tendency at large training set sizes, it is
clear that there is an optimum point, or ”sweet spot”. This means that after reaching a specific
training set size, using larger sizes in the training step either does not improve the performance
of the algorithm or even tends to decrease its performance, mainly due to overfitting.
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Our work sets a precedent in the field by compiling our techniques into an R package that
is open-source and publicly available as a GitHub repository. This package, which we name
MinSizeML may be easily installed and has mainly one function, including its documentation,
intended to determine the minimum sample size in classification problems for machine learning.
All in all, researchers may use it to design their own experiments, or even improve on our codes
and follow the ideas given for future directions of this project.
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Chapter 2

Introduction

2.1 Thesis context and justification

When designing an experiment, one of the main hurdles consists of determining the minimum
possible sample size [4]. If there are too many subjects in a medical study or too many se-
quences in an ’omics’ study, then data acquisition, as well as the subsequent analysis, becomes
time-consuming and expensive. On the other hand, a study that does not take into account a
large-enough sample will lack significance—i.e., results from such a study will not be conclusive.

The field of minimum sample size determination is extensive and well-known: the prob-
lem is presented as a hypothesis test (usually Mann-Whitney for a non-parametric study, or
Student’s t test for a parametric study) where type I and II errors are pre-specified, and the
optimal size n is determined [4, 5, 6]. Even so, its extension into machine learning (ML) is not
straightforward [7].

The main objective of an ML algorithm is to predict a variable (Y ) that may be continuous
or categorical, given a single or a set of predictor variables (X) [1]. Given these sets of data,
the ML algorithm returns a function f(X) to which one passes new predictor data X to infer
unknown instances of the variable Y—all of this, without adding any extra information about Y .

There are plenty of different ML algorithms used in either continuous or categorical predic-
tions [1]. However, given their inherent differences, it is not possible to tackle the minimum
sample size problem in ML with a one-size-fits-all approach—i.e., there are some metrics like
accuracy and Cohen’s κ [8], but these very within algorithms, so each algorithm needs to be in-
dependently assessed. It is important to address this issue, since ML algorithms are, in general,
computationally expensive. Hence, determining the minimum sample size would contribute to
saving money, time, and carbon emissions [9].
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2.2 Thesis objectives

The main objectives of this project are:

1. Implement an algorithm to study the minimum sample size—given a set of parameters—
required for different learning algorithms in a classification problem.

2. Build an R package that enables systematic calculation of minimum sample size in differ-
ent machine learning algorithms.

In order to achieve our goals we have considered the following specific objectives:

1. Compile state-of-the-art techniques to estimate minimum sample size in ML.

2. Select which ML algorithms are feasible to study during this thesis.

3. Apply different assessment metrics for sample size estimation, namely: ROC curve, ROC
AUC, and learning curve.

4. Make the resulting R package publicly available.

The first three specific objectives are related to the first main objective, since the former
are basically the generalized steps needed to achieve the latter. Meanwhile, the fourth specific
objective is a further step once the second main objective is achieved.

2.3 Approach and methodology

The algorithm which we are based on [3] is intended to reduce the computational expense of
supervised ML algorithms for classification by fitting a power-law curve, i.e. the relation of
predictive power and sample size. This fitting allows a considerable reduction in the number
of times one needs to run the ML algorithm at different sample sizes. Importantly, we may
save time on very large sample sizes since the predictive power does not improve much after a
certain sample size threshold [3].

Another acceptable approach may be to generate artificial cohorts of data based on a given
dataset [10], then divide it into a development set and a validation set. The former is used for
predictions, while the latter is intended as a reference for the comparison of predictions. The
problem with this design is the high computational expense and its inherent complexity. Due
to the limited time available, we choose to undertake the approach described in the previous
paragraph.

12



Guillermo Prol Castelo 2.4 Thesis planning

2.4 Thesis planning

Here we describe the different tasks and steps taken to complete this thesis. We provide
a calendar in the form of a Gantt chart (figure 2.1) and, in table 2.1, we break down the
chronological details of the main objectives, as well as their degree of completion.

Objective Begin date End date
Allocated hours
(from PEC 1)

Hours spent Completion %

Algorithm
implementation

08/03 25/03 60 60 100

R package 12/04 25/04 44 33 100
Shiny 26/04 — 22 0 0
Compile
techniques

23/02 01/03 20 20 100

Select ML
algorithms

21/03 01/04 20 20 100

Metrics 29/03 06/04 20 20 100
Improvements 26/04 09/05 — 33 100

Table 2.1: Objectives and their chronology.

2.4.1 Main tasks

1. Literature research. Divided up during the first two PECs, it is necessary to get acknowl-
edged with the state-of-the-art methods for minimum sample size estimation, both in
general and, specifically, in ML.

2. Develop an algorithm for the analysis to undertake. This shall be based on [3].

3. Select which algorithms fit our study, namely, supervised ML algorithms used for binary
classification. These algorithms will be examined through the algorithm described in the
previous bullet-point.

4. Compare the performance of different algorithms through different metrics.

13
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2.4.2 Calendar

The previous tasks, as well as other more general tasks (writing reports, thesis, etc.), have been
planned for and details are shown in the attached Gantt chart (page 4). Following, there is an
estimation of the number of hours for each PEC and main tasks, at around 22 h per week and
taking into account tasks overlapping in time:

• PEC 0: 20 h

– Discussion with supervisor: 2 h

– Main literature compilation: 10 h

– Write report: 8 h

• PEC 1: 32 h

– In-depth literature search: 20 h

– Review objectives with supervisor: 2 h

– Write report: 10 h

• PEC 2: 110 h

– Develop code: 57 h

– Select ML algorithms: 20 h

– Compare algorithms with metrics: 20 h

– Write report: 13 h

• PEC 3: 77 h

– Code improvements: 11 h

– Compile codes into R package: 33 h

– Add other methods of data fitting: 22 h

– Write report: 11 h

• PEC 4 (write thesis): 90 h

• PEC 5a (video presentation): 9 h

• PEC 5b (rehearse public presentation): 9 h

14
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2.4.3 Milestones

1. By the end of PEC 2, the main structure of our pipeline should be finished.

2. By the end of PEC 3, all of our codes should be compiled in a package that may be
distributed.

2.4.4 Risk analysis

• We should take into account that unexpected issues always arise during a project. This
becomes especially relevant in a project that lasts only four months. Hence, the key steps
have been scheduled during the development of PEC 2. If it is finally not possible to end
the corresponding objectives on time, more time will be allocated during the development
of PEC 3.

• In line with the previous risk factor is the relevance that a new package may have to the
public. Falling short on the tasks set during PEC 2 may mean that producing a relevant
package would require further work.

• ML tends to be computationally expensive, hence the number of algorithms we are able
to study may not be extensive. However, the fact that our code will be publicly available
means it may be expanded by other developers.

2.5 Brief summary of contributions

We have already presented a summary of our work on Chapter 1, and the present Chapter 2
has served to illustrate the usefulness of our project, and our main objectives. In Chapter 3 we
describe the current state of the art, so that the reader may see how our project fits into the
global context of sample size estimation in machine learning. We describe the methods used in
Chapter 4, focusing on what packages and functions we have used to build our main algorithm.
Chapter 5 presents our main results: we describe the algorithm that we have implemented and
which allows us to obtain different learning curves for accuracy and Cohen’s κ for a varying
training set size. We discuss these results in Chapter 6, considering which aspects are lacking
and which are useful in the field. Chapter 7 consists on an economic assessment, but we also
focus on the environmental impact of our project. In Chapter 8 we give the main conclu-
sions of our work, point possible directions for future related projects, and critically study the
accomplishment of our initial goals. Finally, Chapter 9 consists of a glossary of the relevant
terminology.
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15 21 28 7 14 21 28 4 11 18 25 2 9 16 23 30 6 13
2/22 3/22 4/22 5/22 6/22

Master thesis plan
  PEC 0
      Discussion with supervisor
      Main literature compilation
      Write report

  PEC 1
      In-depth literature search
      Review objectives with supervisor
      Write report

  PEC 2
      Develop code
      Select ML algorithms
      Compare algorithms with metrics
      Write report

  PEC 3
      Compile codes into R package
      Improvements on code and fit
      Write report

  PEC 4
      Write thesis

  PEC 5a
      Slides preparation
      Video recording

  PEC 5b
      Rehearse public presentation

Powered by TCPDF (www.tcpdf.org)

Figure 2.1: Updated Gantt Chart, showing how time has been assigned to each task.
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Chapter 3

State of the art

The world of sample size estimation has been extensively studied to produce robust methodolo-
gies to determine the minimum sample size needed in a study. These methodologies are based
on a hypothesis test where, in the simplest scenario, we need only know one pre-determined
value of the usual spread of our data (i.e. the standard deviation of the population in question)
and three parameters we can choose: α or type I error, β or type II error (alternatively, we may
provide the power, i.e. 1− β—see table 3.1), and the magnitude of a significant difference [4].
In R, there are several packages which contain functions to determine the minimum sample size
given the aforementioned parameters. These functions are useful since they allow researchers
to better plan their experiments, since knowing the exact number of repetitions and/or samples
an experiment requires to be relevant will save them time and money.

Truth

Test
Positive Negative

Positive True Positive
False Positive
Type I Error
α

Negative
False Negative
Type II Error
β

True Negative
1− β

Table 3.1: Possible outcomes of a hypothesis test.

Machine learning (ML) has been rapidly gaining importance in many fields related to in-
formation management. Recent advancements in computer power have also contributed to an
ever-increasing interest in ML within many disciplines: from omics data analysis, to market
investment, or improving fishing [11]. These algorithms allow us to predict rather complex
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phenomena given an input data and, optionally, the corresponding output. Within machine
learning, we find supervised and unsupervised learning. The former is characterized by the lack
of a known output of the problem, while in the latter we do know the corresponding output.
Furthermore, ML may be used to solve either classification problems, where a finite number of
categories are being predicted, or regression, where continuous data is being predicted.

While it may be tempting to assume the same minimum sample size estimation strategy in
ML as in a classical study, there is a fundamental difference. ML requires a training step where
the algorithm uses a ratio of the input data to find the best ”function” that relates predictor
and predicted data. Therefore, the effectiveness of any ML algorithm depends on the training
step. This fundamental difference requires a rather different approach when estimating the
optimal or minimum sample size for training data in ML while producing a robust prediction.

To estimate minimum sample size in ML we need a metric that describes the robustness of
the prediction. We can find approaches in the literature that use Receiver Operating Character-
istic (ROC) curve [12] and its ROC Area Under the Curve (ROC AUC)[13]. On the other hand,
we may also find learning curves useful, where a metric, usually accuracy, is calculated given
a sample size [14]. Both of these metrics are useful when working with binary classifications
(compared in figure 3.1). Accuracy may even be used in non-binary classification. However,
it may be misleading when working with class-imbalanced data. Therefore, a more general
metric, such as Cohen’s κ [8], may be used to obtain a learning curve for a varying sample size
in ML. Cohen’s κ is given by the formula

κ =
p0 − pe
1− pe

, (3.1)

where p0 is the observed agreement (this is the same as the accuracy), and pe is the chance
agreement (probability that the categories in a study coincide when drawn at random). The
possible values of Cohen’s κ are κ ∈ [−1, 1], where κ = 1 indicates complete agreement, κ = 0
indicates no agreement other than what would be expected by chance, and κ = −1 would
indicate a configuration such that the agreement of the predictions is worse than what would
be achieved by drawing random predictions.

There are already algorithms described in the literature that allow analysis based on a
learning curve that plots accuracy of predictions at different sample sizes for training, and fits
the data to a fixed function [3]. Other studies tackle the problem through ROC AUC [10].

Besides, there are other, more recent and complex techniques to optimize the sampling
during the training step of several ML algorithms [15, 16], treated as a multiple comparison
problem, where methods like the Bonferroni correction or Holm’s step-down procedure in order
to estimate the minimum sample size of the different algorithms under study, given a specific
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problem.

Due to the time constraints in our project, we chose to tackle a rather simple problem:
can we determine the minimum sample size for a specific classification problem and through
different classification algorithms? For this reason, we chose to base our procedure on [3] to
obtain a learning curve after using different sample sizes in the training step of an algorithm.
Furthermore, in order to overcome the limitations of using accuracy as a metric, we consider
expanding the procedure to also calculate Cohen’s kappa when the classification problem is
non-binary. Therefore, each ML algorithm will be assessed individually, without the multiple
comparisons of [15, 16].

19
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(a) ROC. Source: [17].

(b) Learning curve. Source: [14].

Figure 3.1: ROC and learning curve. (a) Receiver operating characteristics (ROC): from a
binary classification problem, we can plot the sensitivity angainst specificity. The area under
the curve (AUC) determines the degree of goodness of the experiment; values closer to 1 have
less errors. (b) Learning curve: a metric, such as accuracy, may be plotted against the sample
size. We can fit a curve to the data and, given a threshold metric, calculate the corresponding
sample size.
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Chapter 4

Methodology

During the development of this thesis we have used the R programming language (version 4.1.3)
[18] and the following packages: caret (version 6.0.91) [19], doParallel (version 1.0.17) [20],
foreach (version 1.5.2) [21], stats (version 4.1.3) [18], and synthpop (version 1.7.0) [22].

In the rest of this section, we detail the functions and procedures used to create the algo-
rithm with which we have obtained the results of this thesis.

4.1 Data division

The first step in our thesis was to find adequate data to apply different ML classification algo-
rithms. By adequate, we mean that data must contain one categorical variable, either binary
(e.g., Yes/No, True/False, A/B...) or with multiple categories (e.g., different species of plants
or a discrete ranking from 1 to 5). This variable is the predicted variable, which we may call
Y.

On the other hand, we need the data to contain one or several predictor variables X, which
may be any type of data, either categorical or continuous. The predictor variables X and
predicted variable Y are divided into a dataset and vector, respectively, and passed to our
algorithm.

Besides, these data we have found may need some pre-processing from the original dataset.
First, to simplify our work, we simply removed instances of null or missing data. Second, we
have also done some transformations of the data, namely normalization, and z-transformation,
since this may help the ML algorithms to improve their predictions. Lastly, we have also con-
sidered the size of the datasets. Since some of the datasets we found have a small number
of samples (for example, about 100), the predictions made on them may not be representa-
tive and we also want to make our algorithm as general as possible, which means we must
work with large datasets (we considered that 1,000 samples to be ideal). For these reasons, we
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have created synthetic data from datasets from the original iris using the R package synthpop.

In the end, we have worked with four datasets: Smarket [23], which aims to predict the di-
rection of different market assets (i.e., predict whether the asset will move up or down in value),
iris [24], where several petals and sepal measurements are used to predict the corresponding
species of iris (setosa, versicolor, and virginica), and the Breast Cancer Wisconsin (Diagnostic)
Data Set [25] (downloaded on 14/03/2022), which contains measurements of several features of
cell nuclei, and the corresponding cancer diagnostic (i.e., malignant or benign).

4.2 Data training and testing

The next step in the design of our algorithm incurred mainly in the use of the R package for
machine learning called caret. At this stage, as usual with ML algorithms, we need to divide
the input data, both predictor and predicted variables, into a training and a testing dataset.
Thus, we will have four sets of variables: two sets of predictor variables, one for training and
one for testing, and two sets of predicted variables, also one for training and one for testing.

The former, the training sets, are passed to caret’s train function, which obtains the re-
lationship between the predictors and predicted variables. Next, the testing set is used in a
two-fold manner. First, new instances of the predicted variable are acquired using the outcome
of train with the predict function and the testing set of predictor variables. Second, the new
predicted variables are compared to the early testing set for the predicted variable. This way,
we can calculate a metric for the prediction step: either accuracy or Cohen’s κ (formula 3.1).

Since we aim to estimate the minimum sample size needed to obtain a certain value of
accuracy or Cohen’s κ, we need to systematically change the amount of data that is used in
the training step. For this, we use the createDataPartition function, also from caret, where
we can state the percentage of training data into which split the input predictor and predicted
variables. Furthermore, we need to change said percentage of training data step by step, so we
design a loop where the steps described in this section are repeated with an increased portion
of the input data assigned as training data.

Lastly, we must consider the high computational cost of ML algorithms. For this reason,
we choose to parallelize the loop on the percentage of training data. We may do so through
the R packages foreach and doParallel, which allows us to create a parallel for loop and use
several logical threads available in our computer.
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4.3 Fitting data

Once the loops are finished, we have created a large amount of new data, that is the sample size
used during the training step, and the corresponding calculated values of accuracy and Cohen’s
κ. We can therefore build a learning curve by plotting the distribution of either metric against
the sample size.

We can also calculate the corresponding fit of the curve that we use, proposed by [3]. To do
so, we use the nls function available in the stats package. In the same way, we can calculate
a 95% confidence interval (CI) of the fitted curve, resulting in a total of three curves.

By solving the fit equation with the estimated parameters, we can now know the sample
size required to obtain a desired, minimum value of either metric (accuracy or Cohen’s κ), i.e.,
we may estimate the minimum sample size for a given value of a metric.
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Chapter 5

Results

5.1 Algorithm

We have been able to reproduce the procedure used in [3] by creating our own algorithm for
classification, using mainly functions from the caret [19] package in R. To do so, we need some
input data, divided into a set of variables X used to predict and a single variable Y which we
want to predict. We then followed these steps.

First, we divide the input data into training and testing data sets. This is done by randomly
selecting a pre-specified ratio of the elements in the input data to use in the training step and
the remaining data for the testing step. Thus, we now have two subsets of each input data X
(which we may call trainX and testX ) and Y (which we may call trainY and testY ). Second,
we train the model using the corresponding training data subsets. In this step we used four
different algorithms: k-nearest neighbors (kNN) [26], logistic regression [27], naive Bayes [28],
and random forest (RF) [29]. Third, we use the trained model and the testX set to make new
predictions. We may assess the metric (accuracy or Cohen’s κ) of these predictions by directly
comparing them to the testY data. Fourth, we save the metric of this prediction and the length
of the training subset we obtained in the first step.

We repeat this process by varying the ratio of the input data to be used in the training step
(e.g., we start with a 10% ratio which selects 10% of the input data for the training step and
keeps the remaining 90% for testing; this ratio is increased in the subsequent iterations). Hence,
we obtain two vectors: one with the sample size used in each iteration, and the corresponding
accuracy of the predictions. We can fit this data to a curve of the form:

Ymetric(Xsize) = (1− a)− b ·Xc
size, (5.1)

where a,b, and c are the parameters we want to obtain from fitting the data Ymetric ∈ [0, 1]
or metric and Xsize or training sample size. Besides, we also obtain the 95% confidence interval
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of the fitted curve as two new curves, with their corresponding set of parameters {a′, b′, c′}
and {a′′, b′′, c′′}. From these fittings, we can solve the minimum sample size Nmin and the
corresponding upper and lower bounds, given the desired accuracy.

5.2 Accuracy

For this section, we have used as input the Breast Cancer Wisconsin (Diagnostic) Data Set [25]
and the prediction problem consists of determining, given different features of a breast mass,
whether the diagnosis is benign or malignant. Figure 5.1 shows the result of the predicted
accuracies for varying training set sizes, and the corresponding fitted curve of accuracy (using
formula 5.1), including its 95% CI curves. We also write down the estimated minimum sample
sizes and their confidence intervals for a 90% accuracy.

5.3 Cohen’s kappa

We can also perform a study on the minimum sample size based on the minimum desired value
of Cohen’s kappa, instead of just the accuracy, using the same formula 5.1 as previously.

To corroborate its correct functioning we have used the iris dataset, included in base
R, where the classification problem consists of assigning one of three species of iris, based on
measurements from their sepals and petals. However, the original dataset contains only 108
plants measured, so we proceeded to create a synthetic dataset of 1,000 plants starting from
the original set and using the package synthpop.

We then performed our method on the synthetic data using the kNN and random forest
algorithms for multiple class classification. Figure 5.2 shows the result of the predicted Cohen’s
kappa for varying training set sizes, and the corresponding fitted curve of Cohen’s kappa, in-
cluding its 95% CI curves. We also write down the estimated minimum sample sizes and their
confidence intervals for a 90% Cohen’s kappa.

As we may see, the adjustment of the fitted curve for the metric, i.e.

Ymetric(Xsize) = (1− a)− b ·Xc
size,

does not coincide with the actual spread of the data (R2 = 0.178 for kNN, and R2 = 0.0695
for random forest). This shows that the formula proposed by [3] is not always recommended
to extrapolate the value of a metric to high values. Looking at the right side of the plots, we
see that Cohen’s kappa tends to fall as the training set size increases, which may be due to
overfitting.
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(a) kNN.

Nmin = 26.1, with 95% CI: [22.8, 29.6]

(b) Logistic regression.

Nmin = 157.4, with 95% CI: [145.9, 170.3]

(c) Naive Bayes.

Nmin = 10.4, with 95% CI: [3.3, 17.4]

(d) Random forest.

Nmin = 15.6, with 95% CI: [11.8, 19.6]

Figure 5.1: Result of accuracy vs. training set size, using several machine learning algorithms
for classification of the Wisconsin breast cancer database. Each graph shows a scatter plot of
dots, representing the level of accuracy of the classification with a corresponding sample size
for the training step. There are three continuous lines on each plot. The middle one (black)
corresponds to the fitted data, given by the scatter plot. The upper one (blue) shows the upper
limit of the 95% confidence interval for the fitted curve, while the lower one (red) shows the
lower limit of the same confidence interval. Nmin represents the minimum sample size for 90%
accuracy, and the CI is the corresponding sample size calculated with the upper and lower
curves.
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(a) kNN.

Nmin = 25.3, with 95% CI: [20.4, 30.0]

R2 = 0.178

Figure 5.2: Cohen’s kappa vs training set size. Continues on next page.
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(b) Random forest.

Nmin = 11.2, with 95% CI: [6.8, 15.5]

R2 = 0.0695

Figure 5.2: Cohen’s kappa vs training set size. Result of Cohen’s kappa vs. training set size,
using kNN and random forest for multi-class classification of the synthetic iris database. Each
graph shows a scatter plot of dots, representing the level of Cohen’s kappa of the classification
with a corresponding sample size for the training step. There are three continuous lines on
each plot. The middle one (black) corresponds to the fitted data, given by the scatter plot.
The upper one (blue) shows the upper limit of the 95% confidence interval for the fitted curve,
while the lower one (red) shows the lower limit of the same confidence interval. Nmin represents
the minimum sample size for 90% Cohen’s kappa, and the CI is the corresponding sample size
calculated with the upper and lower curves. We also provide the R2 of the middle line fit.
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5.4 R package

In the previous sections, we described the functioning of our algorithm and used it to predict
accuracy or Cohen’s κ given a varying sample size of a dataset. We now concentrate on de-
scribing our package, which implements said methodology, using a variety of machine learning
algorithms for supervised learning classification: k-nearest neighbors (kNN) [26], logistic re-
gression [27], naive Bayes [28], and random forest (RF) [29].

We have compiled all of our codes into a distributable, open-source R package which is
already available on GitHub (https://github.com/gpcastelo/MinSizeML) under an MIT li-
cense. Furthermore, our package may be easily installed through the command

devtools::install_github(MinSizeML)

To make our analysis easier for other users, we have encompassed the method into a single
function:

MinSizeClassification(

X,

Y,

algorithm,

metric,

thr_metric,

formula_rhs = "(1-a)-b*X^c",

start_parameters,

p_vec = 1:99/100,

cv_number = 5,

show_plot = T,

n.cores = 1

),

where the user provides the variable or set of variables X used as predictors, a vector of fac-
tors to predict Y, the machine learning algorithm, which metric to use (either ”Accuracy”
or ”Kappa”), the minimum metric value for which the minimum sample size is calculated
thr_metric, the right-hand side of the formula, formula_rhs, to fit the spread of metric val-
ues vs their corresponding sample size, a vector p_vec of ratios to divide training data into (i.e.,
the code loops through the different ratios to get a sample size and calculate the corresponding
metric), the n-fold cross-validation cv_number, whether or not to show the plot of metric vs
sample size and fitted curves with show_plot, and the number of cores to use with n.cores.

All in all, we have seen that the simple formula 5.1 for predicting accuracy or Cohen’s
kappa, with which we have worked all during this project, may be useful in specific cases (as
seen in the previous section), but a more general procedure would help improve the correctness
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of minimum sample size estimation. Namely, our package provides an option for the user to
use their own custom functions to fit the spread of metric values and sample size.
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Chapter 6

Discussion

We had started out this project with the objective of reproducing the methods used in [3]. As
may be seen in figure 5.1, we have indeed been able to reproduce their methodology. Impor-
tantly, the formula 5.1 they proposed for the accuracy as a function of the train step sample
size has proven to be valid for some datasets and ML classification algorithms. Furthermore,
this formula may also be extended to a more general metric, Cohen’s κ, to allow the minimum
size estimation in multiple-category classification problems.

Nevertheless, we have seen some inadequacies and limitations of said methodology. Firstly,
not all the algorithms for binary classification seemed to be properly fit for the given formula
5.1 of accuracy. Especially when using naive Bayes as the predicting algorithm (figure 5.1c),
the formula is not descriptive of the real spread of the data. Secondly, we have observed that
the data tends to increase its spread as the training set size increases, showing a funnel-like
shape, where smaller training set sizes yield accuracies closer to the fitted curve, and larger
training set sizes yield accuracies that spread out far from the fitted curve.

Both of these effects are more obviously seen when increasing the number of points when
training the algorithms, as seen in figure 5.2. Again, we observe a close resemblance of the fitted
curve at low- to midpoints of the training size, but a further spread at larger sizes. Moreover,
we see that the tendency of the metric is downward, starting at around a training test size of 800.

From the larger spread and downward tendency of the metrics for larger training sizes, we
reason that this effect has a two-fold cause. On the one hand, the larger the training size we
use, the smaller the testing set size will be. Therefore, as the testing size is decreased, the
metric (either accuracy or Cohen’s κ) is obtained from a reduced set of values, rendering the
outcome not significant. That is why in figure 5.2 we observe both the downward tendency of
the metric, but also points where the prediction is almost perfect (κ ∼ 1)—i.e., the calculation
of the κ is random, depending on which few specific instances of the testing set are being used
to calculate the metric.

On the other hand, the downward tendency of the metric is clear when the training size
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reaches a certain value. This is due to the training data being overfitted. This means that the
ML algorithm has ”learned” the data too well, so much so, that it replicates the same noise
as the data used for training. Hence, there is a larger error rate of classification and, when
comparing the predicted and testing models, overfitting is reflected as a larger error, conversely,
a lower κ of Cohen.

All in all, we see that the formula (equation 5.1) and procedure used in our project and in
[3], may be useful in certain scenarios (figures 5.2a, 5.1b, and 5.2b). However, the formula for
fitting metrics and training sample size is not always reflective of the measured metrics (figure
5.1c and 5.2). Thus, the need for a more general method to estimate minimum sample size in
machine learning problems for classification.
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Chapter 7

Economic assessment

There have been no direct costs associated with the development of this project. In fact, both
the programming language R used to implement our algorithm, the suite RStudio where all
the codes and documentation were written, and the R packages implied in the development
(namely caret, doParallel, foreach, stats, and synthpop) are all either free to use or even
open-source.

The resulting product, our MinSizeML package is hosted on the free-to-use platform GitHub.
It is publicly and freely available to anyone who wants to either use it or develop upon it. Hence,
there are no associated economic benefits to our project.

However, we should take into account several factors on why this project has been ”free”.
First, the author has not had any income associated with the development of the project at any
stage. According to the website Glassdoor, the mean gross salary of a bioinformatician in the
Barcelona area is 30,732 € per year (link here). In the approximately four months this project
has taken to develop, that would correspond to gross spending of 10,244 € for the employer.

Second, the use of electricity is another cost assumed by the student. The exact cost of the
electricity used in this project is rather cumbersome to calculate given the daily and hourly
price variations of electricity. We can, however, state that our main tool for using machine
learning algorithms has been the central processing unit (CPU) AMD Ryzen 7 5800HS, with a
Thermal Design Power (TDP) of 35 W.

Machine learning is certainly power-hungry, and recent developments in graphic processing
units (GPU) have made these preferred over CPUs for machine learning [9]. GPUs are even
more power-hungry than CPUs. For example, a popular GPU is the Nvidia RTX 3080, with a
TDP of 350 W.

All of this power consumption implies not only economic costs but also environmental costs,
as they have associated CO2 emissions. Thanks to the Machine Learning Emission Calcula-
tor (MLEC, https://mlco2.github.io/impact/) developed in [9], we can estimate that the
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emission of some of the most popular GPUs. As a rough estimation, out of the 60 hours used
for algorithm implementation (as stated in table 2.1) we can say that about 30 hours were used
on running the machine learning algorithms. According to the MLEC, an RTX 3080 GPU used
for 30 hours would emit 5.38 kg of CO2 (the equivalent of driving for 21.7 km in an average
car). Since our CPU’s TDP is about a tenth of said GPU, we can roughly estimate that our
emissions have been a tenth of those emitted by an RTX 3080 GPU for the duration of our
project.

To the economic and environmental cost, we would need to add the rest of the computer
parts and the computers themselves. That is to say, the cost of establishing a research group
from scratch to tackle the same problem as our project would be high. Nevertheless, we believe
our project would be profitable in the long run since it implements a systematic way to get a
minimum sample size, instead of a process of trial-and-error to get the same result.
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Chapter 8

Conclusions

8.1 Conclusions

Here we describe the conclusions of our study and relate them to the main and specific objectives
described in section 2.2.

1. We have seen that it is sometimes possible to predict the minimum sample size following
the approach of [3], to estimate metrics using equation 5.1. However, this methodology
is not generalizable to every possible ML classification problem. Hence, a more general
approach should be established to account for overfitting when using large sample sizes
(where the training set is a lot larger than the testing set).

2. It is clear, however, that there is a ”sweet spot”: once we reach a certain training set size,
the calculated metrics do not improve much or even decrease with larger sizes. One possi-
ble solution may be to use some high-degree polynomial (e.g., a sixth-degree polynomial)
as a possible function for fitting. This new formula could be compared to the perfor-
mance of equation 5.1 through R2, RMSE, and MAE to obtain the most fitting for a
given problem. Furthermore, we could consider other more general regressions, like loess.

3. We have collected all of the codes developed during these months and created an R package
that is open source and may be easily installed. This package allows for the systematic
calculation of minimum sample size in different machine learning algorithms. Besides, we
provide all of the datasets used during the package development so that our results may
be reproducible.

Conclusion number 1 marks the accomplishment of our first main objective (to implement
an algorithm to estimate minimum sample size in ML classification problems), and the specific
objectives 1, 2, and 3. The second conclusion is a by-product of our first conclusion. It was
not an achievement that we were expecting from the beginning. However, it may be the most
useful contribution of this thesis regarding future developments in the field. Lastly, the third
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conclusion marks also the accomplishment of our second main objective and our forth specific
objective.

Besides, we initially set ourselves to build an online application using Shiny so that re-
searchers without expertise in machine learning may easily calculate a minimum sample size
for their experiments. We decided not to pursue this objective due to the more interest being
in making our package more versatile with fittings of metrics and formulas data that do not
align with those given by [3].

8.2 Future directions

We have not been able to fully explore alternative formulas that would better fit the metrics vs
training sample size data spreads. Future projects should explore high-order polynomials and
more general regression methods like loess.

We shall mention that the machine learning problems treated in this project are only for
classification. In continuous-data prediction, we cannot use the same metrics as we have used,
but rather R2, RMSE, or MAE. Hence, the proposed equations would not be valid in the
case of estimating the minimum sample size for machine learning using continuous data.

Besides, even though we decided to drop the development of a Shiny application, developing
such an easily accessible tool online would be helpful for researchers that are not experienced in
machine learning. After all, machine learning has become increasingly popular in recent years,
but its intricate functioning means that researchers not specialized in computing would see any
tool that helps them overcome the hurdle of learning how ML works as beneficial.

8.3 Planning follow-up

Our objectives have remained mainly unchanged, and we have fulfilled the most important ones
during this work phase. Some minor comments should be taken into account.

The development of PEC 0 and 1 complied with their planning. These PECs involved the
phase of bibliography research and planning for the remainder of the project. Even though the
bibliography on our topic is scarce, we managed to get a general idea of the state of the art
from the beginning. We took into account different strategies for developing our algorithm and
decided to follow [3] strategy since its simplicity would fit into a project of a length like this one.

During the first working phase, i.e. PEC 2, we focused on implementing the methodology
(as described in Chapter 4) and began to build learning curves. We mostly used the Smarket

dataset, which includes financial data but decided to look for a more biologically-related dataset.
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Thus, we ended up working with the Breast Cancer Wisconsin (Diagnostic) Data Set, for which
we showed the corresponding learning curves in PEC 2 and here in figure 5.1. The major time
drawbacks during this time were related to the use of different metrics when estimating the
minimum sample size. We had initially thought ROC would be appropriate, but it is only
intended to assess binary data.

In PEC 3, the second working phase, we realized some of the data did not fit the unlimited
growth in accuracy or Cohen’s κ we had initially proposed. Besides, we had initially intended
to development of an online-available Shiny application, which would have eased the access of
our calculations to researchers. This did not come to fruition after a cost vs usefulness study.
That is, it would have taken very long to develop, while we had developed an R package that
is already user-friendly by itself. Hence, our decision to drop the Shiny app development and
focus on making our code as intuitive as possible.
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Glossary

In this chapter we present the most relevant terminology and acronyms, alongside their defini-
tion.

• Machine learning (ML): usually classified as a field within artificial intelligence, it is a
discipline that builds algorithms to model a given set of data (training data). The resulting
model (or predicted data) is the result of one or several decisions that the algorithm is
programmed to undertake, even though the algorithm is not explicitly programmed to
obtain said model.

• Supervised learning: branch of ML that requires known observations of the predicted
dataset. Thus, the output from a ML algorithm may be quantitatively assessed.

• Metric: in this work we use this term to a function that indicates the difference between
two points in a set. We consider two of these, applied to the predictions from ML:

– Accuracy: it tells us how close is our prediction to the true value. We calculate it
as a ratio between true positives and the total number of observations.

– Cohen’s κ: this metric is considered to be more robust when dealing with multiple-
category classification [8]. It is also calculated as a ratio, as given by equation 3.1.

• Learning curve: in the context of our ML predictions, it represents the relationship be-
tween how good a prediction is (given by a metric) and the amount of its experience
(given by the training set size) [14].

• PEC: acronym in Spanish, stands for Prueba de Evaluación Continuada, which are the
standard deliverables used by the Universitat Oberta de Catalunya to grade their students
performance along the duration of the school year.
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