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Área 2, Subárea 11
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Abstract

Background: The lung is the most common site for cancer and has the highest
worldwide cancer-related mortality. Routine study of patients with lung cancer
usually includes at least one computed tomography (CT) study previous to the
histopathological diagnosis. In the last decade the development of tools that help
extract quantitative measures from medical imaging, known as radiomic character-
istics, have become increasingly relevant in this domain, including mathematically
extracted measures of volume, shape, texture analysis, etc. Radiomics can quantify
tumor phenotypic characteristics non-invasively and could potentially contribute with
objective elements to support these patients’ diagnosis, management and prognosis
in routine clinical practice.
Methodology: LUNG1 dataset frommUniversity of Maastricht and publicly available
in The Cancer Imaging Archive was obtained. Radiomic feature extraction was
performed with pyRadiomics package v3.0.1 using CT scans from 422 non-small cell
lung cancer (NSCLC) patients, including manual segmentations of the gross tumor
volume. A single data frame was constructed including clinical data, radiomic features
output, CT manufacturer and study date acquisition information. Exploratory data
analysis, curation, feature selection, modeling and visualization was performed using
R Software. Model based clustering was performed using VarselLCM library both
with and without wrapper feature selection.
Results: During exploratory data analysis lack of independence was found
between histology and age and overall stage, and between survival curves and
scanner manufacturer model. Features related to the manufacturer model were
excluded from further analysis. Additional feature filtering was performed using
the MRMR algorithm. When performing clustering analysis both models, with
and without variable selection, showed significant association between partitions
generated and survival curves, significance of this association was greater for the
model with wrapper variable selection which selected only radiomic variables.
original shape VoxelVolume feature showed the highest discriminative power for both
models along with log.sigma.5.0.mm.3D glzm LargeAreaLowGrayLevelEmphasis
and wavelet LHL glzm LargeAreaHighGrayLevelEmphasis. Clusters
with significant lower median survival were also related to higher
Clinical T stages, greater mean values of original shape VoxelVolume,
log.sigma.5.0.mm.3D glzm LargeAreaLowGrayLevelEmphasis and wave-
let LHL glzm LargeAreaHighGrayLevelEmphasis and lower mean
wavelet.HHl glcm ClusterPro-minence. A weaker relationship was found be-
tween histology and selected clusters.
Conclusions: Potential sources of bias given by relationship between di↵erent variables
of interest and technical sources should be taken into account when analyzing this
data set. Aside from original shape VoxelVolume feature, texture features applied to
images with LoG and wavelet filters where found most significantly associated with
di↵erent clinical characteristics in the present analysis.
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Chapter 1

Abstract

Background: The lung is the most common site for cancer and has the highest worldwide
cancer-related mortality. Routine study of patients with lung cancer usually includes at least
one computed tomography (CT) study previous to the histopathological diagnosis. In the last
decade the development of tools that help extract quantitative measures from medical imaging,
known as radiomic characteristics, have become increasingly relevant in this domain, including
mathematically extracted measures of volume, shape, texture analysis, etc. Radiomics can
quantify tumor phenotypic characteristics non-invasively and could potentially contribute with
objective elements to support these patients’ diagnosis, management and prognosis in routine
clinical practice.

Methodology: LUNG1 dataset frommUniversity of Maastricht and publicly available in
The Cancer Imaging Archive was obtained. Radiomic feature extraction was performed with
pyRadiomics package v3.0.1 using CT scans from 422 non-small cell lung cancer (NSCLC)
patients, including manual segmentations of the gross tumor volume. A single data frame was
constructed including clinical data, radiomic features output, CT manufacturer and study date
acquisition information. Exploratory data analysis, curation, feature selection, modeling and
visualization was performed using R Software. Model based clustering was performed using
VarselLCM library both with and without wrapper feature selection.

Results: During exploratory data analysis lack of independence was found between his-
tology and age and overall stage, and between survival curves and scanner manufacturer
model. Features related to the manufacturer model were excluded from further analysis.
Additional feature filtering was performed using the MRMR algorithm. When performing
clustering analysis both models, with and without variable selection, showed significant as-
sociation between partitions generated and survival curves, significance of this association
was greater for the model with wrapper variable selection which selected only radiomic
variables. original shape VoxelVolume feature showed the highest discriminative power for
both models along with log.sigma.5.0.mm.3D glzm LargeAreaLowGrayLevelEmphasis and
wavelet LHL glzm LargeAreaHighGrayLevelEmphasis. Clusters with significant lower me-
dian survival were also related to higher Clinical T stages, greater mean values of origi-
nal shape VoxelVolume, log.sigma.5.0.mm.3D glzm LargeAreaLowGrayLevelEmphasis and wave-
let LHL glzm LargeAreaHighGrayLevelEmphasis and lower mean wavelet.HHl glcm ClusterPro-
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minence. A weaker relationship was found between histology and selected clusters.
Conclusions: Potential sources of bias given by relationship between di↵erent variables of

interest and technical sources should be taken into account when analyzing this data set. Aside
from original shape VoxelVolume feature, texture features applied to images with LoG and
wavelet filters where found most significantly associated with di↵erent clinical characteristics in
the present analysis.

Value: This work highlights the relevance of analyzing clinical data and technical sources
when performing radiomic analysis. It also goes through the di↵erent steps needed to extract,
analyze and visualize a high dimensional dataset of radiomic features and describes associations
between radiomic features and clinical variables establishing the base for future work.
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Chapter 2

Introduction

2.1 Background and Rationale

The lung is the most common site for cancer and has the highest worldwide cancer-related
mortality (Jani et al., 2021). Non-small-cell lung cancer (NSCLC), a heterogeneous class of
tumors, represents approximately 85% of all new lung cancer diagnoses (Gridelli et al., 2015).
Routine study of patients with lung cancer usually includes at least one computed tomography
(CT) study previous to the histopathological diagnosis. In clinical practice, the report of these
studies includes the description of qualitative characteristics appreciated by the radiologists,
sometimes including in addition some manually measured diameters to describe the most
prominent lesions (Purandare et al., 2015).

In the last decade the development of tools that help extract quantitative measures from
medical imaging, known as radiomic characteristics, have become increasingly relevant in this
domain. These include mathematically extracted measures of volume, shape, texture analysis, etc.
Radiomics characteristics extracted from non-invasive medical imaging studies could contribute
with objective elements to support these patients’ diagnosis, management and prognosis in
routine clinical practice (Scrivener et al., 2016). Even though relevant biomarkers related to
radiomics characteristics have been previously identified, the amount of variables that may be
extracted from a CT study to characterize a lesion are practically infinite and there is still
much room to explore in this domain (Aerts et al., 2019; Junior et al., 2018; Luna et al., 2022).
There is a known complexity associated to the robust extraction of radiomics characteristics
from medical imaging itself given the variability that exists regarding image equipment and
parameters of acquisition, lesion segmentation techniques, post-processing pipelines and software
for radiomic feature extraction itself (Scrivener et al., 2016; Rizzo et al., 2018). In response to
this, in the last couple of years groups of experts in the field joined, aiming to define standard
pipelines to proceed in order to achieve this quantitative characterization of medical imaging in
the most robust way possible across di↵erent studies (Zwanenburg et al 2020). There are still a
variety of accepted approaches to achieve radiomic feature extraction, so the most relevant issue
is still the detailed documentation of every step followed to get these variables (van Timmeren
et al., 2020).

Once radiomics features are extracted, given the high dimensionality and variability of this
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data, the analysis and use of an optimal approach for variable selection, dimensionality reduction
and clustering techniques become paramount to understand discover the underlying relevant
information (Lee et al., 2019; Liu et al., 2020; Yousefi et al., 2019).

Cluster analysis is a generic term used for procedures which seek to uncover or discover
groups in data (Landau et al., 2011). When dealing with multivariate data, It is recommended to
include a pre-processing phase in which the irrelevant features are removed in order to enhance
the quality of clustering. Redundant variables are usually correlated with other variables.
Di↵erent techniques are usually used with the aim of selecting main relevant features; the
main distinction resides in whether the selection process is performed independently or jointly
with the learning/modeling procedure. (Fop et al., 2018; Fournier et al., 2021). Most common
clustering methods include probabilistic and generative models (mixture model-based clustering),
distance-based methods (e.g. hierarchical, k-means), and Density and Grid-Based Methods.
Probabilistic and generative models assume the data has an underlying mixture of models
explaining its distribution and try to find the parameters that best describe these models. Main
advantage of model-based clustering methods is that they help us not only group data but
understand the underlying model explaining the data and accounts for uncertainty in group
assignments. (Aggarwal et al., 2014)

2.2 Objetives

2.2.1 Main Objectives

• Identify groups that contribute to the characterization of NSCLC using clinical data and
radiomics characteristics extracted from baseline CT images.

• Identify elements that contribute to the prognosis of patients with NSCLC using clinical
data and radiomics characteristics extracted from baseline CT images.

2.2.2 Specific Objectives

• Apply recommended techniques and documentation for reproducible radiomic feature
extraction from CT images.

• Perform an exploratory data analysis and data curation including identification and
imputation of missing values and outliers.

• Identify sources of bias within the data set and select the most robust features.

• Analyze di↵erent methods and available libraries for multivariate feature selection, select
a method and apply it for the analysis.

• Analyze di↵erent methods and available libraries for model based clustering, select a
method and apply it for the analysis.

• Apply di↵erent visualization methods for every step of the analysis.

15
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2.3 Approach and Methodology

The data collection used for this work was provided by the University of Maastricht and is
documented and publicly available in The Cancer Imaging Archive (Aerts et al., 2019; Aerts et
al., 2014; Clark K et al., 2013). It contains pre-treatment CT scans from 422 non-small cell
lung cancer (NSCLC) patients, including manual segmentations of the gross tumor volume done
by a radiation oncologist. Associated clinical data is also available.

For image format conversion, from DICOM to NIFTI I used plastimatch extension in 3D
Slicer (Sharp et al., 2010). Once files were converted I used the main CT image and GTV-1
mask, corresponding to the primary gross tumor volume (Aerts et al., 2019.) as input to extract
the radiomic features corresponding to the primary lesion. For radiomic feature extraction I
used pyRadiomics package v3.0.1 (van Griethuysen et al., 2017), currently one of the most
commonly used packages for radiomics analyses (van Timmeren et al., 2020).

With clinical and radiomic data frames available, data analysis and modeling was then done
using R Software (R Core Team, 2020). Steps included in the analysis were: exploratory data
analysis, feature selection, standardization, dimensionality reduction and clustering analysis.

2.4 Planning, Milestones and Calendar

1. Apply recommended techniques for reproducible radiomic feature extraction from CT
images using software available.

2. Perform and exploratory data analysis and curation. Use R software, explore specific
packages.

3. Identify sources of bias and select the most robust features.

4. Analyze di↵erent methods and available libraries for multivariate feature selection, select
a method and apply it for the analysis. Use R software, explore specific packages.

5. Analyze di↵erent methods and available libraries for model based clustering, select a
method and apply it for the analysis. Use R software, explore specific packages.

6. Apply di↵erent visualization methods for these models. Use R software, explore specific
packages.

7. Document each step by writing my final thesis

8. Prepare the presentation and record the video

9. Public defense
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2.5 Summary of the Products

The product of this project will be the documentation of the methodology followed to extract
radiomics features from a publicly available set of computed tomography images and segmen-
tations from patients with non-small cell lung cancer, including technical challenges found.
The documentation of exploratory data analysis and curation of this data set. The revision
and documentation of methodology followed to apply di↵erent dimensionality reduction and
clustering techniques, and di↵erent visualization methods for these models.

2.6 Brief Description of Following Chapters

The third chapter of this thesis will include a revision of the state of the art regarding:

• Medical context,

• Radiomics,

• Clustering techniques.

The fourth chapter will consist of the documentation of the methodology followed for the
present work. It will include original data source, the steps followed in order to perform
radiomic feature extraction from computed tomography images, an exploratory data analysis
and curation of the data set, and the methodology used to apply clustering techniques along
with the visualization of these models.

The fifth chapter will present the results obtained after data analysis.
The fifth chapter includes a discussion of the results obtained in the present work regarding

the state of the art and evaluating the potential relevance.
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Chapter 3

State of the Art

3.1 Medical Context

The lung is the most common site for cancer and has the highest worldwide cancer-related
mortality (Jani et al., 2021). Lung cancer is broadly classified regarding two primary groups,
small versus non–small cell type. Non-small-cell lung cancer (NSCLC) is a heterogeneous class
of tumors that represents approximately 85% of all new lung cancer diagnoses (Gridelli et al.,
2015). The main subtypes of NSCLC are adenocarcinoma, squamous cell carcinoma, and large
cell carcinoma. Though prior to 1990s squamous cell lung carcinoma was the most common
histologic subtype, Adenocarcinoma has become more frequent in the last decades responding
to smoking and other environmental changes. Though Adenocarcinoma is currently the most
prevalent lung cancer histotype globally, this switch has not yet been established in every country
(Barta et al., 2019). A high proportion of NSCLC are still classified as not otherwise specified
(NOS) usually responding to insu�cient material and/or undi↵erentiated characteristics (Righi
et al., 2014).

The Union for International Cancer Control (UICC) regularly publishes and updates the
internationally accepted standard for cancer staging. TNM staging is the internationally
accepted system used to characterize the anatomic extent of disease, it helps determine an
overall malignant tumor stage given the definition of its 3 individual components:

• T category (describes tumor location and size)

• N category (describes regional lymph nodes metastasis)

• M category (describes distant metastasis)
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Figure 3.1: Figure representing main lung cancer stage groups. (Figure use authorized for
academic purpose).

TNM staging is usually evaluated clinically, mainly supported by complementary imaging
studies cTNM, and may then be followed by a pathologic assessment (pTNM). Among others,
the goal of this staging system is to ease communication between experts, ease identification of
best standard of care and help clinical experts in treatment decision and estimating prognosis.
Current edition, TNM classification UICC 8th edition, was published in 2017 (Brierley et
al.,2017). In table 3.1 we can see the detailed current classification system.
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Table 3.1: Lung Cancer TNM classification system.

Regarding standard of care guidelines, NSCLC are broadly divided in two groups: early
stage/locally advanced (non-metastatic), and metastatic. In current guidelines a pretreatment
pathological diagnosis, which implies some kind of invasive procedure to obtain the sample,
is recommended prior to any curative treatment in patients with clinical stages I–III lesions
(Postmus et al., 2017). Routine study of patients with lung cancer usually includes at least
one computed tomography (CT) study previous to the histopathological diagnosis. In clinical
practice, the report of these studies includes the description of qualitative characteristics
appreciated by the radiologists, sometimes including in addition some manually measured
diameters to describe the most prominent lesions (Purandare et al., 2015). In the last decade
the development of tools that help extract quantitative measures from medical imaging, known
as radiomic characteristics, have become increasingly relevant in this domain. Radiomics can
quantify tumor phenotypic characteristics non-invasively and could potentially contribute with
objective elements to support these patients’ diagnosis, management and prognosis in routine
clinical practice (Scrivener et al., 2016). We should always take into account though, that CT
studies imply a dose of ionizing radiation for the patient each time this study is indicated.

3.2 Radiomics

In the last decade the development of tools that help extract quantitative measures from medical
imaging, known as radiomic characteristics, have become increasingly relevant in this domain.
These include mathematically extracted measures that may help describe lesion phenotypic
characteristics non-invasively and their changes over time when performed on serial imaging
(Maeyerhoefer et al. 2020). Main advantage over tissue biopsies, is that while this are usually
limited to the specific tumor site were the sample was obtained, radiomic features evaluate
the lesion as a whole and may therefore better describe and account for lesion heterogeneity
(Papanikolaou et al., 2020). In addition, this kind of measurement is easier to repeat in follow-up
studies to give an objective description of disease evolution and account for subtle lesions changes
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that could be hard to detect with the eye without adding invasive procedures. Radiomic features
have been previously associated with diagnosis, staging, classification, response to di↵erent
therapies and predicting survival (Fournier et al., 2021).

Features are calculated taking in account an image segmentation mask that identifies the
voxels located within a region of interest (ROI).

Figure 3.2: Example of image segmentation identifying the region of interest within a chest CT
study of a patient with NSCLC from a dataset used in the current work.

Segmentation masks may come from previous manual, automatic or semiautomatic definition
of the region of interest. Though manual segmentation by experts is still considered the gold
standard, intra and inter-operator variability add potential sources of bias. Regarding feature
extraction, the ROI itself consists of two masks, a morphological mask (a binary mask just
defining voxels included within the ROI), an intensity mask (including intensity values for each
of the voxels within the ROI), depending on the type of feature one mask and/or the other will
be used (Zwanenburg et al., 2019).
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Figure 3.3: Image modified from source (Zwanenburg et al., 2019) intended for academic purpose.

Specially when working with data from di↵erent equipment and protocols, pre-processing
signal normalization is necessary to bring signal intensities to a common scale, without distorting
di↵erences in the ranges of values (Papanikolaou et al., 2020). There is still a variety of accepted
approaches to achieve radiomic feature extraction and many platforms available that may add
variance in the results, so the most relevant issue is still the detailed documentation of every
step followed to get these variables (van Timmeren et al., 2020, Fornacon-Wood et al. 2020).

Main family of radiomic features include:

• Shape-based (2D and 3D)/ Morphological features: describe geometric properties of the
morphological mask.

• First Order Statistics/ Histogram features: describe the distribution of voxel intensities
within the image region defined by the mask through commonly used and basic metrics.

• Texture features:

– Gray Level Co Occurrence Matrix (GLCM): describes spatial relationships of pairs
of pixels or voxels with predefined gray-level intensities, in di↵erent directions.

– Gray Level Run Length Matrix (GLRLM): quantifies gray level runs, defined as the
length of consecutive pixels that have the same gray level intensity.

– Gray Level Size Zone Matrix (GLSZM): quantifies gray level zones, defined as a the
number of connected voxels that share the same gray level intensity. Contrary to
GLCM and GLRLM, the GLSZM is rotation independent, with only one matrix
calculated for all directions in the ROI.

– Gray Level Dependence Matrix (GLDM): quantifies gray level dependencies in an
image defined as a the number of connected voxels within a distance that are
dependent on the center voxel.
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Detailed description for each of these radiomic features, and additional ones, may be
found within pyradiomics documentation https://pyradiomics.readthedocs.io/en/latest/

features.html# and within the imaging biomarkers standardization initiative (IBSI) documen-
tation (Zwanenburg et al., 2019).

Except for the shape descriptors that are independent of gray value, and are extracted from
the label mask, all other features may be calculated on the original image, as well as on images
transformed using di↵erent filters such as wavelet and Laplacian of Gaussian (LoG) filters (van
Griethuysen et al., 2017). Wavelets is a category of filtering methods that includes di↵erent
combinations of high-pass and low-pass filters applied to the di↵erent directions. These filters
help enhance intricate patterns in the data that are di�cult to quantify by eye as they emphasize
specific image characteristics such as edges and blobs (Depeursinge et al., 2020, Papanikolaou
et al., 2020). Some feature families, as histogram or texture, require additional pre-processing
steps before feature calculation including prior discretization of intensities into fixed gray level
bins (Zwanenburg et al., 2019).

Once radiomic feature extraction is performed this leads usually to high dimensional datasets
that may be statically analyzed aiming to search for association with meaningful clinical end-
points, then a biological association may follow. Before refining analysis or data modeling, given
the high dimensionality of these datasets feature selection is crucial. In addition, radiomic
features tend to be highly redundant as they derive from multiple slightly di↵erent mathematical
formulas or even same measurements obtained by applying di↵erent image filters.

It is worth noting that di↵erent image formats are available for medical imaging, DICOM is
(Digital Imaging and Communications in Medicine) is a standard protocol for the management
and transmission of medical images and related data. This format ensures saving image
information itself along with associated metadata that registers relevant patient and device,
and acquisition protocol information in a standard way. Special formats to save segmentation
information within DICOM standard may be used, including DICOM SEG and RTSTRUCT.
One of the disadvantages of DICOM format is that it uses a single file for each slice of each
series of a study. NIfTi and Nrrd (Nearly Raw Raster Data) were both designed to simplify
medical image workflows specially in the context of research. The raw image data is saved as a
3d image so there is a single file for each series which makes working with images much faster.
On the contrary, these formats preserve only essential metadata as image geometry, and most
additional relevant metadata is handled using csv or json files. Segmentations may be saved in
NIfTi and Nrrd as well. Most post-processing and radiomics feature extraction platforms take
NIfTi and Nrrd format as input, so previous image format conversion is usually necessary.

3.3 Cluster Analysis

It is within human nature to try to classify individuals or objects into groups with the goal of
organizing sets of data with class labels that describe similarities and di↵erences within and
between groups (Everitt et al., 2011). These classifications will be usually judged regarding
the usefulness. Cluster analysis is a generic term used for procedures which seek to uncover
groups in data (Landau et al., 2011). Clustering of data is usually evaluated taking in account
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the homogeneity within groups, the separation between groups and most importantly, as
previously mentioned, its usefulness. For the human brain it is easier to identify groups in 1, 2
or even 3 dimensions, but the problem of identifying groups becomes more di�cult when facing
multivariate datasets. One common application of clustering techniques themselves, is to create
compact data representations which are easier to process and interpret by the human brain,
closely related to dimensionality reduction techniques (Aggarwal et al., 2014).

As with other techniques, exploratory data analysis is an important initial step. First for
understanding the data and relevant questions that may arise, evaluating the quality regarding
missing values and outliers, and identifying incoherences. In addition, graphical displays of data
can be useful for suggesting the data may in fact contain clusters and may further benefit from
applying formal cluster analysis, for example when identifying some degree of multimodality
(Landau et al., 2011).

When dealing with multivariate data, It is recommended to include a pre-processing phase in
which the irrelevant features are removed in order to enhance the quality of clustering. Irrelevant
variables can be divided in uninformative, mainly noisy variables, or redundant, variables that
provide similar information to the obtained by another variable therefore not contributing
to a parsimonious model. Redundant variables are usually correlated with other variables.
Di↵erent techniques are usually used with the aim of selecting main relevant features; the main
distinction resides in whether the selection process is performed independently or jointly with
the learning/modeling procedure. The first approach corresponds to filter methods, this aim
is to expose relationships between features as well as correlation to the class of interest but
the selection is performed as a pre o post-processing step but independent from the statistical
modeling. These techniques are usually easy to implement, computationally e�cient and are
usually better in preventing overfitting, but may exclude variables that seemed irrelevant on
their own but were relevant contributors to the model as a whole. The second approach is
the wrapper methods that perform variable selection and model training simultaneously. As
each potential subset is found it is tested against the learning algorithm and scored. Though
more prone to overfitting and computationally more expensive, this often provides superior
performance results so they’ve gained popularity (Fop et al., 2018; Fournier et al., 2021).

Dimensionality reduction techniques may also be used as a pre-processing step or directly
into a clustering algorithm in order to enhance the quality of the analysis or gain additional
insights (Aggarwal et al., 2014).

Though in general terms, variable standardization is usually recommended to avoid bias
coming from di↵erent variable units and scales, this is not necessarily mandatory and can
sometimes be misleading as weights may be reduced for variables that contributed to cluster
isolation. Analyzing within cluster variation to decide this may be useful but this is not always
possible as groups are not always known in advance (Everitt et al., 2011; Haga et al, 2019).

Most common clustering methods include probabilistic and generative models (mixture
model-based clustering), distance-based methods (e.g. hierarchical, k-means), and Density and
Grid-Based Methods (Aggarwal et al., 2014). Di↵erent to heuristic methods, probabilistic and
generative models assume the data has an underlying model explaining its distribution (e.g.
mixture of gaussians, bernoulli, poisson, etc) and the parameters of these models are then
calculated using the Expectation Maximization algorithm. Main advantage of model-based
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clustering techniques is that they help us understand the underlying data model explaining
the clusters and it also accounts for uncertainty when assigning an observation to a specific
cluster. Di↵erent to kmeans where distance to cluster centroid is the main condition to defining
observation assignment, model-based methods accounts for each cluster maybe having di↵erent
size, variance and direction.
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Chapter 4

Methodology

4.1 Original Data

The data collection used for this work was provided by the University of Maastrich and is
documented and publicly available in The Cancer Imaging Archive (Aerts et al., 2019; Aerts
et al., 2014; Clark K et al., 2013). This data collection contains pre-treatment CT scans from
422 non-small cell lung cancer (NSCLC) patients, including manual segmentations of the gross
tumor volume done by a radiation oncologist. Associated clinical data is also available, the
clinical data used in the present work is the revised version from 2019, csv entitled ”NSCLC
Radiomics Lung1.clinical-version3-Oct 2019”.

When downloading image files from NCIA a metada.csv file is also included. This file
describes the main DICOM metadata associated with the files downloaded. As documented by
Aerts et al., 2019 RTSTRUCT and SEG files include the manual segmentations of the gross
tumor volume and selected anatomical structures (i.e., lung, heart and esophagus) done by a
single radiation oncologist. DICOM SEG objects contain only a subset of annotations available
in RTSTRUCT.

CT images, segmentations, DICOM metadata and clinical data to reproduce this work may
be found in https://wiki.cancerimagingarchive.net/display/Public/NSCLC-Radiomics.

4.2 Radiomics Features Extraction

For radiomic feature extraction I used pyRadiomics package v3.0.1 (van Griethuysen et al.,
2017), currently one of the most commonly used packages for radiomics analyses (van Timmeren
et al., 2020). Aside from calculating features, the pyradiomics package includes pre-processing
steps necessary for a robust radiomic feature extraction. The output information on used image
and mask, as well as applied settings and filters are included in the output thereby enabling
fully reproducible feature extraction (Van Griethuysen et al., 2017).

In order to be able to analyze images with pyRadiomics where DICOM format is not allowed
as input, I converted CT studies and their corresponding RTSTRUCT segmentations to nrrd
format using plastimatch extension in 3D Slicer (Sharp et al., 2010). Once files were converted I
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used the main CT image and GTV-1 mask, corresponding to the primary gross tumor volume
(Aerts et al., 2019.) as input to extract the radiomic features corresponding to the primary
lesion. I run PyRadiomics using batch-extraction mode from the command line. For image
pre-processing specifications I used recommended default parameters available on pyRadiomics
GitLab

https://github.com/AIM-Harvard/pyradiomics/blob/master/examples/exampleSettings/

exampleCT.yaml, including all default features of the di↵erent available classes. Normalization
was applied as a pre-processing step as well, as the dataset included images from di↵erent
scanners with slightly varying protocols.

Table 4.1: Table describing software version and parameters used for radiomic features extraction.

Once feature extraction was complete, a single data frame with one row per subject
was constructed including clinical data and radiomic features output. In addition, specific
metadata regarding CT manufacturer and study date acquisition information was subset-
ted from metadata.csv file available from NCIA download. This main data frame was used
for further analysis. For full reproducibility of this work this data frame is available in
https://github.com/mechyserra/TFM_MSERRA_2022/tree/main/data.
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4.3 Data Analysis

Data analysis and modeling was performed using R Software (R Core Team, 2020). Di↵erent
R libraries used to work on di↵erent steps of data analysis are detailed on the following
table. For full reproducibility of this work all code used to perform the analysis is available in
https://github.com/mechyserra/TFM_MSERRA_2022.

Table 4.2: Table describing main R libraries used for data analysis divided by tasks.

4.3.1 Exploratory Data Analysis

As an initial step, an exploratory data analysis was performed. Main research questions defined
were whether radiomic variables are related with histology class or not, whether radiomic
variables are related to survival or not. Exploratory analysis was performed taking these two
research questions into account. The dimensions of the data frame and data types were described
using R-base functions (R Core Team, 2020). I evaluated the presence of missing values for the
whole data frame, number of missing values and completeness rate for variables with at least
one missing value with skim functions from Skimr library (Elin Waring et al., 2022). Barplots
displaying univariate and multivariate joint missing values were generated using gg miss upset

function from naniar library (Nicholas Tierney et al., 2021).
The univariate distribution of di↵erent categorical variables was described using absolute and

relative frequency tables for factor variables, generated with univar category function from dlookr

library (Choonghyun Ryu, 2022), and univariate barplots representations using ggplot functions
from tidyverse library (Wickham et al., 2019). The univariate distribution of continuous variables
was described using mean, standard deviation, standard error of the mean and interquartile
range using describe function from dlookr library; skewness and kurtosis measurements were
evaluated as well to asses asymmetry (Choonghyun Ryu, 2022) and Shapiro-Wilk test to test
for normality from R-base functions (R Core Team, 2020). Histograms and qqplots were used to
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ease visualization of all this information using ggplot functions from tidyverse library (Wickham
et al., 2019).

Bivariate distributions were represented using boxplots, stacked or dodge barplots using ggplot
functions from tidyverse library (Wickham et al., 2019) and plot functions form DataExplorer

library (Boxuan Cui, 2020). Independence of di↵erent variables was tested using Fisher’s exact
or Chi-squared test as appropriate between categorical variables; (Welsch) Two sample t-test or
Wilcoxon rank sum exact test as appropriate between numerical and dichotomous categorical
variables; One-way analysis of variance and Kruskal-Wallis rank sum test as appropriate between
numerical and polytomous categorical variables. Tests were performed using R-base functions
(R Core Team, 2020) and crosstable function and library (Dan Chaltiel, 2022).

Spearman and Pearson correlation coe�cients were used to evaluate correlation between
ordinal and continuous variables, respectively. Heatmaps were used to represent multivariate
correlation coe�cients using plot correlation function from DataExplorer library (Boxuan Cui,
2020).

To evaluate the relationship between survival and di↵erent categorical variables, Kaplan
Meyer curves were estimated using Survival.time and deadstatus.event variables. Survival curves
were compared using log-rank test. To evaluate relationships with di↵erent numerical variables
Cox proportional hazards models were fitted and significance was evaluated using Wald test.
All survival analysis was performed using Survival and survminer packages (Therneau T, 2022;
Kassambara A et al., 2021).

4.3.2 Missing values imputation

Subjects missing values on target variables were excluded. Rest of missing data was treated
using missForest imputation, a non parametric iterative imputation method that uses random
forest algorithm to replace missing values, applicable to various variable types (Stekhoven et
al., 2012). It initializes replacing missing values with mean and mode, for continuous and
categorical variables respectively, then it sorts the variables according to the amount of missing
values and starts with the variable with the lowest amount as the response variable. For each
defined response variable, it predicts missing values with a random forest algorithm trained using
observed parts of the dataset and assigns a new imputation value. Then, it calculates the error
between prior imputation and new imputation and iterates till the di↵erence between previous
imputed data matrix and current minimizes (it stops when the di↵erence increases and keeps the
last iteration values except when it stops due to max iterations defined). The normalized root
mean squared error (NRMSE) is used to evaluate performance regarding continuous variables:

NRMSE =
p

(
mean((Xtrue �Ximp))2

var(Xtrue)
) (4.1)

Where Xtrue is the complete data matrix, and Ximp the imputed data matrix.
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The proportion of falsely classified (PFC), over the categorical missing values, is computed
to evaluate performance regarding categorical variables. As we generally do not know Xtrue,
missForest provides an estimate of the imputation error based on Out-of-Bag (OOB) error
estimate of random forest (Stekhoven et al., 2012).

4.3.3 Outliers detection and imputation

After performing missing values imputation multivariate outlier detection was performed using
HDoutliers a library that implements Leland Wilkinson’s hdoutliers Algorithm for Outlier
Detection (Chris Fraley, 2022; Wilkinson, L. 2017), a distributional model that uses probabilities
to determine outliers, specifically designed for use in multidimensional data with both continuous
and categorical variables, including non-Normal distributions. As a first step data is transformed,
each categorical variable is dummy coded with the amount of columns given by the total categories
on the variable, then multiple correspondence analysis is calculated separately for each variable
and their first component is saved to replace the categorical variable with this continuous
transformation. If the number of variables is greater than 10000, random projections are used
to reduce the number of columns. Then normalization is applied to all the variables of the
resulting matrix. As a second step, if the number of observations exceeds the maximum number
of rows (default = 10000), the data is divided into a list of exemplars (observations representing
a neighborhood) and an associated list of members within the neighborhood radius of each
exemplar. This aims to reduce the number of nearest-neighbor computations in high dimensional
datasets. When observations do not exceed the maximum number of rows, then the result is a
list where each observation is an exemplar with no additional members in the neighborhood.
As a last step, nearest-neighbor distances are calculated between all pairs of exemplars and
exponential distribution is fitted to the upper tail of these distances. The 1� ↵ point of the
fitted cumulative distribution function is calculated and members of exemplars that fall further
from this cuto↵, are flagged as potential outliers.

Within HDoutliers a library, these steps can be individually performed using dataTrans,
getHDmembers and getHDoutliers functions or all together using HDoutliers function directly
(Chris Fraley, 2022).

4.3.4 Radiomic features selection and transformation

In order to perform radiomic feature selection, as a first step I filtered features related to the
manufacturer model, using Wilcoxon rank sum exact test and ↵ value of 0.05. I decided not
to correct ↵ for multiple comparisons in this case, in order to favor exclusion of any possibly
related features aiming to reduce bias from this source. As a second step I searched for near cero
variance features using nearZeroVar function from thecaret library (Max Kuhn, 2022). Then I
used the maximum relevance minimum redundancy algorithm aiming to preserve features highly
correlated to the main target variables of interest while eliminating features highly correlated
between them (Peng et al., 2005). In order to do this I used MRMR function from praznik

library (Miron B. Kursa, 2021) to select features relevant for Histology class, and survival and
mRMRe libraries to select features relevant for survival analysis (Therneau T, 2022; N De Jay
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et al., 2012). Di↵erent libraries were used for these steps as praznik does not allow working
with survival objects and mRMRe on the other hand does not perform MRMR for multi-class
categorical variables. Initially 20 features were selected for each target. Duplicates were removed
for features selected in both cases. Variables still highly correlated within this subset were
further filtered using textitfindCorrelation function from the textitcaret library with a threshold
of 0.95 as measured by Pearson correlation coe�cient (Max Kuhn, 2022).

Given their mostly right-skewed distribution, a log transformation was applied to all selected
radiomic features after adding a constant value related to the minimum negative found within
these variables.

4.3.5 Model-based Clustering

Age, gender and selected radiomic features were used to perform model-based clustering, rest of
clinical and scanner variables were evaluated against generated partitions. To avoid unwanted
bias weights coming from di↵erent scales, an additional min-max scaling was done including all
numeric variables (selected radiomics and age) before adjusting the clustering model.

Model-based clustering was performed using VarSelCluster function from VarselLCM library
(Marbac M et al., 2019). This algorithm was applied searching for the best model in the range
of 2 to 10 clusters, and both with and without wrapper variable selection. BIC criterion was
used to select the best model.

This algorithm for model-based clustering allows mixed data including continuous, integer
and categorical variables. Observations are assumed to be independent and coming from a
mixture of g components. Each component is defined by their probability distribution function
(pdf) such that:

f(xi|g, ✓) =
gX

k=1

⌧kfk(xi|↵k) with fk(xi|↵k) =
dY

j=1

fkj(xij|↵kj) (4.2)

Taking in account n observations x = (x1....xn). ✓ groups the model parameters, ⌧k is the
proportion represented by each component k such that it adds to 1 for the sum of ⌧k for every
component. fk is the pdf of component k defined by all its parameters ↵k. fkj is then the pdf
of variable j for component k defined by the parameter ↵kj. The definition of space varies
depending on the nature of the variable, so for continuous, integer and categorical variables the
pdf(fkj) and parameters (↵kj) will correspond to those of a Gaussian, Poisson or Multinomial
distribution respectively (Marbac M et al., 2020).

Each variable is defined as relevant (with ! = 1) or irrelevant (with ! = 0) by a binary
vector ! = (!1....!n). Then for a model defined by the parameter space (m = g,!) we update
the definition including this component to the probability distribution function for xi such that:
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f(xi|m, ✓) =
Y

j2⌦c

f!j(xij|↵!j)
gX

k=1

⌧k
Y

j2⌦

fkj(xij|↵kj) (4.3)

where ⌦ = j : !j = 1and⌦c = 1...n /2 ⌦.
To fit the model, a modified version of expectation maximization (EM) algorithm is used.

VarseLCM uses Bayesian Information Criterion (BIC) and maximum likelihood inference
simultaneously, the authors call this the penalized complete-data log-likelihood function:

lpen(⇥|m, x, z) = l(✓|m, x, z)� (g � 1)
1

2
lnn� 1

2
lnn

dX

j=1

vj(g!j + 1� !j) (4.4)

were vj is the number of parameters for the marginal distribution of variable j.
A random initialization for a fixed number of components is performed as first step and then

the algorithm iterates between EM steps:

• Expectation step (E), were log likelihood is calculated for each observation given current
model parameters.

⌧ [r]ik :=
⌧ [r�1]
k

Qd
j=1 fkj(xij|↵[r�1]

kj )
Pg

l=1 ⌧
[r�1]
l

Qd
j=1 flj(xij|↵r�1

lj )
(4.5)

• And then the maximization step (M) were model parameters and relevance of each variable
are recalculated using posterior probabilities for each observations and maximum penalized
log-likelihood estimators.

![r]
j =

(
1, if 4[r]

j > 0

0, otherwise
; ⌧ [r]k =

n[r]
k

n
and ↵[r]

jk =

(
↵?[r]
kj , if ![r]

j = 1

e↵kj, otherwise
(4.6)

were [r] refers to each iteration and 4j is the di↵erence between maximum penalized
log-likelihood estimators when variable j is consider relevant (! = 1) vs. irrelevant (! = 0).

The algorithm stops when it converges to a local optima. Maximization of penalized log-
likelihood is obtained after performing several random initializations for a fixed number of
components for every number between g1 and gmax. BIC penalty is directly included within EM
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algorithm easing model selection processes for large datasets in expense of assuming independence
of variables.

Within the function other options criteria may be selected for mother selection. Given the
number of observations and variables used for the cluster model we chose to use BIC criterion
as found most adequate by the authors (Marbac M et al., 2020).

To evaluate cluster results, discriminative power and fitted distribution of most discriminative
variables was evaluated by plots directly implemented on VarselLCM (Marbac M et al., 2019).
Summary of the probabilities of misclassification for each cluster was also evaluated by plots
as provided within the function results. Adjusted Rand Index (ARI) was used to evaluate
agreement between partitions generated from both models using ARI function also available
within VarselLCM.

To visualize the resulting partition, clusters were represented using a 3D scatter plot generated
with plotly library (Sievert C, 2020) using the first 3 components of PCA applied to the numeric
variables initially used as input to fit the clustering model. PCA analysis was performed using
prcomp function from R-base stats functions.

Summary statistics, including model input variables and clinical and scanner data of interest,
were described for every cluster. Cross tables were generated to describe joint and marginal
relative frequencies for histology classes and corresponding clusters, and for overall stage and
corresponding clusters. Correspondence analysis was performed using ca library and asymmetric
representations were generated using principal coordinates to represent clusters and standard
coordinates to represent histology or overall stage classes (Nenadic et al, 2007) . The clusters
with highest inertia as evaluated by correspondence analysis, were further evaluated for di↵erence
in distribution of variables between the selected clusters, including both variables within and
outside the model.

To evaluate association between survival and di↵erent clusters, Kaplan Meyer curves were
estimated using Survival.time and deadstatus.event variables, and survival curves for each cluster
were compared using log-rank test, again, using Survival and survminer packages (Therneau T,
2022; Kassambara A et al., 2021). The clusters with greatest and lowest median survival were
further compared by describing and testing di↵erences in distribution of variables both within
and outside the model.

Level of significance was set to ↵ 0.05. Adjusted ↵ value according to Bonferroni correction
was provided on every table where multiple tests are performed at the same time.
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Chapter 5

Results

5.1 Data frame Dimensions and Data types

Along with PatientID 9 Clinical variables were available in the associated csv file including: Age,
Gender, Clinical T Stage, Clinical N Stage, Clinical M Stage, Overall.Stage, Histology, Survival
time and Dead status event. CT studies available were dated from 2004-09-27 to 2014-01-01.
Patient 128 did not have a GTV-1 segmentation available so was excluded from the beginning
as no feature extraction was possible.

After combining clinical data, selected DICOM metadata, and pyradiomics output a data
frame with 421 observations and 1257 variables was obtained including:

• 9 Clinical variables

• 2 Dicom metadata variables

• 1246 radiomic features

All 1246 radiomic features were continuous variables.

5.2 Initial Exploratory Data Analysis

On an initial exploratory analysis we found 66 missing values. Histology values were missing in
42 subjects, age value was missing in 22 subjects, Overall.Stage in 1 subject and clinical T stage
in 1 subject (Figure 5.1). No missing values were found for the rest of the clinical variables,
selected DICOM metadata or radiomics features. Overall completeness rate was superior to 0.9
for every variable. Forty-two subjects with missing value for histology variable were excluded,
leaving a total of 379 observations to continue with the analysis.
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Table 5.1: Table describing clinical and dicom metadata variables.

Figure 5.1: Barplot showing variables with missing values. Univariate missing value counts
are displayed in the bottom left horizontal plot. Intersection size is represented with the main
vertical barplot.

Regarding exploratory analysis for categorical variables we found a female/male ratio of
0.46 (119/260). The three major NSCLC histotypes were represented within the dataset;
squamous cell carcinoma class predominated with152 observations (40%), followed by large
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cell carcinoma (30%), NOS class (16%) and adenocarcinoma (13%). Regarding Overall.Stage
variable distribution, we found stage IV was not represented in this dataset which forced us
to center analysis on this group of non-metastatic disease patients; the highest proportion of
patients fell within Overall stage IIIa and b stages. Some incoherent data entries were also
found regarding clinical T, N and M categories. As previously mentioned, possible values for
clinical.T.Stage category in lung cancer ranges from T1 to T4, and few cases were identified
with value entry of T = 5. Same happened with Clinical.N.Stage = 4 and and some cases
with Clinical M Stage = 3. Regarding scanner manufacturer model, 292 studies were obtained
with a SIEMENS Biograph 40 scanner, and 86 studies with a CMS Inc. XiO. 1 CT study had
Plastimach as Manufacturer value, which seemed to be an error as well as this is a software for
image computation (Sharp et al., 2010). These findings are further detailed on Table 5.2 and
Figure 5.2.

Table 5.2: Absolute and relative frequency tables for each categorical variable.
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Figure 5.2: Barplots showing distribution of categorical variables.

All entries interpreted as erroneous were replaced with missing values for further imputation.
As Clinical.M.Stage was mainly populated by M0 and missing values, this variable was then
eliminated assuming cero variance.

37



Maria Mercedes Serra Chapter 5. Results

Figure 5.3: Missing value pattern after removing observations with histology missing values and
imputing with missing values the incoherent clinical T/N/M and Manufacturer entries.

Regarding continuous clinical variables distribution, as expected, we can see age shows a
relatively symmetric distribution while survival time shows a skewed distribution (Figure 5.4)
Though there is an outlier observation for the youngest patient, it still seems a reasonable age,
does not seem an error. Similar information is inferred from skewness and kurtosis values for
these variables, near zero for age and greater than 1 for survival time (Table 5.3).

Figure 5.4: Histograms showing distribution of clinical continuous variables.
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Table 5.3: Table describing summary statistics for age and survival time.

When analyzing continuous variable distribution with the Shapiro Wilk test, only 167 out
of the 1248 variables showed results favoring underlying normal distribution taking in account
alpha of 0.05 with Bonferroni correction. Given the high dimensionality of radiomic variables
further analysis and univariate data visualization for these variables was performed after feature
selection.

Figure 5.5: Boxplot and histograms showing the relationship between di↵erent variables and
histology class.

Concerning relationship between histology and clinical/scanner variables of interest, taking
in account corrected ↵, we found a significant relationship between histology and age (p value
= 0.0076); patients with Squamous cell carcinoma showed a slightly older mean age than other
histology groups. Regarding histology and the overall stage independence test showed p value
= 0.0117 against the null hypothesis, though not outside the limits defined when we compare to
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Bonferroni corrected ↵, we still took this potential relationship into account when comparing the
results. We found no statistically significant association between histology and other categorical
variables. Di↵erences between groups can be further appreciated on Figure 5.5 and Table 5.4.
As a relevant point we found independence between histology and Manufacturer classes and
regarding the period of time during which studies were performed, we found all classes were
represented along the years in favor of avoiding specific technique batch biases when evaluating
this variable as target (Figure 5.6).

Table 5.4: Table showing the relationship between di↵erent variables and histology class, and
the result of di↵erent tests to evaluate independence. Table-wise Bonferroni corrected ↵ = 0.008.
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Figure 5.6: Histogram representing the distribution of di↵erent histology classes along di↵erent
months and years during which imaging data was performed.

Regarding Overall stage we found a significant relationship with age (p < 0.0001), with
patients with overall stage I showing the oldest mean age and patients with overall stage IIIb
showing the youngest mean age. No significant association was found between overall stage
and gender, or overall stage and scanner manufacturer model (Table 5.5). As known from
theory, overall stage is dependent on clinical T/N/M variables, we found a Spearman correlation
coe�cient of 0.58 for overall stage and clinical T stage, and of 0.51 for overall stage and clinical
N stage. T and N categories did not show an important correlation (Spearman c.: -0.08).

Table 5.5: Table showing the relationship between di↵erent variables and overall stage, and the
result of di↵erent tests to evaluate independency. Table-wise Bonferroni corrected ↵ = 0.0125.

When evaluating survival for the whole group with Kaplan-Meyer curves, we found a median
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survival of 573 days (95%CI: 492-660 days). When evaluating the relationship between survival
and clinical and scanner variables of interest, we found no significant di↵erences in survival
curves between histology groups (p = 0.33), gender (p = 0.11) or even Overall stage groups (p
= 0.52). On the other hand, we did find a di↵erence between survival curves of observations
corresponding to scanners from di↵erent manufacturers. Though 95% CI between median
survival overlaps (CMS Inc. group 444 days CI:325-597 vs. SIEMENS 617 days CI:522-704),
we found a p value of 0.002 when testing for di↵erence between both curves with log-rank test.
This could add a major bias to interpreting model results regarding survival analysis as target
variable. When performing radiomic features selection we should exclude any variables related
to scanner manufacturer with the goal of reducing bias from this source.

Figure 5.7: Kaplan Meyer plot showing survival probability over time in days for the whole
group of patients. Median survival is indicated with the dotted line.
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Figure 5.8: Kaplan Meyer plot showing survival probability over time in days given di↵erent
scanner Manufacturer model used for CT exam. Median survival for each group is indicated
with the dotted line and p value corresponding to the log-rank test between curves is indicated
on the plot. On the bottom we can see the percentage of patients at risk at each selected time
point for each group.

5.2.1 Missing values and outliers imputation

After imputation of missing values with missForest algorithm, we obtained an Out-of-bag error
of 4.419509e-12 for normalized mean squared error, and 2.141340e-01 proportion of falsely
classified for continuous and categorical variables respectively.

Two observations were identified as outliers (”LUNG1-027” ”LUNG1-069”) after applying
HDoutliers multivariate outlier detection (Figure 5.9).
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Figure 5.9: Scatter plot displaying the results obtained when performing multivariate outlier
detection with HDoutliers method.

Both observations were excluded from the dataset, leaving 377 observations left for further
analysis. On table 5.6 we can see the original number of observations and the di↵erent steps
that lead to the final number of observations used for further analysis.

422 Observations

421 Observations

1 Missing GTV-1 segmentation

379 Observations

42 Missing Histology class value

377 Observations

2 Multivariate outliers

Table 5.6: Flowchart summarizing number of observations excluded and main reasons for it.
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5.2.2 Radiomic features selection, transformation and further ex-

ploratory analysis

As for radiomic variables, we can see the high dimensionality (1246 vars) and high correlation of
radiomic variables, as evaluated by pearson correlation coe�cient, represented with a heatmap
plot in figure 5.10.

Figure 5.10: Heatmap displaying correlation between 1246 continuous radiomic variables by
pearson correlation coe�cient.

After verifying the relationship of di↵erent radiomic features to the scanner manufacturer
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model, 714 features were removed with 532 radiomic features remaining on the dataset. No near
cero radiomic features were detected for this subset. After joining results from MRMR feature
selection as evaluated for both Histology and Survival variables, a total of 36 radiomic features
were selected. Four features were selected in both cases including:

- log.sigma.5.0.mm.3D glszm SmallAreaLowGrayLevelEmphasis,
- wavelet.LHL glszm LargeAreaHighGrayLevelEmphasis,
- wavelet.HHH glcm ClusterProminence,
- log.sigma.4.0.mm.3D glszm ZoneVariance.
Five features were additionally filtered out for redundancy, as previously defined in method-

ology section (Pearson correlation coe�cient above 0.95) including:
- wavelet.HHL glrlm ShortRunHighGrayLevelEmphasis,
- log.sigma.5.0.mm.3D glszm LargeAreaEmphasis,
- log.sigma.4.0.mm.3D glszm LargeAreaEmphasis,
- log.sigma.4.0.mm.3D glszm ZoneVariance,
- log.sigma.4.0.mm.3D glszm LargeAreaLowGrayLevelEmphasis.
A total of 31 radiomic features were retained for further analysis. On figure 5.11 we can see

a heatmap representing pearson correlation coe�cient values for the selected radiomic features
and in table 5.7 we can see summary statistics for selected variables.
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Figure 5.11: Heatmap representing correlation coe�cients between the 31 selected radiomic
features.
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Table 5.7: Univariate summary statistics for selected radiomic variables.

As we can appreciate on the table, most radiomic variables show high values for skewness
and kurtosis, with some isolated exceptions as for those where previous normalization is already
stated on the variable name. As we can see both in summary statistics and histograms, most
variables are right-skewed and could benefit for log transformation. In figures 5.12 and 5.13 we
can see qqplots for selected radiomic variables, before and after log transformation.
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Figure 5.12: qqplots showing univariate radiomic observations against a normal distribution
before log transformation.
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Figure 5.13: qqplots showing univariate radiomic observations against a normal distribution
after log transformation.

When evaluating individual relationships of selected radiomic variables to histology class,
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texture based features obtained after applying di↵erent wavelet filters were found as the most sig-
nificantly related, though in the limit when we take into account table-wise Bonferroni corrected
↵. These findings are detailed in table 5.8. Distribution of most related radiomic features are
represented with boxplots against histology class, on figure 5.14. Taking in account potential re-
lationship between histology and Overall stage, relationship between selected radiomic variables
and di↵erent Overall stage categories was also evaluated. Though texture features dominate
as well, first order features as Kurtosis and shape features as voxel volume are also within the
top list of related features for Overall.Stage categories (table 5.9, figure 5.15). Though most
related radiomic features are di↵erent between both tables we can find some common features
under 0.05 ↵ level as wavelet.LLH glrlm LongRunHighGrayLevelEmphasis, wavelet.LHL gldm
SmallDependenceLowGrayLevelEmphasis and wavelet.HHL gldm SmallDependenceLowGray
LevelEmphasis.

Table 5.8: Table showing the relationship between selected radiomic features and histology classes.
Kruskal-Wallis rank sum test and One-way analysis of means was performed as appropriate
to test di↵erence in radiomic feature distribution between di↵erent histology classes, resulting
p-value is included on the table. Table-wise Bonferroni corrected ↵ = 0.0016.
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Table 5.9: Table showing the relationship between selected radiomic features and Overall stage
categories. Kruskal-Wallis rank sum test and One-way analysis of means was performed as
appropriate to test di↵erence in radiomic feature distribution between di↵erent Overall stage
categories, resulting p-value is included on the table. Table-wise Bonferroni corrected ↵ =
0.0016.
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Figure 5.14: Most significantly associated features are displayed using boxplots against histology
class.

Figure 5.15: Most significantly associated features are displayed using boxplots against Overall
stage class.

After fitting cox models to evaluate individual relationship of selected radiomic features to
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survival, again many texture based features obtained after applying di↵erent log or wavelet
filters found as significantly related and, as for Overall stage categories, first order features
as Kurtosis and shape features as voxel volume were also included in the top list. Top list
of related features shows many more coincidences between survival and overall stage analysis.
These findings are detailed in table 5.10.

Table 5.10: Table showing results of univariate cox models fitted for each individual radiomic
feature including b coe�cient, Wald test result and p value. Table-wise Bonferroni corrected ↵
= 0.0016.
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5.2.3 Clustering

On table 5.11 we can see the dataset used as input to fit the model based clustering, after
performing min-max scaling of the variables.

Table 5.11: Dataset used as input to fit the model based clustering. Even though log transfor-
mation was applied as a first transformation, some variables are still quite asymmetric. Now all
the numeric variables have the same min-max range of values.

In both models both models 10 was the number of components selected according to BIC
criterion. In the model with variable selection 28 ( 84.85 % )) of the variables were considered
relevant for clustering, 5 variables were excluded:
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- age,
- gender,
- log.sigma.5.0.mm.3D glszm SizeZoneNonUniformityNormalized,
- original glcm Imc1,
- wavelet.HHH glcm Imc1.
So the model including variable selection basically excluded the 2 clinical variables available

on the final dataset and three radiomic variables.
Within both models three variables showed the highest discriminative power including:

original Shape VoxelVolume (a 3D shape feature obtained from the original image, that measures
the volume of the ROI by multiplying the number of voxels in the ROI by the volume of a
single voxel), wavelet.HHH glszm LargeAreaHighGrayLevelEmphasis and wavelet.LHL glszm
LargeAreaHighGrayLevelEmphasis (Texture Gray Level Size Zone Matrix Features that measure
the proportion of the joint distribution of larger size zones with higher gray-level values in
the ROI, obtained from wavelet filtered images with di↵erent combinations of high-high-high
and low-high-low pass filtering in the di↵erent image planes. In figure 5.16 and 5.17 we can
see discriminative power calculated for each variable within each model. When representing
most discriminative variables with empirical values against the theoretical fitted distribution
within each model we can also see a good fit (Figure 5.18 a-f). Probabilities of misclassification
were near to 0 for every cluster in both models, we can see these results represented with
corresponding barplots for each cluster, in figure 5.19. An adjusted Rand index of 0.5 was
obtained when comparing agreement between partitions generated by both models, so we can
say there is some level of agreement, but two di↵erent models were in e↵ect generated, they do
not match perfectly.
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Figure 5.16: Barplot representing discrimination power for most discriminative variables within
the model with wrapper variables selection.

Figure 5.17: Barplot representing discrimination power for most discriminative variables within
the model without wrapper variables selection.
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Figure 5.18: Empirical vs. theoretical fitted distribution for each of the most discriminative
variables within the model with wrapper variable selection (figures a,b,c) and within the model
without wrapper variable selection(figures d,e,f). We can verify the goodness of fit for the most
discriminative variables.
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Figure 5.19: Barplots representing miss-classification probabilities for each cluster within the
model with wrapper variable selection (figures a) and within the model without wrapper
variable selection(figures b). We can see that the miss-classification probability is zero for most
observations with some isolated exceptions.

When representing cluster groups using the first three components obtained after PCA
analysis using numerical variables within the input data set, we can easily identify some common
structure between partitions generated by both models and also some clear di↵erences (Figure
5.20). For example cluster 6 from wrapper variable selection model (figure 5.20.a), seems
partitioned between cluster 1 and 10 in the model without variable selection (figure 5.20.b).
Then cluster 4 from the wrapper variable selection model (figure 5.20.a) does not appear as
an independent cluster in the model without variable selection (figure 5.20.b), observations
corresponding to this cluster in the first model seem to be divided amongst neighbor clusters in
the second model.
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Figure 5.20: 3D Scatter plots representing each observation with its corresponding defined
cluster color-coded and represented along the 3 principal components calculated obtained from
PCA analysis from numeric input data set. Figure a corresponds to clusters generated by the
model with wrapper variable selection, and figure b to the clusters generated by the model
without wrapper variables selection.

Table 5.12: Relative joint and marginal frequencies between histology class and partitions
generated by the model with wrapper variable selection.

Table 5.13: Relative joint and marginal frequencies between histology class and partitions
generated by the model without wrapper variable selection.
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Figure 5.21: Correspondence analysis, asymmetric representation showing columns (clusters)
represented with the principal coordinates and histology classes represented with standard
coordinates. We can see associations between di↵erent clusters and between clusters and
di↵erent histology classes. Clusters 6 and 10 showed the highest inertias for the model with
wrapper variable selection (a). Clusters 3 and 7 showed highest inertias for the model without
variable selection (b).
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Table 5.14: Table comparing distribution for di↵erent variables between clusters 6 and 10,
from the model with wrapper variable selection, those showing highest inertia when performing
correspondence analysis between partitions and histology class. Both variables included as
input in the model or not are evaluated according to its distribution amongst selected clusters.
Table-wise Bonferroni corrected ↵ = 0.0013.)
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Table 5.15: Table comparing distribution for di↵erent variables between clusters 3 and 7, from the
model without variable selection, those showing highest inertia when performing correspondence
between partitions and histology class. Both variables included as input in the model or not
are evaluated according to its distribution amongst selected clusters. Table-wise Bonferroni
corrected ↵ = 0.0013.)

When evaluating the relationship between partitions and histology classes, ARI index was
0.02 for the model with variable selection, and 0.05 for the model without variable selection,
mainly in favor of random labeling if we take into account all clusters. After correspondence
analysis I found the two clusters showing the highest inertias were clusters 6 and 10 for the model
with wrapper variable selection and clusters 3 and 7 for the model without variable selection
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(Figure 5.21). This pair of clusters was further analyzed in both cases to evaluate distribution
of di↵erent variables amongst both clusters and compare them (Tables 5.14 and 5.15). For
the clusters selected for the first model (with variable selection) no significant relationship
was found with histology class. Other variables did show significant di↵erences between these
clusters as clinical T stage and original shape VoxelVolume, Manufacturer model, and many
texture radiomic variables applied over wavelet and LoG filtered images (Table 5.14). For
the clusters selected for the second model (without variable selection) test for independence
showed a p value of 0.0109 in the limit of significance, though not enough if we take multiple
comparisons correction into account. Proportion of adenocarcinoma and nos histotypes was
higher within cluster 3 than 7, and squamous cell carcinoma was mostly present within cluster
7, large cell cancer was equally distributed among both clusters. Interestingly, overall stage and
age were not related to partitions generated by these clusters so these variables, previously found
related to histology classes, should not condition these results significantly. Clinical T stage
and original shape VoxelVolume were again significantly related to the clusters evaluated, with
cluster 7 showing greater average volume and more presence within higher T stage categories.
Manufacturer model or other clinical variables showed no significant relationship with these
clusters. Main related radiomic features, after original shape VoxelVolume, included mainly
texture features obtained from images with LoG and di↵erent wavelet filtering. Only isolated
radiomic features matched those previously found as possibly related with histology variable
when analyzed in an univariate manner, these included wavelet.HHH gldm ClusterProminence,
wavelet.LHL gldm DependenceVariance and wavelet.HHH glcm lmc1 (Tables 5.8 and 5.14).
wavelet.LHL gldm DependenceVariance showed a higher mean for cluster 7 vs cluster 3, and
wavelet.HHH glcm lmc1 slightly lower for cluster 7 vs cluster 3. (Table 5.14)

A similar analysis was performed to evaluate association of di↵erent radiomic features
to overall stage categories, clusters 2 and 4 showed the highest inertias for the model with
wrapper variable selection, clusters 6 and 10 showed highest inertias for the model without
variable selection (Figure 5.22). In both cases a significant relationship between overall stage
and selected clusters was found, clinical T stage also showed a significant relationship and
again original shape VoxelVolume led the table results (Tables 5.18 and 5.19). More advanced
overall stages, clinical T stage and voxel volume, were present within cluster 2, while the
opposite was true for cluster 4. As previously mentioned in both models this was the most
discriminative variable, so it makes sense that clinical T stage shows a significant relationship
with di↵erent combinations of clusters, and given its correlation to overall stage, it makes sense
also to find these three variables significantly related together. Other main radiomic features
heading the table were wavelet.HHl glcm ClusterProminence showing greater values within
cluster 4 (earlier stages), and log.sigma.5.0.mm.3D glzm LargeAreaLowGrayLevelEmphasis
and wavelet LHL glzm LargeAreaHighGrayLevelEmphasis both showing greater values within
cluster 9 (more advanced stages). These results were similar for both models when comparing
clusters with earlier and greatest stages.
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Table 5.16: Relative joint and marginal frequencies between Overall stage category and partitions
generated by the model with wrapper variable selection.

Table 5.17: Relative joint and marginal frequencies between Overall stage category and partitions
generated by the model without wrapper variable selection.
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Figure 5.22: Correspondence analysis, asymmetric representation showing columns (clusters)
represented with the principal coordinates and overall stage categories represented with standard
coordinates. We can see associations between di↵erent clusters and between clusters and di↵erent
stage categories . Clusters 2 and 4 showed the highest inertias for the model with wrapper
variable selection (a). Clusters 6 and 10 showed highest inertias for the model without variable
selection (b).
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Table 5.18: Table comparing distribution for di↵erent variables between clusters 2 and 4, from the
model without variable selection, those showing highest inertia when performing correspondence
analysis between partitions and overall stage category. Both variables included as input in the
model or not are evaluated according to its distribution amongst selected clusters. Table-wise
Bonferroni corrected ↵ = 0.0013.)
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Table 5.19: Table comparing distribution for di↵erent variables between clusters 6 and 10,
from the model without variable selection, those showing highest inertia when performing
correspondence analysis between partitions and overall stage category. Both variables included
as input in the model or not are evaluated according to its distribution amongst selected clusters.
Table-wise Bonferroni corrected ↵ = 0.0013.)

Regarding relationship between survival and partitions generated by the di↵erent models, a
most significant di↵erence was found between survival curves generated for clusters generated
by the first model (with variable selection). The model without variable selection also showed
some degree of relationship though in the limit of significance if we take into account correction
for multiple comparisons. For the model generated with variable selection, clusters 7 and 9
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showed the maximum and minimum median survival, for the model generated without variable
selection clusters 3 and 8 showed the maximum and minimum median survival (Figure 5.23).
This pair of clusters was further analyzed in both cases to evaluate distribution of di↵erent
variables amongst clusters and compare them (Tables 5.20 and 5.21). Clinical T stage and
original shape VoxelVolume were again significantly related to the clusters evaluated, with
cluster 9 (the one with minimum median survival) showing greater average volume and more
presence within higher T stage categories. Clinical T1 category was 100% within cluster 7.
Other main radiomic features heading the table were wavelet.HHl glcm ClusterProminence
showing greater values within cluster 7 (greater median survival), and

log.sigma.5.0.mm.3D glzm LargeAreaLowGrayLevelEmphasis and
wavelet LHL glzm LargeAreaHighGrayLevelEmphasis both showing greater values within

cluster 9 (minimum median survival). These results were similar for both models when comparing
clusters with minimum and maximum median survival. There was no significant relationship
between the manufacturer model and these clusters in either of both models.
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Figure 5.23: Kaplan Meyer plot showing survival probability over time in days for patients
corresponding to di↵erent clusters for the model with wrapper variable selection (a) and the
model without variable selection (b). Median survival for each group is indicated with the
dotted line and p value corresponding to the log-rank test between curves is indicated on the
plot. On the bottom we can see the percentage of patients at risk at each selected time point
for each group. We can see a more significant di↵erence between curves of clusters generated
with model a. For the model generated with variable selection, clusters 7 and 9 showed the
maximum and minimum median survival, for the model generated without variable selection
clusters 3 and 8 showed the maximum and minimum median survival.

.
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Table 5.20: Table comparing distribution for di↵erent variables between clusters 7 and 9, from
the model without variable selection, those showing greatest di↵erence in median survival. Both
variables included as input in the model or not are evaluated according to its distribution
amongst selected clusters. Table-wise Bonferroni corrected ↵ = 0.0013.)
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Table 5.21: Table comparing distribution for di↵erent variables between clusters 7 and 9, from
the model without variable selection, those showing greatest di↵erence in median survival. Both
variables included as input in the model or not are evaluated according to its distribution
amongst selected clusters. Table-wise Bonferroni corrected ↵ = 0.0013.)
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Chapter 6

Discussion

This dataset is of main relevance in radiomic research for its unique size and availability of
manual segmentations. It was previously used in several publications exploring radiomic features
relevance in NSCLC patients. Most of previous work using this dataset is mainly centered
on generating predictive models or identifying radiomic signatures, but, no detailed analysis
of clinical and main scanner characteristics, to better understand this dataset and potential
biases, seems to be available (Aerts et al., 2014; Wu et al., 2016; Shi et al.,2019). During the
present analysis forty-two patients presented missing values for Histology variable, one of the
main target variables in this data set and related to main inclusion criteria, the diagnosis of
histologically confirmed NSCLC. NOS (not otherwise specified) class is included as a possible
value for Histology variable, so it is not explicitly clear if patients with missing values had
diagnosis of NSCLC confirmed or not. This is the main reason why exclusion of these patients
was decided before further analysis of this dataset. Isolated erroneous entries were identified for
clinical T, N and M stage variables as well as for manufacturer model variables, missing values
were assigned to these entries in the present work, and treated as other missing values with
the selected imputation technique. When testing for independence between di↵erent clinical
and main scanner variables, I found a statistically significant association between histology and
age and between histology and overall stage. This lack of independence may add a bias when
interpreting the relationship between radiomic features related to one variable or the other on
its own, without taking the others into account, as conclusions assigned to one variable could
correspond to the other and vice versa. It is important to take into account this relationship and
also evaluate results for both variables when assessing one or the other. In addition, there was
a significant di↵erence between survival probability curves between patients with CT studies
performed in di↵erent scanner models used. This could include a technical source of bias that
should be compensated or accomplished when performing further analysis. In the present work
I chose to eliminate all radiomic features possibly related to scanner manufacturer trying to
retain only stable features for further analysis. I chose not to correct ↵ value when testing
for this relationship risking to lose some relevant variable in the benefit of compensating this
source of bias. We should take into account though that some relevant features related to target
variables were probably lost within this first step of variable selection.

When performing clustering analysis original shape VoxelVolume dominated both models
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definition along with log.sigma.5.0.mm.3D glzm LargeAreaLowGrayLevelEmphasis and wavelet
LHL glzm LargeAreaHighGrayLevelEmphasis. As expected, given its direct relationship with
size, Clinical T stage showed a significant association with most of the partitions compared. Both
models showed significant association between partitions generated and survival curves, signifi-
cance of this association was greater for the model with variable selection which finally included
only radiomic variables. Clusters with significant lower median survival were also related to
higher Clinical T stages, greater mean values of original shape VoxelVolume (volume of the ROI),
log.sigma.5.0.mm.3D glzm LargeAreaLowGrayLevelEmphasis and wavelet LHL glzm LargeArea-
HighGrayLevelEmphasis (Texture Gray Level Size Zone Matrix Features that measure the
proportion of the joint distribution of larger size zones with lower or higher gray-level values in
the ROI respectively) and lower mean wavelet.HHl glcm ClusterProminence (Texture measure
of the skewness and asymmetry of the Gray Level Co-occurrence Matrix). The opposite was
true for clusters with greatest median survival. There was no significant relationship between
manufacturer model and clusters compared for survival analysis. Along with previous selection
of stable features regarding manufacturer, this favors a more transparent interpretation of
the results. Overall stage was associated with clusters with similar characteristics to these,
with higher stages predominating in the same clusters with higher T category, but was not
significantly associated with clusters generated by minimum and maximum median survival.

Histology categories showed only weak association with selected clusters regarding the model
without variable selection. Within cluster with higher proportion of squamous cell carcinoma,
showed greater original shape VoxelVolume, higher mean wavelet.LHL gldm DependenceVariance
(Texture measure of the variance in dependence size in the image, dependency being de-
fined as the number of connected pixels that are similar to a center pixel) and lower mean
wavelet.HHH glcm lmc1 (a measure that quantifies the complexity of the texture). The opposite
was true for clusters with higher proportions of adenocarcinoma and nos histotypes. Large cell
carcinoma was equally distributed within clusters selected for histology comparisons.

Some limitations in the analysis of this data should be taken into account. Source of
segmentation masks used to extract radiomic features was the previous manual definition of
the region of interest by a single operator and, though this eliminates the risk of inter-operator
variability, we do not have the elements to estimate the magnitude of intra-operator variability.
Regarding ↵ value correction, depending on the magnitud to which we want to be conservative,
correction could be applied for the total of tests done along the whole analysis, risking to lose
some relevant information in expense of increasing false negatives. I chose to give the reader the
corrected ↵ value table-wise to provide additional information for the interpretation of each
table without leaving aside information that I thought could be relevant, but this should be
taken into account when reading the results. When fitting model based clustering, VarselLCM
assumes variable independence when applying its wrapper model selection method, so it may
tend to retain more variables than necessary when using as input a dataset like the one presented
where variables are correlated.
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6.1 Conclusion

In conclusion, potential sources of bias given by relationship between di↵erent variables of inter-
est and technical sources should be taken into account when analyzing this data set. Aside from
original shape VoxelVolume feature, texture features applied to images with LoG and wavelet
filters were found most significantly associated with di↵erent clinical characteristics in the present
analysis. When performing clustering analysis, partitions were mainly related to survival finding
some interesting association within minimum and maximum medium survival defined clusters.
original shape VoxelVolume, log.sigma.5.0.mm.3D glzm LargeAreaLowGrayLevelEmphasis and
wavelet LHL glzm LargeAreaHighGrayLevelEmphasis were the variables with most discrimina-
tive power as calculated when generating the model.

Radiomics can quantify tumor phenotypic characteristics non-invasively and could potentially
contribute with objective elements to support these patients’ diagnosis, management and
prognosis in routine clinical practice. This work aims to describe associations and not causality,
being descriptive, it establishes the base for future work.

The main lesson learned from this work was the relevance of doing a good exploratory
analysis of the data before further deepening the analysis. With the current work I learned
how to extract radiomic features from medical images and I was able to apply these techniques
myself to build a rich dataset. I was mainly interested in understanding and being able to apply
model based clustering and di↵erent visualization techniques for multivariate data. I was able
to learn an apply new algorithms for missing values imputation, multivariate outlier detection
and model based clustering. Regarding initial plans and goal, extraction of radiomic features
itself to be able to build the dataset took me much more time than expected, leaving me less
time than what I initially planned for the second part of the work.

6.2 Future work

To continue with this work I would like to formally compare di↵erent feature selection methods
and clustering techniques to analyze these data, other than the ones used in the present work.

6.3 Follow-up of planning

Regarding initial plans and goal, extraction of radiomic features itself to be able to build the
dataset took me much more time than expected, leaving me less time than what I initially
planned to analyze the data itself so I had to focus on a specific analysis. Though I explored
other techniques while performing the present work I would like to formally compare more
techniques for feature selection and for clustering of the data.
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Chapter 7

Glosary

• NSCLC: Non-small cell lung cancer.

• UICC: The Union for International Cancer Control

• NOS: Not otherwise specified

• TNM: Tumor Node Metastasis

• CT: Computed tomography

• DICOM: Digital Imaging and Communications in Medicine

• GLCM: Gray Level Cooccurence Matrix

• GLRLM: Gray Level Run Length Matrix

• GLSZM: Gray Level Size Zone Matrix

• GLDM: Gray Level Dependece Matrix

• LoG: Laplacian of Gaussian

• H: High pass filter

• L: Low pass filter

• MRMR: Maximum Relevance Minimum Redundancy

• PCA: Principal Component analysis

• CA: Correspondence analysis
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