
Universitat Oberta de Catalunya

Master’s Thesis

One-out-of-q OT Combiners

Author:
Jordi Ribes-González

Supervisor:
Dr. Oriol Farràs

June 11, 2019

http://www.uoc.edu
http://researchgroup.university.com
http://department.university.com

iii

UNIVERSITAT OBERTA DE CATALUNYA

Abstract

Master’s Degree in Security of the Information and Communication Technologies

One-out-of-q OT Combiners

by Jordi Ribes-González

Oblivious Transfer (OT) protocols run between two users, a sender Alice and a re-
ceiver Bob. They allow Alice, who holds some information, to send partial knowledge
on that information to Bob while being oblivious to what was actually transferred.
Moreover, the receiver does not have access to more information than intended as per
the protocol.

In the flavor of OT protocols considered in this work, called 1-out-of-q OT, Alice
holds a set of q ≥ 2 messages. After the execution of the OT protocol, Alice wants
Bob to receive a message of his choice. The security of OT protocols guarantees that
Bob learns only one of Alice’s messages, and that Alice is oblivious to which message
was received by Bob after the execution of the protocol.

Oblivious Transfer protocols are of great importance in cryptography. Their rel-
evance lies in their use as fundamental cryptographic primitives, as they have been
employed to realize several useful cryptographic constructions.

Regarding security, perfectly secure OT protocols have been proved impossible
to achieve. Hence, to build OT protocols, one must rely on a variety of security
assumptions. To guard against the event that these assumptions are broken, the
standard method is to ground the security of OT protocols in various assumptions at
once. This motivates the introduction of OT combiners.

Oblivious Transfer combiners take as input a set of implementations of OT, and
they produce a single OT protocol that is secure as long as sufficiently many of the
original OT implementations are secure in the first place. Thus, when using OT
combiners, the security of the combined OT protocol holds even in the case that a
small set of OT implementations are insecure.

The literature on OT combiners deals extensively with the case where Alice holds
q = 2 messages. In this master’s thesis, we present an OT combiner that extends
previous 1-out-of-2 constructions to the 1-out-of-q case for an arbitrary prime integer
q ≥ 2, and that is black-box and single-use. In the process, we study secret sharing
schemes for particular families of adversary structures, and we provide secret sharing
schemes and linear algebra results that are of independent interest.

We prove that our construction achieves a very strong notion of security called
perfect security against active (A,B)-adversaries. For large enough values of q, our
construction is proved secure against a larger class of adversaries than in previous
works. Furthermore, in the case that q is at least the number of used OT candidates,
our construction is secure against adversaries that corrupt less than half the OT
candidates. This improves on the previously studied q = 2 case.

HTTP://WWW.UOC.EDU
http://faculty.university.com
http://department.university.com

v

Contents

Abstract iii

1 Introduction 1
1.1 Oblivious Transfer . 1
1.2 OT Combiners . 3
1.3 Related Work . 4
1.4 Our Work . 5
1.5 Outline of the Thesis . 6

2 Preliminaries 7
2.1 Notation and Basic Definitions . 7
2.2 Oblivious Transfer . 7

2.2.1 Rabin’s OT protocol . 8
2.2.2 One-out-of-two OT . 8
2.2.3 One-out-of-q OT . 10

2.3 Secret Sharing Schemes . 11
2.3.1 Linear Secret Sharing Schemes 13

2.4 OT combiners . 14
2.4.1 Definition . 15
2.4.2 Example: Baseline OT Combiner 16

Ideal Case . 16
Non-Ideal Case . 18

2.4.3 Correctness Definition . 18
2.4.4 Security Definition . 20

3 One-out-of-q OT Combiners 25
3.1 Ideal Case . 25

3.1.1 OT-Compatible Secret Sharing Schemes 25
3.1.2 Our One-out-of-q OT Combiner in the Ideal Case 30
3.1.3 Correctness Proof . 30
3.1.4 Security Proof . 32

3.2 Non-Ideal Case . 35
3.2.1 OT-Compatible Secret Sharing Schemes 35
3.2.2 Our One-out-of-q OT Combiner in the Non-Ideal Case 36

4 Conclusions 39

Bibliography 41

vii

To my family and friends.

1

Chapter 1

Introduction

In this chapter, we give a brief introduction to Oblivious Transfer (OT) protocols and
OT combiners, providing an overview of the related literature. We also sketch the
aims and results of this thesis.

This chapter is divided in four sections. In Section 1.1 we offer a high-level intro-
duction of OT, which is the cryptographic primitive our work is directed at. Next,
in Section 1.2 we introduce our main object of study, namely OT Combiners, and
we survey the related literature in Section 1.3. Finally, we wrap up the chapter in
Section 1.4, by commenting on the research directions we explore and by putting our
work in the context of the existing research results.

1.1 Oblivious Transfer

Oblivious Transfer (OT) protocols were first introduced by Rabin [1] in 1981. Obliv-
ious transfer protocols involve two parties, a sender and a receiver, which we respec-
tively name Alice and Bob throughout all this work. The functionality provided by
OT consists in allowing the sender to transfer part of its inputs to the receiver, while
guaranteeing that the sender is oblivious to which part of its inputs is actually ob-
tained by the receiver. It also guarantees that the receiver is not able learn more
information than it is entitled to as per the protocol.

The first example of an OT functionality, realized in the first OT protocol by
Rabin [1] (described in Section 2.2.1), starts with Alice holding a single message.
After the execution of the protocol, Bob learns this message with probability 1/2,
and Alice is oblivious to whether or not Bob received it. Another flavor of OT is
1-out-of-2 OT [2] (see Section 2.2.2), in which the sender holds two messages and
where the receiver chooses to receive one of the two messages from the sender. The
security guarantees here state that the sender is oblivious to the message that was
actually transferred to the receiver, and that the receiver gets information on one of
the messages only. The type of OT that we study here is called 1-out-of-q OT (see
Section 2.2.3). It is a generalization 1-out-of-2 OT that lets the sender hold q ≥ 2
messages instead of just two, and which allows the receiver to fetch only one of these
messages.

The relevance of OT protocols in cryptography lies in their role as a fundamen-
tal primitive in many cryptographic constructions. To put this into context, we give
a brief account of the main functionalities OT has found an application to: Secure
Multi-Party Computation (MPC), Zero-Knowledge Proofs (ZKP) and Bit Commit-
ment (BC) schemes. We also comment on the related fields of Private Information
Retrieval (PIR) and Oblivious Linear Function Evaluation (OLFE).

Secure Multi-Party Computation is an area of cryptography that considers a sce-
nario with two or more parties. In this scenario, every party holds some private input
data, and all of them wish to compute some function of their joint inputs. The aim of

2 Chapter 1. Introduction

MPC protocols is to enable them to jointly evaluate this function without revealing
their inputs to the other parties. As an example application, one could imagine an
e-voting scenario where electors hold their private ballot, and where the majority vote
should be computed while keeping the ballots private.

The relation between MPC and OT was first shown by Rabin in [3], where he de-
scribed a solution for MPC in the two-party setting that uses Rabin’s OT protocol [1]
as a primitive. Then, in [4] Kilian proved that 1-out-of-2 OT is complete for MPC. In
other words, he proved that using OT as a primitive suffices to securely compute any
polynomial-time computable function among any number of parties.

Zero-Knowledge Proof protocols involve two parties, respectively called the prover
and the verifier. At the beginning of the protocol, the prover holds some private
knowledge, which can consist of an integer value, a string, or a solution to some
mathematical problem. A ZKP protocol allows the prover to attest to the verifier
that she has this private knowledge, but without revealing it to the verifier. Moreover,
ZKP protocols guarantee that the verifier is always convinced that the prover holds
the private knowledge if she actually does, and that no cheating prover can convince
the verifier that she holds the private knowledge in case she does not.

In [4], Kilian showed a method to build ZKP protocols by using exclusively 1-
out-of-2 OT. Then, in [5], Kilian, Micali and Ostrovsky provided more efficient ZKP
protocols that used OT only in a short pre-processing phase. Non-Interactive ZKP
(NIZKs) can also be realized by using exclusively OT, and Bellare and Micali [6] show
how to build NIZKs from non-interactive 1-out-of-2 OT (such as [7], see Figure 2.5 in
Section 2.2.3).

A Bit Commitment Scheme consists of a pair of protocols executed by two parties,
a commiter and a receiver. In the first protocol the commiter chooses a bit b, and
she sends a commitment to this bit to the receiver. In the second protocol, which is
executed at a later stage, the commiter reveals a bit b′ to the receiver, and the receiver
is able to verify whether b = b′ or not. The essential properties of BC schemes are the
hiding and the binding property. The hiding property states that the commitment
does not reveal any information about b to the receiver right after the execution of
the first protocol. The binding property states that the commitment is bound to b,
so that the commiter can not choose b′ 6= b and convince the receiver that b = b′ in
the second protocol execution.

In [4], Kilian showed how to build BC schemes using exclusively 1-out-of-2 OT.
We note that BC schemes, as OT protocols, are fundamental primitives that serve as
building blocks for many other cryptographic constructions, such as two-party MPC
protocols.

Another cryptographic construction that is closely related to OT is Private Infor-
mation Retrieval (PIR) [8]. As in 1-out-of-q OT, in PIR a sender holds q messages,
and a receiver may want to retrieve one (or possibly more) of them without letting the
sender know which messages she received. However, unlike in OT, PIR does not in-
troduce any privacy requirement on the sender, so the receiver could potentially learn
arbitrary information on the messages held by the sender. In addition, the amount of
information sent to the receiver should be significantly less than the whole set of mes-
sages. This rules out the trivial case where the sender just transmits all information
to the receiver.

A generalization of OT, which was proposed by Naor and Pinkas in [9], is called
Oblivious Polynomial Evaluation. As in OT, an OPE protocol involves two parties, a
sender and a receiver. The sender chooses a polynomial function f over Fq, and the
receiver chooses a value x ∈ Fq. At the end of the protocol, the receiver learns f(x)
and no other information about f , and the sender does not learn any information on

1.2. OT Combiners 3

x. In the case that the function f is linear, OPE is called Oblivious Linear Function
Evaluation (OLFE). In OLFE, the sender takes as input a, b ∈ Fq, and Bob receives
the value ax+ b as output. We note that OLFE is equivalent to 1-out-of-2 OT [10].

1.2 OT Combiners

Our work revolves around a central observation: perfectly secure OT protocols are
impossible to achieve. This is so because, using the reduction from OT to MPC
by Kilian [4], they would yield unconditionally-secure two-party computation, which
is impossible to obtain for some functions (see [11, 12]). Hence, the security of OT
protocols is necessarily conditional, and so OT protocols can only be built by imposing
assumptions on security. These assumptions come in a variety of flavors, such as
using hardware tokens [13], assuming the existence of a noisy channel between both
parties [14], or restricting the storage [15] or the computational capabilities of the
parties. In relation to this last assumption, there exist many computational hardness
assumptions one can base OT protocols on, such as the hardness of RSA [1], the
Decisional Diffie-Hellman assumption [6, 7], the assumptions used in the McEliece
encryption scheme [16] and also some worst-case lattice assumptions [17].

While falling back to conditional security is a necessary step in order to build
secure OT protocols, it implies that the security guarantees of OT can potentially be
compromised. For example, at some point a hardware token may become corrupted,
or a computational assumption may break due to the development of new crypto-
graphic attacks. The standard method to mitigate this concern consists in grounding
security on various assumptions at once, by simultaneously using several implementa-
tions. This motivates the introduction of combiners of OT candidates, or simply OT
combiners.

On a more general note, suppose that we have at our disposal several imple-
mentations of a cryptographic functionality. We can think, for example, of a set of
encryption schemes, one-way functions, or OT protocols. The notion of combiners
consists of finding a way to blend all these implementations into a single one, so that
the resulting combination is secure even if some of the original implementations are
insecure. Combiners have been previously studied in many areas of cryptography.
For example, the concept of combiners is applied in the familiar context of multi-
factor authentication, where many authentication methods are used concurrently, as
well as in cascading of block ciphers. Also, combiners for many cryptographic func-
tionalities have been studied in the literature, for instance combiners of encryption
schemes [18, 19], of PRGs [20], of hash functions [21] and, of course, OT combiners.

The study of OT combiners was initiated Harnik, Kilian, Naor, Reingold and
Rosen [22] in 2005, and they were further studied in other articles [22–28]. Using an
OT combiner, a set of n candidate implementations of OT can be merged to realize a
single OT protocol, in such a way that the final protocol is secure as long as sufficiently
many of the initial implementations were secure to start with. In other words, an OT
combiner can be used to instantiate a protocol between a sender Alice and a receiver
Bob that realizes OT by internally using n candidate OT implementations. Moreover,
the resulting protocol stays secure even if the security of some of the OT candidates
is flawed.

4 Chapter 1. Introduction

1.3 Related Work

The first OT combiners were presented by Harnik, Kilian, Naor, Reingold and Rosen
in 2005 [22]. They defined the notion of (n, t)-OT combiner, which consists in taking
n candidate 1-out-of-2 OT implementations and combining them into a 1-out-of-2
OT protocol that is secure provided at most t of the OT candidate implementation
are faulty. They show that, when t < n/2, there exist (n, t)-OT combiners that are
unconditionally secure against passive (i.e. semi-honest) adversaries, and they prove
the tightness of this bound. In particular, they show that such OT combiners cannot
exist for n = 2, t = 1, and they build an OT combiner for n = 3, t = 1. They also
introduce a second solution for the active (i.e. malicious) adversary model, but this
variant has some efficiency and security flaws (e.g. see [29][Section 5.4]).

Meier, Przydatek and Wullschleger defined in [24] the notion of (n, δ)-uniform OT
combiner. Such OT combiners implement the 1-out-of-2 OT functionality, and they
are unconditionally secure against passive adversaries that corrupt either Alice and
a number tA of OT candidates, or Bob and tB OT candidates, for any tA + tB < n.
Their solution requires the roles of the sender and the receiver to be reversed during
the protocol execution, and the corresponding combiner makes two calls to each OT
candidate.

Later, Przydatek and Wullschleger [30] considered combiners that take a set of
n OLFE candidate implementations and produce a 1-out-of-2 OT protocol. Their
solution is also unconditionally secure for tA + tB < n. However, it requires the size
of the message space to be greater than the number n of candidate implementations
of OLFE to combine. Interestingly, we also consider this restriction in the analysis of
our results (see Chapter 4).

In [25], Harnik, Ishai, Kusilevitz and Nielsen presented the first single-use OT
combiner, meaning that only one black-box call is made to each of the n OT imple-
mentations per protocol execution. They study (n, tA, tB)-OT combiners, which are
secure against passive adversaries that corrupt either Alice and tA OT candidates, or
Bob and tB OT candidates. A statistically secure (n, t, t)-OT combiner is provided
for t = Ω(n), which makes a constant number of calls to each OT candidate. Their
solution is set in the 1-out-of-2 scenario. They also provide constant production rate,
meaning that the number of secure OT protocols produced is not just one, but a
constant fraction Θ(n) of the number n of OT candidates.

Additionally, [25] gives a computationally secure OT combiner against active ad-
versaries. Subsequently, Ishai, Prabhakaran and Sahai [29] show that this construction
can be turned into an (n, t, t)-OT combiner that is statistically secure against active
adversaries for t = Ω(n), while leaving unconditional security as an open problem.

Ishai, Maji, Sahai and Wullschleger present in [26] a single-use (n, t, t)-OT com-
biner in the 1-out-of-2 scenario. Their solution achieves statistical security against
passive adversaries for t = n/2− ω(log κ), where κ is the security parameter.

Another variant of combiners for OT is that of cross-primitive combiners, studied
by Meier and Przydatek in [23]. As in [30], here the combiner implements a different
functionality than the candidates. They present a (2, 1)-PIR-to-OT combiner, which
takes two Private Information Retrieval (PIR) schemes and produces a 1-out-of-2 OT
protocol that is unconditionally secure for the sender, provided one of the two PIR
schemes is also secure. This result comes in contrast with the impossibility result
of [22]. Their construction only guarantees the privacy of Alice against a honest-but-
curious adversary corrupting Bob and one of the two servers.

Following [26], Cascudo, Damgard, Farràs and Ranellucci [27, 28] achieve single-
use 1-out-of-2 OT combiners, and their solution produces a single OT instance (see

1.4. Our Work 5

Section 2.4). As for security, they are the first to provide perfect (unconditional,
zero-error) security against active adversaries. They generalize the security notion
of Harnik et al. [25] by defining the notion of perfect security against active (A,B)-
adversaries, which we also adopt in this thesis. This definition considers a malicious
adversary that can corrupt either Alice and a set A ∈ A of OT candidates, or Bob
and a set B ∈ B of OT candidates, obtaining their inputs and full control of their
outputs.

Our work requires the development of secret sharing and coding theory techniques
that are of independent interest. In that regard, the works by Vaikuntanathan and
Vasudevan [31] and by Beimel and Ishai [32] are related to ours, since some of the
authorized sets of their studied secret sharing schemes (see Section 2.3) are also autho-
rized in our construction. More concretely, given a language L ∈ {0, 1}n, they consider
secret sharing schemes for 2n participants for which the sets {(1, v1), . . . , (n, vn)} are
minimally authorized for every (v1, . . . , vn) ∈ L. However, on top of those sets, they
also consider minimally authorized sets of the form {(i, 0), (i, 1)}.

1.4 Our Work

The main references of this thesis are the works by Cascudo, Damgard, Farràs and
Ranellucci [27, 28]. Our work can be seen as an extension of the OT combiner in [28],
which in turn is based on the scheme by Ishai, Maji, Sahai and Wullschleger [26].
As in [27, 28], we prove that our OT combiners satisfy the notion of perfect security
against active (A,B)-adversaries.

In our work we present a 1-out-of-q OT combiner that extends previous 1-out-of-2
OT combiners to the 1-out-of-q case. In our setting, the underlying OT candidates and
the produced OT protocol take q messages m0, . . . ,mq−1 from Alice and an element
b ∈ Fq from Bob, and they output the message mb to Bob. All previous works
in OT combiners have studied exclusively the 1-out-of-2 case, where the underlying
OT candidates and the produced OT protocol take just two bit messages m0,m1 (or
messages in F2m ,Fq in the case of [24, 30], respectively) from Alice and output one of
them to Bob. Hence, our work studies OT combiners in a more general setting, and it
allows to harness the combined security of 1-out-of-q OT protocols such as [7, 33–36].

Our OT combiner provides a security advantage with respect to the constructions
of [27, 28]. Indeed, extending [28] to the general 1-out-of-q case has the effect of
improving the security against adversaries that corrupt the sender, by resisting against
the corruption of more OT candidates than in the q = 2 case. See Chapter 4 for more
details.

As in [27, 28], we view OT combiners as server-aided OT protocols. This means
that each of the n OT candidates is modeled as a server that implements the OT
functionality, i.e. that receives q messages m0, . . . ,mq−1 ∈ Fq from Alice and an
element b ∈ Fq from Bob, and outputs the message mb to Bob. Hence, in the rest
of the thesis we adopt this convention and refer to each of the n OT candidates as
a server. In practice, a complete server transaction must be thought of as an OT
protocol execution between Alice and Bob.

In the process of building our 1-out-of-q OT combiner, we study secret sharing
schemes associated to affine spaces. Concretely, we study secret sharing schemes
on n participants, for which the sets {(1, v1), . . . , (n, vn)} are authorized for every
(v1, . . . , vn) in some affine subspace of Fnq . Hence, we also contribute to the study of
secret sharing schemes, by studying the problem of building efficient schemes for these
access structures.

6 Chapter 1. Introduction

1.5 Outline of the Thesis

This work is organized in four chapters. In Chapter 1, we have given a brief intro-
duction to Oblivious Transfer (OT) protocols and to OT combiners, providing an
overview of the related literature and of the various extensions and applications of
OT. We have also stated the aims of this thesis, and we have described the previous
results our work is based on.

In Chapter 2, we lay out the background theory and tools needed in the rest of
this thesis. Here, we introduce Secret Sharing, a fundamental cryptographic primitive
that is essential to our construction. We also give an account of OT, along with
some examples and applications. Finally, we introduce OT combiners, which are the
main objects of study in this work. We define OT combiners, we give examples, and
we state the correctness and security definitions used to assess the properties of our
construction.

Chapter 3 presents our 1-out-of-q OT combiner, which can be seen as an extension
of the OT combiner in [28] to the 1-out-of-q scenario. Proofs of the consistency and
of the security of our construction are also provided at the end of the chapter.

Finally, in Chapter 4 we conclude the thesis by commenting on the achieved results,
and by stating some research lines following this work.

7

Chapter 2

Preliminaries

In this chapter, we lay out the background theory needed in the rest of the thesis. We
divide this chapter in four sections. In Section 2.1, we introduce some basic definitions
and notation used throughout this work. Section 2.2 presents the Oblivious Transfer
(OT) primitive, along with some examples and applications. Next, in Section 2.3 we
give an account of Secret Sharing, which is an essential primitive to our construction.
Finally, in Section 2.4 we introduce OT combiners, defining them, giving examples
and stating the correctness and security definitions used in this work.

2.1 Notation and Basic Definitions

All through this work, q denotes an arbitrary positive prime integer. We identify
the set of representatives of the integer residue classes modulo q − 1 with the set of
non-negative integers smaller than q. Hence, by abuse of notation, we often denote
Fq = {0, . . . , q − 1}.

Given an integer n ≥ 2, we denote by Pn the set of positive integers up to n, i.e.
Pn := {1, . . . , n}. We also define

Pn,q := Pn × Fq = {(i, j) : i ∈ Pn, j ∈ Fq} .

We denote the power set of a set P by 2P := {A : A ⊆ P}.
In this work, we mainly deal with two-party protocols, and the aim of such pro-

tocols is to compute a certain functionality. The notion of functionality is formalized
in the next definition, which is taken from [37].

Definition 1 ([37]). A functionality F is a possibly random process F : {0, 1}∗ ×
{0, 1}∗ → {0, 1}∗ × {0, 1}∗ that takes a pair of inputs x, y ∈ {0, 1}∗ and outputs a
random variable (F1(x, y),F2(x, y)).

We say that a protocol between two parties Alice and Bob implements a func-
tionality F when, assuming Alice and Bob behave honestly and have input x and
y respectively, at the end of the protocol Alice obtains F1(x, y) and Bob obtains
F2(x, y).

2.2 Oblivious Transfer

Oblivious transfer protocols were introduced by Rabin [1] in 1981. An OT protocol
runs between two parties, a sender Alice and a receiver Bob, which communicate
without the help of any trusted third party and according to the protocol. Broadly, in
OT protocols the sender owns some information, and she wants the receiver to have
partial knowledge on that information while being oblivious to what was actually

8 Chapter 2. Preliminaries

transferred. Moreover, the receiver should not have access to more information than
intended as per the protocol.

This section is divided in three parts. In Section 2.2.1, we start by commenting
on the first OT protocol by Rabin. Then, in Section 2.2.2, we describe 1-out-of-2 OT
protocols, which are the ones studied by all the previous literature on OT combiners.
Finally, in Section 2.2.3 we study 1-out-of-q OT, which is the cryptographic primitive
our work focuses on.

We remark again that OT protocols are computationally secure by nature, since
perfectly secure OT would directly yield unconditionally-secure two-party computa-
tion (see [11, 12]).

2.2.1 Rabin’s OT protocol

As a first instance of OT, we describe the earliest OT protocol by Rabin [1] in Fig-
ure 2.1. In Rabin’s OT protocol, the sender Alice holds a single message m. After the
execution of the protocol, the receiver Bob learns this messagem with probability 1/2,
and Alice is oblivious to whether or not Bob did receive the message. This protocol
makes implicit use of the RSA encryption scheme [38], and its security against Bob
rests on the hardness of RSA.

The Rabin OT Protocol

1. Alice chooses two large positive prime integers p, q at random and sets n = pq.
She generates an exponent e relatively prime to (p − 1)(q − 1), and computes a
multiplicative inverse d of e in Z(p−1)(q−1). She sends n and e to Bob.

2. Alice takes a nonzero message m ∈ Zn and sends the RSA ciphertext me to Bob.

3. Bob picks a nonzero value x ∈ Zn at random, computes z = x2 in Zn, and sends
z to Alice. Note that, with overwhelming probability, the square roots of z are
{x, n− x, y, n− y} for some y ∈ Zn \ {x, n− x} (see [1] for details).

4. By using the factorization n = pq, Alice computes one of the four square roots t of
z (see [1] for details). She sends t to Bob.

5. If Bob receives either t = y or t = n− y, then he can factor n = pq (since gcd(|x−
t|, n) is either p or q). Using p and q, he raises the RSA ciphertext me to the secret
key d to retrieve Alice’s original message m. If Bob receives t = x or t = n− x, it
is computationally infeasible for him to retrieve the message m.

Figure 2.1: The Rabin OT Protocol πOT .

The most relevant application of Rabin’s OT protocol is Two-Party Computation
(2PC). A 2PC protocol allows two users to jointly evaluate a polynomial time com-
putable function on their private inputs. By agreeing on a particular function and by
engaging in an elaborate protocol, 2PC allows them to learn the joint function eval-
uated on their inputs, while they learn nothing else about each other’s inputs in the
process. In 1982, Yao [3] described a solution for 2PC that uses Rabin’s OT protocol
as a primitive.

2.2.2 One-out-of-two OT

While Rabin’s protocol is the original form of OT, an apparently more general flavor
of OT has allowed many other implementations [2, 6, 14–17] and uses [4, 39]. This
second formulation, provided by Even, Goldreich and Lempel [2] in 1985, is called

2.2. Oblivious Transfer 9

1-out-of-2 OT. In 1-out-of-2 OT protocols, the sender is in possession of two messages
m0,m1, and the receiver wants to choose one of them by specifying a message index
b ∈ F2. The corresponding functionality is illustrated in Figure 2.2.

We have to note that, while the OT functionality implemented by the Rabin
OT protocol (fig. 2.1) is a particular case of the 1-out-of-2 OT functionality with
bit messages (by letting Alice throw a fair coin c

$← {0, 1} and set mc = m and
m1−c = ⊥), the two flavors are in fact equivalent as shown by Crépeau [40].

The 1-out-of-2 OT Functionality

Sender Receiver
Messages m0,m1 Chosen message index b ∈ F2

m0,m1 One-out-of-Two
OT

Protocol

b

mb

Figure 2.2: One-out-of-Two OT.

The security properties of 1-out-of-2 OT protocols are two-fold. On one hand, the
security with respect to the receiver states that the sender must be oblivious to which
message mb was transferred to the receiver. On the other hand, the security with
respect to the sender states that it is hard for the receiver to learn information on any
message other than the one received after the execution of the protocol. Hence, if the
receiver learns mb after the execution of the protocol, then the message m1−b must
remain private to the sender.

The most relevant application of 1-out-of-2 OT protocols is Multi-Party Compu-
tation (MPC). Multi-party computation generalizes 2PC by allowing many users to
jointly evaluate a function on their combined inputs. As in 2PC, users do not learn
anything about each other’s inputs in the process. In [4], Kilian proves that 1-out-of-2
OT is complete for MPC. That is, that using OT as a primitive suffices to securely
compute any polynomial-time computable function among any number of parties.

Note that, given a protocol implementing 1-out-of-2 OT with bit messages, one can
construct a 1-out-of-2 OT protocol supporting k-bit messages by invoking k runs of
the original protocol and concatenating the obtained messages (see [41, 42]). Similarly,
given a 1-out-of-2 OT protocol with message spaceM, one can produce a 1-out-of-2
OT protocol with message spaceMk by considering k runs of the same protocol. In
this work, we often obviate the message space of OT protocols by making implicit use
of this approach.

As an example, we describe the first 1-out-of-2 OT protocol by Even, Goldreich
and Lempel [2] in Figure 2.3. The security of this protocol rests on the hardness of
factoring the value n = pq chosen by the sender Alice, and it makes an implicit use
of the RSA encryption scheme [38].

10 Chapter 2. Preliminaries

The Even-Goldreich-Lempel OT Protocol

1. Alice chooses two large positive prime integers p, q at random and sets n = pq. She
generates an exponent e ∈ Z×(p−1)(q−1) (i.e., relatively prime to (p− 1)(q − 1)), and
computes d = e−1 (i.e., the multiplicative inverse d of e in Z(p−1)(q−1)). She sends
n and e to Bob. Also, we assume she holds two messages m0,m1 ∈ Zn.

2. Alice generates two random nonces x0, x1
$← Zn and sends them to Bob.

3. Bob chooses a message index b ∈ F2 and picks a random value k $← Zn at random.
Then, he computes v = xb + ke in Zn, and sends v to Alice.

4. Alice computes the values
m′0 = m0 + (v − x0)d

m′1 = m1 + (v − x1)d

and sends them to Bob.

5. Knowing b and the previously chosen value k ∈ Zn, Bob recovers mb = m′b − k.

Figure 2.3: The Even-Goldreich-Lempel OT Protocol.

2.2.3 One-out-of-q OT

Here, we present the main functionality studied in this work, which is the 1-out-of-q
OT functionality. This functionality was first presented by Crépeau, Brassard and
Robert [42] in 1986, and it generalizes that of 1-out-of-2 OT by allowing Alice to hold
multiple messages.

In the 1-out-of-q OT functionality, the sender Alice is assumed to hold q messages
m0, . . . ,mq−1, and the receiver Bob chooses a message index b ∈ Fq. At the end of a
protocol implementing this functionality, Bob receives mb and Alice receives nothing.
That is, in the notation of Definition 1, the functionality F(x, y) = (F1(x, y),F2(x, y))
implemented by 1-out-of-q OT protocols is described by

x = (m0, . . . ,mq−1),

y = b,

F1(x, y) = ⊥,
F2(x, y) = my.

where ⊥ stands for the empty bit string. This functionality is illustrated in Figure 2.4.

The 1-out-of-q OT Functionality

Sender Receiver
Messages m0, . . . ,mq−1 Chosen message index b ∈ Fq

m0, . . . ,mq−1 One-out-of-q
OT

Protocol

b

mb

Figure 2.4: One-out-of-q OT.

This extension of OT allows other applications such as Private Set Intersection [35,
36], Private Information Retrieval [33] and Multi-Party Computation [39] (where 1-
out-of-4 OT is necessary to securely evaluate arithmetic multiplication gates).

2.3. Secret Sharing Schemes 11

Note that, given a protocol implementing 1-out-of-q OT, it is possible to build a
t-out-q OT protocol by invoking t runs of the original protocol [43]. In a t-out-q OT
protocol, the receiver Bob recovers t messages out of the q that the sender Alice holds.

The original approach by Crépeau, Brassard and Robert [42] to build a 1-out-of-q
OT protocol for bit messages consists in invoking a 1-out-of-2 OT protocol q−1 times.
More concretely, the sender Alice, who holds bit messages m0, . . . ,mq−1, generates
uniformly random bits r1, . . . , rq−2 and invokes a 1-out-of-2 OT protocol with each
pair of messages

(m0, r1), (m1⊕r1, r1⊕r2), . . . , (mq−3⊕rq−3, rq−3⊕rq−2), (mq−2⊕rq−2,mq−1⊕rq−2).

If Bob wants to fetch the message indexed by b ∈ Fq, then in the first b protocol
executions he recovers the messages

r1, r1 ⊕ r2, . . . , rb−1 ⊕ rb,mb ⊕ rb

and he follows the protocol arbitrarily (but honestly) in later runs. Then, after all
the 1-out-of-2 OT protocol executions have concluded, the message is reconstructed
by computing the exclusive OR of the first b obtained messages. This approach can
be optimized so that only log q runs are necessary [33].

By virtue of the previous procedure, there exists a reduction from 1-out-of-2 OT
to 1-out-of-q OT. While this is indeed interesting, the proposed reductions intro-
duce at least a logarithmic factor in the round interactivity overhead. To overcome
this, 1-out-of-q OT protocols can also be built directly from other techniques, such
as Additive Homomorphic Encryption [7], Public-Key Encryption Schemes [34] or
Pseudo-Random Codes [35, 36]. As an example, we present the Aiello-Ishai-Reingold
1-out-of-q OT Protocol in Figure 2.5.

The Aiello-Ishai-Reingold OT Protocol

1. Given a public-key additive homomorphic scheme S = {Gen,Enc,Dec} with message
spaceM = ZN (where we assume q < N), Bob generates a public-private key pair
(pk, sk) and sends pk to Alice.

2. Bob chooses a message index b ∈ {0, . . . , q − 1} and sends the ciphertexts c =
Encpk(b+ 1) to Alice.

3. Alice holds the messages m0, . . . ,mq−1 ∈ M. For each j ∈ {0, . . . , q − 1}, Alice
generates a random nonce rj

$← M and computes the ciphertext m′j = crj +
Encpk(mj − (j + 1)rj). She sends m′0, . . . ,m′q−1 to Bob.

4. Bob takes the message m′b for his chosen message index b, and computes
Decsk(m′b) = mb.

Figure 2.5: The Aiello-Ishai-Reingold OT Protocol.

2.3 Secret Sharing Schemes

In this section, we lay out the theory of secret sharing schemes necessary to develop
our results. See [44] for more details.

Secret Sharing, introduced by Shamir [45] and Blakley [46] in 1979, is a crypto-
graphic primitive that is used to protect a secret value by distributing it into shares.
These shares are generated so that it is hard to recover the secret from individual

12 Chapter 2. Preliminaries

shares, and so that the secret can be recovered by pooling together certain subsets of
shares. Secret sharing is used to prevent both the disclosure and the loss of secrets,
and it is applied as a primitive in many cryptographic applications, such as secure
multi-party computation, attribute-based encryption and distributed cryptography.

In the typical scenario, a user called the dealer holds the secret value, and it
generates a set of shares. Then, it sends each share privately to a different participant.

We next state a formal definition of secret sharing scheme, taken from [47]. This
definition abstracts the previous concepts by using random variables, which in practice
are sampled to produce secret values and shares.

Definition 2 ([47]). Let P = {1, . . . , n} be the set of participants, let Q = P ∪{0} and
let (Ω, p) be a finite probability distribution. A Secret Sharing scheme on P consists of
a sequence Σ = (Xi)i∈Q of random variables on Ω that take values in some finite sets
E0, . . . , En respectively, and which satisfy that, for every event {X1 = x1, . . . , Xn =
xn} with

p(X1 = x1, . . . , Xn = xn) > 0,

there exists a unique x0 ∈ E0 such that

p(X0 = x0 | X1 = x1, . . . , Xn = xn) = 1. (2.1)

For every vector r ∈ Ω, the value X0(r) is called the secret, and the values
(Xi(r))i∈P are shares of the secret value X0(r).

We say that a subset A ⊆ P is authorized for Σ when the shares of participants in
A determine the secret value, that is, when (Xi)i∈A determines X0. In other words,
a subset A ⊆ P is authorized when, for every event {X1 = x1, . . . , Xn = xn} with
p(X1 = x1, . . . , Xn = xn) > 0, there exists a unique x0 ∈ E0 such that

p(X0 = x0 | (Xi = xi)i∈A) = 1.

Similarly, we say that A ⊆ P is forbidden for Σ when the shares of participants in
A do not reveal any information on the secret value, that is, when (Xi)i∈A does not
reveal any information on X0. In other words, a subset A ⊆ P is forbidden when,
for every event {X1 = x1, . . . , Xn = xn} with p(X1 = x1, . . . , Xn = xn) > 0, and for
every pair of elements x0, x

′
0 ∈ E0, we have

p(X0 = x0 | (Xi = xi)i∈A) = p(X0 = x′0 | (Xi = xi)i∈A). (2.2)

Given a secret sharing scheme Σ, we denote by ReconstructΣ an efficient algo-
rithm that retrieves the secret value given a set of shares. Thus, if A ⊆ P is authorized
for Σ, and (xi)i∈A are a set of shares of the secret value x0,

x0 = ReconstructΣ ((xi)i∈A) .

We say that Σ is perfect if every subset A ⊆ P is either authorized or forbidden.
We define the adversary (resp. access) structure of Σ as the collection of all

forbidden (resp. authorized) subsets A ⊆ P for Σ.
Given a secret sharing scheme Σ on P , the information ratio σ(Σ) of Σ is a quantity

that measures the efficiency of secret sharing schemes. It is defined as the ratio of the
maximum length in bits of the shares to the length of the secret value

σ(Σ) =
max1≤i≤n log |Ei|

log |E0|
.

2.3. Secret Sharing Schemes 13

The schemes Σ with information ratio σ(Σ) = 1 are called ideal .
Given an access structure Γ, we define the minimal sets of Γ by

min Γ = {A ∈ Γ : B 6⊂ A for all B ∈ Γ}.

Similarly, given an adversary structure A, we define the maximal sets of A by

maxA = {A ∈ A : A 6⊂ B for all B ∈ A}.

IfA,B ⊆ 2P are two adversary structures, we say that they areR2 when A∪B 6= P
for every A ∈ A, B ∈ B.

We next present some properties of access structures and secret sharing schemes
that are used later.

Lemma 3 ([28]). Let (A,B) be an R2 pair of adversary structures, and Σ a perfect
secret sharing scheme with A as its adversary structure. Then, for every B ∈ B, its
complement B is authorized in Σ.

Proof. Assume on the contrary that B ∈ A for some B ∈ B. Since (A,B) is an R2

pair of adversary structures, the fact that B ∪B = P leads to contradiction.

In this work, when defining a secret sharing scheme Σ = (Xi)i∈Q, we do not exhibit
the random variables Xi explicitly. Instead, given a secret value x0 ∈ E0 taken by X0,
we define an algorithmic procedure to sample X1, . . . , Xn conditioned on X0 = x0.
Hence, we define a procedure to sample a vector r ∈ Ω such that X0(r) = x0, and we
show how to produce a set of shares X1(r), . . . , Xn(r) that satisfies Equation 2.1.

Given a secret sharing scheme Σ, a secret value x0 ∈ E0 and a vector r ∈ Ω such
that X0(r) = x0, we denote by

[x0]Σ = (Xi(r))i∈P ∈ E1 × · · · × En

the concatenation of a set of shares of x0 using Σ.

2.3.1 Linear Secret Sharing Schemes

Linear Secret Sharing schemes (LSSS) are a type of secret sharing schemes, and they
are key to building our 1-out-of-q OT construction. From here on, we define LSSS,
and we restate some of the previous properties for this case. We also provide a result
on LSSS needed to prove the security of our construction.

We start with the definition of LSSS, which is taken from [47].

Definition 4 ([47]). Let K be a finite field, P = {1, . . . , n} and Q = P ∪ {0}. Let
(Ω, p) be a finite probability distribution, and let Σ = (Xi)i∈Q be a secret sharing
scheme, where each random variable Xi on Ω takes values in the finite set Ei.

Then Σ is called K-linear (or a K-Linear Secret Sharing scheme, written K-LSSS)
if Ω, E0, . . . , En are vector spaces of finite dimension over K, the probability distri-
bution p is uniform on Ω, and the random variables X0, . . . , Xn are surjective linear
mappings.

In this thesis we just consider Fq-linear secret sharing schemes Σ where dimE0 = 1.
That is, we may assume that E0 = Fq and that, for each i ∈ P , the i-th share space
is Ei = F`iq for some positive integer `i.

As seen in [44], given a LSSS Σ = (Xi)i∈Q, a subset A ⊆ P is authorized when⋂
i∈A

kerXi ⊆ kerX0. (2.3)

14 Chapter 2. Preliminaries

Similarly, a subset A ⊆ P is forbidden when⋂
i∈A

kerXi + kerX0 = Ω.

Since X0 is surjective, if Ω is a non-trivial vector space then K-LSSS are perfect.
The information ratio of a linear secret sharing scheme Σ can be rewritten as

σ(Σ) =
maxi∈P dimEi

dimE0
.

Ito, Saito and Nishizeki [48] showed that every adversary structure admits an
Fq-LSSS for q large enough. However, the share size of these linear secret sharing
schemes is generally exponential in n, and this has an impact on the efficiency of our
OT combiner. Even worse, by [49] there exist adversary structures that require linear
secret sharing schemes with shares of exponential size in n, while by [50, 51], the
total share size is Õ(2cn) for some constant c < 0.95. On a more positive note, many
adversary structures (e.g. threshold) are known to admit ideal linear secret sharing
schemes, and by [52] close adversary structures admit linear secret sharing schemes
of similar share sizes. The characterization of adversary structures that admit Fq-
LSSS with small share sizes is an open problem in secret sharing, and finding efficient
Fq-LSSS is essential to the efficiency of our OT combiner.

Given a secret value x0 ∈ Fq, we have that [x0]Σ ∈ F`1q × · · · × F`nq . In this case, if
we denote by V the set of all possible shares [0]Σ of 0 ∈ Fq, we have that

V = ImX1×···×Xn(ker(X0))

is a vector subspace of F`1q × · · · × F`nq . Similarly, if we denote by Wb the set of all
possible shares [b]Σ of a secret value b ∈ Fq, we have that

Wb = [b]Σ + V

is an affine subspace of F`1q × · · · × F`nq , where [b]Σ denotes some share of b using Σ.
The following lemma is a consequence of the description of the access structure

stated above.

Lemma 5. Let Σ be an Fq-LSSS consisting of random variables X0, X1, . . . , Xn de-
fined on a non-trivial vector space Ω, and assume that X0 takes values in E0 = Fq.
Then, a subset A ⊆ P is forbidden for Σ if and only if there exists a vector r ∈ Ω
such that X0(r) = 1 and Xi(r) = 0 for every i ∈ A.

Proof. For the first implication, since A is forbidden, by Equation 2.3 we see that⋂
i∈A kerXi 6⊆ kerX0. Hence, we can consider r′ ∈

(⋂
i∈A kerXi

)
\kerX0. The vector

r = X0(r′)−1 · r′ satisfies the lemma.
Conversely, consider an arbitrary r′ ∈ Ω, and let r0 = r′ − X0(ω) · r. Since the

vectors r0 ∈ kerX0 and r1 = X0(r′) · r ∈
⋂
i∈A kerXi satisfy r0 + r1 = r′, we have

that A is forbidden, which concludes the proof.

2.4 OT combiners

Here we lay out the fundamental theory of OT combiners. First, in Section 2.4.1 we
define OT combiners, we name some of their properties and we fix some notation. In
Section 2.4.2 we show the 1-out-of-2 OT construction of [28] that our work is based

2.4. OT combiners 15

on. Then, in Sections 2.4.3 and 2.4.4 we formalize the correctness and security notions
considered in this work.

Before proceeding further, and as in [28], we need to introduce the ideal 1-out-of-q
OT functionality FOT . We make use of the ideal functionality FOT in our correctness
and security definitions. It consists of an ideal version of a 1-out-of-q OT protocol that
implements the functionality correctly and that does not allow any kind of corruption.
Hence, FOT is an abstraction of an ideal OT protocol, and not a functionality in
the sense of Definition 1. Without loss of generality, in this work all 1-out-of-q OT
protocols that are considered secure are assumed to follow the footprint of FOT .
Figure 2.6 depicts the FOT ideal functionality.

Ideal 1-out-of-q OT Functionality FOT

Outline of the functionality:

1. The receiver Bob selects b ∈ Fq, and it sends its input (transfer, b) to FOT .

2. The functionality FOT sends (ready) to Alice.

3. The sender Alice sends q − 1 messages (send,m0, . . . ,mq−1) to FOT .

4. If (transfer, b) has been received from Bob, FOT sends (sent,mb) to Bob.

Sender Receiver
Messages m0, . . . ,mq−1 Chosen message index b ∈ Fq

(ready)

(send,m0, . . . ,mq−1)

Ideal 1-out-of-q
OT Functionality

FOT

(transfer, b)

mb

Figure 2.6: The ideal 1-out-of-q Oblivious Transfer functionality.

2.4.1 Definition

Next, we formally define OT combiners.

Definition 6. Let S1, . . . , Sn be candidate OT implementations. An OT combiner
is an efficient two-party protocol π = π(S1, . . . , Sn), with access to the candidates
S1, . . . , Sn, and which implements the OT functionality.

We say that an OT combiner is 1-out-of-q if it implements the 1-out-of-q OT
functionality. An OT combiner is black-box if, during the protocol, the candidate OT
implementations are used in a black-box way, i.e. ignoring their internal workings and
making oracle calls as in the ideal OT functionality. Under the black-box assumption,
as in [27, 28], we refer to each of the OT candidate implementations as servers. An
OT combiner is single-use if each server is used only once during the execution of the
protocol.

From this point onward we assume OT combiners to be 1-out-of-q, n-server, single-
use and black-box. Under this assumption, we can formalize the notion of OT com-
biner according to the following definition.

Definition 7. We define a 1-out-of-q, n-server, single-use and black-box OT combiner
π by means of the following three polynomial-time algorithms:

16 Chapter 2. Preliminaries

(b1, . . . , bn)← π.Choose(b): Probabilistic algorithm run by the receiver Bob and taking
as input a chosen message index b ∈ Fq. It returns an n-tuple (b1, . . . , bn), where
each bi ∈ Fq is to be sent to server Si.

(uji)(i,j)∈Pn,q
← π.Send(m0, . . . ,mq−1): Probabilistic algorithm run by the sender Alice

and taking as input q chosen messages m0, . . . ,mq−1. It returns a qn-tuple
(uji)(i,j)∈Pn,q

, where each tuple (u0
i , . . . , u

q−1
i) is to be sent to server Si.

m← π.Reconstruct(b, (u1, . . . , un)): Deterministic algorithm run by the receiver Bob
and taking as input the chosen message index b ∈ Fq and n elements u1, . . . , un,
where each ui is received from server Si. It returns a message m.

Given an OT combiner π = (π.Choose, π.Send, π.Reconstruct) and given n servers
S1, . . . , Sn implementing the 1-out-of-q OT functionality, we can regard π as a protocol
between a sender Alice and a receiver Bob. In this case, the resulting OT protocol
π(S1, . . . , Sn) develops sequentially in five phases:

Choice Phase: The receiver Bob chooses a message index b ∈ Fq.
Bob generates a related tuple (b1, . . . , bn)← π.Choose(b) where bi ∈ Fq.
Bob sends (transfer, bi) to server Si for i = 1, . . . , n.

Ready Phase: On receiving bi from Bob, the server Si sends (ready) to the sender
Alice.

Sending Phase: The sender Alice chooses q messages m0, . . . ,mq−1.
Alice generates a related tuple (uji)(i,j)∈Pn,q

← π.Send(m0, . . . ,mq−1).
After Alice has received (ready) from every server, she sends (send, u0

i , . . . , u
q−1
i)

to Si for i = 1, . . . , n.

Transfer Phase: The server Si sends (sent, ubii) to Bob.

Output Phase: Bob reconstructs the message mb from the elements ub11 , . . . , u
bn
n he

received by executing π.Reconstruct(b, (ub11 , . . . , u
bn
n)).

2.4.2 Example: Baseline OT Combiner

As a first example, we describe the baseline construction [28] that our OT combiner
is based on. This OT combiner is 1-out-of-2, n-server, single-use and black-box. It
satisfies a very strong security definition called perfect security against active (A,B)-
adversaries (cf. 2.4.4).

For the sake of clarity, we describe the OT combiner from [28] in two sections.
First, we start with the simpler case where the adversary structure A admits an ideal
F2-LSSS Σ. Hence, in this case the shares generated using Σ are bit-sized. Then, we
comment on the general case where Σ may not be an ideal F2-LSSS, so the shares
generated using Σ may not be bit-sized.

Ideal Case

Let A ⊆ 2Pn be the adversary structure given in the security definition (cf. 2.4.4), and
let Σ be a F2-LSSS with adversary structure A. Hence, the shares generated using
Σ are assumed to be bit-sized. Denote by V the vector subspace of Fn2 formed by all
possible shares [0]Σ of the secret value 0 ∈ F2. DenoteW0 = V , and letW1 = [1]Σ +V
be the affine space formed by all possible shares [1]Σ of the value 1 ∈ F2.

2.4. OT combiners 17

In order to describe the OT combiner in [28], we first need to define two F2-LSSS
S0,S1, which have Pn,2 = Pn × F2 as their set of participants. See Figure 2.7 for a
definition of the LSSS S0,S1.

The Secret Sharing Scheme Sk Defined in [28] in the Ideal Case

Let V ⊥ denote the orthogonal space to V , that is

V ⊥ = {h ∈ Fn
2 : 〈v,h〉 = 0 for all v ∈ V }.

To share a message m ∈ F2, first

• let k = (k1, . . . , kn) ∈ Fn
2 be a sharing of k using Σ

• sample r1, . . . , rn−1 ∈ F2 uniformly at random, and let rn = m−
∑n−1

i=1 ri

• sample h = (h1, . . . , hn) uniformly at random from V ⊥

For every i ∈ Pn and for every j ∈ F2, define the (i, j)-th share as

m(i,j) = ri + (ki − j)hi.

Figure 2.7: The F2-LSSS Sk related to the affine subspace Wk ⊆ Fn
2

(ideal case).

The main property of the LSSS Sk, as proved in [28], is that their access structures
are the families ΓWk

defined by the minimal sets

min ΓWk
= {{(1, b1), . . . , (n, bn)} : (b1, . . . , bn) ∈Wk} .

IfA ∈ ΓWk
, letA′ ⊆ A be an element of min ΓWk

of the formA′ = {(1, b1), . . . , (n, bn)},
where b = (b1, . . . , bn) ∈ Wk. Then, we can define the function ReconstructSk on
the shares (m

(i,j)
k)(i,j)∈A of the message mk as

ReconstructSk
(

(m
(i,j)
k)(i,j)∈A

)
=

n∑
i=1

m
(i,bi)
k

To see that this function effectively retrieves mk, note that

n∑
i=1

m
(i,bi)
k =

n∑
i=1

(ri + (ki − bj)hi) =
n∑
i=1

ri + 〈k− b,h〉 = mk

since
∑n

i=1 ri = mk, k,b ∈Wk (so k− b ∈ V) and h ∈ V ⊥.
We are now in position to define the OT combiner in [28]. To choose a given

message index b, the receiver Bob executes π.Choose(b) to generate a sharing of b
for Σ, and he sends each share to a different server. Then, the sender Alice executes
π.Send(m0,m1) to obtain a sharing of the messagem0 for S0 and of the messagem1 for
S1. She concatenates these 4n shares in a particular way into 2n messages, and sends
them in pairs to each of the n servers. Finally, Bob executes π.Reconstruct on the
received shares, which retrieves mb by internally using the ReconstructSb

function.
This construction is, in fact, identical to ours for the case q = 2. See Figure 2.8 for
an explicit description of this OT combiner.

18 Chapter 2. Preliminaries

Baseline OT Combiner [28] in the Ideal Case

π.Choose(b): Given b ∈ F2, compute a sharing [b]Σ = (b1, . . . , bn) of b using Σ.
Note that each bi ∈ F2 because Σ is ideal.
Output (b1, . . . , bn).

π.Send(m0,m1): Compute a sharing m0 for S0

[m0]S0 =
(
m

(i,j)
0

)
(i,j)∈Pn,2

and a sharing m1 for S1

[m1]S1 =
(
m

(i,j)
1

)
(i,j)∈Pn,2

.

Output (uji)(i,j)∈Pn,q
, where uji = m

(i,j)
0 ‖m(i,j)

1 .

π.Reconstruct(b, (u1, . . . , un)): Parse each ui as ui = m
(i,bi)
0 ‖m(i,bi)

1 .

If b = 0, retrieve m0 by evaluating

ReconstructS0
(

(m
(i,bi)
0)i∈Pn

)
.

If b = 1, retrieve m1 by evaluating

ReconstructS1
(

(m
(i,bi)
1)i∈Pn

)
.

If the reconstruction fails at any step, output 0.
Otherwise, output the reconstructed message mb.

Figure 2.8: The OT combiner by Cascudo et al. [28] (ideal case).

Non-Ideal Case

Now we briefly discuss the general case where Σ may not be an ideal F2-LSSS, so
the shares generated using Σ may not be bit-sized. Hence, the i-th share space Ei
of Σ may have dimension `i ≥ 1, and we denote Ei = F`i2 . Let ` =

∑n
i=1 `i be the

complexity of Σ.
To generalize the previous construction to the non-ideal case, Cascudo et al. [28]

think of the shares for Σ as `-bit strings (instead of n-tuples of F`12 × · · · × F`n2).
Therefore, W0 and W1 are thought as subspaces of F`2, and the Fq-LSSS S0,S1 (which
have P`,2 as their set of participants) and the OT combiner (which may use `i instances
of each of the n OT candidates Si, so it is `-server) are built from Σ exactly as in
the previous section. In this work, we also follow this approach (cf. Section 3.2). See
[28][Appendix C] for more details.

2.4.3 Correctness Definition

The correctness property of OT combiners refers to the fact that, in the eyes of the
receiver Bob, the produced protocol should always implement the OT functionality
correctly. To define correctness, we need to consider two scenarios: one where the
sender Alice follows the protocol honestly, and one where she may act maliciously.

In the first scenario all participants behave honestly. Here, we must ensure that,
assuming that all servers correctly implement the OT functionality and that parties
follow the protocol honestly, the protocol produced by the combiner implements the
OT functionality correctly. Hence, we have to show that the message retrieved by

2.4. OT combiners 19

Bob in the execution of the OT combiner is exactly the one that he should receive as
per the OT functionality.

This first approach to correctness is expressed by the zero-error property, which
we formalize in the following definition.

Definition 8. An OT combiner π is zero-error if for every message index b ∈ Fq and
for any q messages m0, . . . ,mq−1 we have that

mb ← π.Reconstruct(b, (ub11 , . . . , u
bn
n)),

where (b1, . . . , bn)← π.Choose(b) and (uji)(i,j)∈Pn,q
← π.Send(m0, . . . ,mq−1).

In the second scenario, we consider a malicious sender Adv and an honest receiver
B. We assume that Adv corrupts a set A ∈ A of servers, from which she can see the
inputs (bi)i∈A of B, and where she can also fix the messages (zi)i∈A that B receives.
Furthermore, she arbitrarily chooses inputs (u0

i , . . . , u
q−1
i)i∈A for the non-corrupted

servers in A.
Here we have to show that, regardless of how the malicious sender generates input

for each server, the obtained protocol is still an OT protocol. In particular, we must
ensure that the message index b chosen by B determines one and only one message,
even if it is malformed (i.e. ⊥, due to the malicious behavior of Alice). In particular,
the received message, which is computed using π.Reconstruct, must exclusively depend
on b (and not on the randomness associated to the sharing of b sent by B).

This second approach to correctness is formalized in the following definition, which
uses the simulation paradigm [37], and which compares the execution of the protocol
in the real world and in the ideal world.

In the real world, Adv and B interact through an OT combiner protocol π. The
receiver B starts by choosing a message index b ∈ Fq, and distributes each element bi of
the output of π.Choose(b) to each server. The adversary Adv is assumed to completely
corrupt every server in a set A ∈ A, and so she sees all the inputs (bi)i∈A of B on those
servers. Since the corruption is malicious, Adv also controls the outputs of servers in
A, and so she chooses which output values zi are received by B for i ∈ A. Servers
i ∈ A are assumed to behave as the ideal FOT functionality, so Adv sends q messages
u0
i , . . . , u

q−1
i to each of them and learns no information from that interaction.

In the ideal world, the whole view and output of Adv is controlled by the simulator
Sim, and Sim and B interact exclusively through the ideal OT functionality FOT .
Because of this, the adversary Adv does not receive anything from the interaction.
By processing all the output that the adversary Adv generates, Sim produces a set
of messages m̃0, . . . , m̃q−1 and handles them to the FOT functionality, which outputs
the message m̃b to B for the requested message index b ∈ Fq.

In order to ensure that π behaves as an OT protocol in this setting, we should
guarantee the indistinguishability between the reconstruction output by B in the real
world and the view of B in the ideal world.

Definition 9. Let π be a 1-out-of-q, n-server OT combiner protocol, and let FOT
denote the ideal 1-out-of-q OT functionality. Let Adv denote the adversary-controlled
malicious sender, which is assumed to corrupt the set of servers indexed by some set
A ∈ A. Let B denote the honest receiver, and let Sim = (Sim1, Sim2) be a stateful
simulator. We define the probabilistic experiments RealπAdv,B() and IdealFOT

Adv,B,Sim() as
follows:

20 Chapter 2. Preliminaries

RealπAdv,B() :

b← B()

(b1, . . . , bn)← π.Choose(b)(
(uji)i∈A,j∈Fq

, (zi)i∈A

)
← Adv ((bi)i∈A)

output π.Reconstruct
(
b,
(

(ubii)i∈A, (zi)i∈A

))
IdealFOT

Adv,B,Sim() :

b← B()

(ready)← FOT (transfer, b)

(bi)i∈A ← Sim1()(
(uji)i∈A,j∈Fq

, (zi)i∈A

)
← Adv((bi)i∈A)

(m0, . . . ,mq−1)← Sim2

(
(uji)i∈A,j∈Fq

, (zi)i∈A

)
(sent,mb)← FOT (send,m0, . . . ,mq−1)

output mb

We say that π implements the OT functionality correctly for the receiver against active
A-adversaries if, for every set A ∈ A, for all adversarial senders Adv corrupting the
set of servers indexed by A, and for all honest receivers B, there exists a simulator Sim
such that the output values of RealπAdv,B() and IdealFOT

Adv,B,Sim() are identically distributed,
where the probabilities are taken over the random coins of π, Adv, B and Sim.

2.4.4 Security Definition

In this section, we discuss the security definition used to capture the security properties
of our OT combiner construction.

The security notion considered by Cascudo et al. [28] is called unconditional se-
curity. An OT combiner is unconditionally secure if its security rests solely on the
security assumptions of the OT candidate implementations. That is, if, provided the
security of sufficiently many OT candidates holds, the resulting OT protocol is per-
fectly secure. Therefore, unconditional security guarantees that any attack on an OT
combiner must forcibly break the security of sufficiently many of the OT candidate
implementations in order to be successful.

As in [28], an OT combiner is called perfectly secure if it is both unconditionally
secure and zero-error (see Definition 8).

In order to capture the notion of unconditional security, we formalize it into a
simulator-based security definition [37]. We now give the definition of security that
we employ in our work, namely perfect security against active (A,B)-adversaries,
which is adapted from [27, 28] and uses the Universal Composability Framework [53].

Given two adversary structures A,B, our security definition protects against two
types of malicious adversaries: one that corrupts the sender Alice and a set of servers
A ∈ A, and one that corrupts the receiver Bob and a set of servers B ∈ B. This
respectively corresponds to the case that a set A ∈ A of the OT candidates are
insecure for the receiver, and to the case that a set B ∈ B of the OT candidates
are insecure for the sender. To deal with the Alice corruption case, we define the

2.4. OT combiners 21

notion of perfect security for the receiver against active A-adversaries, and in the Bob
corruption case we define the notion of perfect security for the sender against active
B-adversaries.

In the Alice corruption case, we consider a malicious (i.e., active) adversary Adv
that controls the sender Alice, that interacts with an honest receiver B, and that is
able to eavesdrop and fully operate each server in a set A ∈ A. Our security aim here
is to protect the confidentiality of the receiver’s choice b ∈ Fq. Hence, the ability to
corrupt the servers in A ∈ A must give Adv no information on b.

This definition uses the simulation paradigm [37], and compares the execution of
the protocol in the real world and in the ideal world.

In the real world, Adv and B interact through an OT combiner protocol π. The
setting of this experiment is equivalent to that of Definition 9.

In the ideal world, the whole view and output of Adv is controlled by the simulator
Sim, and Sim and B interact exclusively through the ideal OT functionality FOT .
Because of this, the adversary Adv does not receive anything from the interaction.

To provide security against malicious senders, Sim takes all the information viewed
by Adv in the ideal world, which is the one herself produced, so as to transform it
to a view that should be indistinguishable to the information seen by Adv in the real
world, which includes the private inputs of B on the corrupted servers.

Definition 10. Let π be a 1-out-of-q, n-server OT combiner protocol, and let FOT
denote the ideal 1-out-of-q OT functionality. Let Adv denote an adversary-controlled
malicious sender, which is assumed to corrupt all the servers indexed by some set
A ∈ A. Let B denote an honest receiver, and let Sim = (Sim1, Simout) be a stateful
simulator. We define the probabilistic experiments RealπAdv,B() and IdealFOT

Adv,B,Sim() as
follows:

RealπAdv,B() :

b← B()

(b1, . . . , bn)← π.Choose(b)(
(uji)i∈A,j∈Fq

, (zi)i∈A

)
← Adv ((bi)i∈A)

output
(

(bi)i∈A, (u
j
i)i∈A,j∈Fq

, (zi)i∈A

)
IdealFOT

Adv,B,Sim() :

b← B()

(ready)← FOT (transfer, b)

(bi)i∈A ← Sim1()(
(uji)i∈A,j∈Fq

, (zi)i∈A

)
← Adv((bi)i∈A)

output Simout

(
(uji)i∈A,j∈Fq

, (zi)i∈A

)
We say that π is perfectly secure for the receiver against active A-adversaries if,
for every set A ∈ A, for all adversarial senders Adv corrupting the set of servers
indexed by A, and for all honest receivers B, there exists a simulator Sim such that
the output values of RealπAdv,B() and IdealFOT

Adv,B,Sim() are identically distributed, where
the probabilities are taken over the random coins of π, Adv, B and Sim.

In the Bob corruption case, we consider a malicious (i.e., active) adversary Adv
that controls the receiver Bob, that interacts with an honest sender A, and that is able

22 Chapter 2. Preliminaries

to eavesdrop on and fully operate each server in a set B ∈ B. Our security aim here
is to protect the confidentiality of the sender’s messages m0, . . . ,mq−1. Hence, the
ability to corrupt the servers in B ∈ B must give Bob no information on m0, . . . ,mq−1

other than possibly one chosen message. As the previous definition, this definition
uses the simulation paradigm [37] and compares the execution of the protocol in the
real world and in the ideal world.

In the real world, A and Adv interact through an OT combiner protocol π. The
sender A, who is assumed to act honestly, holds messages m0, . . . ,mq−1 and generates
the input u0

i , . . . , u
q−1
i that is sent to each server Si. The adversary Adv is assumed

to completely corrupt every server in a set B ∈ B, and so he sees all the inputs
(uji)i∈B,j∈Fq . He also acts as the receiver, generating an input bi for the rest of servers
i ∈ B. Since the servers i ∈ B are assumed to behave as the ideal FOT functionality,
Adv receives (ubii)i∈B and learns no other information from that interaction.

In the ideal world, the whole view and output of Adv is controlled by the simulator
Sim, and Sim and A interact through the ideal OT functionality FOT . By processing
all the output that the adversary Adv generates, Sim produces a message index b̃ and
handles it to the FOT functionality. Then, after the sender A has sent the messages
m0, . . . ,mq−1 to FOT , the adversary Adv receives the messagemb̃. To provide security
against malicious receivers, Sim takes all the information viewed by Adv in the ideal
world, so as to transform it to a view that should be indistinguishable to the one of
the real world.

Definition 11. Let π be a 1-out-of-q, n-server OT combiner, and let FOT denote
the 1-out-of-q OT functionality. Let Adv denote an adversary-controlled malicious
receiver, which is assumed to corrupt all the servers indexed by some set B ∈ B. Let
A denote an honest sender, and let Sim = (Sim1, Sim2, Simout) be a stateful simulator.
We define the probabilistic experiments RealπA,Adv() and IdealFOT

A,Adv,Sim() as follows:

RealπA,Adv() :

(m0, . . . ,mq−1)← A()

(uji)(i,j)∈Pn,q
← π.Send(send,m0, . . . ,mq−1)

(bi)i∈B ← Adv
(

(uji)i∈B,j∈Fq

)
output

(
(uji)i∈B,j∈Fq , (u

bi
i)i∈B, (bi)i∈B

)
IdealFOT

A,Adv,Sim() :

(uji)i∈B,j∈Fq ← Sim1()

(bi)i∈B ← Adv
(

(uji)i∈B,j∈Fq

)
b̃← Sim2

(
(bi)i∈B

)
(ready)← FOT (transfer, b̃)

(m0, . . . ,mq−1)← A()

(sent,mb̃)← FOT (send,m0, . . . ,mq−1)

output Simout

(
b̃,mb̃, (bi)i∈B

)
We say that π is perfectly secure for the sender against active B-adversaries if, for ev-
ery B ∈ B, for all adversarial receivers Adv corrupting the set of servers indexed by B,
and for all honest senders A, there exists a simulator Sim such that the output values

2.4. OT combiners 23

of RealπA,Adv() and IdealFOT
A,Adv,Sim() are identically distributed, where the probabilities are

taken over the random coins of π, A, Adv and Sim.

The two previous definitions make up the security definition considered in this
work, namely perfect security against active (A,B)-adversaries. We formally state
this in the next definition.

Definition 12. Let π be a 1-out-of-q, n-server OT combiner, and let A,B ⊆ 2Pn . We
say that π is perfectly secure against active (A,B)-adversaries if it is both perfectly
secure for the sender against active B-adversaries and for the receiver against active
A-adversaries.

Finally, we state a result that characterizes the pairs (A,B) of adversary structures
for which perfectly secure OT combiners are known to be impossible to attain.

Proposition 13 ([54]). If (A,B) is not an R2 pair of adversary structures, then
perfectly secure OT combiners against active (A,B)-adversaries cannot exist.

25

Chapter 3

One-out-of-q OT Combiners

In this chapter we present our research contributions. We introduce our 1-out-of-q OT
combiner, which can be seen as an extension of the OT combiner in [28] to the 1-out-
of-q scenario. In this scenario, the produced OT functionality takes q ≥ 2 messages
m0, . . . ,mq−1 ∈ Fq from Alice and an element b ∈ Fq from Bob, and outputs the
message mb to Bob.

This chapter is divided in two sections. For the sake of simplicity, and follow-
ing [28], in Section 3.1 we start by introducing a simplified version of our construc-
tion, where the adversary structure A of the security definition admits an ideal Fq-
linear secret sharing scheme. Next, in Section 3.2 we describe our construction in
full generality, thus achieving an OT combiner with perfect security against active
(A,B)-adversaries, where (A,B) denotes an R2 pair of adversary structures.

3.1 Ideal Case

The described 1-out-of-q OT protocol is proven secure against any (A,B)-adversary
(see Definition 12), where A,B ⊆ 2Pn is any pair of R2 adversary structures such
that A admits an Fq-LSSS. Throughout this section, we assume that the pair (A,B)
of adversary structures is fixed, and that the adversary structure A admits an ideal
Fq-LSSS Σ. The efficiency of our OT combiner is affected by the size of the shares
of Σ, and it is best in this ideal case. We note that the characterization of adversary
structures that admit Fq-LSSS with small share sizes is an open problem in secret
sharing. See Section 2.3.1 or [44] for more details.

This section is organized as follows. In Section 3.1.1 we develop the necessary tools
to extend the previous scheme of [28] to suit our purposes. Then, in Section 3.1.2 we
explicitly describe our 1-out-of-q OT combiner for the particular case where A admits
a perfect ideal Fq-LSSS. Finally, in Sections 3.1.3 and 3.1.4, we respectively provide
proofs of the correctness and of the security of our construction.

3.1.1 OT-Compatible Secret Sharing Schemes

Let A ⊆ 2Pn be an adversary structure on the set Pn = {1, . . . , n}, and let Σ be an
ideal Fq-LSSS for the set Pn of n participants with A as its adversary structure. As
in [28], the scheme Σ are used by the receiver Bob to request the message with the
selected index b ∈ Fq, simply by generating a sharing [b]Σ = (b1, . . . , bn) of b under Σ
and sending each share bi ∈ Fq to the corresponding server Si.

Denote by V ⊆ Fnq the vector space consisting of all the sharings of 0 under the
scheme Σ. Given any b ∈ Fq, let Wb ⊆ Fnq be the affine subspace of sharings of b for
Σ. Note that, by this definition, V = W0. Since Σ is an Fq-LSSS, we can express
Wb = b + V , where b = [b]Σ is a sharing of b for Σ. We can also express Fnq as the
disjoint union Fnq = W0 ∪ · · · ∪Wq−1.

26 Chapter 3. One-out-of-q OT Combiners

In order to let Alice send the messages m0, . . . ,mq−1 to each server, our construc-
tion follows the strategy of [28] and makes use of secret sharing schemes that are
related to affine subspaces W ⊆ Fnq . All such schemes proposed here are defined on
the set of nq participants Pn,q = Pn × Fq. We also consider the partition

Pn,q = P1 ∪ . . . ∪ Pn,

where Pi = {(i, 0), (i, 1) . . . , (i, q − 1)} for i = 1, . . . , n.
The next definition associates an access structure ΓW to each W ⊆ Fnq .

Definition 14. Let q > 1 and let W ⊆ Fnq . We define ΓW as the access structure on
Pn,q determined by the minimal sets

min ΓW = {{(1, b1), (2, b2), . . . , (n, bn)} : b = (b1, b2, . . . , bn) ∈W} .

This definition generalizes the access structures of the Fq-LSSS S0,S1 of the OT
combiner of [28] (see Section 2.4.2). In detail, recall that the first step of their OT
combiner consists in Bob taking a selected message index b ∈ F2 and a sharing [b]Σ =
(b1, . . . , bn) ∈ Wb of b using an ideal F2-LSSS Σ, and then sending each share bi to
server Si. In turn, Alice generates two sharings [mk]S0 = (m

(i,0)
k)i∈Pn and [mk]S1 =

(m
(i,1)
k)i∈Pn of mk for each k ∈ F2 by using the ideal F2-LSSS S0,S1 for ΓW0 and ΓW1 ,

and distributes the messages m(i,0)
0 ‖m(i,0)

1 ,m
(i,1)
0 ‖m(i,1)

1 to each server Si. At the end
of the protocol, assuming Alice behaved honestly, Bob receives the shares m(i,bi)

k for
i = 1, . . . , n. The reconstruction of mb is then possible, since the legitimately received
shares m(1,b1)

b , . . . ,m
(n,bn)
b of mb correspond precisely to a minimal set of the access

structure ΓWb
.

In the 1-out-of-q scenario, the sender Alice holds q messages m0, . . . ,mq−1. To
generalize the construction in [28] to this scenario, we would need to instantiate q
Fq-LSSS S0, . . . ,Sq−1 on the set of participants Pn,q = Pn × Fq, where Sk has access
structure ΓWk

for each k ∈ Fq. Then, Alice would generate an independent sharing

[mk]Sk = (m
(i,j)
k)(i,j)∈Pn,q

of each message mk, and she would send exactly q of these shares, m(i,0)
k , . . . ,m

(i,q−1)
k ,

to each OT server Si for each message mk. Since this requires exactly q shares per
server, we would need the Fq-LSSS Sk for ΓWk

to be ideal for each k ∈ Fq.
In [28] Cascudo et al. prove that, if W ⊆ Fn2 is an affine subspace, then the access

structure ΓW described above always admits an ideal F2-LSSS. However, in general,
given an affine subspace W ⊆ Fnq , ideal Fq-LSSS for the access structure ΓW are not
expected to exist. While Fq-LSSS are guaranteed to exist for any such access structure
thanks to [48], the ideality requirement may prove harder to obtain. Hence, we can
not just take the course of action described above.

The main idea of this work is that, instead of aiming for Fq-LSSS with access
structures of the form ΓW , it is possible to relax the conditions on the access structure
and still be able to construct ideal schemes that fit our security needs. We accordingly
propose the notion of W -OT-compatibility.

Definition 15. Let W ⊆ Fnq . Let ∆ ⊆ 2Pn,q be the family of subsets defined by

∆ = {A1 ∪ . . . ∪An : Ai ⊆ Pi and |Ai| = 0, 1 or q for i = 1, . . . , n}.

3.1. Ideal Case 27

We say that an access structure Γ ⊆ 2Pn,q is W -OT-compatible if Γ ∩ ∆ = ΓW ∩
∆. Similarly, we say that a secret sharing scheme is W -OT-compatible if its access
structure is W -OT-compatible.

The motivation behind this definition is the following: the Fq-LSSS to be used by
Alice that we design are built so that an adversary controlling Bob, and possibly some
servers, can learn from each server Si either

• no shares, e.g. in the case where an active adversary corrupts Alice and Si,

• one share, e.g. in the case that the server Si is not corrupted, or

• all q shares sent to Si, in the case that an adversary corrupts Bob and Si.

In particular, the obtained Fq-LSSS Sk satisfy the condition that the knowledge
of any two distinct shares sent to server Si leads to the knowledge of all q of them.
Under this assumption, the shares that an adversary controlling Bob is able to see
in any execution of the OT combiner are always determined by some subset of ∆.
Therefore, even if the obtained Fq-LSSS to be used by Alice has an access structure Γ
other than ΓW , it serves our security purposes as long as Γ coincides with ΓW when
restricting it to ∆. That is, as long as it is W -OT-compatible.

We now give an example to make the last definitions clear.

Example 16. Let n = q = 3. Then,

P1 = {(1, 0), (1, 1), (1, 2)} ,
P2 = {(2, 0), (2, 1), (2, 2)} ,
P3 = {(3, 0), (3, 1), (3, 2)} ,
P3,3 = P1 ∪ P2 ∪ P3

∆ = {A ⊆ P3,3 : |A ∩ Pi| = 0, 1 or 3 for i = 1, 2, 3}.

Note that |∆| =
((

3
0

)
+
(

3
1

)
+
(

3
3

))3
= 125. Let W ⊆ F3

3 be the affine subspace defined
by W = k + V , where

k = (1, 1, 1)

V = 〈(1, 0, 2)〉F3 = {(0, 0, 0), (1, 0, 2), (2, 0, 1)} ,

so W = {(1, 1, 1), (2, 1, 0), (0, 1, 2)}. The access structure ΓW on P3,3 is defined by the
minimal sets

min ΓW = {{(1, 1), (2, 1), (3, 1)}, {(1, 2), (2, 1), (3, 0)}, {(1, 0), (2, 1), (3, 2)}} .

We note that ΓW is W -OT-compatible. Now, consider the access structures Γ1,Γ2,Γ3

on P3,3 determined by the following minimal sets

min Γ1 = {{(1, 1), (2, 1), (3, 1)}, {(1, 2), (2, 1), (3, 0)}}
min Γ2 = {(2, 1)}
min Γ3 = min ΓW ∪ {(1, 1), (2, 1), (3, 2), (3, 3)}

Since {(1, 0), (2, 1), (3, 2)} is in ΓW ∩ ∆ but not in Γ1, we have that Γ1 is not W -
OT-compatible. As for Γ2, while ΓW ⊆ Γ2, we have sets of Γ2 ∩ ∆, such as P2 or
{(1, 1), (2, 1), (3, 2)}, that do not belong to ΓW . In general, any W -OT-compatible
access structure Γ must satisfy min ΓW ⊆ min Γ.

28 Chapter 3. One-out-of-q OT Combiners

Lastly, we see that Γ3 is W -OT-compatible. The reason is that, for any set A ∈
Γ3 ∩ ∆ that contains {(1, 1), (2, 1), (3, 2), (3, 3)}, we have that (1, 1) ∈ A ∩ P1, that
(2, 1) ∈ A ∩ P2 and A ∩ P3 = P3. Hence, A contains {(1, 1), (2, 1), (3, 1)}, and so
Γ3 ∩ ∆ ⊆ ΓW ∩ ∆. This demonstrates that W -OT-compatible access structures may
have minimal sets outside of min ΓW .

We next state some properties of W -OT-compatible access structures.

Remark 17. If an access structure Γ ⊆ 2Pn,q is W -OT-compatible, then

• {(1, b1), . . . , (n, bn)} ∈ Γ for every b ∈W (in fact, min ΓW ⊆ min Γ),

• {(1, v1), . . . , (n, vn)} /∈ Γ for every v /∈ Fnq \W ,

• Pn,q \ Pi /∈ Γ for i = 1, . . . , n,

• if A ∈ Γ has size |A| = n, then A ∈ min ΓW ,

• if A ∈ Pn,q has size |A| < n, then A /∈ Γ.

Given k ∈ Fq, we instantiate the Fq-LSSS Sk associated to the affine subspace Wk

in Figure 3.1. The scheme Sk is used by Alice to generate the input to each OT server
for a single message. It is defined on the set of nq participants Pn,q and it is Fq-linear
and ideal.

The Secret Sharing Scheme Sk

To share a message m ∈ Fq, first

• let k = (k1, . . . , kn) ∈ Fn
q be a sharing of k using Σ

• sample r1, . . . , rn−1 ∈ Fq uniformly at random, and let rn = m−
∑n−1

i=1 ri

• sample h = (h1, . . . , hn) uniformly at random from V ⊥

For every i ∈ Pn and for every j ∈ Fq, define the (i, j)-th share as

m(i,j) = ri + (ki − j)hi.

Figure 3.1: The Fq-LSSS Sk related to the affine subspace Wk ⊆ Fn
q .

As in [28] (see Section 2.4.2), if A ⊆ Pn,q contains a set A′ ∈ min ΓWk
of the

form A′ = {(1, b1), . . . , (n, bn)}, where b = (b1, . . . , bn) ∈ Wk, we can then define the
function ReconstructSk on the shares (m

(i,j)
k)(i,j)∈A of the message mk as

ReconstructSk
(

(m
(i,j)
k)(i,j)∈A

)
=

n∑
i=1

m
(i,bi)
k

To see that this function effectively retrieves mk, note that

n∑
i=1

m
(i,bi)
k =

n∑
i=1

(ri + (ki − bj)hi) =

n∑
i=1

ri + 〈k− b,h〉 = mk

since
∑n

i=1 ri = m, k,b ∈Wk (so k− b ∈ V) and h ∈ V ⊥.
The following proposition states that the Fq-LSSS Sk satisfies the properties re-

quired for our purposes.

3.1. Ideal Case 29

Proposition 18. For every k ∈ Fq, the secret sharing scheme Sk defined in Figure 3.1
is Fq-linear, perfect, ideal and Wk-OT-compatible.

Before we are able to prove this proposition, we need the following technical lemma.

Lemma 19. Let Fq be a finite field with q ≥ 2 and V ⊂ Fnq be a vector subspace.
Let y1, . . . , yt ∈ Fq. If (y1, . . . , yt, xt+1, . . . , xn) /∈ V for every xt+1, . . . , xn ∈ Fq, then
there exists h ∈ V ⊥ such that y1h1 + · · ·+ ytht = 1 and ht+1 = · · · = hn = 0.

Proof. The lemma holds for t = n since, given y = (y1, . . . , yn) /∈ V , there always
exists an h ∈ V ⊥ such that 〈y,h〉 = 1.

Now, assume that t < n, and that we have y1, . . . , yt ∈ Fq such that

(y1, . . . , yt, xt+1, . . . , xn) /∈ V for all xt+1, . . . , xn ∈ Fq.

By induction hypothesis, for every x ∈ Fq, there exists an hx = (hx1 , . . . , h
x
n) ∈ V ⊥

such that

t∑
i=1

yih
x
i + xhxt+1 = 1

hxt+2 = · · · = hxn = 0.

If hxt+1 = 0, for some x ∈ Fq, then hx satisfies the lemma. Otherwise, let x and x′

be two distinct elements of Fq such that hxt+1 = hx
′
t+1 6= 0. Define

h =
hx − hx

′

hxt+1(x′ − x)
∈ V ⊥.

Since h = (h1, . . . , hn) satisfies ht+1 = · · · = hn = 0 and

y1h1 + · · ·+ ytht =
1

hxt+1(x′ − x)

(
t∑
i=1

yih
x
i −

t∑
i=1

yih
x′
i

)

=
1

hxt+1(x′ − x)

(
(1− xhxt+1)− (1− x′hx′t+1)

)
= 1

we have that h satisfies the lemma.

We next prove Proposition 18.

Proof. In order to share a secret m ∈ Fq in the considered scheme Sk, the sender
chooses r1, . . . , rn−1 ∈ Fq uniformly at random, sets rn = m −

∑n−1
i=1 ri and chooses

h = (h1, . . . , hn) ∈ V ⊥ uniformly at random. The share of participant (i, j) is, then

m(i,j) = ri + (ki − j)hi,

where k = (k1, . . . , kn) is a sharing of k using Σ, and we denote Wk = k + V .
This scheme is ideal, since each participant in Pn,q is assigned a single share in Fq,

and it is Fq-linear.
Now we prove that the access structure Γ of the considered secret sharing scheme

is Wk-OT-compatible.

30 Chapter 3. One-out-of-q OT Combiners

First, we prove that ΓWk
∩ ∆ ⊆ Γ ∩ ∆. Let w = (w1, . . . , wn) ∈ W and set

A = {(1, w1), . . . , (n,wn)}. Since w = k + v for some v = (v1, . . . , vn) ∈ V , we have

∑
(i,j)∈A

m(i,j) =
n∑
i=1

(ri + (ki − wi)hi) =
n∑
i=1

ri − 〈v,h〉 =
n∑
i=1

ri = m

and so {(1, w1), . . . , (n,wn)} ∈ min Γ for every w ∈Wk. Hence, ΓWk
⊆ Γ.

To show that Γ∩∆ ⊆ ΓWk
∩∆ we see that, for every A ∈ ∆, if A /∈ ΓWk

then A /∈ Γ.
Assume, without loss of generality, that A = {(1, v1), . . . , (t, vt)} ∪ Pt+1 ∪ · · · ∪ Pn.
Hence, we have that (v1, . . . , vt, xt+1, . . . , xn) /∈Wk for every xt+1, . . . , xn ∈ Fq. By the
previous lemma, there exist an h = (h1, . . . , hn) ∈ V ⊥ such that

∑t
i=1(vi − ki)hi = 1

and ht+1 = · · · = hn = 0.
By considering such an h ∈ V ⊥ and the following choice of randomness

ri = (vi − ki)hi for i = 1, . . . , t,

ri = 0 for i = t+ 1, . . . , n

we get a sharing of the message m = 1 such that m(i,j) = 0 for every (i, j) ∈ A. The
theorem follows by applying Lemma 5.

3.1.2 Our One-out-of-q OT Combiner in the Ideal Case

Let Σ be an ideal Fq-LSSS for n participants, with adversary structure A ⊆ 2Pn . The
shares generated with this scheme are used by Bob to query each server. Also, denote
by Sk the ideal Fq-LSSS defined previously in Figure 3.1 for k ∈ Fq. Remind that the
scheme Sk is attached to the affine subspace Wk ⊆ Fnq determined by Wk = k + V ,
where k is a sharing of k for the scheme Σ and V ⊆ Fnq is the vector space consisting
of all the sharings of 0 for the scheme Σ.

We are now in position to describe our 1-out-of-q OT combiner in the case that the
adversary structure A admits an ideal Fq-LSSS. The protocol runs between a sender
Alice and a receiver Bob, who communicate through a set of n servers S1, . . . , Sn that
implement the ideal 1-out-of-q OT functionality FOT (described in Figure 2.6). The
proposed construction is defined in Figure 3.2 below.

3.1.3 Correctness Proof

We start with the proof of correctness in the setting where all parties follow the OT
combiner protocol honestly.

Proposition 20. The OT combiner πOT defined in Figure 3.2 is zero-error. That
is, πOT implements the 1-out-of-q OT functionality correctly, provided that both Alice
and Bob are semi-honest.

Proof. If Alice and Bob follow the protocol honestly, at the end of the protocol Bob
receives the values m(1,b1)

b , . . . ,m
(n,bn)
b for some sharing [b]Σ = (b1, . . . , bn) ∈Wb of his

input b. Since Sb isWb-OT-compatible by Proposition 18, the set {(1, b1), . . . , (n, bn)}
is authorized for Sb, and thus Bob can use the algorithm ReconstructSb to reconstruct
the message mb.

Now, we consider the case of Definition 9, where Alice is controlled by an active
adversary Adv.

3.1. Ideal Case 31

Our 1-out-of-q OT Combiner πOT

πOT .Choose(b): Given b ∈ Fq, compute a sharing [b]Σ = (b1, . . . , bn) of b using Σ.
Note that each bi ∈ Fq because Σ is ideal.
Output (b1, . . . , bn).

πOT .Send(m0,m1): For each message mk, independently compute a sharing

[mk]Sk = (m
(i,j)
k)(i,j)∈Pn,q

.

Then, for every (i, j) ∈ Pn,q, compute the values

uji := m
(i,j)
0 ||m(i,j)

1 || · · · ||m(i,j)
q−1 .

Output (uji)(i,j)∈Pn,q
.

πOT .Reconstruct(b, (u1, . . . , un)): Parse each ubii as

ubii = m
(i,bi)
0 ||m(i,bi)

1 || · · · ||m(i,bi)
q−1 ,

where m(i,bi)
k ∈ Fq for each i ∈ Pn.

If b = k, retrieve mb by evaluating

ReconstructSk((m
(i,bi)
k)i∈Pn).

If the reconstruction fails at any step, output 0.
Otherwise, output the reconstructed message mb.

Figure 3.2: Our 1-out-of-q OT combiner πOT in the case where the
access structure A admits an ideal Fq-LSSS Σ.

Proposition 21. Let (A,B) be an R2 pair of adversary structures, and assume that
the adversary structure A admits an ideal Fq-LSSS Σ. Then the OT combiner πOT
defined in Figure 3.2 implements the OT functionality correctly for the receiver against
active A-adversaries (see Definition 9).

Proof. We start by defining the simulator appearing in Definition 9, and we then
compare the output of the ideal experiment to that of the real experiment in the
security definition.

Sim1(): Generate a uniformly random sharing of 0 ∈ Fq,

[0]Σ = (b01, . . . , b
0
n).

Output (b0i)i∈A.

Sim2((uji)i∈A,j∈Fq
, (ui)i∈A): Retrieve, from the state of Sim, the sharing [0]Σ =

(b0i)i∈Pn that was generated in the previous execution of Sim1.

Generate uniformly random sharings of every nonzero element of Fq,

[1]Σ =(b11, . . . , b
1
n),

...

[q − 1]Σ =(bq−1
1 , . . . , bq−1

n),

32 Chapter 3. One-out-of-q OT Combiners

subject to the restriction that bki = b0i for every k ∈ Fq\{0} and for every i ∈ A.
Note that these sharings exist by Equation 2.2, since A is forbidden for Σ. This
may be done by choosing a random sharing [0]Σ first, and then generating the
sharings of the other k ∈ Fq subject to the restriction that bki = b0i for all i ∈ A.
In practice, this requires showing a solution of a compatible system of |A| linear
equations.

Parse each uji as uji = m
(i,j)
0 || · · · ||m(i,j)

q−1 whenever it is possible. If some uji is
not of the specified form (as it has been malformed by Alice), set mk = 0 for
every k ∈ Fq such that bki = j.

For every k ∈ Fq, if mk has not already been set to 0 in the previous step, then
try to reconstruct Alice’s input by executing

ReconstructSk
(
{(m(i,bki)

k) : i ∈ Pn}
)
.

If the reconstruction succeeds, let mk be its output. Otherwise, set mk = 0.

Output (m0, . . . ,mq−1).

In order to prove indistinguishability remind first that, in the real world, Bob
generates a sharing [b]Σ = (b1, . . . , bn) of his input b ∈ Fq. Note that the shares
(bi)i∈A correspond to the set A ∈ A, which is forbidden for Σ. Hence, they are
distributed identically to the A-shares in a uniformly random sharing of any other
b′ 6= b.

Because of the previous observation, the messages
(

(uji)i∈A,j∈Fq
, (zi)i∈A

)
gener-

ated by Adv are identically distributed in both the real and the ideal world.
Also because of the previous observation, the sharing [b]Σ = (b1, . . . , bn) generated

in the real world and the sharing [b]Σ = (bb1, . . . , b
b
n) generated by Sim are indistin-

guishable.
Therefore, the reconstruction process of the messages mb is carried in exactly the

same way in the real world and in the ideal world. This proves indistinguishability.

3.1.4 Security Proof

The following proposition states the security properties of our construction.

Proposition 22. Let (A,B) be an R2 pair of adversary structures, and assume that
the adversary structure A admits an ideal Fq-LSSS Σ. Then the OT combiner πOT
defined in Figure 3.2 is perfectly secure against active (A,B)-adversaries (see Defini-
tion 12).

Before proceeding with a proof, we need to prove the following lemma. Suppose
that an adversary controlling Bob corrupts a set B ∈ B of servers. As a consequence of
this lemma, if the shares (bi)i∈B sent to non-corrupted servers in B do not correspond
to any sharing [b]Σ of b, the adversary can not get any information on the message
mb.

Lemma 23. Let m0, . . . ,mq−1 ∈ Fq be arbitrary messages, and fix independent shar-
ings [mk]Sk = (m

(i,j)
k)(i,j)∈Pn,q

for every k ∈ Fq. Let B ⊆ {1, . . . , n} and (b′1, . . . , b
′
n) ∈

Fnq , and define the set H ⊆ Pn,q by

H = {(i, b′i) : i ∈ B} ∪ {(i, j) : i ∈ B, j ∈ Fq}.

3.1. Ideal Case 33

Fix b ∈ Fq. Then, if the shares (b′i)i∈B are not part of any sharing [b]Σ, the shares

{m(i,j)
k : (i, j) ∈ H, k ∈ Fq}

give no information about mb.

Proof. Since the sharing of every message is done independently, the only shares that
could potentially give any information on mb are (m

(i,j)
b)(i,j)∈H. Hence, we need to

prove that H is forbidden for Sb. Since Sb is Wb-OT-compatible and since H ∈
∆, if H were authorized for Sb then H ∈ ΓWb

, and thus it would contain a set
{(1, b1), . . . , (n, bn)} for some (b1, . . . , bn) ∈ Wb. However, then necessarily bi = b′i for
all i ∈ B, and this would mean that (b′i)i∈B belongs to a sharing [b]Σ, a contradiction.

We can now proceed to the proof of Proposition 22.

Proof. The proof is split in two parts, corresponding to Definitions 10 and 11. In each
case, we define the simulators and compare the output of the ideal experiment to that
of the real experiment.

Perfect security for the receiver against active A-adversaries:

Sim1(): Generate a uniformly random sharing of 0 ∈ Fq,

[0]Σ = (b01, . . . , b
0
n).

Output (b0i)i∈A.

Simout((u
j
i)i∈A,j∈Fq

, (zi)i∈A): Retrieve, from the state of Sim, the sharing [0]Σ =

(b0i)i∈Pn that was generated in the previous execution of Sim1.

Output
(

(b0i)i∈A, (u
j
i)i∈A,j∈Fq

, (zi)i∈A

)
We prove indistinguishability in a similar fashion than in Proposition 21.

Note that the shares (bi)i∈A that the adversary Adv takes as input correspond
to the set A ∈ A, which is forbidden for Σ. Because of this, these shares
are distributed identically to the A-shares in a uniformly random sharing of
any other b′ 6= b (in particular, of 0 ∈ Fq). Moreover, they do not carry any
information on b, so the messages

(
(uji)i∈A,j∈Fq

, (zi)i∈A

)
generated by Adv are

identically distributed in both worlds.

Since the shares (bi)i∈A do not allow to distinguish between the real and the
ideal world, we have proved indistinguishability.

Perfect security for the sender against active B-adversaries:

Sim1(): For every k ∈ Fq, choose m′k ∈ Fq at random and generate the sharing

[m′k]Sk = (m′
(i,j)
k)(i,j)∈Pn,q

.

Then, create the values uji = m′
(i,j)
0 || · · · ||m′(i,j)q−1 for every (i, j) ∈ B × Fq.

Output (uji)i∈B,j∈Fq .

34 Chapter 3. One-out-of-q OT Combiners

Sim2((bi)i∈B): Try to reconstruct the input b of the adversary Adv by executing
the ReconstructΣ function over the input to non-corrupted servers, i.e.,
by executing ReconstructΣ((bi)i∈B).
If the reconstruction succeeds, output the reconstructed message index b̃.
If the reconstruction fails, output ⊥.

Simout(b̃,mb̃, (bi)i∈B): Retrieve, from the state of Sim and for every k, the
messages m′k, the sharings [m′k]Sk = (m′

(i,j)
k)(i,j)∈Pn,q

and the messages
(uji)i∈B,j∈Fq that were generated in the previous execution of Sim1.
Proceed as follows, depending on whether the reconstruction in Sim2 failed
or not:
• If b̃ 6= ⊥, let m̃b̃ = mb̃ and m̃k = m′k for k ∈ Fq \ {b̃}. Then, generate

a sharing
[m̃b̃]Sb̃ = (m′

(i,j)

b̃
)(i,j)∈Pn,q

subject to the restriction that m̃(i,j)

b̃
= m′

(i,j)

b̃
for every (i, j) ∈ B × Fq

(note that this is possible, since B × Fq is forbidden for S0, . . . ,Sq−1).
For every k ∈ Fq \ {b̃}, set

m̃
(i,j)
k = m′

(i,j)
k for every (i, j) ∈ Pn,q.

• If b̃ = ⊥ then, for every k ∈ Fq, let

m̃k = m′k

m̃
(i,j)
k = m′

(i,j)
k for every (i, j) ∈ Pn,q.

Create the values ubii = m̃
(i,bi)
0 || · · · ||m̃(i,bi)

q−1 for every i ∈ Pn.

Output
(

(uji)i∈B,j∈Fq , (u
bi
i)i∈B, (bi)i∈B

)
.

In order to prove indistinguishability we first note that, by Lemma 3, the set B
is authorized for Σ. By the definition of Sk, we see that at least one share per
server is needed to reconstruct a message. Hence, the set B × Fq is forbidden
for S0, . . . ,Sq−1, and so the shares (uji)i∈B,j∈Fq do not hold any information
on the messages m0, . . . ,mq−1. Therefore, the shares (bi)i∈B generated by the
adversary Adv in the real world and in the ideal world are identically distributed.

Now, since B is authorized for Σ, we have two possibilities regarding the shares
(bi)i∈B received by Sim: either they are part of a sharing [b]Σ, or they are not
part of any sharing under Σ (due to the malicious behavior of Adv).

In the first case, Sim2 successfully reconstructs b. The set

{(i, bi) : i ∈ B} ∪ (B × Fq)

is then authorized for Sb and, by Lemma 23, it is forbidden for all the other
Fq-LSSS Sk. Since the sharings for mb generated by Simout are distributed
identically to those of the real world, this proves indistinguishability.

In the second case, Lemma 23 shows that the shares output by Simout give no
information aboutmb. Therefore, since here Simout generates them from random
messages, they obey the same distribution as in the real world, as required.

3.2. Non-Ideal Case 35

3.2 Non-Ideal Case

In this section, we show how our protocol πOT from Section 3.1.2 extends to the
general case where the adversary structure A does not necessarily admit an ideal
Fq-linear secret sharing scheme.

3.2.1 OT-Compatible Secret Sharing Schemes

Let Σ be an Fq-linear secret sharing scheme for n participants with adversary structure
A. Since Σ is now not necessarily ideal, if [b]Σ = (b̃1, . . . , b̃n) is a sharing of b using
Σ, we note that each share b̃i belongs to some vector space Ei = F`iq for some integer
`i ≥ 1. Hence, unlike in the ideal case, b̃i may not correspond to a message index,
and in this case Bob can not just send the share b̃i to each server Si.

Instead, denote by ` =
∑n

i=1 `i the complexity of Σ. Rather than looking at the
sharings (b̃1, . . . , b̃n) as elements of F`1q × · · · × F`nq , we concatenate their components
and we see them as elements of the vector space F`q. Denote the corresponding vector
space isomorphism by

ϕ : F`1q × · · · × F`nq → F`q.

According to this, if Σ = (X0, X1, . . . , Xn), we denote by Σ′ := (X ′0, X
′
1, . . . , X

′
`) the

ideal Fq-LSSS defined by

X ′0 = X0,

X ′i+j−1 = ρj ◦Xi for 1 ≤ i ≤ n and 1 ≤ j ≤ `i,

where ρj : F`iq → Fq is the j-th projection map. That is, [b]Σ′ = ϕ([b]Σ) = (b1, . . . , b`)
for every b ∈ Fq, where each bi ∈ Fq.

As in the previous section, let V ′ ⊆ F`q denote the vector space consisting of all
the sharings of 0 under the scheme Σ′. Given any b ∈ Fq, let W ′b ⊆ F`q be the affine
subspace of sharings of b for Σ′.

Given k ∈ Fq, we instantiate the Fq-LSSS S ′k associated to the affine subspace W ′k
in Figure 3.3. The scheme S ′k is now defined on the set of `q participants P`,q and it
is Fq-linear and ideal.

The Secret Sharing Scheme S ′k

To share a message m ∈ Fq, first

• let k = (k1, . . . , k`) ∈ F`
q be a sharing of k using Σ′

• sample r1, . . . , r`−1 ∈ Fq uniformly at random, and let r` = m−
∑`−1

i=1 ri

• sample h = (h1, . . . , h`) uniformly at random from (V ′)⊥

For every i ∈ P` and for every j ∈ Fq, define the (i, j)-th share as

m(i,j) = ri + (ki − j)hi.

Figure 3.3: The Fq-LSSS S ′k related to the affine subspace W ′k ⊆ F`
q.

As in the previous case, if A ⊆ P`,q contains a set A′ ∈ min ΓW ′
k
of the form

A′ = {(1, b1), . . . , (`, b`)}, where b = (b1, . . . , b`) ∈W ′k, we can then define the function

36 Chapter 3. One-out-of-q OT Combiners

ReconstructS′k on the shares (m
(i,j)
k)(i,j)∈A of the message mk as

ReconstructS′k

(
(m

(i,j)
k)(i,j)∈A

)
=
∑̀
i=1

m
(i,bi)
k

To see that this function effectively retrieves mk, note that

∑̀
i=1

m
(i,bi)
k =

∑̀
i=1

(ri + (ki − bj)hi) =
∑̀
i=1

ri + 〈k− b,h〉 = mk

since
∑`

i=1 ri = m, k,b ∈W ′k (so k− b ∈ V ′) and h ∈ V ′⊥.
As a direct consequence of Proposition 18 we have that, for every k ∈ Fq, the

secret sharing schemes S ′k are Fq-linear, perfect, ideal and W ′k-OT-compatible.

3.2.2 Our One-out-of-q OT Combiner in the Non-Ideal Case

We now generalize the 1-out-of-q OT combiner presented previously to the case where
Σ is not ideal. The obtained 1-out-of-q OT combiner is now `-server (instead of
n-server), and it is still single-use and black-box. We describe it in Figure 3.4.

Our 1-out-of-q OT Combiner Protocol π′OT

π′OT .Choose(b): Given b ∈ Fq, compute a sharing [b]Σ′ = (b1, . . . , b`) of b using Σ′.
Note that each bi ∈ Fq because Σ′ is ideal.
Output (b1, . . . , b`).

π′OT .Send(m0,m1): For each message mk, independently compute a sharing

[mk]S′
k

= (m
(i,j)
k)(i,j)∈P`,q

.

Then, for every (i, j) ∈ P`,q, compute the values

uji := m
(i,j)
0 ||m(i,j)

1 || · · · ||m(i,j)
q−1 .

Output (uji)(i,j)∈P`,q
.

π′OT .Reconstruct(b, (u1, . . . , un)): Parse each ubii as

ubii = m
(i,bi)
0 ||m(i,bi)

1 || · · · ||m(i,bi)
q−1 ,

where m(i,bi)
k ∈ Fq for each i ∈ P`.

If b = k, retrieve mb by evaluating

ReconstructS′
k
((m

(i,bi)
k)i∈P`

).

If the reconstruction fails at any step, output 0.
Otherwise, output the reconstructed message mb.

Figure 3.4: Our 1-out-of-q OT combiner π′OT for a general access
structure A.

When considering this extension there is, however, a subtlety to take into account.
We originally assumed that we have n OT implementations at our disposal, and an R2

pair (A,B) of adversary structures representing the capabilities of malicious readers

3.2. Non-Ideal Case 37

and receivers. Now, the adversary structure A′ is a family of subsets of P`. Hence,
in practice, some of the ` servers may correspond to the same OT primitive (for
example, the first `1 servers if `1 ≥ 2). Given A ∈ A, if a malicious sender corrupts
one of such servers, all of the servers implementing the same OT candidate should also
be considered as corrupted and be placed into A. And conversely, if one of the servers
is not corrupted by the sender, none of them should be placed into A. The same
observation applies for the sets B ∈ B of servers corrupted by a malicious receiver.

More formally, note that the set of servers is P`, which is in bijection with

P ′ = {(i, j) : i ∈ Pn, j = 1, . . . , `i}.

Given i ∈ Pn denote P ′i = {(i, j) : j = 1, . . . , `i}, so we can express the disjoint union
P ′ = P ′1∪ . . .∪P ′n. As stated earlier, we may assume that we have n OT candidates at
our disposal, and that the servers in P ′i implement the i-th OT candidate. Since they
implement the same OT candidate, they are either corrupted or noncorrupted. To ac-
count for this, we can replace the adversary structures in our security and consistency
definitions by

A′′ = {∪i∈AP ′i : A ∈ A}, B′′ = {∪i∈BP ′i : B ∈ B}.

Note that, while the actual adversary structure A′ of Σ′ depends on the share spaces
E1, . . . , En of Σ, we know that A′′ ⊆ A′. Therefore, this is consistent with the use of
Σ′. Moreover, since (A,B) is an R2 pair, so is (A′′,B′′).

The notions of correctness and of security introduced earlier, and all their proofs,
translate mutatis mutandis to the non-ideal case by replacing n with `, A and B with
the adversary structures A′′ and B′′, V with V ′, and Wb with W ′b for every b ∈ Fq.

39

Chapter 4

Conclusions

Oblivious Transfer (OT) protocols are fundamental cryptographic primitives, as they
are used to realize several cryptographic constructions such as Multi-Party Computa-
tion protocols, Zero-Knowledge Proofs and Bit Commitment schemes, among others.
An OT protocol involves two parties, a sender Alice and a receiver Bob. In the flavor
of OT protocols considered in this work, called 1-out-of-q OT, Alice holds a set of
q ≥ 2 messages. These OT protocol allow Bob to choose and receive only one of these
messages, while Alice is oblivious to which message he received.

As for the security of OT, perfectly secure OT protocols have been proved impos-
sible to achieve, and all such protocols rely on some sort of security assumption. In
order to mitigate this problem, one can employ OT combiners. Oblivious Transfer
combiners are OT protocols that make internal use of various OT implementations.
As for security, OT combiners are secure as long as sufficiently many of the used OT
implementations are also secure.

The research in OT combiners deals extensively with 1-out-of-2 OT combiners,
and constructions with increasing efficiency and security have been developed (see
Section 1.3).

This thesis tackles OT combiners for 1-out-of-q OT protocols in the case that
q ≥ 2 is a prime integer. In this case, we build a 1-out-of-q OT combiner by extending
the work of Cascudo, Damgård, Farràs and Ranellucci [28], which in turn is based
in the construction by Ishai, Maji, Sahai and Wullschleger [26]. Our OT combiner is
black-box and single-use. The construction in [28], as ours, is proved secure against
malicious adversaries corrupting either one of the parties and a certain set of OT
candidates.

The main obstacle when trying to extend the construction in [28] involves building
an ideal Fq-linear secret sharing scheme for an affine space W ⊆ Fnq . We circumvent
this problem by introducing the notion of W -OT-compatible secret sharing schemes,
and we describe one such a scheme that fits our needs.

We also extend the security and consistency notions of [28] to the 1-out-of-q case,
and we present them in an explicit and formal form. The consistency and the secu-
rity of our construction are proved according to these definitions. In particular, our
construction uses the security notion of [27, 28], called perfect security against active
(A,B)-adversaries. However, it may provide stronger security than the works [27, 28],
because the 1-out-of-q case allows to consider larger adversary structures A,B ⊆ 2Pn

for increasing values of q.
To understand this last claim, we analyze the particularly interesting case where

adversaries are allowed to corrupt at most t servers for some t < n/2, or more generally,
where (A,B) is anR2 pair of adversary structures satisfying

(Pn

t

)
⊆ A,B. In the q = 2

case, by [27], we can choose t = b0.11nc, so that there exists an ideal Fq-LSSS Σ with
access structure A. In our construction, by choosing q ≥ n and t = bn/2 − 1c, we
can always take Σ as the (t + 1)-threshold Shamir Fq-LSSS. Hence, in this case, our

40 Chapter 4. Conclusions

construction is secure against adversaries that corrupt a minority of servers. This
comes into contrast with [54], which prove that unconditionally secure single-use OT-
combiners over small alphabets cannot exist when t = n/2 − O(1). Letting the
alphabet size vary allows to bridge this O(1) gap.

As a research line in the direction of this work, we highlight how ideal F2-multi-
linear secret sharing schemes are used by Cascudo et al. in [27] to build a 1-out-of-2
OT combiner. By using multi-linear secret sharing schemes, the sender Alice creates
a sharing of both messages (m0,m1) at the same time, which consists of 2n shares. In
turn, our construction and [28] require that Alice generates independent sharings of
each message, adding up to 4n shares. Extending their construction to the 1-out-of-q
scenario would thus provide a reduction factor of q in the communication complexity
of the sender, and also in the time complexity of the whole solution.

41

Bibliography

[1] Michael O. Rabin. How to exchange secrets with oblivious transfer, 2005. URL
http://eprint.iacr.org/2005/187. Harvard University Technical, Report 81.

[2] Shimon Even, Oded Goldreich, and Abraham Lempel. A randomized protocol
for signing contracts. Communications of the ACM, 28(6):637–647, June 1985.

[3] Andrew Chi-Chih Yao. Protocols for secure computations. In Proceedings of the
23rd Annual Symposium on Foundations of Computer Science, SFCS ’82, pages
160–164, Washington, DC, USA, 1982. IEEE Computer Society.

[4] Joe Kilian. Founding cryptography on oblivious transfer. In Proceedings of the
Twentieth Annual ACM Symposium on Theory of Computing, STOC ’88, pages
20–31, New York, USA, 1988. ACM.

[5] Joe Kilian, Silvio Micali, and Rafail Ostrovsky. Minimum resource zero-
knowledge proofs. In Gilles Brassard, editor, Advances in Cryptology —
CRYPTO’ 89 Proceedings, pages 545–546, New York, 1990. Springer.

[6] Mihir Bellare and Silvio Micali. Non-interactive oblivious transfer and appli-
cations. In Gilles Brassard, editor, Advances in Cryptology — CRYPTO’ 89
Proceedings, pages 547–557, New York, 1990. Springer.

[7] Bill Aiello, Yuval Ishai, and Omer Reingold. Priced oblivious transfer: How
to sell digital goods. In Birgit Pfitzmann, editor, Advances in Cryptology —
EUROCRYPT 2001, pages 119–135, Berlin, Heidelberg, 2001. Springer.

[8] Benny Chor, Oded Goldreich, and Eyal Kushilevitz. Private information retrieval.
Journal of the ACM, pages 41–50, 1995.

[9] Moni Naor and Benny Pinkas. Oblivious transfer and polynomial evaluation. In
Proceedings of the Thirty-first Annual ACM Symposium on Theory of Computing,
STOC ’99, pages 245–254, New York, USA, 1999. ACM.

[10] Nico Döttling, Daniel Kraschewski, and Jörn Müller-Quade. David & goliath
oblivious affine function evaluation - asymptotically optimal building blocks for
universally composable two-party computation from a single untrusted stateful
tamper-proof hardware token. Cryptology ePrint Archive, Rep. 2012/135, 2012.
URL https://eprint.iacr.org/2012/135.

[11] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems
for non-cryptographic fault-tolerant distributed computation. In Proceedings of
the Twentieth Annual ACM Symposium on Theory of Computing, STOC ’88,
pages 1–10, New York, USA, 1988. ACM.

[12] Benny Chor and Eyal Kushilevitz. A zero-one law for boolean privacy. In Pro-
ceedings of the Twenty-first Annual ACM Symposium on Theory of Computing,
STOC ’89, pages 62–72, New York, USA, 1989. ACM.

http://eprint.iacr.org/2005/187
https://eprint.iacr.org/2012/135

42 BIBLIOGRAPHY

[13] Vipul Goyal, Yuval Ishai, Amit Sahai, Ramarathnam Venkatesan, and Akshay
Wadia. Founding cryptography on tamper-proof hardware tokens. IACR Cryp-
tology ePrint Archive, 2010:153, 2010.

[14] Claude Crépeau and Joe Kilian. Achieving oblivious transfer using weakened
security assumptions (extended abstract). In 29th Annual Symposium on Foun-
dations of Computer Science, pages 42–52, 1988.

[15] Christian Cachin, Claude Crépeau, and Julien Marcil. Oblivious transfer with a
memory-bounded receiver. In Proceedings of the Annual Symposium on Founda-
tions of Computer Science, pages 493–502, 12 1998.

[16] Rafael Dowsley, Jeroen van de Graaf, Jörn Müller-Quade, and Anderson C. A.
Nascimento. Oblivious transfer based on the McEliece assumptions. In Reihaneh
Safavi-Naini, editor, Information Theoretic Security, pages 107–117, Berlin, Hei-
delberg, 2008. Springer.

[17] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for effi-
cient and composable oblivious transfer. In David Wagner, editor, Advances in
Cryptology – CRYPTO 2008, pages 554–571, Berlin, Heidelberg, 2008. Springer.

[18] Charles A. Asmuth and George R. Blakley. An efficient algorithm for constructing
a cryptosystem which is harder to break than two other cryptosystems. Comput-
ers & Mathematics with Applications, 7(6):447–450, 1981.

[19] Yevgeniy Dodis and Jonathan Katz. Chosen-ciphertext security of multiple en-
cryption. In Joe Kilian, editor, Theory of Cryptography, pages 188–209, Berlin,
Heidelberg, 2005. Springer.

[20] Johan Håstad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseu-
dorandom generator from any one-way function. SIAM Journal on Computing,
28(4):1364–1396, March 1999.

[21] Tim Dierks and Eric Rescorla. The Transport Layer Security (TLS) Protocol Ver-
sion 1.1. RFC 4346, April 2006. URL https://rfc-editor.org/rfc/rfc4346.
txt.

[22] Danny Harnik, Joe Kilian, Moni Naor, Omer Reingold, and Alon Rosen. On
robust combiners for oblivious transfer and other primitives. In Ronald Cramer,
editor, Advances in Cryptology – EUROCRYPT 2005, pages 96–113, Berlin, Hei-
delberg, 2005. Springer.

[23] Remo Meier and Bartosz Przydatek. On robust combiners for private information
retrieval and other primitives. In Cynthia Dwork, editor, Advances in Cryptology
- CRYPTO 2006, pages 555–569, Berlin, Heidelberg, 2006. Springer.

[24] Remo Meier, Bartosz Przydatek, and Jürg Wullschleger. Robuster combiners
for oblivious transfer. In Salil P. Vadhan, editor, Theory of Cryptography, pages
404–418, Berlin, Heidelberg, 2007. Springer.

[25] Danny Harnik, Yuval Ishai, Eyal Kushilevitz, and Jesper Buus Nielsen. OT-
combiners via secure computation. In Ran Canetti, editor, Theory of Cryptogra-
phy, pages 393–411, Berlin, Heidelberg, 2008. Springer.

https://rfc-editor.org/rfc/rfc4346.txt
https://rfc-editor.org/rfc/rfc4346.txt

BIBLIOGRAPHY 43

[26] Yuval Ishai, Hemanta K. Maji, Amit Sahai, and Jürg Wullschleger. Single-use
OT combiners with near-optimal resilience. In International Symposium on In-
formation Theory, pages 1544–1548. IEEE, 2014.

[27] Ignacio Cascudo, Ivan Damgård, Oriol Farràs, and Samuel Ranellucci. Resource-
efficient OT combiners with active security. In 15th International Conference on
Theory of Cryptography, Part II, volume 10678 of Lecture Notes in Computer
Science, pages 461–486. Springer, 2017.

[28] Ignacio Cascudo, Ivan Damgård, Oriol Farràs, and Samuel Ranellucci. Server-
aided two-party computation with minimal connectivity in the simultaneous
corruption model. Cryptology ePrint Archive, Report 2014/809, 2014. URL
https://eprint.iacr.org/2014/809.

[29] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding cryptography on
oblivious transfer — efficiently. In Proceedings of the 28th Annual Conference
on Cryptology: Advances in Cryptology, CRYPTO 2008, pages 572–591, Berlin,
Heidelberg, 2008. Springer-Verlag.

[30] Bartosz Przydatek and Jürg Wullschleger. Error-tolerant combiners for oblivi-
ous primitives. In Luca Aceto, Ivan Damgård, Leslie Ann Goldberg, Magnús M.
Halldórsson, Anna Ingólfsdóttir, and Igor Walukiewicz, editors, Automata, Lan-
guages and Programming, pages 461–472, Berlin, Heidelberg, 2008. Springer.

[31] Vinod Vaikuntanathan and Prashant Nalini Vasudevan. Secret sharing and statis-
tical zero knowledge. In Proceedings, Part I, of the 21st International Conference
on Advances in Cryptology – ASIACRYPT 2015 - Volume 9452, pages 656–680,
New York, USA, 2015. Springer-Verlag, Inc.

[32] Amos Beimel and Yuval Ishai. On the power of nonlinear secret-sharing. SIAM
Journal on Discrete Mathematics, 19(1):258–280, May 2005. ISSN 0895-4801.

[33] Moni Naor and Benny Pinkas. Computationally secure oblivious transfer. Journal
of Cryptology, 18(1):1–35, 2005.

[34] Sven Laur and Helger Lipmaa. A new protocol for conditional disclosure of
secrets and its applications. In Jonathan Katz and Moti Yung, editors, Applied
Cryptography and Network Security, pages 207–225, Berlin, Heidelberg, 2007.
Springer.

[35] Vladimir Kolesnikov, Ranjit Kumaresan, Mike Rosulek, and Ni Trieu. Efficient
batched oblivious prf with applications to private set intersection. In Proceed-
ings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security, CCS ’16, pages 818–829, New York, USA, 2016. ACM.

[36] Michele Orrù, Emmanuela Orsini, and Peter Scholl. Actively secure 1-out-of-n
OT extension with application to private set intersection. In Topics in Cryptology
- CT-RSA 2017 - The Cryptographers’ Track at the RSA Conference 2017, San
Francisco, CA, USA, February 14-17, 2017, Proceedings, pages 381–396, 2017.

[37] Yehuda Lindell. How to simulate it - a tutorial on the simulation proof technique.
In Tutorials on the Foundations of Cryptography, 2016.

[38] Ronald L. Rivest, Adi Shamir, and Leonard Adleman. A method for obtaining
digital signatures and public-key cryptosystems. Communications of the ACM,
21(2):120–126, February 1978.

https://eprint.iacr.org/2014/809

44 BIBLIOGRAPHY

[39] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental
game. In Proceedings of the Nineteenth Annual ACM Symposium on Theory of
Computing, STOC ’87, pages 218–229, New York, USA, 1987. ACM.

[40] Claude Crépeau. Equivalence between two flavours of oblivious transfers. In Carl
Pomerance, editor, Advances in Cryptology — CRYPTO ’87, pages 350–354,
Berlin, Heidelberg, 1988. Springer.

[41] Gilles Brassard, Claude Crépeau, and Miklos Santha. Oblivious transfers and
intersecting codes. IEEE Transactions on Information Theory, 42(6):1769–1780,
11 1996.

[42] Claude Crépeau, Gilles Brassard, and Jean-Marc Robert. Information theoretic
reductions among disclosure problems. In 27th Annual Symposium on Founda-
tions of Computer Science (sfcs 1986)(FOCS), volume 00, pages 168–173, 10
1986.

[43] Wen-Guey Tzeng. Efficient 1-out-n oblivious transfer schemes. In David Naccache
and Pascal Paillier, editors, Public Key Cryptography, pages 159–171, Berlin,
Heidelberg, 2002. Springer.

[44] Carles Padró. Lecture notes in secret sharing. IACR Cryptology ePrint Archive,
page 674, 2012. URL http://eprint.iacr.org/2012/674.

[45] Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612–613,
1979.

[46] George R. Blakley. Safeguarding cryptographic keys. In Proceedings of the AFIPS
1979 National Computer Conference, volume 48, pages 313–317. AFIPS Press,
1979.

[47] Oriol Farras. Multipartite Secret Sharing Schemes. PhD thesis, Universitat
Politècnica de Catalunya, 7 2010. URL http://hdl.handle.net/2117/94536.

[48] Mitsuru Ito, Akira Saito, and Takao Nishizeki. Secret sharing scheme realizing
general access structure. Electronics and Communications in Japan, Part III, 72
(9):56–64, 1989.

[49] Robert Robere, Toniann Pitassi, Benjamin Rossman, and Stephen A. Cook. Ex-
ponential lower bounds for monotone span programs. In 2016 IEEE 57th Annual
Symposium on Foundations of Computer Science (FOCS), pages 406–415, 10
2016.

[50] Benny Applebaum, Amos Beimel, Oriol Farràs, Oded Nir, and Naty Peter. Secret-
sharing schemes for general and uniform access structures. In Yuval Ishai and
Vincent Rijmen, editors, Advances in Cryptology – EUROCRYPT 2019, pages
441–471. Springer International Publishing, 2019.

[51] Amos Beimel and Naty Peter. Secret-sharing from robust conditional disclosure
of secrets. Cryptology ePrint Archive, Report 2019/522, 2019. URL https:
//eprint.iacr.org/2019/522.

[52] Oriol Farràs, Jordi Ribes-González, and Sara Ricci. Local bounds for the optimal
information ratio of secret sharing schemes. Designs, Codes and Cryptography,
87(6):1323–1344, 2019.

http://eprint.iacr.org/2012/674
http://hdl.handle.net/2117/94536
https://eprint.iacr.org/2019/522
https://eprint.iacr.org/2019/522

BIBLIOGRAPHY 45

[53] Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. Cryptology ePrint Archive, Report 2000/067, 2000. URL https:
//eprint.iacr.org/2000/067.

[54] Ignacio Cascudo Pueyo, Ronald Cramer, and Chaoping Xing. Bounds on the
threshold gap in secret sharing and its applications. IEEE Transactions on In-
formation Theory, 59(9):5600–5612, 2013.

https://eprint.iacr.org/2000/067
https://eprint.iacr.org/2000/067

	Abstract
	Introduction
	Oblivious Transfer
	OT Combiners
	Related Work
	Our Work
	Outline of the Thesis

	Preliminaries
	Notation and Basic Definitions
	Oblivious Transfer
	Rabin's OT protocol
	One-out-of-two OT
	One-out-of-q OT

	Secret Sharing Schemes
	Linear Secret Sharing Schemes

	OT combiners
	Definition
	Example: Baseline OT Combiner
	Ideal Case
	Non-Ideal Case

	Correctness Definition
	Security Definition

	One-out-of-q OT Combiners
	Ideal Case
	OT-Compatible Secret Sharing Schemes
	Our One-out-of-q OT Combiner in the Ideal Case
	Correctness Proof
	Security Proof

	Non-Ideal Case
	OT-Compatible Secret Sharing Schemes
	Our One-out-of-q OT Combiner in the Non-Ideal Case

	Conclusions
	Bibliography

