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  Resumen del Trabajo (máximo 250 palabras): Con la finalidad, contexto de 
aplicación, metodología, resultados i conclusiones del trabajo. 

Finalidad y contexto. El diagnóstico y pronóstico temprano después de lesiones 
traumáticas de la médula espinal (SCI por sus siglas en inglés) presenta un gran reto 
debido a la complejidad patológica y la heterogeneidad de pacientes. Datos obtenidos 
durante la práctica médica habitual como las analíticas de laboratorio, pueden proveer 
información sobre los procesos patofisiológicos, y tienen potencial para ser usados 
como biomarcadores. Hipotetizamos que la evolución temporal de marcadores en 
sangre después de SCI se puede modelar, y que el resultado de estos modelos se 
puede usar como predictores de características de los pacientes. 

Métodos. Hemos modelado los 20 marcadores en sangre más comunes en un cohorte 
de SCI y traumatismo espinal usando modelos finitos mixtos para determinar distintas 
trayectorias temporales. La probabilidad de pertenecer a un grupo de trayectorias se 
usó como predictores en modelos de machine learning para la predicción de 
características de los pacientes. 

Resultados. Existen distintos grupos de trayectorias no lineales para la mayoría de los 
marcadores estudiados, y estas trayectorias están asociadas con distintas 
características de los pacientes. Además, la probabilidad de pertenecer a distintas 
trayectorias es predictivo de si el paciente va a morir en el hospital, si el paciente 
presenta una lesión medular, y de la severidad de la lesión. 
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Conclusiones. Datos extraídos de la práctica clínica rutinaria se pueden utilizar para 
modelar las trayectorias dinámicas de los marcadores sanguíneos después del SCI. 
Nuestro trabajo sugiere que los cambios temporales de marcadores en sangre pueden 
ser utilizados como biomarcadores para SCI. 

  Abstract (in English, 250 words or less): 

Background: Early diagnostic and prognostication after acute traumatic spinal cord 
injury (SCI) is challenging due to pathology complexities and population heterogeneity. 
Routinely collected data during standard medical practice, such as laboratory analytes, 
can serve as surrogates of underlying pathophysiological processes and therefore be 
used as a biomarker. We hypothesized that distinct temporal trends of blood analytes 
can be modeled after SCI and that those would be predictive of patient characteristics.  

Methods: Using real-world data from available electronic health records, we assembled 
a big-data asset and modeled distinct laboratory analytes measured over time during 
the early hospitalization after acute spine trauma with or without SCI. We fitted 
longitudinal finite mixture models (FMM) to determine distinct group trajectories over 
time on 20 blood analytes commonly measured in these populations. The probability of 
group trajectory membership was used in machine learning models to predict patient 
characteristics. 

Results: We show non-linear heterogeneous temporal trends of blood analytes after 
spine trauma and SCI. These trajectories are associated with different patient 
characteristics. In dynamic prediction experiments, the probability of belonging to a 
specific analyte trajectory is predictive of whether the patient would die in hospital, the 
patient presented with an SCI, and SCI severity. 

Conclusions: Routinely real-world data can be used to model blood analytes' dynamic 
changes after SCI with prediction validity for patient characteristics. Our work suggests 
that temporal blood trends are promising early predictors of SCI pathology. This work 
sets the bases for further developing dynamic biomarkers in neurotrauma and other 
neurological conditions. 
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1 Summary 
 

Background: Early diagnostic and prognostication after acute traumatic spinal cord injury 
(SCI) is challenging due to pathology presentation complexities and population heterogeneity. 
Identifying objective predictors of injury severity and neurological recovery is essential for 
efficient patient management. Routinely collected data during standard medical practice, such 
as laboratory analytes, can serve as surrogates of underlying pathophysiological processes 
and therefore be used as biomarker signatures for diagnostic and prognostication. However, 
these multivariate, dynamic, and heterogenous markers and their intricate relationship to SCI 
clinical pathology require advanced analytical approaches. We hypothesized that distinct 
temporal trends of blood analytes can be modeled after SCI and that those would be predictive 
of patient characteristics. We use longitudinal finite mixture models to study the multivariate 
temporal dynamics of a heterogeneous SCI population to investigate them as biomarkers for 
diagnostic and prognostication severity.  

Methods: Using real-world data from available electronic health records, we assembled a big-
data asset and modeled distinct laboratory analytes measured over time during the early 
hospitalization after acute spine trauma with or without SCI. Specifically, the MIMIC III and IV 
datasets were used to fit longitudinal finite mixture models (FMM) to determine distinct group 
trajectories over time on 20 blood analytes commonly measured in these populations. The 
resulting probability of group trajectory membership was then used in machine learning 
models to predict patient outcomes in an internal cohort as well as an external cohort from the 
TRACK-SCI study. 

Results: The obtained FMM models with more than one class trajectory illustrate 
heterogeneous temporal trends of blood analytes after spine trauma and SCI. These trends 
are non-linear, and for most analytes, the trajectory is better modeled by non-Gaussian 
approximations of the error deviance. These trajectories present distinct temporal evolutions 
and are associated with different patient characteristics. In dynamic prediction experiments, 
the probability of belonging to a specific analyte trajectory is predictive of whether the patient 
would die in the hospital, present with an SCI, and SCI severity. 

Conclusions: Daily real-world data can be used to model blood analytes dynamic changes 
after SCI with prediction validity for patient outcomes. Our work suggests that temporal blood 
trends are promising early predictors of SCI pathology. Here we presented a proof-of-concept 
to test our hypothesis.  

Contributions of this work: This work expands on the current knowledge of blood changes 
early after SCI suggesting methodologies that better capture the non-linear heterogeneous 
dynamics of SCI pathophysiology. To our knowledge, this is the first time that finite mixture 
models have been used to that end. This work also establishes the utility of considering the 
prediction of time trends as potential biomarkers for SCI. We offer the code and the trained 
models to facilitate future development. We hope that his work sets the bases for further 
developing dynamic biomarkers in neurotrauma and other neurological conditions. 
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2 Introduction 
2.1 Context and Justification 
 

This work discusses the analysis of longitudinal biomedical data, specifically in 
determining homogeneous groups of patients with similar temporal patterns, also referred to 
as trajectories. Biological processes, including pathological ones, are dynamic, meaning that 
they change over time. Therefore, pathobiological developments underlying medical 
conditions are also dynamic. Single discrete measures (at a given time point) are often used 
as proxies of the current stage of these processes, limiting the understanding of previous and 
future states. Longitudinal studies collecting the same measures over time are more 
informative than discrete ones because they can describe the temporal evolution of a given 
process. However, an issue with longitudinal studies is that they increase the complexity of 
their analysis due to the higher number of measures and interdependencies. In the last 
decades, a growing body of research has been dedicated to the statistical treatment of 
longitudinal data. A specific way to work with longitudinal measures is to determine different 
temporal trends or trajectories (Nagin, 2014; Ram & Grimm, 2009; van der Nest et al., 2020) 
to categorize patterns by a single categorical variable. A different trajectory pattern then 
describes a group of homogeneous patients with similar temporal progression in a medical 
context. Therefore, finding those groups of trajectories is the problem of clustering (i.e., finding 
entities with high intra-group similarities and inter-group dissimilarity) and dimensionality 
reduction as time variables are reduced to single categorical labels or a small set of 
parameters defining the time trend. This work analyzes temporal laboratory data from a 
specific medical context, spinal cord injury (SCI), using different group-trajectory analytical 
frameworks to determine their potential validity as biomarkers. The following paragraphs 
introduce SCI, the issue of objective diagnosis of SCI damage and its prognostic, and the 
current use of routinely blood markers for SCI prediction. Chapter 3 summarizes the state-of-
the-art of class trajectory analysis concerning this work. 

 

2.1.1 Brief introduction to spinal cord injury 
 

Traumatic spinal cord injury (SCI) causes permanent autonomic (e.g., blood pressure 
dysregulation), sensory (e.g., pain), and motor (e.g., paralysis) dysfunction because of the 
direct damage to spinal cord tissue. It was estimated that there were around 930.000 new SCI 
cases in the world in 2016, with a calculated prevalence of 27 million people worldwide (James 
et al., 2019). Although the number of patients is relatively low compared to other medical 
conditions, SCI has a tremendous personal impact on those suffering from it and their families; 
SCI has an average estimated lifetime cost of millions of dollars per patient (Merritt et al., 
2019). There are no repair treatments for SCI, but an improvement in acute medical 
management has increased patient survival in the last few decades (Kumar et al., 2018). In 
addition, the treatment of chronic symptoms has improved patients’ lives. Nevertheless, 
neurological recovery after injury is limited partly because of the difficulty of accurately 
determining and assessing acute injury characteristics (diagnostic) and predicting patient 
progression (prognostication) (Albayar et al., 2019; Jogia, Kopp, et al., 2021).  

SCI is a complex medical condition (Fig. 1). The initial damage to the spinal cord kills 
neurons, glia, and vascular cells (Ahuja et al., 2017; Alizadeh et al., 2019). It triggers many 
secondary pathophysiological processes like inflammation, excitotoxicity, necrosis, and 
apoptosis, expanding tissue damage for days to weeks and months after injury (Ahuja et al., 
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2017). In addition, factors such as injury location (where the cord is damaged), initial severity 
(how much tissue is destroyed), type of injury (e.g., blunt, penetrating), demographics, medical 
history, comorbidities, among others, greatly contribute to differences between patients’ 
pathology (i.e., clinical presentation)(Failli et al., 2012; Fouad et al., 2021; Jogia, Kopp, et al., 
2021; Liebscher et al., 2022). These factors create severe population heterogeneity, 
complicating patient diagnostic, prognostication, and ultimately acute patient management 
and clinical research. Furthermore, SCIs are dynamic, with symptoms and pathological 
processes rapidly changing as secondary pathophysiology progresses. 

 

2.1.2 The issue of acute SCI diagnostic and prognostic 
 

The complexity of interrelated factors that affect patients’ pathology makes early SCI 
diagnostic and prognostication challenging (Albayar et al., 2019; Jogia, Kopp, et al., 2021). 
Indeed, individuals with similar injury characteristics can have different recovery trajectories 
(Khorasanizadeh et al., 2019). This is important because the acute diagnostic determines 
medical management and predicts patients’ recovery. In addition, poor determination of 
patients’ pathology hinders clinical research and trials by introducing unknown heterogeneity. 
Therefore, reliable diagnostic and prognostication are critical for patients’ care. 

The most common form to determine the location and severity of the injury, two 
definitory features of SCI symptomatology, is through neurological assessment (Jogia, Kopp, 
et al., 2021). However, the results of these neurological assessments early after injury are 
unreliable, even with standardized tests such as the International Standards for Neurological 
Classification of Spinal Cord Injury (ISNCSCI) exam (Betz et al., 2019). The issue is that 
neurological assessments rely on patients’ motor and sensory responses, but those can be 
difficult or impossible to measure depending on whether the patient is responsive. Several 
factors can affect patient responses, including patient intoxication (drugs, alcohol), patient 
consciousness, polytrauma, and the presence of spinal shock; an acute transient depression 
of neurological function below the level of injury (Jogia, Kopp, et al., 2021; Ruiz et al., 2017). 
Moreover, it is common to use these early neurological measures to gauge future patient 

Figure 1. Spinal cord injury complexity. Spinal cord injury clinical presentation is primary determined by the 
neurological level of injury along the spinal cord, the amount of damaged tissue and the specific tissue that is 
damaged. Other factors contributing to clinical presentation are demographics and socioeconomics, genetics, past 
medical history, concurrent comorbidities, and injury temporal processes. All these cause difficulties on determining 
proper diagnostic and prognostic by the only use of clinical assessments. In the blue box, a list of suggested 
objective measures for SCI. 
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recovery. Thus, finding objective measures for early patient diagnostics is vital for medical 
decision-making in current management and translational clinical research.  

The use of quantitative methods that do not depend on patients’ responsiveness for 
diagnostic and prognostication are being investigated (Fig. 1). These include MRI 
neuroimaging (Haefeli et al., 2017; Talbott et al., 2015), time-series physiological measures 
such as blood pressure (Hawryluk et al., 2015; Squair et al., 2017; Torres-Espín et al., 2021), 
and fluid biomarkers (Brown et al., 2020; Harrington et al., 2021; Jogia, Lübstorf, et al., 2021; 
Kwon et al., 2010, 2019; Kyritsis et al., 2021; Leister et al., 2021). Although these are showing 
promising results, these are often time-consuming methods, require highly specialized 
analytical approaches, and are not broadly available for their use, which makes them 
unpractical and not generalizable, at least for the time being (Jogia, Kopp, et al., 2021). In 
response to these limitations, there is an increasing interest in using in-hospital routinely 
collected data as part of the regular patients’ medical management as biomarkers for SCI, 
such as blood laboratory values (Brown et al., 2020; Harrington et al., 2021; Leister et al., 
2021). These have the advantage that they are broadly available, highly standardized across 
clinical centers, are easy and fast to collect, and may reflect real-world clinical scenarios more 
closely than designed data collection studies.  

 

2.1.3 Routinary Blood analytes as biomarkers in SCI 
 

Secondary spinal cord damage triggers pathophysiological cascades of measurable 
events in the blood (Bourguignon et al., 2021; Kyritsis et al., 2021). This is not unique to SCI 
since the blood values of different cells and molecules are indicators of global organ function, 
homeostasis, nutrition, pathophysiological events such as inflammation, and others. Thus, the 
level of different blood markers at different time points after SCI can be proxies for the 
underlying pathophysiology. Then, the question is how well these blood markers relate to SCI 
pathology diagnostic and progression and their utility as biomarkers (Fig. 2). There is a 
growing interest in the SCI research community to investigate this matter following the success 
of other neurological conditions such as Alzheimer’s (Chen et al., 2017; Dong et al., 2019). 

 

 

Figure 2. Schematic diagram of the use of routinely laboratory analytes for SCI patient diagnostic and 
prognostication. Fluid samples such as blood are routinely collected early after injury during hospitalization as 
part of the clinical management process, resulting in asynchronous (non-constant intervals) measures of several 
laboratory analytes. The results of these are collected in electronic health records that can be then used for 
objective diagnostic of acute injury, as well as long-term outcome prognostication. 
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Furlan and colleagues described hematologic abnormalities during the first week after 
SCI in isolated cervical injury patients compared to traumatic controls without SCI. They found 
blood analytes correlating with clinical metrics of injury severity (Furlan et al., 2006). 
Bourguignon and colleagues associated changes in blood markers up to a year after injury 
with injury severity, with more complex injuries associated with more abnormal blood values 
(Bourguignon et al., 2021). Changes in blood analyte levels also relate to developing 
secondary conditions highly prevalent in SCI patients, such as pressure sores (Gurcay et al., 
2009). Further evidence of the relationship between routinely blood analytes and SCI 
pathology is found in studies aiming to investigate the prediction power of distinct blood 
metrics for patients’ neurological recovery. The levels of distinct blood analytes from the first 
few days to a month after injury correlate with neurological outcomes at different posterior 
times up to 12 months, and their use in prognostic models in combination with clinical 
characteristics improves prediction performance (Brown et al., 2020; Harrington et al., 2021; 
Leister et al., 2021). In a detailed analysis, Leister and colleagues found that temporal changes 
in different blood metrics from a few hours to weeks to a year after SCI can predict whether 
patients will walk one year after injury (Leister et al., 2021). Overall, there are convincing 
pieces of evidence suggesting that routinely collected blood analytes are candidate 
biomarkers for SCI diagnostic and prognostication. 

Besides the excitement of the latest reports, there is a significant challenge in 
analyzing blood analytes as biomarkers for SCI: a given analyte’s relation with injury severity, 
location, and neurological recovery is poor (Brown et al., 2020; Harrington et al., 2021). For 
instance, Brown and colleagues showed that the higher association between a single blood 
analyte and neurological assessment scores had a Kandal’s tau of 0.352. That effect size can 
be considered moderate at best and, given the variability of blood analytes, probably 
insufficient to be useful as a biomarker. Indeed, the same authors observed that the initial 
neurological status is the most significant predictor of neurological function at 3 and 12 months 
after injury, with an 𝑅𝑅2 ranging from 0.5 to 0.766, and that blood analytes increased 𝑅𝑅2 at best 
by 0.043 (Brown et al., 2020). Although significant in their study, that performance 
improvement may not justify the clinical utility of blood analytes in isolation.  

One potential explanation for this limited predictive performance is that blood analytes 
are not necessarily direct measures of tissue damage but sensors that integrate the effect of 
different pathophysiological cascades. Kyritsis and colleagues explored this idea using 
advanced transcriptomic analysis, showing that distinct populations of white blood cells early 
after SCI integrate complex transcriptomic signals related to injury severity (Kyritsis et al., 
2021). This may indicate the need to consider multiple analytes and their relationships to 
capture complex interconnected processes. Another possibility is that blood analytes change 
rapidly over time, as well as the initial SCI pathophysiology. Those changes may not be 
synchronous, making it difficult for a single measurement or several measurements that are 
too far away apart to capture SCI pathophysiological dynamics. Moreover, single 
measurements of blood analytes may be more affected by changes induced by other 
physiological reasons and not related to SCI pathophysiology. Another option explaining the 
poor predictivity of blood analytes is that studies on this matter may not consider the plethora 
of potential confounding factors (Jogia, Kopp, et al., 2021) that can generate unobserved 
population heterogeneities, hampering pinpointing the associations between markers and 
outcomes. Thus, the noted three features affecting the robustness of associations between 
blood analytes and outcomes in SCI can be summarized as multidimensionality, temporality, 
and heterogeneity. Here we use data-driven approaches tailored to address those issues at 
once. 
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2.1.4 Multidimensionality, temporality, and heterogeneity of blood analytes in SCI 
 

The previous section described three potential reasons why blood analytes as 
biomarkers in SCI could be challenged: multidimensionality, temporality, and heterogeneity. 
Previous works have anecdotally dealt with those problems as part of their data methodology 
but without much focus on them and in isolation.  

In the case of multidimensionality, Brown and colleagues used principal component 
analysis (PCA) to reduce the number of blood analytes into a small set of composed variables 
or principal components (PCs) (Brown et al., 2020). Each retained PC then reflects different 
correlations among all analytes in independent directions, such that the first PC explains the 
maximal variance in the data, the second the maximal variance left unexplained by the first, 
and so on (Jolliffe & Cadima, 2016). Then, the PCs can be used as a composing biomarker 
(Huie et al., 2019). While this strategy can be helpful in some situations, the application of 
PCA is limited by their assumption that the correlation patterns arrive from a single population, 
that the biological processes proxied by the PCs are independent, and the difficulty in 
managing non-independent observations (e.g., temporal data) (Jiang & Eskridge, 2000). While 
extensions of PCA for dealing with those limitations exist, such as multiple factor analysis 
(Abdi et al., 2013), their utility in SCI biomarker discovery is still to be studied. Prior reports in 
SCI have also analyzed longitudinal changes of different analytes in one form or another. 
Furlan and colleagues compared measures and analytes using one-way analysis of variance 
(ANOVA) with subsequent pairwise contrast between days (Furlan et al., 2006). This approach 
ignores the intra-subject correlation due to repeated measures and considers time a discrete 
measure (see chapter 3.2). Bourguignon and colleagues and Leister and colleagues improved 
the longitudinal analysis of analytes by using linear mixed models to account for subject time 
dependencies and model time trends as continuous (Bourguignon et al., 2021; Leister et al., 
2021). Some limitations of these two previous works are that the analysis only considered 
random intercepts and was limited to linear trends, which may not capture the non-linear 
evolutions of blood analyte changes. In addition, both methods used above (ANOVA and linear 
mixed model) were conducted in a univariate form, limited to a single analyte at the time, and 
do not account for unobserved heterogeneity. 

 A potential analytical approach considering multidimensionality, temporality, and 
heterogeneity is using a family of statistical technics known as multi-class trajectory modeling. 
These methods aim at discovering previously unknown homogenous groups of patients with 
similar temporal profiles of different longitudinal variables (Nagin, 2014; Nagin et al., 2018; 
Ram & Grimm, 2009; van der Nest et al., 2020). 

 

2.2 Objectives 
 

This work's overarching goal is to analyze in-hospital routinely collected blood analytes 
early after SCI to discover different groups of trajectories and their use as biomarkers. In that 
context, the three following aims are defined. 

• Aim 1: To determine group-trajectory for different laboratory analytes using growth mixture 
models and their associations to patient characteristics in an SCI population 

o Aim 1.1: To construct a dataset from available electronic health record databases 
containing daily laboratory values. 
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o Aim 1.2: To summarize all laboratory, clinical, and demographic data through 
exploratory data analysis. This includes summary statistics and visualizations for 
decision-making on data preparation. 

o Aim 1.3: To model the trajectory for each one of the laboratory analytes and 
discover potential distinct trajectory groups 

o Aim 1.4: To uncover the relationship of each trajectory with patient clinical 
characteristics 

• Aim 2: To determine multi-trajectory groups across laboratory analytes using group-based 
multi-trajectory analysis and their associations to patient characteristics 

o Aim 2.1: To model multi-trajectories and potentially discover groups across all 
laboratory analytes 

o Aim 2.2: To uncover the relationship of the multi-trajectory groups with patient 
clinical characteristics 

• Aim 3: To build a predictive model of outcomes considering group trajectory in data from 
an observational study 

o Aim 3.1: To classify a set of new patients from an observational study into 
predicted trajectory groups 

o Aim 3.2: To incorporate the predicted trajectory groups in a predictive model of 
patient neurological outcome 

2.3 Summary of the Methods 
 

This section offers a summary of the methods used in this work. Chapter 4 provides a 
more detailed description of the methodology. 

Data: Three databases are used, two for building trajectory models and one for the 
classification of new patients. For trajectory modeling, we used two different epochs of MIMIC 
(Medical Information Mart for Intensive Care), an extensive single-center database with EHR 
of patients admitted to the Beth Israel Deaconess Medical Center in the USA. The two epochs 
are the MIMIC-III, with 46,520 patients from 2001 to 2012 (Johnson et al., 2016), and the 
MIMIC-IV, with 382,278 patients from 2008 to 2019. Both databases are accessible through a 
data use agreement (DUA) through the PhysioNet project (Goldberger et al., 2000). Both 
databases are de-identified by the data providers, with no risk for patient identification nor the 
requirement of ethical approval. Both MIMIC databases share a core schema structure and 
contain daily in-hospital laboratory analytes and data on clinical presentation, diagnostics, 
procedures, medications, and vitals. A spine trauma and SCI patients cohort is constructed 
using ICD9/ICD10 diagnostic classification codes. For the classification of new patients, we 
used data from 137 patients enrolled in the Transforming Research and Clinical Knowledge 
in Spinal Cord Injury (TRACK-SCI) study (Tsolinas et al., 2020), a longitudinal observational 
cohort study at the Zuckerberg San Francisco General Hospital and at the University of 
California San Francisco. TRACK-SCI collects highly granular in-hospital and post-
hospitalization data, including laboratory assays and long-term neurological outcomes. 

Exploratory analysis: Exploratory data analysis (EDA) is performed to summarize the 
data. Temporal spaghetti and marginal density plots are generated to understand the amount 
of available data, the underlying distribution, the potential presence of outliers, and non-
linearities. We used this information to curate the data, as well as to make decisions before 
modeling. Latent Class Growth Analysis (LCGA) was performed as part of the exploratory 
analysis. LCGA is part of the model-based finite mixture model family, as explained in chapter 
3, with a restrictive set of parameters that can be used as the first approximation of trajectory 
groups’ presence (Nagin, 2014; van der Nest et al., 2020). 
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Trajectory modeling: A growing body of methods and approaches to determine group 
(class, cluster) trajectories, also known as longitudinal clustering. Here we used model-based 
trajectory analysis through longitudinal finite mixture models (van der Nest et al., 2020) of the 
type of growth mixture models (GMM), also known as the latent class mixture model (Proust-
Lima et al., 2017; Ram & Grimm, 2009; van der Nest et al., 2020). GMM model the changes 
of a response variable over time as a latent (unobserved) continuous function in subgroups of 
subjects, where observations at a given time are realizations of that latent function with noise 
(see Chapter 3). GMM is well set for the problem since it allows for aperiodic timepoints 
(observations might be performed at different times across subjects), which is the case for in-
hospital laboratory values. In addition, we used group-based multi-trajectory (GBMT) analysis 
(Nagin et al., 2018) to determine groups of patients that share similar trajectories on all 
considered analytes at the same time. Models are constructed from the MIMIC-III/IV datasets. 
Several models are fitted to explore the parameter space, the number of mixture components, 
non-linear transformations, and link functions. We used the previously described 2-step 
workflow, and the decision process will systematically search for the best (i.e., most 
parsimonious) model (van der Nest et al., 2020). Different likelihood-based information criteria 
(i.e., ICL, BIC) and similar metrics of parsimony will be used to determine the number of 
trajectories, known as class enumeration. After class enumeration, parameters of non-linearity 
would be tuned. Once the model is decided, trajectory membership assignment of a subject 
is done by the trajectory class with a higher posterior probability for that subject. Trajectory 
membership of TRACK-SCI subjects (unseen by the model) is predicted and assigned for the 
trajectory class with a higher probability for each subject. 

Trajectory characterization: Patients’ trajectories were characterized based on 
clinical and demographic features extracted from the databases: age, gender, ethnicity, cohort 
group (SCI with vertebral fracture, SCI without vertebral fracture, spine trauma with no SCI), 
length of hospital stay, whether the patient died in hospital, and the number of ICD diagnostics. 
Differences between trajectory groups were analyzed using ANOVA or t-test for continuous 
variables and Fisher exact test for categorical variables. For each one of the analytes, p-values 
were adjusted for false discovery rate (FDR) by the Benjamini-Hochberg method, and q-value 
is provided. The level of significance was set at q < 0.05. 

Predictive outcome modeling: We designed different experiments to determine the 
analyte trajectories' predictive utility as a biomarker for different outcomes. Since determining 
the best approach for modeling outcomes is out of the scope of this work, a single Machine 
Learning model type was used. 

Software: All this work was performed in R (R Core Team, 2021). For fitting GMM and 
LCGA, we used the R package lcmm (Proust-Lima et al., 2017). For GBMT, we used the R 
package gbmt (Magrini, 2021/2022). Linear models with regularization for prediction are fitted 
using the glmnet and caret R packages (Friedman et al., 2010; Kuhn, 2021; Microsoft and 
Hong Ooi, 2019). Several other packages, such as the meta-package tidyverse (including 
dplyr, ggplot2) are used for data wrangling and EDA. 
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2.4 Planning 
 

This section describes the task, milestones, and calendar for the realization of the TFM.  

Tasks and Milestones 

Aim 1: To determine group-trajectory for different laboratory analytes using growth mixture models and their associations to 
patient characteristics. 
 Aim 1.1: To construct the dataset from available EHR databases 
  Task 1 (T1): To download the database files for MIMIC-III/MIMIC-IV 
  T2: To select the group of patients from MIMIC-III/IV using ICD9/10s for spine trauma 

  T3: To extract, annotate and prepare for analysis the clinical characteristics, demographics, and laboratory data from 
MIMIC-III/IV 

  T4: To select the laboratory analytes to use given the available data 
  T5: To format the TRACK-SCI dataset for analysis 
  Milestone 1 (M1): To have the data ready for analysis 
 Aim 1.2: To summarize all data through exploratory data analysis 
  T6: To summarize the patient characteristics and demographics on a table 
  T7: To plot each analyte over time, as well as its marginal density, and perform data preparation for analysis 
  T8: To determine the time window for analysis, and the modeling parameters 
  M2: To have a good understanding of the data at hand and its modeling requirements 
 Aim 1.3: To model the trajectory for each one of the laboratory analytes and discover potential distinct trajectory groups 

  T9: To fit LCMM models for each one of the laboratory analytes, determining the proper number of groups and 
modeling parameters 

  T10: To describe the final models based on their group trajectories, posterior probabilities, uncertainties, and 
assigned membership 

 Aim 1.4: To uncover the relationship of each trajectory with patient clinical characteristics 

  T11: For each one of the laboratory analytes, to determine the group descriptive summaries of patient 
characteristics and demographics and compare between groups 

  M3 (PEC2): To have trajectory groups and the underlying models 
Aim 2: To determine multi-trajectory groups across laboratory analytes using group-based multi-trajectory analysis and their 
associations to patient characteristics. 
 Aim 2.1: To model multi-trajectories and potentially discover groups across all laboratory analytes 
  T12: To fit GBMT models and select the best fitting one 
  T13: To describe the multi-trajectory group based on their analyte trajectories 
 Aim 2.2: To uncover the relationship of the multi-trajectory groups with patient clinical characteristics 

  T14: To determine the multi-trajectory group descriptive summaries of patient characteristics and demographics and 
compare between groups 

  M4: To have multi-trajectory groups and the underlying models 
Aim 3: To build a predictive model of outcomes considering group trajectory in data from an observational study. 
 Aim 3.1: To classify a set of new patients from an observational study into predicted trajectory groups 

  T15: To obtain the predicted trajectory group for TRACK-SCI for the individual LCMM as well as the multi-trajectory 
GBMT models 

 Aim 3.2: To incorporate the predicted trajectory groups in a predictive model of patient neurological outcome  
  T16: To fit an LM/GLM for neurological outcome prediction, including trajectory groups as features 
  T17: To assess model performance with and without trajectory groups 
  M5 (PEC3): To describe trajectory groups of unseen data and test their performance in patient prognostication 
Dissertation (writing and presentation) 
  T18: Introduction and methodology 
  T19: Exploratory analysis 
  T20: Results and discussion 
  M6: To have the first draft 
  T21: To finish the dissertation 
  T22: Slideshow 
  M7: Dissertation closure and defense 
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Task and Milestones schedule (Gantt chart)  
T/M March April May June 

 W1 W2 W3 W4 W1 W2 W3 W4 W1 W2 W3 W4 W1 W2 W3 W4 
T1                 
T2                 
T3                 
T4                 
T5                 
T6                 
T7                 
T8                 
T9                 

T10                 
T11                 
T12                 
T13                 
T14                 
T15                 
T16                 
T17                 
T18                 
T19                 
T20                 
T21                 
T22                 
M1                 
M2                 

M3 (PEC2)                 
M4                 

M5 (PEC3)                 
M6                 

M7 (PEC4-5)                 

 

2.5 Summary of contributions and outputs 
 

 The present work adds to the body of evidence suggesting blood analyte values 
collected in routine medical practice as biomarkers for SCI. It applies modern temporal trend 
modeling methods (e.g., finite mixture models) and discovers non-linear heterogeneous 
groups of trajectories predicting patient outcomes. In addition, it illustrates the utility of using 
real-world data from the in-hospital daily activity for SCI research. As a result of this work, the 
code and fitted models are provided to facilitate future development. 

 

2.6 Summary of the rest of this document 
 

The rest of the document is organized as follows: Chapter 3 offers a background on 
the state-of-the-art longitudinal data and class trajectory analysis. Chapter 4 describes the 
specific methodology used for this work. Chapter 5 presents the results. Chapter 6 discusses 
the results and puts them into context. Chapter 7 summarizes the work with a conclusion and 
future work. Chapter 8 contains a glossary with definitions of the most relevant terms. Chapter 
9 lists the references. Chapter 10 has extra annexed material left out from the main chapters, 
including the R code reproducing this work. 
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3 State of the art 
 3.1 Longitudinal data analysis, latent growth curve models, and class 
trajectories 
 

Data of the type of multiple time point measurements or observations per subject is 
said to be longitudinal with intra- or within-subject repeated measures over time. Studies 
collecting longitudinal data can provide information on the evolution or progression of 
biomedical processes over time (trajectory) at the individual and the population level. These 
studies introduce dependencies between observed values as intra-subject correlations, which 
need special treatment during statistical analysis (Fitzmaurice & Ravichandran, 2008; Schober 
& Vetter, 2018; Van Der Leeden, 1998). Another consequence of longitudinal studies is that 
variance may change over time (Fitzmaurice & Ravichandran, 2008). These two 
characteristics break two fundamental assumptions that are the basis for standard analytical 
technics such as linear regression models: independence of observation and homogeneity of 
variance. Thus, the analysis of longitudinal data requires special considerations. A traditional 
specialized form of analysis for longitudinal studies with more than two measurements from 
the same subjects is through partitioning variance techniques such as repeated measures 
analysis of variance (RM-ANOVA). These methods perform mean differences for each time 
point with respect to an across-time grand mean, focusing on the pooling subjects within-time 
and the differences between-time (Bock, 1979; Gueorguieva & Krystal, 2004). Therefore, RM-
ANOVA does not model a time trend per se, but time is considered a categorical variable, with 
each time point being its levels (Fig. 3). RM-ANOVA works well in well-designed, relatively 
simple longitudinal experiments; however, they have several limitations. Among others, RM-
ANOVA requires that all subjects have measurements at all time points (it cannot handle 
missing temporal data), does not consider time as a continuous process, and is limited to 
Gaussian distributed errors (Gueorguieva & Krystal, 2004; Krueger & Tian, 2004; Singh et al., 
2013). 

 

A more flexible approach to longitudinal data analysis is through model-based 
techniques that focus on within-subject variation across time, such as latent growth curve 
models (LGMs) (Van Der Leeden, 1998; van der Nest et al., 2020). Several names are used 
in the literature for the same concept, such as growth models, latent trajectory models, curve 
models, or multilevel analysis. Here we use the full name to describe the set of models broadly 
included in the same analytical framework. Longitudinal LGM is different from the traditional 
mean difference methods in that they consider temporal evolution as a latent (unobserved) 
process and the observed measurements as the realization of that process with noise (Fig. 4 
and 5). These models account for changes over time represented as time trends (a.k.a latent 

Figure 3. Schematic 
representation of one-way 
repeated measures ANOVA. (a) 
Representation of the repeated 
measures of a single subject. (b) 
Representation of the variance 
partition for between-time, within-
time, and within-subject. The dotted 
color lines represent the time mean 
for each timepoint respect to the 
grand mean. 
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trajectories or growth curves)(van der Nest et al., 2020). Two general analytical frameworks 
are commonly used for the specification of these models: the linear regression model 
framework (Nagin, 2014; van der Nest et al., 2020), and the Structural Equation Modeling 
(SEM)/factor analysis framework (Ram & Grimm, 2009; Rovine & McDermott, 2018). This 
work focuses on using LGM through linear regression models. 

 

In addition to modeling the temporal trend as a latent process, extensions of LGM can 
consider more than one unknown class (latent class) of homogenous groups of subjects that 
share their temporal trajectories on a heterogenous sample. For a single class, the use of 
LGM is then concerned with modeling the mean trajectory of a single population through the 
probability of the observed values (of the entire sample) conditional to time (Table 1 Eq. 1) 
(Laursen & Hoff, 2006; Van Der Leeden, 1998). Single-class LGM (a.k.a growth curve models; 
GCM) can be extended to known subgroups of subjects (e.g., gender, drug treatment). The 
separated growth trajectories per each subgroup can be modeled by including the subgroup 
and the interaction with time as predictors. When the objective is to identify two or more 
unknown classes of trajectories, the goal is to find unobserved distinct groups of subjects that 
share temporal trends and model their class-specific mean trajectory and the subject-specific 
trajectory. This is the problem of temporal clustering. In LGM, this can be achieved by a 
mixture of conditional probabilities to time where the number of mixture components is a fixed 
parameter (specified by the analyst, Table 1 Eq. 2), thus modeling the mean trajectory per 
class or mixture (Fig. 6)(van der Nest et al., 2020). Furthermore, like other regression models, 
LGM can be extended to include both time-invariant and other time-variant predictors, 
generalized models through link functions, and non-linearities through polynomials (of order 
greater than 1) and splines (Muthen & Asparouhov, 2008; van der Nest et al., 2020). Finally, 
LGM can also handle missing temporal data (Fig. 4), and the subject’s data can be measured 
at different timepoints as time can be subject-specific. 

This work is concerned with the finding of trajectory classes. The following few sections 
will explain mixture LGM through a family of models called finite mixture models (FMM). Since 
these models build upon more simple models such as single-class LGM, we provide an 
overview of their specifications and assumptions. For completeness, we also included model 
specifications for one-way RM-ANOVA. We are only considering univariate and univariable 
models for simplicity, with no other within-subject predictors than time. Furthermore, there is 

Figure 4. Schematic representation of growth curve modeling through a linear mixed model. (a) Repeated 
measures of a single subject modeled as subject-specific linear trend (red line) parametrized by a subject 
intercept (α) and a subject slope (β). This approach allows for missing time data and data collected at different 
time points across subjects. (b) Full sample average trajectory (blue line) parametrized by a population mean 
intercept (𝜇𝜇𝛼𝛼) and a population mean slope (𝜇𝜇𝛽𝛽). (c) Example of polynomial fit to adjust to non-linear trends. 
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an extensive list of non-parametric approaches to longitudinal clustering that are not discussed 
here; see (Genolini et al., 2015; Teuling et al., 2022) for reference. 

Table 1. The conditional probability of Latent Growth Models (LGM) 

General Notation 
𝑦𝑦: single observed measure of the response variable to model 
𝑌𝑌: the vector of observed measure of the response variable to model 
𝑖𝑖: index of the subject. 𝑖𝑖 ∈ {1, … ,𝑛𝑛} where 𝑛𝑛 is the total number of subjects in the sample. 
𝑗𝑗: index the occasion (timepoint) of measurement. j ∈ {1, … , 𝐽𝐽} where 𝐽𝐽 is the total number of timepoints per 
subject. Note that this allows for each subject to be measured at different timepoints. 
𝑘𝑘: index of mixture component. 𝑘𝑘 ∈ {1, … ,𝐾𝐾} 
𝜋𝜋: mixing or class membership probability for 𝑘𝑘, where 𝜋𝜋𝑘𝑘 ≥ 0, ∑ 𝜋𝜋𝑘𝑘𝐾𝐾

𝑘𝑘=1 = 1 

 Model Subject probability function 

Eq. 1 Single-class LGM 𝑃𝑃(𝑌𝑌𝑖𝑖|𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡𝑖𝑖) = ∏ 𝑝𝑝(𝑦𝑦𝑖𝑖𝑖𝑖|𝐽𝐽
𝑖𝑖=1 𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖)* 

Eq. 2 
Multi-class 
(Mixture)  

LGM 
𝑃𝑃(𝑌𝑌𝑖𝑖|𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡𝑖𝑖) = ∑ 𝜋𝜋𝑘𝑘𝐾𝐾

𝑘𝑘=1 ∙ �∏ 𝑝𝑝(𝑦𝑦𝑖𝑖𝑖𝑖|𝐽𝐽
𝑖𝑖=1 𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖;𝑘𝑘)�* 

*Note that these probabilistic models assume conditional independence of the realization of 𝑦𝑦𝑖𝑖𝑖𝑖  to the subject-specific 
random error over time. 

 

3.2 Single-class univariate linear mixed models 
3.2.1 One-way RM-ANOVA model 
 

RM-ANOVA can be specified as a particular case of a mixed effect linear model (Table 
2, eq. 3). The subject is introduced as a random effect, and time is considered a fixed effect 
categorical variable with T times levels. RM-ANOVA assumes that subjects are independent 
draws from a single underlaying population. In addition, the model assumes that random errors 
(residuals) are normally distributed with a mean of 0 and equal variance. It also assumes that 
the random effect of the subject is a normally distributed i.i.d variable with mean 0 and equal 
variance and that both residuals and random subject effects are independent. A complete 
treatment of RM-ANOVA and its assumptions is out of the scope of this work. 

 

3.2.2 Univariate Growth Curve Models (GCM; single-class LGM) 
 

In the regression framework, GCM is specified as a linear mixed effect model where a 
linear model is estimated for each subject with time as a continuous predictor (Table 2, eq. 4). 
These models are also known as multilevel or hierarchical because the model's parameters 
vary at more than one level; in the case of longitudinal data, at the population level trajectory, 
and at the individual subject time trajectory (Van Der Leeden, 1998). Thus, random effects 
(intercept and rate of change coefficients) represent the subject’s linear deviation from the 
average time trend (fixed effects). Random errors represent the measurement error or intra-
subject residuals to the subject-specific model. Like RM-ANOVA, the model assumes that 
subjects are independent draws of a single population. Random effects and errors are 
assumed to be normally distributed, with a mean of 0, and have their own variances and 
covariances among them. Depending on the covariance structure specified, GCM can model 
correlated errors over time (e.g., autoregressive, where an error is correlated with past errors) 
(van der Nest et al., 2020). 
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Table 2. Single-class longitudinal data regression models for univariate analysis 

General Notation 
𝑦𝑦: observed measure of response variable to model 
𝑡𝑡: the time predictor 
𝑖𝑖: index of the subject. 𝑖𝑖 ∈ {1, … ,𝑛𝑛} where 𝑛𝑛 is the total number of subjects in the sample 
𝑗𝑗: index the occasion (timepoint) of measurement. j ∈ {1, … , 𝐽𝐽} where 𝐽𝐽 is the total number of timepoints per 
subject. Note that this allow for each subject to be measured at different timepoints. 
𝜖𝜖: random error (residuals) 

 Model Name Scalar model specification Assumptions 

Eq. 3 

One-way RM-ANOVA* 
(linear mixed effects 

model, time is 
categorical) 

𝑦𝑦𝑖𝑖𝑖𝑖 =  𝜇𝜇𝑖𝑖 +  𝑆𝑆𝑖𝑖 +  𝜀𝜀𝑖𝑖𝑖𝑖* 
 

where 𝜇𝜇𝑖𝑖 is the fixed effect of time 𝑗𝑗 (the average at 
each timepoint); 𝑆𝑆𝑖𝑖 is the random effect of subject 𝑖𝑖; 
𝜖𝜖𝑖𝑖𝑖𝑖 is the random error for the subject 𝑖𝑖 and time 𝑗𝑗 

𝑆𝑆𝑖𝑖~𝑁𝑁(0,𝜎𝜎𝑠𝑠2) 
𝜀𝜀𝑖𝑖𝑖𝑖~𝑁𝑁(0,𝜎𝜎𝜀𝜀2) 

 
𝑆𝑆𝑖𝑖 ⊥  𝜀𝜀𝑖𝑖𝑖𝑖 

(independence) 
 

Compound symmetry 
of covariance matrix 

Eq. 4 

GCM**  
(linear mixed effects 

model, time is 
continuous with 

random intercept and 
slope) 

𝑦𝑦𝑖𝑖𝑖𝑖 = 𝑎𝑎𝑖𝑖 +  𝛽𝛽𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖 +  𝜀𝜀𝑖𝑖𝑖𝑖** 
𝑎𝑎𝑖𝑖 =  𝜇𝜇𝛼𝛼 + 𝑏𝑏0𝑖𝑖 
𝛽𝛽𝑖𝑖 =  𝜇𝜇𝛽𝛽 + 𝑏𝑏1𝑖𝑖 

 
where 𝑎𝑎𝑖𝑖  is the intercept for subject 𝑖𝑖; 𝛽𝛽𝑖𝑖  is the slope 
of subject 𝑖𝑖; and 𝑡𝑡𝑖𝑖𝑖𝑖 is the time predictor for subject 𝑖𝑖 

at time 𝑗𝑗. 
 

𝜇𝜇𝑎𝑎 is the average population intercept (fixed effect); 
𝑏𝑏0𝑖𝑖 is the subject 𝑖𝑖 intercept deviation from the 
population (random effect); 𝜇𝜇𝛽𝛽is the average 

population slope (fixed effect); 𝑏𝑏1𝑖𝑖 is the subject 𝑖𝑖 
slope deviation from the population (random effect). 

𝑏𝑏0𝑖𝑖~𝑁𝑁(0,𝜎𝜎𝑏𝑏02 ) 
𝑏𝑏1𝑖𝑖~𝑁𝑁(0,𝜎𝜎𝑏𝑏12 ) 

 
𝜀𝜀𝑖𝑖𝑖𝑖~𝑁𝑁(0,𝜎𝜎𝜀𝜀𝑖𝑖2 ) 

 
𝑐𝑐𝑐𝑐𝑐𝑐(𝑏𝑏0𝑖𝑖 , 𝑏𝑏1𝑖𝑖) ≠ 0 

(random effects can 
covariate) 

 
Covariance matrix can 

assume different 
covariance structure 

*Note that this model can be extended for two or more fixed terms (aka factors, variables) (two-way, three-way,…) 
and their interactions.  
**Note that this model can be extended with other time-invariant, time-variant, and higher-order time predictors. 

 

 

Figure 5. Single class longitudinal study simulated data. (a) Spaghetti plot of the simulated data per 
subject, note that time measurements are asynchronous (taken at non-constant intervals). A homogeneous 
curve trajectory can be observed. (b) Analysis of the simulated data by a one-way RM-ANOVA where time is 
considered a discrete categorical variable and it is not modeled as a time trend. (c) Application of linear mixed 
model to the simulated data with subject-specific random effects (intercept and slope), defining subject-specific 
trends (grey lines) and population trend (red line). (d) Application of linear mixed model with polynomial time 
transformation (of second order) to fit a quadratic trend (blue line). 
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3.3 Finite Mixture Models for multi-class trajectory analysis 
 

Identifying different unobserved classes of trajectory from the same data can be seen 
as the problem of clustering; finding homogeneous groups of patients with share 
characteristics unknown to exist in a heterogeneous population. In the case of trajectory, this 
can be achieved using a family of longitudinal finite mixture models (FMM), where the model 
assumes that the underlaying population is a mixture of latent trajectory classes (Lai et al., 
2016; Ram & Grimm, 2009; van der Nest et al., 2020). Thus, FMM is an extension of LGM to 
multi-class by incorporating a mixture of conditional probabilities on time (Table 1, Eq. 2); a 
post hoc determination of classes with no prior knowledge of different trajectory 
subpopulations. There are distinct model specifications and assumptions for longitudinal FMM 
that receive different names (Nagin, 2014; Proust-Lima et al., 2017; van der Nest et al., 2020). 
In this work, we use two of these particular cases of longitudinal FMM: Latent Class Growth 
Analysis (LCGA) and Growth Mixture Models (GMM) (Jung & Wickrama, 2008; Muthén, 2004; 
Muthen & Asparouhov, 2008; Nagin, 2014; Ram & Grimm, 2009; van der Nest et al., 2020). 

 

3.3.1 Latent Class Growth Analysis (LCGA) 
 

In LCGA, models assume that all subjects within a class follow the estimated mean 
trajectory for that class (no random effect), but these can be different between classes. This 
means that within-class between-subject variations on trajectory are not modeled and treated 
as the residual error for the trajectory of a given class. A typical particular case of LCGA is 
Group-based trajectory models (GBTM). These are a special case of LCGA because it 
assumes that the error variance is the same for all classes and time points (Nagin, 2014), 
which constrains the models even further. Table 3 Eq. 5 shows the specifications of LCGA 
models. It is appreciable in the equation that LCGA does not model between-subject variability 
since the lack of subject-specific parameters (random effects). This makes these models more 
tractable than other FMMs as they usually require a small set of parameters to be estimated, 
which helps model small datasets (Jung & Wickrama, 2008; van der Nest et al., 2020). As a 
trade-off, they usually find more trajectories than models that account for within-class subject 
variability. The obtained trajectories might not represent the subject-level trajectories but the 

Figure 6. Application of FMM to simulated data of samples from different populations with distinct 
longitudinal trends. (a) Simulated longitudinal variable for heterogeneous sample composed of two different 
populations. Each line is a subject. (b) Application of longitudinal FMM with non-linear transformation to the two 
samples with intra-class subject-specific parameters (random effects). Subject trajectories are shown in gray, 
population level mean trajectory (solid line) and confidence interval (dotted line) for each class are shown in red 
and blue. (c) Simulation of three distinct populations to illustrate a less obvious trend choice. Each line is a 
subject. (d) Application of longitudinal FMM with non-linear transformation for three different classes. 
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population class mean (Jung & Wickrama, 2008; Nagin, 2014). Some authors have argued 
that when there is certainty of model convergence and data is big enough, LCGA may serve 
as an initial exploratory and modeling step before using more complex models such as the 
ones discussed below (Jung & Wickrama, 2008; Van Der Leeden, 1998; van der Nest et al., 
2020).  

 

3.3.2 Growth Mixture Models (GMM) 
 

 These models are a mixture of GCM. Table 3 Eq. 6 shows the specifications for GMM, 
where both fixed and random effects are modeled. GMM then finds different latent trajectory 
classes through a mixture of linear mixed effect models, allowing for subject-specific variation 
within a class, and capturing differences between subjects (Jung & Wickrama, 2008; Ram & 
Grimm, 2009; Teuling et al., 2022). These models have higher flexibility than LCGA due to the 
incorporation of the random effects and the possibility to model different variance and 
covariance structures, adapting to complex designs and data generation processes. Thus, two 
main advantages of GMM over LCGA are the modeling of the individual subject and the 
differences between subjects and the major flexibility to accommodate different error 
structures (e.g., temporal autocorrelations). Moreover, once a GMM has been estimated, the 
model can also be used to predict the individual trajectory of an unseen patient and its 
deviation from the mean class trajectory. With the advent of precision medicine, GMM may be 
more appealing than LCGA for subject-specific prediction. These advantages come at the cost 
of increasing model complexity, with a higher number of parameters to estimate, which 
requires bigger sample sizes and computational costs. 

 

Table 3. Multi-class longitudinal data regression models for univariate analysis (constrained to linear trends) 
General Notation 
𝑦𝑦: observed measure of response variable to model 
𝑡𝑡: the time predictor 
𝑘𝑘: index of mixture component (class). 𝑘𝑘 ∈ {1, … ,𝐾𝐾} 
𝑖𝑖: index of the subject. 𝑖𝑖 ∈ {1, … ,𝑛𝑛} where 𝑛𝑛 is the total number of subjects in the sample 
𝑗𝑗: index the occasion (timepoint) of measurement. j ∈ {1, … , 𝐽𝐽} where 𝐽𝐽 is the total number of timepoints per 
subject 
𝜀𝜀: random error (residuals) 
 Model Name Scalar model specification Assumptions 

Eq. 5 
LCGA*  

(fixed effect model per 
class) 

𝑦𝑦𝑖𝑖𝑖𝑖𝑘𝑘 =  𝛼𝛼𝑘𝑘 + 𝛽𝛽𝑘𝑘𝑡𝑡𝑖𝑖𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖𝑘𝑘 * 
 

where 𝛼𝛼𝑘𝑘 is the intercept for class 𝑘𝑘 and 𝛽𝛽𝑘𝑘 is the 
slope of for class 𝑘𝑘. 

 
𝜀𝜀𝑖𝑖𝑖𝑖𝑘𝑘  ∼ 𝑁𝑁(0,𝜎𝜎𝜀𝜀𝑘𝑘𝑖𝑖2 ) 

Eq. 6 
GMM*  

(mixed effect model 
per class)  

𝑦𝑦𝑖𝑖𝑖𝑖𝑘𝑘 =  𝛼𝛼𝑖𝑖𝑘𝑘 + 𝛽𝛽𝑖𝑖𝑘𝑘𝑡𝑡𝑖𝑖𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖𝑘𝑘 * 
𝛼𝛼𝑖𝑖𝑘𝑘 =  𝜇𝜇𝛼𝛼𝑘𝑘 + 𝑏𝑏0𝑖𝑖𝑘𝑘  
𝛽𝛽𝑖𝑖𝑘𝑘 =  𝜇𝜇𝛽𝛽𝑘𝑘 + 𝑏𝑏1𝑖𝑖𝑘𝑘  

 
where 𝛼𝛼𝑖𝑖𝑘𝑘 is the intercept for subject 𝑖𝑖 in class 𝑘𝑘 and 

𝛽𝛽𝑖𝑖𝑘𝑘 is the slope of subject 𝑖𝑖 in class 𝑘𝑘. 
 

𝜇𝜇𝛼𝛼𝑘𝑘  is the average population intercept (fixed effect) for 
class 𝑘𝑘; 𝑏𝑏0𝑖𝑖𝑘𝑘  is the subject 𝑖𝑖 intercept deviation from 
the population (random effect) for class 𝑘𝑘; 𝜇𝜇𝛽𝛽𝑘𝑘  is the 

average population slope (fixed effect) for class 𝑘𝑘; 𝑏𝑏1𝑖𝑖𝑘𝑘  
is the subject 𝑖𝑖 slope deviation from the population 

(random effect) for class 𝑘𝑘. 

 
𝑏𝑏0𝑖𝑖𝑘𝑘  ∼ 𝑁𝑁(0,𝜎𝜎𝑏𝑏0𝑘𝑘2 ) 
𝑏𝑏1𝑖𝑖𝑘𝑘  ∼ 𝑁𝑁(0,𝜎𝜎𝑏𝑏1𝑘𝑘2 ) 

 
𝜀𝜀𝑖𝑖𝑖𝑖𝑘𝑘  ∼ 𝑁𝑁(0,𝜎𝜎𝜀𝜀𝑘𝑘𝑖𝑖2 ) 

 
𝑐𝑐𝑐𝑐𝑐𝑐�𝑏𝑏0𝑖𝑖𝑘𝑘 , 𝑏𝑏1𝑖𝑖𝑘𝑘 � ≠ 0 

(random effects can 
covariate) 

 
Covariance matrix can 

assume different 
covariance structure 

per class 
*Note that this model can be extended with other time-invariant, time-variant, and higher-order time predictors. 
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3.4 A note on non-linear trajectories 
 

It is often the case that the latent growth process of a longitudinal variable is not a line 
but a curve. All models considered so far are linear models, meaning that they are specified 
as linear combinations of variables and parameters, assuming a latent linear trend for the 
trajectories. This can cause the mischaracterization of very curvy trajectories not well 
represented by a line. Curve trajectories can be modeled from the linear framework by 
specifying non-linear transformations on the time variable, such as polynomials of order higher 
than one and splines (Hastie et al., 2009). In the context of the multi-class problem, each 
trajectory class may follow a different curve shape that can be modeled by considering non-
linear transformations over time. Figure 7 illustrates this using a synthetic example where three 
distinctive classes of curve trajectories have been simulated. While a linear trend is acceptable 
for the third class, a line does not reflect the actual changes over time for the first and second 
classes. The model can be improved by considering polynomial transformations. For example, 
Eq. 6 can be extended to a quadratic form (polynomial of order 2) of time by the equation 𝑦𝑦𝑖𝑖𝑖𝑖𝑘𝑘 =
 𝛼𝛼𝑖𝑖𝑘𝑘 + 𝛽𝛽1𝑖𝑖𝑘𝑘 𝑡𝑡𝑖𝑖𝑖𝑖 + 𝛽𝛽2𝑖𝑖𝑘𝑘 𝑡𝑡𝑖𝑖𝑖𝑖2 + 𝜀𝜀𝑖𝑖𝑖𝑖𝑘𝑘  where 𝛽𝛽2𝑖𝑖𝑘𝑘  represents the unknown fixed effect for the square of time. 
Not much gain can be observed for the third class, but the curved model trend adjusts to the 
observed data much better than a line for the first and second class.  

 

Besides the evident flexibility of modeling a curve rather than a line, this comes at the 
expense of increasing model complexity since additional parameters need to be estimated to 
describe the curved shape of the subject-specific and population levels. Given that all these 
transformations use the same underlying model and are estimated through the same method, 
a search for the most parsimonious model can be done through well-described model 
selection methodologies and goodness-of-fit metrics (see model estimation and selection 
section). Thus, model selection can limit unnecessary model parametrization that can cause 
issues such as overfitting, non-convergence, and low precision on the parameter estimates. 

 

3.5 Multivariate trajectories 
 

 So far, we have considered modeling the trajectory of a single measure either in a 
single-class trajectory, analyzing the difference in the trajectory of known subject subgroups 
(i.e., covariates), or discovering unknown trajectory classes. Either way, those approaches are 

Figure 7. Demonstration of 
polynomial fits for a three 
population simulated data with 
distinct trajectories. (a) Simulated 
data for each one the population with 
distinctive curve growth. Each line is 
a subject. (b) Three different 
polynomial class-specific longitudinal 
fits for orders 1, 2 and 3. Poly 1: 
linear, Poly 2: quadratic, Poly 3: 
cubic. 
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univariate since the trend of a single variable is modeled. However, biological and medical 
processes are interconnected, and several events can change over time. For example, the 
numbers of red blood cells and white blood cells may change following similar or distinct 
trends. Thus, it is often the case that studies capture more than one variable measured over 
time for the same group of subjects. In those cases, one may want to analyze trajectories 
across those multiple variables and their dependencies, in other words: a joint multivariate 
analysis of longitudinal variables. There are a few methods that we can take into consideration 
here depending on the research question, whether the variables of interest are continuous, 
categorical, or a mix, if the data is balanced on time or not, and a few other factors and 
assumptions about the data (Genolini et al., 2015; Nagin et al., 2018; Verbeke et al., 2014).  

For completeness, an option is the analysis of variance approach. Similar to the 
univariate one-way repeated measures ANOVA, a one-way repeated measures multivariate 
analysis of variance (RM-MANOVA) can be specified (Krzysko et al., 2014). Similar limitations 
then those described above for RM-ANOVA apply for RM-MANOVA, notably that they are 
limited to balanced data and gaussian measures. Other options are from the latent variable 
framework. We can generally categorize these methods on whether the joint modeling 
assumes a latent structure on the time trend or for all variables at each time point (Verbeke et 
al., 2014). For instance, this latter approach can be achieved through factor analysis or 
principal component analysis frameworks assuming balanced designs for dimensionality 
reduction, followed by a longitudinal analysis of the latent factors or principal components 
(Verbeke et al., 2014). Thus, these methods do not model time on the original variable space 
but on the latent constructs per time point. For methods that model the latent time trajectory, 
the assumption is that the observed longitudinal variables trend are realizations of a single 
longitudinal latent variable growth curve (Nagin et al., 2018; Verbeke et al., 2014). These can 
be specified through, for instance, multivariate extensions of LGM with joint conditional 
probabilities that postulate the interrelationship between longitudinal variables (Nagin et al., 
2018; Verbeke et al., 2014). An in-depth treatment of this topic is out of scope; Verbeke and 
collaborators have published a comprehensive review for joint trajectory modeling (Verbeke 
et al., 2014). 

Multivariate longitudinal analysis can also be extended to the multi-class model to 
determine unobserved homogeneous groups of subjects with similar temporal evolution on 
more than one longitudinal variable. One option is an extension of the joint multivariate LGM 
methods stated above by incorporating a mixture of distributions. Here, different longitudinal 
observed variables are jointly analyzed in the context of finding different groups of subjects 
with similar latent evolutions over a single or multiple joint latent trajectories (Lai et al., 2016; 
Proust-Lima et al., 2017). An alternative approach for the multi-class multi-variable problem is 
the group-based multi-trajectory modeling (GBMT) that Nagin and his colleagues described 
(Nagin et al., 2018). The goal is to find subgroups of patients that share similar trajectories 
across different longitudinal variables. Thus, while the multi-class joint-trajectory approach 
finds subgroups of patients with similar multi-variable latent trends, in the GBMT, subjects are 
grouped based on their similarities to each observed longitudinal variable. Bellow, I discuss 
these two major approaches for multi-class multivariate trajectory analysis. 

 

3.5.1 Multi-class Joint-trajectory LGM modeling 
 

For the joint-trajectory modeling, multivariate mixture LGM can be considered, allowing 
for unbalanced data with missing values over time, mixed types of variables (e.g., one variable 
can be continuous, another count), and non-linear trends. Joint-trajectory LGM is a 
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generalization of univariate LGM for the multivariate case, where the goal is to model and 
analyze the interrelationship of two or more variables that follow similar trends or relate to 
each other in some form over time (whether or not the variables are observer over the same 
period) (Verbeke et al., 2014). The joint model estimates trajectories for the considered 
temporal variables (either for a single class or for a multi-class model) and links them with 
tables of joint conditional probabilities. These tables capture the probability of, for example, 
following a trajectory for variable two, given that the subject is following a trajectory for variable 
1 (Nagin et al., 2018). Therefore, joint-trajectory models can analyze the link between 
trajectories of different variables over time that are thought to be realizations of a common 
underlying process (e.g., temporal inflammation changes after injury; not to confuse with the 
single variable latent process, nor the latent class trajectory). Different model assumptions can 
be considered, namely the shared parameters and random-effects models (Verbeke et al., 
2014). The former assumes the subject-specific parameters to be the same (shared) across 
the different longitudinal variables. This often imposes unrealistic constraints on the 
relationship between longitudinal variables (Verbeke et al., 2014). These assumptions can be 
relaxed by considering the subject-specific parameters (the random effects) to be unique for 
each longitudinal variable. The major drawback of these models is that they become more 
intractable as the number of considered variables to model increases due to the rapid increase 
of pairwise conditional probability that must be calculated and stored during estimation. 

 

3.5.2 Multi-trajectory modeling 
 

Like joint-trajectory models, multi-trajectory models are designed as a multivariate 
approach by simultaneously considering the trajectory of more than one variable over time in 
a multi-class context. The difference is that multi-trajectory models do not estimate the linkage 
between variables in pairwise conditional probability tables, but they estimate trajectory 
classes for multiple variables instead of a single latent growth curve (Nagin et al., 2018). This 
generates classes or groups of subjects that follow similar trajectories over different measured 
variables, independently of whether those variables follow the same trend or not. This 
approach is of recent development as an extension of GBTM (Nagin et al., 2018). The subject-
specific likelihood of multivariable conditional on time is given by a multivariate extension of 
Eq. 2 for 𝑉𝑉 longitudinal response variables column vector (Eq. 7). This indicates that GBMTs 
are estimated as the conditional probability of the multivariable longitudinal response over 
time.  

𝑃𝑃�𝑌𝑌𝑖𝑖1,𝑌𝑌𝑖𝑖2, …𝑌𝑌𝑖𝑖𝑉𝑉�𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡𝑖𝑖� = ∑ 𝜋𝜋𝑘𝑘𝐾𝐾
𝑘𝑘=1 ∙ [∏ 𝑃𝑃𝑣𝑣(𝑌𝑌𝑖𝑖𝑣𝑣|𝑉𝑉

𝑣𝑣=1 𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡𝑖𝑖 , 𝑘𝑘)]   

Where  𝑃𝑃𝑣𝑣(𝑌𝑌𝑖𝑖𝑣𝑣|𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡𝑖𝑖 , 𝑘𝑘) =  ∏ 𝑝𝑝𝑣𝑣(𝑦𝑦𝑖𝑖𝑖𝑖𝑣𝑣 , 𝑘𝑘)𝐽𝐽𝑣𝑣
𝑖𝑖=1      (Eq. 7) 

Note that the 𝑐𝑐 subscript over the 𝐽𝐽 timepoints on the second part of the equation indicates 
that the longitudinal variables can be measured over different times. These models assume 
conditional independence at the individual level, which means that conditional on membership 
to group k, 𝑌𝑌𝑖𝑖𝑉𝑉are independently distributed. 

 
3.6 Model estimation and selection 

 

The models specified above (GCM, LCGA, GMM, joint-trajectory, GBMT) are 
estimated using maximum likelihood approaches (Nagin, 2014; Nagin et al., 2018; van der 
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Nest et al., 2020) of a model-specific likelihood function. As such, they share known 
characteristics of maximum likelihood estimates, such as their robustness and the fact that 
the estimates are normally distributed asymptotically. The general form of the subject-specific 
likelihood function for GCM is shown in Eq. 1 and for FMM in Eq. 2. Specific forms of the 
conditional probability density function can be considered depending on the different nature of 
the outcome metrics. For instance, for Gaussian distributed outcomes, 𝑦𝑦𝑖𝑖𝑘𝑘 (the longitudinal 
sequence for subject 𝑖𝑖 and class 𝑘𝑘) can be assumed to follow a multivariate normal distribution 
with mean 𝜇𝜇𝑘𝑘 and variance Σ𝑘𝑘 [𝑦𝑦𝑖𝑖𝑘𝑘~𝑀𝑀𝑉𝑉𝑁𝑁(𝜇𝜇𝑘𝑘 , Σ𝑘𝑘)] (van der Nest et al., 2020). For count 
outcomes, the zero-inflated Poisson distribution can be used; for censored ones, the censored 
normal distribution, and for binary ones, the logit distribution (Nagin, 2014). The goal then is 
to estimate a set of parameters 𝜃𝜃 that maximizes the likelihood of 𝑦𝑦𝑖𝑖𝑘𝑘 where 𝜃𝜃 are specified by 
the assumed distribution function. In FMM, the mixing probability for the class 𝑘𝑘 (𝜋𝜋𝑘𝑘) also 
needs to be estimated. Thus, the shape and probability of membership to the trajectories are 
determined by the specific parameters of the model (Nagin, 2014).  

In general, if the likelihood function is differentiable, derivative methods for finding 
function maxima can be applied. In most cases, numerical iterative methods are necessary to 
determine or approximate the maximum of the likelihood function, such as gradient descent, 
the Newton-Raphson method, or the Expectation Maximization method (EM) (Jennrich & 
Sampson, 1976; Redner & Walker, 1984). Mixed Mixture models can be maximized using EM 
or Newton-Raphson methods (Proust-Lima et al., 2017; Redner & Walker, 1984). The 
specifics of estimation procedures to find the maximum likelihood estimates are out of scope 
for this work. Commonly, their use depends on their implementations of different software 
packages. The following section focuses on the estimation methods implemented in the 
software used during the realization of this work. 

 
3.6.1 A brief note on software and model estimation 
 

Based on the complexity of FMM approaches, all model options and estimation 
procedures are unlikely to be available in a general-purpose statistical package. Usually, 
estimating FMM would require specialized software; therefore, model specifications, 
estimation algorithms, and model selection methods may be limited by their availability and 
implementation. Van der Nest and colleagues provide a comprehensive list of different 
software for performing FMM available up to 2020, including a summary of their characteristics 
(van der Nest et al., 2020). In this work, we used the R programming language (R Core Team, 
2021) for being a mature scripting language designed explicitly around statistics and data 
science but with extended capabilities for being general-purpose. The specifics of R packages 
used can be found in chapter 4. The main modeling packages used in this work are the lcmm 
R package (Proust-Lima et al., 2017) for fitting univariate multi-class LCGA and GMM and the 
gbmt R package (Magrini, 2021/2022) for fitting GBMT models. 

The lcmm package. The package provides modeling and utility tools for estimating 
latent class mixed models (lcmm) in its linear mixed form and its extension to latent process 
and joint modeling. Maximum likelihood estimation is performed through an iterative procedure 
extended from the Marquardt algorithm, a Newton-Raphson method of finding the solution of 
a function by linear approximations of its gradient. These methods iteratively update the set of 
parameters to estimate using the gradient (partial derivatives for each parameter) of the log-
likelihood function until some criteria are reached, the point at which the algorithm is 
considered to have converged. Lcmm updates the vector of parameters 𝜃𝜃 for the iteration 𝑙𝑙 +
1 using the equation: 

𝜃𝜃𝑙𝑙+1 =  𝜃𝜃𝑙𝑙 − 𝛿𝛿�𝐻𝐻�𝑙𝑙�−1∇(𝐿𝐿(𝜃𝜃𝑙𝑙)) 
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Where 𝛿𝛿 is the step, 𝐻𝐻� is a diagonal-inflated Hessian matrix (containing all second partial 
derivatives), 𝜃𝜃𝑙𝑙 is the set of parameters at iteration 𝑙𝑙 and ∇(𝐿𝐿(𝜃𝜃𝑙𝑙) is the gradient of the log-
likelihood function at iteration 𝑙𝑙 (Proust-Lima et al., 2017). The package uses three criteria for 
convergence: parameter stability, where the parameters estimate of one iteration has changed 
with respect to the previous iteration no more than a given threshold (a.k.a. tolerance); log-
likelihood stability, where the change of log-likelihood between two consecutive iterations is 
smaller than a threshold; and size of derivatives, where the size of the gradient at a given 
iteration is smaller than a threshold. Lcmm requires these three criteria for convergence. In 
addition, the variance-covariance matrix of the maximum likelihood estimates is estimated by 
the inverse of the Hessian matrix. The log-likelihood is given by the sum of the logarithm of 
each subject likelihood function (Eq. 2). The shape of the specific likelihood function in Eq. 2 
is set depending on whether a linear mixed model or a latent mixed process is used. For linear 
mixed models, a multivariate normal density function is used. In the case of latent process 
models, the individual conditional expectation to time is modeled as an extension of a linear 
mixed model through a latent function with different link functions depending on the nature of 
the variable to model. In the case of this work, and given the implementation by the lcmm 
package, we use the Beta density and quadratic I-splines as link functions to model non-
gaussian continuous variables (see chapter 4). Moreover, the package defines 𝜋𝜋𝑘𝑘 by a 
multinomial logistic model of class membership considered a discrete random variable. See 
(Proust-Lima et al., 2017) for more details on model estimation. 

The gbmt package. This package has been recently released to CRAN (March 2022), 
and its implementation is not described in an article. Part of the methodology used by the 
author is described here (Magrini, 2022). The package implements an EM algorithm for the 
maximum likelihood estimation of group-based multi-trajectory models as specified in Eq. 7. 
The EM algorithm is useful and robust for estimating models in case of incomplete data. This 
allows for the gbmt package to estimate multi-trajectory models with missing temporal data 
and values taken at different timepoints across subjects, which is a characteristic of the 
longitudinal laboratory data analyzed in this work. In order to be able to compare and derive 
trajectory groups across different variables, scaling is commonly done. The package 
incorporates four scaling procedures: centering, standardization (centering and dividing by 
standard deviation), division by the sample mean, and logarithmic division by the sample 
mean. Then, the EM algorithm is employed as a maximum likelihood estimator initialized from 
random values for missing data and parameters. It follows an iterative alternation between 
expectation (E) and maximization (M) steps until convergence (Magrini, 2022; Redner & 
Walker, 1984). In the case of GBMT, the E-step consists of computing the posterior probability 
of each group for each subject after computing the likelihood by: 

𝑃𝑃(𝐾𝐾𝑖𝑖 =  𝑘𝑘 | 𝑦𝑦𝑖𝑖)  ≡  𝜋𝜋𝑖𝑖𝑘𝑘 =  
𝜋𝜋�𝑘𝑘 ∏ ∅�𝑦𝑦𝑖𝑖,𝑡𝑡  � �̂�𝛽𝑘𝑘 , Σ�𝑘𝑘)𝑇𝑇

𝑡𝑡=1  
∑ 𝜋𝜋�𝑘𝑘 ∏ ∅�𝑦𝑦𝑖𝑖,𝑡𝑡  � �̂�𝛽𝑘𝑘 , Σ�𝑘𝑘)𝑇𝑇

𝑡𝑡=1
𝐾𝐾
𝑘𝑘=1

 

 
Where the hat symbol marks the current step estimate of the parameters and ∅ is the 
multivariate normal density function. The M-step obtains the maximum likelihood estimate of 
the parameters. The probability for group k is obtained by averaging the posterior probabilities 
of group k across all subjects: 𝜋𝜋�𝑘𝑘 =  1

𝑛𝑛
∑ 𝜋𝜋𝑖𝑖,𝑘𝑘𝑛𝑛
𝑖𝑖=1 . Missing values under Missing at Random 

(MAR) assumption (Rubin, 1976) are imputed during the M-step based on the iteration 
estimates of the parameters and the observed values (Magrini, 2022). This process continues 
until the convergence of the likelihood. To prevent suboptimal solutions by local maxima, the 
EM algorithm is randomly initiated several times, and the estimates from the highest likelihood 
are retained. 
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3.6.2 Model selection and goodness-of-fit metrics 
 

In the multi-class context, the number of classes (number of mixtures, 𝑘𝑘) is a priori 
unknown, and it is a fixed parameter provided by the analyst. Finding the correct number of 
classes, often called class enumeration (van der Nest et al., 2020), is a common problem in 
clustering methods of identifying the number of effective groups in our data. One of the 
advantages of using model-based approaches for clustering is that we can use all tools 
available in probabilistic modeling to determine adequate models, turning the problem of the 
number of classes of a problem into model selection (van der Nest et al., 2020). In addition to 
class enumeration, model selection can be used to determine the best non-linear specification 
for the trajectories (see the previous section). Several model selection procedures and metrics 
are proposed for longitudinal FMM; Van der Nest and colleagues provide a comprehensive 
summary (van der Nest et al., 2020). Generally, these metric-based statistics of goodness-of-
fit have different properties and can be categorized in log-likelihood-based metrics (such as 
information criteria), subject classification performance, and distribution properties of the data. 
There is no single best method since their performance depends on the data characteristics 
at hand (e.g., subpopulation heterogeneity, sample size, outcome distribution), and therefore, 
the ultimate selection of the best model may require more than one approach. In this work, we 
used the following different metrics and criteria: 

Log-likelihood information criteria. These are metrics of fit that balance the log of 
the maximum likelihood with the number of parameters to estimate. This balance is needed 
because the maximum likelihood is monotonic to the increase of model parametrization. 
Therefore, a penalty is introduced to select the model with the best fit with the minimum 
parametrization possible. An example of this form of metric for model fit is the Bayesian 
Information Criterion (BIC) (Schwarz, 1978): −2 log[𝐿𝐿(𝐾𝐾)] + log(𝑛𝑛) [𝑡𝑡(𝐾𝐾)], where 𝐿𝐿(𝐾𝐾) is the 
maximum likelihood of the model with K classes,  𝑛𝑛 is the sample size, and 𝑡𝑡(𝐾𝐾) the number 
of independent parameters for the model with K classes. 

Subject classification performance. These metrics are based on the classification 
performance of the model for the subject data used to estimate the model (model training in 
machine learning lingo). In FMM, subjects are classified (assigned to the class) by the highest 

posterior probability (𝑝𝑝𝑝𝑝𝑖𝑖) for that subject, where 𝑝𝑝𝑝𝑝𝑖𝑖𝑘𝑘 = 𝑃𝑃 (𝑘𝑘𝑦𝑦𝑖𝑖) =  𝜋𝜋�𝑘𝑘𝑃𝑃�𝑘𝑘(𝑦𝑦𝑖𝑖)
∑ 𝜋𝜋�ℎ𝑃𝑃�ℎ(𝑦𝑦𝑖𝑖)𝐾𝐾
ℎ=1

 . The closest  

𝑝𝑝𝑝𝑝𝑖𝑖𝑘𝑘 for a given class is to 1 indicates better classification, and therefore better models. There 
are several metrics based on classification performance (van der Nest et al., 2020). Here we 
use APPA (average posterior probability of assignment) and the ICL-BIC (integrated 
classification likelihood, BIC approximation), a hybrid metric that combines both likelihood-
based criteria and classification performance. 𝐴𝐴𝑃𝑃𝑃𝑃𝐴𝐴𝑘𝑘 =  1

𝑛𝑛𝑘𝑘
∑ 𝑝𝑝𝑝𝑝𝑖𝑖𝑘𝑘
𝑛𝑛𝑘𝑘
𝑖𝑖=1  and 𝐼𝐼𝐼𝐼𝐿𝐿 − 𝐵𝐵𝐼𝐼𝐼𝐼 =

−2 log[𝐿𝐿(𝐾𝐾)] + log(𝑛𝑛) [𝑡𝑡(𝐾𝐾)] + 2𝐸𝐸(𝐾𝐾), where E(K) is the entropy of the K class model. 
Entropy measures classification uncertainty in class assignment, where higher values imply 
higher classification uncertainty. Therefore, its addition to BIC in the ICL-BIC acts as an extra 
penalty term based on classification performance. 𝐸𝐸(𝐾𝐾) =  −  ∑ ∑ 𝑝𝑝𝑝𝑝𝑖𝑖𝑘𝑘log [𝑝𝑝𝑝𝑝𝑖𝑖𝑘𝑘] ≥ 0𝑛𝑛

𝑖𝑖=1
𝐾𝐾
𝑘𝑘=1 . 
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4 Methodology 
4.1 Data 
4.1.1 MIMIC data: electronic health records for modeling 
 

Two different epochs of the MIMIC (Medical Information Mart for Intensive Care) 
dataset were used for trajectory modeling. MIMIC is an extensive single-center database with 
EHR of patients admitted to critical care units of the Beth Israel Deaconess Medical Center in 
the USA. The two epochs are the MIMIC-III, with 46,520 patients from 2001 to 2012 (Johnson 
et al., 2016)(Johnson et al., 2016), and the MIMIC-IV, with 382,278 patients from 2008 to 
2019. Both databases were accessed under a data use agreement (DUA) through the 
PhysioNet project (Goldberger et al., 2000). Data was downloaded from physionet.org. Both 
MIMIC databases (DB) are relational DB structured in tables. Documentation about the DB 
schema can be found at mimic.mit.edu/docs.  

Cohort selection: For cohort selection, we used the International Statistical 
Classification of Disease (ICD) codes, version 9/10 (www.who.int/classifications/classification-
of-diseases). Table 4 shows a description of the tables downloaded for each DB. The variables 
used from those tables can be seen in the annexed table 1. The spine trauma and traumatic 
SCI patients cohort was constructed using ICD9/ICD10 diagnostic classification codes. The 
inclusion criteria for the patient search were: adults (>= 15 years), acute patients with ICD 
diagnostic codes with a specification for SCI or spine trauma (vertebral fracture), and admitted 
to the hospital as an emergency. These include all codes of the series ICD9: 952, 953, 806 
and 805, and ICD10: S120, S121, S122, S123, S124, S125, S126, S128, S129, S140, S141, 
S142, S220, S240, S241, S242, S320, S321, S340, S341, S342, S343. The full list of codes 
and descriptions can be seen in the respective files in the GitHub repository. From the MIMIC 
diagnostics table, we selected the first hospital admission per patient that shows in the DB, 
and that has a presence of selected ICD9/10 codes in their hospital stay.  

Table 4. DataBase tables accessed for each MIMIC version 
MIMIC-III table MIMIC-IV table Description 

PATIENTS core/patients Demographic information for each patient 
ADMISSIONS core/admissions Information for each unique hospitalization for 

each patient 
DIAGNOSES_ICD hosp/diagnoses_icd Hospital assigned diagnoses ICD codes 
PROCEDURES_ICD hosp/procedures_icd ICD code for procedures 
LABEVENTS hosp/labevents Laboratory events and values for each patient 
D_LABITEMS hosp/d_labitems Dictionary for each laboratory assay 
D_ICD_DIAGNOSES hosp/d_icd_diagnoses Dictionary for each ICD diagnoses 
D_ICD_PROCEDURES hosp/d_icd_procedures Dictionary for each ICD procedures 

 

 There is a potential overlap of patients between both versions of MIMIC. In the 
transition to MIMIC-IV, subjects’ identifiers were not preserved (see MIMIC documentation). 
Both DB has overlapping periods of catchment (MIMIC-III from 2001 to 2012; MIMIC-IV from 
2008 to 2019), and there is the potential for the same patient represented in both datasets. In 
order to prevent patient duplication, we excluded MIMIC-IV patients with the same sequence 
of ICD diagnostics (order sequence of code and number) with the assumption that the same 
sequence of diagnostics in two different patients is improbable. Although this filter might 
exclude some non-overlapping patients, considering duplicated entries as independent poses 
a higher risk for modeling than the potential of reducing patient catchment. A total of 515 form 
MIMIC-IV patients were excluded for the risk of duplication, all of them admitted during the 
overlapping years of catchment of both DB. Then we harmonized patient demographics data 
in a single dataset from both MIMIC epochs (harmonization strategy can be seen in the 
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annexed code). Finally, we selected patients admitted to the hospital in an emergency. A flow 
diagram and demographics table can be seen in the next chapter.  

Extraction of laboratory values: Laboratory values are stored in the labevents table 
in each DB, and the metadata information for each laboratory assay can be found in the 
d_labitems table. The laboratory values for the selected cohort and hospital stay were 
extracted, and the time of laboratory sample collection from admission date and time was 
calculated. Laboratory values with missing LOINC codes were excluded. 

Extraction of demographics and stay characteristics: Demographics included age, 
gender, ethnicity, and insurance type. Stay characteristics included length of stay (calculated 
in days), number of ICD diagnostics, admission type, admission location, and discharge 
location. MIMIC-III does not provide patient age directly, but it can be computed. Dates for 
each patient are shifted for privacy reasons, but temporal consistency is maintained. Age at 
hospital admission was calculated by subtracting admission date (ADMITTIME) from birth data 
(DOB). MIMIC-IV does not provide age, and it is not computable. A range of 3 years can be 
obtained through an “anchor age” variable (anchore_age). Gender did not require any data 
cleaning. Ethnicity, insurance, admission type, admission location, and discharge location 
were harmonized between DBs by collapsing categories with modeling information lost (see 
annexed code). Only patients with admission type specified as an emergency were included. 
Length of stay was calculated by subtracting discharge date and time (DISCHTIME) from 
admission date and time (ADMITTIME). 

 

4.1.2 TRACK-SCI: prospective patients for prediction 
 

For the classification of trajectories in new patients, we use data from 137 patients 
enrolled in the Transforming Research and Clinical Knowledge in Spinal Cord Injury (TRACK-
SCI) study (Tsolinas et al., 2020), a longitudinal observational cohort study at the Zuckerberg 
San Francisco General Hospital and at the University of California San Francisco. TRACK-
SCI collects highly granular in-hospital and post-hospitalization data, including laboratory 
assays and long-term neurological outcomes. Data was received de-identified. Harmonization 
of the laboratory names was conducted to pair the analytes in MIMIC with those in TRACK-
SCI. The dynamic range for each analyte was compared to ensure that the values were in the 
same scale. In addition, the ASIA (American Spinal Injury Association) Impairment Severity 
(AIS) grade was extracted as an outcome metric (Betz et al., 2019; Roberts et al., 2017). AIS 
grade measures the level of neurological impairment after SCI on a 5-point ordinal scale (A to 
E). 

 

4.2 Laboratory analyte exploratory data analysis and data cleaning 
 

Exploratory data analysis (EDA) is performed to summarize the data. Temporal 
spaghetti and marginal density plots are generated to understand the amount of available data 
for the laboratory analytes, the underlying distribution, the potential presence of outliers, and 
non-linearities. This information is used to curate the data, as well as to make decisions before 
modeling. Summary tables for the amount of laboratory data are provided. Of 415 unique 
laboratory analytes extracted, the 20 most common were present above 80% of the selected 
subjects from MIMIC. Therefore, only these 20, referred to as the modeling set, will be used 
for further analysis (see results). Some spikes on the temporal trends for of the laboratory 
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analytes were observed from the spaghetti plots and as extreme values in the marginal 
distributions. These values can constitute anomalies in the data. In order to determine if these 
extreme values were unlikely given subject-specific distribution, we applied two filters. First, 0 
values were excluded as these are unprovable in any of the modeling set of analytes. Next, 
we applied a variation of John Tukey’s rule for outlier determination as proportional to the 
interquartile (IQR) range (Tukey, 1977). In this case, we filtered out extreme values with 
𝐿𝐿𝑐𝑐𝐿𝐿𝑡𝑡𝐿𝐿 𝑙𝑙𝑖𝑖𝑡𝑡𝑖𝑖𝑡𝑡 =  𝑞𝑞𝑞𝑞𝑎𝑎𝑛𝑛𝑡𝑡𝑖𝑖𝑙𝑙𝑡𝑡20 − 1.5𝐼𝐼𝐼𝐼𝑅𝑅 and 𝑈𝑈𝑝𝑝𝑝𝑝𝑡𝑡𝐿𝐿 𝑙𝑙𝑖𝑖𝑡𝑡𝑖𝑖𝑡𝑡 =  𝑞𝑞𝑞𝑞𝑎𝑎𝑛𝑛𝑡𝑡𝑖𝑖𝑙𝑙𝑡𝑡80 + 1.5𝐼𝐼𝐼𝐼𝑅𝑅 on the subject-
specific marginal distribution for each analyte. Note that 20% and 80% quantiles instead of 
Tukey’s 25% and 75% were used to be more permissive, especially for skewed distributions 
where Tukey’s can be too restrictive (Seo, 2006). 

 

4.3 Trajectory modeling 
 

Univariate multi-class trajectory modeling: Following van der Nest and colleagues' 
recommendations (van der Nest et al., 2020), an initial exploratory analysis for each one of 
the modeling set analytes was conducted by LCGA, a particular case of GMM which restricts 
intra-class parameters to be invariant across subjects (no random effects); see chapter 3. 
They suggest using restricted models such as LCGA to initially explore the heterogeneity in 
the trajectories, approximating the number of classes, finding the proper model specifications, 
and performing initial exploration on non-linearities. For each analyte, we conducted a linear 
search for the number of classes ranging from 1 to 5. We investigated linear trajectories and 
polynomial transformations over time for orders of 2 (quadratic) and 3 (cubic). Finally, given 
the nature of the different analytes, we explored the use of three different link functions for the 
latent process: a linear link (i.e., linear mixed model), considering the analyte as a continuous 
Gaussian; the Beta density function, and a quadratic I-spline with 3 knots on the tertials of the 
data (Proust-Lima et al., 2017). These last two were considered to model continuous variables 
with potentially not Gaussian distributions. A total of 900 models were specified. These models 
were fitted in R using the lcmm::lcmm() function with no random effects. BIC, the ICL(van der 
Nest et al., 2020), and the APPA were calculated for each model. Both BIC and ICL were used 
as the primary decision criteria for model selection, where models with lower values were 
considered to provide a better fit. APPA was used as a secondary decision model selection 
tool, where only models with APPA > 0.7 were considered. In addition, the percentage of 
subjects attributed to each class was used, where at least 1% of the subject were represented 
in each class. Given the computational cost of this procedure, the process was parallelized 
using the parallel R package in 15 CPU cores and 36Gb of RAM machine (Kuhn, 2021). 

After model exploration, plausible models were selected for each analyte following the 
specified criteria. Next, GMM specifying random effects were fitted for such models. In order 
to relax the symmetry constraints of polynomial transformations, natural splines instead of 
polynomials were used to consider a non-linear basis for the time trajectories. The number of 
degrees for the splines was chosen from the number of degrees selected during the LCGA 
exploratory analysis. A total of 122 models were specified. The posterior probability of class 
membership for each analyte and subject was calculated, and class membership was 
assigned based on the highest posterior probability. 

Multi-trajectory modeling: to determine groups of patients that share similar 
trajectories across different analytes, we used GBMT analysis (Nagin et al., 2018). Several 
models were fitted using the gbmt R package to explore the parameter space: the number of 
mixture components k = {1, ..., 8}, and polynomial transformations d = {1, …, 4}. BIC and 
APPA were used for model selection criteria. Since several analytes are correlated, GBMTs 
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were fitted with glucose, hematocrit, platelet count, RDW, and white blood cell count as 
predictors. As in the case of univariate analysis, class membership was assigned based on 
the maximal posterior probability. 

Trajectory membership probability of TRACK-SCI subject (unseen by the model) was 
calculated, and class trajectory was assigned for the trajectory class with a higher probability 
for each subject. 

 

4.4 Predictive modeling experiments 
 

 We designed three predictive modeling experiments to study trajectory membership 
for each analyte as a biomarker. Experiment I was set to predict whether a patient would die 
in-hospital, Experiment II was set to predict whether a spine trauma patient had an SCI, and 
Experiment III was set to predict SCI severity calculated by the latest known in-hospital AIS 
grade for the TRACK-SCI cohort. For each experiment, the posterior probability for each 
analyte class trajectory was calculated and used as predictors in an ElasticNet model. In other 
to simulate dynamic predictions, each ElasticNet model was restricted to use posterior 
probabilities of trajectories calculated from data up to a time cutoff = {1, 3, 7, 14, 21} days. 
Thus, for example, models with a cutoff of one day would use the posterior probabilities for 
each class trajectory for each analyte calculated with in-hospital data from hospital arrival up 
to day 1. Each experiment type and cutoff combination were run 25 times with changes in 
random seed for the repeated runs but with fixed seed across cutoff for comparability. 

 ElasticNet models were fitted with the “glmnet” model in the R caret package (Kuhn, 
2021) with a five cross-validation setup for tunning alpha and lambda hyperparameters. Best 
hyperparameters were selected as specified by default in the package. For Experiments I and 
II, model performance was evaluated for the sample used for training (in-train) and a sample 
left aside for testing (out-train) with a split 80/20 for training and testing. Given the imbalances 
between the binary classes in Experiment I and II, down-sampling of the majority class was 
used for training to improve model performance. Thus, both categories of the target variable 
had equal prevalence in the training dataset. For the test sample, the original proportion 
between classes was maintained, reflecting the prevalence of the specific target to predict in 
a real-world scenario. Experiment III had no train/test split given the small sample size. The 
generalizability of out-of-sample prediction was estimated using leave-one-out validation. As 
performance metric, for all models, a smooth ROC curve and area under the curve were 
calculated using the pROC R package (Robin et al., 2011).  

 

4.5 Statistics and software 
 

Patients’ trajectories were characterized based on clinical and demographic features 
extracted from the databases: age, gender, ethnicity, cohort group (SCI with vertebral fracture, 
SCI without vertebral fracture, spine trauma with no SCI), length of hospital stay, whether the 
patient died in hospital, and the number of ICD diagnostics. Differences between trajectory 
groups and patient cohorts were analyzed using ANOVA or t-test for continuous variables and 
Fisher exact test for categorical variables. P-values were adjusted for false discovery rate 
(FDR) by the Benjamini-Hochberg method, and q-values were reported. The level of 
significance was set at q < 0.05. 
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This work was performed in R (R Core Team, 2021). For fitting GMM and LCGA, we 
used the lcmm R package (Proust-Lima et al., 2017). For GBMT, we will use the gbmt R 
package (Magrini, 2022). ElasticNet models for prediction experiments were trained using the 
caret R package (Kuhn, 2021). The details of the complete code reproducing this research 
can be found on GitHub (https://github.com/ATEspin/UOC-TFM). 

5 Results 
5.1 Data building for trajectory modeling 
5.1.1 Cohort extraction 
 

The SCI and spinal trauma patients cohort was built from the MIMIC-III and MIMIC-IV 
databases. Figure 8 shows a flow diagram of the construction of the dataset; a total of 1194 
and 4429 unique patients were found for MIMIC-III and MIMIC-IV, respectively. An issue of 
using both III and IV epochs of MIMIC is the potential for overlapping patients since both 
databases had overlapping years of the catchment (MIMIC-III from 2001 to 2012; MIMIC-IV 
from 2008 to 2019), and the authors of MIMIC did not respect the subject identifier from MIMIC-
III to IV. These patients were filtered from MIMIC-IV previous harmonizing and merging 
datasets. After filtering, a total of 5208 patients were identified. Of those, 2615 patients were 
filtered out, either for not being admitted to the hospital as an emergency or given the results 
of the exploratory analysis for the laboratory values as described in the next section. A final 
cohort of 2615 patients was available with processed laboratory analyte data for further 
analysis and modeling. 

 

5.1.2 Laboratory analyte exploratory data analysis 
 

A total of 413 distinct laboratory analytes were found in the data. Table 5 cross-
tabulates the number of analytes per category and fluid sample. Of the 413, 157 were 
categorized as hematology, 161 as chemistry, and 25 as blood gases. Regarding the fluid 
sample, the fluid with more distinct analytes was blood, with blood chemistry and hematology 
being the two categories with more analytes. 

 

 

Figure 8. Flow diagram of cohort build. 
Subjects from MIMIC-III/IV where first filtered 
based on their ICD9 and ICD10 diagnostic 
codes. Then, potential overlapping patients 
were filtered from MIMIC-IV. After laboratory 
analyte data extraction and data cleaning, 
patients with less than 3 measures for any of 
the 20 most common analytes where 
excluded. The data from a total of 2599 
patients from both MIMIC databases were 
used for modeling. 

https://github.com/ATEspin/UOC-TFM
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Table 5. Cross-tabulation of laboratory analytes per category and fluid sample 
Fluid sample \ Category  Blood Gas Chemistry Hematology Total 

Ascites 0 9 13 22 
Blood 24 104 71 199 

Cerebrospinal Fluid (CSF) 0 3 13 16 
Joint Fluid 0 1 11 12 

Other Body Fluid 1 9 14 24 
Pleural 0 8 15 23 

Urine 0 27 20 47 
Unknown 0 0 0 70 

Total 25 161 157 413 
 

Between 90 and 98% of the patients presented the 20 most common analytes, as 
shown in Annexed Table 2 (the complete list can be found in the code repository); all were 
analytes measured in blood from the hematology and chemistry categories. Of the remaining 
analytes, the proportion of patients they were obtained from dropped to <70%, and 342 out of 
the 413 analytes were present for only 10% of the patients or less. We then selected the 20 
most common analytes to consider for analysis, which we refer to as the modeling set. 

 

Figure 9 shows spaghetti plots of the analyte modeling set over time from the date of 
hospital arrival. As expected by the nature of the data, time is asynchronous, meaning that 
analytes were obtained for each patient at different timepoints in non-regular intervals. No 
apparent trends are observable from the plots. We can observe fluctuations over time, with, 
in general, a high dynamic range early after admission that reduces as time progresses (Fig. 
9). The number of subjects with data in a given analyte also reduces over time, with very few 
subjects with data beyond 50 days (Annexed Figure 1). This can also be confirmed by the 
distribution of length of stay, where the median time is 4.6 days (first quartile: 2.09 and third 
quartile: 9.07), and 96.4% of the cohort was discharged before 28 days in the hospital (Fig. 
10).  

Figure 9. Spaghetti plots for the raw data of the modeling set of analytes (20 most common). Note that 
unexpected spikes are observed, probably indicative of data errors. Each line represents a subject. 
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We can also observe subtle spikes in the data from the spaghetti plots, probably 
caused by errors in the original MIMIC dataset. These spikes create extreme values in the 
marginal distributions for each analyte in the modeling set (Annexed Figure 2). Using the 
measurement range values, we can confirm that some of these values are outliers. For 
example, values of 0 in MCH, as we see in the plot, are not possible (as MCH is the ratio of 
hemoglobin to red blood cells). Although the number of spikes is small, we performed a data 
filter to detect and discard those highly likely observations of outliers (see methods), resulting 
in less extreme values per analyte (Fig. 11 and 12). Finally, given the high drop in the number 
of patients with data available beyond the first few weeks, we decided to limit the set of 
analytes for modeling up to 21 days from hospital admission (Fig. 11). 

 

 

Figure 11. Spaghetti plots for the outlier-cleaned modeling set of laboratory analytes for the first 21 
days after admission. 

Figure 10. Length of stay distribution. (a) Histogram of the length of stay in days for the cohort. (b) Logarithmic 
scale count of the number of measurements per subject and the modeling set of analytes. (c) Count of the number 
of measurements per subject and the modeling set of analytes. 
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5.1.3 Cohort characteristics 
 

Table 6 shows demographic variables for the final selected cohort for MIMC datasets. 
After adjusting p values, we can observe statistical differences in age, gender, insurance type, 
ethnicity, and dataset (i.e., MIMIC III or IV) across the three cohort groups. The SCI Fracture 
cohort is younger and with higher proportions of males than the spine trauma patients. 
Notably, the proportion of males and females in the spine trauma group was almost 1 to 1, 
while in both SCI groups, the proportion was above 2 males for each female. Higher proportion 
of patients in the SCI Fracture group came from MIMIC-III database (60%) while in the SCI 
noFracture and spine trauma groups ~60% of patients came from MIMIC-IV database. This 
may reflect changes in coding and charting practices from MIMIC-III version to version IV. 

Table 6. Demographics for the MIMIC cohorts 

Characteristic 
SCI 

Fracture 
N = 3821 

SCI 
noFracture 

N = 1251 

Spine 
Trauma 

N = 2,1081 
p-

value2 
q-

value3 

Age 55 (39, 71) 57 (44, 72) 65 (44, 81) <0.001 <0.001 
Gender    <0.001 <0.001 

F 101 (26%) 37 (30%) 924 (44%)   

M 281 (74%) 88 (70%) 1,184 (56%)   

Insurance    0.011 0.011 
Medicaid 37 (9.7%) 13 (10%) 154 (7.3%)   

Medicare 118 (31%) 48 (38%) 865 (41%)   

Other 221 (58%) 62 (50%) 1,064 (50%)   

Other Government 6 (1.6%) 2 (1.6%) 25 (1.2%)   

Ethnicity    <0.001 <0.001 

Figure 12. Marginal distributions for the outlier-cleaned modeling set of laboratory analytes for the 
first 21 days after admission 
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ASIAN 6 (1.9%) 0 (0%) 43 (2.3%)   

BLACK/AFRICAN 
AMERICAN 14 (4.4%) 23 (20%) 88 (4.8%)   

HISPANIC/LATINO 14 (4.4%) 9 (7.9%) 77 (4.2%)   

MULTI RACE/ETHNICITY 1 (0.3%) 0 (0%) 5 (0.3%)   

OTHER 17 (5.4%) 5 (4.4%) 84 (4.6%)   

WHITE 264 (84%) 77 (68%) 1,540 (84%)   

Unknown 66 11 271   

Dataset    <0.001 <0.001 
MIMIC-III 231 (60%) 49 (39%) 826 (39%)   

MIMIC-IV 151 (40%) 76 (61%) 1,282 (61%)   

1 Median (IQR); n (%) 
2 Kruskal-Wallis rank sum test; Fisher's Exact Test for Count Data with simulated p-value (based on 2000 
replicates) 
3 False discovery rate correction for multiple testing 

 

Table 7 shows the hospital stay characteristics for the MIMIC extracted patients. After 
adjusting p values, we observe statistical differences in length of stay, and discharge location. 
On average, the SCI Fracture patients stayed in hospital 3 and 4 more days than the spine 
trauma and SCI noFracture group. Regarding discharge location, SCI Fracture had higher 
mortality rate (12%), and more proportion of patients were discharged to rehabilitation (54%) 
than the other two groups. Consequently, we observe a reduction in home/hospice as well as 
skill nursing facility discharge in these patients. 

 

Table 7. Hospital stay characteristics for the MIMIC cohorts 

Characteristic 
SCI 

Fracture 
N = 3821 

SCI 
noFracture 

N = 1251 

Spine 
Trauma 

N = 2,1081 
p-

value2 
q-

value3 

Length of stay (days) 11 (7, 19) 8 (5, 13) 7 (4, 11) <0.001 <0.001 

Unknown 1 0 0 
  

Admission location 
   

0.079 0.10 

CLINIC REFERRAL 55 (14%) 22 (18%) 251 (12%) 
  

EMERGENCY ROOM 301 (79%) 89 (71%) 1,730 (82%) 
  

TRANSFER FROM HOSP 20 (5.3%) 12 (9.6%) 95 (4.5%) 
  

TRANSFER FROM SNF 0 (0%) 0 (0%) 3 (0.1%) 
  

WALK-IN/SELF REFERRAL 
4 (1.1%) 2 (1.6%) 20 (1.0%) 

  

Unknown 2 0 9 
  

Discharge location 
   

<0.001 <0.001 

ACUTE HOSPITAL 4 (1.0%) 0 (0%) 9 (0.4%) 
  

AGAINST ADVICE 0 (0%) 2 (1.6%) 11 (0.5%) 
  

DIED 46 (12%) 6 (4.9%) 141 (6.9%) 
  

HOME/HOSPICE 56 (15%) 46 (37%) 687 (34%) 
  

ICF 1 (0.3%) 0 (0%) 0 (0%) 
  

LONG TERM CARE 22 (5.8%) 5 (4.1%) 88 (4.3%) 
  

REHAB 208 (54%) 45 (37%) 528 (26%) 
  

SHORT TERM CARE 3 (0.8%) 0 (0%) 8 (0.4%) 
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SKILLED NURSING 
FACILITY 

35 (9.2%) 17 (14%) 544 (27%) 
  

TRANSFER TO OTHER 7 (1.8%) 2 (1.6%) 29 (1.4%) 
  

Unknown 0 2 63 
  

Number of ICD diagnostics 13 (9, 18) 13 (8, 21) 14 (9, 20) 0.10 0.10 

1 Median (IQR); n (%) 
2 Kruskal-Wallis rank sum test; Fisher's Exact Test for Count Data with simulated p-value (based on 2000 
replicates) 
3 False discovery rate correction for multiple testing 

 

5.2 Individual laboratory analyte class trajectory models 
5.2.1 Laboratory analyte univariate exploratory trajectory modeling 
 

Researchers have previously recommended a staged workflow because of the 
computational time it takes to run these models and the difficulty of prioritizing model selection. 
It starts by running a search of the parameter space using LCGA, discarding the models that 
are not a good fit, and adjusting other parameters before incorporating random effects. We 
followed such a strategy, performing a grid search for each one of the modeling analytes for 
the number of classes (1 to 5), the degree of polynomials (1 to 3), and three distinct link 
functions: linear or identity for Gaussian continuous responses, and beta and I-spline to model 
non-Gaussian continuous responses. For model selection, we used BIC, ICL, and APPA (see 
methods). A total of 900 models were specified. The results of the models for each analyte 
can be seen in the annexed tables 3 to 22). Annexed figures 3 and 4 show the model selection 
criteria for the hematology and the chemistry analytes, respectively. 

 Figure 13 illustrates the results from analytes with different model fit patterns. An 
interpretation of the model fit selection would go as follow. For example, for red blood cell 
count, the polynomial degree is the dominant determinant of better model fit by both BIC and 
ICL. In these cases, we conclude that non-linear trends are a better fit and that the type of link 
function is almost irrelevant. This informs that assuming a Gaussian response is acceptable 
for analytes with this pattern of model fit. Regarding the number of classes, for red blood cell 
count, BIC reduces progressively with the increase of classes, while ICL presents a more 
prominent drop at two classes but with a more stable value afterward. APPA has a more linear 
reduction as the number of classes increases. Given that APPA reached acceptable levels in 
most cases, we used BIC and ICL as the main decision-making tools for this initial step, leaving 
APPA as a secondary factor. Therefore, we concluded that a linear link and a polynomial of 
order 3 are best for this variable, selecting between 2 to 4 trajectory classes for modeling red 
blood cell count. In a different example, we can look at Potassium, where both the polynomial 
order and the shape of the link function are important for model fit. In this case, we selected 
models with polynomials of order 3, link function of type beta or spline, and 2 or 3 trajectory 
classes for further exploration. The results of this decision-making for all variables can be 
found in the annex. Next, these models will be narrowed down to find the best model given 
the selected workflow, incorporating random effects into the models. 

 In summary, all analytes show that at least 2, with a median of 3, trajectory classes are 
needed to model the data, indicative of heterogeneity in the selected cohort. In addition, most 
models presented a better fit with a polynomial transformation of degree 2 or 3, indicative that 
non-linear trends are present in the data. Finally, with the exception of bicarbonate, chloride, 
hematocrit, hemoglobin, MCHC, and red blood cell count, all other analyte data were better 
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fitted to models with non-linear link functions (beta or I-spline), which suggests that blood 
analytes are better modeled by non-Gaussian conditional distributions. 

 

5.2.2 Laboratory analyte trajectories 
 

From the previous analysis, we selected those models that showed a better fit based 
on BIC, ICL, and APPA (Annexed Table 23). There was a clear best choice for some analytes, 
while the selection was more subjective for others. In those cases, we selected different 
models for the next step. The LCGA models helped determine the need for non-linear link 
functions, the maximum number of classes to consider, and whether the linearity of trajectory 
is a valid assumption. We then when through a similar process but, in this case, using GMM 
through the specification of the random effects. In addition, instead of polynomial 
transformations for the time variable, in order to relax some of the polynomial geometrical 
constrictions, we used a natural spline to model non-linear trends, with degrees determined 
through the exact search as before. 

The final selected model for each analyte can be seen in Table 8. The predicted 
trajectories for each analyte are shown in figure 14. Creatinine models did not converge even 
after allowing for a large number of estimation iterations and was not considered any further. 
With the exception of bicarbonate and calcium, models with more than one class were 
selected as the best fit. This reaffirms the presence of heterogeneity in the population as seen 
for LCGA models. Nonetheless, in practice, some models showed a highly unbalanced 
membership distribution when subjects were classified into classes. Anion gap, chloride, 
creatinine, magnesium, MCH, MCV, phosphate, platelet count, potassium, sodium, urea 
nitrogen, and white blood cells selected models presented with a class containing above 90% 
of the subjects, with often classes close to 1% membership. Contrary, glucose, hematocrit, 
hemoglobin, MCHC, RDW, and red blood cells presented a more balanced distribution of 
subjects across classes. Except for glucose, all other analytes were better modeled by non-
linear transformations of time, suggesting that trajectories of these analytes do not follow a 
linear trend. Moreover, 12 of the 20 analytes were better modeled by the use of non-Gaussian 
link functions. 

Figure 13. Example of model fit 
plots for two different types of 
model selection “patterns”. 
Top row shows the BIC, ICL and 
APPA (mean APPA across 
classes) for Red Blood Cells. It 
can be observed that polynomial 
degree has a higher effect on BIC 
and ICL than the type of link 
function. For Potassium (bottom 
row), the effect of polynomial 
degree and type of link function is 
compounded. The higher drop in 
ICL for both analytes from 1 to 2 
classes suggest that the major 
gain in model fit happens when 
more than 1 class is considered, 
illustrating the need for modeling 
heterogeneous populations. 
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Table 8. Final selected GMM models 
Analyte k link np

 
d BIC ICL APPA %class

 
%class

 
%class

 
%class

 
%class

 Anion Gap 2 beta 22 3 104781.7
 

99681.87 0.98 2.00 98.00 NA NA NA 
Bicarbonate 1 linear 15 3 111559.0

 
111559.0

 
1.00 100.00 NA NA NA NA 

Calcium, Total 1 linear 10 2 24868.36 24868.36 1.00 100.00 NA NA NA NA 
Chloride 2 beta 22 3 127905.2

 
122725.3

 
1.00 0.85 99.15 NA NA NA 

Glucose 2 beta 11 1 222867.9
 

218145.3
 

0.91 10.46 89.54 NA NA NA 
Hematocrit 3 linear 25 3 138572.1

 
134284.5

 
0.82 31.93 13.51 54.56 NA NA 

Hemoglobin 3 linear 25 3 64672.17 60404.33 0.82 26.74 11.37 61.89 NA NA 
Magnesium 2 spline 23 3 -4861.69 -9859.52 0.97 1.95 98.05 NA NA NA 

MCH 3 linear 18 2 46805.77 41775.40 0.97 94.97 1.84 3.19 NA NA 
MCHC 2 linear 14 2 59109.67 54145.65 0.95 96.54 3.46 NA NA NA 
MCV 2 beta 16 2 97687.94 92518.59 0.99 98.92 1.08 NA NA NA 

Phosphate 2 beta 16 2 50457.54 45400.07 0.99 2.74 97.26 NA NA NA 
Platelet Count 2 beta 22 3 248904.5

 
246232.0

 
0.51 35.65 64.35 NA NA NA 

Potassium 2 beta 22 3 23972.63 18936.72 0.97 3.11 96.89 NA NA NA 
RDW 3 beta 20 2 34238.71 29400.81 0.93 8.99 87.09 3.92 NA NA 

Red Blood Cells 3 linear 25 3 13818.27 9586.07 0.81 18.94 10.95 70.11 NA NA 
Sodium 2 beta 16 2 129149.1

 
124014.2

 
0.99 97.35 2.65 NA NA NA 

Urea Nitrogen 2 beta 16 2 146168.7
 

141216.9
 

0.95 7.65 92.35 NA NA NA 
White Blood 

 
3 beta 27 3 109955.1

 
104834.1

 
0.98 0.85 98.08 1.08 NA NA 
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5.2.3. Patient trajectory characteristics 
 

We performed a univariate analysis comparing class trajectories for each analyte for 
different demographics and clinical characteristics. These analyses can be found in the annex 
(Annexed Tables 24 to 32). A general pattern that emerges from the analysis is significant 
differences in age, the proportion of patients dead during hospitalization, and the number of 
diagnostics for most chemical analytes. The class trajectories with lower subject numbers in 
anion gap, chloride, glucose, magnesium, phosphate, potassium, sodium, and blood urea 
nitrogen are associated with higher in-hospital mortality rates and a higher number of 
diagnostics. Except for sodium, those smaller class trajectories are generally characterized by 
higher values of these analytes early after hospital arrival, with major non-linear dynamic 
changes over the first three weeks compared to the class with the most patients (Fig. 14). For 
example, in the minority class of patients on Potassium trajectory with a higher mortality rate 
(potassium class 1), the analyte levels of those patients are higher early after hospitalization, 
with a rapid drop after toward levels of class 2. Of the chemical analytes, only glucose and 
sodium showed differences in the proportion of males and females between trajectory classes.  

In the case of hematology analytes, hematocrit, hemoglobin, MCV, RDW, red blood 
cell counts, and white blood cell counts presented different in-hospital mortality rates across 

Figure 14. Predicted mean trajectories per analyte and class for the selected models. The mean 
trajectory for each one the classes for each analyte model is shown, together with the 95% CI. The 
differences in 95%CI width are explained by the huge differences in sample size between classes. Classes 
with more subjects assigned to it presents with tider CI ribbons. Note that although colored the same for 
visualization, these are univariate models and therefore classes might not be constituted by the same 
subjects across analytes.  
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class trajectories and the number of diagnostics. Class 1 for hematocrit, hemoglobin, and red 
blood cell counts showing higher initial analyte values with a posterior drop was associated 
with a lower mortality rate and the number of diagnostics than classes 2 and 3. Length of stay 
differences can be found between classes of glucose, hematocrit, hemoglobin, platelet count, 
and red blood cells. Finally, the proportion of patients in each cohort group (SCI Fracture, SCI 
noFracture, and Spine Trauma) varied across classes for glucose, hematocrit, hemoglobin, 
platelet count, red blood cell counts, and white blood cell counts. 

 

5.3 Multi-trajectory modeling 
5.3.1. Selected GBMT model 
  

 The previous models were univariate; we independently derived class trajectories for 
each analyte. However, blood analytes are interrelated, and distinct patterns may emerge 
when the different analytes are considered together. To do so, we fitted group-based multi-
trajectory models (GBMT). Using the information gained in the univariate modeling exercise, 
we focused on GBMT to determine groups of subjects that follow the same trajectories across 
hematocrit, glucose, white blood cells, RDW, and platelet count. A model search was 
performed as before, with the results of the model selection process shown in the Annexed 
Table 33 and Figure 15. A final model of 3 groups of trajectories with a third-order polynomial 
was selected based on model fit metrics. The predicted mean trajectories with 95%CI for the 
selected model can be seen in figure 16. Class 1 compressed most of the subjects (90.55%) 
while the other classes were tiny in size (6.62% for class 2 and 2.83% for class 3). All 
considered polynomial models presented a similar distribution, with a single class collecting 
the vast majority of the subjects. This differed in the models with degree 1 (linear trend), with 
better distribution across at least two classes. Nonetheless, the linear trend models had a 
worse fit than the polynomial models.  

 

 

 

 

 

Figure 15. Model fit metrics for GBMT. GBMT models were fitted and BIC and APPA used as model selection 
criteria. 
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5.3.2. Multi-analyte trajectory characteristics 
 

 The three selected multi-analyte trajectory classes are very similar in their trajectories, 
with a few exceptions (Fig. 16). The three classes present similar temporal evolutions on 
glucose and white blood cell counts. Regarding hematocrit, the major differences are between 
classes two and three. There is a noticeable initial drop and slight recovery for class two, while 
class three is constantly low. The major differences between classes are perhaps for RDW, 
where for class one there is a constant linear increase, for class two a linear increase with 
lower initial values and higher change rate than class one, and for class three a rapid increase 
with a pick at day five and a posterior progressive decrease and plateau. This suggests that 
RDW may be the primary driver of the differential multi-analyte trajectory class definition. 

 

 Table 9 shows the univariate analysis of different patient characteristics between the 
assigned classes. Age, gender, cohort type, length of stay, and the number of diagnostics 
show significant differences between classes. On average, class one consisted of older 
patients, a higher proportion of females, a higher proportion of spine trauma patients, a lower 
number of days in the hospital, and a lower number of diagnostics than classes two and three. 
Class two and three were very similar in all studied univariate associations, with a slightly 
higher proportion of SCI Fracture patients in class three than in class 2. This may point out 
that these two minority classes are unnecessary partitions or that the underlying blood 
trajectory differences cannot be associated with the studied patient characteristics. 

 

 

Figure 16. Predicted mean 
trajectories for GBMT selected 
model. The mean trajectory and 
95% CI for the 4 class GBMT 
selected model is shown. Given 
these trajectories where jointly 
modeled, each group (1 to 4) is 
constituted by the same subjects 
across the 5 considered analytes. 
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5.4 Dynamic prediction modeling 
 

We set three dynamic prediction modeling experiments (Fig. 17). Since the GBMT 
model showed a single class constituted by more than 90% of the subjects, we performed 
these experiments using the univariate trajectory models per each analyte. Experiment I was 
designed to test whether blood analyte trajectories can be used to predict in-hospital mortality 
for the spine trauma and SCI population. Experiment II aimed to study whether blood analyte 
trajectories can predict if a patient with a spine trauma also presented an SCI. Experiment III 
used the TRACK-SCI data as an external cohort of SCI patients for which analyte trajectories 
are predicted. These predictions were used to build a prognostication model for SCI severity 
(motor complete vs. motor incomplete). We run each experiment at different cutoff days from 
hospital arrival to simulate dynamic predictions as data get available. The probability of class 
membership (i.e., posterior probabilities) per analyte was calculated for each patient, and 
those probabilities were used as predictors in an ElasticNet model. For Experiments I and II, 
the model with 21 days of data can be considered the model with the best prediction for class 
membership as trajectories were derived from data with up to 21 days of analyte values. 

 

 

 

Table 9. Multi-trajectory class univariate analysis 

Characteristic Class 1 
N = 2368 

Class 2 
N = 173 

Class 3 
N = 74 

p-value q-value 

Age 63 (44, 80) 54 (32, 73) 54 (44, 70) <0.001 <0.001 
Gender    <0.001 <0.001 

F 990 (42%) 49 (28%) 23 (31%)   

M 1,378 (58%) 124 (72%) 51 (69%)   

Ethnicity    0.8 0.8 
ASIAN 44 (2.1%) 2 (1.5%) 3 (4.5%)   

BLACK AFRICAN AMERICAN 115 (5.6%) 7 (5.2%) 3 (4.5%)   

HISPANIC LATINO 90 (4.4%) 7 (5.2%) 3 (4.5%)   

MULTI RACE ETHNICITY 5 (0.2%) 1 (0.7%) 0 (0%)   

OTHER 95 (4.6%) 7 (5.2%) 4 (6.1%)   

WHITE 1,718 (83%) 110 (82%) 53 (80%)   

Unknown 301 39 8   

Cohort    <0.001 <0.001 
SCI Fracture 307 (13%) 49 (28%) 26 (35%)   

SCI noFracture 117 (4.9%) 4 (2.3%) 4 (5.4%)   

Spine Trauma 1,944 (82%) 120 (69%) 44 (59%)   

Length of stay (days) 7 (4, 10) 24 (19, 31) 26 (22, 33) <0.001 <0.001 
Unknown 1 0 0   

Died in hospital 179 (7.6%) 8 (4.6%) 2 (2.7%) 0.15 0.2 

Number of diagnostics 13 (9, 19) 20 (14, 30) 17 (11, 25) <0.001 <0.001 
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5.4.1. Experiment I. Predicting death 
 

Experiment I results are shown in figure 18. All models performed well with high AUC 
on the in-train sample for all the cutoff days, including when the model was trained with up to 
1 day of laboratory data. The model reduced performance with the out-train sample (i.e., test 
sample) for all cutoff days. Nonetheless, the AUC for all out-train samples was considerably 
high, even for predicted trajectory membership using data for up to the first day after hospital 
arrival. This highly suggests that it is possible to predict whether a spine trauma or SCI patient 
will die in the hospital by predicting their blood analyte trajectories as soon as 1 day after 
arriving at the hospital, and that prediction improves as more data becomes available. 

 
5.4.2. Experiment II. Predicting SCI 
 

Experiment II results can be seen in figure 19. The performance of all models to predict 
whether a patient had an SCI measured by AUC was high for the in-train sample for each one 
of the cutoff dynamic models. As early as day 1, we can observe a good prediction using the 
same data to train the ElasticNet models. The prediction performance for the out-train sample 

Figure 18. Results of dynamic prediction modeling Experiment I. The target of this prediction task was 
whether patient died in-hospital. (a) boxplots of AUC for each one of the cutoffs of the dynamic modeling 
simulation. (b) ROC curve for the experiment considering all available data up to 21 days from hospital arrival. 
Each prediction scenario was repeated 25 times with a different random seed. The random seed was maintained 
to be the same across the cutoff. 

Figure 17. Dynamic prediction experiments. 
The experiments simulate a real-time dynamic 
prediction of outcomes where the predicted 
blood analyte trajectory is calculated with 
increased available laboratory data from EHR. 
To simulate this process, we build models with 
cutoff days of blood data up to 1, 3, 7, 14 or 21 
days after hospital arrival. 
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reduces considerable, including for the 21 days models, with an AUC ~ 0.6. The drop in 
performance clearly illustrates the difficulty to generalize the ElasticNet models in this scenario 
for the detection of whether a patient with a spine trauma presents with SCI. Nonetheless, it 
is encouraging that it is possible to train models to detect the presence of SCI better than 
random with only blood trajectory probabilities. 

 

5.4.3. Experiment III. Predicting SCI severity in an external cohort 
 

 Experiment III was set to study whether the prediction of trajectory classes from 
patients external to the trajectory modeling can have predictive power for SCI severity. Figure 
20 shows the spaghetti plots for the extracted lab analytes from the TRACK-SCI cohort after 
processing the data in the same way we did for the MIMIC values. Those where then used in 
our dynamic prediction experiment workflow (Fig. 17). Given the sample size was small (n = 
137), instead of having an out-of-train sample for estimating prediction generalizability, we 
used LOOCV. The dynamic prediction task for this experiment was set to classify whether SCI 
patients in the TRACK-SCI cohort presented an AIS grade of A or B vs. C, D or E in its latest 
available in-hospital timepoint. Effectively, this means we trained a model to distinguish on 
whether patients presented motor complete (AIS A or B) vs. motor incomplete (AIS C, D or E) 
neurological deficits. Figure 21 show the results of Experiment III. Similar to Experiments I and 
III, AUC for in-train sample was considerably higher than LOOCV, reaching values as high as 
0.87. With one day of data, AUC for LOOCV was 0.66, reaching 0.72 when 21 days of data 
were used. This indicates that the prediction models were overfitted. 

 

 

 

 

 

Figure 19. Results of dynamic prediction modeling Experiment II. The target of this prediction task was 
whether patients with spine trauma had an SCI. (a) boxplots of AUC for each one of the cutoffs of the dynamic 
modeling simulation. (b) ROC curve for the experiment considering all available data up to 21 days from 
hospital arrival. Each prediction scenario was repeated 25 times with a different random seed. The random 
seed was maintained to be the same across the cutoff. 
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6 Discussion 
 

This work has studied the temporal dynamics of blood analytes early on after spinal 
cord injury through trajectory modeling. We have demonstrated distinct temporal patterns of 
blood analytes after SCI, that those follow non-linear trends for the most part, and that there 
is heterogeneity in spine trauma patients that can be observed from a data-driven analytical 
framework. Importantly, we demonstrate that routinely collected in-hospital data have enough 

Figure 20. Spaghetti plots for the modeling set of laboratory analytes in the TRACK-SCI cohort 

Figure 21. Results of dynamic prediction modeling Experiment III. The target of this prediction task was 
whether latest AIS grade in-hospital was AB vs. CDE (i.e., motor complete vs. motor incomplete). (a) boxplots 
of AUC for each one of the cutoffs of the dynamic modeling simulation. (b) ROC curve for the experiment 
considering all available data up to 21 days from hospital arrival. Each prediction scenario was repeated 25 
times with a different random seed. The random seed was maintained to be the same across the cutoff. 
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signal for patient stratification and subtyping, increasing interest in using blood analytes as 
predictor biomarkers for neurological conditions, including SCI. This also demonstrates the 
potential of using data collected in real-world scenarios to research SCI and presumably other 
neurotraumatic conditions. Finally, we provide evidence for the need to model these metrics 
through a more complex set of tools that can account for heterogeneity and non-linearity and 
accommodate the non-Gaussian distribution nature of some of these metrics. 

 

6.1. Modeling heterogeneous blood trajectories after acute injury 
 

Previous work has shown that blood analyte changes can be associated with SCI, and 
this association can be used in predictive models as biomarkers (Gurcay et al., 2009; Kyritsis 
et al., 2021; Leister et al., 2021). The premise is that the pathophysiological events triggered 
by the injury to the spinal cord can be proxied in the blood through complex signal integration 
pathways (Jogia, Kopp, et al., 2021; Kyritsis et al., 2021). We observed distinctive non-linear 
trajectories of blood analytes early after SCI or spine trauma. After a thorough examination of 
modeling parameters, we show that non-Gaussian link functions are better for modeling the 
continuous random deviations of some analytes. In contrast, other analytes are well captured 
under Gaussian assumptions. Linear methods such as linear mixed models assume Gaussian 
distributions for the random effects and error, which is not always true when modeling 
longitudinal data. Although simulation studies show that LMMs are robust to deviations from 
the Gaussian assumption, it can bias the estimation in the case of missing temporal data (Lu 
et al., 2009). Since the asynchrony nature of real-world blood laboratory work, it is granted to 
observe several patterns of temporal missingness. Therefore, to better model potential non-
Gaussian deviations, we used latent processes modeled through a link function between the 
observed data and the linear model (Proust-Lima et al., 2017). 

The obtained trajectories represent distinctive demographics and clinical 
characteristics. The chemical blood analytes are major electrolytes that regulate normal 
physiological function, and their dysregulation can signal several pathophysiological events 
(Balcı et al., 2013). Two distinctive trajectories emerged for each electrolyte, with a low 
membership class presenting a higher in-hospital mortality rate and characterized by non-
linear changes with high dynamic range and values above normal. Although these trajectory 
classes are unrelated univariate, these were all also associated with a higher average number 
of clinical diagnostics, a surrogate measure for comorbidities and medical events. It could 
indicate distinctive trajectories in severe patients with a higher likelihood of dying at the 
hospital than patients with less physiological distress or a capacity to regulate homeostasis. 
This is perhaps not surprising as blood analytes are considered to calculate measures of 
overall patient severity scores (Bouch & Thompson, 2008). Thus, the finite models mainly 
capture the heterogeneity of patient severity. 

Regarding the hematology values, hematocrit, hemoglobin, and red blood cells are 
highly correlated. As expected, the three trajectories found for each analyte are very similar in 
their temporal trend. Class trajectory 1, characterized by high initial values and a slow steady 
reduction, presented the lower proportion of patients with SCI and spine fracture, and the 
lower mortality rate. Class 2 evolved from high levels to rapid decay by day 7. Class 3 
sustained low values along the 21 days. The class 2 and 3 trajectories in hematocrit, 
hemoglobin, and red blood cells presented a higher mortality rate and proportion of SCI 
patients with spine fracture than class 1. The major difference between class 2 and 3 in these 
three analytes was in demographics, where class 2 was younger and with more representation 
of males than class 3. All levels of hematocrit and red blood cell counts were below considered 
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normal levels in the general population, an effect previously described in acute SCI (Brown et 
al., 2020). 

In general, white blood cell values were above normal, which has been described 
(Brown et al., 2020). It is expected given the inflammatory process and immune dysregulation 
occurring after SC (Jogia, Lübstorf, et al., 2021). Class 2 had sustained levels at the high limit 
of a normal range. This class was constituted by the majority of the patients and presented a 
lower mortality rate than class 1 and class 3, and with a lower proportion of SCI Fracture 
patients. Class 1 was older, with a high mortality rate and higher number of diagnostics than 
class 3. After SCI, distinct populations of white blood cells dynamically change their blood 
presence over time following pathophysiological processes triggered by the injury (Jogia, 
Lübstorf, et al., 2021). It is possible then that a global count of white blood cells lack the 
resolution to describe the temporal patterns and that individual levels of different cell types 
should be adequate to describe heterogeneity. Future work should address this oversight. 

 

6.2. Blood analyte trajectories as biomarkers for SCI 
 

 Predicting patient outcomes after SCI using routinely collected information during early 
hospitalization can have high utility for patient management, prognostication, and clinical 
research. Previous work has shown the association of blood markers to distinct patient 
characteristics and outcomes after SCI (Brown et al., 2020; Gurcay et al., 2009; Jogia, Kopp, 
et al., 2021; Kyritsis et al., 2021; Leister et al., 2021). Here we extended this line of work by 
incorporating the class trajectory of each biomarker as predictors in a dynamic process. Using 
the posterior probability of the modeled class trajectories, we trained classification models with 
decent performance to detect whether patients will die during the hospital stay as early as one 
day after hospital arrival. Prediction performance increased in the out-of-train sample as more 
temporal data was considered for predicting trajectories. This suggests that predicting which 
trajectory of blood analytes patients will follow can serve as predictors in dynamic 
prognostication models of whether a patient will die.  

In the case of predicting whether a patient has an SCI or not after spine trauma, the 
performance was moderate at best and worse than in the case of predicting patient death. 
This could be explained by the fact that spine trauma is a significant traumatic event, usually 
companioned by polytraumatic processes (e.g., other broken bones) and damage to parts of 
the body, which probably triggers several pathophysiological changes. The addition of injury 
to the cord may be minor in the overall early pathology after trauma. Another complication is 
that SCI is a rare event compared with all patients with traumatic spine damage. In our work, 
we used spine trauma patients with no finding of SCI as the closest trauma “control” for 
patients with traumatic SCI. Our search resulted in ~15% of the total spine trauma patients 
having a diagnosis for SCI in the MIMIC dataset. This imbalance also increases the challenge 
of building classification models. Nonetheless, our approach shows the potential to detect SCI 
in patients with spine trauma. The addition of other predictors such as demographics would 
potentially increase classification performance. As in the case of detecting mortality, the 
prediction performance increased as more temporal data was included. This effect is 
somewhat expected as the inclusion of more data should reduce the uncertainty of trajectory 
membership classification. Overall, the results suggest that predicting the blood analyte 
trajectory in spine trauma patients has biomarker utility for early SCI diagnostic. 

We also investigated whether predicting analyte trajectory in a cohort of SCI patients 
that was not used for modeling (TRACK-SCI patients) could be used to prognosticate the 



Abel Torres Espin  

52 
 

severity of the neurological deficit. The results are promising in two folds. On one side, we 
demonstrate that early prediction of analyte trajectory in an external cohort has prediction 
utility. This is important as it signifies that we can derive trajectory models from real-world data 
generalizable to data collected in a different context (i.e., another hospital). On the other side, 
we show that prognostication of the degree of neurological deficits is possible by just using 
laboratory data. In addition, the prediction improves as more data is included in determining 
patient trajectory. 

The dynamic prediction simulation is encouraging. By modeling the trajectory of 
analytes, we can determine the probability of following a given trajectory as early as one day 
after hospital arrival, which provides information into the predicted “future” of the 
pathophysiological events by forecasting a patient’s changes in blood values. Using the 
trajectory membership as a latent feature, we can then build predictive models for patient 
diagnostic and prognostication. This indicates that real-time prediction models using available 
in-hospital data in clinical support systems that help clinicians guide SCI patient management 
are possible. Future work should be oriented to expand on the possible implementation of 
these models. 

 

6.3. The use of real-world data to perform research in SCI 
 

Performing research in clinical SCI is challenging due to the relatively low incidence 
with respect to other medical issues and the complex heterogeneity of the population. Studies 
usually use high constraints in the inclusion and exclusion criteria to deal with this 
heterogeneity, focusing on a very narrow segment of the population, resulting in a reduction 
in sample size. This is illustrated by the median number of subjects in clinical SCI studies is 
32 (calculated from clinicaltrials.gov). An alternative framework is to embrace heterogeneity 
and use it to the research advantage through data-driven methodologies that can discover 
unseen or unexpected patterns of associations, hoping that those are important for the 
question at hand. In this work, we used this research framework through a discovery and 
modeling process of routinely collected data present in electronic health records to then apply 
those models to a cohort of interest. Data in real-world scenarios are messy (Chan et al., 2010; 
Cowie et al., 2017; Suvarna, 2018), often with many missing data, uncontrolled confounding 
mechanisms, and challenging to explain associations. On the other hand, they offer volume 
and variety, two common characteristics of big-data (Ohmann et al., 2017; Peek et al., 2014). 
Since low incidence and heterogeneity are distinctive features of SCI, real-world data offers a 
different venue for research and discovery, with the ultimate goal of producing knowledge that 
can drive clinical decisions and patient improvement. 

One of the strengths of the methodology used in this work is that it allows for flexible 
modeling of the complex temporal patterns after injury. Using longitudinal finite mixture 
models, we provide evidence that there are different temporal pattern trajectories after spine 
trauma and that those are, for the most part, non-linear. In addition, we demonstrate how to 
accommodate non-Gaussian response distributions through non-linear link functions of a 
latent process mixed model. Previous work on SCI has ignored these factors, which may affect 
the utility of the models. The drawback is that model estimation becomes computationally 
expensive, as the number of parameters to estimate grows considerably when 
accommodating all the characteristic features of blood analyte trajectories. This model 
complexity also requires a big sample size, which, as discussed above, can be an issue in 
SCI research. Nonetheless, we demonstrated that model development using electronic health 
records is feasible and that these models can be generalized to external cohorts with utility for 
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predicting tasks. This should open new exciting venues for SCI research since the knowledge 
gained from electronic medical records is transferable. 

 

7 Conclusions 
7.1 Conclusions 
 

 We sought to study dynamic trends of blood analytes in SCI as potential biomarkers 
in this work. We demonstrated the utility of modeling heterogeneous temporal trends of blood 
analytes collected in real-world scenarios to predict diverse diagnostic and prognostic tasks 
in spine trauma and SCI patients. Longitudinal finite mixture models are powerful tools to 
describe multi-class trajectories of blood analytes, potentially capturing latent 
pathophysiological events. Given that SCI and other neurological pathologies evolve, studying 
the non-linear dynamic changes of any biomarker level is more valuable than considering 
predictions with a static cut-off level. We also simulated a dynamic prediction process to 
perform prediction tasks as data get available in the hospital settings, demonstrating the 
potential utility of this approach to build clinical support systems assisting in patient 
management. Furthermore, the knowledge gained from real-world data is transferable to 
cohorts of interest, which suggest that this data can be used for SCI research and model 
development. The models and methodology used in this work can be extended to other types 
of data and pathologies. Future research should be oriented to improve upon the models and 
the limitations of the present work. We hope that by offering accessibility to the code and 
trained models, the field of SCI research can expand on this work toward developing multi-
analyte trajectory biomarker models.  

 

7.2 Limitations and future work 
 

 The present work is a proof-of-concept for multi-trajectory blood analyte biomarker 
discovery. As such, there are several limitations, and much more can be done and expanded. 
For convenience, we performed a shallow cohort selection through ICD diagnostic codes of 
EHR data, which might have introduced extreme heterogeneity in the cohort and potentially 
affected the models' capacity to split heterogeneities into smaller cohort subtypes. Future work 
should address this by a more thorough examination of inclusion and exclusion criteria and by 
using better characterized SCI patient cohorts for both modeling and prediction experiments. 
Also, for convenience, the search in the parameter space for the finite mixed models was 
limited, and for some analytes, we might not have resolved the best model possible. Future 
work should consider other parametrizations of the link functions and higher orders for the 
non-linear transformations. Moreover, we focused on the most common blood analytes, which 
may or may not be the most useful predictors. For instance, differential blood white cell counts 
that include different types of leucocytes show distinctive associations in SCI, and their 
trajectories are potentially helpful for prediction in this population (Jogia, Lübstorf, et al., 2021). 
Given the drop in sample size, we did not include those in this work; however, the current 
approach can be expanded to include these and other analytes. Furthermore, here we focused 
on the prediction task. However, we hypothesize that the derived trajectories are proxies for 
pathophysiological events. Therefore, a deeper examination of the clinical characteristics of 
each trajectory subpopulation for better patient phenotype understanding is granted. This 
better understanding can also derive future development of prediction modeling by pointing to 
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stratifying factors serving as other early predictors of SCI, potentially improving prediction 
performance. In addition, we limited the analysis to 21 days as the sample size quickly 
dropped after that. This is sufficient for our selected cohort; however, a subset of patients 
stays in the hospital for longer. Given that length of hospital stay in SCI is related to patient 
severity, other trajectories may emerge when more extended periods are considered. Finally, 
we limited the prediction task to a subset, but many other tasks can be explored. 

 As a proof-of-concept, we hope that his work sets the bases for further development 
of dynamic biomarkers in neurotrauma and other neurological conditions. 

 

7.3 Plan following 
 

The initial plan was ambitious and was set under some uncertainty since the data 
quality was not fully known in advance. The work progressed following the created plan, 
although some changes were made over time. One of the significant challenges during 
modeling was the computational cost of some of the models, taking hours to days to finalize 
the process, even after parallelizing the computation. Those periods were used to advance 
the writing of this manuscript and deepen into the mathematics behind the employed models. 
Overall, the progress was good and on time.  

 

8 Glossary 
 

Spinal cord injury (SCI). Injury affecting the spinal cord 

Real-world data. Data is derived from real-world scenarios during everyday activities such as 
regular medical practice in contraposition to data collected as part of a design study. Electronic 
Health Records for research are an example of real-world data. 

Electronic Health Records (EHR). Records are generated during routine medical practice in 
electronic format (i.e., digital) to contain individuals' medical and health information. 

Big-data. Data is big-data when it presents in high volume, velocity, and variety. Working with 
datasets with these characteristics has specific challenges that require tailored approaches. 
This has made big-data a phrase to refer to datasets and the methodologies dedicated to 
mining big datasets. 

Longitudinal data. Data collected over time is said to be longitudinal. It is characterized by 
repeated measures of the same variables over different periods per subject. Although this 
definition could also include data collected in a continuous high sampling process, usually 
those are distinguished from longitudinal data by referring to them as time-series and 
functional data. 

Finite Mixture Model (FMM). Statistical probabilistic models in which a finite number of 
distributions are defined in combination (i.e., mixture). These models can approximate 
complex distributions through a mixture of well-known distributions such as Gaussian and 
determine latent groups or classes by estimating unseen homogeneous groups of 
observations. 
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Trajectory. Temporal trend describes the dynamic changes or evolution of a variable or 
multiple variables in a given subject or group of subjects. 

Blood analyte. Substances measured in the blood, such as electrolytes and blood cell times, 
usually using laboratory procedures. 

Pathology. Clinical characteristics defining the typical behavior of a disease or medical 
condition. 

Pathophysiology. The physiological processes and events that are associated with a disease 
or injury. 

Biomarker. A measurable substance whose presence indicates some phenomena such as 
disease or pathophysiological event. Biomarkers are typically used as biological indicators 
either in isolation or in combination. 
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10 Annex 
 

Annexed Table 1. Variables from MIMIC-III and IV used in this work 

Variable DataBase/Table Variable 
type Description 

MIMIC-III 

SUBJECT_ID MIMIC-III/PATIENTS 
MIMIC-III/DIAGNOSES_ICD numeric Patient unique identifier. Common key across 

tables 

HADM_ID 
MIMIC-III/ADMISSIONS 
MIMIC-III/DIAGNOSES_ICD 
MIMIC-III/LABEVENTS 

numeric 
Unique identifier for a hospital admission. Same 
SUBJECT_ID may have one or more HADM_ID. 
Common key across tables 

ICD9_CODE MIMIC-III/DIAGNOSES_ICD String ICD9 code 

SEQ_NUM MIMIC-III/DIAGNOSES_ICD numeric The numeric sequence of ICD9 code 
appearance 

GENDER MIMIC-III/PATIENTS String Patient’s gender 

EDREGTIME MIMIC-III/ADMISSIONS Date and 
time 

Date and time of patent registration to ED. 
Surrogate for patient hospital arrival. The date is 
shifted to preserve privacy. 

DOB MIMIC-III/PATIENTS Date and 
time 

Date of patient’s birth. The date is shifted to 
preserve privacy and used to calculate the 
patient’s age at arrival. 

ITEMID MIMIC-III/LABEVENTS 
MIMIC-III/D_LABITEMS numeric Unique identifier for the laboratory analyte type 

CHARTIME MIMIC-III/LABEVENTS Date and 
time 

Date and time of sample extraction for specific 
laboratory analyte. The date and time are shifted 
to preserve privacy 

VALUENUM MIMIC-III/LABEVENTS numeric Numeric results of the laboratory analyte 
LABEL MIMIC-III/D_LABITEMS String Name of the laboratory analyte 
FLUID MIMIC-III/D_LABITEMS String Name of the biological sample or fluid 
CATEGORY MIMIC-III/D_LABITEMS String Type of laboratory analyte 
LOINC_CODE MIMIC-III/D_LABITEMS String LOINC code for each analyte 
MIMIC-IV 

subject_id MIMIC-IV/core/patients numeric Patient unique identifier. Common key across 
tables 

hadm_id 
MIMIC-IV/core/admissions 
MIMIC-IV/hosp/diagnoses_icd 
MIMIC-IV/hosp/labevents 

numeric 
Unique identifier for a hospital admission. Same 
SUBJECT_ID may have one or more HADM_ID. 
Common key across tables 

icd_code MIMIC-IV/hosp/diagnoses_icd string ICD code 
seq_num MIMIC-IV/hosp/diagnoses_icd numeric Numeric sequence of ICD9 code appearence 

edregtime MIMIC-IV/core/admissions Date and 
time 

Date and time of patent registration to ED. 
Surrogate for patient hospital arrival. The date is 
shifted to preserve privacy. 

gender MIMIC-IV/core/patients String Patient’s gender 

anchore_age MIMIC-IV/core/patients numeric Age of the patient in a block of 3 years at the 
time of hospital arrival. 

itemid MIMIC-IV/hospt/labevents 
MIMIC-IV/hospt/d_labitems numeric Unique identifier for the laboratory analyte type 

chartime MIMIC-IV/hospt/labevents Date and 
time 

Date and time of sample extraction for specific 
laboratory analyte. The date and time are shifted 
to preserve privacy 

valuenum MIMIC-IV/hospt/labevents numeric Numeric results of the laboratory analyte 
label MIMIC-IV/hospt/d_labitems String Name of the laboratory analyte 
fluid MIMIC-IV/hospt/d_labitems String Name of the biological sample or fluid 
category MIMIC-IV/hospt/d_labitems String Type of laboratory analyte 
loinc_code MIMIC-IV/hospt/d_labitems String LOINC code for each analyte 
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Annexed Table 2. Blood analytes collected in the majority of patients 
itemid LOINC 

 
label fluid category proportion of patients 

51221 4544-3 Hematocrit Blood Hematology 0.98 
51301 804-5 White Blood 

 
Blood Hematology 0.97 

51222 718-7 Hemoglobin Blood Hematology 0.97 
51248 785-6 MCH (mean 

corpuscular 
hemoglobin) 

Blood Hematology 0.97 

51249 786-4 MCHC (mean 
corpuscular 
hemoglobin 

concentration) 

Blood Hematology 0.97 

51250 787-2 MCV (mean 
corpuscular 

volume) 

Blood Hematology 0.97 

51277 788-0 RDW (red cell 
distribution 

width) 

Blood Hematology 0.97 

51279 789-8 Red Blood 
 

Blood Hematology 0.97 
51265 777-3 Platelet Count Blood Hematology 0.97 
50912 2160-0 Creatinine Blood Chemistry 0.97 
51006 3094-0 Urea Nitrogen Blood Chemistry 0.97 
50971 2823-3 Potassium Blood Chemistry 0.96 
50902 2075-0 Chloride Blood Chemistry 0.96 
50983 2951-2 Sodium Blood Chemistry 0.96 
50868 1863-0 Anion Gap Blood Chemistry 0.96 
50882 1963-8 Bicarbonate Blood Chemistry 0.96 
50931 2345-7 Glucose Blood Chemistry 0.96 
50960 2601-3 Magnesium Blood Chemistry 0.91 
50893 2000-8 Calcium, Total Blood Chemistry 0.90 
50970 2777-1 Phosphate Blood Chemistry 0.90 

Annexed Figure 1. Number of subjects (in log scale) with data up to a given day from hospital arrival for each 
analyte in the modeling set 
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Annexed Figure 2. Marginal distribution of analytes in the modeling set before extreme value detection and 
processing. 
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Annexed Figure 3. LCGA model selection metrics (BIC, ICL and APPA) for each one of the chemical analytes 
in the modeling set. 
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Annexed Figure 4. LCGA model selection metrics (BIC, ICL and APPA) for each one of the hematology 
analytes in the modeling set. 
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Annexed Table 3. Anion Gap. Results of the LCGA exploratory analysis. Bold marks the selected models for GMM 
k link npm poly BIC ICL APPA %class1 %class2 %class3 %class4 %class5  
1 linear 4 p1 110436.6 110436.6 1.00 100.00 NA NA NA NA  
1 linear 5 p2 110154.4 110154.4 1.00 100.00 NA NA NA NA  
1 linear 6 p3 109566.8 109566.8 1.00 100.00 NA NA NA NA  
1 beta 6 p1 109076.7 109076.7 1.00 100.00 NA NA NA NA  
1 beta 7 p2 108797.5 108797.5 1.00 100.00 NA NA NA NA  
1 beta 8 p3 108179.9 108179.9 1.00 100.00 NA NA NA NA  
1 spline 7 p1 109049.4 109049.4 1.00 100.00 NA NA NA NA  
1 spline 8 p2 108771.3 108771.3 1.00 100.00 NA NA NA NA  
1 spline 9 p3 108153.3 108153.3 1.00 100.00 NA NA NA NA  
2 linear 7 p1 109572.9 105845.9 0.72 39.08 60.92 NA NA NA  
2 linear 9 p2 109153.5 105049.3 0.79 24.31 75.69 NA NA NA  
2 linear 11 p3 108550.0 104335.8 0.81 20.69 79.31 NA NA NA  
2 beta 9 p1 108168.6 104428.1 0.72 47.23 52.77 NA NA NA  
2 beta 11 p2 107772.4 103888.5 0.75 38.31 61.69 NA NA NA  
2 beta 13 p3 107131.6 103178.4 0.76 28.85 71.15 NA NA NA  
2 spline 10 p1 108139.7 104398.2 0.72 46.85 53.15 NA NA NA  
2 spline 12 p2 107746.8 103867.5 0.75 38.65 61.35 NA NA NA  
2 spline 14 p3 107105.8 103161.2 0.76 28.88 71.12 NA NA NA  
3 linear 10 p1 109211.7 105729.7 0.67 7.85 77.46 14.69 NA NA  
3 linear 13 p2 108742.6 105455.2 0.63 9.58 44.15 46.27 NA NA  
3 linear 16 p3 107964.5 104330.3 0.70 16.77 14.00 69.23 NA NA  
3 beta 12 p1 107899.1 104603.2 0.63 7.04 62.88 30.08 NA NA  
3 beta 15 p2 107407.2 104089.9 0.64 25.42 16.85 57.73 NA NA  
3 beta 18 p3 106584.1 103029.9 0.68 20.12 17.15 62.73 NA NA  
3 spline 13 p1 107874.9 104575.3 0.63 6.69 62.65 30.65 NA NA  
3 spline 16 p2 107383.3 104061.8 0.64 16.85 25.88 57.27 NA NA  
3 spline 19 p3 106563.0 103000.2 0.69 22.23 16.19 61.58 NA NA  
4 linear 13 p1 109054.7 105702.1 0.64 5.35 23.15 69.73 1.77 NA  
4 linear 17 p2 108478.1 105031.2 0.66 8.58 1.69 68.92 20.81 NA  
4 linear 21 p3 107701.7 104414.6 0.63 3.04 17.12 27.12 52.73 NA  
4 beta 15 p1 107780.1 104607.7 0.61 5.54 73.00 18.15 3.31 NA  
4 beta 19 p2 107305.4 103994.7 0.64 33.35 12.23 1.88 52.54 NA  
4 beta 23 p3 106552.5 103068.5 0.67 2.00 17.15 18.54 62.31 NA  
4 spline 16 p1 107757.8 104599.6 0.61 5.42 18.38 72.65 3.54 NA  
4 spline 20 p2 107290.2 103944.9 0.64 11.58 1.81 31.46 55.15 NA  
4 spline 24 p3 106313.5 103109.4 0.62 5.08 18.19 33.69 43.04 NA  
5 linear 16 p1 108903.4 105668.6 0.62 5.35 2.12 41.77 49.27 1.50  
5 linear 21 p2 108316.5 104959.2 0.65 18.85 8.08 1.62 69.15 2.31  
5 linear 26 p3 107491.5 104397.6 0.59 22.65 42.50 4.19 28.92 1.73  
5 beta 18 p1 107724.0 104809.1 0.56 4.69 40.19 4.65 48.92 1.54  
5 beta 23 p2 107190.4 104160.1 0.58 1.73 5.00 46.00 10.96 36.31  
5 beta 28 p3 106102.6 103126.1 0.57 44.15 5.38 30.65 15.00 4.81  
5 spline 19 p1 107707.1 104825.9 0.55 4.58 4.92 39.46 49.27 1.77  
5 spline 24 p2 107173.3 103942.5 0.62 5.31 2.50 72.38 11.77 8.04  
5 spline 29 p3 106219.1 103000.7 0.62 5.19 2.31 15.23 64.27 13.00  
k: number of classes, link: the link function, npm: number of parameters, poly: polynomial order, %class: % of the subjects 
classified as such class by the maximal posterior probability 
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Annexed Table 4. Bicarbonate. Results of the LCGA exploratory analysis. Bold marks the selected models for GMM 
k link npm poly BIC ICL APPA %class1 %class2 %class3 %class4 %class5  
1 linear 4 p1 121222.8 121222.8 1.00 100.00 NA NA NA NA  
1 linear 5 p2 119924.4 119924.4 1.00 100.00 NA NA NA NA  
1 linear 6 p3 119408.6 119408.6 1.00 100.00 NA NA NA NA  
1 beta 6 p1 120972.5 120972.5 1.00 100.00 NA NA NA NA  
1 beta 7 p2 119630.2 119630.2 1.00 100.00 NA NA NA NA  
1 beta 8 p3 119087.5 119087.5 1.00 100.00 NA NA NA NA  
1 spline 7 p1 120972.1 120972.1 1.00 100.00 NA NA NA NA  
1 spline 8 p2 119633.4 119633.4 1.00 100.00 NA NA NA NA  
1 spline 9 p3 119093.2 119093.2 1.00 100.00 NA NA NA NA  
2 linear 7 p1 119015.2 114989.3 0.77 74.23 25.77 NA NA NA  
2 linear 9 p2 117656.3 113266.7 0.84 80.42 19.58 NA NA NA  
2 linear 11 p3 117439.1 113236.0 0.81 79.15 20.85 NA NA NA  
2 beta 9 p1 118790.2 114816.7 0.76 71.73 28.27 NA NA NA  
2 beta 11 p2 117382.4 113070.3 0.83 23.73 76.27 NA NA NA  
2 beta 13 p3 117134.4 112988.0 0.80 73.73 26.27 NA NA NA  
2 spline 10 p1 118787.4 114810.3 0.76 71.88 28.12 NA NA NA  
2 spline 12 p2 117383.0 113064.9 0.83 23.35 76.65 NA NA NA  
2 spline 14 p3 117089.2 112787.0 0.83 30.15 69.85 NA NA NA  
3 linear 10 p1 118501.5 115282.3 0.62 22.96 13.85 63.19 NA NA  
3 linear 13 p2 116747.4 112813.7 0.76 20.38 72.35 7.27 NA NA  
3 linear 16 p3 115615.9 111420.1 0.81 20.46 73.27 6.27 NA NA  
3 beta 12 p1 118279.2 115059.5 0.62 14.50 60.85 24.65 NA NA  
3 beta 15 p2 116443.4 112790.2 0.70 33.81 7.81 58.38 NA NA  
3 beta 18 p3 115304.7 111292.6 0.77 22.38 10.00 67.62 NA NA  
3 spline 13 p1 118275.6 115055.3 0.62 14.46 61.04 24.50 NA NA  
3 spline 16 p2 116447.7 112565.1 0.75 22.69 7.85 69.46 NA NA  
3 spline 19 p3 115307.9 111289.7 0.77 22.15 9.92 67.92 NA NA  
4 linear 13 p1 118030.0 114852.4 0.61 6.96 10.12 70.54 12.38 NA  
4 linear 17 p2 116743.3 112755.9 0.77 72.04 6.54 0.54 20.88 NA  
4 linear 21 p3 114754.8 111117.6 0.70 11.15 27.38 56.46 5.00 NA  
4 beta 15 p1 117836.7 114674.8 0.61 13.27 9.96 68.96 7.81 NA  
4 beta 19 p2 115852.2 112468.3 0.65 46.50 7.77 40.27 5.46 NA  
4 beta 23 p3 114461.2 110875.0 0.69 12.58 53.42 5.69 28.31 NA  
4 spline 16 p1 117831.7 114668.0 0.61 9.88 13.31 7.73 69.08 NA  
4 spline 20 p2 115854.1 112468.0 0.65 46.77 40.19 7.58 5.46 NA  
4 spline 24 p3 114461.2 110866.2 0.69 12.27 53.77 5.73 28.23 NA  
5 linear 16 p1 117963.6 114885.6 0.59 6.42 7.81 7.92 73.92 3.92  
5 linear 21 p2 115825.8 112647.4 0.61 10.04 59.15 22.77 4.54 3.50  
5 linear 26 p3 114759.6 111111.4 0.70 10.92 0.50 5.15 55.69 27.73  
5 beta 18 p1 117737.4 114864.4 0.55 55.58 1.23 13.85 8.38 20.96  
5 beta 23 p2 115550.1 112484.5 0.59 31.27 11.96 49.19 4.42 3.15  
5 beta 28 p3 114477.8 110891.3 0.69 0.54 12.27 52.38 5.65 29.15  
5 spline 19 p1 117731.8 114859.2 0.55 1.23 55.31 13.96 8.38 21.12  
5 spline 24 p2 115549.1 112479.1 0.59 11.88 49.62 30.92 4.46 3.12  
5 spline 29 p3 114477.3 110884.7 0.69 12.27 0.54 28.88 5.65 52.65  
k: number of classes, link: the link function, npm: number of parameters, poly: polynomial order, %class: % of the subjects 
classified as such class by the maximal posterior probability 
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Annexed Table 5. Calcium. Results of the LCGA exploratory analysis. Bold marks the selected models for GMM 
k link npm poly BIC ICL APPA %class1 %class2 %class3 %class4 %class5  
1 linear 4 p1 29028.37 29028.37 1.00 100.00 NA NA NA NA  
1 linear 5 p2 29022.51 29022.51 1.00 100.00 NA NA NA NA  
1 linear 6 p3 29005.72 29005.72 1.00 100.00 NA NA NA NA  
1 beta 6 p1 28664.13 28664.13 1.00 100.00 NA NA NA NA  
1 beta 7 p2 28656.65 28656.65 1.00 100.00 NA NA NA NA  
1 beta 8 p3 28636.82 28636.82 1.00 100.00 NA NA NA NA  
1 spline 7 p1 28701.97 28701.97 1.00 100.00 NA NA NA NA  
1 spline 8 p2 28695.90 28695.90 1.00 100.00 NA NA NA NA  
1 spline 9 p3 28677.71 28677.71 1.00 100.00 NA NA NA NA  
2 linear 7 p1 26816.92 22551.19 0.84 84.38 15.62 NA NA NA  
2 linear 9 p2 26617.48 22351.83 0.84 80.74 19.26 NA NA NA  
2 linear 11 p3 26583.16 22372.66 0.82 79.05 20.95 NA NA NA  
2 beta 9 p1 26452.49 22232.63 0.83 82.89 17.11 NA NA NA  
2 beta 11 p2 26234.21 21986.69 0.83 79.64 20.36 NA NA NA  
2 beta 13 p3 26191.71 22008.41 0.82 77.41 22.59 NA NA NA  
2 spline 10 p1 26499.94 22258.15 0.83 83.24 16.76 NA NA NA  
2 spline 12 p2 26286.12 22024.65 0.83 80.03 19.97 NA NA NA  
2 spline 14 p3 26247.47 22047.38 0.82 78.03 21.97 NA NA NA  
3 linear 10 p1 26291.93 23090.22 0.63 38.25 49.49 12.26 NA NA  
3 linear 13 p2 26050.07 22653.88 0.66 44.68 45.42 9.91 NA NA  
3 linear 16 p3 26000.43 22773.13 0.63 29.13 50.98 19.89 NA NA  
3 beta 12 p1 25923.08 22714.95 0.63 40.41 45.73 13.86 NA NA  
3 beta 15 p2 25674.00 22303.11 0.66 42.76 45.38 11.86 NA NA  
3 beta 18 p3 25571.03 22251.52 0.65 31.32 46.28 22.40 NA NA  
3 spline 13 p1 25970.93 22764.26 0.63 39.98 46.63 13.39 NA NA  
3 spline 16 p2 25723.81 22343.70 0.66 42.68 46.16 11.16 NA NA  
3 spline 19 p3 25638.89 22327.33 0.65 47.22 31.36 21.42 NA NA  
4 linear 13 p1 26114.90 23147.84 0.58 24.59 7.60 60.61 7.20 NA  
4 linear 17 p2 25745.35 22781.67 0.58 33.56 47.34 8.26 10.85 NA  
4 linear 21 p3 25493.69 22487.25 0.59 17.19 15.07 56.46 11.28 NA  
4 beta 15 p1 25747.26 22800.68 0.58 56.97 7.91 27.53 7.60 NA  
4 beta 19 p2 25350.92 22393.82 0.58 7.79 33.95 45.11 13.16 NA  
4 beta 23 p3 25063.62 22071.65 0.59 18.60 20.60 49.22 11.59 NA  
4 spline 16 p1 25798.13 22742.26 0.60 28.47 57.91 8.89 4.74 NA  
4 spline 20 p2 25406.33 22450.54 0.58 33.71 8.22 45.50 12.57 NA  
4 spline 24 p3 25129.83 22131.93 0.59 19.66 51.64 17.38 11.32 NA  
5 linear 16 p1 25971.94 23248.85 0.53 7.28 59.59 7.71 22.00 3.41  
5 linear 21 p2 25636.78 22718.48 0.57 45.38 0.90 33.20 11.98 8.54  
5 linear 26 p3 25532.91 22526.48 0.59 17.19 56.46 0.00 15.07 11.28  
5 beta 18 p1 25645.85 22981.45 0.52 10.02 54.93 22.63 8.85 3.56  
5 beta 23 p2 25382.31 22425.20 0.58 7.79 33.95 0.00 45.11 13.16  
5 beta 28 p3 24891.48 22123.56 0.54 7.60 20.75 44.68 17.03 9.95  
5 spline 19 p1 25683.56 23005.04 0.52 8.93 56.38 8.42 22.75 3.52  
5 spline 24 p2 25437.71 22481.92 0.58 33.71 0.00 45.50 8.22 12.57  
5 spline 29 p3 24948.25 22172.34 0.54 20.28 16.37 46.91 7.20 9.24  
k: number of classes, link: the link function, npm: number of parameters, poly: polynomial order, %class: % of the subjects 
classified as such class by the maximal posterior probability 
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Annexed Table 6. Cloride. Results of the LCGA exploratory analysis. Bold marks the selected models for GMM 
k link npm poly BIC ICL APPA %class1 %class2 %class3 %class4 %class5  
1 linear 4 p1 141138.9 141138.9 1.00 100.00 NA NA NA NA  
1 linear 5 p2 140914.5 140914.5 1.00 100.00 NA NA NA NA  
1 linear 6 p3 140909.5 140909.5 1.00 100.00 NA NA NA NA  
1 beta 6 p1 140303.8 140303.8 1.00 100.00 NA NA NA NA  
1 beta 7 p2 140047.3 140047.3 1.00 100.00 NA NA NA NA  
1 beta 8 p3 140046.6 140046.6 1.00 100.00 NA NA NA NA  
1 spline 7 p1 140327.5 140327.5 1.00 100.00 NA NA NA NA  
1 spline 8 p2 140081.8 140081.8 1.00 100.00 NA NA NA NA  
1 spline 9 p3 140079.8 140079.8 1.00 100.00 NA NA NA NA  
2 linear 7 p1 138176.8 134326.2 0.74 61.54 38.46 NA NA NA  
2 linear 9 p2 137766.3 133781.1 0.77 53.92 46.08 NA NA NA  
2 linear 11 p3 137753.7 133749.7 0.77 57.62 42.38 NA NA NA  
2 beta 9 p1 137145.2 133237.0 0.75 63.19 36.81 NA NA NA  
2 beta 11 p2 136701.6 132665.9 0.78 55.92 44.08 NA NA NA  
2 beta 13 p3 136696.3 132641.9 0.78 58.35 41.65 NA NA NA  
2 spline 10 p1 137210.5 133309.7 0.75 64.15 35.85 NA NA NA  
2 spline 12 p2 136780.1 132753.0 0.77 57.31 42.69 NA NA NA  
2 spline 14 p3 136771.9 132722.2 0.78 60.08 39.92 NA NA NA  
3 linear 10 p1 137145.6 133530.0 0.70 6.12 19.04 74.85 NA NA  
3 linear 13 p2 136444.0 132444.0 0.77 17.15 75.85 7.00 NA NA  
3 linear 16 p3 136138.7 132380.0 0.72 17.69 13.54 68.77 NA NA  
3 beta 12 p1 136126.9 132408.4 0.72 21.15 72.50 6.35 NA NA  
3 beta 15 p2 135361.8 131703.2 0.70 27.54 61.12 11.35 NA NA  
3 beta 18 p3 135047.8 131525.1 0.68 32.23 32.19 35.58 NA NA  
3 spline 13 p1 136149.0 132415.0 0.72 21.23 72.58 6.19 NA NA  
3 spline 16 p2 135463.1 131816.8 0.70 26.65 11.23 62.12 NA NA  
3 spline 19 p3 135147.8 131655.0 0.67 33.12 34.35 32.54 NA NA  
4 linear 13 p1 136158.5 132736.2 0.66 6.27 1.88 67.58 24.27 NA  
4 linear 17 p2 135593.5 131754.7 0.74 6.88 5.77 80.00 7.35 NA  
4 linear 21 p3 135100.9 131143.0 0.76 6.58 75.15 10.69 7.58 NA  
4 beta 15 p1 135201.6 131835.1 0.65 7.73 62.62 27.77 1.88 NA  
4 beta 19 p2 134212.0 130547.9 0.70 14.27 68.00 3.08 14.65 NA  
4 beta 23 p3 133885.1 130193.5 0.71 13.42 22.38 61.31 2.88 NA  
4 spline 16 p1 135206.9 131836.0 0.65 7.73 62.77 27.54 1.96 NA  
4 spline 20 p2 134249.1 130573.3 0.71 13.23 14.85 68.92 3.00 NA  
4 spline 24 p3 134141.3 130372.6 0.72 6.42 9.77 70.00 13.81 NA  
5 linear 16 p1 135901.4 132740.1 0.61 6.12 3.08 61.38 28.00 1.42  
5 linear 21 p2 134807.8 131200.1 0.69 7.00 11.81 6.62 72.12 2.46  
5 linear 26 p3 134003.8 130477.3 0.68 1.62 21.65 23.73 2.04 50.96  
5 beta 18 p1 134943.6 131860.0 0.59 7.85 1.54 57.15 3.54 29.92  
5 beta 23 p2 133633.4 130419.6 0.62 9.31 15.35 19.42 1.08 54.85  
5 beta 28 p3 133114.3 129252.0 0.74 8.69 70.31 7.50 10.62 2.88  
5 spline 19 p1 134941.4 131854.0 0.59 7.58 1.62 57.81 29.46 3.54  
5 spline 24 p2 133784.9 130409.8 0.65 10.54 6.77 64.46 15.23 3.00  
5 spline 29 p3 133027.3 129459.1 0.69 3.96 59.85 16.65 18.42 1.12  
k: number of classes, link: the link function, npm: number of parameters, poly: polynomial order, %class: % of the subjects 
classified as such class by the maximal posterior probability 
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Annexed Table 7. Creatinine. Results of the LCGA exploratory analysis. Bold marks the selected models for GMM 
k link npm poly BIC ICL APPA %class1 %class2 %class3 %class4 %class5  
1 linear 4 p1 21923.05 21923.05 1.00 100.00 NA NA NA NA  
1 linear 5 p2 21816.48 21816.48 1.00 100.00 NA NA NA NA  
1 linear 6 p3 21770.73 21770.73 1.00 100.00 NA NA NA NA  
1 beta 6 p1 -8558.82 -8558.82 1.00 100.00 NA NA NA NA  
1 beta 7 p2 -9065.80 -9065.80 1.00 100.00 NA NA NA NA  
1 beta 8 p3 -9467.56 -9467.56 1.00 100.00 NA NA NA NA  
1 spline 7 p1 * * * * * * * *  
1 spline 8 p2 -1986.83 -1986.83 1.00 100.00 NA NA NA NA  
1 spline 9 p3 -2189.22 -2189.22 1.00 100.00 NA NA NA NA  
2 linear 7 p1 18008.87 12811.01 1.00 2.27 97.73 NA NA NA  
2 linear 9 p2 17933.98 12735.78 1.00 2.19 97.81 NA NA NA  
2 linear 11 p3 17842.81 12643.90 1.00 2.15 97.85 NA NA NA  
2 beta 9 p1 -11304.72 -15045.83 0.72 31.49 68.51 NA NA NA  
2 beta 11 p2 -11999.38 -15883.42 0.75 35.99 64.01 NA NA NA  
2 beta 13 p3 -12425.80 -16286.27 0.74 50.52 49.48 NA NA NA  
2 spline 10 p1 -3785.07 -7488.57 0.71 73.51 26.49 NA NA NA  
2 spline 12 p2 -4159.43 -7883.33 0.72 33.91 66.09 NA NA NA  
2 spline 14 p3 -4379.73 -8557.86 0.80 14.88 85.12 NA NA NA  
3 linear 10 p1 15640.41 10469.10 0.99 1.92 95.50 2.58 NA NA  
3 linear 13 p2 15360.67 10186.99 0.99 1.92 95.46 2.61 NA NA  
3 linear 16 p3 15173.67 9998.35 0.99 2.04 95.35 2.61 NA NA  
3 beta 12 p1 -13264.62 -17290.95 0.77 2.27 80.43 17.30 NA NA  
3 beta 15 p2 -13140.42 -16968.73 0.74 10.19 70.67 19.15 NA NA  
3 beta 18 p3 -13960.55 -18043.91 0.78 8.07 78.82 13.11 NA NA  
3 spline 13 p1 -5941.25 -10669.54 0.91 3.65 90.73 5.61 NA NA  
3 spline 16 p2 -4920.64 -8604.18 0.71 39.98 3.11 56.90 NA NA  
3 spline 19 p3 -5895.30 -10346.31 0.86 8.80 86.62 4.58 NA NA  
4 linear 13 p1 15181.73 10038.30 0.99 1.85 0.69 94.96 2.50 NA  
4 linear 17 p2 14581.36 9412.75 0.99 0.81 1.69 94.96 2.54 NA  
4 linear 21 p3 15212.99 10037.67 0.99 2.04 95.35 0.00 2.61 NA  
4 beta 15 p1 -13966.05 -17080.39 0.60 1.88 26.37 58.86 12.88 NA  
4 beta 19 p2 -14087.84 -17403.82 0.64 3.81 21.18 64.24 10.77 NA  
4 beta 23 p3 -14542.07 -17924.60 0.65 6.42 23.49 59.05 11.03 NA  
4 spline 16 p1 -6995.12 -10671.50 0.71 2.38 74.05 20.84 2.73 NA  
4 spline 20 p2 -7461.05 -12169.69 0.91 2.54 88.74 6.54 2.19 NA  
4 spline 24 p3 -8124.12 -13037.75 0.94 2.42 4.08 91.27 2.23 NA  
5 linear 16 p1 14520.56 9380.11 0.99 0.88 2.50 0.81 93.54 2.27  
5 linear 21 p2 14102.31 8961.80 0.99 0.38 1.69 94.73 1.54 1.65  
5 linear 26 p3 12332.60 7199.29 0.99 0.62 2.15 93.77 0.81 2.65  
5 beta 18 p1 -14353.40 -17813.36 0.67 1.81 6.69 59.75 27.10 4.65  
5 beta 23 p2 -14744.44 -18030.64 0.63 3.00 6.31 41.83 38.06 10.80  
5 beta 28 p3 -15608.22 -19115.01 0.67 2.58 9.23 65.86 14.49 7.84  
5 spline 19 p1 -7566.47 -11289.71 0.72 2.08 1.88 75.20 18.49 2.35  
5 spline 24 p2 -6637.76 -10957.86 0.83 6.07 0.00 3.92 86.39 3.61  
5 spline 29 p3 -6611.82 -10755.93 0.80 3.08 7.69 86.04 0.00 3.19  
k: number of classes, link: the link function, npm: number of parameters, poly: polynomial order, %class: % of the subjects 
classified as such class by the maximal posterior probability. *Model did not converge. 
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Annexed Table 8. Glucose. Results of the LCGA exploratory analysis. Bold marks the selected models for GMM 
k link npm poly BIC ICL APPA %class1 %class2 %class3 %class4 %class5  
1 linear 4 p1 232188.0 232188.0 1.00 100.00 NA NA NA NA  
1 linear 5 p2 232129.3 232129.3 1.00 100.00 NA NA NA NA  
1 linear 6 p3 232026.3 232026.3 1.00 100.00 NA NA NA NA  
1 beta 6 p1 223687.9 223687.9 1.00 100.00 NA NA NA NA  
1 beta 7 p2 223635.1 223635.1 1.00 100.00 NA NA NA NA  
1 beta 8 p3 223537.1 223537.1 1.00 100.00 NA NA NA NA  
1 spline 7 p1 * * * * * * * *  
1 spline 8 p2 226076.4 226076.4 1.00 100.00 NA NA NA NA  
1 spline 9 p3 225978.5 225978.5 1.00 100.00 NA NA NA NA  
2 linear 7 p1 231131.9 226001.3 0.99 5.08 94.92 NA NA NA  
2 linear 9 p2 231033.7 225896.2 0.99 5.12 94.88 NA NA NA  
2 linear 11 p3 230920.2 225782.4 0.99 5.08 94.92 NA NA NA  
2 beta 9 p1 223192.8 218480.4 0.91 6.85 93.15 NA NA NA  
2 beta 11 p2 223131.9 218584.8 0.87 10.38 89.62 NA NA NA  
2 beta 13 p3 223044.7 218341.7 0.90 8.23 91.77 NA NA NA  
2 spline 10 p1 225395.2 220318.3 0.98 94.85 5.15 NA NA NA  
2 spline 12 p2 225355.6 220312.4 0.97 6.15 93.85 NA NA NA  
2 spline 14 p3 225260.8 220226.8 0.97 6.42 93.58 NA NA NA  
3 linear 10 p1 230781.2 225712.0 0.97 4.38 93.85 1.77 NA NA  
3 linear 13 p2 230589.5 225482.5 0.98 4.65 93.96 1.38 NA NA  
3 linear 16 p3 230377.3 225262.8 0.98 2.77 2.65 94.58 NA NA  
3 beta 12 p1 222905.1 218326.8 0.88 3.85 1.88 94.27 NA NA  
3 beta 15 p2 222885.0 218310.8 0.88 2.54 6.54 90.92 NA NA  
3 beta 18 p3 222745.3 218286.7 0.86 5.42 5.96 88.62 NA NA  
3 spline 13 p1 225097.0 220142.7 0.95 93.31 1.69 5.00 NA NA  
3 spline 16 p2 225096.8 220162.1 0.95 2.46 6.31 91.23 NA NA  
3 spline 19 p3 224958.9 220013.5 0.95 2.46 6.42 91.12 NA NA  
4 linear 13 p1 230719.0 225689.6 0.97 5.12 0.62 92.77 1.50 NA  
4 linear 17 p2 230323.0 225301.0 0.97 4.38 92.23 2.04 1.35 NA  
4 linear 21 p3 230778.7 225935.7 0.93 92.65 5.69 0.00 1.65 NA  
4 beta 15 p1 222835.1 218501.4 0.83 3.04 1.73 6.08 89.15 NA  
4 beta 19 p2 222705.1 218377.6 0.83 3.23 6.62 87.38 2.77 NA  
4 beta 23 p3 222525.1 218191.2 0.83 4.96 2.69 87.46 4.88 NA  
4 spline 16 p1 224974.4 220125.8 0.93 1.54 3.92 91.50 3.04 NA  
4 spline 20 p2 225000.9 220204.4 0.92 2.46 6.46 1.69 89.38 NA  
4 spline 24 p3 224652.3 219824.5 0.93 2.19 4.96 91.27 1.58 NA  
5 linear 16 p1 230556.6 225611.0 0.95 6.69 1.65 89.85 1.46 0.35  
5 linear 21 p2 230117.1 225147.1 0.96 4.42 0.65 1.69 91.35 1.88  
5 linear 26 p3 229837.9 224877.2 0.95 1.96 91.19 1.58 0.58 4.69  
5 beta 18 p1 222840.0 218939.0 0.75 3.50 5.81 2.08 86.88 1.73  
5 beta 23 p2 222736.5 218409.0 0.83 3.23 6.62 87.38 0.00 2.77  
5 beta 28 p3 222423.6 218188.1 0.81 2.85 4.12 2.62 86.35 4.08  
5 spline 19 p1 224944.8 220256.9 0.90 0.81 3.65 91.27 1.08 3.19  
5 spline 24 p2 225623.6 222537.7 0.59 5.19 26.15 0.04 0.00 68.62  
5 spline 29 p3 225351.0 222372.6 0.57 3.27 12.69 0.00 77.96 6.08  
k: number of classes, link: the link function, npm: number of parameters, poly: polynomial order, %class: % of the subjects 
classified as such class by the maximal posterior probability. *Model did not converge. 
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Annexed Table 9. Hematocrit. Results of the LCGA exploratory analysis. Bold marks the selected models for GMM 
k link npm poly BIC ICL APPA %class1 %class2 %class3 %class4 %class5  
1 linear 4 p1 151697.9 151697.9 1.00 100.00 NA NA NA NA  
1 linear 5 p2 150524.6 150524.6 1.00 100.00 NA NA NA NA  
1 linear 6 p3 149697.8 149697.8 1.00 100.00 NA NA NA NA  
1 beta 6 p1 151313.5 151313.5 1.00 100.00 NA NA NA NA  
1 beta 7 p2 150213.0 150213.0 1.00 100.00 NA NA NA NA  
1 beta 8 p3 149421.9 149421.9 1.00 100.00 NA NA NA NA  
1 spline 7 p1 151242.0 151242.0 1.00 100.00 NA NA NA NA  
1 spline 8 p2 150154.8 150154.8 1.00 100.00 NA NA NA NA  
1 spline 9 p3 149366.0 149366.0 1.00 100.00 NA NA NA NA  
2 linear 7 p1 149362.7 144996.8 0.84 51.76 48.24 NA NA NA  
2 linear 9 p2 147617.8 143310.0 0.82 47.82 52.18 NA NA NA  
2 linear 11 p3 146824.2 142319.1 0.86 71.32 28.68 NA NA NA  
2 beta 9 p1 149079.8 144724.3 0.83 55.09 44.91 NA NA NA  
2 beta 11 p2 147421.4 143146.6 0.82 51.49 48.51 NA NA NA  
2 beta 13 p3 146465.8 142183.1 0.82 40.89 59.11 NA NA NA  
2 spline 10 p1 149031.3 144694.8 0.83 55.05 44.95 NA NA NA  
2 spline 12 p2 147381.9 143116.4 0.82 51.49 48.51 NA NA NA  
2 spline 14 p3 146605.1 142128.2 0.86 71.71 28.29 NA NA NA  
3 linear 10 p1 148139.1 144212.5 0.75 11.91 59.80 28.29 NA NA  
3 linear 13 p2 146377.6 142405.1 0.76 14.17 49.50 36.33 NA NA  
3 linear 16 p3 144785.7 140663.9 0.79 19.26 44.56 36.18 NA NA  
3 beta 12 p1 147936.5 143958.4 0.76 10.22 62.67 27.11 NA NA  
3 beta 15 p2 146223.4 142280.4 0.75 48.55 17.69 33.77 NA NA  
3 beta 18 p3 144615.6 140483.0 0.79 44.03 34.65 21.32 NA NA  
3 spline 13 p1 147894.3 143925.1 0.76 63.25 10.11 26.65 NA NA  
3 spline 16 p2 146194.3 142268.7 0.75 17.27 49.23 33.50 NA NA  
3 spline 19 p3 144604.7 140470.6 0.79 19.64 47.78 32.58 NA NA  
4 linear 13 p1 147604.2 143971.7 0.70 10.72 27.79 47.17 14.32 NA  
4 linear 17 p2 145785.8 142211.8 0.68 14.59 18.91 45.25 21.25 NA  
4 linear 21 p3 144087.3 140172.6 0.75 14.82 31.85 17.73 35.60 NA  
4 beta 15 p1 147445.3 143855.7 0.69 9.88 33.04 43.57 13.51 NA  
4 beta 19 p2 145664.9 142105.7 0.68 51.76 14.13 12.63 21.48 NA  
4 beta 23 p3 143953.7 140260.3 0.71 44.14 18.99 15.24 21.63 NA  
4 spline 16 p1 147410.8 143852.3 0.68 44.41 32.31 9.80 13.48 NA  
4 spline 20 p2 145503.3 141822.5 0.70 12.71 44.49 22.21 20.60 NA  
4 spline 24 p3 143929.6 140252.4 0.70 21.98 46.59 17.15 14.28 NA  
5 linear 16 p1 147367.0 143922.2 0.66 10.87 25.34 43.80 18.38 1.61  
5 linear 21 p2 145249.4 141716.8 0.68 13.97 19.33 29.06 30.47 7.16  
5 linear 26 p3 143526.0 139931.8 0.69 12.98 9.61 14.62 44.56 18.22  
5 beta 18 p1 147211.2 143809.9 0.65 9.72 23.09 45.87 19.72 1.61  
5 beta 23 p2 145137.5 141613.4 0.67 13.21 31.47 28.64 18.87 7.81  
5 beta 28 p3 144178.0 140515.7 0.70 22.51 30.17 6.55 17.88 22.89  
5 spline 19 p1 147175.5 143786.8 0.65 9.57 22.17 46.90 19.75 1.61  
5 spline 24 p2 145124.2 141637.4 0.67 13.06 30.86 29.21 18.80 8.08  
5 spline 29 p3 143398.0 139825.9 0.68 31.24 18.95 13.17 24.73 11.91  
k: number of classes, link: the link function, npm: number of parameters, poly: polynomial order, %class: % of the subjects 
classified as such class by the maximal posterior probability. *Model did not converge. 
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Annexed Table 10. Hemoglobin. Results of the LCGA exploratory analysis. Bold marks the selected models for GMM 
k link npm poly BIC ICL APPA %class1 %class2 %class3 %class4 %class5  
1 linear 4 p1 73769.28 73769.28 1.00 100.00 NA NA NA NA  
1 linear 5 p2 72758.97 72758.97 1.00 100.00 NA NA NA NA  
1 linear 6 p3 72320.83 72320.83 1.00 100.00 NA NA NA NA  
1 beta 6 p1 73413.67 73413.67 1.00 100.00 NA NA NA NA  
1 beta 7 p2 72468.49 72468.49 1.00 100.00 NA NA NA NA  
1 beta 8 p3 72070.44 72070.44 1.00 100.00 NA NA NA NA  
1 spline 7 p1 73344.64 73344.64 1.00 100.00 NA NA NA NA  
1 spline 8 p2 72409.56 72409.56 1.00 100.00 NA NA NA NA  
1 spline 9 p3 72014.11 72014.11 1.00 100.00 NA NA NA NA  
2 linear 7 p1 71887.85 67614.69 0.82 49.52 50.48 NA NA NA  
2 linear 9 p2 70441.03 66165.70 0.82 39.72 60.28 NA NA NA  
2 linear 11 p3 69899.50 65552.89 0.83 31.08 68.92 NA NA NA  
2 beta 9 p1 71604.38 67367.92 0.81 55.01 44.99 NA NA NA  
2 beta 11 p2 70246.38 66042.10 0.81 41.87 58.13 NA NA NA  
2 beta 13 p3 69765.25 65496.83 0.82 32.81 67.19 NA NA NA  
2 spline 10 p1 71546.27 67333.11 0.81 55.70 44.30 NA NA NA  
2 spline 12 p2 70193.62 66005.76 0.80 41.64 58.36 NA NA NA  
2 spline 14 p3 70029.64 65660.94 0.84 74.07 25.93 NA NA NA  
3 linear 10 p1 71110.02 67374.35 0.72 10.87 50.48 38.65 NA NA  
3 linear 13 p2 69575.04 65733.69 0.74 12.99 40.11 46.91 NA NA  
3 linear 16 p3 68635.46 64646.77 0.77 16.60 35.96 47.45 NA NA  
3 beta 12 p1 70927.78 67167.08 0.72 9.22 56.55 34.23 NA NA  
3 beta 15 p2 69424.55 65594.09 0.74 42.76 12.41 44.83 NA NA  
3 beta 18 p3 68475.53 64521.36 0.76 45.52 37.11 17.36 NA NA  
3 spline 13 p1 70878.57 67127.97 0.72 57.74 8.95 33.31 NA NA  
3 spline 16 p2 69450.62 65718.41 0.72 18.86 38.11 43.03 NA NA  
3 spline 19 p3 68421.78 64508.12 0.75 36.80 45.64 17.56 NA NA  
4 linear 13 p1 70771.33 67328.74 0.66 9.26 30.89 50.40 9.45 NA  
4 linear 17 p2 69076.28 65582.73 0.67 8.84 35.77 34.69 20.71 NA  
4 linear 21 p3 68095.38 64399.43 0.71 13.52 27.85 39.11 19.52 NA  
4 beta 15 p1 70605.06 67188.54 0.66 7.53 34.46 48.87 9.14 NA  
4 beta 19 p2 68940.93 65373.73 0.69 41.95 29.58 9.30 19.17 NA  
4 beta 23 p3 67964.81 64279.52 0.71 30.66 13.14 37.19 19.02 NA  
4 spline 16 p1 70562.28 67195.24 0.65 7.57 33.96 49.48 8.99 NA  
4 spline 20 p2 69008.77 65685.06 0.64 20.71 53.98 9.57 15.75 NA  
4 spline 24 p3 67874.84 64327.82 0.68 23.93 49.02 18.79 8.26 NA  
5 linear 16 p1 70549.33 67262.38 0.63 5.49 21.28 39.45 1.50 32.27  
5 linear 21 p2 69009.40 65685.72 0.64 13.48 19.36 25.93 22.78 18.44  
5 linear 26 p3 67613.18 64173.11 0.66 10.56 24.01 36.07 22.13 7.22  
5 beta 18 p1 70432.34 67196.62 0.62 4.34 35.84 5.42 47.37 7.03  
5 beta 23 p2 68611.38 65252.63 0.65 8.95 28.81 19.86 38.65 3.73  
5 beta 28 p3 67527.44 64316.75 0.62 11.06 24.51 32.73 21.28 10.41  
5 spline 19 p1 70354.94 67125.08 0.62 4.80 17.63 44.72 31.39 1.46  
5 spline 24 p2 68570.87 65281.07 0.63 9.26 26.55 19.63 40.45 4.11  
5 spline 29 p3 67576.20 64142.86 0.66 9.22 38.69 17.98 8.76 25.36  
k: number of classes, link: the link function, npm: number of parameters, poly: polynomial order, %class: % of the subjects 
classified as such class by the maximal posterior probability. *Model did not converge. 
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Annexed Table 11. Magnesium. Results of the LCGA exploratory analysis. Bold marks the selected models for GMM 
k link npm poly BIC ICL APPA %class1 %class2 %class3 %class4 %class5  
1 linear 4 p1 * * * * * * * *  
1 linear 5 p2 -1141.81 -1141.81 1.00 100.00 NA NA NA NA  
1 linear 6 p3 * * * * * * * *  
1 beta 6 p1 -2107.71 -2107.71 1.00 100.00 NA NA NA NA  
1 beta 7 p2 -2489.68 -2489.68 1.00 100.00 NA NA NA NA  
1 beta 8 p3 -2498.37 -2498.37 1.00 100.00 NA NA NA NA  
1 spline 7 p1 -2071.61 -2071.61 1.00 100.00 NA NA NA NA  
1 spline 8 p2 -2458.76 -2458.76 1.00 100.00 NA NA NA NA  
1 spline 9 p3 -2470.24 -2470.24 1.00 100.00 NA NA NA NA  
2 linear 7 p1 * * * * * * * *  
2 linear 9 p2 -2476.35 -7164.50 0.91 94.73 5.27 NA NA NA  
2 linear 11 p3 * * * * * * * *  
2 beta 9 p1 -3003.55 -6905.01 0.76 12.60 87.40 NA NA NA  
2 beta 11 p2 -3563.49 -7561.17 0.78 80.26 19.74 NA NA NA  
2 beta 13 p3 -3559.42 -7586.43 0.79 19.51 80.49 NA NA NA  
2 spline 10 p1 -2962.96 -6989.53 0.79 10.38 89.62 NA NA NA  
2 spline 12 p2 -3514.31 -7532.35 0.78 19.24 80.76 NA NA NA  
2 spline 14 p3 -3512.70 -7557.73 0.79 19.08 80.92 NA NA NA  
3 linear 10 p1 * * * * * * * *  
3 linear 13 p2 -2880.04 -6741.85 0.75 13.62 83.22 3.16 NA NA  
3 linear 16 p3 * * * * * * * *  
3 beta 12 p1 -3252.18 -6848.79 0.70 6.83 6.52 86.66 NA NA  
3 beta 15 p2 -3863.03 -7296.79 0.67 50.64 46.08 3.28 NA NA  
3 beta 18 p3 -3760.60 -7074.22 0.65 10.81 75.38 13.81 NA NA  
3 spline 13 p1 -3219.60 -6775.16 0.69 6.28 6.87 86.85 NA NA  
3 spline 16 p2 -3840.56 -7640.23 0.74 83.61 11.90 4.49 NA NA  
3 spline 19 p3 -3832.12 -7629.19 0.74 83.11 13.03 3.86 NA NA  
4 linear 13 p1 * * * * * * * *  
4 linear 17 p2 -3058.40 -6851.57 0.74 2.26 80.14 15.92 1.68 NA  
4 linear 21 p3 * * * * * * * *  
4 beta 15 p1 -3322.22 -6204.70 0.56 70.43 2.42 21.54 5.62 NA  
4 beta 19 p2 -4085.14 -7822.96 0.73 2.58 10.92 84.35 2.15 NA  
4 beta 23 p3 -4217.66 -7876.75 0.71 6.20 10.77 2.97 80.06 NA  
4 spline 16 p1 -3280.49 -6468.64 0.62 3.98 4.56 84.00 7.45 NA  
4 spline 20 p2 -4054.20 -7810.71 0.73 1.87 11.43 2.38 84.32 NA  
4 spline 24 p3 -4037.02 -7790.03 0.73 2.34 11.94 83.89 1.83 NA  
5 linear 16 p1 * * * * * * * *  
5 linear 21 p2 -2817.25 -6679.05 0.75 13.62 83.22 0.00 0.00 3.16  
5 linear 26 p3 * * * * * * * *  
5 beta 18 p1 -3318.07 -6351.89 0.59 0.86 4.21 79.79 4.49 10.65  
5 beta 23 p2 -4053.75 -7791.56 0.73 2.58 10.92 0.00 84.35 2.15  
5 beta 28 p3 -4207.18 -7831.36 0.71 0.70 10.77 6.05 79.52 2.97  
5 spline 19 p1 -3329.88 -6226.31 0.57 76.20 2.11 16.11 4.21 1.37  
5 spline 24 p2 -3797.80 -7563.27 0.73 0.00 12.10 82.79 0.70 4.41  
5 spline 29 p3 -4236.94 -7525.39 0.64 3.75 14.87 2.77 76.24 2.38  
k: number of classes, link: the link function, npm: number of parameters, poly: polynomial order, %class: % of the subjects 
classified as such class by the maximal posterior probability. *Model did not converge. 
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Annexed Table 12. MCH. Results of the LCGA exploratory analysis. Bold marks the selected models for GMM 
k link npm poly BIC ICL APPA %class1 %class2 %class3 %class4 %class5  
1 linear 4 p1 51361.75 51361.75 1.00 100.00 NA NA NA NA  
1 linear 5 p2 51355.96 51355.96 1.00 100.00 NA NA NA NA  
1 linear 6 p3 51352.73 51352.73 1.00 100.00 NA NA NA NA  
1 beta 6 p1 51002.91 51002.91 1.00 100.00 NA NA NA NA  
1 beta 7 p2 51001.58 51001.58 1.00 100.00 NA NA NA NA  
1 beta 8 p3 50996.44 50996.44 1.00 100.00 NA NA NA NA  
1 spline 7 p1 50999.59 50999.59 1.00 100.00 NA NA NA NA  
1 spline 8 p2 50998.31 50998.31 1.00 100.00 NA NA NA NA  
1 spline 9 p3 50993.14 50993.14 1.00 100.00 NA NA NA NA  
2 linear 7 p1 49329.15 45317.40 0.77 25.16 74.84 NA NA NA  
2 linear 9 p2 49293.74 45131.36 0.80 20.40 79.60 NA NA NA  
2 linear 11 p3 49295.92 45160.24 0.79 21.55 78.45 NA NA NA  
2 beta 9 p1 48973.90 45025.41 0.76 29.54 70.46 NA NA NA  
2 beta 11 p2 48952.28 44888.91 0.78 25.51 74.49 NA NA NA  
2 beta 13 p3 48951.83 44925.26 0.77 27.12 72.88 NA NA NA  
2 spline 10 p1 48973.24 45026.80 0.76 29.12 70.88 NA NA NA  
2 spline 12 p2 48951.24 44886.92 0.78 25.09 74.91 NA NA NA  
2 spline 14 p3 48950.86 44923.71 0.77 26.82 73.18 NA NA NA  
3 linear 10 p1 48353.42 44256.69 0.79 15.44 80.79 3.76 NA NA  
3 linear 13 p2 48307.71 44005.48 0.83 12.26 83.71 4.03 NA NA  
3 linear 16 p3 48304.14 44023.35 0.82 12.56 83.44 4.00 NA NA  
3 beta 12 p1 48008.25 44015.61 0.77 16.17 78.76 5.07 NA NA  
3 beta 15 p2 47973.40 43790.99 0.80 12.68 82.14 5.19 NA NA  
3 beta 18 p3 47966.09 43814.56 0.80 13.37 81.18 5.46 NA NA  
3 spline 13 p1 48000.71 44006.85 0.77 15.98 78.95 5.07 NA NA  
3 spline 16 p2 47966.35 43783.28 0.80 12.79 82.02 5.19 NA NA  
3 spline 19 p3 47959.18 43806.84 0.80 13.37 81.25 5.38 NA NA  
4 linear 13 p1 48109.87 44324.35 0.73 3.23 13.56 79.52 3.69 NA  
4 linear 17 p2 47981.31 43790.23 0.81 13.56 2.38 82.52 1.54 NA  
4 linear 21 p3 48345.06 44073.54 0.82 12.41 0.00 83.40 4.19 NA  
4 beta 15 p1 47809.98 44168.86 0.70 15.90 76.45 2.88 4.76 NA  
4 beta 19 p2 47656.01 43592.59 0.78 13.22 82.02 1.73 3.03 NA  
4 beta 23 p3 47523.06 43363.44 0.80 13.83 80.68 4.96 0.54 NA  
4 spline 16 p1 47802.86 44161.41 0.70 2.92 15.87 76.45 4.76 NA  
4 spline 20 p2 47649.53 43588.51 0.78 13.22 82.02 1.73 3.03 NA  
4 spline 24 p3 47998.50 43846.16 0.80 13.37 81.25 0.00 5.38 NA  
5 linear 16 p1 47923.25 44448.74 0.67 2.96 13.10 3.19 78.22 2.54  
5 linear 21 p2 47849.50 43631.79 0.81 12.41 0.61 82.06 1.19 3.73  
5 linear 26 p3 47692.61 43466.71 0.81 12.75 0.35 81.64 4.15 1.11  
5 beta 18 p1 47598.48 43988.55 0.69 2.80 76.14 5.07 14.29 1.69  
5 beta 23 p2 47409.45 43822.98 0.69 3.92 76.76 14.71 1.46 3.15  
5 beta 28 p3 47562.38 43402.76 0.80 13.83 0.00 80.68 4.96 0.54  
5 spline 19 p1 47638.52 44114.94 0.68 14.83 2.77 77.68 1.96 2.77  
5 spline 24 p2 47402.69 43817.25 0.69 3.92 14.75 76.72 1.46 3.15  
5 spline 29 p3 47310.40 43299.33 0.77 13.60 80.33 3.42 2.27 0.38  
k: number of classes, link: the link function, npm: number of parameters, poly: polynomial order, %class: % of the subjects 
classified as such class by the maximal posterior probability. *Model did not converge. 
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Annexed Table 13. MCHC. Results of the LCGA exploratory analysis. Bold marks the selected models for GMM 
k link npm poly BIC ICL APPA %class1 %class2 %class3 %class4 %class5  
1 linear 4 p1 63530.88 63530.88 1.00 100.00 NA NA NA NA  
1 linear 5 p2 63538.51 63538.51 1.00 100.00 NA NA NA NA  
1 linear 6 p3 63287.39 63287.39 1.00 100.00 NA NA NA NA  
1 beta 6 p1 63492.14 63492.14 1.00 100.00 NA NA NA NA  
1 beta 7 p2 63502.96 63502.96 1.00 100.00 NA NA NA NA  
1 beta 8 p3 63245.29 63245.29 1.00 100.00 NA NA NA NA  
1 spline 7 p1 63493.72 63493.72 1.00 100.00 NA NA NA NA  
1 spline 8 p2 63501.59 63501.59 1.00 100.00 NA NA NA NA  
1 spline 9 p3 63246.55 63246.55 1.00 100.00 NA NA NA NA  
2 linear 7 p1 61304.89 57146.83 0.80 20.78 79.22 NA NA NA  
2 linear 9 p2 61088.50 56692.96 0.84 17.10 82.90 NA NA NA  
2 linear 11 p3 60822.30 56612.98 0.81 22.28 77.72 NA NA NA  
2 beta 9 p1 61245.91 57110.91 0.79 19.63 80.37 NA NA NA  
2 beta 11 p2 61049.74 56676.74 0.84 83.10 16.90 NA NA NA  
2 beta 13 p3 60775.59 56603.52 0.80 22.13 77.87 NA NA NA  
2 spline 10 p1 61243.30 57109.92 0.79 19.48 80.52 NA NA NA  
2 spline 12 p2 61048.34 56674.96 0.84 16.71 83.29 NA NA NA  
2 spline 14 p3 60774.02 56603.67 0.80 21.86 78.14 NA NA NA  
3 linear 10 p1 60742.76 57280.93 0.66 6.49 34.11 59.39 NA NA  
3 linear 13 p2 60510.13 56721.26 0.73 8.61 17.94 73.45 NA NA  
3 linear 16 p3 60169.67 56288.05 0.75 10.18 17.33 72.49 NA NA  
3 beta 12 p1 60648.41 57155.07 0.67 6.45 32.35 61.20 NA NA  
3 beta 15 p2 60443.08 56590.78 0.74 17.90 73.84 8.26 NA NA  
3 beta 18 p3 60093.77 56157.81 0.76 9.10 17.06 73.84 NA NA  
3 spline 13 p1 60642.18 57141.79 0.67 6.26 61.24 32.50 NA NA  
3 spline 16 p2 60436.35 56584.35 0.74 8.03 18.56 73.42 NA NA  
3 spline 19 p3 60083.87 56126.16 0.76 9.14 73.68 17.17 NA NA  
4 linear 13 p1 60212.96 56766.31 0.66 5.26 60.12 34.00 0.61 NA  
4 linear 17 p2 59964.33 56126.27 0.74 4.42 23.01 71.72 0.85 NA  
4 linear 21 p3 59615.71 56101.16 0.68 6.92 44.14 0.77 48.18 NA  
4 beta 15 p1 60083.65 56596.62 0.67 4.96 32.04 61.81 1.19 NA  
4 beta 19 p2 59871.36 56087.41 0.73 0.88 70.27 24.36 4.49 NA  
4 beta 23 p3 59513.58 56005.93 0.67 6.30 45.33 0.85 47.52 NA  
4 spline 16 p1 60075.44 56562.40 0.67 4.69 29.93 64.16 1.23 NA  
4 spline 20 p2 60467.81 56615.81 0.74 8.03 0.00 18.56 73.42 NA  
4 spline 24 p3 59507.48 56002.90 0.67 6.15 45.52 0.88 47.45 NA  
5 linear 16 p1 60042.45 57012.94 0.58 2.65 42.22 46.75 7.72 0.65  
5 linear 21 p2 59736.13 56378.38 0.64 3.92 16.98 55.67 0.42 23.01  
5 linear 26 p3 59609.50 56480.04 0.60 5.53 20.09 45.56 27.31 1.50  
5 beta 18 p1 59917.73 56881.53 0.58 2.77 7.26 44.41 44.41 1.15  
5 beta 23 p2 59638.55 56284.52 0.64 0.92 22.24 55.74 17.17 3.92  
5 beta 28 p3 59247.42 56091.90 0.61 4.65 39.45 21.59 0.92 33.38  
5 spline 19 p1 59910.05 56872.01 0.58 2.80 7.07 44.45 44.45 1.23  
5 spline 24 p2 59630.56 56250.23 0.65 3.80 56.70 16.87 1.00 21.63  
5 spline 29 p3 59239.72 56084.95 0.61 4.73 21.24 40.22 0.92 32.89  
k: number of classes, link: the link function, npm: number of parameters, poly: polynomial order, %class: % of the subjects 
classified as such class by the maximal posterior probability. *Model did not converge. 
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Annexed Table 14. MVC. Results of the LCGA exploratory analysis. Bold marks the selected models for GMM 
k link npm poly BIC ICL APPA %class1 %class2 %class3 %class4 %class5  
1 linear 4 p1 106676.49 106676.49 1.00 100.00 NA NA NA NA  
1 linear 5 p2 106679.60 106679.60 1.00 100.00 NA NA NA NA  
1 linear 6 p3 106418.23 106418.23 1.00 100.00 NA NA NA NA  
1 beta 6 p1 105643.68 105643.68 1.00 100.00 NA NA NA NA  
1 beta 7 p2 105651.39 105651.39 1.00 100.00 NA NA NA NA  
1 beta 8 p3 105387.58 105387.58 1.00 100.00 NA NA NA NA  
1 spline 7 p1 105636.15 105636.15 1.00 100.00 NA NA NA NA  
1 spline 8 p2 105643.87 105643.87 1.00 100.00 NA NA NA NA  
1 spline 9 p3 105380.82 105380.82 1.00 100.00 NA NA NA NA  
2 linear 7 p1 103127.91 98693.40 0.85 87.25 12.75 NA NA NA  
2 linear 9 p2 102964.86 98419.05 0.87 87.01 12.99 NA NA NA  
2 linear 11 p3 102673.76 98251.39 0.85 86.13 13.87 NA NA NA  
2 beta 9 p1 101999.73 97548.51 0.86 84.56 15.44 NA NA NA  
2 beta 11 p2 101737.37 97150.75 0.88 85.02 14.98 NA NA NA  
2 beta 13 p3 101459.54 97002.30 0.86 82.02 17.98 NA NA NA  
2 spline 10 p1 101989.27 97531.38 0.86 84.71 15.29 NA NA NA  
2 spline 12 p2 101726.24 97138.08 0.88 84.90 15.10 NA NA NA  
2 spline 14 p3 101449.15 96990.85 0.86 81.98 18.02 NA NA NA  
3 linear 10 p1 101716.75 98006.32 0.71 59.32 37.38 3.30 NA NA  
3 linear 13 p2 101564.34 97585.26 0.76 70.30 27.20 2.50 NA NA  
3 linear 16 p3 101204.62 97314.06 0.75 63.62 34.19 2.19 NA NA  
3 beta 12 p1 100843.83 97110.61 0.72 64.35 30.96 4.69 NA NA  
3 beta 15 p2 100599.89 96535.38 0.78 73.18 23.51 3.30 NA NA  
3 beta 18 p3 100288.74 96385.86 0.75 65.16 31.19 3.65 NA NA  
3 spline 13 p1 100838.92 97095.78 0.72 64.50 30.81 4.69 NA NA  
3 spline 16 p2 100593.65 96608.36 0.77 70.15 25.82 4.03 NA NA  
3 spline 19 p3 101488.47 97030.18 0.86 81.98 0.00 18.02 NA NA  
4 linear 13 p1 101085.80 97442.80 0.70 5.57 14.75 76.83 2.84 NA  
4 linear 17 p2 100864.79 96892.04 0.76 3.84 16.17 77.99 2.00 NA  
4 linear 21 p3 101243.94 97353.38 0.75 63.62 0.00 34.19 2.19 NA  
4 beta 15 p1 100266.60 96640.96 0.70 4.11 16.63 75.49 3.76 NA  
4 beta 19 p2 99974.50 96023.76 0.76 3.15 17.63 76.26 2.96 NA  
4 beta 23 p3 99921.26 96259.93 0.70 57.86 4.19 35.61 2.34 NA  
4 spline 16 p1 100262.15 96630.58 0.70 4.07 75.30 16.90 3.73 NA  
4 spline 20 p2 100625.10 96639.81 0.77 70.15 25.82 0.00 4.03 NA  
4 spline 24 p3 99589.90 95731.79 0.74 3.84 73.53 19.59 3.03 NA  
5 linear 16 p1 100553.71 96986.80 0.69 5.49 75.57 15.02 3.34 0.58  
5 linear 21 p2 100644.82 97458.73 0.61 3.42 9.45 65.46 20.02 1.65  
5 linear 26 p3 99787.85 96028.89 0.72 4.00 20.05 72.49 2.92 0.54  
5 beta 18 p1 99995.70 96469.92 0.68 4.15 73.95 16.67 3.92 1.31  
5 beta 23 p2 99718.65 96014.24 0.71 2.88 74.64 16.52 4.11 1.84  
5 beta 28 p3 105489.91 103962.99 0.29 63.20 0.00 0.00 0.00 36.80  
5 spline 19 p1 100027.20 96770.04 0.63 3.38 65.73 22.97 6.19 1.73  
5 spline 24 p2 99705.82 95976.41 0.72 3.19 75.45 15.33 4.00 2.04  
5 spline 29 p3 99207.07 95578.60 0.70 1.61 5.80 70.15 19.44 3.00  
k: number of classes, link: the link function, npm: number of parameters, poly: polynomial order, %class: % of the subjects 
classified as such class by the maximal posterior probability. *Model did not converge. 
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Annexed Table 15. Phosphate. Results of the LCGA exploratory analysis. Bold marks the selected models for GMM 
k link npm poly BIC ICL APPA %class1 %class2 %class3 %class4 %class5  
1 linear 4 p1 55519.66 55519.66 1.00 100.00 NA NA NA NA  
1 linear 5 p2 55357.75 55357.75 1.00 100.00 NA NA NA NA  
1 linear 6 p3 54859.94 54859.94 1.00 100.00 NA NA NA NA  
1 beta 6 p1 53382.92 53382.92 1.00 100.00 NA NA NA NA  
1 beta 7 p2 53249.56 53249.56 1.00 100.00 NA NA NA NA  
1 beta 8 p3 52655.75 52655.75 1.00 100.00 NA NA NA NA  
1 spline 7 p1 * * * * * * * *  
1 spline 8 p2 53211.38 53211.38 1.00 100.00 NA NA NA NA  
1 spline 9 p3 52616.65 52616.65 1.00 100.00 NA NA NA NA  
2 linear 7 p1 54001.17 48945.92 0.99 3.56 96.44 NA NA NA  
2 linear 9 p2 53507.78 48440.48 0.99 3.09 96.91 NA NA NA  
2 linear 11 p3 52918.69 47850.82 0.99 2.98 97.02 NA NA NA  
2 beta 9 p1 52332.67 47583.35 0.93 6.46 93.54 NA NA NA  
2 beta 11 p2 51944.67 47323.01 0.91 9.44 90.56 NA NA NA  
2 beta 13 p3 51266.20 46502.44 0.93 8.30 91.70 NA NA NA  
2 spline 10 p1 52305.50 47642.49 0.91 7.56 92.44 NA NA NA  
2 spline 12 p2 51917.90 47378.52 0.89 10.30 89.70 NA NA NA  
2 spline 14 p3 51236.95 46525.70 0.92 8.85 91.15 NA NA NA  
3 linear 10 p1 53499.36 49884.77 0.71 2.74 19.62 77.63 NA NA  
3 linear 13 p2 52942.33 49335.96 0.71 2.19 56.72 41.09 NA NA  
3 linear 16 p3 52297.81 48580.26 0.73 2.27 33.10 64.63 NA NA  
3 beta 12 p1 51953.53 48305.55 0.71 4.00 78.81 17.20 NA NA  
3 beta 15 p2 51661.81 47076.68 0.90 3.02 6.78 90.21 NA NA  
3 beta 18 p3 50668.06 47009.61 0.72 49.98 43.56 6.46 NA NA  
3 spline 13 p1 51943.82 48329.33 0.71 4.19 77.87 17.94 NA NA  
3 spline 16 p2 51642.01 47099.31 0.89 7.21 89.74 3.06 NA NA  
3 spline 19 p3 50639.30 46952.64 0.72 6.62 54.95 38.43 NA NA  
4 linear 13 p1 53253.23 49642.22 0.71 2.12 79.55 1.37 16.96 NA  
4 linear 17 p2 52696.57 49119.32 0.70 0.51 2.19 49.90 47.40 NA  
4 linear 21 p3 51919.44 48280.68 0.71 0.82 3.68 25.73 69.76 NA  
4 beta 15 p1 51724.40 48181.73 0.69 2.55 77.67 3.02 16.76 NA  
4 beta 19 p2 51288.54 47689.05 0.70 2.55 4.39 76.26 16.80 NA  
4 beta 23 p3 50385.88 46701.39 0.72 1.72 6.31 60.95 31.02 NA  
4 spline 16 p1 51718.97 48212.87 0.69 2.66 3.09 76.15 18.10 NA  
4 spline 20 p2 51200.73 48107.63 0.61 3.02 17.39 50.14 29.46 NA  
4 spline 24 p3 50359.33 46656.69 0.73 61.77 6.35 30.16 1.72 NA  
5 linear 16 p1 53106.28 49277.75 0.75 1.41 0.55 3.56 87.39 7.09  
5 linear 21 p2 52727.95 49150.70 0.70 0.51 2.19 0.00 49.90 47.40  
5 linear 26 p3 51502.69 48252.82 0.64 1.68 0.67 11.16 44.61 41.87  
5 beta 18 p1 51673.57 48392.01 0.64 2.98 3.21 2.31 83.90 7.60  
5 beta 23 p2 51011.09 47687.49 0.65 2.70 0.90 66.04 20.17 10.18  
5 beta 28 p3 50070.45 46763.49 0.65 0.71 2.78 39.87 16.45 40.19  
5 spline 19 p1 51663.40 48400.27 0.64 2.86 2.31 2.82 8.97 83.04  
5 spline 24 p2 51001.44 47679.52 0.65 2.70 0.90 65.18 20.56 10.65  
5 spline 29 p3 50710.83 47194.17 0.69 30.79 8.97 59.54 0.27 0.43  
k: number of classes, link: the link function, npm: number of parameters, poly: polynomial order, %class: % of the subjects 
classified as such class by the maximal posterior probability. *Model did not converge. 
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Annexed Table 16. Platelete count. Results of the LCGA exploratory analysis. Bold marks the selected models for 
 k link npm poly BIC ICL APPA %class1 %class2 %class3 %class4 %class5  

1 linear 4 p1 295446.9 295446.9 1.00 100.00 NA NA NA NA  
1 linear 5 p2 295408.0 295408.0 1.00 100.00 NA NA NA NA  
1 linear 6 p3 292618.9 292618.9 1.00 100.00 NA NA NA NA  
1 beta 6 p1 275230.2 275230.2 1.00 100.00 NA NA NA NA  
1 beta 7 p2 275208.7 275208.7 1.00 100.00 NA NA NA NA  
1 beta 8 p3 272207.7 272207.7 1.00 100.00 NA NA NA NA  
1 spline 7 p1 278994.3 278994.3 1.00 100.00 NA NA NA NA  
1 spline 8 p2 279001.9 279001.9 1.00 100.00 NA NA NA NA  
1 spline 9 p3 276091.6 276091.6 1.00 100.00 NA NA NA NA  
2 linear 7 p1 286125.9 281151.7 0.96 8.14 91.86 NA NA NA  
2 linear 9 p2 286057.1 281036.7 0.96 92.16 7.84 NA NA NA  
2 linear 11 p3 * * * * * * * *  
2 beta 9 p1 269465.3 264897.4 0.88 84.17 15.83 NA NA NA  
2 beta 11 p2 268879.5 264054.7 0.93 85.09 14.91 NA NA NA  
2 beta 13 p3 264072.2 260128.1 0.76 61.51 38.49 NA NA NA  
2 spline 10 p1 271812.1 267025.5 0.92 87.98 12.02 NA NA NA  
2 spline 12 p2 271541.5 266611.2 0.95 88.40 11.60 NA NA NA  
2 spline 14 p3 266377.7 262288.7 0.79 80.56 19.44 NA NA NA  
3 linear 10 p1 283165.3 278743.8 NaN 4.07 84.02 11.87 NA NA  
3 linear 13 p2 283008.7 278663.6 NaN 82.67 13.33 3.96 NA NA  
3 linear 16 p3 * * * * * * * *  
3 beta 12 p1 267189.9 263538.3 0.70 27.43 62.58 9.99 NA NA  
3 beta 15 p2 266704.1 262862.5 0.74 62.35 29.27 8.37 NA NA  
3 beta 18 p3 264111.5 260167.4 0.76 61.51 0.00 38.49 NA NA  
3 spline 13 p1 269475.5 265722.8 0.72 68.31 23.47 8.22 NA NA  
3 spline 16 p2 269141.7 265088.0 0.78 72.45 21.86 5.69 NA NA  
3 spline 19 p3 262189.2 258710.9 0.67 17.52 70.42 12.06 NA NA  
4 linear 13 p1 281367.9 277281.6 NaN 0.92 80.29 5.76 12.99 NA  
4 linear 17 p2 281744.3 278088.4 NaN 77.18 7.53 3.03 12.22 NA  
4 linear 21 p3 * * * * * * * *  
4 beta 15 p1 266488.6 263120.8 0.65 9.87 44.26 42.26 3.61 NA  
4 beta 19 p2 265887.2 262680.2 0.62 49.87 11.60 7.26 31.27 NA  
4 beta 23 p3 258909.6 255715.9 0.61 7.95 20.09 62.27 9.68 NA  
4 spline 16 p1 268387.5 264842.1 0.68 7.99 63.89 3.11 25.01 NA  
4 spline 20 p2 268028.8 264528.9 0.67 57.28 30.46 8.87 3.38 NA  
4 spline 24 p3 260700.3 257707.4 0.57 9.87 57.86 21.28 10.99 NA  
5 linear 16 p1 280582.5 276929.8 NaN 0.92 75.68 5.69 14.25 3.42  
5 linear 21 p2 281687.7 277969.7 NaN 76.68 0.00 13.75 2.46 7.07  
5 linear 26 p3 277173.2 274242.5 NaN 38.03 0.00 48.37 11.37 2.19  
5 beta 18 p1 266028.1 263067.1 0.57 9.76 17.40 8.03 61.77 3.03  
5 beta 23 p2 265069.0 262111.4 0.57 26.78 6.49 18.02 4.03 44.68  
5 beta 28 p3 258144.3 255200.5 0.57 5.26 16.90 58.16 8.68 10.99  
5 spline 19 p1 267938.5 264853.5 0.59 7.68 7.18 12.87 2.96 69.30  
5 spline 24 p2 267954.1 265109.2 0.55 55.17 4.53 29.04 5.30 5.95  
5 spline 29 p3 260582.5 257547.4 0.58 10.07 0.00 46.95 33.73 9.26  
k: number of classes, link: the link function, npm: number of parameters, poly: polynomial order, %class: % of the subjects 
classified as such class by the maximal posterior probability. *Model did not converge. 
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Annexed Table 17. Potassium. Results of the LCGA exploratory analysis. Bold marks the selected models for GMM 
k link npm poly BIC ICL APPA %class1 %class2 %class3 %class4 %class5  
1 linear 4 p1 30312.29 30312.29 1.00 100.00 NA NA NA NA  
1 linear 5 p2 30120.97 30120.97 1.00 100.00 NA NA NA NA  
1 linear 6 p3 29742.75 29742.75 1.00 100.00 NA NA NA NA  
1 beta 6 p1 28231.70 28231.70 1.00 100.00 NA NA NA NA  
1 beta 7 p2 28063.18 28063.18 1.00 100.00 NA NA NA NA  
1 beta 8 p3 27717.38 27717.38 1.00 100.00 NA NA NA NA  
1 spline 7 p1 28201.18 28201.18 1.00 100.00 NA NA NA NA  
1 spline 8 p2 28034.74 28034.74 1.00 100.00 NA NA NA NA  
1 spline 9 p3 27692.15 27692.15 1.00 100.00 NA NA NA NA  
2 linear 7 p1 29175.55 24325.06 0.93 8.07 91.93 NA NA NA  
2 linear 9 p2 28621.30 23713.95 0.94 8.30 91.70 NA NA NA  
2 linear 11 p3 28186.86 23223.47 0.95 7.65 92.35 NA NA NA  
2 beta 9 p1 27234.58 23178.49 0.78 24.98 75.02 NA NA NA  
2 beta 11 p2 26789.86 22373.30 0.85 17.45 82.55 NA NA NA  
2 beta 13 p3 26409.39 21940.37 0.86 16.10 83.90 NA NA NA  
2 spline 10 p1 27210.63 23140.19 0.78 23.52 76.48 NA NA NA  
2 spline 12 p2 26836.34 22762.64 0.78 34.17 65.83 NA NA NA  
2 spline 14 p3 26411.13 22114.33 0.83 79.86 20.14 NA NA NA  
3 linear 10 p1 28634.65 25127.93 0.67 5.07 27.63 67.29 NA NA  
3 linear 13 p2 28319.95 24410.54 0.75 4.11 23.21 72.67 NA NA  
3 linear 16 p3 27520.04 23849.11 0.71 36.63 5.84 57.53 NA NA  
3 beta 12 p1 26881.05 23517.56 0.65 6.61 49.92 43.47 NA NA  
3 beta 15 p2 26401.06 22937.43 0.67 63.07 12.41 24.52 NA NA  
3 beta 18 p3 25793.24 22112.75 0.71 27.59 62.76 9.65 NA NA  
3 spline 13 p1 26860.11 23490.30 0.65 6.15 51.46 42.39 NA NA  
3 spline 16 p2 26411.28 23034.93 0.65 13.45 22.83 63.72 NA NA  
3 spline 19 p3 25790.83 22099.41 0.71 9.07 26.29 64.64 NA NA  
4 linear 13 p1 28415.99 25003.81 0.66 5.07 0.92 38.93 55.07 NA  
4 linear 17 p2 27710.15 24238.53 0.67 13.72 5.11 75.98 5.19 NA  
4 linear 21 p3 27164.90 23457.35 0.71 2.50 14.68 77.21 5.61 NA  
4 beta 15 p1 26738.72 23391.98 0.64 6.76 58.84 33.74 0.65 NA  
4 beta 19 p2 26073.96 23041.74 0.58 14.22 10.53 64.37 10.88 NA  
4 beta 23 p3 25494.95 22263.94 0.62 46.73 6.07 10.45 36.74 NA  
4 spline 16 p1 26713.97 23357.39 0.65 6.34 0.65 59.68 33.32 NA  
4 spline 20 p2 26212.11 23406.02 0.54 15.14 6.92 58.99 18.95 NA  
4 spline 24 p3 25509.03 22319.65 0.61 5.92 48.00 34.86 11.22 NA  
5 linear 16 p1 28289.70 24888.08 0.65 1.58 0.92 3.07 40.70 53.73  
5 linear 21 p2 27573.59 23997.99 0.69 1.50 4.80 77.67 10.91 5.11  
5 linear 26 p3 26891.09 23140.15 0.72 11.45 3.00 79.36 3.38 2.81  
5 beta 18 p1 26665.81 23339.78 0.64 1.61 37.55 5.11 55.07 0.65  
5 beta 23 p2 25923.09 22895.60 0.58 15.53 6.34 18.22 1.73 58.19  
5 beta 28 p3 25534.27 22303.26 0.62 46.73 6.07 0.00 10.45 36.74  
5 spline 19 p1 26651.86 23508.59 0.60 4.46 0.65 43.20 4.15 47.54  
5 spline 24 p2 25910.65 22889.10 0.58 6.23 15.03 19.37 57.69 1.69  
5 spline 29 p3 25298.05 21826.35 0.67 5.73 8.72 76.10 5.00 4.46  
k: number of classes, link: the link function, npm: number of parameters, poly: polynomial order, %class: % of the subjects 
classified as such class by the maximal posterior probability. *Model did not converge. 
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Annexed Table 18. RDW. Results of the LCGA exploratory analysis. Bold marks the selected models for GMM 
k link npm poly BIC ICL APPA %class1 %class2 %class3 %class4 %class5  
1 linear 4 p1 58409.39 58409.39 1.00 100.00 NA NA NA NA  
1 linear 5 p2 58380.52 58380.52 1.00 100.00 NA NA NA NA  
1 linear 6 p3 58385.69 58385.69 1.00 100.00 NA NA NA NA  
1 beta 6 p1 47569.39 47569.39 1.00 100.00 NA NA NA NA  
1 beta 7 p2 47442.19 47442.19 1.00 100.00 NA NA NA NA  
1 beta 8 p3 47449.00 47449.00 1.00 100.00 NA NA NA NA  
1 spline 7 p1 47887.62 47887.62 1.00 100.00 NA NA NA NA  
1 spline 8 p2 47772.98 47772.98 1.00 100.00 NA NA NA NA  
1 spline 9 p3 47780.49 47780.49 1.00 100.00 NA NA NA NA  
2 linear 7 p1 * * * * * * * *  
2 linear 9 p2 * * * * * * * *  
2 linear 11 p3 * * * * * * * *  
2 beta 9 p1 42329.51 37893.27 0.85 84.59 15.41 NA NA NA  
2 beta 11 p2 41494.01 36759.63 0.91 85.90 14.10 NA NA NA  
2 beta 13 p3 41506.64 36760.54 0.91 85.94 14.06 NA NA NA  
2 spline 10 p1 42494.89 38004.28 0.86 85.75 14.25 NA NA NA  
2 spline 12 p2 41739.74 36988.80 0.91 86.52 13.48 NA NA NA  
2 spline 14 p3 41753.81 36999.72 0.91 86.52 13.48 NA NA NA  
3 linear 10 p1 * * * * * * * *  
3 linear 13 p2 * * * * * * * *  
3 linear 16 p3 * * * * * * * *  
3 beta 12 p1 40427.29 36810.18 0.69 68.04 22.63 9.34 NA NA  
3 beta 15 p2 39529.38 35646.28 0.75 70.11 21.94 7.95 NA NA  
3 beta 18 p3 39533.69 35640.57 0.75 70.96 21.21 7.84 NA NA  
3 spline 13 p1 40563.04 36860.20 0.71 70.53 8.22 21.24 NA NA  
3 spline 16 p2 39712.54 35837.21 0.74 70.11 22.47 7.41 NA NA  
3 spline 19 p3 39713.91 35843.97 0.74 70.38 21.97 7.65 NA NA  
4 linear 13 p1 * * * * * * * *  
4 linear 17 p2 * * * * * * * *  
4 linear 21 p3 * * * * * * * *  
4 beta 15 p1 39053.07 35570.99 0.67 7.53 30.46 58.51 3.50 NA  
4 beta 19 p2 38723.55 35387.13 0.64 36.38 8.22 49.17 6.22 NA  
4 beta 23 p3 38082.95 34457.40 0.70 67.08 22.55 5.42 4.96 NA  
4 spline 16 p1 39175.83 35740.42 0.66 8.11 54.40 34.08 3.42 NA  
4 spline 20 p2 38944.17 35634.41 0.64 52.63 8.34 32.23 6.80 NA  
4 spline 24 p3 38254.97 34592.20 0.70 68.65 5.30 21.55 4.49 NA  
5 linear 16 p1 * * * * * * * *  
5 linear 21 p2 * * * * * * * *  
5 linear 26 p3 * * * * * * * *  
5 beta 18 p1 38526.61 35349.00 0.61 11.06 6.42 8.57 70.38 3.57  
5 beta 23 p2 37728.12 34333.89 0.65 27.97 3.42 58.36 7.34 2.92  
5 beta 28 p3 37348.78 34019.31 0.64 12.33 5.46 8.26 70.23 3.73  
5 spline 19 p1 38622.15 35418.98 0.62 71.23 6.45 8.03 11.06 3.23  
5 spline 24 p2 38286.20 34976.12 0.64 9.99 4.30 7.65 72.42 5.65  
5 spline 29 p3 41077.26 37825.40 0.62 69.73 5.92 0.00 9.22 15.14  
k: number of classes, link: the link function, npm: number of parameters, poly: polynomial order, %class: % of the subjects 
classified as such class by the maximal posterior probability. *Model did not converge. 
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Annexed Table 19. Red Blood Cells. Results of the LCGA exploratory analysis. Bold marks the selected models for 
 k link npm poly BIC ICL APPA %class1 %class2 %class3 %class4 %class5  

1 linear 4 p1 22886.53 22886.53 1.00 100.00 NA NA NA NA  
1 linear 5 p2 21875.89 21875.89 1.00 100.00 NA NA NA NA  
1 linear 6 p3 21407.21 21407.21 1.00 100.00 NA NA NA NA  
1 beta 6 p1 22449.18 22449.18 1.00 100.00 NA NA NA NA  
1 beta 7 p2 21511.41 21511.41 1.00 100.00 NA NA NA NA  
1 beta 8 p3 21085.81 21085.81 1.00 100.00 NA NA NA NA  
1 spline 7 p1 22440.65 22440.65 1.00 100.00 NA NA NA NA  
1 spline 8 p2 21507.13 21507.13 1.00 100.00 NA NA NA NA  
1 spline 9 p3 21083.04 21083.04 1.00 100.00 NA NA NA NA  
2 linear 7 p1 21132.46 16960.87 0.80 46.41 53.59 NA NA NA  
2 linear 9 p2 19694.14 15442.45 0.82 36.34 63.66 NA NA NA  
2 linear 11 p3 19317.61 14933.21 0.84 72.69 27.31 NA NA NA  
2 beta 9 p1 20744.74 16624.90 0.79 51.98 48.02 NA NA NA  
2 beta 11 p2 19420.34 15262.45 0.80 39.80 60.20 NA NA NA  
2 beta 13 p3 19050.45 14743.74 0.83 71.26 28.74 NA NA NA  
2 spline 10 p1 20741.52 16628.92 0.79 51.90 48.10 NA NA NA  
2 spline 12 p2 19419.92 15265.86 0.80 39.49 60.51 NA NA NA  
2 spline 14 p3 19049.58 14744.33 0.83 71.11 28.89 NA NA NA  
3 linear 10 p1 20400.29 16747.88 0.70 11.41 41.68 46.91 NA NA  
3 linear 13 p2 18894.07 15108.78 0.73 37.11 10.91 51.98 NA NA  
3 linear 16 p3 17811.97 13905.77 0.75 52.55 26.78 20.67 NA NA  
3 beta 12 p1 20165.93 16637.25 0.68 13.37 27.78 58.86 NA NA  
3 beta 15 p2 18754.45 15181.46 0.69 37.30 22.70 39.99 NA NA  
3 beta 18 p3 17573.48 13710.83 0.74 47.64 31.73 20.63 NA NA  
3 spline 13 p1 20130.18 16358.32 0.72 7.41 52.55 40.03 NA NA  
3 spline 16 p2 18693.05 14945.04 0.72 11.18 38.92 49.90 NA NA  
3 spline 19 p3 17575.73 13721.10 0.74 31.54 47.83 20.63 NA NA  
4 linear 13 p1 20012.17 16554.95 0.66 8.53 23.97 57.74 9.76 NA  
4 linear 17 p2 18454.90 15145.01 0.64 37.84 10.60 19.94 31.62 NA  
4 linear 21 p3 17396.20 13716.27 0.71 50.83 13.98 13.95 21.24 NA  
4 beta 15 p1 19760.85 16392.32 0.65 7.57 30.00 54.05 8.37 NA  
4 beta 19 p2 18247.25 14970.22 0.63 20.09 13.02 48.91 17.98 NA  
4 beta 23 p3 17020.86 13460.07 0.68 37.46 27.51 12.02 23.01 NA  
4 spline 16 p1 19760.45 16400.68 0.65 7.49 30.00 54.25 8.26 NA  
4 spline 20 p2 18248.96 14980.00 0.63 13.18 48.75 20.25 17.83 NA  
4 spline 24 p3 17054.40 13499.92 0.68 26.51 46.25 7.84 19.40 NA  
5 linear 16 p1 19809.50 16523.62 0.63 5.15 30.23 49.71 12.45 2.46  
5 linear 21 p2 18098.62 14870.52 0.62 43.14 9.49 21.48 23.01 2.88  
5 linear 26 p3 16825.73 13446.11 0.65 37.57 15.41 10.95 26.66 9.41  
5 beta 18 p1 19624.61 16333.24 0.63 4.34 32.42 4.96 53.86 4.42  
5 beta 23 p2 18283.02 14907.09 0.65 63.43 11.22 0.00 12.64 12.72  
5 beta 28 p3 16643.59 13301.86 0.64 5.95 23.47 10.45 40.03 20.09  
5 spline 19 p1 19606.68 16392.88 0.62 4.84 8.95 49.75 33.38 3.07  
5 spline 24 p2 17902.02 14743.25 0.61 15.10 21.44 41.95 17.94 3.57  
5 spline 29 p3 16685.29 13394.19 0.63 16.71 35.57 12.14 25.89 9.68  
k: number of classes, link: the link function, npm: number of parameters, poly: polynomial order, %class: % of the subjects 
classified as such class by the maximal posterior probability. *Model did not converge. 

 

 

 



Abel Torres Espin  

84 
 

Annexed Table 20. Sodium. Results of the LCGA exploratory analysis. Bold marks the selected models for GMM 
k link npm poly BIC ICL APPA %class1 %class2 %class3 %class4 %class5  
1 linear 4 p1 139759.4 139759.4 1.00 100.00 NA NA NA NA  
1 linear 5 p2 139759.3 139759.3 1.00 100.00 NA NA NA NA  
1 linear 6 p3 139697.8 139697.8 1.00 100.00 NA NA NA NA  
1 beta 6 p1 137902.3 137902.3 1.00 100.00 NA NA NA NA  
1 beta 7 p2 137907.7 137907.7 1.00 100.00 NA NA NA NA  
1 beta 8 p3 137858.5 137858.5 1.00 100.00 NA NA NA NA  
1 spline 7 p1 138354.1 138354.1 1.00 100.00 NA NA NA NA  
1 spline 8 p2 138358.6 138358.6 1.00 100.00 NA NA NA NA  
1 spline 9 p3 138303.0 138303.0 1.00 100.00 NA NA NA NA  
2 linear 7 p1 137139.1 132960.9 0.80 87.46 12.54 NA NA NA  
2 linear 9 p2 136836.4 132311.0 0.87 88.81 11.19 NA NA NA  
2 linear 11 p3 136713.2 132172.3 0.87 89.19 10.81 NA NA NA  
2 beta 9 p1 135078.2 131082.8 0.77 80.92 19.08 NA NA NA  
2 beta 11 p2 134799.7 130582.1 0.81 80.27 19.73 NA NA NA  
2 beta 13 p3 134685.2 130445.3 0.82 82.31 17.69 NA NA NA  
2 spline 10 p1 135613.6 131523.2 0.79 83.73 16.27 NA NA NA  
2 spline 12 p2 135322.6 131028.0 0.83 82.85 17.15 NA NA NA  
2 spline 14 p3 135203.3 130863.8 0.83 84.38 15.62 NA NA NA  
3 linear 10 p1 135886.4 132044.8 0.74 13.73 3.19 83.08 NA NA  
3 linear 13 p2 135472.5 130984.6 0.86 88.12 7.69 4.19 NA NA  
3 linear 16 p3 135030.6 130271.4 0.92 4.46 89.04 6.50 NA NA  
3 beta 12 p1 133855.6 130122.4 0.72 17.85 78.42 3.73 NA NA  
3 beta 15 p2 133582.1 129625.5 0.76 10.77 80.81 8.42 NA NA  
3 beta 18 p3 133150.6 129602.4 0.68 60.85 26.08 13.08 NA NA  
3 spline 13 p1 134286.2 130475.6 0.73 16.00 79.54 4.46 NA NA  
3 spline 16 p2 133937.5 129724.9 0.81 10.42 84.77 4.81 NA NA  
3 spline 19 p3 133583.8 129266.2 0.83 8.58 83.62 7.81 NA NA  
4 linear 13 p1 135319.1 131666.5 0.70 5.77 2.19 84.38 7.65 NA  
4 linear 17 p2 134314.9 129895.2 0.85 6.15 6.23 85.08 2.54 NA  
4 linear 21 p3 134132.8 130192.2 0.76 5.27 4.27 5.77 84.69 NA  
4 beta 15 p1 133314.9 129923.5 0.65 6.81 10.35 79.38 3.46 NA  
4 beta 19 p2 132243.5 128201.7 0.78 7.04 78.19 4.00 10.77 NA  
4 beta 23 p3 132088.1 128393.3 0.71 6.15 6.35 8.46 79.04 NA  
4 spline 16 p1 133682.4 130011.7 0.71 8.04 82.73 7.15 2.08 NA  
4 spline 20 p2 132668.3 128574.3 0.79 6.62 10.38 79.62 3.38 NA  
4 spline 24 p3 132393.5 128163.3 0.81 6.69 6.69 4.81 81.81 NA  
5 linear 16 p1 135008.8 131725.1 0.63 1.50 1.88 14.96 77.65 4.00  
5 linear 21 p2 133778.4 129919.5 0.74 4.46 81.35 5.27 5.92 3.00  
5 linear 26 p3 133012.6 129111.7 0.75 10.27 6.19 78.92 2.85 1.77  
5 beta 18 p1 133074.5 129938.6 0.60 2.62 13.96 6.50 74.65 2.27  
5 beta 23 p2 132234.5 128187.5 0.78 10.00 7.04 78.38 3.38 1.19  
5 beta 28 p3 131255.5 127404.7 0.74 3.12 6.23 77.73 6.35 6.58  
5 spline 19 p1 133360.0 130157.8 0.62 3.23 2.88 62.12 30.12 1.65  
5 spline 24 p2 132062.8 127868.6 0.81 5.08 6.88 81.54 3.58 2.92  
5 spline 29 p3 131610.4 127490.2 0.79 5.15 7.88 81.54 1.96 3.46  
k: number of classes, link: the link function, npm: number of parameters, poly: polynomial order, %class: % of the subjects 
classified as such class by the maximal posterior probability. *Model did not converge. 
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Annexed Table 21. Urea Nitrogen. Results of the LCGA exploratory analysis. Bold marks the selected models for 
 k link npm poly BIC ICL APPA %class1 %class2 %class3 %class4 %class5  

1 linear 4 p1 176644.1 176644.1 1.00 100.00 NA NA NA NA  
1 linear 5 p2 176567.7 176567.7 1.00 100.00 NA NA NA NA  
1 linear 6 p3 176350.6 176350.6 1.00 100.00 NA NA NA NA  
1 beta 6 p1 156828.2 156828.2 1.00 100.00 NA NA NA NA  
1 beta 7 p2 156695.3 156695.3 1.00 100.00 NA NA NA NA  
1 beta 8 p3 156261.1 156261.1 1.00 100.00 NA NA NA NA  
1 spline 7 p1 159486.5 159486.5 1.00 100.00 NA NA NA NA  
1 spline 8 p2 * * * * * * * *  
1 spline 9 p3 158963.5 158963.5 1.00 100.00 NA NA NA NA  
2 linear 7 p1 171182.4 166051.9 0.99 95.19 4.81 NA NA NA  
2 linear 9 p2 170417.0 165263.7 0.99 96.62 3.38 NA NA NA  
2 linear 11 p3 170158.9 165011.9 0.99 96.31 3.69 NA NA NA  
2 beta 9 p1 153608.1 149746.3 0.74 60.96 39.04 NA NA NA  
2 beta 11 p2 152547.9 148141.5 0.85 77.69 22.31 NA NA NA  
2 beta 13 p3 152206.1 147882.4 0.83 75.08 24.92 NA NA NA  
2 spline 10 p1 156382.3 152304.3 0.78 81.08 18.92 NA NA NA  
2 spline 12 p2 155361.1 150726.2 0.89 85.42 14.58 NA NA NA  
2 spline 14 p3 155038.5 150509.7 0.87 84.15 15.85 NA NA NA  
3 linear 10 p1 169094.8 163999.2 0.98 2.88 92.73 4.38 NA NA  
3 linear 13 p2 167968.9 162835.5 0.99 3.08 93.65 3.27 NA NA  
3 linear 16 p3 167697.2 162572.5 0.99 2.88 93.69 3.42 NA NA  
3 beta 12 p1 152401.4 148854.9 0.68 24.65 66.12 9.23 NA NA  
3 beta 15 p2 151218.8 147380.0 0.74 61.96 29.92 8.12 NA NA  
3 beta 18 p3 150631.0 146706.3 0.75 55.42 25.27 19.31 NA NA  
3 spline 13 p1 154689.4 150868.9 0.73 21.54 72.77 5.69 NA NA  
3 spline 16 p2 153523.3 149623.0 0.75 35.65 59.77 4.58 NA NA  
3 spline 19 p3 153274.9 149424.2 0.74 30.27 63.77 5.96 NA NA  
4 linear 13 p1 167575.1 162549.4 0.97 3.12 1.62 91.65 3.62 NA  
4 linear 17 p2 166519.6 161526.6 0.96 2.42 4.62 90.73 2.23 NA  
4 linear 21 p3 167736.5 162611.8 0.99 2.88 0.00 93.69 3.42 NA  
4 beta 15 p1 151846.7 148740.1 0.60 10.77 41.00 42.42 5.81 NA  
4 beta 19 p2 150193.7 146605.6 0.69 10.19 23.81 59.73 6.27 NA  
4 beta 23 p3 149472.2 145626.9 0.74 17.73 16.65 59.54 6.08 NA  
4 spline 16 p1 153998.0 150453.4 0.68 5.54 4.50 62.81 27.15 NA  
4 spline 20 p2 152503.5 148451.5 0.78 8.19 72.73 15.54 3.54 NA  
4 spline 24 p3 152022.1 147992.5 0.77 13.92 13.23 69.46 3.38 NA  
5 linear 16 p1 166471.3 161480.3 0.96 89.92 1.50 0.73 4.19 3.65  
5 linear 21 p2 165877.5 160885.1 0.96 1.81 2.69 4.46 89.46 1.58  
5 linear 26 p3 164551.8 159535.1 0.96 5.19 89.54 1.73 2.35 1.19  
5 beta 18 p1 151531.5 148602.1 0.56 4.27 59.04 17.23 14.31 5.15  
5 beta 23 p2 149454.0 146021.0 0.66 13.54 21.38 15.35 46.54 3.19  
5 beta 28 p3 148745.1 145247.4 0.67 20.85 15.92 47.00 8.96 7.27  
5 spline 19 p1 153545.4 150371.8 0.61 2.12 5.08 65.12 14.46 13.23  
5 spline 24 p2 154464.6 151701.2 0.53 65.38 1.54 14.31 10.31 8.46  
5 spline 29 p3 151737.3 148564.4 0.61 14.08 16.46 23.62 40.69 5.15  
k: number of classes, link: the link function, npm: number of parameters, poly: polynomial order, %class: % of the subjects 
classified as such class by the maximal posterior probability. *Model did not converge. 
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Annexed Table 22. White blood cells. Results of the LCGA exploratory analysis. Bold marks the selected models for 
GMM 

k link npm poly BIC ICL APPA %class1 %class2 %class3 %class4 %class5  
1 linear 4 p1 128591.8 128591.8 1.00 100.00 NA NA NA NA  
1 linear 5 p2 128551.2 128551.2 1.00 100.00 NA NA NA NA  
1 linear 6 p3 127511.4 127511.4 1.00 100.00 NA NA NA NA  
1 beta 6 p1 119411.9 119411.9 1.00 100.00 NA NA NA NA  
1 beta 7 p2 119378.4 119378.4 1.00 100.00 NA NA NA NA  
1 beta 8 p3 118115.0 118115.0 1.00 100.00 NA NA NA NA  
1 spline 7 p1 * * * * * * * *  
1 spline 8 p2 121214.8 121214.8 1.00 100.00 NA NA NA NA  
1 spline 9 p3 120052.1 120052.1 1.00 100.00 NA NA NA NA  
2 linear 7 p1 126485.4 121456.2 0.97 96.50 3.50 NA NA NA  
2 linear 9 p2 125869.8 120740.4 0.99 96.97 3.03 NA NA NA  
2 linear 11 p3 124861.6 119769.8 0.98 96.62 3.38 NA NA NA  
2 beta 9 p1 117299.8 112569.2 0.91 93.39 6.61 NA NA NA  
2 beta 11 p2 116764.7 111879.8 0.94 92.59 7.41 NA NA NA  
2 beta 13 p3 115471.3 110605.4 0.93 93.01 6.99 NA NA NA  
2 spline 10 p1 119052.7 114125.7 0.95 95.58 4.42 NA NA NA  
2 spline 12 p2 118452.4 113360.9 0.98 96.27 3.73 NA NA NA  
2 spline 14 p3 117273.4 112262.7 0.96 95.47 4.53 NA NA NA  
3 linear 10 p1 125596.3 120900.9 0.90 93.01 1.11 5.88 NA NA  
3 linear 13 p2 124870.8 119753.9 0.98 1.92 95.01 3.07 NA NA  
3 linear 16 p3 123754.2 118660.5 0.98 1.34 95.39 3.27 NA NA  
3 beta 12 p1 116480.6 112942.9 0.68 28.04 68.69 3.27 NA NA  
3 beta 15 p2 115882.6 112012.4 0.74 55.01 41.99 3.00 NA NA  
3 beta 18 p3 114474.2 110666.1 0.73 64.12 33.04 2.84 NA NA  
3 spline 13 p1 118268.2 114575.9 0.71 19.02 78.03 2.96 NA NA  
3 spline 16 p2 118508.9 113586.6 0.95 93.05 0.42 6.53 NA NA  
3 spline 19 p3 116316.9 112434.8 0.75 24.66 72.84 2.50 NA NA  
4 linear 13 p1 124798.0 120064.2 0.91 1.11 0.77 92.89 5.22 NA  
4 linear 17 p2 124043.3 119182.7 0.93 1.11 6.68 91.47 0.73 NA  
4 linear 21 p3 122977.1 117926.4 0.97 2.92 0.15 93.55 3.38 NA  
4 beta 15 p1 116113.1 112881.3 0.62 4.88 47.56 44.79 2.77 NA  
4 beta 19 p2 115723.8 111917.9 0.73 0.77 41.14 55.40 2.69 NA  
4 beta 23 p3 114007.9 110804.7 0.62 23.43 32.04 42.45 2.07 NA  
4 spline 16 p1 117776.4 113786.5 0.77 8.03 4.99 86.09 0.88 NA  
4 spline 20 p2 117247.8 113450.4 0.73 57.20 0.81 39.84 2.15 NA  
4 spline 24 p3 115969.8 112733.2 0.62 10.72 21.97 64.58 2.73 NA  
5 linear 16 p1 124472.4 120463.7 0.77 0.54 1.00 86.25 9.07 3.15  
5 linear 21 p2 123411.4 118582.7 0.93 0.15 2.57 6.49 89.93 0.85  
5 linear 26 p3 122479.3 118200.7 0.82 0.92 82.48 12.64 3.23 0.73  
5 beta 18 p1 115704.6 112437.7 0.63 5.84 0.61 71.61 18.25 3.69  
5 beta 23 p2 114822.8 111267.2 0.68 11.41 5.84 9.14 72.15 1.46  
5 beta 28 p3 113833.5 110663.5 0.61 2.15 28.31 33.35 34.00 2.19  
5 spline 19 p1 117439.1 113913.8 0.68 2.73 14.56 78.33 3.57 0.81  
5 spline 24 p2 118995.4 114540.2 0.86 88.40 0.00 0.00 0.00 11.60  
5 spline 29 p3 115449.5 111274.6 0.80 2.38 3.30 83.52 9.30 1.50  
k: number of classes, link: the link function, npm: number of parameters, poly: polynomial order, %class: % of the subjects 
classified as such class by the maximal posterior probability. *Model did not converge. 
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Annexed Table 23. Results of the GMM model selection process.  

Analyte k link np
 

d BIC ICL APPA %class1 %class2 %class3 %class4 %class5 

Anion Gap 1 spline 18 3 104817.97 104817.97 1.00 100.00 NA NA NA NA 

Anion Gap 1 beta 17 3 104836.07 104836.07 1.00 100.00 NA NA NA NA 

Anion Gap 2 spline 23 3 104770.61 99661.40 0.98 1.69 98.31 NA NA NA 

Anion Gap 2 beta 22 3 104781.70 99681.87 0.98 2.00 98.00 NA NA NA 

Anion Gap 3 spline 28 3 104809.92 101991.79 0.54 2.46 97.54 0.00 NA NA 

Anion Gap 3 beta 27 3 104731.24 99744.00 0.96 2.12 96.19 1.69 NA NA 

Bicarbonate 1 linear 15 3 111559.02 111559.02 1.00 100.00 NA NA NA NA 

Bicarbonate 2 linear 20 3 111598.34 108876.42 0.52 74.23 25.77 NA NA NA 

Bicarbonate 3 linear 25 3 111549.39 108924.95 0.50 42.96 53.81 3.23 NA NA 

Bicarbonate 4 linear 30 3 111494.58 108694.66 0.54 0.00 95.31 1.38 3.31 NA 

Calcium, Total 1 linear 10 2 24868.36 24868.36 1.00 100.00 NA NA NA NA 

Calcium, Total 2 linear 14 2 24899.74 22238.62 0.52 49.49 50.51 NA NA NA 

Calcium, Total 3 linear 18 2 24899.08 21743.94 0.62 9.59 90.41 0.00 NA NA 

Chloride 1 spline 18 3 127978.08 127978.08 1.00 100.00 NA NA NA NA 

Chloride 1 beta 17 3 127986.17 127986.17 1.00 100.00 NA NA NA NA 

Chloride 2 spline 23 3 128017.39 125348.34 0.51 68.77 31.23 NA NA NA 

Chloride 2 beta 22 3 127905.22 122725.31 1.00 0.85 99.15 NA NA NA 

Chloride 3 spline 28 3 127751.87 122649.54 0.98 96.65 0.88 2.46 NA NA 

Chloride 3 beta 27 3 127783.88 122676.67 0.98 1.00 96.58 2.42 NA NA 

Chloride 4 spline 33 3 127791.19 124103.64 0.71 0.00 96.23 1.00 2.77 NA 

Chloride 4 beta 32 3 127752.49 122659.69 0.98 1.00 0.46 96.54 2.00 NA 

Creatinine 1 beta 8 1 * * * * * * * * 

Creatinine 2 beta 11 1 * * * * * * * * 

Creatinine 3 beta 14 1 * * * * * * * * 

Glucose 1 beta 8 1 222910.79 222910.79 1.00 100.00 NA NA NA NA 

Glucose 2 beta 11 1 222867.98 218145.30 0.91 10.46 89.54 NA NA NA 

Glucose 3 beta 14 1 222891.57 219572.77 0.64 12.35 87.65 0.00 NA NA 

Hematocrit 1 linear 15 3 138816.51 138816.51 1.00 100.00 NA NA NA NA 

Hematocrit 2 linear 20 3 138642.39 133945.07 0.90 29.98 70.02 NA NA NA 

Hematocrit 3 linear 25 3 138572.13 134284.57 0.82 31.93 13.51 54.56 NA NA 

Hematocrit 4 linear 30 3 138568.02 134292.21 0.82 13.25 30.82 55.40 0.54 NA 

Hemoglobin 1 linear 15 3 64883.30 64883.30 1.00 100.00 NA NA NA NA 

Hemoglobin 2 linear 20 3 64756.12 60125.12 0.89 27.39 72.61 NA NA NA 

Hemoglobin 3 linear 25 3 64672.17 60404.33 0.82 26.74 11.37 61.89 NA NA 

Hemoglobin 4 linear 30 3 64685.26 60438.74 0.82 26.24 12.52 60.43 0.81 NA 

Magnesium 1 spline 18 3 -4799.88 -4799.88 1.00 100.00 NA NA NA NA 

Magnesium 1 beta 17 3 -4824.88 -4824.88 1.00 100.00 NA NA NA NA 

Magnesium 2 spline 23 3 -4861.69 -9859.52 0.97 1.95 98.05 NA NA NA 

Magnesium 2 beta 22 3 -4785.64 -7440.29 0.52 48.61 51.39 NA NA NA 

Magnesium 3 spline 28 3 -4867.33 -9682.87 0.94 0.90 97.19 1.91 NA NA 

Magnesium 3 beta 27 3 -4897.79 -9695.65 0.94 2.26 1.48 96.25 NA NA 

Magnesium 4 spline 33 3 -4915.25 -9683.73 0.93 95.67 1.44 0.94 1.95 NA 

Magnesium 4 beta 32 3 -4858.55 -9353.10 0.88 2.38 96.14 0.00 1.48 NA 

MCH 1 linear 10 2 47087.22 47087.22 1.00 100.00 NA NA NA NA 
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Annexed Table 23. Results of the GMM model selection process.  

Analyte k link np
 

d BIC ICL APPA %class1 %class2 %class3 %class4 %class5 

MCH 2 linear 14 2 47118.68 44445.00 0.51 53.32 46.68 NA NA NA 

MCH 3 linear 18 2 46805.77 41775.40 0.97 94.97 1.84 3.19 NA NA 

MCH 4 linear 22 2 46827.94 42321.11 0.87 0.00 96.85 0.61 2.54 NA 

MCH 5 linear 26 2 46757.24 41813.73 0.95 0.19 92.62 0.58 3.03 3.57 

MCHC 1 linear 10 2 59151.98 59151.98 1.00 100.00 NA NA NA NA 

MCHC 1 linear 15 3 58185.87 58185.87 1.00 100.00 NA NA NA NA 

MCHC 2 linear 14 2 59109.67 54145.65 0.95 96.54 3.46 NA NA NA 

MCHC 2 linear 20 3 58225.20 55536.51 0.52 51.63 48.37 NA NA NA 

MCHC 3 linear 18 2 59141.13 54951.47 0.80 95.85 0.00 4.15 NA NA 

MCHC 3 linear 25 3 58140.08 53821.44 0.83 56.32 41.11 2.57 NA NA 

MCHC 4 linear 22 2 59172.59 56698.34 0.48 0.00 0.00 94.05 5.95 NA 

MCHC 4 linear 30 3 58131.43 53803.71 0.83 41.30 55.94 0.15 2.61 NA 

MCV 1 beta 12 2 97882.11 97882.11 1.00 100.00 NA NA NA NA 

MCV 2 beta 16 2 97687.94 92518.59 0.99 98.92 1.08 NA NA NA 

MCV 3 beta 20 2 97660.56 92495.81 0.99 0.15 98.81 1.04 NA NA 

MCV 4 beta 24 2 97616.21 92695.80 0.95 0.15 97.50 1.27 1.08 NA 

Phosphate 1 spline 13 2 50729.21 50729.21 1.00 100.00 NA NA NA NA 

Phosphate 1 spline 18 3 48271.29 48271.29 1.00 100.00 NA NA NA NA 

Phosphate 1 beta 12 2 50745.60 50745.60 1.00 100.00 NA NA NA NA 

Phosphate 1 beta 17 3 48307.09 48307.09 1.00 100.00 NA NA NA NA 

Phosphate 2 spline 17 2 50529.81 45933.01 0.90 6.93 93.07 NA NA NA 

Phosphate 2 spline 23 3 48032.52 42980.51 0.99 2.70 97.30 NA NA NA 

Phosphate 2 beta 16 2 50457.54 45400.07 0.99 2.74 97.26 NA NA NA 

Phosphate 2 beta 22 3 48047.75 42994.38 0.99 2.82 97.18 NA NA NA 

Phosphate 3 spline 21 2 50287.94 45724.38 0.89 6.62 90.64 2.74 NA NA 

Phosphate 3 spline 28 3 48071.75 43905.32 0.82 2.86 0.00 97.14 NA NA 

Phosphate 3 beta 20 2 50488.92 46445.95 0.79 2.94 97.06 0.00 NA NA 

Phosphate 3 beta 27 3 48086.98 43632.29 0.87 2.90 97.10 0.00 NA NA 

Platelet Count 1 spline 18 3 251815.76 251815.76 1.00 100.00 NA NA NA NA 

Platelet Count 1 beta 17 3 248865.19 248865.19 1.00 100.00 NA NA NA NA 

Platelet Count 2 spline 23 3 251855.08 249155.70 0.52 9.76 90.24 NA NA NA 

Platelet Count 2 beta 22 3 248904.51 246232.09 0.51 35.65 64.35 NA NA NA 

Platelet Count 3 spline 28 3 251688.11 246673.63 0.96 94.93 2.84 2.23 NA NA 

Platelet Count 3 beta 27 3 248772.75 243815.02 0.95 1.96 2.50 95.54 NA NA 

Platelet Count 4 spline 33 3 251429.70 246364.85 0.97 1.08 2.34 96.27 0.31 NA 

Platelet Count 4 beta 32 3 248680.38 243663.40 0.96 0.81 2.38 95.70 1.11 NA 

Potassium 1 spline 18 3 24050.86 24050.86 1.00 100.00 NA NA NA NA 

Potassium 1 beta 17 3 24045.79 24045.79 1.00 100.00 NA NA NA NA 

Potassium 2 spline 23 3 24090.18 21388.18 0.52 50.38 49.62 NA NA NA 

Potassium 2 beta 22 3 23972.63 18936.72 0.97 3.11 96.89 NA NA NA 

Potassium 3 spline 28 3 23976.61 18999.77 0.96 2.69 96.50 0.81 NA NA 

Potassium 3 beta 27 3 23983.60 19040.70 0.95 2.57 95.77 1.65 NA NA 

RDW 1 spline 9 1 38016.26 38016.26 1.00 100.00 NA NA NA NA 

RDW 1 spline 13 2 34764.65 34764.65 1.00 100.00 NA NA NA NA 
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Annexed Table 23. Results of the GMM model selection process.  

Analyte k link np
 

d BIC ICL APPA %class1 %class2 %class3 %class4 %class5 

RDW 1 beta 8 1 37965.47 37965.47 1.00 100.00 NA NA NA NA 

RDW 1 beta 12 2 34742.24 34742.24 1.00 100.00 NA NA NA NA 

RDW 2 spline 12 1 38039.85 35347.36 0.52 28.54 71.46 NA NA NA 

RDW 2 spline 17 2 34796.10 32127.97 0.51 45.14 54.86 NA NA NA 

RDW 2 beta 11 1 37989.07 35319.56 0.51 43.57 56.43 NA NA NA 

RDW 2 beta 16 2 34773.70 32062.45 0.52 45.10 54.90 NA NA NA 

RDW 3 spline 15 1 37636.66 33595.66 0.78 0.00 97.04 2.96 NA NA 

RDW 3 spline 21 2 34230.04 29375.42 0.93 9.18 86.75 4.07 NA NA 

RDW 3 beta 14 1 37425.44 32534.18 0.94 6.57 90.55 2.88 NA NA 

RDW 3 beta 20 2 34238.71 29400.81 0.93 8.99 87.09 3.92 NA NA 

RDW 4 spline 18 1 37460.74 32832.29 0.89 1.31 84.13 11.72 2.84 NA 

RDW 4 spline 25 2 34261.49 29873.59 0.84 9.83 0.00 85.94 4.23 NA 

RDW 4 beta 17 1 37436.22 32857.33 0.88 1.27 83.71 12.14 2.88 NA 

RDW 4 beta 24 2 34247.33 29617.49 0.89 1.38 13.68 80.95 4.00 NA 

Red Blood Cells 1 linear 15 3 13975.47 13975.47 1.00 100.00 NA NA NA NA 

Red Blood Cells 2 linear 20 3 13874.45 9222.54 0.89 19.36 80.64 NA NA NA 

Red Blood Cells 3 linear 25 3 13818.27 9586.07 0.81 18.94 10.95 70.11 NA NA 

Red Blood Cells 4 linear 30 3 13808.90 9685.69 0.79 1.65 10.76 58.74 28.85 NA 

Sodium 1 spline 13 2 129674.08 129674.08 1.00 100.00 NA NA NA NA 

Sodium 1 beta 12 2 129344.20 129344.20 1.00 100.00 NA NA NA NA 

Sodium 2 spline 17 2 129373.39 124219.78 0.99 97.50 2.50 NA NA NA 

Sodium 2 beta 16 2 129149.14 124014.29 0.99 97.35 2.65 NA NA NA 

Sodium 3 spline 21 2 129404.84 125191.07 0.81 0.00 97.38 2.62 NA NA 

Sodium 3 beta 20 2 128871.87 123743.42 0.99 0.58 96.77 2.65 NA NA 

Sodium 4 spline 25 2 129128.67 125381.07 0.72 0.00 96.50 0.85 2.65 NA 

Sodium 4 beta 24 2 128963.67 125063.68 0.75 96.04 1.04 0.00 2.92 NA 

Urea Nitrogen 1 beta 12 2 146364.14 146364.14 1.00 100.00 NA NA NA NA 

Urea Nitrogen 2 beta 16 2 146168.70 141216.94 0.95 7.65 92.35 NA NA NA 

Urea Nitrogen 3 beta 20 2 146200.15 141797.33 0.85 8.35 91.65 0.00 NA NA 

Urea Nitrogen 4 beta 24 2 146231.60 143608.18 0.50 10.77 0.00 89.23 0.00 NA 

White Blood Cells 1 beta 17 3 110119.89 110119.89 1.00 100.00 NA NA NA NA 

White Blood Cells 2 beta 22 3 110159.22 107494.59 0.51 47.64 52.36 NA NA NA 

White Blood Cells 3 beta 27 3 109955.10 104834.17 0.98 0.85 98.08 1.08 NA NA 

White Blood Cells 4 beta 32 3 109817.90 104661.20 0.99 0.85 98.12 0.88 0.15 NA 
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Annexed Table 24. Univatiate comparisons between clusters of Anion Gap and Chloride 

 Anion Gap Chloride 

Characteristic 1 
N = 52 

2 
N = 2548 p-value q-value 1 

N = 22 
2 

N = 2578 p-value q-value 

Age 76 (58, 83) 62 (43, 79) <0.001 <0.001 28 (22, 55) 63 (43, 80) <0.001 <0.001 
Gender   0.6 0.7   0.3 0.4 

F 19 (37%) 1,036 (41%)   6 (27%) 1,049 (41%)   

M 33 (63%) 1,512 (59%)   16 (73%) 1,529 (59%)   

Ethnicity   0.7 0.7   0.4 0.4 

ASIAN 2 (4.7%) 47 (2.1%)   0 (0%) 49 (2.2%)   

BLACK 

  

1 (2.3%) 124 (5.6%)   0 (0%) 125 (5.6%)   

HISPANIC 

 

2 (4.7%) 96 (4.3%)   1 (6.7%) 97 (4.3%)   

MULTI RACE 

 

0 (0%) 6 (0.3%)   0 (0%) 6 (0.3%)   

OTHER 1 (2.3%) 103 (4.7%)   2 (13%) 102 (4.6%)   

WHITE 37 (86%) 1,833 (83%)   12 (80%) 1,858 (83%)   

Unknown 9 339   7 341   

Cohort   0.051 0.090   0.7 0.7 

SCI Fracture 2 (3.8%) 380 (15%)   4 (18%) 378 (15%)   

SCI noFracture 3 (5.8%) 121 (4.7%)   1 (4.5%) 123 (4.8%)   

Spine Trauma 47 (90%) 2,047 (80%)   17 (77%) 2,077 (81%)   

Length of stay (days) 7 (5, 11) 7 (4, 13) 0.6 0.7 9 (4, 14) 7 (5, 12) 0.2 0.4 

Unknown 0 1   0 1   

Died in hospital 20 (38%) 169 (6.6%) <0.001 <0.001 14 (64%) 175 (6.8%) <0.001 <0.001 

Number of diagnostics 26 (17, 30) 13 (9, 19) <0.001 <0.001 14 (9, 26) 13 (9, 20) 0.13 0.3 
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Annexed Table 25. Univatiate comparisons between clusters of Glucose and Magnesium 

 Glucose Magnesium 

Characteristic 1 
N = 272 

2 
N = 2328 p-value q-value 1 

N = 50 
2 

N = 2513 p-value q-value 

Age 69 (56, 80) 62 (41, 80) <0.001 <0.001 62 (49, 78) 62 (43, 79) 0.7 >0.9 
Gender   0.013 0.015   >0.9 >0.9 

F 91 (33%) 964 (41%)   20 (40%) 1,017 (40%)   
M 181 (67%) 1,364 (59%)   30 (60%) 1,496 (60%)   

Ethnicity   0.3 0.3   0.5 0.9 
ASIAN 8 (3.5%) 41 (2.0%)   1 (2.7%) 48 (2.2%)   
BLACK 

  

12 (5.2%) 113 (5.6%)   3 (8.1%) 121 (5.6%)   
HISPANIC 

 

14 (6.1%) 84 (4.2%)   3 (8.1%) 94 (4.3%)   
MULTI RACE 

 

0 (0%) 6 (0.3%)   0 (0%) 6 (0.3%)   
OTHER 14 (6.1%) 90 (4.4%)   2 (5.4%) 99 (4.5%)   
WHITE 181 (79%) 1,689 (83%)   28 (76%) 1,811 (83%)   
Unknown 43 305   13 334   

Cohort   0.002 0.003   0.2 0.6 
SCI Fracture 50 (18%) 332 (14%)   10 (20%) 371 (15%)   
SCI noFracture 23 (8.5%) 101 (4.3%)   4 (8.0%) 119 (4.7%)   
Spine Trauma 199 (73%) 1,895 (81%)   36 (72%) 2,023 (81%)   

Length of stay (days) 9 (5, 18) 7 (4, 12) <0.001 <0.001 8 (5, 14) 7 (5, 13) >0.9 >0.9 
Unknown 0 1   0 1   

Died in hospital 38 (14%) 151 (6.5%) <0.001 <0.001 13 (26%) 176 (7.0%) <0.001 <0.001 
Number of diagnostics 17 (11, 26) 13 (9, 19) <0.001 <0.001 20 (10, 27) 13 (9, 19) <0.001 <0.001 

 

  



Abel Torres Espin  

92 
 

Annexed Table 26. Univatiate comparisons between clusters of Phosphate and Potassium 

 Phosphate Potassium 

Characteristic 1 
N = 72 

2 
N = 2481 p-value q-value 1 

N = 81 
2 

N = 2521 p-value q-value 

Age 70 (56, 81) 62 (43, 79) 0.006 0.013 73 (60, 85) 62 (43, 79) <0.001 <0.001 
Gender   >0.9 >0.9   0.7 0.8 

F 30 (42%) 1,003 (40%)   31 (38%) 1,024 (41%)   
M 42 (58%) 1,478 (60%)   50 (62%) 1,497 (59%)   

Ethnicity   >0.9 >0.9   0.3 0.5 
ASIAN 2 (3.5%) 47 (2.2%)   2 (2.8%) 47 (2.2%)   
BLACK 

  

2 (3.5%) 122 (5.7%)   1 (1.4%) 124 (5.7%)   
HISPANIC 

 

2 (3.5%) 94 (4.4%)   1 (1.4%) 97 (4.4%)   
MULTI RACE 

 

0 (0%) 6 (0.3%)   0 (0%) 6 (0.3%)   
OTHER 2 (3.5%) 98 (4.6%)   5 (7.0%) 99 (4.5%)   
WHITE 49 (86%) 1,782 (83%)   62 (87%) 1,810 (83%)   
Unknown 15 332   10 338   

Cohort   0.5 0.7   0.06 0.11 
SCI Fracture 7 (9.7%) 371 (15%)   5 (6.2%) 377 (15%)   
SCI noFracture 4 (5.6%) 118 (4.8%)   3 (3.7%) 122 (4.8%)   
Spine Trauma 61 (85%) 1,992 (80%)   73 (90%) 2,022 (80%)   

Length of stay (days) 8 (5, 15) 7 (5, 13) 0.5 0.7 8 (5, 13) 7 (4, 12) 0.8 0.8 
Unknown 0 1   0 1   

Died in hospital 26 (36%) 161 (6.5%) <0.001 <0.001 15 (19%) 174 (6.9%) <0.001 0.001 
Number of diagnostics 24 (17, 33) 13 (9, 19) <0.001 <0.001 21 (14, 30) 13 (9, 19) <0.001 <0.001 
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Annexed Table 27. Univatiate comparisons between clusters of Sodium and Urea Nitrogen 

 Sodium Urea Nitrogen 

Characteristic 1 
N = 2531 

2 
N = 69 p-value q-value 1 

N = 199 
2 

N = 2401 p-value q-value 

Age 62 (43, 79) 78 (64, 87) <0.001 <0.001 78 (69, 87) 61 (41, 78) <0.001 <0.001 
Gender 

  
<0.001 <0.001   >0.9 >0.9 

F 1,008 (40%) 47 (68%) 
  

81 (41%) 974 (41%)   

M 1,523 (60%) 22 (32%) 
  

118 (59%) 1,427 (59%)   

Ethnicity 
  

0.3 0.4   0.058 0.1 

ASIAN 46 (2.1%) 3 (4.5%) 
  

8 (4.4%) 41 (2.0%)   

BLACK 

  

122 (5.6%) 3 (4.5%) 
  

7 (3.9%) 118 (5.7%)   

HISPANIC 

 

98 (4.5%) 0 (0%) 
  

5 (2.8%) 93 (4.5%)   

MULTI RACE 

 

6 (0.3%) 0 (0%) 
  

0 (0%) 6 (0.3%)   

OTHER 102 (4.7%) 2 (3.0%) 
  

3 (1.7%) 101 (4.9%)   

WHITE 1,812 (83%) 58 (88%) 
  

157 (87%) 1,713 (83%)   

Unknown 345 3 
  

19 329   

Cohort 
  

0.076 0.11   0.08 0.1 

SCI Fracture 378 (15%) 4 (5.8%) 
  

20 (10%) 362 (15%)   

SCI noFracture 121 (4.8%) 3 (4.3%) 
  

13 (6.5%) 111 (4.6%)   

Spine Trauma 2,032 (80%) 62 (90%) 
  

166 (83%) 1,928 (80%)   

Length of stay (days) 7 (5, 13) 6 (4, 11) 0.6 0.6 7 (4, 11) 7 (5, 13) 0.082 0.1 

Unknown 1 0 
  

0 1   

Died in hospital 179 (7.1%) 10 (14%) 0.03 0.053 36 (18%) 153 (6.4%) <0.001 <0.001 

Number of diagnostics 13 (9, 19) 17 (13, 27) <0.001 <0.001 20 (14, 27) 13 (9, 19) <0.001 <0.001 
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Annexed Table 28. Univatiate comparisons between clusters of Hematocrit and Hemoglobin 

 Hematocrit  Hemoglobin 

Characteristic 1 
N = 834 

2 
N = 353 

3 
N = 1425 

p 
value 

q 
value 

1 
N = 696 

2 
N = 296 

3 
N = 1,611 

p 
value 

q 
value 

Age 64 (45, 81) 47 (29, 63) 66 (47, 81) <0.001 <0.001 61 (42, 80) 44 (29, 60) 66 (47, 81) <0.001 <0.001 
Gender    <0.001 <0.001    <0.001 <0.001 

F 295 (35%) 79 (22%) 686 (48%)   222 (32%) 59 (20%) 774 (48%)   
M 539 (65%) 274 (78%) 739 (52%)   474 (68%) 237 (80%) 837 (52%)   

Ethnicity    0.5 0.5    0.2 0.2 
ASIAN 21 (2.8%) 5 (1.8%) 23 (1.9%)   17 (2.7%) 4 (1.7%) 28 (2.0%)   
BLACK 

  

42 (5.5%) 12 (4.3%) 71 (5.8%)   32 (5.1%) 8 (3.4%) 85 (6.1%)   
HISPANIC 

 

37 (4.9%) 17 (6.1%) 46 (3.7%)   31 (4.9%) 14 (6.0%) 53 (3.8%)   
MULTI RACE 

 

1 (0.1%) 1 (0.4%) 4 (0.3%)   1 (0.2%) 1 (0.4%) 4 (0.3%)   
OTHER 31 (4.1%) 17 (6.1%) 58 (4.7%)   29 (4.6%) 18 (7.7%) 59 (4.2%)   
WHITE 625 (83%) 227 (81%) 1,026 (84%)   517 (82%) 189 (81%) 1,166 (84%)   
Unknown 77 74 197   69 62 216   

Cohort    <0.001 <0.001    <0.001 <0.001 
SCI Fracture 93 (11%) 94 (27%) 195 (14%)   81 (12%) 70 (24%) 231 (14%)   
SCI noFracture 57 (6.8%) 5 (1.4%) 63 (4.4%)   50 (7.2%) 7 (2.4%) 68 (4.2%)   
Spine Trauma 684 (82%) 254 (72%) 1,167 (82%)   565 (81%) 219 (74%) 1,312 (81%)   

Length of stay (days) 5 (4, 9) 9 (6, 16) 8 (5, 14) <0.001 <0.001 6 (4, 9) 8 (5, 16) 8 (5, 14) <0.001 <0.001 
Unknown 0 1 0   0 0 1   

Died in hospital 39 (4.7%) 29 (8.2%) 121 (8.5%) 0.004 0.005 24 (3.4%) 29 (9.8%) 136 (8.4%) <0.001 <0.001 
Number of diagnostics 12 (8, 18) 13 (9, 20) 14 (9, 20) <0.001 <0.001 11 (8, 16) 13 (9, 20) 15 (9, 20) <0.001 <0.001 
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Annexed Table 29. Univatiate comparisons between clusters of MCH and MCHC 

 MCH MCHC 

Characteristic 1 
N = 2472 

2 
N = 48 

3 
N = 83 

p 
value 

q 
value 

1 
N = 2513 

2 
N = 90 

p 
value 

q 
value 

Age 62 (43, 79) 74 (52, 83) 64 (46, 80) 0.01 0.023 62 (43, 79) 74 (60, 85) <0.001 <0.001 
Gender    0.3 0.3   0.004 0.01 

F 1,002 (41%) 15 (31%) 38 (46%)   1,005 (40%) 50 (56%)   
M 1,470 (59%) 33 (69%) 45 (54%)   1,508 (60%) 40 (44%)   

Ethnicity    <0.001 0.003   0.3 0.3 
ASIAN 44 (2.1%) 0 (0%) 5 (6.8%)   46 (2.1%) 3 (3.6%)   
BLACK 

  

112 (5.2%) 1 (2.4%) 12 (16%)   116 (5.3%) 9 (11%)   
HISPANIC 

 

89 (4.2%) 1 (2.4%) 8 (11%)   95 (4.4%) 3 (3.6%)   
MULTI RACE 

 

6 (0.3%) 0 (0%) 0 (0%)   6 (0.3%) 0 (0%)   
OTHER 101 (4.7%) 1 (2.4%) 4 (5.4%)   102 (4.7%) 4 (4.8%)   
WHITE 1,789 (84%) 38 (93%) 45 (61%)   1,807 (83%) 65 (77%)   
Unknown 331 7 9   341 6   

Cohort    0.2 0.3   0.3 0.3 
SCI Fracture 364 (15%) 9 (19%) 9 (11%)   373 (15%) 9 (10%)   
SCI noFracture 116 (4.7%) 1 (2.1%) 8 (9.6%)   119 (4.7%) 6 (6.7%)   
Spine Trauma 1,992 (81%) 38 (79%) 66 (80%)   2,021 (80%) 75 (83%)   

Length of stay (days) 7 (4, 13) 7 (5, 11) 7 (4, 12) 0.8 0.8 7 (4, 13) 7 (5, 11) 0.2 0.3 
Unknown 1 0 0   1 0   

Died in hospital 180 (7.3%) 7 (15%) 2 (2.4%) 0.035 0.061 180 (7.2%) 9 (10%) 0.3 0.3 

Number of diagnostics 13 (9, 19) 16 (11, 22) 17 (12, 21) <0.001 0.002 13 (9, 19) 21 (17, 28) <0.001 <0.001 
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Annexed Table 30. Univatiate comparisons between clusters of MCV and Platelet Count 

 MCV Platelet Count 

Characteristic 1 
N = 2575 

2 
N = 28 

p 
value 

q 
value

 

1 
N = 51 

2 
N = 65 

3 
N = 2487 

p 
value 

q 
value 

Age 62 (43, 80) 73 (63, 83) 0.012 0.028 77 (60, 86) 50 (36, 67) 62 (43, 80) <0.001 <0.001 
Gender   0.8 0.8    <0.001 <0.001 

F 1,043 (41%) 12 (43%)   36 (71%) 24 (37%) 995 (40%)   
M 1,532 (59%) 16 (57%)   15 (29%) 41 (63%) 1,492 (60%)   

Ethnicity   0.3 0.5    0.6 0.6 
ASIAN 48 (2.1%) 1 (4.8%)   0 (0%) 1 (1.9%) 48 (2.2%)   
BLACK 

  

125 (5.6%) 0 (0%)   3 (6.1%) 3 (5.8%) 119 (5.5%)   
HISPANIC 

 

98 (4.4%) 0 (0%)   2 (4.1%) 3 (5.8%) 93 (4.3%)   
MULTI RACE 

 

6 (0.3%) 0 (0%)   0 (0%) 0 (0%) 6 (0.3%)   
OTHER 104 (4.7%) 2 (9.5%)   0 (0%) 5 (9.6%) 101 (4.7%)   
WHITE 1,854 (83%) 18 (86%)   44 (90%) 40 (77%) 1,788 (83%)   
Unknown 340 7   2 13 332   

Cohort   0.6 0.7    0.006 0.008 
SCI Fracture 377 (15%) 5 (18%)   7 (14%) 16 (25%) 359 (14%)   
SCI noFracture 125 (4.9%) 0 (0%)   7 (14%) 0 (0%) 118 (4.7%)   
Spine Trauma 2,073 (81%) 23 (82%)   37 (73%) 49 (75%) 2,010 (81%)   

Length of stay (days) 7 (4, 13) 7 (5, 9) 0.082 0.14 9 (4, 12) 20 (13, 27) 7 (4, 12) <0.001 <0.001 
Unknown 1 0   0 0 1   

Died in hospital 181 (7.0%) 8 (29%) <0.001 0.004 4 (7.8%) 8 (12%) 177 (7.1%) 0.2 0.3 

Number of diagnostics 13 (9, 19) 17 (10, 27) 0.009 0.028 16 (13, 23) 17 (9, 24) 13 (9, 19) <0.001 <0.001 
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Annexed Table 31. Univatiate comparisons between clusters of RDW and Red Blood Cells 

 RDW  Red Blood Cells 

Characteristic 1 
N = 234 

2 
N = 2267 

3 
N = 102 

p 
value 

q 
value 

1 
N = 493 

2 
N = 285 

3 
N = 1825 

p 
value 

q 
value 

Age 71 (56, 83) 62 (42, 79) 56 (37, 79) <0.001 <0.001 62 (40, 80) 43 (29, 59) 65 (47, 81) <0.001 <0.001 
Gender    0.015 0.026    <0.001 <0.001 

F 115 (49%) 897 (40%) 43 (42%)   165 (33%) 61 (21%) 829 (45%)   
M 119 (51%) 1,370 (60%) 59 (58%)   328 (67%) 224 (79%) 996 (55%)   

Ethnicity    0.12 0.14    0.042 0.042 
ASIAN 8 (3.7%) 39 (2.0%) 2 (2.7%)   10 (2.2%) 6 (2.7%) 33 (2.1%)   
BLACK 

  

20 (9.3%) 103 (5.2%) 2 (2.7%)   31 (6.9%) 6 (2.7%) 88 (5.5%)   
HISPANIC 

 

8 (3.7%) 87 (4.4%) 3 (4.0%)   26 (5.8%) 15 (6.7%) 57 (3.6%)   
MULTI RACE 

 

0 (0%) 5 (0.3%) 1 (1.3%)   1 (0.2%) 1 (0.4%) 4 (0.3%)   
OTHER 6 (2.8%) 96 (4.9%) 4 (5.3%)   22 (4.9%) 16 (7.2%) 68 (4.3%)   
WHITE 172 (80%) 1,637 (83%) 63 (84%)   357 (80%) 179 (80%) 1,336 (84%)   
Unknown 20 300 27   46 62 239   

Cohort    0.089 0.13    <0.001 <0.001 
SCI Fracture 25 (11%) 334 (15%) 23 (23%)   45 (9.1%) 66 (23%) 271 (15%)   
SCI noFracture 10 (4.3%) 112 (4.9%) 3 (2.9%)   40 (8.1%) 9 (3.2%) 76 (4.2%)   
Spine Trauma 199 (85%) 1,821 (80%) 76 (75%)   408 (83%) 210 (74%) 1,478 (81%)   

Length of stay (days) 8 (5, 13) 7 (4, 12) 9 (6, 11) 0.2 0.2 5 (4, 9) 8 (5, 16) 8 (5, 13) <0.001 <0.001 
Unknown 0 1 0   0 0 1   

Died in hospital 31 (13%) 140 (6.2%) 18 (18%) <0.001 0.001 20 (4.1%) 25 (8.8%) 144 (7.9%) 0.005 0.006 
Number of diagnostics 20 (14, 25) 13 (9, 19) 15 (10, 23) <0.001 <0.001 12 (8, 17) 13 (9, 20) 14 (9, 20) <0.001 <0.001 
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Annexed Table 32. Univatiate comparisons between clusters of White blood cells 

 White Blood Cells 

Characteristic 1 
N = 22 

2 
N = 2553 

3 
N = 28 

p 
value 

q 
value

 Age 82 (65, 88) 62 (43, 79) 69 (58, 82) 0.007 0.015 
Gender    0.7 0.9 

F 7 (32%) 1,037 (41%) 11 (39%)   

M 15 (68%) 1,516 (59%) 17 (61%)   

Ethnicity    >0.9 >0.9 
ASIAN 0 (0%) 49 (2.2%) 0 (0%)   

BLACK 

  

1 (5.9%) 123 (5.6%) 1 (4.0%)   

HISPANIC 

 

0 (0%) 98 (4.4%) 0 (0%)   

MULTI RACE 

 

0 (0%) 6 (0.3%) 0 (0%)   

OTHER 1 (5.9%) 104 (4.7%) 1 (4.0%)   

WHITE 15 (88%) 1,834 (83%) 23 (92%)   

Unknown 5 339 3   

Cohort    0.015 0.026 
SCI Fracture 5 (23%) 368 (14%) 9 (32%)   

SCI noFracture 0 (0%) 122 (4.8%) 3 (11%)   

Spine Trauma 17 (77%) 2,063 (81%) 16 (57%)   

Length of stay (days) 7 (3, 13) 7 (5, 13) 7 (4, 9) 0.3 0.4 
Unknown 0 1 0   

Died in hospital 8 (36%) 172 (6.7%) 9 (32%) <0.001 0.002 
Number of diagnostics 26 (17, 33) 13 (9, 19) 15 (11, 21) <0.001 <0.001 

 

 

Annexed Table 33. GBMT model selection results 
k poly npar BIC APPA %class1 %class2 %class3 %class4 %class5 %class6 %class7 %class8 

1 p1 24 246211.5 1.00 100.00 NA NA NA NA NA NA NA 

1 p2 29 245562.0 1.00 100.00 NA NA NA NA NA NA NA 

1 p3 33 243556.1 1.00 100.00 NA NA NA NA NA NA NA 

1 p4 40 242531.2 1.00 100.00 NA NA NA NA NA NA NA 

2 p1 51 243007.2 0.96 93.31 6.69 NA NA NA NA NA NA 

2 p2 59 241137.3 0.98 91.43 8.57 NA NA NA NA NA NA 

2 p3 67 237817.9 0.98 92.12 7.88 NA NA NA NA NA NA 

2 p4 81 240144.7 0.87 76.33 23.67 NA NA NA NA NA NA 

3 p1 77 241091.0 0.97 90.75 5.77 3.48 NA NA NA NA NA 

3 p2 92 239446.4 0.96 89.79 6.77 3.44 NA NA NA NA NA 

3 p3 103 236305.4 0.98 90.63 6.65 2.72 NA NA NA NA NA 

3 p4 119 235009.0 0.98 90.55 6.62 2.83 NA NA NA NA NA 

4 p1 101 240594.0 0.91 68.57 23.02 5.12 3.29 NA NA NA NA 

4 p2 122 238982.6 0.96 89.22 1.64 6.08 3.06 NA NA NA NA 

4 p3 139 235961.1 0.97 90.25 0.46 6.62 2.68 NA NA NA NA 

4 p4 119 235009.9 0.98 90.44 6.65 2.91 NA NA NA NA NA 

5 p1 128 240052.6 0.91 71.43 3.48 18.47 4.97 1.64 NA NA NA 

5 p2 152 238271.4 0.97 88.07 1.53 1.19 6.42 2.79 NA NA NA 
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Annexed Table 33. GBMT model selection results 
k poly npar BIC APPA %class1 %class2 %class3 %class4 %class5 %class6 %class7 %class8 

5 p3 174 235656.6 0.96 86.35 7.23 0.31 3.82 2.29 NA NA NA 

5 p4 162 234486.4 0.93 85.70 4.78 4.51 5.01 NA NA NA NA 

6 p1 154 239443.8 0.86 48.22 36.02 2.79 6.92 4.70 1.34 NA NA 

6 p2 184 237811.8 0.95 85.20 3.63 1.34 0.69 6.62 2.52 NA NA 

6 p3 210 235009.4 0.95 86.85 2.41 4.86 0.46 3.82 1.61 NA NA 

6 p4 203 234244.5 0.93 85.12 1.64 4.74 3.21 5.28 NA NA NA 

7 p1 180 238831.9 0.89 31.09 6.62 16.98 1.84 40.54 2.07 0.88 NA 

7 p2 215 237363.0 0.95 8.18 82.22 2.14 1.45 0.80 4.32 0.88 NA 

7 p3 213 235041.9 0.93 4.28 87.88 1.19 1.03 5.12 0.50 NA NA 

7 p4 243 234138.6 0.93 2.03 84.67 0.69 4.05 3.52 5.05 NA NA 

8 p1 206 238459.1 0.86 26.08 39.20 2.37 2.72 6.04 17.86 4.09 1.64 

8 p2 245 237425.1 0.93 7.80 82.45 0.92 1.30 0.61 1.41 4.02 1.49 

8 p3 249 234932.0 0.95 4.21 87.76 1.22 0.84 0.73 4.67 0.57 NA 

8 p4 242 233832.0 0.93 2.18 84.17 0.99 5.39 2.56 4.70 NA NA 
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