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Abstract: 

Scientific studies very often rely on supercomputers to solve difficult problems. However, 

reproducibility is one of the core principles in any scientific research and it is often 

expected that the findings of any study can be replicated with a high degree of reliability. 

Running these applications in containers that have been prepared and curated beforehand 

can provide the desired reliability, remove unnecessary complexity and reduce the manual 

interaction to reduce the risk of human errors. 

The overall goal of this project is to use Docker to create an image that contains a 

distributed scientific application in addition to the necessary tools that allow profiling the 

behaviour of the program after its execution with different workloads. The Docker 

containers will be managed with Singularity , the most widely used container system for 

HPC. 

The infrastructure of the HPC cluster used for this study is composed of Raspberries Pi 4 

Model B hosted on-premises. 
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1. INTRODUCTION 

1.1. Project motivation 

High performance computing, hereinafter referred to as HPC, has been the foundation for 

many scientific, industrial, and societal advancements since the second third of the 

twentieth century to this day. 

The reason HPC has been crucial in many investigations is because it gives the ability to 

process data and perform complex computations at very high speeds in many situations 

that otherwise would not be feasible, or the results would take so long that would make 

them useless. 

One of the best-known types of HPC solutions is the supercomputers. A supercomputer 

usually consists of hundreds or thousands of compute nodes that work together to process 

data in parallel and complete small jobs that are part of a more complex task. The collection 

of compute nodes often is referred to as an HPC cluster. 

Nowadays, it is a frequent practice for scientific studies to rely on these clusters to solve 

difficult problems, however, in the recent decades, many published scientific results failed 

because they were difficult or even impossible to reproduce. Reproducibility is indeed one 

of the core principles in any scientific research and  often it is expected that the findings of 

any study can be replicated with a high degree of reliability. 

In fact, this has not only been a challenge in academic investigations but also in other fields 

such as software engineering, contributing to the development of tools that could provide 

an abstraction to the machine-specific settings. One of the most popular software solutions 

to achieve that level of isolation is Docker1. 

In this context, the overall goal of this project is to use Docker to create an image that 

contains a distributed scientific application in addition to the necessary tools that allow 

profiling the behaviour of the program after its execution. The Docker containers will be 

managed with Singularity2, the most widely used container system for HPC. 

It is worth noting that the infrastructure of the HPC cluster used for this study is composed 

of Raspberries Pi 4 Model B3 hosted on-premises. Both the tools and the infrastructure will 

be detailed in later chapters. 

 
1 Link to https://www.docker.com 
2 Link to https://sylabs.io/singularity 
3 Link to https://www.raspberrypi.com 

https://www.docker.com/
https://sylabs.io/singularity
https://www.raspberrypi.com/
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1.2. Goals and objectives 

The ultimate goal of this project is to use Singularity in a cluster to simultaneously deploy 

and run Docker containers containing an HPC application and use some post-processing 

tools to generate trace-files for a post-mortem analysis that helps us understand how the 

microprocessor and other components of the system were behaving during the execution. 

In order to achieve that goal, there are four important milestones that need to be completed: 

1. Familiarise with the ecosystem: Includes understanding the architecture of the 

HPC cluster, the libraries and tools needed in order to conduct this study and what 

are some of the most popular alternatives in the market. 

2. Create an image: Build the image that contains the HPC application that will be 

profiled along with the necessary tools to generate the traces and analyse them. 

3. Run the containers in the cluster: Use Singularity as a container system to 

deploy and run in the cluster Docker containers using the image built. 

4. Profile the HPC application: Use one post-processing tool for a post-mortem 

analysis of the HPC application that ran in each container. Investigate the impact 

of running different workloads in the cluster. 

Similarly, each milestone can be broken down into different objectives which are described 

in the following table. 

Milestone Objective 

Familiarise with the 

ecosystem 

Understand the infrastructure of the cluster used in the study 

of this project. Given the nature of the system, it is important 

to identify the limitations and constraints of the architecture. 

Learn about MPI4, the Message Passing Interface-

programming paradigm used to perform the parallel 

processing in the simulation of the HPC application. 

Become familiar with an HPC application that leverages the 

MPI standard. Preferably, a distributed scientific application. 

Read about different post-processing tools available to 

generate trace-files of the execution of an HPC application 

for a post-mortem analysis and choose the most appropriate 

libraries for this study. 

 
4 Link to https://www.mpi-forum.org 

https://www.mpi-forum.org/
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Describe what are the advantages of Docker over other 

heavier weight virtualisation alternatives. 

Create an image 

Compile the selected HPC application, some implementation 

of the MPI standard and the necessary post-processing tools 

in order to generate the binary files that correspond to the 

architecture of the HPC cluster. 

Implement a Docker image using a Linux-based operating 

system that includes the binary files resulting from the 

compilation and that will serve to profile the system. 

Run the containers in the 

cluster 

Become familiar with Singularity, the container platform used 

to deploy and manage the lifecycle of the containers running 

in the cluster. 

Use Singularity to deploy multiple Docker containers 

simultaneously in the cluster. 

Profile the HPC 

application 

Analyse and understand the behaviour of the system with 

different workloads using profiling tools. 

Table 1. Description of the milestones and the objectives 

 

1.3. Approach and method followed 

The scope of this project can be divided into three important pieces of work that must be 

executed sequentially in the following order. 

First, it is necessary to investigate and figure out the infrastructure of the HPC cluster that 

will serve as a pseudo supercomputer for this project. Understanding the basics of the 

system, different nodes that compose it, the role they play, how they intercommunicate 

each other and any other necessary component is essential before starting the actual work. 

Afterwards, it is required a thorough comprehension of the different libraries that will be 

used both for running the simulation and post-processing the traces to effectively gather 

relevant information during the research. An important part of the work at this stage involves 

building the Docker image and managing the lifecycle of the containers using Singularity. 

Finally, it must be put in context all the details collected throughout the process in order to 

extract conclusions, list unexpected pitfalls and describe the behaviour of the simulations 

across different workloads. 
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1.4. Work breakdown 

According to the course plan, the estimated dedication of the student for the Master’s Final 

Project is three hundred hours and has a duration of one hundred and twenty-two days 

from the beginning of the semester until the last deliverable. 

Taking these figures into account, below is a Gantt chart with the time planning of these 

tasks to fulfil the objectives outlined in the previous section.
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Figure 1. Work breakdown in a Gantt chart 
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2. INFRASTRUCTURE 

2.1. Architecture Overview 

The HPC cluster uses two Raspberries Pi 4 Model B that will emulate a supercomputer on 

a small-scale. The cluster is composed of two nodes, each of them mapping to a single 

underlying physical Raspberry Pi, which are connected by a local area network to 

communicate with each other to run executions in parallel and share the intermediate 

calculations in a network file system. 

The rationale for having more than one Raspberry, is that one acts as the front-end, which 

is the node used to connect from an external host to schedule a job to the cluster, whereas 

the rest of the Raspberry act as the workers, which are the nodes that are responsible for 

the all the computation. 

It is worth noting that for this study, considering that only two Raspberries are available, the 

front-end node will also be used as a worker node, although that is not the recommended 

practice in an actual supercomputer running in production. 

Each of the Raspberries is connected to a power supply, which supplies the electric power, 

and to a switch via a RJ45 Ethernet connector. The switch, a TP-LINK TL-SG1005D with 5 

ports available, acts as the network device in an actual HPC cluster, handling the 

intercommunication between the two devices. In addition, the switch is connected to a 

router that allows the communication between the rest of the devices (e.g., some host) and 

provides access to the internet. 

The following figure outlines the architecture of the system containing the front-end, one 

worker, the switch and the router. 
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Figure 2. Architecture of the cluster 

In broad terms, the key difference between a switch and a router is that a switch works on 

the data link layer of the OSI model (Open Systems Interconnection Model) and connects 

different devices (e.g., the nodes, some hosts), whereas a router works on the network 

layer of the OSI model and connects different networks. 

2.2. Raspberry model 

The model of the Raspberries used is the Raspberry Pi 4 Model B. Below are the most 

relevant specifications of the component and an image of the device. 

Specifications 

Processor 
Broadcom BCM2711, Quad core Cortex-

A72 (ARM v8) 64-bit SoC @ 1.5GHz 

RAM 2GB LPDDR4-3200 SDRAM 

Network 

2.4 GHz and 5.0 GHz IEEE 802.11ac 

wireless, Bluetooth 5.0, BLE 

Gigabit Ethernet 

Hard drive 
16GB micro-SD card for loading operating 

system and data storage 

Screen ports 
2 × micro-HDMI ports (up to 4kp60 

supported) 

Table 2. Raspberry Pi 4 Model B specifications 
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Figure 3. Raspberry Pi 4 Model B picture 

One of the peculiarities of the system is its ARM processor, which is one of the group of 

CPUs based on the RISC (Reduced Instruction Set Computer) architecture developed by 

ARM (Advanced RISC Machines). 

Although it was first used in the 1980s, it is still widely used until this day in millions of 

machines due to its several advantages. The fact that the number of instructions that ARM 

processors need to understand is very limited, makes the design of the processor simpler 

which means reduced complexity in its circuits, less transistors, smaller size, less power 

consumption. On the other hand, they are less powerful than other processor architectures 

used in desktop PCs. 

The processor architecture will play an important role in this study as will be observed later. 

Likewise, the fact that the hard drive is a micro-SD card with little capacity, the specification 

is 16GB, will also be a limitation in different stages of the process that will impact some of 

the procedures (e.g., build the Docker image) and to some extent the performance of the 

computation. 

2.3. Network configuration 

Some configuration is essential so that both nodes can communicate with each other via 

the local area network. 

First, in both nodes disable the DHCP5 (Dynamic Host Configuration Protocol) configuration 

so a static IP6 (Internet Protocol) address can be assigned to them. This gives us the ability 

to connect to the node with SSH7 (Secure Shell) knowing the IP address beforehand. 

 
5 Link to https://en.wikipedia.org/wiki/Dynamic_Host_Configuration_Protocol 
6 Link to https://en.wikipedia.org/wiki/Internet_Protocol 
7 Link to https://en.wikipedia.org/wiki/Secure_Shell 

https://en.wikipedia.org/wiki/Dynamic_Host_Configuration_Protocol
https://en.wikipedia.org/wiki/Internet_Protocol
https://en.wikipedia.org/wiki/Secure_Shell
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This is achieved by editing the /etc/dhcpcd.conf file in every node with the configuration 

described below. 

interface eth0 

static ip_address=192.168.0.{x}/24 

static routers=192.168.0.10 

static domain_name_servers=192.168.0.10 

Where the eth0 is the first ethernet interface, the ip_address is the exact IP address that 

should be assigned to each node after replacing the {x} variable, the routers tell the nodes 

how to connect to the internet and the domain_name_servers are the DNS. Therefore, the 

IP address 192.168.0.10 belongs to the router. 

The following table shows the configuration used for node0 (i.e., the front-end) and the 

node1 (i.e., the worker). 

Node Topology IP address 

node0 Front-end 192.168.0.1/24 

node1 Worker 192.168.0.2/24 

Table 3. IP addresses for the front-end and the worker nodes 

Afterwards, edit the file /etc/hosts, used by the DNS to identify the IP addresses with a 

name, with the following details with the aim to facilitate the reference to the worker node 

from the front-end node. 

192.168.0.1 node0 

192.168.0.2 node1 

Finally, from the node0 install the SSH key to the node1. The goal is to provision access 

without requiring a password for each login. This facilitates the work from the node0 that 

will need to communicate with node1 to schedule some work. 

Indeed, Open MPI requires that jobs can be started on remote nodes without any input from 

the keyboard. For example, if using rsh or ssh as the remote agent, you must have your 

environment setup to allow execution on remote nodes without entering a password or 

passphrase. 

To generate the SSH key from the node0 it is used the ssh-keygen command, which 

creates a key par (public and private keys), and then with the command ssh-copy-id node1 

it is installed as an authorized key on the worker node. 
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2.4. Operating system 

The operating system installed in the Raspberries is a Linux distribution based on Debian8. 

~ x 

pi@node0:~ $ cat /etc/os-release 

    PRETTY_NAME="Raspbian GNU/Linux 11 (bullseye)" 

    NAME="Raspbian GNU/Linux" 

    VERSION_ID="11" 

    VERSION="11 (bullseye)" 

    VERSION_CODENAME=bullseye 

    ID=raspbian 

    ID_LIKE=debian 

    HOME_URL="http://www.raspbian.org/" 

    SUPPORT_URL="http://www.raspbian.org/RaspbianForums" 

Albeit the Raspberries support ARM v8, as described above in the specifications, they are 

running in ARM v7 mode with a 32 bits operating system. This is an important detail to bear 

in mind while working on the compilation of the libraries and building the Docker image. 

Note that the installation of the operating system and the basic set up, aside from the 

network configuration, is out of the scope of the study. For reference, only the following 

pitfall is going to be described. 

As a side note, one of the pitfalls that was identified in the default SO configuration was 

that when running MPI from node0 and assigning some work to node1, the worker node 

couldn’t successfully execute the operation because the environment variables were 

missing. However, running SSH into the node itself and running the command explicitly 

from within it, the environment variables were loaded. Further investigations identified that 

the ~/.bashrc file had a snippet to scape if not running interactively. 

# If not running interactively, don't do anything 

case $- in 

    *i*) ;; 

      *) return;; 

esac 

It is strongly suggested to comment out those lines in the source file. 

 
8 Link to https://www.debian.org/ 

https://www.debian.org/
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3. VIRTUALIZATION 

3.1. Virtual machines 

A system virtual machine9 (VM) is a compute resource managed by a hypervisor that uses 

software instead of a physical computer to virtualize the entire machine, including the 

hardware, in order to make it behave as if it was a separate system. Even though virtual 

machines can run in parallel in the same host and under the hood they all share the same 

hardware, each virtual machine runs its own operating system and functions separately 

from the others. 

The abstraction they bring is powerful as they give us the ability to run applications that 

have completely different requirements than the host, such as a different operating system, 

make changes or install programs without incurring in the risk of affecting negatively the 

host, for instance in the event of installing a virus or malware, or even test applications that 

must be isolated from anything else. 

As we can observe, the advantages of virtual machines are numerous, however, they come 

at a cost. They are a very high resource computing software that uses very heavily the 

capabilities of the physical system, running more than one virtual machine on the same 

host can result in a noticeable performance degradation that can make things unstable, 

and booting them or tearing them down is very slow. Additionally, they usually require a 

considerable amount of space in the hard drive to work. 

Apart from the issues with the resources, setting up a virtual machine is a time-consuming 

process that requires some knowledge in computing systems, as you will need configure a 

set of parameters that define the physical resources that will be allocated to the VM at 

runtime, you will need to find the image of the operating system you want to install in it, go 

through all the installation process and finally configure the SO post installation. 

Like virtual machines, it appeared the containers, a different technology that is a lightweight 

version of the VMs that have a different target and intend to cover the problem from a 

different point of view. 

3.2. Containers 

The most noticeable difference between the two solutions is that only virtualize the software 

layers on top of the operating system, as opposite to VMs that virtualize the entire computer 

including the hardware. 

 
9 Link to https://en.wikipedia.org/wiki/Virtual_machine 

https://en.wikipedia.org/wiki/Virtual_machine


   
 

12 
 

  

Figure 4. Comparison between virtual machines and containers 

Because containers run on top of the OS, they are a lightweight software package that only 

needs to contain all the dependencies and libraries required to execute the applications. 

It is worth noting that containers can and will run its own version of the OS that might be 

different than the one running in the host. However, unlike VMs, the OS is already prepared 

and configured to run on the fly with no extra effort, so users can focus on including the 

necessary dependencies like system libraries, external third-party code packages, etc. 

The level of isolation of containers is also lower, meaning that all of them share the same 

underlying hardware and operating system layer on the host, on one hand, this increases 

the risk of vulnerabilities reaching the host or the other containers, on the other hand, with 

some network configuration you can make the containers communicate with each other. 

Probably one of the most popular and widely used container providers is Docker, used in 

this study in combination with Singularity. 
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4. LIBRARIES OVERVIEW 

4.1. OpenMPI 

Version used of the library is v4.1.3. 

OpenMPI10 is the chosen implementation of the MPI standard, the Message Passing 

Interface-programming paradigm used to perform the parallel processing in the simulation 

of the HPC application 

Open MPI is an open-source Message Passing Interface implementation that is developed 

and maintained by a consortium of academic, research, and industry partners. Open MPI 

is therefore able to combine the expertise, technologies, and resources from all across the 

High-Performance Computing community in order to build the best MPI library available. 

Open MPI offers advantages for system and software vendors, application developers and 

computer science researchers. 

Although there are other very competent alternatives in the market, such as MPICH, the 

reason why OpenMPI was chosen over the rest is because OpenMPI seems to have a 

higher adoption and thus it is easier to find information and curated documentation on the 

internet. 

4.2. OpenFOAM 

Version used of the library is v2112. 

OpenFOAM11 is the distributed scientific application developed by OpenCDF Ltd that 

leverages the MPI standard and that will be used in this study. 

OpenFOAM stands for Open-source Field Operation And Manipulation and is a C++ 

toolbox for the development of customised numerical solvers and post-processing utilities 

for the solution of computational fluid dynamics12 (CFD), that over the recent years has 

emerged as an important approach in chemical and biochemical engineering. 

Nevertheless, the distributed application is not very relevant as long as it supports parallel 

processing with the MPI implementation selected. 

 

 
10 Link to https://www.open-mpi.org/ 
11 Link to https://www.openfoam.com/ 
12 Link to https://www.sciencedirect.com/topics/engineering/computational-fluid-dynamic 

https://www.open-mpi.org/
https://www.openfoam.com/
https://www.sciencedirect.com/topics/engineering/computational-fluid-dynamic
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4.3. Extrae 

Version used of the library is v4.0.0. 

Extrae13, developed by the Performance Tools group14 at the Barcelona Supercomputing 

Center, is a dynamic instrumentation package to trace programs compiled and run with the 

shared memory, the message passing (MPI) programming model or both programming 

models. Its main function is to generate trace-files of the execution of a distributed 

application that can be later visualized with Paraver. 

Each line of these trace-files represents an event which occurred during the execution of 

the code. There are different types of events such as CPU activity, communication or user 

events. 

In this study, Extrae will be used to trace the distributed execution of OpenFOAM using the 

MPI programming paradigm. The shared memory model is not targeted in this study. 

4.4. Paraver 

Version used of the library is v4.10.0. 

Paraver15, that stands for PARAllel Visualization and Events Representation, is the trace 

visualisation and analysis browser that leverages the trace-files generated by Extrae to 

evaluate the performance obtained while running a single application in a distributed mode. 

PARAVER is based on a simple interface to manage several displaying windows that 

provides many functionalities to see and analyse quantitatively the trace file. 

  

 
13 Link to https://tools.bsc.es/extrae 
14 Link to https://www.bsc.es/discover-bsc/organisation/scientific-structure/performance-tools 
15 Link to https://tools.bsc.es/paraver 

https://tools.bsc.es/extrae
https://www.bsc.es/discover-bsc/organisation/scientific-structure/performance-tools
https://tools.bsc.es/paraver
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5. LIBRARIES COMPILATION 

5.1. Context 

In order to build the Docker image, first it is necessary to pre-compile for the current 

architecture (ARM v7 32 bits) all the necessary libraries to carry out the study. 

The compilation has been carried out in a single node, the front-end, due to different 

reasons: 

- Ensure that the binaries result of the compilation are compatible with the 

processor architecture of the Raspberries. 

- Get familiarised with the system. 

- Run the tools in an environment that faithfully reflects the end system. 

To start with the compilation, it is necessary a host connected to the same local area 

network (e.g., a laptop or desktop machine) that connects to node0 via SSH. 

~ x 

albert:~ $ ssh pi@192.168.0.1 

pi@192.168.0.1's password: 

… 

pi@node0:~ $ 

After accessing the shell in node0, the different libraries can be compiled as will be 

described in the following sections. 

Before going into detail, it is worth mentioning that the hard drive capacity in the 

Raspberries is very limited and since some of the libraries require a considerable amount 

of space after compiling, it is not possible to build the Docker image in the node due to 

space constraints. 

For example, only OpenFOAM requires ~2.5GB after compile. This means that building a 

Docker image that just contains OpenFOAM would require ~7.5GB of space available 

because the build context is copied over to the Docker daemon before the build begins. 

Not only that, but also the read/write speed of the micro-SD is low which makes the build 

process even more difficult and time consuming. 

The workaround to this problem is to copy the compiled libraries from node0 to an external 

host and build the Docker image there. This can be done with the secure-copy command-
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line that relies on SSH and that allows you to securely copy files and directories between 

two locations. 

For instance, let’s assume that the node0 has OpenMPI compiled in the /opt directory and 

that the whole folder should be copied to the host in the /home directory, the command-line 

would look like this. 

~ x 

albert:~ $ scp pi@192.168.0.1:/opt/openmpi-4.1.3 /home 

Finally, it is noteworthy that building the Docker image outside of the HPC cluster is not a 

problem, as ultimately the image will be pushed to the Docker Registry Hub16 and will be 

available from anywhere that has access to the internet. 

5.2. Compile OpenMPI 

The steps to compile OpenMPI version 4.1.3 from inside node0 are relatively straight 

forward, except the configuration step prior to the compilation, which requires some 

arguments to ensure that the compilation can be successfully ported to other machines. 

Prior to download the source code of OpenMPI from the official website, it is necessary to 

download the GNU Wget package for retrieving files using HTTP and HTTPS. Super user 

privileges might be required. 

~ x 

pi@node0:~ $ sudo apt-get update && apt-get install -y wget 

pi@node0:~ $ wget https://download.open-mpi.org/release/open-  

    mpi/v4.1/openmpi-4.1.3.tar.gz 

Afterwards, extract the compressed file, remove it and run the configure script to set up the 

installation. 

~ x 

pi@node0:~ $ tar -xvzf openmpi-4.1.3.tar.gz 

pi@node0:~ $ rm openmpi-4.1.3.tar.gz 

pi@node0:~ $ cd openmpi-4.1.3 

pi@node0:/openmpi-4.1.3 $ ./configure --prefix=/opt/openmpi-4.1.3 --enable- 

    mpirun-prefix-by-default --disable-mca-dso --enable-static 

 
16 Link to https://hub.docker.com/ 

https://hub.docker.com/
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It is important to explain the arguments provided in the configure step. 

Configure arguments 

Prefix Tells OpenMPI the install directory. 

enable-mpirun-prefix-by-default 

This will make mpirun behave exactly the 

same as “mpirun --prefix $prefix ...”, where 

$prefix is the value given to --prefix in 

configure. 

disable-mca-dso 

Causes all plugins to be built as part of Open 

MPI's main libraries. However, does not 

affect whether OpenMPI's main libraries are 

built as static or shared. 

enable-static 
Causes the building of static libraries (e.g., 

libmpi.a). 

Table 4. Configure arguments for Open MPI library 

Then, compile the source code using all the cores available in node0 and install the library 

in the directory defined in the prefix argument. 

~ x 

pi@node0:/openmpi-4.1.3 $ make -j 4 

pi@node0:/openmpi-4.1.3 $ make install 

Finally, add to the PATH variable the install directory of OpenMPI. 

~ x 

pi@node0:/openmpi-4.1.3 $ export PATH=/opt/openmpi-4.1.3/bin:$PATH 

pi@node0:/openmpi-4.1.3 $ which mpirun 

    /opt/openmpi-4.1.3/bin/mpirun 

pi@node0:/openmpi-4.1.3 $ 

From the libraries used in this study, OpenMPI is the only library that needs to be configured 

in the front-end as well as in the container. The rationale is that the MPI process is initiated 

from the host as described in a later chapter. 

5.3. Compile OpenFOAM 

The configuration to install OpenFOAM is going to be based on OpenMPI implementation. 

First, it is necessary to define some environment variables related to MPI. 
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~ x 

pi@node0:~ $ export MPI_ROOT=/opt/openmpi-4.1.3 

pi@node0:~ $ export MPI_ARCH_FLAGS="-DOMPI_SKIP_MPICXX" 

pi@node0:~ $ export MPI_ARCH_INC="-isystem $ MPI_ROOT /include" 

pi@node0:~ $ export MPI_ARCH_LIBS="-L$MPI_ROOT/lib -lmpi" 

pi@node0:~ $ export LD_LIBRARY_PATH=$MPI_ROOT/lib 

pi@node0:~ $ export PATH=$MPI_ROOT/bin:$PATH 

Afterwards, download the source code, extract it and then remove the file. 

~ x 

pi@node0:~ $ wget https://dl.openfoam.com/source/v2112/OpenFOAM-v2112.tgz 

pi@node0:~ $ tar -xvzf OpenFOAM-v2112.tgz 

pi@node0:~ $ rm OpenFOAM-v2112.tgz 

Before compiling the code, it’s important to tell OpenFOAM what MPI library to use and that 

it must be compiled with the optimal option. These settings can be defined in the 

~/OpenFOAM-v2112/etc/bashrc. 

export WM_MPLIB=SYSTEMOPENMPI 

export WM_COMPILE_OPTION=Opt 

Additionally, it is required to modify the way in which the compiler will create the floating-

point instructions, to make it compatible with the processor architecture. This can be 

achieved by updating the -mfloat_abi parameter from softfp to hard in the file 

~/OpenFOAM-v2112/wmake/rules/linuxARM7Gcc/cOpt and in the file ~/OpenFOAM-

v2112/wmake/rules/linuxARM7Gcc/c++Opt. 

After setting everything up, we can proceed to compile the code. If the compilation is 

successful, the last step is to verify that the environment variables defined in OpenFOAM 

can be successfully exported. 

~ x 

pi@node0:~ $ cd OpenFOAM-v2112 

pi@node0:/OpenFOAM-v2112 $ source etc/bashrc 

    No completions for /opt/OpenFOAM-v2112/platforms/ 

    linuxARM7GccDPInt32Debug/bin 

    [ignore if OpenFOAM is not yet compiled] 

pi@node0:/OpenFOAM-v2112 $ ./Allwmake -j 1 
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    ======================================== 

    Starting compile OpenFOAM-v2112 Allwmake 

    Gcc system compiler 

    linuxARM7GccDPInt32Debug, with SYSTEMOPENMPI sys-openmpi 

    ======================================== 

    ... 

pi@node0:/OpenFOAM-v2112 $ cd .. 

pi@node0:~ $ source OpenFOAM-v2112/etc/bashrc 

pi@node0:~ $ 

The compilation can take several hours, on my experience it took about ~14 hours. Indeed, 

this was a problem in the beginning, since we were connecting to node0 remotely and it 

was causing a TTY timeout after a few minutes that was cancelling the compilation process. 

The workaround for that issue was to use tmux17, a terminal multiplexer. It lets you switch 

easily between several programs in one terminal, detach them (they keep running in the 

background) and reattach them to a different terminal. 

5.4. Compile Extrae 

Similarly, to the previous libraries, the first step is to download the source code from the 

official Barcelona Supercomputing Center tools website18. 

~ x 

pi@node0:~ $ wget https://ftp.tools.bsc.es/extrae/extrae-4.0.0-src.tar.bz2 

pi@node0:~ $ apt-get install bzip2 

pi@node0:~ $ tar -xvf extrae-4.0.0-src.tar.bz2 

pi@node0:~ $ rm extrae-4.0.0-src.tar.bz2 

It’s worth noting that in order to be able to decompress the file, compressed with bzip2, it 

is necessary to install the corresponding library. Additionally, during the process, it was 

identified some other indispensable dependencies that required to be installed to 

successfully compile Extrae. 

~ x 

pi@node0:~ $ apt-get install gfortran 

pi@node0:~ $ apt-get install build-essential 

 
17 Link to https://github.com/tmux/tmux/wiki 
18 Link to https://tools.bsc.es/  

https://ftp.tools.bsc.es/extrae/extrae-4.0.0-src.tar.bz2
https://github.com/tmux/tmux/wiki
https://tools.bsc.es/
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pi@node0:~ $ apt-get install libiberty-dev 

pi@node0:~ $ apt-get install binutils-dev 

pi@node0:~ $ apt-get install libxml2-dev 

Indeed, some of these libraries will also need to be explicitly installed within the container 

since they are required at runtime by Extrae and are not included in the base image. 

Next is to issue the configuration command. 

~ x 

pi@node0:~ $ cd extrae-4.0.0 

pi@node0:/extrae-4.0.0 $ ./configure --prefix=/opt/extrae-4.0.0 --without-unwind  

    --without-dyninst --without-papi --with-mpi=/opt/openmpi-4.1.3  

    --enable-posix-clock --with-binutils=/usr 

The following table contains a breakdown of the arguments provided in the configure step. 

Configure arguments 

Prefix Tells Extrae the install directory. 

without-unwind 

Specifies that the Unwind19 libraries should 

not be used. These libraries are used to get 

call stack information on several 

architectures. 

without-dyninst 

Specifies that the Dyninst20 package should 

not be used. DynInst is a third-party 

instrumentation library that gives the 

flexibility to add instrumentation to the 

application without modifying the source 

code. 

without-papi 

Specifies that the PAPI21 libraries should not 

be used. PAPI stands for Performance 

Application Programming Interface and 

provides a consistent interface and 

methodology for use of the performance 

counter hardware found in most of the 

microprocessors. 

 
19 Link to https://www.nongnu.org/libunwind/ 
20 Link to https://www.dyninst.org/ 
21 Link to https://icl.utk.edu/papi/  

https://www.nongnu.org/libunwind/
https://www.dyninst.org/
https://icl.utk.edu/papi/
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enable-posix-clock 

Use POSIX clock (clock_gettime call) 

instead of low-level timing routines. It is 

recommended to use this option if the 

system where you install the instrumentation 

package modifies the frequency of its 

processors at runtime. 

binutils 

Specifies the location for the binutils 

package. The binutils package is necessary 

to translate addresses into source code 

references. 

Table 5. Configure arguments for Extrae library 

Finally, run the build and installation commands. 

~ x 

pi@node0:~ $ make 

pi@node0:~ $ make install 

Extrae uses an interposition mechanism done by the runtime loader that substitutes the 

original symbols of the binaries by those provided by the instrumentation package. It 

leverages the Linux dynamic pre-loader (i.e., LD_PRELOAD) environment variable, which 

contains one or more paths to shared libraries or shared objects that the Linux loader will 

load before any other shared library. 

By default, Extrae tries to preload Fortran version of the libmpitrace library to instrument 

MPI calls for apps in that language. Since OpenFOAM is implemented in C, it is necessary 

to update the following script to make the package point to the correct library. Additionally, 

we will take the opportunity to update the path for the EXTRAE_HOME and 

EXTRAE_CONFIG_FILE environment variables to point them to the install directory 

defined in the previous step. 

This can be done by updating the content of the trace.sh script, located in /opt/extrae-

4.0.0/share/example/MPI/ld-preload, as follows. 

#!/bin/sh 

 

export EXTRAE_HOME=/opt/extrae-4.0.0/etc/extrae.sh 

export EXTRAE_CONFIG_FILE=${EXTRAE_HOME}/share/example/MPI/ 

           extrae.xml 
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export LD_PRELOAD=${EXTRAE_HOME}/lib/libmpitrace.so 

 

## Run the desired program 

$* 

The environment variable that references the XML configuration file is one of the most 

important settings, as it tells Extrae what are the traces that must generate on runtime. 

5.5. Compile Paraver 

Visualising the trace files generated by Extrae is a long and thorough process that must be 

done after executing OpenFOAM, and after generating and merging the intermediate trace 

files. It is an asynchronous procedure, independent to the execution of the application, 

which requires the intervention of a human. 

Certainly, if we think about the benefits and the purpose of containers, we can realise that 

including Paraver within the container doesn’t fit well. 

Probably, the most rational thing is to have Paraver prepared on the front-end or, more 

likely, to export the trace files to an external host other than the supercomputer and perform 

the analysis there. 

It is due to this fact that compiling Paraver doesn’t make sense and it is suggested to use 

one of the already compiled binaries that they offer in their website22. The executables are 

available for the most common architectures, including Linux, MacOS and Windows. 

In this study, the approach followed will be to extract the trace files to an external host using 

the secure-copy command-line.  

 
22 Link to https://ftp.tools.bsc.es/wxparaver/ 

https://ftp.tools.bsc.es/wxparaver/


   
 

23 
 

6. DOCKER 

6.1. Dockerfile 

Docker can build images automatically by reading the instructions from a Dockerfile. A 

Dockerfile is a text document that contains all the commands a user could call on the 

command line to assemble an image. Using the docker build command we can create an 

automated build that executes several command-line instructions in succession. 

The following code describes the Dockerfile used to generate the Docker image used in all 

the scenarios for this study. 

FROM arm32v7/debian:11.3-slim 

 

# Install SSH, VIM editor and dependencies needed not included in the 

# base image 

RUN apt-get update && apt-get install -y \ 

  ssh \ 

  build-essential \ 

  libiberty-dev \ 

  binutils-dev \ 

  libxml2-dev \ 

  vim 

 

# Set environment variables 

RUN echo "export LD_LIBRARY_PATH='/opt/openmpi- 

    4.1.3/lib':$LD_LIBRARY_PATH" >> ~/.bashrc 

RUN echo "export PATH='/opt/openmpi-4.1.3/bin':$PATH" >> ~/.bashrc 

RUN echo "export OMPI_ALLOW_RUN_AS_ROOT=1" >> ~/.bashrc 

RUN echo "export OMPI_ALLOW_RUN_AS_ROOT_CONFIRM=1" >> ~/.bashrc 

RUN echo "export OMPI_MCA_btl_vader_single_copy_mechanism=none" >>  

    ~/.bashrc 

RUN echo "source /opt/OpenFOAM-v2112/etc/bashrc" >> ~/.bashrc 

 

# Copy pre-compiled libraries from host 

COPY /opt/OpenFOAM-v2112 /opt/OpenFOAM-v2112 

COPY /opt/openmpi-4.1.3 /opt/openmpi-4.1.3 

COPY /opt/extrae-4.0.0 /opt/extrae-4.0.0 
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# Add all permissions to OpenFOAM directory so mpirun has write privileges 

RUN chmod -R 777 /opt/OpenFOAM-v2112 

 

ENTRYPOINT ["/bin/bash"] 

Even though the Dockerfile is self-descriptive, there are some instructions that are not so 

obvious. Below is described the most relevant sets of operations that it contains. 

FROM arm32v7/debian:11.3-slim 

The very first line describes the base image used to build our custom one on top of it. The 

base image is based on the lightweight version of Debian 11.3 for ARM processors using 

32 bits. It is very important that the base image is compatible with the architecture that the 

processors of the Raspberries are built in. 

RUN apt-get update && apt-get install -y \ 

… 

It updates the packages list to fetch the most recent available information in the 

repositories. The following lines install some of the libraries that are identified as missing 

to run the tools. 

RUN echo "export LD_LIBRARY_PATH='/opt/openmpi- 

    4.1.3/lib':$LD_LIBRARY_PATH" >> ~/.bashrc 

RUN echo "export PATH='/opt/openmpi-4.1.3/bin':$PATH" >> ~/.bashrc 

RUN echo "export OMPI_ALLOW_RUN_AS_ROOT=1" >> ~/.bashrc 

RUN echo "export OMPI_ALLOW_RUN_AS_ROOT_CONFIRM=1" >> ~/.bashrc 

The first two instructions are the environment variables necessary to run OpenMPI. The 

next two instructions explicitly tell OpenMPI to run even with as root, which is the default 

user within the container in Docker. 

RUN echo "export OMPI_MCA_btl_vader_single_copy_mechanism=none" >>  

    ~/.bashrc 

This instruction disables the cross-memory-attach (CMA). OpenMPI has many ways to 

transfer messages between ranks. If the ranks are on the same node, it is faster to do these 

transfers using shared memory rather than involving the network stack. One of the 

approaches is to use system calls to transfer messages directly from Rank A’s virtual 

memory to Rank B’s, which is known CMA, and it gives significant performance 



   
 

25 
 

improvements in benchmarks. However, in this case it cases some errors and turning off 

the single copy addressed them. 

RUN echo "source /opt/OpenFOAM-v2112/etc/bashrc" >> ~/.bashrc 

Loads the configuration for OpenFOAM to run and to load in the current session the path 

to the binaries and the libraries. 

COPY /opt/OpenFOAM-v2112 /opt/OpenFOAM-v2112 

COPY /opt/openmpi-4.1.3 /opt/openmpi-4.1.3 

COPY /opt/extrae-4.0.0 /opt/extrae-4.0.0 

This set of instructions copies the tools that were compiled in the front-end to the image, 

so that the container has them available at runtime. 

RUN chmod -R 777 /opt/OpenFOAM-v2112 

Running the option simpleFoam from OpenFOAM, which has the responsibility of executing 

the simulation, requires write permissions on the directory as it needs to generate some 

directories and files. It was observed that combining this with the command mpirun to 

parallelize the simulation resulted in some errors due to missing privileges. 

ENTRYPOINT ["/bin/bash"] 

The last instruction tells Docker to use bash by default when running an executable or when 

connecting interactively inside the container. 

6.2. Build image 

As mentioned in previous chapters, building the image will take place outside of the front-

end due to space constraints. 

First, it is necessary to copy compiled tools to the external computer. 

~ x 

albert:~ $ scp pi@192.168.0.1:/opt/openmpi-4.1.3 /home 

albert:~ $ scp pi@192.168.0.1:/opt/OpenFOAM-v2112 /home 

albert:~ $ scp pi@192.168.0.1:/opt/extrae-4.0.0 /home 

Afterwards, move to the directory where the tools were copied to and build the docker 

image. Note the -t argument used to tag the image. 
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~ x 

albert:~ $ cd home 

albert:home $ docker build -t asanuy/openmpi:1.0.0 . 

 

6.3. Publish image 

In order to make accessible the Docker image from the front-end node, it is possible to 

either copy the image from the external computer to the Raspberries or push the image to 

the public Docker hub23. 

The suggested approach is to publish it to the public repository. First, it is necessary to 

create a new account or sign in to https://hub.docker.com. 

Afterwards, from the command-line, log in to the Docker Hub account. 

~ x 

albert:~ $ docker login 

After successfully login in with the correct credentials, publish the image to the registry with 

the push command. 

~ x 

albert:~ $ docker push asanuy/openmpi:1.0.0 

In the event of downloading the image from the public registry, it can be done with the pull 

command. 

~ x 

albert:~ $ docker pull asanuy/openmpi:1.0.0 

 

  

 
23 Link to https://hub.docker.com 

https://hub.docker.com/
https://hub.docker.com/
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7. SINGULARITY 

7.1. Installation 

Before start using Singularity, it must be installed the development libraries to both the 

front-end and the worker. 

~ x 

pi@node0:~ $ sudo apt-get update && sudo apt-get install -y \ 

    build-essential \ 

    libssl-dev \ 

    uuid-dev \ 

    libgpgme11-dev \ 

    squashfs-tools 

Since Singularity 3.0 is written primarily in Go, it is needed to download the package, install 

it and configure it. 

~ x 

pi@node0:~ $ wget https://dl.google.com/go/go1.18.3.darwin-arm64.tar.gz 

Extract the archive to /SHARED, so both the front-end and the worker have access to the 

directory. 

~ x 

pi@node0:~ $ sudo tar -C /SHARED -xzf wget go1.18.3.darwin-arm64.tar.gz 

Then, set up your environment for Go. 

~ x 

pi@node0:~ $ echo 'export GOPATH=/SHARED/go' >> ~/.bashrc 

pi@node0:~ $ echo 'export PATH/SHARED/go/bin:${PATH}:${GOPATH}/bin' >>  

    ~/.bashrc 

pi@node0:~ $ source ~/.bashrc 

pi@node0:~ $ rm go1.18.3.darwin-arm64.tar.gz 

Next, clone the singularity repository. 

~ x 

pi@node0:/SHARED $ cd /SHARED 

pi@node0:/SHARED $ mkdir -p $GOPATH/src/github.com/sylabs 
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pi@node0:/SHARED $ cd $GOPATH/src/github.com/sylabs 

pi@node0:/SHARED/go/src/github.com/sylabs $ git clone  

    https://github.com/sylabs/singularity.git 

pi@node0:/SHARED/go/src/github.com/sylabs $ cd singularity 

Finally, compile the Singularity binary and again place it in the /SHARED directory so it is 

accessible by all the nodes. 

~ x 

pi@node0:/SHARED/go/src/github.com/sylabs/singularity $ ./mconfig 

pi@node0:/SHARED/go/src/github.com/sylabs/singularity $ make -C  

    /SHARED/singularity 

pi@node0:/SHARED/go/src/github.com/sylabs/singularity $ sudo make -C builddir  

    install 

At this point, singularity should be available both to the front-end and the worker node. 

7.2. Singularity Image File 

First, it’s necessary to create the Singularity Image File (i.e., SIF), similar to what was done 

with Docker. However, since we are going to use the SIF as a wrapper of the Docker image 

with minimum configuration, the configuration is straightforward because we are taking 

advantage of all the previous work. 

Bootstrap: docker 

From: asanuy/openmpi:1.0.0 

 

%environment 

  export LD_LIBRARY_PATH='/opt/openmpi-4.1.3/lib':$LD_LIBRARY_PATH 

  export PATH='/opt/openmpi-4.1.3/bin':$PATH 

  export OMPI_MCA_btl_vader_single_copy_mechanism=none 

Those very few lines in the definition file, are enough to build  a Singularity image with the 

build command, where openmpi.sif is the Singularity image file and openmpi.img is the 

resulting image built. 

~ x 

pi@node0:~ $ cd /SHARED 

pi@node0:SHARED $ sudo singularity build openmpi.img openmpi.sif 

Like Docker, Singularity needs to reference an image in order to run a container. 



   
 

29 
 

8. RUNNING THE CONTAINER 

8.1. Case study 

In order to better understand what running the container means, it is essential to briefly 

explain which exactly is the simulation that will be run and how OpenFOAM works. 

The OpenFOAM library comes with a collection of examples to run different simulations, 

where some of them are more complex and expensive than others. For the study, it was 

chosen one case from the examples called pitzDaily that is thought to investigate steady 

turbulent flow over a backward-facing step, although the details of the simulation are 

negligible and anecdotic to this study, it is important to choose one case that is feasible to 

process and complete by the Raspberries in an acceptable amount of time. Additionally, it 

is crucial to always stick to the same case so the results can be compared objectively. 

Every case in OpenFOAM is designed to be executed from a terminal command-line, 

typically reading and writing a set of data files associated with a particular case, where the 

data files for a case are stored in a directory named after the case. 

Running a case always starts with the blockMesh command. The principle behind 

blockMesh is to decompose the domain geometry into a set of 1 or more three dimensional, 

hexahedral blocks. 

Afterwards, the mesh and fields must be decomposed using the decomposePar utility to 

run OpenFOAM in parallel on distributed processors using MPI. The decomposePar 

command breaks up the domain with minimal effort but in such a way to guarantee an 

economic solution. The geometry and fields are broken up according to a set of parameters 

specified in a dictionary named decomposeParDict that must be located in the system 

directory of the case of interest. 

For this study, it will be used the following dictionary, where the number of subdomains will 

vary depending on the number of MPI processes. Note that the number of subdomains 

must match the coefficient XYZ. For instance, this would be the decomposition if it was 

used 4 MPI processes. 

FoamFile 

{ 

    version     2.0; 

    format      ascii; 

    class        dictionary; 

    object      decomposeParDict; 
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} 

 

numberOfSubdomains 4; 

 

method          simple; 

 

coeffs 

{ 

    n           (2 1 2); 

} 

Finally, the simulation can be run in parallel with the command simpleFoam         -parallel; 

note the parallel flag which tells OpenFOAM to run in distributed mode by using all the 

processors by using MPI. 

8.2. Execution 

After the long process of compiling and configuring numerous resources, everything is set 

up to finally run the Singularity container from the front-end node. 

Since running the application has some complexity due to how OpenFOAM works, it has 

been created the following bash script which contains all the commands in order to facilitate 

the procedure and make it less prone to error. 

#!/bin/bash 

 

echo Loading OpenFOAM environment variables 

source /opt/OpenFOAM-v2112/etc/bashrc 

 

export SIMULATION_DIR=/opt/OpenFOAM-

v2112/tutorials/incompressible/simpleFoam/pitzDaily 

 

echo Running blockMesh 

blockMesh -case $SIMULATION_DIR 

 

echo Creating decomposePar dictionary in the simulation directory 

cp decomposeParDict $SIMULATION_DIR/system 

 

echo Running decomposePar 
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decomposePar -case $SIMULATION_DIR 

 

echo Loading Extrae environment variables 

source /opt/extrae-4.0.0/share/example/MPI/ld-preload/trace.sh 

 

echo Running simpleFoam in parallel 

simpleFoam -parallel -case $SIMULATION_DIR 

The script, with name run.sh, assumes that the decomposeParDict file is located in the 

same current directory. Besides that, it requires execution permissions. 

~ x 

pi@node0:/SHARED $ sudo chmod u+x run.sh 

All the instructions in the script are related to OpenFOAM except the part where Extrae is 

loaded. That is precisely the command that enables the Extrae library in order to start 

instrumenting the runtime application and generating the traces.  

Since it uses an interposition mechanism that is done by the runtime loader by substituting 

the original symbols by those provided by the instrumentation package, it is very important 

that Extrae is enabled at that exact point, right before starting the simulation, otherwise it 

will try to instrument all the commands and cause unexpected errors. 

Finally, run the container via MPI with one single command. When running code within a 

Singularity container, it should not be referenced the MPI executables located inside it (e.g., 

singularity exec mpirun -n 4 simpleFoam -parallel). Instead, it should be used the MPI 

installation on the front-end to run Singularity and start an instance of the application from 

within a container for each MPI process. 

Behind the scenes, OpenFOAM is linking to the MPI libraries from the MPI install within our 

container and these are, in turn, communicating with the MPI daemon on the host system. 

~ x 

pi@node0:/SHARED $ mpirun -n 4 -host node0:2,node1:2 -quiet --mca btl_tcp_if_include 

192.168.0.1/24,192.168.0.2/24 singularity exec --writable-tmpfs /SHARED/openmpi.img 

./run.sh 
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Command arguments 

mpirun 
Executes serial and parallel jobs in Open 

MPI. 

-n <num> 
Launch num processes per node on all 

allocated nodes. 

-hosts <host1,host2,…hostN> 

List of hosts on which to invoke processes. 

Note that the host’s name can contain a 

colon followed by a number, that indicates 

how many processes must execute a given 

host. 

-quiet 
Suppress informative messages from 

orterun during application execution. 

--mca btl_tcp_if_include <ip1,ip2,…ipN> 

It is a network configuration over TCP that 

defines exactly what the addresses of the 

hosts are. 

Not providing the addresses explicitly proved 

to give some errors due to MPI doing look 

ups on all the network interfaces available. 

singularity exec 
Tells Singularity to run a command within a 

container. 

--writable-tmpfs 

Makes the file system accessible as read-

write with non-persistent data. 

This is fundamental so OpenFOAM can write 

the data of the runtime simulation. 

/SHARED/openmpi.img The Singularity image. 

./run.sh 
The custom script that acts as a wrapper to 

a set of instructions to facilitate the process. 

Table 6. Command arguments to run the container 

Note that the Singularity container must be executed from the /SHARED directory, because 

it is the directory that all the nodes have read/write access to. 

The rationale is that by default Extrae will try to produce the trace files in the current 

directory inside the container, but since Singularity by default mounts the current directory 

on the host system to the directories within the container, giving them the ability to write to 

the host itself, it will cause that all the containers will produce the traces in the shared folder 

of the front-end system. 
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This makes possible that the merger process, which takes place at the end once the 

application run has completed, can access all the intermediate traces and generate three 

final files, which will be permanent and accessible from the front-end even after the 

Singularity containers have been successfully completed and shut down. 

One of the three files generated is the Paraver trace itself (.prv file), that contains the 

records with a timestamp that represent the information gathered during the execution of 

OpenFOAM. The other file generated is the Paraver configuration file (.prc file), that 

contains a dictionary to translate the values contained in the Paraver trace into a human 

readable string. The last file generated (.row file), contains the distribution of the application 

across the cluster computation resources. 

8.3. Extrae configuration file 

In the previous custom script, it can be observed that Extrae is loaded with simply one line. 

echo Loading Extrae environment variables 

source /opt/extrae-4.0.0/share/example/MPI/ld-preload/trace.sh 

The content of the trace.sh file was described previously (chapter 5.4 Compile Extrae), and 

although it was mentioned that it contains a reference to the XML configuration file that 

defines what exactly should be instrumented, we didn’t take the opportunity to explain what 

is included in it. 

The XML contains crucial information such as the basic trace behaviour, the intermediate 

files that are meant to be generated (e.g., Paraver or Dimeas), the configuration to analyze 

different resources (e.g., MPI, OpenMP, Network, CUDA, OpenCL, Dynamic memory, etc), 

and the settings of the merge process. 

Following is the XML configuration file used in the execution of the container. 

<?xml version='1.0'?> 

 

<!-- Enables the tracing and defines the tracing mode (detail/bursts), the dome dir and 

the resulting traces --> 

<trace enabled="yes" 

 home="/opt/extrae-4.0.0" 

 initial-mode="detail" 

 type="paraver" 

> 
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  <!-- Configuration of some MPI dependant values --> 

  <mpi enabled="yes"> 

    <!-- Gather counters in the MPI routines --> 

    <counters enabled="yes" /> 

    <!-- Capture all MPI_Comm_* calls --> 

    <comm-calls enabled="yes" /> 

  </mpi> 

 

  <!-- Emit information of the callstack --> 

  <callers enabled="yes"> 

    <!-- At MPI calls, select depth level --> 

    <mpi enabled="yes">1-3</mpi> 

    <!-- At sampling points, select depth level --> 

    <sampling enabled="yes">1-5</sampling> 

  </callers> 

 

  <!-- Configure which software/hardware counters must be collected --> 

  <counters enabled="yes"> 

    <!-- Obtain resource usage information --> 

    <resource-usage enabled="yes" /> 

  </counters> 

 

  <!-- Buffer configuration --> 

  <buffer enabled="yes"> 

    <!-- How many events can we handle before any flush --> 

    <size enabled="yes">5000000</size> 

  </buffer> 

 

  <!-- Do merge the intermediate tracefiles into the final tracefile 

       Named according to the binary name 

       options:  

       synchronization = { default, task, node, no } (default is node) 

       max-memory = Number (in Mbytes) max memory used in merge step 

       joint-states = { yes, no } generate joint states 

       keep-mpits = { yes, no } keep mpit files after merge 
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  --> 

  <merge enabled="yes"  

    synchronization="default" 

    tree-fan-out="16" 

    max-memory="512" 

    joint-states="yes" 

    keep-mpits="yes" 

    translate-addresses="yes" 

    sort-addresses="yes" 

    translate-data-addresses="yes" 

    overwrite="yes" 

  /> 

 

</trace> 

 

8.4. Analysis 

The analysis will be focused on sharing the evidence collected during the execution of the 

application with different configurations, on the comparison of the Paraver trace files 

generated for each of them, and on trying to understand what was the behaviuor of the 

cluster. 

From the multiple combinations of workloads available, with different processes and 

different hosts intervening in the execution, it was narrowed down to the following three 

scenarios. 

Scenario 1. Two MPI processes on a single host, the front-end (node0). 

Scenario 2. Four MPI processes on a single host, the front-end (node0). 

Scenario 3. Four MPI processes on two hosts, the front-end (node0) and the worker 

(node1). The two hosts have the same number of processes. 

Before proceeding to discuss the scenarios, there is an important observation to make. The 

Extrae library is going to play an important role in the process and for this reason it was 

considered important to describe its impact in each case. 

Scenario 1 

The execution of the OpenFOAM simulation in parallel took about 41 seconds in total time 

for the two cores that participated in the process. If we observe the view with the timeline 
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of all the MPI calls, we can notice that there is no process taking more than the other and 

thus slowing everything down. 

 

Figure 5. MPI calls view for scenario 1 

Looking at the MPI calls profile by percentages, it correlates with the previous assumption 

as the MPI_Waitall call only represents a 2-4% of the total time spent. Overall, the MPI 

communication takes about 10% of the time in total. 

 

Figure 6. MPI calls view by percentage for scenario 1 

Obviously, where the execution spent most of the time is outside MPI, that is the 

OpenFOAM code, representing an 89-92% of the total time spent. 

Besides that, Extrae was able to translate the files for each process in approximately 1 

minute and not even 2 minutes to complete the Extrae merge process. The impact of Extrae 

in this scenario was negligible. 

Overall, the execution in this scenario was very smooth. 

Scenario 2 

Using four processes means that all the computational resources of the front-end host must 

intervene in the execution, as the Raspberries only have one CPU with four cores. Bearing 

this in mind, it seems difficult that this combination can provide any better results than the 

previous ones. 

Indeed, this is the scenario that had the worst performance of them all. Not only because 

the execution of the application took way longer than the previous cases, it took 86 seconds 
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to complete, but also because the process was killed during the Extrae merge process due 

to resources starvation after 10 minutes. 

Subsequent calls of the scenario while having a look at the system resources, revealed that 

during the Extrae merge process the Random Access Memory (RAM) and the Swap 

memory were brought to the limits. This is because how Extrae works, that the more 

processes or threads needs to instrument, the more traces it generates; and obviously, the 

more traces, the larger the size of the files. 

Scenario 3 

This scenario is a remarkably interesting one, because if up to this point the scenario that 

has given the best results is the scenario one, two processes in a single host, it seems 

reasonable to think that running four processes in two hosts, two per host, could provide 

better numbers. 

Nevertheless, it took 13 seconds more to complete compared to scenario one, 54 seconds 

in total. 

 

Figure 8. MPI calls view by percentage for scenario 4 

Looking at the results, there are two things that can be highlighted. The first one is that the 

time spent outside of MPI is very similar, if not better, than in the first scenario (that 

represented an 89-92% of the total time spent). The second one is that the amount of time 

that the processes have spent waiting (MPI_Waitall call) has slightly degraded for two of 

the processes. One of the reasons could be network latency on the communication 

between the hosts, although this reason alone probably is not enough to explain the 

increase in time. 

However, it is important to highlight that the Extrae merge process completed successfully. 

Since the two hosts participated in the process, the necessary amount of RAM memory 

available for each host was reduced considerably. 
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In this case, Extrae was able to translate the files for each process in approximately 6 

minutes and the Extrae merge process took about 8 minutes, which are considerably higher 

times than in the other scenarios. 
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9. CONCLUSIONS 

In the beginning of this document, when talking about scientific applications, it was 

mentioned that reproducibility is one of the core principles in any formal research and it is 

often expected that the findings of any study can be replicated with a high degree of 

reliability. This assumption remains true, and it has been successfully fulfilled in the analysis 

conducted in this study, as in order to compare the scenarios fairly and to be able to provide 

objective conclusions of the results, the baseline for all of them must be invariant. 

It has been demonstrated how distributed scientific applications can be parallelized to solve 

complex problems. Additionally, it has been observed how the domain of the scientific 

application can be broken down into smaller tasks to run it concurrently leveraging the MPI 

programming paradigm. 

In this sense, one of interesting fact observed is that not always more computational 

resources provide better results, and that it is important to find the right balance between 

resources and performance or even costs. Due to this, instrumentation tools play a key role 

in the process of understanding the usage that applications do of the resources of a cluster. 

Besides that, there is other notorious takeaways. For instance, how containers can help us 

to simplify processes. Looking back to understand what are the pieces of work that 

consumed most of the time, it clearly comes to the mind the compilation process of each 

of the tools and the investigation to figure out their configuration settings on runtime; as all 

of them have different compile instructions, settings, environment variables, dependencies, 

pitfalls, etc. 

Instead, now this has been a one-off thing necessary to create the image, that gives us the 

ability to run it as many times as necessary with the flexibility of using any number of MPI 

processes we are interested in. Not only that, but also it would be possible to run the 

application in a completely different cluster with little effort. 

Additionally, on a production environment, furthermore if we talk about supercomputers, it 

is safe to assume that resources are allocated randomly by a workload manager, for 

example Slurm, and you don’t have access to the underlying system at all. In the event of 

complex applications that have many dependencies between them and that require some 

pre-setup, containers can be an excellent solution. 

Other advantages of using containers are that you cannot mess it up. Containers generally 

are immutable, and when they are not, the changes only are temporary and are discarded 

at the end of the lifecycle. 
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Aside from the containers and their advantages, it is worth taking a moment to think about 

what could have been the next steps or improvements to the solution that was outlined in 

this document. Particularly, regarding the Paraver traces generated and the analysis of the 

results. 

Some of the enhancements that could be made are compiling OpenFOAM in Debug mode, 

to better understand what the application is doing when it is outside of MPI, which in the 

scenarios described here was about 90% of the time and instrument the cluster at a lower 

level. For instance, use a Performance Application Programming Interface24 (PAPI), to see 

the microprocessor events, or enable the traces on Extrae to measure the performance 

and usage of disk input/output, memory usage, network latency, context switching, etc. 

Doing a deep and thorough analysis of the behaviour of a scientific application is a task 

that can take long time, the order of weeks or months, and that requires a lot of expertise 

to identify patterns or trends. 

 

  

 
24 Link to https://icl.utk.edu/papi/ 

https://icl.utk.edu/papi/
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