

Profiling HPC applications in containerized
environments

Albert Sanuy Lostes
Master's degree in Computer Engineering
High Performance Computing area

Sergio Iserte Agut
Josep Jorba Esteve

February 2022

i

This work is licensed under a

Creative Commons Attribution-
NonCommercial-NoDerivs 3.0
Spain License.

https://creativecommons.org/licenses/by-nc-nd/3.0/es/
https://creativecommons.org/licenses/by-nc-nd/3.0/es/
https://creativecommons.org/licenses/by-nc-nd/3.0/es/

ii

FINAL PROJECT SHEET

Project title: Profiling HPC applications in containerized

environments

Author name: Albert Sanuy Lostes

Consultant name: Sergio Iserte Agut

Tutor name: Josep Jorba Esteve

Delivery date (mm/yyyy): 06/2022

Work area: High Performance Computing

University degree: Master's degree in Computer Engineering

Key words: Cluster Computing, Profiling, Containers, Scientific

Applications

Abstract:

Scientific studies very often rely on supercomputers to solve difficult problems. However,

reproducibility is one of the core principles in any scientific research and it is often

expected that the findings of any study can be replicated with a high degree of reliability.

Running these applications in containers that have been prepared and curated beforehand

can provide the desired reliability, remove unnecessary complexity and reduce the manual

interaction to reduce the risk of human errors.

The overall goal of this project is to use Docker to create an image that contains a

distributed scientific application in addition to the necessary tools that allow profiling the

behaviour of the program after its execution with different workloads. The Docker

containers will be managed with Singularity , the most widely used container system for

HPC.

The infrastructure of the HPC cluster used for this study is composed of Raspberries Pi 4

Model B hosted on-premises.

iii

INDEX

1. Introduction ... 1

1.1. Project motivation ... 1

1.2. Goals and objectives .. 2

1.3. Approach and method followed .. 3

1.4. Work breakdown ... 4

2. Infrastructure ... 6

2.1. Architecture Overview ... 6

2.2. Raspberry model .. 7

2.3. Network configuration ... 8

2.4. Operating system ... 10

3. Virtualization ... 11

3.1. Virtual machines ... 11

3.2. Containers .. 11

4. Libraries overview ... 13

4.1. OpenMPI .. 13

4.2. OpenFOAM .. 13

4.3. Extrae ... 14

4.4. Paraver ... 14

5. Libraries compilation .. 15

5.1. Context ... 15

5.2. Compile OpenMPI .. 16

5.3. Compile OpenFOAM .. 17

5.4. Compile Extrae ... 19

5.5. Compile Paraver ... 22

6. Docker .. 23

6.1. Dockerfile ... 23

6.2. Build image ... 25

6.3. Publish image ... 26

iii

7. Singularity ... 27

7.1. Installation .. 27

7.2. Singularity Image File ... 28

8. Running the container .. 29

8.1. Case study ... 29

8.2. Execution .. 30

8.3. Extrae configuration file .. 33

8.4. Analysis .. 35

9. Conclusions .. 39

10. Bibliography .. 41

1

1. INTRODUCTION

1.1. Project motivation

High performance computing, hereinafter referred to as HPC, has been the foundation for

many scientific, industrial, and societal advancements since the second third of the

twentieth century to this day.

The reason HPC has been crucial in many investigations is because it gives the ability to

process data and perform complex computations at very high speeds in many situations

that otherwise would not be feasible, or the results would take so long that would make

them useless.

One of the best-known types of HPC solutions is the supercomputers. A supercomputer

usually consists of hundreds or thousands of compute nodes that work together to process

data in parallel and complete small jobs that are part of a more complex task. The collection

of compute nodes often is referred to as an HPC cluster.

Nowadays, it is a frequent practice for scientific studies to rely on these clusters to solve

difficult problems, however, in the recent decades, many published scientific results failed

because they were difficult or even impossible to reproduce. Reproducibility is indeed one

of the core principles in any scientific research and often it is expected that the findings of

any study can be replicated with a high degree of reliability.

In fact, this has not only been a challenge in academic investigations but also in other fields

such as software engineering, contributing to the development of tools that could provide

an abstraction to the machine-specific settings. One of the most popular software solutions

to achieve that level of isolation is Docker1.

In this context, the overall goal of this project is to use Docker to create an image that

contains a distributed scientific application in addition to the necessary tools that allow

profiling the behaviour of the program after its execution. The Docker containers will be

managed with Singularity2, the most widely used container system for HPC.

It is worth noting that the infrastructure of the HPC cluster used for this study is composed

of Raspberries Pi 4 Model B3 hosted on-premises. Both the tools and the infrastructure will

be detailed in later chapters.

1 Link to https://www.docker.com
2 Link to https://sylabs.io/singularity
3 Link to https://www.raspberrypi.com

https://www.docker.com/
https://sylabs.io/singularity
https://www.raspberrypi.com/

2

1.2. Goals and objectives

The ultimate goal of this project is to use Singularity in a cluster to simultaneously deploy

and run Docker containers containing an HPC application and use some post-processing

tools to generate trace-files for a post-mortem analysis that helps us understand how the

microprocessor and other components of the system were behaving during the execution.

In order to achieve that goal, there are four important milestones that need to be completed:

1. Familiarise with the ecosystem: Includes understanding the architecture of the

HPC cluster, the libraries and tools needed in order to conduct this study and what

are some of the most popular alternatives in the market.

2. Create an image: Build the image that contains the HPC application that will be

profiled along with the necessary tools to generate the traces and analyse them.

3. Run the containers in the cluster: Use Singularity as a container system to

deploy and run in the cluster Docker containers using the image built.

4. Profile the HPC application: Use one post-processing tool for a post-mortem

analysis of the HPC application that ran in each container. Investigate the impact

of running different workloads in the cluster.

Similarly, each milestone can be broken down into different objectives which are described

in the following table.

Milestone Objective

Familiarise with the

ecosystem

Understand the infrastructure of the cluster used in the study

of this project. Given the nature of the system, it is important

to identify the limitations and constraints of the architecture.

Learn about MPI4, the Message Passing Interface-

programming paradigm used to perform the parallel

processing in the simulation of the HPC application.

Become familiar with an HPC application that leverages the

MPI standard. Preferably, a distributed scientific application.

Read about different post-processing tools available to

generate trace-files of the execution of an HPC application

for a post-mortem analysis and choose the most appropriate

libraries for this study.

4 Link to https://www.mpi-forum.org

https://www.mpi-forum.org/

3

Describe what are the advantages of Docker over other

heavier weight virtualisation alternatives.

Create an image

Compile the selected HPC application, some implementation

of the MPI standard and the necessary post-processing tools

in order to generate the binary files that correspond to the

architecture of the HPC cluster.

Implement a Docker image using a Linux-based operating

system that includes the binary files resulting from the

compilation and that will serve to profile the system.

Run the containers in the

cluster

Become familiar with Singularity, the container platform used

to deploy and manage the lifecycle of the containers running

in the cluster.

Use Singularity to deploy multiple Docker containers

simultaneously in the cluster.

Profile the HPC

application

Analyse and understand the behaviour of the system with

different workloads using profiling tools.

Table 1. Description of the milestones and the objectives

1.3. Approach and method followed

The scope of this project can be divided into three important pieces of work that must be

executed sequentially in the following order.

First, it is necessary to investigate and figure out the infrastructure of the HPC cluster that

will serve as a pseudo supercomputer for this project. Understanding the basics of the

system, different nodes that compose it, the role they play, how they intercommunicate

each other and any other necessary component is essential before starting the actual work.

Afterwards, it is required a thorough comprehension of the different libraries that will be

used both for running the simulation and post-processing the traces to effectively gather

relevant information during the research. An important part of the work at this stage involves

building the Docker image and managing the lifecycle of the containers using Singularity.

Finally, it must be put in context all the details collected throughout the process in order to

extract conclusions, list unexpected pitfalls and describe the behaviour of the simulations

across different workloads.

4

1.4. Work breakdown

According to the course plan, the estimated dedication of the student for the Master’s Final

Project is three hundred hours and has a duration of one hundred and twenty-two days

from the beginning of the semester until the last deliverable.

Taking these figures into account, below is a Gantt chart with the time planning of these

tasks to fulfil the objectives outlined in the previous section.

5

Figure 1. Work breakdown in a Gantt chart

6

2. INFRASTRUCTURE

2.1. Architecture Overview

The HPC cluster uses two Raspberries Pi 4 Model B that will emulate a supercomputer on

a small-scale. The cluster is composed of two nodes, each of them mapping to a single

underlying physical Raspberry Pi, which are connected by a local area network to

communicate with each other to run executions in parallel and share the intermediate

calculations in a network file system.

The rationale for having more than one Raspberry, is that one acts as the front-end, which

is the node used to connect from an external host to schedule a job to the cluster, whereas

the rest of the Raspberry act as the workers, which are the nodes that are responsible for

the all the computation.

It is worth noting that for this study, considering that only two Raspberries are available, the

front-end node will also be used as a worker node, although that is not the recommended

practice in an actual supercomputer running in production.

Each of the Raspberries is connected to a power supply, which supplies the electric power,

and to a switch via a RJ45 Ethernet connector. The switch, a TP-LINK TL-SG1005D with 5

ports available, acts as the network device in an actual HPC cluster, handling the

intercommunication between the two devices. In addition, the switch is connected to a

router that allows the communication between the rest of the devices (e.g., some host) and

provides access to the internet.

The following figure outlines the architecture of the system containing the front-end, one

worker, the switch and the router.

7

Figure 2. Architecture of the cluster

In broad terms, the key difference between a switch and a router is that a switch works on

the data link layer of the OSI model (Open Systems Interconnection Model) and connects

different devices (e.g., the nodes, some hosts), whereas a router works on the network

layer of the OSI model and connects different networks.

2.2. Raspberry model

The model of the Raspberries used is the Raspberry Pi 4 Model B. Below are the most

relevant specifications of the component and an image of the device.

Specifications

Processor
Broadcom BCM2711, Quad core Cortex-

A72 (ARM v8) 64-bit SoC @ 1.5GHz

RAM 2GB LPDDR4-3200 SDRAM

Network

2.4 GHz and 5.0 GHz IEEE 802.11ac

wireless, Bluetooth 5.0, BLE

Gigabit Ethernet

Hard drive
16GB micro-SD card for loading operating

system and data storage

Screen ports
2 × micro-HDMI ports (up to 4kp60

supported)

Table 2. Raspberry Pi 4 Model B specifications

8

Figure 3. Raspberry Pi 4 Model B picture

One of the peculiarities of the system is its ARM processor, which is one of the group of

CPUs based on the RISC (Reduced Instruction Set Computer) architecture developed by

ARM (Advanced RISC Machines).

Although it was first used in the 1980s, it is still widely used until this day in millions of

machines due to its several advantages. The fact that the number of instructions that ARM

processors need to understand is very limited, makes the design of the processor simpler

which means reduced complexity in its circuits, less transistors, smaller size, less power

consumption. On the other hand, they are less powerful than other processor architectures

used in desktop PCs.

The processor architecture will play an important role in this study as will be observed later.

Likewise, the fact that the hard drive is a micro-SD card with little capacity, the specification

is 16GB, will also be a limitation in different stages of the process that will impact some of

the procedures (e.g., build the Docker image) and to some extent the performance of the

computation.

2.3. Network configuration

Some configuration is essential so that both nodes can communicate with each other via

the local area network.

First, in both nodes disable the DHCP5 (Dynamic Host Configuration Protocol) configuration

so a static IP6 (Internet Protocol) address can be assigned to them. This gives us the ability

to connect to the node with SSH7 (Secure Shell) knowing the IP address beforehand.

5 Link to https://en.wikipedia.org/wiki/Dynamic_Host_Configuration_Protocol
6 Link to https://en.wikipedia.org/wiki/Internet_Protocol
7 Link to https://en.wikipedia.org/wiki/Secure_Shell

https://en.wikipedia.org/wiki/Dynamic_Host_Configuration_Protocol
https://en.wikipedia.org/wiki/Internet_Protocol
https://en.wikipedia.org/wiki/Secure_Shell

9

This is achieved by editing the /etc/dhcpcd.conf file in every node with the configuration

described below.

interface eth0

static ip_address=192.168.0.{x}/24

static routers=192.168.0.10

static domain_name_servers=192.168.0.10

Where the eth0 is the first ethernet interface, the ip_address is the exact IP address that

should be assigned to each node after replacing the {x} variable, the routers tell the nodes

how to connect to the internet and the domain_name_servers are the DNS. Therefore, the

IP address 192.168.0.10 belongs to the router.

The following table shows the configuration used for node0 (i.e., the front-end) and the

node1 (i.e., the worker).

Node Topology IP address

node0 Front-end 192.168.0.1/24

node1 Worker 192.168.0.2/24

Table 3. IP addresses for the front-end and the worker nodes

Afterwards, edit the file /etc/hosts, used by the DNS to identify the IP addresses with a

name, with the following details with the aim to facilitate the reference to the worker node

from the front-end node.

192.168.0.1 node0

192.168.0.2 node1

Finally, from the node0 install the SSH key to the node1. The goal is to provision access

without requiring a password for each login. This facilitates the work from the node0 that

will need to communicate with node1 to schedule some work.

Indeed, Open MPI requires that jobs can be started on remote nodes without any input from

the keyboard. For example, if using rsh or ssh as the remote agent, you must have your

environment setup to allow execution on remote nodes without entering a password or

passphrase.

To generate the SSH key from the node0 it is used the ssh-keygen command, which

creates a key par (public and private keys), and then with the command ssh-copy-id node1

it is installed as an authorized key on the worker node.

10

2.4. Operating system

The operating system installed in the Raspberries is a Linux distribution based on Debian8.

~ x

pi@node0:~ $ cat /etc/os-release

 PRETTY_NAME="Raspbian GNU/Linux 11 (bullseye)"

 NAME="Raspbian GNU/Linux"

 VERSION_ID="11"

 VERSION="11 (bullseye)"

 VERSION_CODENAME=bullseye

 ID=raspbian

 ID_LIKE=debian

 HOME_URL="http://www.raspbian.org/"

 SUPPORT_URL="http://www.raspbian.org/RaspbianForums"

Albeit the Raspberries support ARM v8, as described above in the specifications, they are

running in ARM v7 mode with a 32 bits operating system. This is an important detail to bear

in mind while working on the compilation of the libraries and building the Docker image.

Note that the installation of the operating system and the basic set up, aside from the

network configuration, is out of the scope of the study. For reference, only the following

pitfall is going to be described.

As a side note, one of the pitfalls that was identified in the default SO configuration was

that when running MPI from node0 and assigning some work to node1, the worker node

couldn’t successfully execute the operation because the environment variables were

missing. However, running SSH into the node itself and running the command explicitly

from within it, the environment variables were loaded. Further investigations identified that

the ~/.bashrc file had a snippet to scape if not running interactively.

If not running interactively, don't do anything

case $- in

 i) ;;

 *) return;;

esac

It is strongly suggested to comment out those lines in the source file.

8 Link to https://www.debian.org/

https://www.debian.org/

11

3. VIRTUALIZATION

3.1. Virtual machines

A system virtual machine9 (VM) is a compute resource managed by a hypervisor that uses

software instead of a physical computer to virtualize the entire machine, including the

hardware, in order to make it behave as if it was a separate system. Even though virtual

machines can run in parallel in the same host and under the hood they all share the same

hardware, each virtual machine runs its own operating system and functions separately

from the others.

The abstraction they bring is powerful as they give us the ability to run applications that

have completely different requirements than the host, such as a different operating system,

make changes or install programs without incurring in the risk of affecting negatively the

host, for instance in the event of installing a virus or malware, or even test applications that

must be isolated from anything else.

As we can observe, the advantages of virtual machines are numerous, however, they come

at a cost. They are a very high resource computing software that uses very heavily the

capabilities of the physical system, running more than one virtual machine on the same

host can result in a noticeable performance degradation that can make things unstable,

and booting them or tearing them down is very slow. Additionally, they usually require a

considerable amount of space in the hard drive to work.

Apart from the issues with the resources, setting up a virtual machine is a time-consuming

process that requires some knowledge in computing systems, as you will need configure a

set of parameters that define the physical resources that will be allocated to the VM at

runtime, you will need to find the image of the operating system you want to install in it, go

through all the installation process and finally configure the SO post installation.

Like virtual machines, it appeared the containers, a different technology that is a lightweight

version of the VMs that have a different target and intend to cover the problem from a

different point of view.

3.2. Containers

The most noticeable difference between the two solutions is that only virtualize the software

layers on top of the operating system, as opposite to VMs that virtualize the entire computer

including the hardware.

9 Link to https://en.wikipedia.org/wiki/Virtual_machine

https://en.wikipedia.org/wiki/Virtual_machine

12

Figure 4. Comparison between virtual machines and containers

Because containers run on top of the OS, they are a lightweight software package that only

needs to contain all the dependencies and libraries required to execute the applications.

It is worth noting that containers can and will run its own version of the OS that might be

different than the one running in the host. However, unlike VMs, the OS is already prepared

and configured to run on the fly with no extra effort, so users can focus on including the

necessary dependencies like system libraries, external third-party code packages, etc.

The level of isolation of containers is also lower, meaning that all of them share the same

underlying hardware and operating system layer on the host, on one hand, this increases

the risk of vulnerabilities reaching the host or the other containers, on the other hand, with

some network configuration you can make the containers communicate with each other.

Probably one of the most popular and widely used container providers is Docker, used in

this study in combination with Singularity.

13

4. LIBRARIES OVERVIEW

4.1. OpenMPI

Version used of the library is v4.1.3.

OpenMPI10 is the chosen implementation of the MPI standard, the Message Passing

Interface-programming paradigm used to perform the parallel processing in the simulation

of the HPC application

Open MPI is an open-source Message Passing Interface implementation that is developed

and maintained by a consortium of academic, research, and industry partners. Open MPI

is therefore able to combine the expertise, technologies, and resources from all across the

High-Performance Computing community in order to build the best MPI library available.

Open MPI offers advantages for system and software vendors, application developers and

computer science researchers.

Although there are other very competent alternatives in the market, such as MPICH, the

reason why OpenMPI was chosen over the rest is because OpenMPI seems to have a

higher adoption and thus it is easier to find information and curated documentation on the

internet.

4.2. OpenFOAM

Version used of the library is v2112.

OpenFOAM11 is the distributed scientific application developed by OpenCDF Ltd that

leverages the MPI standard and that will be used in this study.

OpenFOAM stands for Open-source Field Operation And Manipulation and is a C++

toolbox for the development of customised numerical solvers and post-processing utilities

for the solution of computational fluid dynamics12 (CFD), that over the recent years has

emerged as an important approach in chemical and biochemical engineering.

Nevertheless, the distributed application is not very relevant as long as it supports parallel

processing with the MPI implementation selected.

10 Link to https://www.open-mpi.org/
11 Link to https://www.openfoam.com/
12 Link to https://www.sciencedirect.com/topics/engineering/computational-fluid-dynamic

https://www.open-mpi.org/
https://www.openfoam.com/
https://www.sciencedirect.com/topics/engineering/computational-fluid-dynamic

14

4.3. Extrae

Version used of the library is v4.0.0.

Extrae13, developed by the Performance Tools group14 at the Barcelona Supercomputing

Center, is a dynamic instrumentation package to trace programs compiled and run with the

shared memory, the message passing (MPI) programming model or both programming

models. Its main function is to generate trace-files of the execution of a distributed

application that can be later visualized with Paraver.

Each line of these trace-files represents an event which occurred during the execution of

the code. There are different types of events such as CPU activity, communication or user

events.

In this study, Extrae will be used to trace the distributed execution of OpenFOAM using the

MPI programming paradigm. The shared memory model is not targeted in this study.

4.4. Paraver

Version used of the library is v4.10.0.

Paraver15, that stands for PARAllel Visualization and Events Representation, is the trace

visualisation and analysis browser that leverages the trace-files generated by Extrae to

evaluate the performance obtained while running a single application in a distributed mode.

PARAVER is based on a simple interface to manage several displaying windows that

provides many functionalities to see and analyse quantitatively the trace file.

13 Link to https://tools.bsc.es/extrae
14 Link to https://www.bsc.es/discover-bsc/organisation/scientific-structure/performance-tools
15 Link to https://tools.bsc.es/paraver

https://tools.bsc.es/extrae
https://www.bsc.es/discover-bsc/organisation/scientific-structure/performance-tools
https://tools.bsc.es/paraver

15

5. LIBRARIES COMPILATION

5.1. Context

In order to build the Docker image, first it is necessary to pre-compile for the current

architecture (ARM v7 32 bits) all the necessary libraries to carry out the study.

The compilation has been carried out in a single node, the front-end, due to different

reasons:

- Ensure that the binaries result of the compilation are compatible with the

processor architecture of the Raspberries.

- Get familiarised with the system.

- Run the tools in an environment that faithfully reflects the end system.

To start with the compilation, it is necessary a host connected to the same local area

network (e.g., a laptop or desktop machine) that connects to node0 via SSH.

~ x

albert:~ $ ssh pi@192.168.0.1

pi@192.168.0.1's password:

…

pi@node0:~ $

After accessing the shell in node0, the different libraries can be compiled as will be

described in the following sections.

Before going into detail, it is worth mentioning that the hard drive capacity in the

Raspberries is very limited and since some of the libraries require a considerable amount

of space after compiling, it is not possible to build the Docker image in the node due to

space constraints.

For example, only OpenFOAM requires ~2.5GB after compile. This means that building a

Docker image that just contains OpenFOAM would require ~7.5GB of space available

because the build context is copied over to the Docker daemon before the build begins.

Not only that, but also the read/write speed of the micro-SD is low which makes the build

process even more difficult and time consuming.

The workaround to this problem is to copy the compiled libraries from node0 to an external

host and build the Docker image there. This can be done with the secure-copy command-

16

line that relies on SSH and that allows you to securely copy files and directories between

two locations.

For instance, let’s assume that the node0 has OpenMPI compiled in the /opt directory and

that the whole folder should be copied to the host in the /home directory, the command-line

would look like this.

~ x

albert:~ $ scp pi@192.168.0.1:/opt/openmpi-4.1.3 /home

Finally, it is noteworthy that building the Docker image outside of the HPC cluster is not a

problem, as ultimately the image will be pushed to the Docker Registry Hub16 and will be

available from anywhere that has access to the internet.

5.2. Compile OpenMPI

The steps to compile OpenMPI version 4.1.3 from inside node0 are relatively straight

forward, except the configuration step prior to the compilation, which requires some

arguments to ensure that the compilation can be successfully ported to other machines.

Prior to download the source code of OpenMPI from the official website, it is necessary to

download the GNU Wget package for retrieving files using HTTP and HTTPS. Super user

privileges might be required.

~ x

pi@node0:~ $ sudo apt-get update && apt-get install -y wget

pi@node0:~ $ wget https://download.open-mpi.org/release/open-

 mpi/v4.1/openmpi-4.1.3.tar.gz

Afterwards, extract the compressed file, remove it and run the configure script to set up the

installation.

~ x

pi@node0:~ $ tar -xvzf openmpi-4.1.3.tar.gz

pi@node0:~ $ rm openmpi-4.1.3.tar.gz

pi@node0:~ $ cd openmpi-4.1.3

pi@node0:/openmpi-4.1.3 $./configure --prefix=/opt/openmpi-4.1.3 --enable-

 mpirun-prefix-by-default --disable-mca-dso --enable-static

16 Link to https://hub.docker.com/

https://hub.docker.com/

17

It is important to explain the arguments provided in the configure step.

Configure arguments

Prefix Tells OpenMPI the install directory.

enable-mpirun-prefix-by-default

This will make mpirun behave exactly the

same as “mpirun --prefix $prefix ...”, where

$prefix is the value given to --prefix in

configure.

disable-mca-dso

Causes all plugins to be built as part of Open

MPI's main libraries. However, does not

affect whether OpenMPI's main libraries are

built as static or shared.

enable-static
Causes the building of static libraries (e.g.,

libmpi.a).

Table 4. Configure arguments for Open MPI library

Then, compile the source code using all the cores available in node0 and install the library

in the directory defined in the prefix argument.

~ x

pi@node0:/openmpi-4.1.3 $ make -j 4

pi@node0:/openmpi-4.1.3 $ make install

Finally, add to the PATH variable the install directory of OpenMPI.

~ x

pi@node0:/openmpi-4.1.3 $ export PATH=/opt/openmpi-4.1.3/bin:$PATH

pi@node0:/openmpi-4.1.3 $ which mpirun

 /opt/openmpi-4.1.3/bin/mpirun

pi@node0:/openmpi-4.1.3 $

From the libraries used in this study, OpenMPI is the only library that needs to be configured

in the front-end as well as in the container. The rationale is that the MPI process is initiated

from the host as described in a later chapter.

5.3. Compile OpenFOAM

The configuration to install OpenFOAM is going to be based on OpenMPI implementation.

First, it is necessary to define some environment variables related to MPI.

18

~ x

pi@node0:~ $ export MPI_ROOT=/opt/openmpi-4.1.3

pi@node0:~ $ export MPI_ARCH_FLAGS="-DOMPI_SKIP_MPICXX"

pi@node0:~ $ export MPI_ARCH_INC="-isystem $ MPI_ROOT /include"

pi@node0:~ $ export MPI_ARCH_LIBS="-L$MPI_ROOT/lib -lmpi"

pi@node0:~ $ export LD_LIBRARY_PATH=$MPI_ROOT/lib

pi@node0:~ $ export PATH=$MPI_ROOT/bin:$PATH

Afterwards, download the source code, extract it and then remove the file.

~ x

pi@node0:~ $ wget https://dl.openfoam.com/source/v2112/OpenFOAM-v2112.tgz

pi@node0:~ $ tar -xvzf OpenFOAM-v2112.tgz

pi@node0:~ $ rm OpenFOAM-v2112.tgz

Before compiling the code, it’s important to tell OpenFOAM what MPI library to use and that

it must be compiled with the optimal option. These settings can be defined in the

~/OpenFOAM-v2112/etc/bashrc.

export WM_MPLIB=SYSTEMOPENMPI

export WM_COMPILE_OPTION=Opt

Additionally, it is required to modify the way in which the compiler will create the floating-

point instructions, to make it compatible with the processor architecture. This can be

achieved by updating the -mfloat_abi parameter from softfp to hard in the file

~/OpenFOAM-v2112/wmake/rules/linuxARM7Gcc/cOpt and in the file ~/OpenFOAM-

v2112/wmake/rules/linuxARM7Gcc/c++Opt.

After setting everything up, we can proceed to compile the code. If the compilation is

successful, the last step is to verify that the environment variables defined in OpenFOAM

can be successfully exported.

~ x

pi@node0:~ $ cd OpenFOAM-v2112

pi@node0:/OpenFOAM-v2112 $ source etc/bashrc

 No completions for /opt/OpenFOAM-v2112/platforms/

 linuxARM7GccDPInt32Debug/bin

 [ignore if OpenFOAM is not yet compiled]

pi@node0:/OpenFOAM-v2112 $./Allwmake -j 1

19

 ==

 Starting compile OpenFOAM-v2112 Allwmake

 Gcc system compiler

 linuxARM7GccDPInt32Debug, with SYSTEMOPENMPI sys-openmpi

 ==

 ...

pi@node0:/OpenFOAM-v2112 $ cd ..

pi@node0:~ $ source OpenFOAM-v2112/etc/bashrc

pi@node0:~ $

The compilation can take several hours, on my experience it took about ~14 hours. Indeed,

this was a problem in the beginning, since we were connecting to node0 remotely and it

was causing a TTY timeout after a few minutes that was cancelling the compilation process.

The workaround for that issue was to use tmux17, a terminal multiplexer. It lets you switch

easily between several programs in one terminal, detach them (they keep running in the

background) and reattach them to a different terminal.

5.4. Compile Extrae

Similarly, to the previous libraries, the first step is to download the source code from the

official Barcelona Supercomputing Center tools website18.

~ x

pi@node0:~ $ wget https://ftp.tools.bsc.es/extrae/extrae-4.0.0-src.tar.bz2

pi@node0:~ $ apt-get install bzip2

pi@node0:~ $ tar -xvf extrae-4.0.0-src.tar.bz2

pi@node0:~ $ rm extrae-4.0.0-src.tar.bz2

It’s worth noting that in order to be able to decompress the file, compressed with bzip2, it

is necessary to install the corresponding library. Additionally, during the process, it was

identified some other indispensable dependencies that required to be installed to

successfully compile Extrae.

~ x

pi@node0:~ $ apt-get install gfortran

pi@node0:~ $ apt-get install build-essential

17 Link to https://github.com/tmux/tmux/wiki
18 Link to https://tools.bsc.es/

https://ftp.tools.bsc.es/extrae/extrae-4.0.0-src.tar.bz2
https://github.com/tmux/tmux/wiki
https://tools.bsc.es/

20

pi@node0:~ $ apt-get install libiberty-dev

pi@node0:~ $ apt-get install binutils-dev

pi@node0:~ $ apt-get install libxml2-dev

Indeed, some of these libraries will also need to be explicitly installed within the container

since they are required at runtime by Extrae and are not included in the base image.

Next is to issue the configuration command.

~ x

pi@node0:~ $ cd extrae-4.0.0

pi@node0:/extrae-4.0.0 $./configure --prefix=/opt/extrae-4.0.0 --without-unwind

 --without-dyninst --without-papi --with-mpi=/opt/openmpi-4.1.3

 --enable-posix-clock --with-binutils=/usr

The following table contains a breakdown of the arguments provided in the configure step.

Configure arguments

Prefix Tells Extrae the install directory.

without-unwind

Specifies that the Unwind19 libraries should

not be used. These libraries are used to get

call stack information on several

architectures.

without-dyninst

Specifies that the Dyninst20 package should

not be used. DynInst is a third-party

instrumentation library that gives the

flexibility to add instrumentation to the

application without modifying the source

code.

without-papi

Specifies that the PAPI21 libraries should not

be used. PAPI stands for Performance

Application Programming Interface and

provides a consistent interface and

methodology for use of the performance

counter hardware found in most of the

microprocessors.

19 Link to https://www.nongnu.org/libunwind/
20 Link to https://www.dyninst.org/
21 Link to https://icl.utk.edu/papi/

https://www.nongnu.org/libunwind/
https://www.dyninst.org/
https://icl.utk.edu/papi/

21

enable-posix-clock

Use POSIX clock (clock_gettime call)

instead of low-level timing routines. It is

recommended to use this option if the

system where you install the instrumentation

package modifies the frequency of its

processors at runtime.

binutils

Specifies the location for the binutils

package. The binutils package is necessary

to translate addresses into source code

references.

Table 5. Configure arguments for Extrae library

Finally, run the build and installation commands.

~ x

pi@node0:~ $ make

pi@node0:~ $ make install

Extrae uses an interposition mechanism done by the runtime loader that substitutes the

original symbols of the binaries by those provided by the instrumentation package. It

leverages the Linux dynamic pre-loader (i.e., LD_PRELOAD) environment variable, which

contains one or more paths to shared libraries or shared objects that the Linux loader will

load before any other shared library.

By default, Extrae tries to preload Fortran version of the libmpitrace library to instrument

MPI calls for apps in that language. Since OpenFOAM is implemented in C, it is necessary

to update the following script to make the package point to the correct library. Additionally,

we will take the opportunity to update the path for the EXTRAE_HOME and

EXTRAE_CONFIG_FILE environment variables to point them to the install directory

defined in the previous step.

This can be done by updating the content of the trace.sh script, located in /opt/extrae-

4.0.0/share/example/MPI/ld-preload, as follows.

#!/bin/sh

export EXTRAE_HOME=/opt/extrae-4.0.0/etc/extrae.sh

export EXTRAE_CONFIG_FILE=${EXTRAE_HOME}/share/example/MPI/

 extrae.xml

22

export LD_PRELOAD=${EXTRAE_HOME}/lib/libmpitrace.so

Run the desired program

$*

The environment variable that references the XML configuration file is one of the most

important settings, as it tells Extrae what are the traces that must generate on runtime.

5.5. Compile Paraver

Visualising the trace files generated by Extrae is a long and thorough process that must be

done after executing OpenFOAM, and after generating and merging the intermediate trace

files. It is an asynchronous procedure, independent to the execution of the application,

which requires the intervention of a human.

Certainly, if we think about the benefits and the purpose of containers, we can realise that

including Paraver within the container doesn’t fit well.

Probably, the most rational thing is to have Paraver prepared on the front-end or, more

likely, to export the trace files to an external host other than the supercomputer and perform

the analysis there.

It is due to this fact that compiling Paraver doesn’t make sense and it is suggested to use

one of the already compiled binaries that they offer in their website22. The executables are

available for the most common architectures, including Linux, MacOS and Windows.

In this study, the approach followed will be to extract the trace files to an external host using

the secure-copy command-line.

22 Link to https://ftp.tools.bsc.es/wxparaver/

https://ftp.tools.bsc.es/wxparaver/

23

6. DOCKER

6.1. Dockerfile

Docker can build images automatically by reading the instructions from a Dockerfile. A

Dockerfile is a text document that contains all the commands a user could call on the

command line to assemble an image. Using the docker build command we can create an

automated build that executes several command-line instructions in succession.

The following code describes the Dockerfile used to generate the Docker image used in all

the scenarios for this study.

FROM arm32v7/debian:11.3-slim

Install SSH, VIM editor and dependencies needed not included in the

base image

RUN apt-get update && apt-get install -y \

 ssh \

 build-essential \

 libiberty-dev \

 binutils-dev \

 libxml2-dev \

 vim

Set environment variables

RUN echo "export LD_LIBRARY_PATH='/opt/openmpi-

 4.1.3/lib':$LD_LIBRARY_PATH" >> ~/.bashrc

RUN echo "export PATH='/opt/openmpi-4.1.3/bin':$PATH" >> ~/.bashrc

RUN echo "export OMPI_ALLOW_RUN_AS_ROOT=1" >> ~/.bashrc

RUN echo "export OMPI_ALLOW_RUN_AS_ROOT_CONFIRM=1" >> ~/.bashrc

RUN echo "export OMPI_MCA_btl_vader_single_copy_mechanism=none" >>

 ~/.bashrc

RUN echo "source /opt/OpenFOAM-v2112/etc/bashrc" >> ~/.bashrc

Copy pre-compiled libraries from host

COPY /opt/OpenFOAM-v2112 /opt/OpenFOAM-v2112

COPY /opt/openmpi-4.1.3 /opt/openmpi-4.1.3

COPY /opt/extrae-4.0.0 /opt/extrae-4.0.0

24

Add all permissions to OpenFOAM directory so mpirun has write privileges

RUN chmod -R 777 /opt/OpenFOAM-v2112

ENTRYPOINT ["/bin/bash"]

Even though the Dockerfile is self-descriptive, there are some instructions that are not so

obvious. Below is described the most relevant sets of operations that it contains.

FROM arm32v7/debian:11.3-slim

The very first line describes the base image used to build our custom one on top of it. The

base image is based on the lightweight version of Debian 11.3 for ARM processors using

32 bits. It is very important that the base image is compatible with the architecture that the

processors of the Raspberries are built in.

RUN apt-get update && apt-get install -y \

…

It updates the packages list to fetch the most recent available information in the

repositories. The following lines install some of the libraries that are identified as missing

to run the tools.

RUN echo "export LD_LIBRARY_PATH='/opt/openmpi-

 4.1.3/lib':$LD_LIBRARY_PATH" >> ~/.bashrc

RUN echo "export PATH='/opt/openmpi-4.1.3/bin':$PATH" >> ~/.bashrc

RUN echo "export OMPI_ALLOW_RUN_AS_ROOT=1" >> ~/.bashrc

RUN echo "export OMPI_ALLOW_RUN_AS_ROOT_CONFIRM=1" >> ~/.bashrc

The first two instructions are the environment variables necessary to run OpenMPI. The

next two instructions explicitly tell OpenMPI to run even with as root, which is the default

user within the container in Docker.

RUN echo "export OMPI_MCA_btl_vader_single_copy_mechanism=none" >>

 ~/.bashrc

This instruction disables the cross-memory-attach (CMA). OpenMPI has many ways to

transfer messages between ranks. If the ranks are on the same node, it is faster to do these

transfers using shared memory rather than involving the network stack. One of the

approaches is to use system calls to transfer messages directly from Rank A’s virtual

memory to Rank B’s, which is known CMA, and it gives significant performance

25

improvements in benchmarks. However, in this case it cases some errors and turning off

the single copy addressed them.

RUN echo "source /opt/OpenFOAM-v2112/etc/bashrc" >> ~/.bashrc

Loads the configuration for OpenFOAM to run and to load in the current session the path

to the binaries and the libraries.

COPY /opt/OpenFOAM-v2112 /opt/OpenFOAM-v2112

COPY /opt/openmpi-4.1.3 /opt/openmpi-4.1.3

COPY /opt/extrae-4.0.0 /opt/extrae-4.0.0

This set of instructions copies the tools that were compiled in the front-end to the image,

so that the container has them available at runtime.

RUN chmod -R 777 /opt/OpenFOAM-v2112

Running the option simpleFoam from OpenFOAM, which has the responsibility of executing

the simulation, requires write permissions on the directory as it needs to generate some

directories and files. It was observed that combining this with the command mpirun to

parallelize the simulation resulted in some errors due to missing privileges.

ENTRYPOINT ["/bin/bash"]

The last instruction tells Docker to use bash by default when running an executable or when

connecting interactively inside the container.

6.2. Build image

As mentioned in previous chapters, building the image will take place outside of the front-

end due to space constraints.

First, it is necessary to copy compiled tools to the external computer.

~ x

albert:~ $ scp pi@192.168.0.1:/opt/openmpi-4.1.3 /home

albert:~ $ scp pi@192.168.0.1:/opt/OpenFOAM-v2112 /home

albert:~ $ scp pi@192.168.0.1:/opt/extrae-4.0.0 /home

Afterwards, move to the directory where the tools were copied to and build the docker

image. Note the -t argument used to tag the image.

26

~ x

albert:~ $ cd home

albert:home $ docker build -t asanuy/openmpi:1.0.0 .

6.3. Publish image

In order to make accessible the Docker image from the front-end node, it is possible to

either copy the image from the external computer to the Raspberries or push the image to

the public Docker hub23.

The suggested approach is to publish it to the public repository. First, it is necessary to

create a new account or sign in to https://hub.docker.com.

Afterwards, from the command-line, log in to the Docker Hub account.

~ x

albert:~ $ docker login

After successfully login in with the correct credentials, publish the image to the registry with

the push command.

~ x

albert:~ $ docker push asanuy/openmpi:1.0.0

In the event of downloading the image from the public registry, it can be done with the pull

command.

~ x

albert:~ $ docker pull asanuy/openmpi:1.0.0

23 Link to https://hub.docker.com

https://hub.docker.com/
https://hub.docker.com/

27

7. SINGULARITY

7.1. Installation

Before start using Singularity, it must be installed the development libraries to both the

front-end and the worker.

~ x

pi@node0:~ $ sudo apt-get update && sudo apt-get install -y \

 build-essential \

 libssl-dev \

 uuid-dev \

 libgpgme11-dev \

 squashfs-tools

Since Singularity 3.0 is written primarily in Go, it is needed to download the package, install

it and configure it.

~ x

pi@node0:~ $ wget https://dl.google.com/go/go1.18.3.darwin-arm64.tar.gz

Extract the archive to /SHARED, so both the front-end and the worker have access to the

directory.

~ x

pi@node0:~ $ sudo tar -C /SHARED -xzf wget go1.18.3.darwin-arm64.tar.gz

Then, set up your environment for Go.

~ x

pi@node0:~ $ echo 'export GOPATH=/SHARED/go' >> ~/.bashrc

pi@node0:~ $ echo 'export PATH/SHARED/go/bin:${PATH}:${GOPATH}/bin' >>

 ~/.bashrc

pi@node0:~ $ source ~/.bashrc

pi@node0:~ $ rm go1.18.3.darwin-arm64.tar.gz

Next, clone the singularity repository.

~ x

pi@node0:/SHARED $ cd /SHARED

pi@node0:/SHARED $ mkdir -p $GOPATH/src/github.com/sylabs

28

pi@node0:/SHARED $ cd $GOPATH/src/github.com/sylabs

pi@node0:/SHARED/go/src/github.com/sylabs $ git clone

 https://github.com/sylabs/singularity.git

pi@node0:/SHARED/go/src/github.com/sylabs $ cd singularity

Finally, compile the Singularity binary and again place it in the /SHARED directory so it is

accessible by all the nodes.

~ x

pi@node0:/SHARED/go/src/github.com/sylabs/singularity $./mconfig

pi@node0:/SHARED/go/src/github.com/sylabs/singularity $ make -C

 /SHARED/singularity

pi@node0:/SHARED/go/src/github.com/sylabs/singularity $ sudo make -C builddir

 install

At this point, singularity should be available both to the front-end and the worker node.

7.2. Singularity Image File

First, it’s necessary to create the Singularity Image File (i.e., SIF), similar to what was done

with Docker. However, since we are going to use the SIF as a wrapper of the Docker image

with minimum configuration, the configuration is straightforward because we are taking

advantage of all the previous work.

Bootstrap: docker

From: asanuy/openmpi:1.0.0

%environment

 export LD_LIBRARY_PATH='/opt/openmpi-4.1.3/lib':$LD_LIBRARY_PATH

 export PATH='/opt/openmpi-4.1.3/bin':$PATH

 export OMPI_MCA_btl_vader_single_copy_mechanism=none

Those very few lines in the definition file, are enough to build a Singularity image with the

build command, where openmpi.sif is the Singularity image file and openmpi.img is the

resulting image built.

~ x

pi@node0:~ $ cd /SHARED

pi@node0:SHARED $ sudo singularity build openmpi.img openmpi.sif

Like Docker, Singularity needs to reference an image in order to run a container.

29

8. RUNNING THE CONTAINER

8.1. Case study

In order to better understand what running the container means, it is essential to briefly

explain which exactly is the simulation that will be run and how OpenFOAM works.

The OpenFOAM library comes with a collection of examples to run different simulations,

where some of them are more complex and expensive than others. For the study, it was

chosen one case from the examples called pitzDaily that is thought to investigate steady

turbulent flow over a backward-facing step, although the details of the simulation are

negligible and anecdotic to this study, it is important to choose one case that is feasible to

process and complete by the Raspberries in an acceptable amount of time. Additionally, it

is crucial to always stick to the same case so the results can be compared objectively.

Every case in OpenFOAM is designed to be executed from a terminal command-line,

typically reading and writing a set of data files associated with a particular case, where the

data files for a case are stored in a directory named after the case.

Running a case always starts with the blockMesh command. The principle behind

blockMesh is to decompose the domain geometry into a set of 1 or more three dimensional,

hexahedral blocks.

Afterwards, the mesh and fields must be decomposed using the decomposePar utility to

run OpenFOAM in parallel on distributed processors using MPI. The decomposePar

command breaks up the domain with minimal effort but in such a way to guarantee an

economic solution. The geometry and fields are broken up according to a set of parameters

specified in a dictionary named decomposeParDict that must be located in the system

directory of the case of interest.

For this study, it will be used the following dictionary, where the number of subdomains will

vary depending on the number of MPI processes. Note that the number of subdomains

must match the coefficient XYZ. For instance, this would be the decomposition if it was

used 4 MPI processes.

FoamFile

{

 version 2.0;

 format ascii;

 class dictionary;

 object decomposeParDict;

30

}

numberOfSubdomains 4;

method simple;

coeffs

{

 n (2 1 2);

}

Finally, the simulation can be run in parallel with the command simpleFoam -parallel;

note the parallel flag which tells OpenFOAM to run in distributed mode by using all the

processors by using MPI.

8.2. Execution

After the long process of compiling and configuring numerous resources, everything is set

up to finally run the Singularity container from the front-end node.

Since running the application has some complexity due to how OpenFOAM works, it has

been created the following bash script which contains all the commands in order to facilitate

the procedure and make it less prone to error.

#!/bin/bash

echo Loading OpenFOAM environment variables

source /opt/OpenFOAM-v2112/etc/bashrc

export SIMULATION_DIR=/opt/OpenFOAM-

v2112/tutorials/incompressible/simpleFoam/pitzDaily

echo Running blockMesh

blockMesh -case $SIMULATION_DIR

echo Creating decomposePar dictionary in the simulation directory

cp decomposeParDict $SIMULATION_DIR/system

echo Running decomposePar

31

decomposePar -case $SIMULATION_DIR

echo Loading Extrae environment variables

source /opt/extrae-4.0.0/share/example/MPI/ld-preload/trace.sh

echo Running simpleFoam in parallel

simpleFoam -parallel -case $SIMULATION_DIR

The script, with name run.sh, assumes that the decomposeParDict file is located in the

same current directory. Besides that, it requires execution permissions.

~ x

pi@node0:/SHARED $ sudo chmod u+x run.sh

All the instructions in the script are related to OpenFOAM except the part where Extrae is

loaded. That is precisely the command that enables the Extrae library in order to start

instrumenting the runtime application and generating the traces.

Since it uses an interposition mechanism that is done by the runtime loader by substituting

the original symbols by those provided by the instrumentation package, it is very important

that Extrae is enabled at that exact point, right before starting the simulation, otherwise it

will try to instrument all the commands and cause unexpected errors.

Finally, run the container via MPI with one single command. When running code within a

Singularity container, it should not be referenced the MPI executables located inside it (e.g.,

singularity exec mpirun -n 4 simpleFoam -parallel). Instead, it should be used the MPI

installation on the front-end to run Singularity and start an instance of the application from

within a container for each MPI process.

Behind the scenes, OpenFOAM is linking to the MPI libraries from the MPI install within our

container and these are, in turn, communicating with the MPI daemon on the host system.

~ x

pi@node0:/SHARED $ mpirun -n 4 -host node0:2,node1:2 -quiet --mca btl_tcp_if_include

192.168.0.1/24,192.168.0.2/24 singularity exec --writable-tmpfs /SHARED/openmpi.img

./run.sh

32

Command arguments

mpirun
Executes serial and parallel jobs in Open

MPI.

-n <num>
Launch num processes per node on all

allocated nodes.

-hosts <host1,host2,…hostN>

List of hosts on which to invoke processes.

Note that the host’s name can contain a

colon followed by a number, that indicates

how many processes must execute a given

host.

-quiet
Suppress informative messages from

orterun during application execution.

--mca btl_tcp_if_include <ip1,ip2,…ipN>

It is a network configuration over TCP that

defines exactly what the addresses of the

hosts are.

Not providing the addresses explicitly proved

to give some errors due to MPI doing look

ups on all the network interfaces available.

singularity exec
Tells Singularity to run a command within a

container.

--writable-tmpfs

Makes the file system accessible as read-

write with non-persistent data.

This is fundamental so OpenFOAM can write

the data of the runtime simulation.

/SHARED/openmpi.img The Singularity image.

./run.sh
The custom script that acts as a wrapper to

a set of instructions to facilitate the process.

Table 6. Command arguments to run the container

Note that the Singularity container must be executed from the /SHARED directory, because

it is the directory that all the nodes have read/write access to.

The rationale is that by default Extrae will try to produce the trace files in the current

directory inside the container, but since Singularity by default mounts the current directory

on the host system to the directories within the container, giving them the ability to write to

the host itself, it will cause that all the containers will produce the traces in the shared folder

of the front-end system.

33

This makes possible that the merger process, which takes place at the end once the

application run has completed, can access all the intermediate traces and generate three

final files, which will be permanent and accessible from the front-end even after the

Singularity containers have been successfully completed and shut down.

One of the three files generated is the Paraver trace itself (.prv file), that contains the

records with a timestamp that represent the information gathered during the execution of

OpenFOAM. The other file generated is the Paraver configuration file (.prc file), that

contains a dictionary to translate the values contained in the Paraver trace into a human

readable string. The last file generated (.row file), contains the distribution of the application

across the cluster computation resources.

8.3. Extrae configuration file

In the previous custom script, it can be observed that Extrae is loaded with simply one line.

echo Loading Extrae environment variables

source /opt/extrae-4.0.0/share/example/MPI/ld-preload/trace.sh

The content of the trace.sh file was described previously (chapter 5.4 Compile Extrae), and

although it was mentioned that it contains a reference to the XML configuration file that

defines what exactly should be instrumented, we didn’t take the opportunity to explain what

is included in it.

The XML contains crucial information such as the basic trace behaviour, the intermediate

files that are meant to be generated (e.g., Paraver or Dimeas), the configuration to analyze

different resources (e.g., MPI, OpenMP, Network, CUDA, OpenCL, Dynamic memory, etc),

and the settings of the merge process.

Following is the XML configuration file used in the execution of the container.

<?xml version='1.0'?>

<!-- Enables the tracing and defines the tracing mode (detail/bursts), the dome dir and

the resulting traces -->

<trace enabled="yes"

 home="/opt/extrae-4.0.0"

 initial-mode="detail"

 type="paraver"

>

34

 <!-- Configuration of some MPI dependant values -->

 <mpi enabled="yes">

 <!-- Gather counters in the MPI routines -->

 <counters enabled="yes" />

 <!-- Capture all MPI_Comm_* calls -->

 <comm-calls enabled="yes" />

 </mpi>

 <!-- Emit information of the callstack -->

 <callers enabled="yes">

 <!-- At MPI calls, select depth level -->

 <mpi enabled="yes">1-3</mpi>

 <!-- At sampling points, select depth level -->

 <sampling enabled="yes">1-5</sampling>

 </callers>

 <!-- Configure which software/hardware counters must be collected -->

 <counters enabled="yes">

 <!-- Obtain resource usage information -->

 <resource-usage enabled="yes" />

 </counters>

 <!-- Buffer configuration -->

 <buffer enabled="yes">

 <!-- How many events can we handle before any flush -->

 <size enabled="yes">5000000</size>

 </buffer>

 <!-- Do merge the intermediate tracefiles into the final tracefile

 Named according to the binary name

 options:

 synchronization = { default, task, node, no } (default is node)

 max-memory = Number (in Mbytes) max memory used in merge step

 joint-states = { yes, no } generate joint states

 keep-mpits = { yes, no } keep mpit files after merge

35

 -->

 <merge enabled="yes"

 synchronization="default"

 tree-fan-out="16"

 max-memory="512"

 joint-states="yes"

 keep-mpits="yes"

 translate-addresses="yes"

 sort-addresses="yes"

 translate-data-addresses="yes"

 overwrite="yes"

 />

</trace>

8.4. Analysis

The analysis will be focused on sharing the evidence collected during the execution of the

application with different configurations, on the comparison of the Paraver trace files

generated for each of them, and on trying to understand what was the behaviuor of the

cluster.

From the multiple combinations of workloads available, with different processes and

different hosts intervening in the execution, it was narrowed down to the following three

scenarios.

Scenario 1. Two MPI processes on a single host, the front-end (node0).

Scenario 2. Four MPI processes on a single host, the front-end (node0).

Scenario 3. Four MPI processes on two hosts, the front-end (node0) and the worker

(node1). The two hosts have the same number of processes.

Before proceeding to discuss the scenarios, there is an important observation to make. The

Extrae library is going to play an important role in the process and for this reason it was

considered important to describe its impact in each case.

Scenario 1

The execution of the OpenFOAM simulation in parallel took about 41 seconds in total time

for the two cores that participated in the process. If we observe the view with the timeline

36

of all the MPI calls, we can notice that there is no process taking more than the other and

thus slowing everything down.

Figure 5. MPI calls view for scenario 1

Looking at the MPI calls profile by percentages, it correlates with the previous assumption

as the MPI_Waitall call only represents a 2-4% of the total time spent. Overall, the MPI

communication takes about 10% of the time in total.

Figure 6. MPI calls view by percentage for scenario 1

Obviously, where the execution spent most of the time is outside MPI, that is the

OpenFOAM code, representing an 89-92% of the total time spent.

Besides that, Extrae was able to translate the files for each process in approximately 1

minute and not even 2 minutes to complete the Extrae merge process. The impact of Extrae

in this scenario was negligible.

Overall, the execution in this scenario was very smooth.

Scenario 2

Using four processes means that all the computational resources of the front-end host must

intervene in the execution, as the Raspberries only have one CPU with four cores. Bearing

this in mind, it seems difficult that this combination can provide any better results than the

previous ones.

Indeed, this is the scenario that had the worst performance of them all. Not only because

the execution of the application took way longer than the previous cases, it took 86 seconds

37

to complete, but also because the process was killed during the Extrae merge process due

to resources starvation after 10 minutes.

Subsequent calls of the scenario while having a look at the system resources, revealed that

during the Extrae merge process the Random Access Memory (RAM) and the Swap

memory were brought to the limits. This is because how Extrae works, that the more

processes or threads needs to instrument, the more traces it generates; and obviously, the

more traces, the larger the size of the files.

Scenario 3

This scenario is a remarkably interesting one, because if up to this point the scenario that

has given the best results is the scenario one, two processes in a single host, it seems

reasonable to think that running four processes in two hosts, two per host, could provide

better numbers.

Nevertheless, it took 13 seconds more to complete compared to scenario one, 54 seconds

in total.

Figure 8. MPI calls view by percentage for scenario 4

Looking at the results, there are two things that can be highlighted. The first one is that the

time spent outside of MPI is very similar, if not better, than in the first scenario (that

represented an 89-92% of the total time spent). The second one is that the amount of time

that the processes have spent waiting (MPI_Waitall call) has slightly degraded for two of

the processes. One of the reasons could be network latency on the communication

between the hosts, although this reason alone probably is not enough to explain the

increase in time.

However, it is important to highlight that the Extrae merge process completed successfully.

Since the two hosts participated in the process, the necessary amount of RAM memory

available for each host was reduced considerably.

38

In this case, Extrae was able to translate the files for each process in approximately 6

minutes and the Extrae merge process took about 8 minutes, which are considerably higher

times than in the other scenarios.

39

9. CONCLUSIONS

In the beginning of this document, when talking about scientific applications, it was

mentioned that reproducibility is one of the core principles in any formal research and it is

often expected that the findings of any study can be replicated with a high degree of

reliability. This assumption remains true, and it has been successfully fulfilled in the analysis

conducted in this study, as in order to compare the scenarios fairly and to be able to provide

objective conclusions of the results, the baseline for all of them must be invariant.

It has been demonstrated how distributed scientific applications can be parallelized to solve

complex problems. Additionally, it has been observed how the domain of the scientific

application can be broken down into smaller tasks to run it concurrently leveraging the MPI

programming paradigm.

In this sense, one of interesting fact observed is that not always more computational

resources provide better results, and that it is important to find the right balance between

resources and performance or even costs. Due to this, instrumentation tools play a key role

in the process of understanding the usage that applications do of the resources of a cluster.

Besides that, there is other notorious takeaways. For instance, how containers can help us

to simplify processes. Looking back to understand what are the pieces of work that

consumed most of the time, it clearly comes to the mind the compilation process of each

of the tools and the investigation to figure out their configuration settings on runtime; as all

of them have different compile instructions, settings, environment variables, dependencies,

pitfalls, etc.

Instead, now this has been a one-off thing necessary to create the image, that gives us the

ability to run it as many times as necessary with the flexibility of using any number of MPI

processes we are interested in. Not only that, but also it would be possible to run the

application in a completely different cluster with little effort.

Additionally, on a production environment, furthermore if we talk about supercomputers, it

is safe to assume that resources are allocated randomly by a workload manager, for

example Slurm, and you don’t have access to the underlying system at all. In the event of

complex applications that have many dependencies between them and that require some

pre-setup, containers can be an excellent solution.

Other advantages of using containers are that you cannot mess it up. Containers generally

are immutable, and when they are not, the changes only are temporary and are discarded

at the end of the lifecycle.

40

Aside from the containers and their advantages, it is worth taking a moment to think about

what could have been the next steps or improvements to the solution that was outlined in

this document. Particularly, regarding the Paraver traces generated and the analysis of the

results.

Some of the enhancements that could be made are compiling OpenFOAM in Debug mode,

to better understand what the application is doing when it is outside of MPI, which in the

scenarios described here was about 90% of the time and instrument the cluster at a lower

level. For instance, use a Performance Application Programming Interface24 (PAPI), to see

the microprocessor events, or enable the traces on Extrae to measure the performance

and usage of disk input/output, memory usage, network latency, context switching, etc.

Doing a deep and thorough analysis of the behaviour of a scientific application is a task

that can take long time, the order of weeks or months, and that requires a lot of expertise

to identify patterns or trends.

24 Link to https://icl.utk.edu/papi/

https://icl.utk.edu/papi/

41

10. BIBLIOGRAPHY

Iserte Agut, Sergio; Catalán Pallarés, Sandra; Carratalá Saez, Rocío; López Huguet, Sergio

(2021). Construya su propio supercomputador con Raspberry Pi.

Supriya Saxena (2021). ARM processor and its features. Read in

https://www.geeksforgeeks.org/arm-processor-and-its-features in April 2022.

Barcelona Super Computing Center tools website (2022). Read in https://tools.bsc.es in May

2022.

University of Edinburgh, UK (2021). Running MPI parallel jobs using Singularity containers.

Read in https://epcced.github.io/2021-07-29_Singularity_Online/08-singularity-

mpi/index.html in May 2022.

VMware (2022). What is a virtual machine? Read in

https://www.vmware.com/topics/glossary/content/virtual-machine.html in June 2022.

Ian Buchanan, Atlassian (2022). Containers vs virtual machines. Read in

https://www.atlassian.com/microservices/cloud-computing/containers-vs-vms in June

2022.

https://www.geeksforgeeks.org/arm-processor-and-its-features
https://tools.bsc.es/
https://epcced.github.io/2021-07-29_Singularity_Online/08-singularity-mpi/index.html
https://epcced.github.io/2021-07-29_Singularity_Online/08-singularity-mpi/index.html
https://www.vmware.com/topics/glossary/content/virtual-machine.html
https://www.atlassian.com/microservices/cloud-computing/containers-vs-vms

