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Abstract This paper presents Hierarchical Network

Dissection, a general pipeline to interpret the internal

representation of face-centric inference models. Using

a probabilistic formulation, our pipeline pairs units of

the model with concepts in our “Face Dictionary”, a

collection of facial concepts with corresponding sam-

ple images. Our pipeline is inspired by Network Dissec-

tion, a popular interpretability model for object-centric

and scene-centric models. However, our formulation al-

lows to deal with two important challenges of face-

centric models that Network Dissection cannot address:

(1) spacial overlap of concepts: there are different fa-

cial concepts that simultaneously occur in the same re-

gion of the image, like “nose” (facial part) and “pointy

nose” (facial attribute); and (2) global concepts: there

are units with affinity to concepts that do not refer to

specific locations of the face (e.g. apparent age). We

use Hierarchical Network Dissection to dissect different

face-centric inference models trained on widely-used fa-

cial datasets. The results show models trained for differ-

ent tasks learned different internal representations. Fur-

thermore, the interpretability results can reveal some

biases in the training data and some interesting char-

acteristics of the face-centric inference tasks. Finally,

we conduct controlled experiments on biased data to

showcase the potential of Hierarchical Network Dissec-

tion for bias discovery. The results illustrate how Hier-

archical Network Dissection can be used to discover and
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quantify bias in the training data that is also encoded

in the model. 1.

Keywords Bias Discovery · Face-based Inference

Models · Face Dictionary · Model Interpretability ·
Network Dissection.

1 Introduction

Over the years, significant improvements have been

made in developing deep learning models for face recog-

nition Parkhi et al. (2015), apparent age and gen-

der estimation Eidinger et al. (2014), and facial at-

tribute classification Liu et al. (2019), among many oth-

ers. However, when these face-centric models are ap-

plied in commercial settings at scale, they have been

scrutinized for displaying biases towards underrepre-

sented classes Buolamwini (2017); Buolamwini and Ge-

bru (2018). These models have been shown to be flawed

and inaccurate, specially in certain groups of popula-

tion, such as dark skin tone faces.

Understanding the underlying reasons for these bi-

ases, which is necessary for making progress towards

bias mitigation strategies, has been hindered since lit-

tle to no work has been done to investigate the repre-

sentations learned by these face-centric models. Study-

ing the representations learned by deep learning archi-

tectures has been mainly addressed for object-centric

and scene-centric models Zeiler and Fergus (2014); Si-

monyan et al. (2014); Mahendran and Vedaldi (2015);

Bau et al. (2017); Nguyen et al. (2016), showing how

the model interpretation is useful for understanding the

1 The “Face Dictionary” and pre-trained models are avail-
able at: Hierarchical Network Dissection Webpage. The
source code is available at: Hierarchical Network Dissection
GitHub.

https://web.northeastern.edu/ostadabbas/2021/01/11/quantifying-notion-of-bias-in-face-inference-models/
https://github.com/ostadabbas/Hierarchical-Network-Dissection
https://github.com/ostadabbas/Hierarchical-Network-Dissection
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Fig. 1 Overview of Hierarchical Network Dissection for face-centric CNNs. Given a trained model, Hierarchical Network
Dissection detects units that act as facial concept detectors and pairs the units with the corresponding concept. The two boxes
of the left side of the figure display samples of concepts paired with the respective units, where the local concepts (Red) have
an IoU score and a probability, whereas global concepts (Blue) only have a probability score. The right side of the figure shows
a dissection report, displaying the histogram of all the concepts that have been paired with units.

outputs of the network and, more generally, the be-

haviour of the trained model Zhou et al. (2018).

In this paper, we present Hierarchical Network Dis-

section, a general pipeline to interpret face inference

models. Concretely, our pipeline uses a probabilistic

formulation to reveal what units of a face-centric in-

ference model act as detectors of facial concepts. As a

result, the output of Hierarchical Network Dissection is

a ”dissection report”, i.e. a histogram of the concepts

learned by the model, as illustrated in Fig. 1. Hierarchi-

cal Network Dissection uses our visual dictionary of fa-

cial concepts, called “Face Dictionary”, which includes

global concepts (like apparent age or apparent gender),

and local concepts, which include action units and fa-

cial attributes. Our Face Dictionary is described in in

Section 3.1.

Our formulation is inspired by the Network Dis-

section approach proposed by Bau et al. (2017); Zhou

et al. (2018), which is based on the observation that

some units in scene-centric models act as object de-

tectors Zhou et al. (2015). In fact, our pipeline for

dissecting face-centric models uses Network Dissection

in one of its three stages. However, there are impor-

tant technical differences between the two formula-

tions, since interpreting face-centric models presents

new challenges compared to interpreting scene-centric

models. First, Network Dissection is based on the

Broadly and Densely Labeled Dataset (Broden) visual

dictionary, which is a collection of scene-centric visual

concepts, like colors, textures, materials, parts of ob-

jects, whole objects, and scenes. Notice that, while one

can expect to find detectors of these concepts in scene-

centric images, these concepts are barely relevant to

the faces. Thus, dissecting face-centric models requires

a completely new face-centric dictionary. Second, the

algorithmic formulation of Network Dissection for pair-

ing units and concepts assumes that concepts are all

localizable in the image. The pairing is based on an

intersection over union (IoU) criterion on the area of

the image that produces the strongest activation of a

unit and the segmentation of each concept in the Bro-

den visual dictionary. In contrast, there are different

facial concepts that simultaneously occur in the same

region of the image, like “mouth” (a facial part), “smil-

ing” (a facial attribute), “wearing lipstick” (a facial at-

tribute), and ”AU-20” (the action unit corresponding

to lip stretcher). We refer to this challenge as the spa-

tial overlap of concepts. Another important challenge is

that we are interested in concepts that are not located

in a specific region of the face, such as the apparent

gender or the skin tone. We refer to this challenge as

the global concepts challenge. In this case, the IoU-

based nature of Network Dissection cannot be applied

for quantifying global concepts. As described in Sec-

tion 3.2, the proposed Hierarchical Network Dissection

is designed to deal with the spatial overlap of concepts

and the global concepts challenges.

We use Hierarchical Network Dissection to inter-

pret and compare the representation learned by dif-

ferent face-centric models. Concretely, we dissect dif-

ferent deep learning architectures trained on popular

publicly available facial datasets. These dissection re-

sults are presented and discussed in Section 4. In par-

ticular, we can make very interesting observations. For

example, the dissection reports revealed a gender bias

in the training data of the Smile classification task, as

well as the relevance of facial expression for the Beauty

classifier.

In the last part of our paper we conduct controlled

experiments on biased datasets to showcase the poten-
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tial of Hierarchical Network Dissection for bias discov-

ery. Concretely, we consider the task of apparent gender

recognition2 and create biased training sets for specific

concepts in our Face Dictionary. The dissection results

show how our interpretability pipeline is able of reveal-

ing these biases, showing a significant amount of units

that are paired to the concepts associated with the bias.

Both our Face Dictionary and the Hierarchical Net-

work Dissection code for face-centric inference models

are publicly released.

2 Related Work

Model Interpretability – There are different tech-

niques to understand the representations learned by

deep convolutional neural networks (CNNs). Broadly,

these techniques are based on: (i) variants of backprop-

agation to visualize salient patterns, features, or im-

age regions Zeiler and Fergus (2014); Simonyan et al.

(2014); Mahendran and Vedaldi (2015); (ii) detecting

patches in the image that strongly activate the units of

the trained model Zhou et al. (2015); Zeiler and Fergus

(2014); or (iii) analyzing to what extent units behave as

detectors or classifiers for specific concepts Zhou et al.

(2015); Bau et al. (2017) or synthesized ones Nguyen

et al. (2016). In this last direction, one of the most

popular approaches is Network Dissection, proposed by

Bau et al. (2017); Zhou et al. (2018). Network Dissec-

tion can be formulated to quantitatively analyze the

representations learned by both classification and gen-

erative models Bau et al. (2019, 2020), making Network

Dissection a very versatile approach. While Network

Dissection has been widely used on object-centric and

scene-centric models, the use of Network Dissection on

face-centric inference models has remained unexplored.

Our Hierarchical Network Dissection is inspired by Net-

work Dissection.

Network Dissection – As first introduced in Bau

et al. (2017), Network Dissection is a general framework

for quantifying the interpretability of the hidden units

in any convolutional layer of a neural network trained

for an object-centric or a scene-centric task. It requires a

broad range of visual concepts in order to compare the

activation maps of these hidden units to their binary

segmentation labels and compute their corresponding

spatial affinity. This collection of concepts is presented

as a visual dictionary called Broden, and it contains

concepts that range from lower level (e.g. colors, tex-

tures, or materials, like red, dotted or metal) to high

2 We work with datasets with the binary labels correspond-
ing to the social construct of gender classification. However
we acknowledge that in essence the concept of gender is more
fluid and non-binary.

level (e.g. parts of objects, objects, or scenes, like leg,

wheel, floor, car, or swimming pool). The pipeline uses

these concepts and their binary segmentation masks to

evaluate against the activation maps of a given layer

in the network to generate an IoU score for each unit-

concept pair. For each unit the concept with the highest

IoU is reported and if the highest IoU is less than 0.04,

the unit is called uninterpretable.

Notice that, as discussed in Section 1, Network Dis-

section cannot be directly used to dissect face infer-

ence models. First, we need a face-centric dictionary

instead of Broden. Second, we need to reformulate the

unit-concept pairing algorithm to deal with the spatial

overlap of concepts and the global concepts challenges.

Interpretability vs. Explainability – Model in-

terpretability is related to the explainable AI topic Ar-

rieta et al. (2020); Gunning (2017). There have been

recent interesting efforts in explainable subject recog-

nition systems Yin et al. (2019); Zee et al. (2019); Willi-

ford et al. (2020); RichardWebster et al. (2018) and also

in explainable face-centric generative adversarial net-

works (GANs) Shen et al. (2020). Although Explain-

able AI and model interpretability are related topics,

there are fundamental differences in the two concepts.

While explainability focuses on generating explanations

about the output, model interpretability focuses on un-

derstanding the internal representation of the model.

Our work is centered around the latter topic by reveal-

ing the interpretable representation of face-centeric in-

ference models.

Bias Discovery – In the context of fairness in ar-

tificial intelligence (AI), the interest for revealing bias

in the data has gained a lot of attention among the re-

search community. Wang et al. Wang et al. (2020a) re-

cently presented a detailed study and a computational

tool to discover biases in image datasets. Their tool re-

vealed very interesting insights on gender-based repre-

sentation biases. Nonetheless, their approach is in gen-

eral scene-centric and the tool is currently not targeted

to be used in face-centric datasets. At the same time,

Wang et al. (2020b) recently presented a benchmark to

compare bias mitigation methods. The benchmark is

created by introducing bias in an object classification

dataset. In particular, per each class, a specific percent-

age of images are converted to grey-scale, creating an

unbalanced representation (i.e. some classes have most

of the images in grey-scale, while others have most of

the images in color). The design of this benchmark has

inspired our controlled experiments presented in Sec-

tion 5. Furthermore, we demonstrate how model inter-

pretability can be used as a tool for bias discovery.
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Global concepts Facial Parts Local concepts

Apparent Gender

Apparent Age

Apparent Ethnicity

Apparent Skin tone

Eye Region

Cheek Region

Eyeglasses,
Arched Eyebrows,
Bushy Eyebrows,
Narrow Eyes

AU-1 (Inner brow raiser),
AU-2 (Outer brow raiser),
AU-4 (Brow lowerer),
AU-5 (Upper lid raiser),

High Cheekbones,
Rosy Cheeks,
5 o’Clock Shadow

AU-6 (Cheek raiser),
No Beard,
Bags under eyes,

Left Brow
Right Brow

Left Eye
Right Eye

Left Cheek
Right Cheek

Nose

Mouth

Chin

AU-9 (Nose wrinkler), Pointy Nose, Big Nose

Nose Region

Mouth Region
AU-12 (Lip corner puller),
AU-15 (Lip corner depressor),
AU-20 (Lip stretcher),
AU-25 (Lips part),

Mouth Slightly 
Open,
Mustache,
Wearing Lipstick

Chin Region
AU-17 (Chin raiser), 
AU-26 (Jaw drop), 

Goatee,
Double Chin

Female
Male 

[0 - 20] 
[20 - 40]
[40 - 60]
[60 + ] 

White
Black
Asian
Indian

Dark
Bright

a) b)

Left Cheek

Mouth

Pointy Nose

Bags Under Eyes

Left Eye

AU-12

AU-17

Arched Eyebrows

Wearing Lipstick AU-20

AU-9

Right Brow

Facial Parts Local

Fig. 2 Face Dictionary: a) Concepts included in our face dictionary, organized by type (Global & Local). Notice that the
Local concepts are grouped by Facial Parts; b) Examples of images and corresponding segmentation masks for facial parts and
for each type of Local Concept (i.e. facial attributes and Action Units).

3 Hierarchical Network Dissection

The unit-concept pairing of Hierarchical Network Dis-

section is based on our Face Dictionary, which is com-

posed of several facial concepts. The concepts of the

dictionary are organized in two main categories: Global

Concepts and Local Concepts. The Local concepts are

grouped by Facial Part and are organized in two cat-

egories: Action Units and Facial Attributes. Following

this hierarchy of concepts in our Face Dictionary, Hier-

archical Network Dissection uses three stages to deter-

mine what units in a CNN model are acting as concept

detectors.

3.1 Face Dictionary

Our Face Dictionary consists of 12 Global concepts and

38 Local concepts, along with a collection of corre-

sponding sample images per each concept. The images

are collected from the following public face datasets:

EmotioNet Benitez-Quiroz et al. (2016), UTKFace

Zhang et al. (2017), and CelebA Liu et al. (2015).

Fig. 2.a lists all the concepts included in the Face Dic-

tionary.

We have 4 types of Global concepts: apparent Age (4

categories), apparent Gender (2 categories), Ethnicity

(4 categories), and Skin tone (2 categories)3. The total

number of images corresponding to Global concepts in

our dictionary is 11000, where apparent Age, apparent

3 We work with academic datasets with categorical la-
bels corresponding to social constructs, apparent presence, or
stereotypical representations of these concepts. However we
acknowledge that these concepts are more fluid in essence, as
further discussed in Sect. 4

Gender, and Ethnicity have 4000 images each, and Skin

Tone has a total of 3000 images.

Regarding the Local concepts, we have two types:

Action Units (denoted by AU), which refer to specific

facial muscle movements; and facial attributes, referring

to the permanent presence of a concept on the face. The

local concepts are grouped according to the the facial

region where they occur, as illustrated in Fig. 2.a. For

the Local concepts our dictionary also includes segmen-

tation masks that have been automatically estimated

as we described below. Fig. 2.b shows some examples

for local concepts and their corresponding segmentation

masks. In total there are 24632 images corresponding

to the local concepts. The histogram of the number of

labelled instances per concept is displayed in Fig. 3.

3.1.1 Automatic estimation of segmentations masks

for the Local concepts

There are several datasets that provide labels for action

units and facial attributes merely indicating whether a

particular attribute or action unit is present in a given

image, without providing the corresponding location in

the image. However, our dictionary needs the segmenta-

tion of the local concepts to be used during the concept-

unit pairing. To automatically estimate segmentation

masks for the local concepts we run a landmark de-

tection algorithm (Kazemi and Sullivan (2014)) on the

images as we use the landmarks to estimate the face

region where our local concepts lie. We estimate the

center and covariance matrix of a 2D Gaussian confi-

dence ellipse around a particular concept and generate

a binary mask for each concept per image.



Interpreting Face Inference Models using Hierarchical Network Dissection 5

Face Dictionary: number of images per concept

Concepts

N
um

be
r o

f i
m

ag
es

LocalGlobal

Fig. 3 Number of images per concept in our Face Dictionary.

3.2 Unit-Concept Pairing

Our unit-concept pairing formulation has three stages.

The first stage pairs units with Global concepts. Then,

the second stage pairs units with Facial Parts. Finally,

the third stage pairs those units that have been paired

with a specific Facial Part with Attributes or Action

Units that have spacial overlap with the corresponding

Facial Part.

Stage I: Global Concepts – This first stage is

based on the idea that Global concepts belonging to

the same category are mutually exclusive (for example,

we assume that the apparent age of a face can not be [0-

20] and [20-40] at the same time). Here it is important

to state that each of these concepts is not restricted to

the subgroups we have in our dictionary. They are per-

ceived to be continuous in the real world such as mixed

ethnicities, fluid gender, etc. In order to work within

the bounds of our dictionary, we must assume such ex-

clusivity to present a preliminary argument in the field

of interpretability for such concepts. To pair a unit with

a Global concept in one of the categories (e.g. Apparent

Age), we take a forward pass across all N images in our

dictionary for each global concept in the correspond-

ing category and record the feature maps of the layer

being dissected, while retaining the information about

which map belongs to which subgroup. In order to com-

pare the activations from these feature maps we assign

a rank to each map based on their maximum activation

score, where the map with the lowest score has rank 1

and the highest score has rank N . Then, we initialize a

score for each subgroup as 0 and increment them as we

iterate through all the maps by:

CSs += (Rn ×MSn), (1)

where CSs is the concept score for subgroup s,Rn is the

rank and MSn is the maximum activation score of the

nth map and each score is only incremented by maps

that belong to s. We use this formulation to establish

a pecking order among the different subgroups by ac-

counting for the strength of their activations relative to

each other. We then normalize each score by:

CSs = CSs/Ns, (2)

where Ns is the number of images that belong to s,

to make the scores comparable. Finally, we divide each

score by the sum of all scores to obtain a set of relative

probabilities such that
∑

s∈G Ps = 1, where Ps is the

probability of s and G is the global concept being an-

alyzed. The range of R remains constant for each indi-

vidual analysis. Normalizing R itself is irrelevant since

after Eq.1 and Eq.2, we normalize each concept score

by the sum of all scores to obtain relative probabili-

ties. Hence, only the maximum activation scores of the

feature maps need to be normalized since each model

produces activations in a different range. Using these

probabilities we classify a unit as biased towards s if

Ps > 0.3 when G is “Age” or “Ethnicity” and Ps > 0.55

when G is “Gender” or “Skin Tone”. For each concept,

we choose the threshold to be 0.05 greater than the

mean probability of the concept, which is 0.25 for Age

and Ethnicity and 0.5 for Gender and Skin Tone. These

thresholds are not as stringent because each score is

only scaled by their respective rank and the cumulative

scores of each subgroup are almost never too far away

from each other. In Fig. 4.b, we visualize the average

ratio of probability of units to the mean probability of

their concept in the event that they exceed the mean

probability. We can see that for all of the tasks the ra-

tio crosses 1 by a very small margin, which shows how
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Fig. 4 Mean probability visualization for each model: a) per Facial Region; b) per Global Concept. These probabilities are
only counted when they are above the mean probability of their region.

delicate our measurement for bias needs to be. Hence,

we use lenient thresholds to detect units biased towards

any subgroup.

Stage II: Facial Parts – This stage is focused on

pairing units with Facial Part concepts. Similar to the

Stage I, we take a forward pass across all the images

from the local set in our dictionary to store the activa-

tion maps of the layer being dissected and run network

dissection as described in Bau et al. (2017) to generate

IoU scores for each local concept per unit. Since a unit

generally produces strong IoU scores for multiple con-

cepts within the same region, it is highly misleading to

report a single concept with the highest IoU as inter-

pretable. This is why we identify the region of the face

that the concept with the highest IoU belongs to, and

evaluate the relevance of every other concept in this re-

gion (as shown in Fig. 2) to the unit by establishing

a probabilistic hierarchy amongst them using the same

formulation introduced above with a minor variation.

Stage III: Local Concepts – Per each unit that

has been paired with a Face Part in Stage II, we extract

all the activation maps that have labelled instances of at

least one of the concepts belonging to this region. Then,

we use the same steps shown in Eq. (1) and Eq. (2) but

this time instead of subgroups, we have clustered con-

cepts and due to the simultaneous presence of these con-

cepts, one activation map can contribute to the concept

score of more than one concept. Hence, this overlap of

images among concepts can lead to scores that are not

clearly distinguishable, which is why we add one more

step to demarcate these concepts. We scale these con-

cept scores by their respective IoUs estimated during

Stage II by:

CSk = CSk × IoUk, (3)

where k is one of the concepts in the region. The unit’s

ability to localize must play a significant role in deter-

mining interpretability as we learned from Zhou et al.

(2015) and Bau et al. (2017).

Then, we replicate the formulation
∑

s∈G Ps = 1,

and obtain relative probabilities per concept. If any con-

cept’s probability crosses a threshold of (1.5/K), where

K is the total number of concepts in the region identi-

fied, we deem a unit to be interpretable for this concept.

In contrast with global thresholds, here we use a thresh-

old of 1.5 times the mean probability of a certain facial

region because each concept score is scaled by their re-

spective IoU estimated during Stage II. Because of this

additional step each score is scaled strongly which es-

tablishes a hierarchy that is a lot more distinct com-

pared to global concepts. This can be seen in Fig. 4.a,

where we show the average probability ratio for each fa-

cial region on all the tasks. Here we observe that there

is more variation in the probabilities and a lot of them

fall in and around the 1.5 mark. The missing bars in

the plot indicate no units were found in that region

for the respective model. Thus choosing this threshold

allows a unit to be interpretable for more than one con-

cept by accounting for all aspects of affinity among the

unit-concept pair.

4 Dissecting General Face Inference Models

We used the described Hierarchical Network Dissec-

tion pipeline to dissect models trained for five common

face-centric tasks: age estimation, gender classification,

beauty estimation, facial recognition, and smile classifi-

cation. When certain facial tasks are implemented using

deep learning models, there is often a gap in the defini-



Interpreting Face Inference Models using Hierarchical Network Dissection 7

Table 1 Details of dissected face-centric CNN models. The metrics in the last column are Mean Absolute Error (MAE),
Accuracy (Acc.), and Mean Squared Error (MSE), respectively.

Task (Abbreviation) Dataset Architecture Layer Dissected Performance (Metric)

Age Estimation (AGE) IMDB-WIKI ResNet-50 Block 4 - Layer2(conv1) 6.64 (MAE)

Gender Classification (GENDER) IMDB-WIKI ResNet-50 Block 4 - Layer2(conv1) 90.8% (Acc.)

Beauty Estimation (BEAUTY) SCUT-FBP5500 ResNet-18 (pretrained) Block 4 - Layer1(conv1) 0.137 (MSE)

Facial Recognition (FACENET) VGGface2 Inception ResNetV1 (pretrained) Block 8 - branch1(conv3) 99.6% (Acc.)

Facial Recognition (FAIRFACE) FairFace ResNet-50 Block 4 - Layer2(conv1) 86.8% (Acc.)

Smile Classification (SMILE) CelebA ResNet-50 Block4 - Layer2(conv1) 91.2 (Acc.)

tion of how these concepts are defined in the real world

to the academic setting. For example, in today’s world

gender is a fluid concept and has several subgroups that

belong to it, however in our case we study gender as a

binary construct due to dearth of labelled data for oth-

ers. Similarly, beauty estimation is highly controversial

since it is an entirely subjective attribute that is cor-

related with multiple attributes, but we study beauty

estimation through the lens of manually annotated la-

bels that are provided via an aggregation of scores from

multiple volunteers and try to study the model’s repre-

sentation within such context. It is important to state

that our analysis is based on these assumptions and we

attempt to study the representations of these models

independent of such real world perspectives. We try to

use the same model architectures for most tasks in or-

der to contrast the representations learned by similar

architectures for different tasks.

4.1 Models and Datasets

The face-centric tasks chosen for our experiments are

age estimation, gender classification, beauty estimation,

facial recognition and smile classification. Table 1 sum-

marizes the details of the dissected models, specifies the

layer that we dissect in our experiments, and shows the

performance obtained per model. Notice that we focus

our interpretability experiments in the deeper layers of

the models, since the concepts in our Face Dictionary

are high level concepts. According to the previous stud-

ies, the high level concepts are mainly found in the lay-

ers that are closer to the output Zhou et al. (2015);

Bau et al. (2017). Notice also that for facial recogni-

tion we compare two models: one trained on FaceNet

Schroff et al. (2015) and the other one train on FairFace

Kärkkäinen and Joo (2019).

We train both the age and gender models on IMDB-

WIKI dataset Rothe et al. (2018) with a backbone of

ResNet-50. The IMDB-WIKI dataset consists of half

a million celebrity images crawled from IMDB and

Wikipedia with age and gender labels. Even though the

dataset provides age estimation as a classification prob-

lem, we choose to train the model as a regression task

to avoid parsing through mislabelled data as most of

the labels are provided through date of birth and im-

age timestamps crawled from the web. This may lead

to bad accuracy in classification, whereas minor errors

in labelling will be better handled by regression. Hence,

we preprocess the data to remove invalid entries of age

as well as remove corrupt images. After training for 2

epochs, the model converges with a mean absolute error

(MAE) of 6.6015 on the test set. For the gender model,

it also converges within 2 epochs to give a validation

accuracy of 90.88% on the test set.

For the beauty estimation problem we use SCUT-

FBP5500 Liang et al. (2018), which is a diverse bench-

mark for multi-paradigm facial beauty prediction. It

consists of 5500 images with a beauty score in the range

of [1−5]. The dataset provides a train-test split of 60/40

with 5 fold cross validation. The authors of this paper

provide pretrained models and we have dissected the

ResNet-18 architecture that has a mean squared error

of 0.137 on the validation set.

For the facial recognition task we dissect two mod-

els. One is FaceNet, that is an InceptionResNetV1 pre-

trained on VGGface2, and the other is FairFace, a

ResNet-50 we trained on the FairFace dataset. The pre-

trained model has a validation accuracy of 99.6% on

LFW Huang et al. (2007), while the ResNet-50 has

been trained on FairFace with a validation accuracy
of 86.7%. We could not replicate the extremely high

performance of FaceNet model because we could not

use the necessary high batch sizes due to hardware

restrictions and also because the dataset is smaller.

FairFace only has about 100K images which we have

used to generate 80,000 triplets per epoch. Notice, how-

ever, that the obtained accuracies are competitive and

good enough to extract meaningful observations on the

model interpretability. Recent work such as Deng et al.

(2018) and Liu et al. (2017) have attained accuracies

greater than 99% for facial verification and identifica-

tion on massive datasets with millions of images such

as MSCeleb-1M Guo et al. (2016) and VGGface2 Cao

et al. (2017).

Finally, we train a smile classification model with

ResNet-50 on the subset of the CelebA dataset that has

“Smiling” attribute labels. We ensure that none of the

images in this training set are a part of our dictionary to

avoid biased dissection. The training and validation sets

have 6000 and 1200 images, respectively. After 4 train-
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ing epochs, the model achieves an accuracy of 91.2% on

the validation data.

4.2 Results and Discussion

Fig. 5.a shows the amount of interpretable units found

in each model in terms of facial parts, which correspond

to the output of Stage II of Hierarchical Network Dis-

section. We observe that, in general, the region that

gets more units is the Cheek region for all the models

except for the Beauty classifier, that has more units on

the eye region. Fig. 5.b shows the distribution on the

types of concepts. We observe that attributes are the

most common in all the models with two exceptions:

Beauty and FairFace. For Beauty, the most represented

type of concept is action units. One explanation might

be that facial expressions play an important role in fa-

cial attractiveness perception Tatarunaite et al. (2005).

For the case of FairFace, we observe that the most rep-

resented type of concept is facial parts. Some qualitative

examples of detected local concepts per each model are

given in Fig. 7.

Fig. 6 shows the interpretability reports for all

the dissected models, both for our Hierarchical Net-

work Dissection formulation (left) and the original Net-

work Dissection formulation (right) with the Local con-

cepts. By comparing the two dissection reports per each

model, we can see the interpretability results of Hierar-

chical Network Dissection are more complete compared

to the results obtained by Network Dissection: (i) There

is a clear increase in the sheer number of interpretable

units that we find per concept using our approach since

we do not restrict a unit’s ability to interpret multi-

ple concepts; (ii) We observe that some of the con-

cepts that are not revealed by Network Dissection are

actually detected through our hierarchy, which shows

a more diverse distribution of interpretable concepts;

(iii) In contrast to Network Dissection, our hierarchi-

cal approach can also pair units with global concepts.

Furthermore, our approach allows us to determine how

many of the units that are interpretable for a local con-

cept are also interpretable for a global concept, allowing

us to create richer visualizations with the overlap of lo-

Fig. 5 Per each model: a) Distribution of interpretable units
per face part; b) Distribution of types of concepts.

cal and global concepts. If we analyze the similarities

of Hierarchical Network Dissection and Network Dis-

section results, we see that both approaches on average

are prone to detect more concepts that are spatially

dominant such as Cheek Region concepts and very few

concepts in the Nose Region as a result of varying IoU

scores.

While the results of Fig. 6 show the representations

learned by the models, we noticed that, in turn, they

also reveal certain biases of the data the models were

trained on. We can see in the case of age model, most of

the units are biased towards different age groups. This is

to be expected since the task itself relies on the model’s

ability to discriminate within different age groups and

this is why most of the local concepts detected also

overlap with age biased units. For the gender model

we observe something very similar. We see that for the

global concepts, the model mainly focuses on both male

and female concepts specifically in a balanced manner.

This again shows that the layer is correlating to the con-

cepts that are discriminative for the task the model is

trying to learn and how the formulation of Hierarchical

Network Dissection is able to reveal this.

In case of the beauty model we also observe that,

out of all our models, it is the only one that has a

significant amount of units paired with facial Action

Units. This points to the relevance of these concepts

to the subjective nature of beauty and the influence

of facial expressions on beauty perception, as argued

before. Also, we see that the global concepts that is

most represented in the unit-concept pairing is related

to the skin tone type. This might be associated to the

fact that the appearance of the skin is also a relevant

factor for the stereotypical judgments of beauty. For

example, in some cultures a tanned skin is considered

more beautiful than an untanned one Xie and Zhang

(2013).

For the facial recognition task our two models have

been trained on datasets of vastly different size and de-

mographic parity. We observe that FaceNet, which has

been trained on millions of images, has an extremely di-

verse representation of concepts. Among the dissected

models, it is the only one that captures a vast majority

of local concepts and has an extremely high bias across

all 4 global concepts. This may point to the fact that

such models, when trained on massive datasets, may

encode the inherent biases stemming from the distribu-

tion of these global concepts in the dataset. However

the Fairface model is very selective and has only shown

to focus on a very restricted set of concepts specially for

the local concepts. Most of the local concepts found dur-

ing the concept unit pairing are spatially dominant in

terms of their area, which may also suggest that the in-
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Fig. 6 Complete dissection histograms of the six models (listed in Table 1) showing the number of interpretable units for both
global and local concepts. Number of units paired with each global concept subgroup is displayed alongside the local concepts.
Local concepts are visualized by mapping them with global concepts, e.g. each column displays the number of interpretable
units for that local concept that are also paired with global concepts in our dictionary.
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Fig. 7 For all 5 tasks, 2 examples of different concepts identified by Network Dissection(top) and Hierarchical Network
Dissection(bottom). Our formulation identifies concepts ignored by the original formulation and obtains a higher probability
score than the concept with a better IoU. The 5 images displayed have the highest IoU for that concept respectively.

terpretation reveals concepts that are more salient than

the targeted task. Also for each global concept it has

shown a significantly higher affinity towards individ-

ual subgroups rather than a concept as a whole. This

points towards the model’s inability to generalize well

for different subgroups and hints that the representa-

tion learned by this model is poorer than its pretrained

counterpart.

Finally, in the case of Smile model we observe some-

thing unexpected. We see that most units have been

paired with a specific gender. This affinity is also sup-

ported by the local concepts, since most units have a

preference towards No Beard and Rosy Cheek, two at-

tributes that are mostly present in female faces. This

is surprising since there should be no correlation be-

tween smile and the gender of a person. This forced us

to investigate our training set which then revealed that

there was a clear skew of 60% females vs 40% males in

the training set for the smile class. The results suggest

that the bias was detecting during the training and it

was used for the model to converge quicker.

From a qualitative perspective, Fig. 7 shows exam-

ples of 2 units per model where our formulation gen-

erates a higher probability score for a concept which

has a lower IoU than the concept identified by Stage

II. We display the concept chosen purely by IoU at the

top and the concept with the highest probability from

our formulation at the bottom. As stated earlier, when

applying the IoU approach from the original Network

Dissection on the images from our dictionary it is im-

possible to say that a concept that generates a similar

IoU to the top concept cannot be reported as an inter-

pretable concept without doing a deeper analysis of the

activations generated for that concept with respect to

every single concept that lies in the same facial region.

Thus, by establishing a hierarchy among concepts from

that facial region, we learn that one unit can be paired

with more than one concept. This behavior can be ex-

plained by the spatial proximity that these concepts

have and how difficult it is for a unit to distinguish be-

tween concepts that look almost the same but have dif-

ferent characteristics. For example, we see this happens

for the gender model. Concretely, in Unit 142 of the

second last convolution layer of ResNet-50 we see that

the original approach identifies “5 o Clock Shadow” as

the top concept with a very high IoU score of 0.1914.

By observing the images we can see that the unit does

a very good job in localizing the region with this con-

cept. However when we use our formulation to estimate

probabilities for all the concepts in the Cheek Region,

we learn that “Rosy Cheeks” despite having a far lower

IoU score of 0.1109 generates a probability of 0.2276

which is much higher than the 0.1884 generated by “5

o Clock Shadow”. This illustrates our idea of ignoring

concepts through the IoU approach since it would lead

to an incomplete understanding of the model’s repre-

sentations.
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Fig. 8 Number of interpretable units within multiple layers lying in the deeper stages of the networks per task. The layer
names have the stage of the network (Layer3 / Layer4) followed by the sub-block number in square brackets and then the
convolution number.
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4.3 Interpretability Coverage Report

Our current dictionary has a combination of local and

global concepts and Hierarchical Network Dissection

pairs individual units of a layer with them. However, it

is important to notice that there are many facial con-

cepts that are not included in the dictionary and this

limits the interpretability capacity of Hierarchical Net-

work Dissection. This section presents a quantitative

analysis on the amount of units that Hierarchical Ne-

tork Dissection, along with our Face Dictionary, is able

to successfully pair with facial concepts. For this goal

we have dissected the deeper layers of all the six tasks

discussed above using our hierarchical formulation as

well as the original Network Dissection.

We display in Fig. 8 the number of interpretable

units per layer for the different trained models (one per

row), and for both the Hierarchical Netowk Dissection

(left) and Network Dissection (right). For the models

in Table 1 with ResNet as their backbone we have dis-

sected all the convolutional layers in Block3 and Block4

(notice that ResNet-50 and ResNet-18 have 4 blocks of

convolutional layers). For the FaceNet model, we dissect

the final convolution block as well as all the convolution

layers of the 5 Inception-C blocks (which are named as

repeat3 in the figures). The reason we avoid dissecting

the earlier layers of the network is due to the extremely

high resolution of the feature maps at this stage of the

network, as well as a model’s inability to localize higher

level concepts which was shown by Bau et al. (2017).

We can observe that, except the FaceNet model

which has very rich representations capable of detecting

many concepts at several stages of the network, most
of the other networks show a roughly 70-80% cover-

age across multiple layers through the hierarchical ap-

proach (Fig. 8.b, left) and around 50-60% coverage us-

ing the network dissection approach (Fig. 8.b, right).

Surprisingly, we do not observe a striking difference in

the percentage of interpretable units across the upper

and deeper layers, which suggests that the models have

a relatively strong understanding of the underlying con-

cepts even at the middle stages.

We must point out that due to the inability of the

original dissection to account for global concepts it is

not strictly fair to compare these two approaches di-

rectly in terms of coverage. Our formulation allows us

to account for a variety of concepts which helps us to

create a more complete understanding of the model’s

representations and highlights it’s superiority. This pri-

marily ensures a high coverage across most models since

a unit that cannot effectively localize certain concepts,

may be susceptible to biases towards a subgroup of

global concepts. This is easy to observe in Fig. 8, where

Fairface and Beauty models show the lowest coverage

across all layers with very few layers displaying a 50%

coverage. This coverage may be impacted by several

factors, such as the distribution of correlated and un-

correlated attributes within a dataset and the training

process of the model. This is why it is beneficial for the

models to be exposed to as many concepts as possible in

order to improve the estimation of these relationships

derived from Hierarchical Network Dissection. A more

diverse and rich version of the dictionary with several

other concepts would allow us to push the limits of this

formulation and create richer dissection reports for ev-

ery single face inference model.

5 Hierarchical Network Dissection for Bias

Discovery

This section presents our experiments to showcase the

potential of Hierarchical Network Dissection for bias

discovery. Since our Face Dictionary includes two types

of concepts (Global and Local), we perform one set of

experiments per each type of concept.

Concretely, we consider the gender classification

task and we explicitly introduce different degrees of bias

in the training set using first the local concept “Eye-

glasses” and second the global concept “Gray-scale”.

Introducing controlled bias is a common strategy in bias

mitigation (e.g. Wang et al. (2020b)). However, in this

case we are not proposing a bias mitigation technique.

We are showing how Hierarchical Network Dissection

can provide insights regarding dimensions of potential

bias that is represented in the model. Notice that reveal-

ing bias is important to improve the creation of datasets

and also to apply bias mitigation methods that take the

dimensions containing bias as input Bahng et al. (2020),

Tartaglione et al. (2021), Clark et al. (2019), assuming

that it is already known where the bias is present.

5.1 Bias Introduced on a Local Concept

In our first experiment, we use the local concept “Eye-

glasses” from our Face Dictionary to create six different

biased datasets. Concretely, a percentage P of males in

the training set will be wearing eyeglasses, while a a per-

centage (100−P ) of females will be wearing eyeglasses.

Fig. 9 illustrates the training data for the two extreme

cases: P = 50 (no bias introduced) and P = 100 (max-

imum degree of bias, where detecting faces with eye-

glasses is equivalent to do gender classification). Notice

that the closer P is to 100 the more useful would be for

the model to have an internal representation that fo-

cuses more in the eye region, since concept “Eyeglasses”
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Fig. 9 Illustration of bias introduced through “Eyeglasses”
in a gender classification model with extreme probability P
values.

belongs to eye region and it can help to discriminate on

the main task (i.e. gender classification).

We train with a ResNet-50 architecture and dis-

sect the second to last convolution layer for each case.

When we observed the number of interpretable units

for “Eyeglasses” in particular, only the models with

P = 50 (balanced) and P = 100 (fully biased) showed

a contrast, where the fully biased model detects more

than thrice the number of units as the balanced model

whereas the models in between detected a similar num-

ber of units closer to the balanced model. In Fig. 11,

we show per each degree of bias the number of inter-

pretable units in terms of facial parts. Notice that the

number of units that focus on the eye region increases

as P increases. This result reveals how the represen-

tation of the model focuses more in eye region as the

discriminant information contributed by the eye region

increases. Interestingly, we also observe that the focus

on the cheek region decreases as P increases. This again

hints to the fact that hidden units may only be exclu-

sively discriminative in terms of facial region and not

so much for individual facial concepts.

In Fig. 10, we show a set of qualitative results to

visualize the top 50 activated images per gender - fe-

male (left), male (right) - for each model. We observe

that the distribution of images with “Eyeglasses” goes

up for males as P value increases from 50 to 100 and

the exact opposite can be seen for the female class as

the number of images with “Eyeglasses” steadily de-

creases. This shows that the model’s learning becomes

increasingly biased as the bias in the dataset goes up.

The images are arranged in descending order based on

their maximum activation scores.

5.2 Bias Introduced on a Global Concept

Our second experiment follows a similar protocol as the

previous experiment, but the bias is introduced on the

global concept “Grayscale”. Thus, our training datasets

will have an unbalanced representation of color images

and grey-scale images: for males, a percentage P of the

images will be gray-sale, and for females a percentage

100 − P of the images will be gray-scale. We synthe-

size 6 different datasets and train gender classification

models, with a percentage P bias going from 50 to 100.

We use Stage I of Hierarchical Network Dissection

by taking a separate test set to generate unit probabil-

ities for all the units in the second to last convolution

layer of block #1, #2, #3, and #4 of the ResNet-50

architecture. For any given unit u, probability of color

Pu
c and probability of gray-scale Pu

g represent the affin-

ity of the unit to a color scheme, where Pu
c + Pu

g = 1.

We perform this at all stages of the network because

color scheme is a low-level concept and can be detected

in earlier stages of the network. We compare these unit

probabilities across different models for all 4 layers with

64, 128, 256 and 512 convolution filters respectively to

interpret how the bias within each layer increases or

decrease as the bias rises from P = 50 to P = 100.

In Fig. 12, we display the concept probabilities

(Pcolor & Pgray) for all the units in an ascending man-

ner to show the gradual shift in the number of biased

units. If the majority of units in a layer are not biased,

we should get a very gentle slope and a highly biased

group of units should return a steep slope. In this case,

we clearly observe that the balanced set with P=50 dis-

plays a gentle slope across all 4 layers and as the P value

increases, the slope of probabilities gradually becomes

more steep. We observe that in the case of P=100 (even

in the early layers), there are very few units that do not

have a strong affinity to one of the color schemes verify-

ing that our formulation can easily classify units within

a layer to hypothesize how biased their representations

are.

For each layer, we also establish the number of bi-

ased units to compare how biased the representations

are at different stages of the network. A unit is said to

be biased if either Pc > 0.55 or Pg > 0.55 staying con-

sistent with the bias analysis introduced in the paper.

In Fig. 13, we observe that all 4 layers show a clear in-

crease in the number of biased units as we move from

the unbiased set to the completely biased one. Apart

from Layer 3 that has shows a perfectly uniform in-

crease, the other layers display fluctuation in the level

of bias but eventually showcase a steep increase as the

P values reaches its maximum value. We also observe

that the last layer has a far greater percentage of biased
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Fig. 10 Top 50 images with the highest activation score per gender for models with P=50 and P=100 of “Eyeglasses”
experiment.

Fig. 11 Face region concepts found in the models trained
with bias on the “Eyeglasses” concept.

units across all P values, which is reasonable when we

think about how crucial this perceived bias is to the

model’s performance due to its proximity to the final

fully connected layer. This experiment in tandem with

Section 5.1 emphasizes the ability of our formulation to

discover and quantify the biases that exist within the

representations, which are usually hidden from us due

to our inability to interpret these models quantitatively.

Fig. 12 Unit Probabilities estimated using Stage I approach
for “Grayscale” and “Color” schemes across all 4 layers in the
models trained with bias on the color scheme. The units are
arranged in descending order of color probability to visualize
the scale of bias across units within a layer.

6 Conclusions

In this paper, we present a general pipeline to inter-

pret the internal representation of face-centric infer-

ence models called Hierarchical Network Dissection.

Our approach is inspired by the Network Dissection

work, which is a well-known object-centric and scene-
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Fig. 13 Number of biased units found across all 4 layers in
the models trained with bias on the color scheme.

centric model interpretability pipeline. The proposed

Hierarchical Network Dissection formulation can deal

with two challenges of face-centric model interpretabil-

ity: “spatial overlap of concepts” and “global concepts”.

In summary, the main contributions of our work are: (1)

we created our “Face Dictionary”, a collection of face-

centric concepts with corresponding image samples; (2)

we introduced Hierarchical Network Dissection, an al-

gorithmic approach that uses a probabilistic formula-

tion to pair units with global and local; (3) we create

interpretability reports for different face-centric infer-

ence models that have been trained on popular facial

datasets and tasks, and provide an extended discussion

on how the model interpretability can be used to better

understand how the model works and how the model

represents the information; and (4) we performed con-

trolled experiments on biased data to empirically show

how the dissection of the model can be used for bias

discovery. Our “Face Dictionary” and the code of Hi-

erarchical Network Dissection will be publicly released.

We hope them to be useful tools for the computer vision

community working on face inference models.
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