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Abstract
Train unit scheduling assigns vehicles to cover all trips of a fixed timetable satisfy-
ing constraints such as seat demands. With a two-phase approach, this problem is 
first solved in Phase I as an integer multi-commodity flow problem. Train stations 
are simplified as single points and coupling orders of train units are left undeter-
mined. In this paper, platforms and their layouts at the stations are restored to com-
plete a fully operable schedule, defined as Phase II. An adaptive approach expanding 
Phase I to Phase II is proposed. The logistics of (de-)coupling operations, coupling 
orders and re-platforming are determined in detail to prevent unit blockage where 
possible, particularly focusing on developing a schedule with conflict-free coupling 
orders. If unresolvable station level conflicts still exist, the process loops back to 
Phase I with addressed Phase II constraints to avoid identified conflicts. Thus, the 
schedule is iteratively improved until it is fully operable.
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1  Introduction

A train unit (TU) is a kind of passenger rolling stock that has fixed carriages and 
integrated engines that can move in either direction. Train units are commonly 
used in railway passenger transport as opposed to traditional locomotive trains. 
They are classified into different types by characteristics such as power source, 
number of carriages, and number of seats. Currently 17 franchises managing a 
certain number of train units are operating the UK railway (Wikipedia 2019). A 
timetable describes a set of trips with fixed routes (origin, destination and inter-
mediate stations) and timings (clock times of arrival and departure). Train units 
are assigned to serve trips with sufficient capacities to meet passenger demands, 
i.e., a trip is served by a single unit or multiple units defined as a unit block. To 
satisfy different seat demands of trips, coupling operations may be involved to 
form a longer unit block, or decoupling operations to split a longer formation into 
shorter unit blocks. Another purpose of coupling and decoupling operations is to 
redistribute unit resources across the network. This train unit scheduling problem 
(TUSP) is shown to be NP-hard (Cacchiani et al. 2010; Lin and Kwan 2017). If a 
trip is served by multiple units of different types, the sequence of the units within 
the serving unit block is important, in particular when the unit block is involved 
in coupling or decoupling operations. In the UK, the coupling and decoupling 
operations are usually executed at station platforms. As the movement of unit 
blocks is strictly restricted by tracks, station layouts and how they connect with 
other stations are key factors to consider for removing coupling-order conflicts.

The TUSP can be solved in two phases: network level scheduling and station 
level scheduling (Lin and Kwan 2014). The network level scheduling problem 
is studied by Cacchiani et  al. (2010) and Lin and Kwan (2013). In real-world 
railway operations, there are large numbers of timetabled trips to be scheduled 
with complex network constraints, for instance passenger demands, fleet size, unit 
type compatibility, turnaround time, making train unit scheduling at the network 
level a challenging problem. Solving the TUSP including station level constraints 
is even much harder. Thus, reasonable simplifications are applied. Stations are 
considered as single points where all train unit movements required for trip con-
nections are assumed feasible no matter what schedule is formed at the network 
level. The station level constraints are important when a network level schedule 
is supposed to be implemented on physical rail infrastructure. Therefore, recon-
sidering station level constraints in Phase II is vital to avoid operational block-
age during the station operating process and to determine conflict-free coupling 
orders, which makes the network scheduling results fully operable in practice.

The basic Phase I model optimizes train unit assignment at the network level 
by branch-and-price and tentatively allocates unit blocks to trips and their con-
nections. Its solution is incomplete since coupling orders are not determined 
and the feasibility of tentative linkages among trips has not been verified. This 
incompleteness may cause severe operational conflicts at stations. Phase II is to 
take a further step of station level resolution and to fix the incompleteness. Sta-
tion level constraints would be very complex and difficult to generalize in an all 
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encompassing TUSP model; therefore, they are ignored in Phase I. Phase I has 
the benefit that its solution may have already automatically satisfied many of 
the station level constraints even though they have not been explicitly modeled. 
In other words, the station level conflicts in a Phase I solution could often be 
sparse. In this paper, an adaptive approach of incrementally inserting constraints 
for Phase II eliminating station level conflicts identified in a Phase I solution is 
proposed. The main loop of this method is between a Phase I core solver (RS-
Opt, developed by Lin and Kwan (2016a)) and Phase II including the process 
of station level conflict detection and coupling order assignment. This approach 
resolves the station level constraints and assigns feasible coupling orders for trips 
served by multiple units. A new solution will be sought if Phase II has encoun-
tered unresolvable conflicts, and newly formulated critical station constraints will 
be fed back to the core solver to eliminate those inoperable conflicts. Feasible 
coupling orders are assigned simultaneously with the conflict detection process.

The structure of this paper is organized as follows. Section 2 gives a literature 
review. Section 3 introduces the problem of train unit scheduling with station con-
straints. Section 4 describes a mathematical model and discusses the complexity of 
station level constraints. Section 5 formally defines the coupling order and its propa-
gation boundaries. Section 6 illustrates the proposed adaptive approach and methods 
of conflict detection and coupling order assignment. The experimental results are 
shown in Sect. 7. Conclusions and ongoing research are discussed in Sect. 8.

2 � Literature review

Huisman et al. (2005) survey passenger railway transportation operational research 
focusing on European cases, where train unit planning is classified as two levels. 
The central level covers the entire network operations such as timetabling, train unit 
scheduling, circulation, etc. The local level focuses on the local-size-impact opera-
tions including shunting, platform assignment, routing of train units at a certain sta-
tion, etc. The train unit scheduling problem is also addressed as two levels (Lin and 
Kwan 2014) and (Kwan et al. 2017). The network level aims to solve train sequenc-
ing and fleet assignment where coupling and decoupling activities are important to 
satisfy passenger demands. The station level copes with finalizing the operational 
plan and train unit shunting within stations/depots.

For the network level problem, Cacchiani et al. (2010) consider the basic con-
straints of passenger demands, coupling upper bounds and additional constraints 
of maintenance and overnight balance. Two inter-convertible ILP (integer linear 
programming) formulations are established based on a directed acyclic graph as 
described in Cacchiani et  al. (2013a). After solving the corresponding relaxed 
LP, a heuristic is designed to further solve the network level problem. The result 
shows that it is crucial in finding feasible solutions in many tested instances since 
the problem is regarded as very difficult. Thus, another heuristic method based 
on Lagrangian relaxation is developed by Cacchiani et al. (2013b) to improve the 
performance. A more comprehensive model with many real-world constraints 
is proposed by Lin and Kwan (2013) to describe the network flow problem in 
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the UK. A branch-and-price method called RS-Opt is developed (Lin and Kwan 
2016a). A heuristic wrapper for RS-Opt called SLIM is proposed in Copado-Men-
dez et al. (2017) to solve larger problem instances. In practice, most train opera-
tors in the UK consider different levels of capacity provisions, such as peak and 
off-peak. To achieve this, Lin et al. (2017) study the train unit scheduling prob-
lem with bi-level capacity requirements, in which a new integer multi-commodity 
flow model guided by historic capacity provisions is proposed. The computational 
experiments on real-world data have shown this methodology to be effective.

A timetable defines arrival/departure times and platforms for each trip, while 
a train unit schedule assigns unit blocks to serve each trip. At the station level, 
given a timetable with a train unit schedule, a shunting schedule guarantees that 
the assigned unit blocks are operable at the fixed timings and platforms of sta-
tions. Tomii et  al. (1999) consider the station shunting problems as a resource 
constrained scheduling problem and divide it into two subproblems: resource 
allocation and shunting time decision. A two-stage-search algorithm is proposed 
to solve this problem combining with probabilistic local search and Program 
Evaluation Review Technique (PERT). Freling et  al. (2005) and Kroon et  al. 
(2008) consider the train unit shunting problem at a station as two subproblems: 
matching problem and parking problem. Freling et al. (2005) describe a set-par-
titioning ILP model to solve these two subproblems separately, which prevents 
capacity overflow and unit blockage at all sidings and minimizes the number of 
coupling/decoupling operations. This model is solved by root-only column gener-
ation combined with a branch-and-bound strategy. Since the matching and park-
ing problems are connected to each other, Kroon et  al. (2008) propose an inte-
grated approach with four models considering both dead-end and through types 
of sidings, thus, the global optimality is guaranteed. The idea of virtual tracks is 
introduced to reduce the problem size. Computational experiments on two sta-
tions of the NSR network have been done.

Train unit scheduling at the network level and station level are interrelated. Mod-
els for the network level and the station level are proposed (Lin and Kwan 2014), 
in which the two levels can communicate through arc variables. Conceptually, the 
re-matched linkages at the station level model are encouraged if they are also chosen 
by the network level. Ideally, a good quality and operable solution at both levels can 
be achieved through this communication. Lei et al. (2017) analyze the potential sta-
tion shunting issues caused by a solution at the network level without the determina-
tion of coupling orders. In addition, a branch-and-cut algorithm of connecting flow 
level and depot shunting is proposed by (Haahr and Lusby 2017) with the simplified 
assumption that tracks are all dead-end. For the train unit scheduling problem, the 
network level assigns train unit types and quantities to each timetabled trip. Once an 
assignment has been found from the simplified model temporarily ignoring station 
level constraints, there are two operational aspects left to be further determined. The 
first aspect is the unit coupling order in multi-type trips, which has no impact on 
the network flow but must be finalized to prevent blockages at stations. The second 
aspect is the tentative linkage implication restricted by station layouts. This research 
focuses on these two points to make the train unit scheduling solution operable at 
both the network and station levels which has not been scrutinized in literature.
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3 � Problem description

The train unit scheduling problem with station constraints is to find a conflict-free 
schedule at both the network and station levels and to minimize the general opera-
tional costs. The network level concerns train unit assignment to satisfy all the trips 
fixed in a timetable with respect to a set of constraints such as passenger demands, 
turnaround time, and unit type compatibility. Given a network level solution, this 
section mainly describes the relevant aspects concerned at the station level, includ-
ing coupling order, linkage slack time, crossing linkages, platform type and capac-
ity, re-platforming shunting, interchangeability between train units of the same type, 
and other features.

3.1 � Coupling order

A coupling order is defined as the permutation of the units within a coupled train 
unit block. Given a block with n units, the coupling orders of this block have n! pos-
sibilities. Considering the station level infrastructure, not all of these possibilities 
are operable because many coupling/decoupling activities can only be operated in a 
specific order under the station shunting environment.

Train stations are not isolated in a rail network but connected by routes. Run-
ning trips concatenate the operations at the starting, intermediate, and terminating 
stations. A coupling order is initially formed at the origin station of a trip, and its 
influence is not confined within the origin but can be propagated to other stations by 
running trips and the connections among trips, defined as coupling order propaga-
tion. Thus, a coupling order formed at a specific station must be also operable at 
other influenced stations at any time.

If a conflict caused by a coupling order arises at a station, additional opera-
tions, e.g., re-ordering shunting, must be adopted to fix this invalidity. This not only 
increases operational costs but may also disturb/delay other trips. Thus, coupling 
order decisions at stations can be sophisticated.

Usually, no coupling or decoupling operation happens at intermediate stations, 
but one feature needs to be captured while moving directions are considered. If the 
arrival and departure directions of a coupled unit block are opposite at some plat-
forms of intermediate stations, the front and rear of the unit block will be reversed; 
otherwise, the coupling order keeps the same. This is defined as coupling order 
reversal en-route. Thus, a trip may have different unit sequences at its origin, inter-
mediate stations, and destination.

3.2 � Linkage slack time

The slack time of a linkage (directed arc in an directed acyclic graph (DAG), see 
Sect.  4.1) is defined as the time gap between the departure of its head node trip 
and the arrival of its tail node trip, which is the total time available for the station 
level manoeuvre such as coupling/decoupling, reordering, re-platforming, etc. At the 
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network level, the time consumed by those auxiliary station level operations are not 
properly accounted for, i.e., insufficient slack time may invalidate the network level 
schedule. A linkage is locally feasible at a station if there is sufficient slack time to 
accomplish essential station shunting movements for the purpose of avoiding a sta-
tion conflict.

Hence, the slack time of each arc in a network level schedule must be verified with 
Eq. (1), where tslack

a
 , ttrt

a
 , tsta

a
 represent slack time, standard turnaround time, and sta-

tion operational time corresponding to arc a, respectively. �t must be not less than 0; 
otherwise, the arc is infeasible.

3.3 � Platform type and capacity

For daytime scheduling, coupling and decoupling operations are often executed at 
platforms in the UK. There are two main types of platforms: dead-end platforms and 
through platforms. A dead-end platform can only be approached from one end of the 
track, i.e., the train units accumulated on it must follow the first-in-last-out (FILO) 
rule. The moving directions of approaching and leaving a dead-end platform must 
be opposite to each other. On the other hand, a through platform can be reached via 
both ends, which has a more complex utilization in the real-world railway manage-
ment. It is common in the UK railway industry to logically divide a through platform 
into a few sub-platforms, for instance, Cardiff Central Station through platforms 
3 and 4 are used as 3A, 3B, and 4A, 4B, respectively. This logical dividing gives 
through platforms a lot more flexibility but also increases the problem complexity. 
In practice, the trips are operated by many train operating companies, and platforms 
are often divided by train operation companies at a station. In this research, we only 
consider the trips operated by a single company. At the network level, the coupled 
unit upper bound and carriage upper bound for each trip are considered based on the 
limitation of the physical length of the corresponding platform. At the station level, 
the unit accumulation on the platform with time is considered to assure that the units 
parking at the same platform will not invalidate the schedule.

3.4 � Crossing linkages

To illustrate, suppose four single unit trips i, j, m, n are linked at a through plat-
form at station B with no problem of unit type compatibility and seat capacities. 
Two possible network level solutions are constructed, as shown in Fig. 1, referred 
as the first-in-first-out (FIFO) connection and the FILO connection. However, these 
two solutions may turn out be infeasible while considering the unit-block moving 
direction on the restricted station tracks. Figure  2 shows a possible parking posi-
tion of these two units at a platform before the departure of j and n. Concerning 
the departure time of j and n, solution (1) will be feasible if and only if j departs to 
the “up direction” and the solution (2) will be feasible if and only if j departs to the 
“down direction”. Otherwise, a crossing occurs as the unit assigned to n blocks the 

(1)�t = tslack
a

− ttrt
a
− tsta

a
≥ 0, ∀a ∈ A
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unit serving j, which is supposed to travel earlier than n. If no station information is 
introduced in the model, the feasibility of tentatively assigned arcs cannot be final-
ized. This example illustrates how crossing linkages can seriously affect the validity 
of a network level schedule.

3.5 � Re‑platforming shunting

Some train units arrive at a platform, finish all the necessary operations and later 
leave the station from the same platform without shunting away to any other place, 
for example, sidings or other platforms. However, some train unit blocks may leave 
from a different platform from its arrival platform, thus, re-platforming shunting 
must be operated. At the network level, station level shunting operations are not 
realized because of the ignorance of station layouts. In the UK railway industry, 
schedulers try to avoid re-platforming movements and accomplish the station opera-
tions for an arrival train unit at the same platform. When a re-platforming operation 
is inevitable, there are two essential constraints to be considered. One is if there is 
enough slack time for this re-platforming operation. The other is that the feasible 
time boundaries for re-platforming movements should be considered to ensure that 
there will be no blockage caused by this re-platforming operation at an inappropriate 
time. A given timetable defines the arrival time and departure time for logical trips. 
However, the departure times and arrival times for the re-platforming operations of 
the train units to be prepared to serve another trip at stations are flexible. The exist-
ing train units parking on the platforms may result in the fact that the involved re-
platforming operations can only be operated in a specific time range. Also, re-plat-
forming operations in different time ranges may result in different coupling orders.

Fig. 1   Two possible solutions

Fig. 2   Example snapshot of two 
units prior to their next assigned 
departures
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3.6 � Interchangeability between train units of the same type

A railway operator usually has many types of train units. The train units of the same 
type share common configurations, so that they are interchangeable. In a unit sched-
ule, each train unit has a unique diagram with detailed routes and serving trips. 
When a train unit is not available, a substitute of the same type can replace its mis-
sion if the changed mission does not affect their necessary maintenance. This feature 
gives shunting operations at the station level great flexibility by swapping the dia-
grams of the same type of train unit. In this research, the coupling order of the train 
unit block consisting of the train units of the same type is considered as conflict-free 
because the potential blockages can be easily avoided by swapping the missions of 
these train units.

4 � Model and formulation

4.1 � DAG generation and decision variables

A DAG consists of a set of nodes and a set of directed arcs in which no cycle 
exists, denoted as G = (N,A) . The node set N  consists of the timetabled trips 
(N), and the source and the sink ( {s, t} ) that are added to represent siding/depot, 
i.e., N = N ∪ {s, t} . The arcs in A represent potential connections between any 
two nodes. The DAG is generated on a given timetable and a series of real-world 
requirements, e.g., basic turnaround time, O-D pairs of connected trips, permit-
ted train unit types. The arcs in a DAG are classified into three types: (1) the arcs 
connecting an arrival to a departure at the same station are defined as trip-to-trip 
arcs (A); (2) the arcs between a trip and the source/sink are defined as sign-on ( A0

)/sign-off ( A∞ ) arcs; (3) the arcs connecting an arrival to a departure at a differ-
ent station are defined as empty running arcs ( Ae ). Thus, the arc set of the original 
DAG is A = A ∪ A0 ∪ A∞ ∪ Ae , where A0 = {(0, i)|i ∈ N} , A∞ = {(i,∞)|i ∈ N} , 
A = {(i, j)|i, j ∈ N, and si

a
= s

j

d
} , and Ae = {(i, j)|i, j ∈ N, and si

a
≠ s

j

d
} . si

a
 and sj

d
 

represent the arrival location of trip i and the departure location of trip j. Let K 
denote the set of train unit types used in a given timetable. Based on the compatibil-
ity between train unit type and route, type graphs ( Gk

,∀k ∈ K ) are constructed based 
on the original DAG ( G ). Each Gk is a subgraph of G . A path p ∈ Pk represents a 
train unit diagram of type k on Gk , which contains a collection of consecutive arcs 
and serving trips starting from the source and ending at the sink. Based on G and Gk , 
decision variables are defined as follows:

–	 arc-type-flow variables: xa ∈ ℕ , ∀a ∈ Ak , ∀k ∈ K , representing the number of 
train units of type k flowing on arc a.

–	 path-type-flow variables: xp ∈ ℕ , ∀p ∈ Pk , ∀k ∈ K , representing the number of 
train units of type k flowing on path p.

–	 arc-selection (fixed charge) variables: ya ∈ {0, 1} , ∀a ∈ A , indicating if an arc 
a = (i, j) is selected in the solution.
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The arc-type-flow and path-type-flow variables are inter-convertible by expression (2), 
where Pa represents all the paths containing type arc a.

4.2 � Mathematical model

Two main terms are considered in the objective function. The first term minimizes the 
total number of train units used to serve the entire timetable. The second term mini-
mizes the general costs of operating the involved train units.

4.2.1 � Constraints at the network level

Expression 4 represents the fleet size constraints ( C1 ). For each type k ∈ K , there is an 
upper bound bk . To schedulers, a lower bound ( b′

k
 ) can also be considered.

Expression 5 demonstrates the flow conservation constraints ( C2 ) which are to 
ensure the flow of every train unit type on each trip node is balanced, where Ain

j
 and 

Aout
j

 are the get-in type arc set and get-out type arc set of trip j.

Each trip i ∈ N has to satisfy three basic hard constraints: passenger demands ( C3a ), 
unit coupling upper bound ( C3b ) and carriage upper bound ( C3b ), presented as 
expressions (6), (7), and (8), respectively. These constraints can be converted into 
equivalent convex hull constraints ( C3 ) that are tighter, as shown in expression 9. Fj 
is the convex hull facets for trip j. Hj

(f ,k)
 and hj

f
 are coefficients at type k position and 

the corresponding RHS of facet f for trip j. More proofs can be found in Lin and 
Kwan (2016b).

(2)xa =
∑
p∈Pa

xp,∀a ∈ Ak
,∀k ∈ K

(3)min

⎛
⎜⎜⎝
�
k∈K

�
a∈Ak

0

xa +
�
k∈K

�
a∈Ak

(caxa)

⎞
⎟⎟⎠

(4)b�
k
≤

∑
a∈Ak

0

xa ≤ bk, ∀k ∈ K

(5)
∑
a∈Ain

j

xa −
∑
a∈Aout

j

xa = 0, ∀j ∈ N, ∀k ∈ K

(6)
∑
k∈Kj

∑
a∈Ain

j

qkxa ≥ qj, ∀j ∈ N

(7)
∑
k∈Kj

∑
a∈Ain

j

ukxa ≤ uj, ∀j ∈ N
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Expression 10 is to ensure the consistency of the values between xa and ya ( C4 ). For 
each arc a ∈ A , if it is selected in the solution: ya = 1 and xa ≥ 1 ; otherwise: ya = 0 
and xa = 0 . Here, ua is the biggest unit number that an arc can flow.

4.2.2 � Constraints at the station level

While considering the station level infrastructure, a selected arc is feasible if it is 
operable within permitted time and station layouts, and a train unit schedule is fea-
sible if every arc in the schedule is a feasible arc. A conflict may occur when some 
arcs are selected in the same solution, defined as arc-selection conflict. To be more 
precise, a conflict is caused by the specific flow of certain types of train units on a 
set of arcs, defined as type-flow conflict. Thus, arc-selection constraints ( C5a ) and 
type-flow constraints ( C5b ) are modeled to eliminate station level conflicts ( C5).

An arc-selection conflict contains a set of arcs which together are not compatible 
at the station level, denoted by Ā . If the arcs in Ā are not all selected in a solution, 
the specific conflict will not appear in the solution. Let Z1 be the set of possible arc-
selection conflicts. A conflict-free schedule must not contain any arc set Ā ∈ Z1 . 
Expression 11 models the arc-selection constraints ( C5a).

A type-flow conflict represents an infeasible set of arcs on which unit types and cor-
responding quantities are considered. Let Z2 represent the set of possible type-flow 
conflicts. These conflicts actually are integral points in the solution space. The inte-
ger cut technique proved by Balas and Jeroslow (1972) can be applied to eliminate 
infeasible binary integral points, represented as p = (x1,… , xi,… xn) . The infeasible 
integral point is divided into two sets shown in expression (12). Since the variable xi 
is binary, constraint (13) avoids a certain integral point.

(8)
∑
k∈Kj

∑
a∈Ain

j

vkxa ≤ vj, ∀j ∈ N

(9)
∑
k∈Kj

∑
a∈Ain

j

H
j

(f ,k)
xa ≤ h

j

f
, ∀f ∈ Fj, ∀j ∈ N

(10)
∑

k∈K∶a=a(k)

xa ≤ uaya, ∀a ∈ A

(11)
∑
a∈Ā

ya ≤∣ Ā ∣ −1, ∀Ā ∈ Z1

(12)B = {i ∣ xi = 1}, Q = {i ∣ xi = 0}

(13)
∑
i∈B

(1 − xi) +
∑
i∈Q

xi ≥ 1
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This technique is only valid for binary variables. Necessary adaptation is derived 
below to apply it on an integer model. A set of working binary variables is intro-
duced based on arc-type-flow variables, denoted as follows:

–	 arc-type-flow binary variables: x
q
a ∈ {0, 1},∀a ∈ Ak

,∀k ∈ K,∀q ∈ U  . U 
denotes the set of natural values which can be assigned to corresponding arc-
type-flow integer variables.

For example, suppose the unit coupling upper bound is 3, i.e., U = {0, 1, 2, 3} , and 
type graph Gk1 is in use. For each arc-type-flow integer variable xa , there would be 
four corresponding arc-type-flow binary variables: x0

a
 , x1

a
 , x2

a
 , and x3

a
 . The binary 

values for them are defined as expression (14)

Let Ă represent the set of arcs containing a type-flow conflict; B contains all the 
type-flow binary variables with value 1, and Q holds the other variables over the arc 
set Ă . Thus, the type-flow constraints ( C5b ) are shown in expression (15), where Z2 
is the set of Ă.

The domains for each type of variables are shown at the places where defined. There 
are some advantages and disadvantages of constraints C5a and C5b . C5a are straight-
forward and easy to apply. However, these constraints are slightly over-tight and 
they might rule out some feasible solution because they do not consider any flow 
combination on the infeasible arc set. On the other hand, the type-flow constraints 
do not have that side effect and they are just tight enough to eliminate the infeasible 
type-flow conflict on the infeasible arc set. However, these constraints will largely 
increase the problem size since new variables need to be introduced.

The network level problem (constraints C1 to C4 ) has been researched during 
the last few years and many results have been achieved (Lin and Kwan 2016a; 
Copado-Mendez et al. 2017), defined as Phase I. The two alternative constraints 
of eliminating station level conflicts (shown in expressions (11) and (15)) are 
based on fixed-charge variables that largely increase the complexity of solving 
the model. Besides, computing infeasible arc sets for arc-selection conflicts and 
type-flow conflicts ( Z1 and Z2 ) in advance as inputs based on the station level 
infrastructure and the original DAG is a massive work, because numerous of arc-
selection/type-flow combinations are supposed to be checked. This makes solving 
the model as a whole almost impossible. On the other hand, the coupling orders 
for coupled train unit blocks are also left to be further determined. Since many 
of the station level constraints could have already been satisfied implicitly by the 
network level solution, an adaptive method is proposed to determine feasible cou-
pling orders and resolve the station level conflicts based on the basic network 
level model, defined as Phase II.

(14)xq
a
=

{
1, if xa = q and q ≥ 1.

0, otherwise.

(15)
∑
B

(1 − xq
a
) +

∑
Q

xq
a
≥ 1, ∀Ă ∈ Z2
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5 � Coupling order and network propagation boundaries

5.1 � Coupling order definition

The solution from Phase I is a set of paths each corresponding to a certain train unit 
sequentially serving a set of trips. This solution gives a collection of units for each 
trip and connections among trips. There is no defined unit sequence in a coupled 
unit block because of the simplification of station level constraints. Hence, a multi-
set can be defined to represent the collection of units for each trip, denoted by Uj , 
j ∈ N . The elements in Uj are the units of the same or different types serving trip 
j. The number of elements of the same unit type in Uj is the type flow of trip j. For 
instance Uj = {X,X, Y , Y} means trip j is served by 4 units composed of 2 units of 
type X and 2 units of type Y. In a network level solution, two attributes for a trip j are 
important to introduce the concept of coupling order, which are the predecessor and 
successor node sets ( Ij and Rj ). The predecessor/successor node set of trip j contains 
all the nodes that have an arc to/from trip j. Considering Fig. 4 as an example, the 
predecessor node set of trip j is {i1, i2,… , im} and the successor node set of trip j 
is {r1, r2,… , rm} . In addition, the trip timing and direction information related to a 
given timetable and corresponding station structure are also important in later dis-
cussion. Their notations are shown in Table 1.

Here, dp(j) and ap(j) are binary values since each platform has two notional direc-
tions. Let us define them as {up, down} , which will be used in the rest of this part. 
One value has to be crossed out for the dead-end platforms since they only have one 
end accessible. Thus, the general unit-block collection for each trip can be described 
by expression (16). Normally, the number of units coupled together can be up to 4 in 
real-life, i.e., m ≤ 4 , |Ij| ≤ 4 , and |Rj| ≤ 4.

For trips served by a single unit ( m = 1 ), there is no need to consider their coupling 
order. Besides, the unit sequence of unit blocks of the same type is also not critical. 
This is based on the assumption that the diagram assignment among units of the 
same type can be easily swapped since unit circulation and maintenance are not con-
sidered in this research.

Day-time coupling and decoupling operations are mostly conducted at platforms 
in the UK. Those activities are critical because they form/request a certain unit 

(16)Uj = {u1u2 ⋯ um},∀j ∈ N

Table 1   Notations of some trip 
attributes

Notations ( j ∈ N) Definitions

Ij Predecessor node set for trip j in a given solution
Rj Successor node set for trip j in a given solution
dp(j) Departing direction of trip j
dt(j) Departing time of trip j at its departure platform
ap(j) Arriving direction of trip j
at(j) Arriving time of trip j at its arrival platform
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sequence. This feature together with trip attributes in Table 1 can be utilized to ten-
tatively assign locally feasible coupling orders to some trips. Let Sj denote the set of 
stopping stations of trip j. To formalize the concept of coupling order, let us define a 
sequenced multi-set Os

j
 to represent the coupling order for trip j at location 

s, s ∈ Sj, j ∈ N . The start of a sequence is the front of a certain moving direction fol-
lowed by sequenced unit blocks as the rear. During the coupling order assignment 
process, it has three possible states: fixed, unfixed, and semi-fixed, which can be 
described in a general expression (17). The elements in Os

j
 are sequenced subsets of 

Uj . The union of all the elements in Os
j
 must be the same with Uj , because Os

j
 and Uj 

express the unit formation of trip j, as shown in expression (18). Generally, Os
j
= Uj 

if Os
j
 is “unfixed”.

In the context of arrival and departure, a unit block has a front and a rear with 
respect to its travel direction. As shown in Fig. 3, the coupling of two unit blocks 
can either be a front-front (Fig. 3a) or front-rear (Fig. 3b, c) attachment.

Rear-rear (Fig.  3d) attachment is physically impossible unless one of the unit 
blocks reverses into the platform, in which case the reversed approaching end is 
regarded as the front. Similarly, after the decoupling of a unit block, the two result-
ing unit blocks may next travel in the same direction with front-rear facing or in the 
opposite directions with rear-rear facing (front-front facing is physically impossible).

(17)Os
j
= [v|v ⊆ Uj] = [v1v2 ⋯ vm� ],∀s ∈ Sj,∀j ∈ N

(18)
m�⋃
i=1

vi = Uj, ∀j ∈ N, m� ≤ m

Fig. 3   Coupling position
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5.2 � Function and operator definitions

In real life, the moving direction of a trip may be reversed at some en-route sta-
tions. With a known unit sequence in a trip at a certain station, the unit sequences 
at other stations are all known by counting the number of en-route reversal opera-
tions. For a given network level schedule, it is worthy of tentatively seeking if 
there exists a feasible coupling order assignment. Coupling and decoupling oper-
ations can locally fix some feasible coupling orders. Running trips can spread 
the influence of a coupling order out to the whole network. Accordingly, a front-
and-rear reversal function is defined to express the en-route reversal movement, 
which will be applied once the moving direction is reversed. In addition, coupling 
and decoupling operators are also defined based on the assumption that the trips 
involving coupling/decoupling events are operated at the same platform. Their 
notations are shown in Table 2. The operations related to different platforms, for 
example re-platforming, will be further explained in Sect. 6.1.3. 

(1)	 Front-and-rear reversal function Rev(�) : The parameter � is a coupling order. 
This function can be applied multiple times, defined as Revn(�) , n ∈ ℕ . While n 
is odd, � will be reversed; otherwise, the same order is kept. Testing n is odd or 
even is a matter of computational implementation.

(2)	 Coupling operator: A coupling event is referring to two (sequenced) sets joining 
together to form a longer (sequenced) set. The arcs involving this operation are 
called coupling linkages. Let us define the coupling operator ( + ) on two unit 
blocks with the resultant coupling order as shown in expression (19). That is, 
the second operand unit block w is attached to the rear of the first operand unit 
block v. 

 Let i1 , i2 denote train unit blocks arriving at the same platform to be attached 
and i1 arrives first, at(i1) < at(i2) . Suppose i is the resultant unit block after the 
attachment. As shown in Fig.  3, i1 and i2 can arrive from the same/opposite 
direction(s). Considering ap(i1) as the reference direction, the coupling order of 
the resultant unit block is shown in expression (20). 

(19)u = v + w ⟹ Ou = [OvOw]

Table 2   Function and operator Symbols Remarks

Rev(�) Front-and-rear reversal function
“+” Coupling operator
“−” Decoupling operator
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 Once the coupled formation Oi based on the reference direction is fixed, the 
next step is to assign Oi to trip j according to the relative directions between 
dp(j) and ap(i1) , seen in expression (21). 

(3)	 Decoupling operator: Similar to the discussion on the coupling operator in (2), 
let us define the decoupling operator (−) on two unit blocks with the resultant 
coupling order of the first operand as shown in expression (22), in which the 
second operand unit block w is detached from the rear of the first operand unit 
block v. 

 Let r, r1 , r2 denote train unit blocks such that r1 and r2 depart from the same 
platform after being detached from r. Suppose r1 departs first ( dt(r1) < dt(r2) ), 
and using dp(r1) as the reference direction. The coupling order of unit block r 
can be obtained according to expression (23). 

 With the arrival direction of r, the requested coupling order at the destination 
of trip j can be assigned as expression (24). 

For the dead-end platform, the unit blocks can only arrive from the same direc-
tion and the departure direction must be opposite of the arrival direction.

When there is no coupling ( |Ij| = 1 ) or decoupling ( |Rj| = 1 ) related to form-
ing/decomposing some new unit blocks, the coupling order is temporarily consid-
ered as unconstrained. The coupling-order requirement of unfixed trips will be 
restored at the stage of coupling order propagation through the whole network. 
Another case shown in Fig.  4 illustrates that trips involve more than one cou-
pling/decoupling operation, i.e., |Ij| ≥ 3 or |Rj| ≥ 3 . This case is considered in an 
iterative way as shown in Algorithm 1. Only one coupling operation is applied at 
each iteration. The temporary coupling order during the iteration process is stored 
in Otemp till all of the unit block of trips in Ij is traversed. Thus the final Oi can be 

(20)
i =

{
i1 + i2, if ap(i1) = ap(i2)

Rev(i2) + i1, otherwise

⟹ Oi =

{
[Oi1

Oi2
]

[Rev(Oi2
)Oi1

]

(21)Oori
j

=

{
Oi, if dp(j) = ap(i1)

Rev(Oi), otherwise

(22)u = v − w ⟹ Ov = [OuOw]

(23)
r1 =

{
r − r2, if dp(r1) = dp(r2)

r − Rev(r2), otherwise

⟹ Or =

{
[Or1

Or2
]

[Or1
Rev(Or2

)]

(24)Odest
j

=

{
Or, if ap(j) = dp(r1)

Rev(Or), otherwise
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obtained to be assigned to Oori
j

 . Similarly, this method can be applied to multi-
decoupling operations as well.

Algorithm 1 Multi-coupling operations
Require: Ij
Ensure: Oori

j

1: I
′
j := sorted(Ij); i1 := I

′
j .firstTrip; Otemp := Odest

i1

2: for all idx in I
′
j \ i1 do

3: Otemp ← ”+” for Otemp and Oiidx
4: end for
5: Oi := Otemp

6: if dp(j) = ap(i1) then
7: Oori

j := Oi

8: else
9: Oori

j := Rev(Oi)
10: end if

5.3 � Coupling order propagation boundaries

In this section, we systematically extract concise parts of the DAG where coupling-
order conflicts could arise in a given Phase I solution because the coupling order has 
not been maintained at the network level. With respect to the full DAG G , a Phase I 
solution is a subgraph G∗

⊂ G with train unit flows assigned. Disregarding the source 
and sink, G∗ is decomposed into one or more disjoint connected graphs, which can 
be classified into two types as follows, represented as sets G1 and G2 , respectively.

–	 We do not consider the coupling order issue for a subgraph if it has only a single 
unit type or it has multiple unit types but does not involve any coupling/decou-
pling operation, stored in G1.

–	 The subgraphs which do not satisfy the conditions for G1 will be stored in G2 
because their coupling order issues matter.

Fig. 4   Multiple (de-)coupling operations
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In a g ∈ G2 , there may be some trips that are served by only one single unit type, 
denoted as set N1 . The coupling order issues for those trips are trivial, thus, g can 
be further decomposed to smaller subgraphs to analyze the coupling order issues by 
trimming off all the trips in N1 . Let us use G3 to denote the set of subgraphs decom-
posed from all the graphs in G2.

Figure 5, shows an example graph g ∈ G2 in which the trips that are free of cou-
pling order issue (single unit type) are represented as dashed circles. Two inde-
pendent subgraphs (marked out by blue boxes) can be extracted from g when those 
dashed nodes are trimmed off. A graph in G3 is the smallest unit to analyze the cou-
pling order issue on the network. The coupling order issue of a g1 ∈ G3 has nothing 
to do with that of another g2 ∈ G3 , but is sealed within g1 such that the coupling 
orders for the trips contained in g1 interact with each other, defined as coupling order 
propagation. If the coupling orders of the trips in a graph g1 ∈ G3 are not compatible 
with each other, all the get-in and get-out arcs of the nodes in g1 will be collected as 
an infeasible arc set. Take the second subgraph in Fig. 5 as an example. If the cou-
pling orders of T14, T15, T17 are not compatible with each other, arcs {T11–T14, 
T10–T14, T14–T16, T15–T16, T16–T17, T16–T18} will be collected as an infeasi-
ble arc set.

To illustrate how a coupling order propagates through a graph in G3 , the first sub-
graph in Fig. 5 is taken as an example. At its fringe, all the get-in and get-out arcs 
and their connected nodes (T3, T4, T9, T10, and T12) are restored, as shown in 
Fig. 6 with one coupling and two decoupling operations. One en-route reversal oper-
ation (marked as *) will happen to T3, T8, T10 and T12.

Figure 6b is the corresponding schematic space-time diagram and their serving 
units assigned at the network level, on which (de-)coupling operations are marked as 
black circles. Stations A, B, C have only one platform and their platform types are 
also indicated. There may be other trains visiting as intermediate stops, which are 
not shown here. They are usually planned at the timetabling stage such that they will 
not be in conflict with other terminating trips.

Fig. 5   Two subgraphs extracted from a graph in G
2
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First of all, the algorithm assigns local feasible coupling orders by applying the 
coupling/decoupling operations introduced in Sect. 5.2 and the results are as follows: 

(1)	 Coupling operation to form T5 with regard to arcs (T3,T5) and (T4,T5) by con-
sidering ap(T3) as the reference direction.

	   Since, ap(T3) = ap(T4) and at(T3) < at(T4)

	   We have, i = i3 + i4 ⟹ Oi = [O3O4] = [{Y , Y}{X}] = [YYX]

	   Since dp(T5) ≠ ap(T3) , Oori
5

= Rev(Oi) = [XYY]

	   Thus, Odest
5

= Oori
5

= [XYY]

	   Since, no en-route reversal operation for T5, Oori
5

= Odest
5

= [XYY].
(2)	 Decoupling operation for T7 through arcs (T7,T8) and (T7,T9) to serve T8 and 

T9 with consideration dp(T8) as the reference direction.
	   As dp(T8) ≠ dp(T9) , r8 = r� − Rev(r9)

	   Thus, Or� = [O8Rev(O9)] = [{X, Y}{Y}] = [{X, Y}Y]

	   Since ap(T7) = dp(T8) , Odest
7

= Or� = [{X, Y}Y]

	   Then, Oori
7

= Odest
7

= [{X, Y}Y]

Fig. 6   A subgraph extracted from Fig. 5
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(3)	 Decoupling operation for T8 to serve T10 and T12 over arcs (T8, T10) and (T8, 
T12). Let dp(10) be the reference direction.

	   Since, dp(T10) = dp(T12) and dt(T10) < dt(T12)

	   We get, r10 = r − r12 ⟹ Or = [O10O12] = [{Y}{X}] = [YX]

	   Because of ap(T8) ≠ dp(T10) , Odest
8

= Rev(Or) = [XY]

	   Thus, Oori
8

= Rev(Odest
8

) = [YX]

Through the operations above, the coupling orders of T5 and T8 are fixed and the 
coupling order of T7 is semi-fixed, but the coupling order of T6 is still unfixed. 
Three possible tracking methods are considered for the coupling order propaga-
tion: early-to-late tracking, late-to-early tracking, and tracking starting with any 
intermediate trip. These methods may result in conflict-free or coupling-order 
collision at different locations on the network.
Method 1: T5 → T6 → T7 → T8.

–	 T5 → T6: Since there is no en-route reversal happening to T6 and 
ap(T5) = dp(T6) , thus, Oori

6
= Odest

6
= Odest

5
= [XYY].

–	 T6 → T7: Because ap(T6) ≠ dp(T6) and no en-route reversal for T7 as well, 
thus, Oori

7
= Odest

7
= Rev(Odest

6
) = [YYX].

–	 Compare the propagated coupling order to the semi-fixed coupling order 
requested by the decoupling operation: [YYX] is not compatible with [{X, Y}Y].

–	 Conclusion: The coupling-order collision is at T7.

Method 2: T8 → T7 → T6 → T5.

–	 T8 → T7: This involves a decoupling operation which is considered at the 
stage of partially finalizing the locally feasible coupling order of T7. With a 
known coupling order of T8, Odest

7
= [Oori

8
Rev(Oori

9
)] = [YXY] . This coupling 

order must be compatible with the semi-fixed coupling order of T7 because 
this propagation only uses the fixed coupling order of the unit block serving 
T8 to replace the unfixed part in [{X, Y}Y].

–	 T7 → T6: Oori
6

= Odest
6

= Rev(Oori
7
) = [YXY].

–	 T6 → T5: Oori
5

= Odest
5

= Oori
6

= [YXY].
–	 Compare the propagated coupling order to the fixed coupling order formed by 

the coupling operation: [YXY] is not compatible with [XYY].
–	 Conclusion: The coupling-order collision is at T5.

Method 3: Tracking starts with any intermediate unfixed trip, T6 in this example. 
The coupling order of T6 can be fixed via T5 or T7.

–	 T5 → T6: Oori
6

= Odest
5

= [XYY].
–	 T7 → T6: Odest

6
= Rev(Oori

7
) = [Y{X, Y}].

–	 Oori
6

 and Odest
6

 are not compatible with each other.
–	 Conclusion: The coupling-order collision is at T6.
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As shown in the example above, although the coupling-order collision might be 
located in different places because of different propagation tracking methods, the 
same sets of arcs are involved, which are all the get-in and get-out arcs of the nodes 
in a graph g ∈ G3 . For a given network level schedule, it may result in some indi-
vidual coupling-order collisions, and it is also possible that there are some collisions 
with overlapping arcs. For the latter case, the collisions with overlapping arcs can be 
considered via two strategies: considering them individually such that each conflict 
contains the overlapping arcs, or grouping them together as a combined conflict. 
Some experiments on these strategies will be reported in Sect. 7.2.

6 � An adaptive approach

Since many of the station level constraints could have already been satisfied implicitly 
by the basic network level solution in Phase I, this paper proposes an adaptive method 
to resolve the station level constraints based on the basic network model. Figure 7 shows 
a flowchart of this method. The basic Phase I containing constraints C1 to C4 (referring 
back to Sect. 4.2.1) is solved by RS-opt in Lin and Kwan (2016a). Phase II attempts to 
detect potential conflicts and assigning feasible coupling orders. Once an unresolvable 
station level conflict is encountered, a corresponding station level constraint C5 (seen in 
Sect. 4.2.2) will be added to RS-Opt. A new solution is to be sought once new station 
level constraints are added. If no more station level blockage is detected, the correspond-
ing feasible coupling orders of trips served by multi-units will also be given such that a 
solution with richer coupling order information will be delivered.

Phase II contains two core parts. The first part is the conflict detection and cou-
pling order assignment based on a series of factors, for instance, physical structure 
of railways and stations, timing and moving directions of trips, tentatively assigned 

Fig. 7   Flowchart for the adaptive approach
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arcs and unit flows for trips, etc. For a given station operation environment, conflicts 
are detected when a tentative linkage is not operable, or feasible coupling orders 
cannot be found at a certain platform, or a preassigned coupling order is not feasible 
to another operation environment. The second part is to extend the model of RS-Opt 
and resolve detected conflicts.

6.1 � Coupling order assignment and conflict detection

A two-stage method is proposed to assign coupling orders and detect potential 
blockages caused by crossing linkages or coupling-order collision. The first stage 
is based on each platform which has two purposes: one is to assign locally feasi-
ble coupling orders with regard to coupling/decoupling operations introduced in 
Sect. 5.2; the other is to verify related linkage feasibility. The second stage is to find 
out the compatibility among the locally fixed coupling order within each g ∈ G3 and 
also further fix some unfixed/semi-fixed coupling orders by spreading locally feasi-
ble coupling orders assigned by the first stage to the network.

6.1.1 � Platform‑based stage

This stage mainly assigns locally feasible coupling orders and detects potential con-
flicts caused by crossing linkages. The platform function can be modeled as a data 
structure behaving similar to a double-ended queue for storing and processing unit 
blocks, in which unit blocks are sequenced by “push” and “pop” operations, shown 
in Fig. 8. A “push” operation refers to one unit block getting into the platform with a 
“journey” and a “pop” operation refers to one unit block getting out of the platform 
with a “journey” after some necessary operations.

The “journey” here can be either a timetabled trip or a shunting movement, for 
example a re-platforming movement. The two ends for “push/pop” operations cor-
respond to two approaching directions to a through platform, which can be mapped 
to up and down directions. The dead-end platform can also be modeled by disabling 
one end. Besides, this data structure has a capacity limitation regarding to the plat-
form length. While pushing each arrival unit block, virtual “dividers” are added to 
isolate it from the existing unit blocks since unit blocks are physically separate when 
they arrive. This data structure is denoted as unitStore.

Fig. 8   Data structure for unitStore 
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Algorithm  2 describes the process at a platform. It takes a platform and basic 
solution s of Phase I as input. The output is a richer train unit schedule (hs′ ) with 
locally feasible coupling orders assigned at each platform and verified linkages. 
Conflicts will be collected in CF1 to be further resolved.

Algorithm 2 Platform-based stage
Require: s, h, (∀h ∈ H)
Ensure: s′ and CF1
1: s′ := s; dL := sortedDepTripList; aL := sortedArrTripList; dtrip := dL.firstTrip();

time := dtrip.depT ime; unitStore := empty
2: repeat
3: for all atrip in Adt = (aL | atrip.arrT ime < time) do
4: if (unitStore.length+ atrip.length ≤ max) then
5: unitStore.push(atrip.composition)
6: else if (∃i ∈ unitStore: shuntAway(i) and i.length ≥ atrip.length) then
7: sh := shuntingMove; s′.update(sh); unitStore.remove(i);
8: unitStore.push(atrip.composition)
9: else
10: dt := {unitStore.depTrips, link(atrip).headNodes}
11: c := OCconflict; CF1.add(c). // Over capacity conflict
12: dL := dL.remove(dt); aL := aL.remove(atrip); unitStore.clear()
13: if dL.isEmpty() = false then
14: dtrip := dL.firstTrip(); time := dtrip.depT ime; go to for loop
15: else
16: break;
17: end if
18: end if
19: aL.remove(atrip)
20: end for
21: links := dtrip.getInLinkages
22: verify := linkImplement(links, unitStore)
23: if verify.operable = true then
24: orders := verify.orderList
25: s′.update(orders); unitStore.pop(dtrip.composition)
26: else
27: c := verify.LIconflict
28: CF1.add(c). // Linkage implementation conflict
29: uc := c.linkedUnitblocks; unitStore.remove(uc)
30: update element sequence in unitStore
31: end if
32: dL.remove(dtrip); dtrip := dL.firstTrip(); time := dtrip.depT ime
33: until dL.isEmpty()

Three lists are formed for platform h: arrival list, departure list and linkage 
list connecting the arrivals to departures. This algorithm starts with the follow-
ing initializations: dL and aL are time-sorted departure and arrival trips, respec-
tively; dtrip and time are assigned with the first departure trip and its departure 
time, respectively; unitStore is initialized as empty. Once time is assigned a new 
value, all the trips in aL whose arrival times are smaller than time, defined as set 
Adt , will be attempted to push in unitStore once there is enough space. If there 
is not enough space, the shuntingAway() function will be called to verify all the 
existing unit blocks to find out if some of them can be shunted away to secure 
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enough space for the new push-in unit block. The linkage slack time will be veri-
fied during this process. If shuntingAway(i) = true , the new push-in unit block can 
be stored in unitStore and accordingly the shunting movement will be saved in 
s′ . Otherwise, all the arcs linked with those unit blocks will be considered as a 
conflict stored in CF1 because they invalidate the platform capacity constraint, 
denoted as OCconflict. All the unit blocks will be cleared out from unitStore, and 
the departure trips corresponding to the unit blocks in unitStore and atrip will be 
removed from dL, and new dtrip and time will be assigned to restart the for loop.

After all the arrival unit blocks arriving earlier than the current time are success-
fully pushed into unitStore, the algorithm starts to deal with the unit blocks which are 
supposed to be popped out to serve the trip whose departure time is time. A function 
called linkImplement(), shown in Algorithm 3, is applied to verify the feasibility of 
links which are the get-in linkages of this departure trip with respect to the current 
unitStore status. If all the get-in linkages are verified as operable, the locally feasible 
coupling orders will be updated to s′ and the unit block serving this trip will be popped 
out of unitStore. Otherwise, the conflict related to the linkage implementation, denoted 
as LIconflict will be saved into CF1 to be resolved later and the unit blocks related to 
this conflict uc will be removed from unitStore. Then dtrip and time will be renewed 
for the next iteration. A conflict will not break this algorithm until all the departure 
trips are verified because this strategy tries to collect as many conflicts as it can.
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Algorithm 3, linkImplement(), is a sub-part of Algorithm 2 and the coupling 
and decoupling operations (“+ ”, “−”) defined in Sect. 5.2 are applied in this algo-
rithm. There are two types of input for this algorithm: one the the links obtained 
at line 19 in Algorithm 2, the other is the current status of unitStore. This algo-
rithm focuses on verifying if the linkages in links of a departure trip (dtrip) are 
operable under the corresponding unitStore circumstances and returns an assigned 
locally feasible coupling order or a conflict. Let us define dir as the end (up or 
down) of unitStore that complys with the departure direction of dtrip and c is 
the total number of linkages in links. Thus, we define a function unitStore(dir, c) 
to obtain c unit blocks counted from the end dir, stored in ubs. i and j are the 
arrival trips delivering the first and last unit blocks in ubs, respectively. Let us 
consider an example by using the unitStore status shown in Fig. 8. Suppose c = 3 , 
dir = down , thus, ubs = [uz+1uzuz−1] , and i and j refers to the arrival trips deliver-
ing uz+1 and uz−1 , respectively. This algorithm firstly justifies if the unit blocks 
in ubs are delivered by the arrival trips which are actually linked to dtrip. If this 
condition is satisfied, the operations converting the linked arrival trips to dtrip 
will be investigated, which can be classified into four cases: 1  no coupling or 
decoupling, 2  decoupling only, 3  coupling only, 4  both coupling and decou-
pling, as shown in Fig. 9.

For case 1  it will be claimed as operable if this condition is satisfied because 
it only requests standard turnaround time that has been considered while generat-
ing the DAG. The cases 2  3  4  can be differentiated by counting c and get-out 
arcs of each arrival trip for the unit blocks in ubs. The feasibility of these cases 
will be ensured if a locally feasible coupling order can be assigned. Otherwise, 
this algorithm claims the given links as inoperable and returns a conflict.

6.1.2 � Network‑based stage

The result from the platform-based stage is the basis of the network-based coupling 
order propagation process which aims to finalize more feasible coupling orders or 
to detect conflicts caused by incompatible coupling orders within a graph in G3 . As 
station operations are connected by running trips, some unfixed/semi-fixed trips can 
be further determined taking advantage of the coupling order propagation on the 
network based on the solution graph of Phase I and the infrastructure of railway 
networks, and the coupling order conflict can also be captured during the propaga-
tion process. Issues considered at this stage include: coupling order propagation, en-
route reversal of a unit block, and flexible timings for some empty shunting move-
ments (discussed in Sect. 6.1.3).

Fig. 9   Four possible cases of operations to form a departure trip
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Algorithm 4 Network-based stage
Require: s′, θ
Ensure: s′′ and CF2
1: G3 := graphSplit(s′); s′′ := s′

2: for all g in G3 do
3: i := g.fixedL.anyTrip
4: backwardSearch(eLi); forwardSearch(lLi)
5: if propatingToEdge = true then
6: orders := finalizedOrder(g)
7: s′′ := s′.update(orders)
8: else
9: c := COconflict; CF2.add(c). // Coupling-order collision in g
10: end if
11: end for

Algorithm 4 focuses on coupling order propagation through each g ∈ G3 that may 
contain some trips with fixed coupling orders assigned at the platform stage. Let us 
define fixedL as the fixed-order trip list for a g ∈ G3 . For a trip i ∈ fixedL , consider-
ing i as a divider, the trips within g can be split into two sorted lists. One includes 
the trips earlier than i, called earlier trip list ( eLi ); the other contains the trips later 
than i, called later trip list ( lLi ). Starting from i, two directions coupling order prop-
agation search will be launched to further assign coupling orders and detect cou-
pling-order collisions, as shown in Fig. 10. Trip i can be the first trip, the last trip, or 
any other trip, corresponding to one of those three different tracking methods of the 
coupling order propagation that have been analyzed in Sect. 5.3.

The backwardSearch(eLi) and forwardSearch(lLi) start with either Oori
i

 or Odest
i

 . It 
is possible that the platform stage assigns two incompatible orders to the origin and 
destination of trip i such that this g is claimed as a coupling-order conflict directly. 
Otherwise, the coupling order of trip i at a certain location will be propagated to 
other trips in g and compared to their coupling orders that may have been assigned 
at the platform stage. If the propagated order and the assigned order of each trip in 
g are compatible, g is claimed as conflict-free. The coupling orders of trips in g are 
finalized and updated to s′′ . Otherwise, all the linkages related to the trips in g will 
be collected as a coupling-order collision to be stored in CF2 for further resolution.

6.1.3 � Flexible timings

The time available for unit blocks moving from arrivals to departures is limited, 
which is rigidly constrained by the timetable. Within this limited time range, a series 
of operations must be accomplished at the corresponding stations such as coupling, 
decoupling, re-platforming, shunting to depot/siding, cleaning, equipment inspec-
tion, etc. Suppose that a unit block u arrives with trip i at platform h and finishes all 

Fig. 10   Backward and forward 
search within a g ∈ G

3
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necessary operations which consume time of tph and later leaves from h to another 
platform h′ to serve trip j. A dummy trip ũ(i,j) from h to h′ is generated and its depar-
ture time dt(ũ) and arrival time at(ũ) are flexible. However, the duration time of 
dummy trip u is restricted by the clock time of the given timetable such that time 
boundaries for the departure and arrival times of dummy trips must be considered 
to ensure no blockage is caused at an inappropriate time. Normally, ũ can be moved 
away from h after the necessary operations are finished but it must be shunted away 
before the next arriving trip, and its departure time range is shown in expression 
(25). Besides, ũ must arrive at h′ earlier than the departure time of trip j minus nec-
essary departure operations and later than the last departure trip at h′ , and its arrival 
time range is shown in expression (26).

Figure 11 shows a simple example of avoiding blockage by manipulating flexible 
time boundaries together with the coupling order decision. Suppose that h1 and h4 
are dead-end platforms and h3 is a through platform and the directions of T3 and T4 
are the same. T1 is a re-platforming trip from h2 to h1 . The following two procedures 
explain which time boundary is feasible.

Procedure 1. at(T2) < at(ũ1) < dt(T3) − tph1 → Oori
3

= [XY] → 
Odest

3
= Rev(Oori

3
) = [YX] → Oori

4
= [YX] → Odest

4
= Rev2(Oori

4
) = [YX] → u1 blocks the 

departure of u2 → infeasible time boundaries.
Procedure 2. at(ũ1) < at(T2) → Oori

3
= [YX] → Odest

3
= Rev(Oori

3
) = [XY] → 

Oori
4

= [XY] → Odest
4

= Rev2(Oori
4
) = [XY] → Oori

4
= [Y] and Oori

4
= [X] → feasible time 

boundaries.

6.2 � Conflicts resolving

The station level resolution includes two main parts: coupling order assignment and 
conflict detection, and conflicts resolving. The first part is important because it is the 
basis for the second part. If the first part claims a conflict-free solution, there is no 
need to launch the second part anymore. These two parts are complementary to each 
other. After conflicts are detected by the first part, the second part converts these 

(25)at(i) + pth < dt(ũ) < at(i + 1), ∀ũ

(26)dt(j − 1) < at(ũ) < dt(j) − pth� , ∀ũ

Fig. 11   Avoid blockage by manipulating the flexible timings boundaries
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conflicts into linear constraints and feeds new constraints to RS-Opt. The method to 
form new constraints of eliminating the solutions that contain conflicts is described in 
Sect. 4.2.2. However, generating the full conflict set of Z1 or Z2 in an original full DAG 
is complicated as numerous arc/flow combinations exist. Through the proposed adap-
tive approach, the complication of generating Z1 or Z2 is avoided, and we only need to 
detect the conflicts existing in a Phase I solution. According to the observation on the 
Phase I solution, potential conflicts at the station level are sparse, thus, the difficulty of 
automatically assigning coupling orders and detecting potential conflicts is much lower 
than that of generating the full conflict set Z1 or Z2 in an original DAG. The method 
of assigning feasible coupling orders and detecting conflicts have been systematically 
designed in Sect. 6.1. Given a solution from Phase I, the detected conflicts are stored 
in CF1 and CF2 such that the constraints introduced in expressions (11) and (15) can be 
converted as expressions (27) and (28), defined as valid cuts.

Figure 12 shows the logic of feeding valid cuts to the solver (RS-Opt) of Phase I. RS-
Opt considers the original DAG G = (N,A) as input and gives a tentative solution 
G∗ = (N,A∗) . The station level attempts to assign feasible coupling orders to G∗ and 
finalizes tentative linkages. During this process, the conflicts are detected at the plat-
form stage and the network stage. Note that some conflicts at the platform stage can 
be locally resolved, which will not be recorded in CF2 . Three strategies are intro-
duced to resolve local conflicts, including the swapping part of the unit diagrams 
for the same type of train unit, inserting extra station shunting movements within 
the bearable time of corresponding linkages, and manipulating the flexible timing of 
re-platforming/depot-return train units. The resolved platform-based results will be 
passed to the network-based stage to assign further coupling orders and detect cou-
pling-order conflicts stored in CF2 . The conflicts in CF1 and CF2 are formed as valid 
cuts to be added to RS-Opt. RS-Opt will be launched again with detected valid cuts 
to deliver a new solution G∗ = (N,A∗) . The working mechanism of the valid cuts is 
to eliminate all the solutions containing the conflicts formed in the valid cuts. Thus, 
RS-Opt with added valid cuts will not consider a solution which contains any con-
flict that has been constrained in RS-Opt as a feasible solution. For a given schedule, 
if and only if no conflicts or only local resolvable conflicts are detected, the schedule 
will be reported as the final conflict-free schedule with assigned coupling orders and 
finalized linkages.

(27)
∑
a∈Ā

ya ≤∣ Ā ∣ −1, ∀Ā ∈ CF1 ∪ CF2

(28)
∑
B

(1 − xq
a
) +

∑
Q

xq
a
≥ 1, ∀Ă ∈ CF1 ∪ CF2
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7 � Computational experiments

7.1 � Dataset description

To verify the correctness of the concepts and approach proposed in this research, 
experiments were firstly conducted based on a small size artificial station level struc-
ture, shown in Fig. 13. This structure contains three terminating stations S1, S4, and 
S8, and their platform types are indicated.

The other stations are intermediate stations where the coupling order reversal en-
route may occur. {up} and {down} directions for each platform are marked to notify the 
relative approaching and leaving directions of unit blocks. Only one direction is avail-
able for a dead-end platform, but two directions are usable for a through platform. One 
depot connects with the down direction of the two platforms of station S4, which means 
the units shunt to depot at this station can only leave their platforms through the down 
direction. Based on this station level infrastructure, four artificial datasets, containing 
trips running between all three O–D pairs (S1–S4, S1–S8, S4–S8). These datasets are 
small but well designed to cover the issues described in this research. Table 3 gives a 
summary of these artificial datasets.

Datasets D3 and D4 have the same timetable such that they have the same num-
ber of generated arcs. However, some trips in this timetable have different passenger 
demands, thus, their solutions could be different as well. Two types of compatible units 
are used on the network to satisfy diverse passenger demands.

The real-world datasets used in this research are derived from a British train operat-
ing company, TransPennine Express (TPE), which runs the regional and intercity rail 

Fig. 12   Logic of feeding valid cuts to Phase I

Fig. 13   Station level structure
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services between the major cities of Northern England and Scotland. Usually, TPE has 
a daily timetable of around 500 trips. RS-Opt is set as the full model containing the arc-
selection variables ( ya ), which struggles to deliver a solution for even small instances 
(Lin and Kwan 2017). Thus, three sub-datasets are derived based on locations from the 
complete timetable as shown in Table 4. Class 185 and Class 350 are usually not cou-
pled in real-life scheduling, but this research considers them to be able to couple with 
other units to test the coupling order issues.

The experiments were applied by the station level constraints C5a making use of 
the fixed-charge variables ( ya ) because C5b is hard to be implemented in the existing 
RS-Opt. RS-Opt is written in FICO Xpress-MP 8.5 with Mosel, and the coupling 
order assignment and linkage finalization are coded in C#. The experiments are con-
ducted on a 64-bit workstation with 64G and an Intel Core i7-6700HQ CPU.

7.2 � Results of artificial datasets

Dataset D1 generated a solution without any station level constraints added; it is 
conflict-free and feasible coupling orders can be assigned. The platform-based stage 
assigns fixed coupling orders for three trips and a semi-fixed coupling order for one 
trip. Based on the results of the platform-based stage, the network-based stage fur-
ther assigns the coupling orders for another two trips and the semi-fixed trip has also 
been further fixed through coupling order propagation. There is one trip formed by a 
coupling operation of two units and one of them involves re-platforming operation. 
Its feasible coupling order and re-platforming time boundary are also processed at 
the network-based stage.

Dataset D2 runs three iterations to find a conflict-free solution, and detailed run-
ning information is shown in Table 5.

We can notice that the solution fleet size of each iteration is the same and 
the objective function has a slight increase as we expected for compromising of 

Table 3   Summary of artificial 
data sets

Dataset DAG Unit types Unit com-
patibility

Fleet size

D
1

(17, 73) X,Y Yes 2X,4Y
D

2
(25, 111) X,Y Yes 2X,5Y

D
3

(21, 91) X,Y Yes 5X,5Y
D

4
(21, 91) X,Y Yes 5X,5Y

Table 4   Summary of real-world 
data sets

Dataset DAG Unit types Unit 
compat-
ibility

Fleet size Stations

Sub1 (97, 2671) c185, c350 Yes 20, 21 9
Sub2 (126, 1913) c185, c350 Yes 11, 17 7
Sub3 (65, 569) c185, c350 Yes 6, 12 4
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producing a conflict-free schedule. In this process, four conflicts are detected 
during the platform-based stage,in which two of them are locally resolvable. 
Hence, only two station level constraints (crossing linkages) are added back to 
Phase I which are shown in the fifth column in Table 5. Since all the conflicts 
are detected during the platform-based stage, the arc and flow changing through 
two iterations are visualized in Fig. 14 where the red arrows represent crossing 
linkages. The conflicts are resolved by some arc and unit type changes for T14 
and T20.

The experimenting information for dataset D3 is shown in Table  6. For 
the solution from Phase I of each iteration, there was no conflict detected at 
the platform-based stage but one conflict was detected at the network-based 
stage. In the first solution, a coupling-order collision is located in the arc set 
{20, 27, 38, 40, 47, 48} , which is converted as constraint (29) such that all the 
solutions that contain these arcs are eliminated.

With constraint (29), RS-Opt delivers a new solution, which still contains a 
coupling-order collision in {34, 43, 51, 52, 61, 62} , converted as constraint (30). 
RS-Opt has been launched again with constraints (29) and (30) to deliver another 
solution which is finalized as conflict-free with assigned coupling orders.

(29)y20 + y27 + y38 + y40 + y47 + y48 ≤ 5

Table 5   Information on each 
iteration for D2

Iteration Objective Fleet Time Conflicts New 
constraint 
arc set

1 8.09951 4X,4Y 10.1s 0 No
2 8.09954 4X,4Y 11.3s 2 {80,85}
3 8.10041 4X,4Y 9.4s 2 {83,85}

Fig. 14   Station level arc-flow changing

Table 6   Information on each iteration for D3

Iteration Objective Fleet Time Conflicts New constraint arc set

1 6.08601 3X,3Y 11.5s 0 No
2 6.08603 3X,3Y 10.9s 1 {20,27,38,40,47,48}
3 7.08598 3X,4Y 207.1s 1 {34,43,51,52,61,62}
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Table 7   Information on arc selection for D1, D2, D3 and D4

Dataset Arcs(1) Arcs(2) Overlapping (%) Total conflicts Iterations

D1 24 24 100 0 1
D2 31 31 87.1 4 3
D3 27 28 85.2 2 3
D4-strategy 1 27 28 85.2 4 5
D4-strategy 2 27 31 92.6 8 3

Note that the total number of train units used in the final solution has increased by 
one unit Y. It is because the problem size is small and there are not many other fea-
sible solutions with the same fleet size. For the real-world dataset, increasing some 
units to find a feasible solution at the station level would not be frequent, since there 
would have been more feasible solutions corresponding to the minimum number of 
train units.

For dataset D4, two individual conflicts were detected for the solution without any 
station level constraints such that two new constraints are added to the next iteration. 
However, the new solution turns out two overlapping conflicts and the conflict arc 
sets are {20,27,38,39,47,48} and {34,39,51,52}. As it is seen here, arc 39 belongs to 
two conflicts. Hence, two strategies have been taken to tackle this type of overlapping 
conflict. One is to treat them as two constraints since no matter which sets of arcs are 
selected simultaneously will definitely invalid the solution. For this strategy, two more 
iterations are needed to find a feasible solution. The other is to consider them as an 
integrated constraint since it is possible to have a feasible solution if the flows on any 
detected incompatible arc set have a slight change. The experiment results show the 
solution following this strategy is conflict-free directly after adding this integrated con-
straint. This experiment shows that the two strategies can produce feasible results but 
the second strategy gives more flexibility in terms of arc selection, which means the 
second strategy is not as over-tight as the first strategy. Compared to the first-strategy 
solution, this solution has higher unit-usage efficiency in terms of fleet size, and the 
solution graph is much simpler. We also tried to combine these two strategies, but the 
results are still not as efficient as the second strategy.

Table 7 shows information of arc selection of all datasets, where Arcs(1) repre-
sent the number of arcs selected in the solution without station level constraints and 
Arcs(2) is on behalf of the number of arcs chosen in the final conflict-free solution.

The arc overlapping percentage between Arcs(1) and Arcs(2) is very high. Con-
sidering the solution structure, we notice that the conflict-free solution only changes 
a small portion of arcs around the detected arcs and tries to reserve most of the other 
low-cost arcs. The conflict-free optimal solution is always found within reasonable 
time and iterations. Besides, the feasible coupling orders and flexible timings can be 
determined simultaneously.

(30)y34 + y43 + y51 + y52 + y61 + y62 ≤ 5
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7.3 � Results of real‑world datasets

The experiments on the artificial datasets endorse the correctness and effectiveness 
for the proposed method. The artificial datasets are specifically designed to capture 
all the features described in this research and there are only very limited numbers 
of feasible solutions corresponding to the optimal number of train units. These two 
reasons lead the artificial datasets to be more complicated to obtain a conflict-free 
solution at the station level. In other words, real-world datasets may be easier (less 
iterations) to be solved.

Table 8 gives a summary of the results of datasets Sub1 and Sub2 from Transpen-
nine Express (see Sect. 7.1). These two datasets do not involve any coupling or decou-
pling operations, thus, there is no coupling-order conflict detected in the coupling order 
propagation process.

The conflict-free solution schedule of Sub1 needs two iterations to be finalized, and 
the details of each iteration are shown in Table 9. At the first iteration, three platform 
conflicts are detected, in which the first two conflicts at the platform 1 of MNCRIAP 
(Manchester Airport station) are locally resolvable by taking advantage of the inter-
changeability between the same type of train unit. However, the third platform conflict 
at the platform 1 of LVRPLSH (Liverpool Lime Street station) is unresolvable, marked 
as bold and underlined.

Thus, this conflict is converted as a new constraint (31) added to RS-Opt to seek 
another solution. In the new iteration, RS-Opt gives a solution with the same fleet size 
but a slightly higher objective function value. At Phase II, another four platform con-
flicts (located at NWCSTLE_2 and LVRPLSH_1) are detected. As all of them are 
locally resolvable, the locally resolved solution is the final conflict-free schedule.

Table 9   Iterative conflicts of Sub1

Iteration Location Arc ID Remark Local resolvable

1 MNCRIAP_1 {467,525} Crossing linkages Yes
MNCRIAP_1 {655,667} Yes
LVRPLSH_1 {314,357,430} No

2 NWCSTLE_2 {123,351,154} Crossing linkages Yes
NWCSTLE_2 {556,590} Yes
NWCSTLE_2 {220,293} Yes
LVRPLSH_1 {605,665} Yes

Table 8   Information on each 
iteration for Sub1 and Sub2

Data Iteration Objective Fleet size Time (s) Conflicts

Sub1 1 31.839 20, 21 16 3
2 32.2474 20, 21 26696 4

Sub2 1 34.0061 11, 17 39 3
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However, the solution of Sub2 obtained at the first iteration could be final-
ized directly because only three local-resolvable platform conflicts located at 
MNCRIAP_1 are detected, seen in Table 10.

The solution of Sub3 from the network level was finalized as conflict-free at the 
station level, where three coupling operations were assigned with feasible coupling 
orders, as shown in Figs. 15 and 16. The coupling operation in Fig. 15 is operated 
at Edinburgh Waverley station. The coupling order in this figure is not important 
because of the interchangeability between the same type of train unit.

Figure 16 contains one coupling operation and one decoupling operation, oper-
ated at GLGC (Glasgow Central Station). The coupling order of trip 1M96FP at 
its origin is [c350, c185], formed by the coupling operation between the train units 
serving trips 1S35LP and 1S35LL. The coupling order of trip 1S71LP at its destina-
tion is [c185, c350], requested by the decoupling operation involving 1M94FA and 
1M94LL. As 1M96FP and 1S71LP have no reversal en-route, the assigned coupling 
orders are the same during the whole journeys.

The coupling orders between 1M96FP and 1S71LP are compatible as this arc is 
operated at a dead-end platform of MNCRIAP (Manchester Airport station) such 
that there must be a reversal operation. Besides, the solution has five re-platforming 
operations that do not involve any coupling/decoupling operations. Therefore, they 
are fixed by assigning the same platforms to the involved trips.

(31)y314 + y357 + y430 ≤ 2

Fig. 15   Coupling operation at 
Edinburgh Waverley station

Fig. 16   Coupling order propaga-
tion

Table 10   Platform conflicts of Sub1

Iteration Location Arc ID Remark Local resolvable

1 MNCRIAP_1 {501,558} Crossing linkages Yes
MNCRIAP_1 {1511,1542} Yes
MNCRIAP_1 {1603,1628} Yes
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8 � Conclusions and future research

The network level model has the limitation of ignoring station level constraints, 
which leads to an incomplete solution. This defect restricts the operability when it 
is implemented at the station level because of a set of undecided factors, such as 
the coupling order impacted by station layouts, timings, and unit movement direc-
tions. This research scrutinizes potential problems of a solution at the network level. 
A mathematical model with the capability of eliminating station level conflicts is 
proposed, in which two types of alternative station level constraints are introduced 
in detail. Based on the research about the network level of the TUSP, an adaptive 
approach is proposed to consider the station level constraints efficiently and to pro-
duce a complete and operable solution by systematically analyzing and iteratively 
adding station level conflict constraints. Through this method, the linkages given 
by the basic network level model can be verified and station level conflicts can be 
detected and resolved. In addition, the conflict-free coupling orders can also be 
determined. Both synthetic and real-world datasets are tested and the results are 
promising.

In our future research, more features and connections between the network level 
and station level will be investigated. The setup and configuration for testing and 
refining our models, especially on implementing the conflict constraints in RS-Opt, 
are substantial ongoing tasks, which need to be carefully analyzed with artificial and 
real-world datasets. More details and results will be reported in a future paper.
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