

Universitat Oberta de Catalunya

 Arxiu de recerca

Citació per a la versió publicada

Batot, E.R. [Edouard R.] & Sahraoui, H. [Houari] (2022). Promoting social
diversity for the automated learning of complex MDE artifacts. Software
and Systems Modeling, 21(3), 1159-1178. doi: 10.1007/s10270-021-
00969-9

DOI
http://doi.org/10.1007/s10270-021-00969-9

Handle O2
http://hdl.handle.net/10609/147076

Versió del document

Aquesta és una versió acceptada del manuscrit.
La versió en el Repositori O2 de la Universitat Oberta de Catalunya pot ser
diferent de la versió final publicada.

Drets d’ús i reutilització

Aquesta versió del manuscrit es fa disponible amb una llicència Creative
Commons del tipus Atribució No Comercial No Derivades (CC BY-NC-ND)
http://creativecommons.org/licenses/by-nc-nd/4.0, que permet baixar-la i
compartir-la sempre que se'n citi l'autoria, però sense modificar-la ni
utilitzar-la amb finalitats comercials.

Consultes

Si creieu que aquest document infringeix els drets d’autor, contacteu amb
l’equip de recerca: repositori@uoc.edu

http://doi.org/10.1007/s10270-021-00969-9
http://doi.org/10.1007/s10270-021-00969-9
http://hdl.handle.net/10609/147076
http://creativecommons.org/licenses/by-nc-nd/4.0
mailto:repositori@uoc.edu

Noname manuscript No.
(will be inserted by the editor)

Promoting Social Diversity for the Automated Learning of Complex
MDE Artefacts

Edouard R. Batot · Houari Sahraoui

Received: date / Accepted: date

Abstract Software modelling activities typically involve a
tedious and time-consuming effort by specially trained per-
sonnel. This lack of automation hampers the adoption of
Model Driven Engineering (MDE). Nevertheless, in the re-
cent years, much research work has been dedicated to learn
executable MDE artifacts instead of writing them manually.
In this context, mono- and multi-objective Genetic Program-
ming (GP) has proven being an efficient and reliable method
to derive automation knowledge by using, as training data,
a set of examples representing the expected behavior of an
artifact. Generally, conformance to the training example set
is the main objective to lead the learning process. Yet, single
fitness peak, or local optima deadlock, a common challenge
in GP, hinders the application of GP to MDE. In this pa-
per, we propose a strategy to promote populations’ social
diversity during the GP learning process. We evaluate our
approach with an empirical study featuring the case of learn-
ing well-formedness rules in MDE with a multi-objective
genetic programming algorithm. Our evaluation shows that
integration of social diversity leads to more efficient search,
faster convergence, and more generalizable results. More-
over, when the social diversity is used as crowding distance,
this convergence is uniform through a hundred of runs de-
spite the probabilistic nature of GP. It also shows that geno-
typic diversity strategies cannot achieve comparable results.

Edouard R. Batot
IN3-SOM - Universitat Oberta de Catalunya
E-mail: ebatot@uoc.edu

Houari Sahraoui
Diro-Geodes - Universite de Montreal
E-mail: sahraouh@iro.umontreal.ca

1 Introduction

Model Driven Engineering (MDE) aims at raising the level
of abstraction of programming languages. MDE advocates
the use of models as first-class artifacts. It combines domain-
specific modeling languages to capture specific aspects of
the solution, and transformation engines and generators in
order to move back and forth between models while ensur-
ing their coherence, or to produce from these models low
level artifacts such as source code, documentation, and test
suites [73]. Still, designing and developing artifacts able to
perform automated tasks in MDE (ensuring the well formed-
ness of models, transforming models, detecting defects and
applying refactoring operations, etc.) requires one to have
both knowledge in the targeted domain as well as in the de-
sign and development tools. If done manually, these activ-
ities typically involve a tedious and time-consuming effort
by specially trained personnel. Such a lack of automation
is considered by many MDE specialists as a threat to MDE
adoption [76, 88].

Yet, in recent years, many research contributions have
shown that it is feasible to automatically learn how to per-
form a task through examples, or by analogy to similar, pre-
viously solved tasks [85, 52, 36, 64]. Many approaches to
learning use Genetic Programming (GP) to ease the bur-
den of hand-programming growing volumes of increasingly
complex information. Empirical studies have shown a high
potential for automatically learning MDE structured arti-
facts such as model transformations [52, 69, 5] and model
well-formedness rules [36, 8] from examples of task’s in-
puts/outputs. An example here must be understood as a cou-
ple <input model; expected output> defining the con-
straints that bind artifacts’ output to input. The set of training
examples represents the expected behavior of the artifact to
learn and thus constitutes a convenient objective to lead the
search of a solution.

2 Edouard R. Batot, Houari Sahraoui

An efficient technique to learn how to automate MDE
tasks from examples is Genetic Programming (GP) [56], and
more specifically multi-objective GP (MOGP). MOGP con-
sists in evolving a population of programs by the process
of natural selection to find the set of programs that better
satisfy given functional (conformance to the examples) and
non-functional objectives. The selection of the final program
with a particular combination of objectives’ values is thus
postponed until a time when it is known what combinations
exist. Studies have shown the value of such techniques and
their suitability to real problems. However, from the very
beginning, authors pointed out two major drawbacks to the
application of GP and MOGP to learning problems: (i) di-
versity of populations is difficult to maintain during evolu-
tion, and populations tend to gather around a single fitness
peak; and, (ii) individuals tend to grow unnecessarily in size
– also called bloating effect.

Both bloating and single fitness peak symptoms have
been well investigated for more than two decades, and valu-
able research directions were explored [15, 77, 60]. Nev-
ertheless, while adapting MOGP as an automatic process
to learn MDE artefacts (e.g., well-formedness rules, model
transformations) from examples, we encountered these same
scenarios in a great amount of runs. Solutions agree on find-
ing the correct outputs for a large number of examples, but
fail all on a few same examples – a single fitness peak is
reached. Evolutionary computation of MDE artifacts seems
to favor solutions with a high fitness, i.e., a high percentage
of correct output found, at the expense of the diversity of the
solutions.

On promoting diversity, Vanneschi et al. [84] show in
their work the superior importance of research harnessing
the imbalance between diversity and convergence [58, 16]
with indirect semantic methods that ”act on the syntax of
the individuals and rely on survival criteria to indirectly
promote a semantic behavior”. Inasmuch as semantics are
considered in GP as a vector of examples, MDE artefact
learning from examples methodology offers an auspicious
support for such investigations with a built-in evaluation of
semantic fitness 1.

In a previous paper [9], we introduced a new Social Di-
versity measure of individuals, inspired from information re-
trieval research field. This measure consists in giving more
chances to programs that solve examples not properly solved
by their congeners despite their limited global performance
on the example set. We implemented this diversity strategy
to improve the execution of a genetic programming version
of the well-established multi-objective genetic algorithm
NSGA-II [32]. We also validated it by comparing the result-
ing accuracy and convergence with one phenotypic diver-
sity strategy using a crowding distance as defined in NSGA-

1 In the remainder of this paper, semantic fitness refers to the level
of conformance to training examples an individual satisfies.

II. Although, our evaluation produced compelling evidence
about the performance of the social diversity strategy, we did
not properly evaluate it with genotypic diversity strategies
that are frequently used in GP and MOGP. In this paper, we
extend our previous work by defining two genotypic alterna-
tive strategies for evaluation purpose. To conduct a fair eval-
uation, we considered both problem-independent and depen-
dent genotypic strategies. We compare the impact of the So-
cial Diversity strategy to the genotypic alternatives through
an empirical study featuring the problem of automatic learn-
ing of well-formedness rules from examples and counter ex-
amples.

The contributions of this paper with respect to our pre-
vious publication [9] are as follows:

– A better illustration of the social diversity strategy with
an example of arithmetic expressions.

– A definition of two genotypic diversity strategies, one
problem-independent and one problem-dependent. These
strategies are used for evaluation purpose but can be used
as alternatives to or in combination with our social diver-
sity strategy.

– An empirical study to compare the four diversity strate-
gies: social, phenotypic, domain-independent genotypic,
and domain-dependent genotypic.

The rest of this paper is organized as follows. The fol-
lowing section gives the background and discusses the dif-
ficulty of learning complex artifacts from example with ge-
netic programming, through the problem of well-formedness
rule learning. Section 3 details how employing Social Di-
versity fosters efficiency and accuracy of a GP run. We first
depict an illustrative example and then introduce our strat-
egy. In Section 4, we explain how MOGP can be used for
MDE artifact learning through the case of WFR, and how
the social diversity can be integrated in the learning process.
The definition and implementation of the two genotypic di-
versity strategies are given in Section 5. In Section 6, we
assess our contribution through an empirical evaluation and
discuss results obtained with the different diversity strate-
gies. Section 7 discusses the related work with respect to
our contribution. Section 8 concludes on the usability and
relevance of a Social Diversity applied to a methodology for
evolutionary learning from examples.

2 Background and Problem: Learning complex
artifacts with Genetic Programming

In this section, we start by introducing a case that illustrates
well the complexity of learning complex artifacts in MDE.
Then we briefly present the principle of Genetic Program-
ming (GP) and we discuss its main limitations.

Promoting Social Diversity for the Automated Learning of Complex MDE Artefacts 3

2.1 Learning Complex Artifacts – an Illustrative Case

Possible modelling space

Metamodel

Valid modeling space

Valid model (example)

Invalid model (counter example)

Fig. 1: Metamodel, modelling space and application do-
main.

MDE artifacts are complex structures both in terms of
syntax and semantic. Writing them requires expertise in soft-
ware engineering as well as in the application domain the
elements represent. It is then an error-prone and time con-
suming process. Alternatively, automatically learning them
from examples brings an important added value from the
perspectives of effort and quality. But, this is far from being
trivial.

As an example, consider the case of well-formedness
rules (WFRs). Due to their high level of abstraction, meta-
models usually define too-large modelling spaces. They must
be enriched with constraints, or rules, limiting the scope
of their possible instantiations, i.e., well-formed models in
contrast to ill-formed models. Fig. 1, borrowed from [20],
schematizes the idea of possible vs valid modeling spaces: a
metamodel defines a modelling space (within blue line) ; of
which only a sub-space is valid (within red dashed line). A
set of WFRs allows to automatically differentiate between
valid (well-formed) and invalid (ill-formed) models – it for-
mally describes the limit of a specific domain modeling space.

Cadavid et al. analyzed more than 400 metamodels and
their WFRs [21]. They found that the majority of WFRs can
be expressed as a combination of instances of a limited set
of OCL constraint patterns. We view then a WFR as a com-
plex structure represented as a tree whose nodes are logical
operators (AND, OR, IMPLIES, and NOT) and first-order
quantifiers (forAll and exists), and whose leaves are build-
ing blocks in the form of OCL patterns instances. Conse-
quently, a set of WFRs is a tree with as root a vector whose
elements are pointers to the individual WFR trees. Fig. 2
shows an example of a an arbitrary set of 3 WFRs for the
state-machine metamodel. The first and second rules con-

strain a final state to have respectively one incoming transi-
tion and no outgoing transition. The third rule requires that
a pseudostate choice must have at least one incoming or out-
going transition. As for their execution, the defacto language
is the Object Constraint Language (OCL2).

Writing OCL constraints is a burden [22]. Learning them
from examples and counter examples of models is also dif-
ficult. OCL expressiveness allows for an infinite number of
syntactical variations. To find the set of WFRs that is able to
distinguish between examples of well-formed and ill-formed
models by an exhaustive exploration is out of consideration.
This complexity can be addressed by reducing the solution
space and by using a learning strategy that efficiently ex-
plores this space. The space reduction can be achieved by
considering only OCL constraint patterns and their combi-
nations rather than all possible constraints that can be writ-
ten in OCL for the targeted metamodel. Gray box in Fig. 2
shows the application of one OCL pattern. The context and
the parameters are variation points that can be modified dur-
ing the learning process as proposed by Cadavid et al. [20].
The learning strategy must be guided by the conformance
to the examples (semantic guidance). Moreover, since solu-
tions must be legible by the final user (i.e., within human
reach), the size of constraints to learn must be kept as small
as possible. Learning WFRs from examples is then defined
as a multi-objective optimization problem.

This massive multi-dimensional problem space - and the
arborescent nature of WFR representations - makes GP a
valuable methodology to explore the potential individual so-
lutions. The goal here is to find the ”near” optimal solutions
that exhibit the best trade-off between the example confor-
mity and legibility. Beyond the WRFs case, the same reason-
ing holds for the other MDE artifacts (e.g., model transfor-
mations). Learning other artefacts from examples are simi-
lar problems in terms of dependency towards the examples
and diversity issue. Model transformation [55, 5], design de-
fect [52], and refactoring rules [64], are the best examples.

We believe that the idea to consider the social dimension
of individuals’ characteristics shall apply to the evolutionary
computation of these other complex artefacts. Since fitness
lies on examples’ comparison as well, inverse example res-
olution frequency can be used in the exact same manner. We
prospect, as future work, to replicate this study with other
artefacts.

2.2 Genetic Programming

Genetic programming is an optimization evolutionary tech-
nique that consists in automatically creating a program from
a set of examples of inputs/outputs given as a specification.

2 http://www.omg.org/spec/OCL/

4 Edouard R. Batot, Houari Sahraoui

Context Final inv null:

self.incoming->size() = 1

Context Final inv null:

self.outgoing->size() = 0

Context Final inv i1:

self.incoming->size() > 0

Context Final inv i2:

self.outgoing->size() > 0

OR

0 1 2
Constraint set :

Pattern CollectionSizeControl

Context:

Parameters:

Final

=

self.incoming

1

Fig. 2: An example of solution containing 3 WFRs.

(1) Create an initial

population of

programs

(2) Execute programs

and evaluate their

fitness

(5) Replace the

current population by

the new one

(4) Create new

programs using

genetic operators

(3)

Termination

criteria

(6) Return the

set of best

programs

No

Yes

Fig. 3: A typical genetic programming cycle

The process starts by creating a set of programs, usually cre-
ated randomly, and then evolves those programs guided by
the provided example. Such a process is depicted in Fig. 3.
At the beginning, an initial population of programs is cre-
ated (1). Then, every program of the population is executed
on the example inputs, and its fitness is evaluated. To this
end, in general two or many objectives compete. As a first
objective, the semantic fitness is measured by comparing
the produced outputs with the expected ones, i.e., the exam-
ple outputs. The other objectives are usually related to non-
functional aspects of the sought program. For instance, an
objective can be the minimization of the size of the individ-
uals to avoid unnecessary big programs (2). If a termination
criterion is reached (3), the set of best or near-optimal solu-
tion programs is returned (6). Otherwise, a new population
of programs is created using genetic operations (crossover
and mutation) applied on selected potential reproducers (4).
The new population replaces the previous one and all indi-
viduals are replaced, no matter their fitness (5), and a new
iteration starts (2). The loop is repeated until a termination
criterion is reached (commonly, a perfect fitness, or an ar-
bitrary number of iterations). We will illustrate in great de-

tails in Section 4 how much a tangible support GP, and more
precisely multi-objective GP, is used to learn MDE artefacts
such as WFRs automatically from examples and counter ex-
amples.

Although GP allows to find good solutions for many
problems, it is known to suffer from two main issues, namely
bloating and single fitness peak. In the remainder of this sec-
tion, we briefly discuss the bloating issue, and then focus in
details on the single fitness peak issue. The latter illustrates
the consequences of imbalance between the diversity of in-
dividuals among a population and the convergence of the
algorithm toward the best solutions, which is the main aspi-
ration of this paper.

2.2.1 Bloating

Luke et al. [60] suggest that, from a high level perspective,
bloating (or code growth) happens because adding genetic
material to individuals is more positively correlated to the
fitness than removing material. They define bloat as the ”un-
controlled growth of the average size of an individual in
the population”. Numerous countermeasures have been pro-

Promoting Social Diversity for the Automated Learning of Complex MDE Artefacts 5

posed to tackle the effects of bloating, offering to present
readers a few options to choose from [77]. More precisely,
in a multi-objective context, Pareto-based Multi-objective
Parsimony Pressure (i.e., using an objective devoted to con-
straining size of individuals) has been found very effective
– with limited side effects [34]. We use this technique in our
experiments.

2.2.2 Single fitness peak

The second problem with GP is the risk of a single fitness
peak [29], consisting in a premature convergence together
with a loss of diversity. Candidate solutions get stuck in a
local optima and often no further improvement in fitness
is noticed [91]. To tackle this issue, the level of popula-
tion diversity must be given due consideration during a GP
run [32, 17]. More precisely, two phases of such a run are
appropriate to tackle diversity loss: at the initial population
creation, to ensure a broad genetic material base3 ; and/or
during the evolution itself, to ensure that diversity does not
fall from one generation to the next.

In both cases, diversity exists in two kinds: a genotypic
diversity measures structural variance between individuals,
whereas a phenotypic diversity focuses on the behavior of in-
dividuals. To control diversity within the population during
the search, authors show that, if phenotypic diversity pro-
duces better results, genotypic diversity also improves the
results when compared to standard executions (i.e., with no
diversity control) [19, 84].

Genotypic Diversity Genotypic diversity relates to the vari-
ability of individuals’ characteristics among a population
with regards to their structure. It is a measure of the dis-
tance between individuals at the syntax level [62, 63]. How-
ever, there is no consensual definition of genotypic or syn-
tactic diversity for MDE since the syntax of its artifacts is
very complex [11, 17, 18]. To ensure sufficient diversity
within the initial population, teams have used different met-
rics based on coverage estimations and showed interesting
results [51, 12]. Coverage refers here to the rate of instanci-
ation of language elements. The more distinct elements an
instance or a group of instance use, the more it/they covers
the language definition (i.e., the metamodel). Works vary
in nature and offer automatic generation of diverse mod-
els [8, 90], or provide a user with visual assistance to elicit-
ing learning inputs data [38, 71, 59]. In any case, both tech-
niques can be employed to provide with diverse initial pop-
ulation of solutions as well as with qualified input data. Re-
cent work on the nature of software artifacts mention a rela-
tive naturalness of the source code that allows one to apply
NLP techniques to software engineering problems [49].

3 For an in-depth discussion on the challenging long run investiga-
tion on generating a set of diverse models, see Varro et al. [86]

Phenotypic Diversity In contrast to genotypic diversity, phe-
notypic diversity is measured on the behavior of a program
– independently to its syntax. In evolutionary learning, a
phenotypic (or semantic [84]) measure, refers generally to
the proportion of examples correctly processed by a pro-
gram (i.e., producing the expected output when executed on
a specific input). It is a tangible fact that phenotypic diver-
sity is more efficient than genotypic diversity to avoid the
single fitness peak problem and thus to accentuate conver-
gence [84]. Nonetheless, if some early studies went as far
as to expand the Darwinian metaphor and considered pref-
erence between individuals during a GP run [68], to the best
of our knowledge, there exists no study explicitly measur-
ing benefits of phenotypic diversity on the specific case of
evolutionary learning of MDE artifacts.

Indirect Semantic Diversity Methods Roughly speaking, In-
direct Semantic Diversity methods combine both genotypic
and phenotypic diversities’ benefits. The rationale behind
these methods lies in their ability to distinguish between the
aim of the method: to produce individuals with strong se-
mantic fitness, and the mean of its application: genetic mod-
ifications performed on their syntax [26]. Vanneschi et al.
demonstrate the power of indirect diversity methods in ge-
netic programming and call for more research in this field [84].
Note that learning artifacts from examples in MDE is based
on the conformity of candidate solutions with the provided
examples, which carry the semantics of the sought artifacts.

3 Social Diversity for Multi-Objective Genetic
Programming

Notwithstanding a significant amount of work on diversity
issues in the Evolutionary Computation community, as we
will develop in Section 7, single fitness peaks occur during
evolutionary learning of MDE-artefacts. Processing most ex-
amples correctly, alpha individuals [15] spread among pop-
ulations though they struggle to solve all examples exhaus-
tively. These individuals, are called alphas since they tend
to spread their genetic material to the entire population (see
illustration in Fig. 5). This leads, on the one hand, to a dis-
proportionate number of solutions with good fitness, at the
expense of the overall semantic fitness a population may
achieve. On the other hand, unfortunately, solutions able to
solve the remaining corner cases reach a (much) lower fit-
ness. Withal, since reproducers are chosen with regard to
their fitness, the genetic material these latter partial solu-
tions convey is lost and corner cases are never solved.

In this section, we first introduce a simplified example
that illustrates the idea behind our social diversity without
the cognitive cost of a full blown showcase. This reduces the
accidental complexity and shall help the reader better grasps
the idea of the approach and its concrete application to MDE

6 Edouard R. Batot, Houari Sahraoui

a b c
Ex. 1 2 3 7
Ex. 2 2 4 8
Ex. 3 2 5 9
Ex. 4 2 1 5

(a) f illustrated with 4 exam-
ples

a b c
Ex. 1 2 3 7
Ex. 2 2 4 8
Ex. 3 2 5 9
Ex. 4 2 1 5
Ex. 5 3 3 12

(b) f ′ illustrated with 5 exam-
ples

Table 1: The semantic to learn is embedded in a set of exam-
ples: the semantic fitness is the ratio of examples a function
solves.

in Section 4. Finally, we explain our main contribution, i.e., a
social semantic diversity measure.

3.1 Illustrative Example

To illustrate our words through a simple example, consider
the problem that consists in finding an arithmetic expres-
sion defined by a set of examples. The arithmetic expression
takes as input a couple of integers and produces as output
one integer. It is thus in the form f(a, b) = c, where f is
an arithmetic function, and a, b, and c are integers. A possi-
ble set of examples that can be used to learn the arithmetic
expression is shown in Table 1a. Each row in the table repre-
sents an example, i.e., a tuple of integers representing input
couples with their expected output. Accordingly, the fitness
of a candidate solution is the ratio of examples this candidate
solves: a perfect solution will solve them all. A well-defined
representation of arithmetic functions, together with genetic
programming methodology, will learn relevant solution con-
figurations that solve the example set (when doable).

Solution0: f0(a,b) = 2a2 - b

Solution1: f1(a,b) = 7a - b

Solution2: f2(a,b) = -a + b
2

Solution3: f3(a,b) = 2a + b

Fig. 4: Examples of candidate solutions

In practice, a search-based approach to learning (e.g., ge-
netic programming) will easily find a function that solves
examples from Table 1a: for instance, as shown in Fig. 4,
solution f3(a, b) = 2a+ b. This easy-to-find candidate will
show a fitness of 1.00 (4 out of 4 examples are solved). Yet,
the same algorithm might yield the same solution for the
second case f ′ illustrated in Table 1b, with an additional ex-
ample to the set of Table 1a. Solution f3, showing a high, but
not perfect, fitness, 0.8 (4/5), will have a fair chance to take
part of the reproduction and many other similar alpha indi-
viduals, sharing a similar behavior, will form the majority

of the population. Indeed, during evolutionary computation,
solutions showing a high fitness have better chances to breed
the individuals of the next generation. Alphas grow numer-
ous and their dominance arises against candidates with a
lower fitness – whose genetic material is lost through suc-
cessive generations. A local optima, or single fitness peak,
is reached.

In our running example, consider the following arrange-
ment where, among five candidate solutions, the one that
could bring the necessary genetic material required to solve
Example 5 is mistakenly neglected.

Typically, f0 features an interesting operator (square, in
2a2) but exhibits a weak fitness since it only solves the case
of Example 5 (i.e., {a = 3, b = 3, c = 12}). Maintain-
ing diversity shall favor the survival of this genetic material
through generation and therefore, potentially help with solv-
ing other cases.

1/5

2/5

4/5

4/5

4/5

4/5

4/5

4/5f 8

f 0

f 1

f 2

f 3

f 4

f 5

f 6

f 7

3/5

α
l

p
h

a
s

Fig. 5: Overbreeding of alphas during GP run.

Concretely, a phenotypic diversity value represents the
distinctiveness of an individual’s output (c) among other in-
dividuals’ outputs, whereas a genotypic diversity represents
the distinctiveness of an individual regarding its internal struc-
ture (i.e., its f() function). We investigate the use of geno-
typic measurement for diversity in Section 5.

3.2 Social Semantic Diversity

We propose a new diversity measure that prevents selec-
tion being ”biased towards highly fit individuals” [84] by
an explicit consideration of individuals’ participation in the
population’s behavioral diversity. Back to our running ex-
ample, Solution 0, f0, solves an example that no other so-
lution solves, Example 5, and therefore it should purpose-
fully be given more attention. In our approach, the weight
of an example in the evaluation of an individual’s fitness is
no longer absolute but varies dynamically with the geometry
of the population. In simple terms, the more solutions cor-

Promoting Social Diversity for the Automated Learning of Complex MDE Artefacts 7

rectly handle an example, the less this example counts in the
calculation of the solutions’ fitness.

f 8

f 0

f 1

f 2

f 3

f 4

f 5

f 6

f 7

IERF 9/7
9/6 9/8

9/7 9/1

9,00

2,41

4,41

5,91

5,91

5,91

5,91

5,91

5,91

Fig. 6: Inverse Example Resolution Frequency (IERF). Grey
cells shows which examples a solution solves (e.g., solution
0 solves only Example 5).

We call Social Semantic Diversity a measure that takes
into account, not the only individualistic fitness (i.e., how
many examples an individual resolves), but considers as well
a social dimension (i.e., what does that individual bring to
the general fitness of the population).

The computation of the Social Semantic Diversity (SSD),
based on the inverse example resolution frequency (IERF),
is inspired from the term frequency-inverse document fre-
quency (TF-IDF) information retrieval technique. In prag-
matical words, the SSD of a solution is the sum of IERF of
the examples it solves.

Paraphrasing TFIDF definition may help the reader to
grasp the general idea of SSD. We formulate it as follows:
”SSD increases proportionally to the number of examples
solved and is offset by the frequency of which an example is
solved by the population’s individuals, which helps to adjust
for the fact that some examples are more frequently solved
in general.” As a consequence, SSD favors solutions solv-
ing corner cases by giving importance to candidate solutions
solving examples that other do not. In Fig. 6, Example 5 is
solved by only one solution and thus gains a stronger IERF
than other examples. As a consequence, solutions solving
this example gain better SSD and are favored for breeding
the next generation.

4 Learning MDE artefacts, the case of Well-Formedness
Rules

In this section, we illustrate how social diversity can be im-
plemented in a multi-objective genetic-programming algo-
rithm to learn well-formedness rules (WFRs) from exam-

ples. This case is significantly more complex than the ex-
ample in the former section, yet the method remains the
same. As mentioned earlier in this paper, researchers offer
to use GP to learn some of MDE artifacts automatically as
a substantial alternative to writing them manually. Indeed,
we show in this paper that, during the process, which scala-
bility remains at stake [46], an improvement in populations’
social diversity will lead to more efficient learning and more
generalizable results.

4.1 Genetic Programming adaptation

Our goal is to find the minimal set (i.e., size) of WFRs that
best discriminates between the valid and invalid example
models (i.e., fitness). Size and fitness objectives being con-
tradictory in nature, we represent the learning of WFRs as a
multi-objective optimization problem, and we solve it using
the Non-Sorting Genetic Algorithm NSGA-II [32].

Front 3

Front 1

Front 3

Front 2

Front 5

Front 4

P0

Q0

RejectedG
e

n
e

ti
c

 o
p

e
r
a

to
r
s

Non-dominance

Sorting

(3a)

Crowding distance

Sorting

(3b)

P1

Repeat until termination criteria is reached (4)

(1)

(2)

Fig. 7: Non-Sorting Genetic Algorithm NSGA-II [32]

The idea of NSGA-II is to make a population of candi-
date solutions evolve toward near-optimal solutions in order
to solve a multi-objective optimization problem. NSGA-II
is designed to find a set of optimal solutions, called non-
dominated solutions, also Pareto set. A non-dominated so-
lution provides a suitable compromise between all objec-
tives such that one objective cannot be further improved
without degrading another objective. As described in Fig. 7,
the first step in NSGA-II is to create randomly a popula-
tion P0 of N/2 individuals encoded using a specific rep-
resentation (1). Then, a child population Q0, of the same
size, is generated from the population of parents P0 using
genetic operators such as crossover and mutation (2). Both
populations are merged into an initial population R0 of size
N , which is sorted into dominance fronts according to the
dominance principle (3a). A solution s1 dominates a solu-

8 Edouard R. Batot, Houari Sahraoui

tion s2 for a set of objectives {Oi} if ∀i, Oi(s1) ≥ Oi(s2)

and ∃j | Oj(s1) > Oj(s2). (This definition holds for par-
allel maximization and minimization of objectives.) The first
(Pareto) front includes the non-dominated solutions; the sec-
ond front contains the solutions that are dominated only by
the solutions of the first front, and so on and so forth. The
fronts are included in the parent population P1 of the next
generation following the dominance order until the size of
N/2 is reached. If this size coincides with part of a front, the
solutions inside this front are sorted, to complete the popu-
lation, according to a crowding distance which favors ”di-
versity” in the solutions (3b). This process will be repeated
until a stop criterion is fulfilled, e.g., a number of iterations
is achieved or a certain value of semantic fitness is reached.

We adapted NSGA-II to our problem as follows.

– Solution Representation and Creation. A solution to
our problem is represented as a set of OCL constraints
(previously depicted in Section 2.1), each implementing
a WFR represented as a tree. The initial population is
created randomly. For each individual, the average num-
ber of nodes in the WFR trees, the maximum depth, and
the maximum width are configurable;

– Objectives. We consider three objectives: Semantic Fit-
ness is the rate of negative and positive examples pro-
cessed accurately by an individual, to be maximized;
Size is the number of leaves in the constraint tree, the
smaller the better, normalized within a range of expected
number of leaves; and Diversity is SSDM, which can be
represented either as an objective or a crowding distance,
to be maximized as well.
The size objective is important. It allows the size of the
solutions to be controlled during the course of the evo-
lution. When the evolution is complete, priority is given
to solutions that have a high semantic success rate rather
than those that are small. In this sense, the two objectives
are not taken on an equal level. However, control during
evolution is essential so as not to generate unusable so-
lutions (i.e., bloated).

– Reproduction. As genetic operators, we use a single-
point crossover applied to the tree-root vector, and two
kinds of mutations. First, a node from a WFR tree is cho-
sen randomly. If it is a leaf, the pattern instance is either
replaced with a new randomly created one or, if applica-
ble, the pattern parameters are replaced randomly with
applicable values. If the selected node is a logical oper-
ator, it is changed randomly.

– Termination criteria. Evolution stops if either a Se-
mantic Fitness of 100% is achieved, or an arbitrary large
number of iterations is reached.

4.2 Diversity implementation

De Jong et al. show that diversity is not an objective in the
conventional sense, since diversity applies to the populations
visited during the learning, not to final solutions [29]. As a
consequence, we implemented our social diversity metric as
part of two different steps in the evolutionary execution of
NSGA-II. The first is as an objective of its own, considered
together with afore-mentioned size and fitness objectives –
as promoted by de Jong et al. [29] and applied to the Fre-
quency Assignment problem by Segura et al. [75].

Another implementation of a diversity measure builds
on peculiar limitation of NSGA-II [39] and acts as an al-
ternative to the computation of a crowding distance. In both
cases, SD computation remains the same.

In the following subsections, we start by explaining the
implementation of our social semantic diversity.

4.2.1 Social Semantic Diversity implementation

Implementing Social Semantic Diversity (SSD) measure comes
to adapting TF-IDF [78] using solutions as documents and
examples as words. This is detailed in Listing 1. The first
nested loops compute all examples resolutions frequencies.

At a given iteration, SSD is calculated from a binary ma-
trix in which each cell represents the score of an individual
against an example of the training set (sol vs examples).
The frequency of an example (fq ex) is the number of times
it is solved by individuals (first for loop). Finally, individ-
ual’s SSD value is the sum of inverse example resolution
frequencies of examples that it processes accurately (last for
loop). More precisely, variables are:

– example set, the vector of training examples (size D);
– sol vs examples, contains the result of the comparison

between output of individuals and output of the oracle
when executed on example set;

– fq ex, contains examples frequencies, recording how
many solutions solve each example from example set;

– and ierfi, the vector of inverse example resolution fre-
quencies of training examples.

5 Genotypic alternatives

In this section, we show how social diversity can also be
implemented at the syntactic level, i.e., genotypic. To this
respect, we present a definition of two genotypic diversity
strategies, one problem-independent and one problem-dependent.
These strategies are used for evaluation purpose but can be
used as alternatives to or in combination with our social di-
versity strategy.

Promoting Social Diversity for the Automated Learning of Complex MDE Artefacts 9

Listing 1: Excerpt for SSD weights calculation.
\\ Compute frequencies of examples solved
for (i = 0; i < sol_vs_ex.length; i++)
for (j = 0; j < sol_vs_ex[i].length; j++)
fq_ex[j] += sol_vs_ex[i][j];

\\ Inverse document frequencies
for (j = 0; j < fq.length; j++)

ierfi[j] = Math.log10((fq_ex[j]>0) ?
D/fq_ex[j] : 0);

\\ Weigthing
weight = 0;
for(j = 0; j < example_set.length; j++)
if(example_set[j].isAccurate())
weight += ierfi[j];

5.1 Genotypic Diversity

We regard genotypic diversity as two distinct genres. There
are strategies that compute diversity at the syntactic level
only, whereas others use extra-knowledge specific to the prob-
lem domain.

A common approach to address diversity is to use text
comparison techniques from research on Natural Language
Processing (NLP) to compare between individuals at a syn-
tactic level (or genotypic level) [19, 10]. NLP techniques
support the extraction of structured information from raw
text written in natural language. Considering a certain de-
gree of naturalness in source code [49], NLP algorithms ap-
plied to the source code of candidate solutions shall give us a
coherent heuristic to measure the dissimilarity between one
another and to measure populations’ diversity. These strate-
gies offer therefore the benefit to be completely generic.
Since it is only considering the syntax, it is also prone to
work independently to the implementation language. In Auer-
bach words, they are ”free from requiring defining dimen-
sions on which to measure diversity and performance” [3].
Other strategies are domain specific and require being finely
tailored to the specific problem to solve. This is the case for
strategies focusing on genetic operators, or distance evalua-
tion between candidate individuals [24].

We present, in the following paragraphs, two genotypic
diversity measures, one generic and one problem specific.
This gives us baselines for the evaluation of our contribu-
tion.

Rouge Genotypic Diversity. We use ROUGE algorithm
to measure genotypic dissimilarity among individuals (Re-
call Oriented Understudy for Gisting Evaluation) [57]. It in-
cludes measures to automatically determine the quality of a
summary by comparing it to other (ideal) summaries created
by humans. In our context, it is a convenient tool to com-
pute the distance (i.e., the distinctiveness) of an ideal text
(i.e., the individual under scrutiny) among a corpus of texts

(i.e., the other individuals in the population). As shown in
Fig. 8, Rouge Genotypic Diversity (RGD) is the sum of the
comparisons to all individual in a corpus of solutions. With
a generic consideration of the source code, one of the main
advantage of ROUGE diversity is that it is agnostic of the
problem definition.

SiS0

Si-1

Si+1

Sn

RGD(Si) =

𝑘=0≠𝑖

𝑛

𝑅𝑘

Si

Si

Si

Individual ROUGE

Comparisons

R0

Ri-1

Ri+1

Rn

Fig. 8: ROUGE Genotypic Diversity measurement

Social Genotypic Diversity. On the other hand, consid-
ering the benefits of extra knowledge – about the expected
solution’s language for instance, e.g., specific typecasting –
might help precise diversity concerns. The idea is to ensure
that the algorithm explores a maximum of the grammar el-
ements during evolution. In our example, arithmetic expres-
sions use natural numbers together with a set of operators
defined beforehand by a precise grammar. Solution 0, f0,
should be favored for it employs an operator that the perfect
solution requires and no other solutions do (namely, square
power). To ensure that the evolution process covers at best
grammar elements, we weight individuals fitness with the
frequency of which the elements of the grammar are used
by the population’s individuals.

In the context of MDE, grammar elements refer to el-
ements of the grammar itself, plus all typing information
usually defined by one or more metamodels. Solutions in
the population are MDE artefacts, they instantiate part of the
metamodel they conform to. For example, OCL constraints
instantiate part of the OCL metamodel, and ATL4 transfor-
mations instantiate part of the ATL metamodel). We call this
metamodel a solution metamodel. For their part, the artefact-
solutions manipulate models. These models instantiate part
of the metamodel they are derived from. This is for exam-
ple FamilyTree or ProjectManager in this paper. We
call this metamodel a typing metamodel.

Fig. 9 illustrates the mechanism. There are two meta-
models involved: a solution metamodel, and a typing meta-
model – one defines the language of the solutions, the other
the dedicated language for the input models of those solu-
tions. The rate a population of solutions covers a language

4 ATL Transformation Language https://www.eclipse.
org/atl/.

10 Edouard R. Batot, Houari Sahraoui

is the rate of elements of that language instantiated at least
once in all solutions in the population (1, and hatched sec-
tion). A set of solutions also covers to a certain extent typ-
ing metamodels (2, and hatched section). Social Genotypic
Diversity measures the distinctiveness of a solution against
a population of solutions. For a specific candidate solution,
there are elements already instantiated by the population (3),
and other that this only solution instantiates (4) and (5). The
more elements of the latter, the more a solution is distinct
from the population.

Considering this diversity measurement is meant to help
the evolution by an augmentation of the breadth of explo-
ration. The main drawback of this kind of genotypic diver-
sity is that the dimension on which to consider diversity
must be defined for each problem specifically (e.g., arith-
metic language, domain specific language...).

5.1.1 ROUGE Genotypic Diversity implementation

To implement ROUGE in our framework, we used the open-
source library proposed by Ganesan et al. with ROUGE-L
(i.e., summary level Lean Competency System (LCS)) [42].
Saggion et al. shows the benefits of using normalized-pairwise
LCS to compare similarity between two texts in automatic
summarization evaluation [70]. In our adaptation to diver-
sity concern, at each generation, every individual is evalu-
ated against the corpus of all other individuals in the pop-
ulation. To be exact, it is the OCL code of the individuals
that is compared to the OCL code of others. As illustrated
in Fig. 8, we take the sum as a measure for distinctiveness
of this individual (or diversity).

5.1.2 Social Genotypic Diversity implementation

Implementing Social Genotypic Diversity (SGD) measure
is done by adapting TF-IDF [78], but using solutions as
documents and typing elements from metamodels as terms.
Therefore, our implementation follows the same reasoning
as in Section 3 and comes to overriding Listing 1 with the
following changes in variables:

– example set→mmelts set, the conjunct vector of all
metamodel elements used by at least one solution;

– sol vs examples→ sol vs mmelts, contains the lists
of metamodel elements used by each solution;

– fq ex→ fq mmelt, contains metamodel elements fre-
quencies, recording how many solutions use each meta-
model element from mmelts set;

– and ierfi→ imufi, contains a vector of inverse meta-
model elements usage frequencies.

Table 2: Descriptive statistics of the examples used to train
our algorithm in the three alternative cases. Values are aver-
ages among the 20 examples.

FamilyT. StateM. ProjectM.
LOC 13.4 13.2 16.3

classes 10.2 10.4 13
properties 42.25 67 101.2

6 Evaluation

To assess the improvement brought by our social semantic
diversity to the learning strategy, we conducted an empirical
evaluation5. We formulate our research questions as follows:

– RQ0 (Sanity check): Are our results a consequence of
an effective learning (i.e., an efficient exploration of the
search space), or are they due to the vast number of in-
dividuals we evaluate during the learning?

– RQ1: Does the use of our Genotypic Diversities im-
proves the learning strategy, and, if so, how much?

– RQ2: Does the use of Social Semantic Diversity as an
objective improves the learning strategy, and, if so, how
much?

– RQ3: Does the use of Social Semantic Diversity as an al-
ternative crowding distance exhibit better efficiency and
generalizability than as an objective?

6.1 Setting

In order to mitigate the influence of a metamodel specific
structure on the learning process, we selected three meta-
models that demonstrate different levels of structure com-
plexity and require diverse OCL WFR sets: FamilyTree,
StateMachine, and ProjectManager. We provided
with oracle (i.e., expected WFRs) manually. In more de-
tails, FamilyTree is the most simple case with 5 classes.
Yet, it has been used as an illustrative example in various
publications in the MDE research literature, such as [44].
StateMachine illustrates structural cardinality restrictions
and define a common, widely used language, it has 6 classes.
Finally, ProjectManager is the most complex case with
11 classes and comes from Hassam et al. [47]. As an ex-
ample, Listing 2 shows the WFR constraining the State-
Machine metamodel.

6.1.1 Training examples

To provide with example sets of quality (i.e., covering at
best the modelling space, yet as small as can be), we used

5 All experiment data is available at http://geodes.iro.
umontreal.ca/publication_material/ssd_ext

Promoting Social Diversity for the Automated Learning of Complex MDE Artefacts 11

Typing Metamodel Solution Metamodel (e.g., Arithmetic, OCL)

Population of Solutions

a

b
square

a ² + b

covers covers

(3)

(4)

(5)

(2) (1)

Candidate

Fig. 9: Social Genotypic Diversity: a candidate solution is ”distinct” from other solutions in the sense that it uses different
part of the languages (Arithmetic definition and/or application metamodel(s)).

Listing 2: Oracle for the Statemachine metamodel: expected
WFRs used to tag the example sets for training and testing.

context Choice
inv choice_in : incoming->size() > 1
inv choice_out : outgoing->size() > 1
context Final
inv final_out : outgoing->size() = 0
context Fork
inv fork_in : incoming->size() = 1
inv fork_out : outgoing->size() > 1
context Initial
inv init_in : incoming->size() = 0
context Join
inv join_in : incoming->size() > 1
inv join_out : outgoing->size() = 1

a model generator [8]. Size matters since every generated
model example must be, in a real setting, tagged manually
as valid or invalid. For the sake of experiment, we use the
existing WFRs as oracles to mimic the manual tagging. To
run the experiment, we used two sets of examples for each
metamodel. On the one hand, 20 models (10 valid, 10 in-
valid) were required for the learning step (a training set).
The average size in terms of LOC, number of classes, and
number of properties instantiated is shown in Table 2. On
the other hand, a test bench of 100 models (50 valid, 50 in-
valid) was used to measure solutions’ average accuracy (or
generalizability, since models in the test bench were not part
of the training set).

6.1.2 Configurations and variables

Eight configurations were considered to illustrate and an-
swer our research questions (see Section 4.1 for implemen-
tation details).

Table 3:

Parameter Range Min Max Choice
Max. number of generations 500 2000 6000 3000
Population size 10 10 50 30
Crossover rate 0.1 0.6 0.9 0.9
Mutation rate 0.1 0.1 0.4 0.3

– RND is a random exploration of the potential solutions
that takes the best among a given number of solutions
randomly generated;

– STD is a standard run of NSGA-II [32] with two ob-
jectives: size and semantic fitness. This alternative con-
tains a phenotypic measurement for diversity through
the crowding distance;

– SGDobj is a run of NSGA-II with three objectives: size,
semantic fitness, and SGD diversity; and SGDcd is a
run of NSGA-II with size and semantic fitness as ob-
jectives, and SGD as crowding distance;

– RGDobj is a run of NSGA-II with three objectives:
size, semantic fitness, and RGD diversity; RGDcd is a
run of NSGA-II with size and semantic fitness as ob-
jectives, and RGD as crowding distance;

– SSDobj is a run of NSGA-II with three objectives: size,
semantic fitness, and SSD diversity; and SSDcd is a run
of NSGA-II with size and semantic fitness as objec-
tives, and SSD as crowding distance.

We used two dependent variables to quantify experiment
results: #GEN, the number of generations the evolutionary
computation needed to find a solution. A grid search with
increased valued revealed that a score of 3000 means that
there was no solution with perfect fit found during the learn-
ing. And ACC, the proportion of examples from the test
bench a solution process accurately.

12 Edouard R. Batot, Houari Sahraoui

6.1.3 Evaluation protocol

For the NSGA-II parameters, we use a maximum number
of iterations of 3000 and a population size of 30 solutions.
Crossover and mutation probabilities are set to 0.9 and 0.3
respectively. In addition, solutions are created with between
5 to 15 WFRs with each WFR having a maximum depth
of 3 and width of 15. We answer RQ0 with a comparison
between the results given when using SSD as an objective
(SSDobj) in the learning strategy and those of a random ex-
ploration (RND). Since our strategy explores 3000*30 solu-
tions, the random exploration explores randomly 90000 so-
lutions as well and considers the best individual so created.

We answer RQ1 with a comparison between the solu-
tions obtained after executions with and without genotypic
diversity. First, we compare results from RGDobj and RGDcd

with STD, then results from SGDobj and SGDcd with STD.
We answer RQ2 with a comparison between the solutions
obtained after execution with and without social semantic
diversity objective (respectively SSDobj and STD). Finally,
we answer RQ3 by comparing the configurations with So-
cial Semantic Diversity objective (SSDobj) and with So-
cial Semantic Diversity crowding distance (SSDcd). We ran
each treatment 100 times to tackle GP nondeterminism and
we guarantee statistical significance of the findings using the
Mann-Whitney U test.

6.2 Results and analysis

6.2.1 RQ0 - Sanity check

As can be seen in Table 4, the RND configuration gives very
poor results in comparison with an execution in SSDobj

for the two most complex metamodels (average accuracy
on test bench is 0.5 vs 0.76 for ProjectManager and
0.53 vs. 0.94 for StateMachine). The difference in both
cases is statistically significant (p-value<0,001) and the ef-
fect size is large (Cohen’s d > 5). For the small metamodel
FamilyTree, although statistically significant, the differ-
ence and the effect size are small. We can conclude that
using SSDobj configuration is more efficient than using a
random search..

Table 4: Statistical comparison of results between random
search and our learning approach on three WFR learning
scenarios.

Average
ACC Value M.-W.

p-value
Eff. Size

Cohen’s dRDN SSDobj

ProjectManager 0.5 0.76 <0.001 7.35
StateMachine 0.53 0.94 <0.001 5.38

FamilyTree 0.93 0.99 <0.001 0.74

6.2.2 RQ1 - Does Genotypic Diversity foster evolution?

Among the genotypic configurations, only RGDcd shows
positive results as can be seen in Table 5. Rows 1 and 3
show small yet significant improvement for two metamod-
els, ProjectManager and FamilyTree. These conclu-
sions do not hold for the StateMchine metamodel.

Otherwise, Fig. 10b is explicit: other configurations us-
ing genotypic diversity (RGDobj , SGDcd, and SGDobj)
perform almost all iterations (#GEN 3000) without converg-
ing to accurate solutions and show a poor ACC. In other
words, both efficiency and accuracy decline when using geno-
typic diversity (not shown in table).

This behavior was predictable in part because of the na-
ture of RGD and SGD. When employed as crowding dis-
tance, a genotypic diversity may confound the fitness rank-
ing and the algorithm may miss interesting candidate so-
lutions, thereof the convergence is at stake. As a matter of
fact, when embedding genotypic diversity in a third objec-
tive, solutions overgrow in size and satisfy only low accu-
racy. Genotypic diversity objective, together with a size ob-
jective, seems to eclipse the effort of the accuracy objective.
Indeed, solutions grow bigger, and the convergence of fit-
ness is lower with genotypic diversity objective.

Table 5: Statistical comparison of results between STD and
RGDcd on three WFR learning scenarios.

Average
ACC Value M.-W.

p-value
Eff. Size

Cohen’s dSTD RGDcd

ProjectManager 0.69 0.75 <0.001 0.69
StateMachine 0.92 0.65 <0.001 -2.47

FamilyTree 0.98 0.99 <0.01 0.40

Yet, the reader will as well notice that crowding distance
configurations RGDcd and SGDcd outperform their objec-
tive equivalences, respectively RGDobj and SGDobj (see
respective columns in Fig. 10b).

We believe that executions featuring genotypic diversity
crowding distance show a very broad variation of candidates
solutions during the first iterations of the evolution. Refer-
ring to Crepinsek et al. statement on exploration and ex-
ploitation phases [87], we conjecture that genotypic diver-
sity can foster the exploration phase (i.e., in the beginning
of the evolution the more genetic material probed, the bet-
ter) and then one must employ other means to exploit the
outcome of that exploration.

6.2.3 RQ2 - Social Semantic Diversity, an improvement?

Since genotypic configurations show at best inconsistent re-
sults depending on the choice of metamodel, we use STD
executions as a comparison ground to evaluate benefits of

Promoting Social Diversity for the Automated Learning of Complex MDE Artefacts 13

0 1 2 3 4 5 6

400-

200-

0-

500-

300-

100-

A
cc

u
ra

cy

T
im

e
to

 c
o
n
v
er

g
e
n
ce

-0,6

-0,4

-0,2

-0

-0,5

-0,3

-0,1

-0,8

-0,7

-0,9

-1,0

S
T

D

Family Tree

obj cd obj objcd cd

SGD RGD SSD

(a) FamilyTree metamodel.

0 1 2 3 4 5 6 7 8 9 10 11 12 13

3000-

2000-

1000-

0-

2500-

1500-

500-

A
cc

u
ra

cy

T
im

e
to

 c
o

n
v
er

g
e
n
ce

-0,6

-0,4

-0,2

-0

-0,5

-0,3

-0,1

-0,8

-0,7

-0,9

-1,0

cd

Statemachine

S
T

D

Project Manager

obj cd obj

S
T

Dobj obj obj objcd cd cd cd

SGD RGD SSD SGD RGD SSD

(b) ProjectManager and StateMachine metamodels.

Fig. 10: Number of generations to find solutions and their accuracy (ACC) on test bench.

using a Social Semantic Diversity. Efficiency shows a sig-
nificant improvement when SSDobj is used, as can be seen
in respective columns (5 and 12) of Fig. 10b. The number
of generations required to find a solution when employing
SSDobj is a lot smaller than when employing STD. With
ProjectManager metamodel, a STD run hardly finds so-
lutions solving all training examples within the fixed 3000
generations (col. 0) whereas SSDobj does it in 260 gener-
ations on average (col. 5). More, solutions were found with
significantly better accuracy than STD (respectively 0.76 ag-
ainst 0.69) and thus strengthen solutions’ generalizability
likewise. This success is also noticed, if of lesser magnitude,
during executions on the StateMachine metamodel (col.
7 to 13). Here, if solutions are found in both configurations,
SSDobj is significantly faster (with 481 generations, when
STD requires more than 1782). As for the FamilyTree
metamodel, solutions given by SSDobj executions output a
similar ACC (0.98), with 25 generations (resp. 79 with STD)
– see Fig. 10a. We can conclude that injecting our social
semantic diversity significantly improves the learning effi-
ciency.

6.2.4 RQ3 - Social Semantic Diversity as an alternative
crowding distance, any better yet?

Results of RQ3 are flagrant (see the last configuration for
both metamodels in Fig. 10b). In Fig. 11, a hundred runs
show together how using SSD (11c and 11b) surges the learn-
ing curves and fosters solution exploration compared to a
standard run (11a). As for generalizability, choosing between
SSD as an objective (SSDobj) or in the crowding distance
(SSDcd) does not have any significant impact on the ac-
curacy of solutions on test bench found (Mann Witney p-
value > 0.01; see even columns in Fig. 10b for an illustra-
tion). Thence, the main difference lies in the smaller average
number of iterations SSDcd needs to converge, compared
to SSDobj runs. Note that this analysis is the strongest with
ProjectManager and FamilyTree metamodels. With
the StateMachine metamodel results are slightly miti-
gated but remain significant. In that case, WFRs are more
generally focused on structural cardinality than WFRs of the
two other metamodels. We conceive this might be a factor
for slightly different results. We can conclude that social
semantic diversity as a crowding distance is more efficient
than as an objective.

14 Edouard R. Batot, Houari Sahraoui

A
cc

u
ra

cy

Number of generations

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 500 1000 1500 2000 2500 3000

(a) Standard evolution (STD)

A
cc

u
ra

cy

Number of generations

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 500 1000 1500 2000 2500 3000

(b) SSD as an objective (SSDobj)

A
cc

u
ra

cy

Number of generations

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 500 1000 1500 2000 2500 3000

(c) SSD as crowding distance (SSDcd)

Fig. 11: Evolution of individuals’ average accuracy value during runs on ProjectManager metamodel, with a hundred
runs a plot. (a) shows a standard run without diversity measure. (b) shows a steep, but randomly delayed rise of the Semantic
Fitness when SSDobj is used; (c) figures how unbelievably quick the Semantic Fitness converges when its crowding distance
counter part SSDcd is used.

6.2.5 Conclusion

In conclusion, as shown in Fig. 10b and Fig. 11 and certified
with statistical analysis, both semantic diversity strategies
significantly surpass a standard exploration of solutions. Con-
vergence is faster and output more generalizable (i.e., con-
fronting solutions to a test bench gives better results). Con-
versely, genotypic diversity may at times hamper conver-
gence in both crowding distance and third objective alter-
natives, and should be used with care.

A reason for these results might come from the way
size is controlled. As recognized in the literature, we im-
plemented it as a Pareto-based Multi-objective Parsimony
Pressure [29].

Finally, solutions found are similar in structure and size
- or at least, we did not find any particular trend between
them. The rules found look like rules written ”by hand”,
short and legible, although often very simple (which proves
to be sufficient to satisfy the given problems). Solutions’
size was indeed the one expected (i.e., legible by a human),
and the learning, passed a few generations, relied mainly on
Semantic Fitness. The examples have been all solved (few

Listing 3:
package statemachine
context Final
inv Cst_Final_40177 :

not (self.outgoing->size() > 0)
context Choice
inv Cst_Choice_64113 :

not (self.outgoing->size() < 1)
context Initial
inv Cst_Initial_64121 :

not (self.outgoing->size()
= self.incoming->size()) AND
self.incoming->size() = 0

context Fork
inv Cst_Fork_48580 :

not ((self.outgoing->size() = 1 and
not (Fork.allInstances()->size() = 1)
))

context Statemachine
inv Cst_Statemachine_15350 :

not (self.id.oclIsUndefined())
endpackage

runs did not converge toward a 1.0 ACC individual) and
with no statistical peculiarities. As a presumed consequence,

Promoting Social Diversity for the Automated Learning of Complex MDE Artefacts 15

when putting SSD as an alternative to crowding distance,
results were breathtaking on the three metamodels. Finally,
using Social Semantic Diversity Measure as an alternative
crowding distance outperforms its use as an additional ob-
jective. Convergence is boosted, and generalizability is kept
at its maximum. We hope these results are generalizable and
claim the need to explore other applications, with SSDobj

and SSDcd alike, as well as other hybrid approaches featur-
ing genotypic diversities.

6.3 Threat to validity

Although our approach produced good results on three meta-
models, a threat to validity resides in the generalization of
our approach to other scenarios. Still, the metamodels used
show different characteristic and origin, and while our sam-
ple does not cover all learning scenarios, we believe that it
is representative enough of a wide range of metamodels.

A known limitation of our approach lies in the avoid-
ance of string attribute. We did not target WFRs constraining
Strings for their derivation is still a consequent open topic,
out of reach of this contribution, that would hamper its com-
prehension.

In our study, we performed multiple statistical tests, which
may alter the significance of each of them, i.e., error-rate
threat to validity. The significance values are, however, very
small (< 0.001), and remain significant after using Ben-
jamini et al. correction procedure [14].

The way we implemented the genotypic diversity mea-
sure for WFR learning can be challenged. Other implemen-
tation strategies could be experimented. For instance, since
the learning of WFR uses OCL patterns, the coverage of
these patterns could be an alternative measure instead of
metamodel elements.

Another threat to the validity of our results relates to the
use of a single set of (20) models to learn each WFR set.
Characterization of example sets is an ongoing investiga-
tion, and different sets might show different results. Yet, to
mitigate what specificities the manual design of models can
bring and encourage replication of our work, we used a gen-
erator [8]. Also, using the same set in every configuration
ensures a difference in sets do not interfere in the experi-
ment.

The suitability of ROUGE algorithm for text comparison
is supported by previous empirical evidence. Yet, different
kinds of ROUGE as well as stemming (for instance, using
Porter et al. algorithm [67]) or other preprocessing of solu-
tions’ syntax may yield different results. We envision fur-
ther work, with characterized preprocessings, to explore the
impact of lexical variations. In the same vein, there exist a
plethora of approaches to apprehend textual representations.
We chose ROUGE for it fits our primary goal of compar-

ing between text fragments, but other NLP techniques could
potentially be used.

Additionally, the capability of a solution to solve a given
example is binary by nature for WFR learning, i.e., a model
example is considered as valid or invalid by a WFR. For
learning other MDE artifacts, such as model transforma-
tions, the evaluation of an example by a solution is not bi-
nary as what is produced can be valid to a certain degree. A
candidate transformation can produce an output model that
matches partially the expected one according to the consid-
ered example. Yet, our semantic diversity measure can be
adapted using the conformance of solution to examples, as
defined by Baki et al. [5], or model-to-model distance met-
ric [38].

Finally, we evaluated only one implementation for each
diversity type. Many others have introduced genotypic di-
versities in the past. Yet, most of these approaches are in-
tended to optimize genetic algorithms execution whereas we
target genetic programming and specifically search-based
software engineering techniques for evolutionary learning.
This is a specific context since objectives do not have the
same importance: fitness is the goal, size an impediment
to usable solutions, and diversity matters during evolution,
not for the output. Our experiment must be replicated with
different genotypic measurements. Yet, state-of-the art liter-
ature shows a small impact of different genotypic diversi-
ties compared to phenotypic equivalent. We conclude on the
same note. No general conclusion is drawn, but so far this
case with Rouge and phenotypic domain specific diversities
perform (significantly and strongly) poorer on the three sce-
narios.

7 Related Work

The present study lies at the intersection of two different
fields of investigation. On the one hand, we contribute to
the advance of a more efficient learning of MDE artefacts,
and we will present some of the latest works in the domain
to sketch an up-to-date portrait of its potential benefits and
pitfalls. On the other hand, the need for a control of popula-
tion diversity during the execution of GPs is not new and we
will introduce state-of-the-art works on diversity for genetic
programming.

7.1 Learning MDE Artefacts

Research investigation on learning automatically MDE arte-
facts has started more than a decade ago. The artifact under
prime scrutiny was, and remains model transformation. As
early as 2006, Varro et al. [85] proposed a semi-automatic
graph-based approach to derive transformation rules using
interrelated source and target models. Balogh et al. [7] have

16 Edouard R. Batot, Houari Sahraoui

built an extension that derives n-m (instead of 1-1) rules us-
ing Inductive Logic Programming (ILP) and Wimmer et al.
propose a similar approach with mappings defined in a con-
crete rather than an abstract syntax [89, 81, 80, 43]. Later
on, teams started to automate the learning of model trans-
formations by analogy. They do not try to abstract the trans-
formation. They derive the corresponding target model from
a source model by considering model transformation as an
optimization problem [53, 54, 55]. More recently, Faunes et
al. [37] proposed an approach to learn directly the code of
transformations from examples. Genetic programming (GP)
is used to learn n-m transformation rules starting from source
and target examples without additional knowledge. To learn
a transformation, application examples are employed (model
pairs: potential inputs with their corresponding transformed
version). The approach is enhanced by Baki et al. [6, 5] to
learn the rules’ execution control of model transformations.
We foresee challenging future work in the replication of the
present study featuring model transformation as objects.

The second MDE artifact under strong scrutiny is the
well-formedness rules set. Faunes et al. [36] shows that it
is feasible to learn well-formedness rules (OCL constraints)
from examples and counter examples with ultimately no ex-
tra knowledge. Faunes’ approach consists in using the set of
examples and counter examples to participate in the evalua-
tion of candidate solutions during a mono-objective GP run.
In this scenario, a good solution differentiates between valid
and invalid models accordingly. The results are promising,
but the use of mono-objective seems problematic here. In
fact, multi-objective GP allows dissociating between seman-
tic and syntactic objectives. This permits the consideration
of semantic diversity and thus promotes the generalization
power of solutions [84]. Moreover, authors used oracles (the
expected solution) to produce examples – which is irrelevant
for an execution in vivo. More recently, Dang et al. [28] pro-
posed a framework to infer OCL invariants from examples.
Their work consists of translating OCL in a constraint logic
program and using a solver to identify candidate solutions.
The originality of this work is the involvement of the user
during the process of learning. The process is iterative, and
users are asked to check whether examples are sound and to
rebuke the extravagant ones. They are also asked to point out
the specific problematic part of malformed examples when
applicable to help with providing examples in the next iter-
ation. Later, the user is asked to assess the relevance of the
solution(s) given by the algorithm. To our best knowledge,
this is the first time that there is a concrete evaluation of so-
lutions relevance. In the same vein, Clariso et al. [25] show
the complexity of expressing and repairing specific miscon-
ceptions such as thresholds and complex select OCL expres-
sions. The authors show that mutation analysis is a good
candidate to tackle this issue.

7.2 Diversity Measure for Genetic Programming

Since the earliest work on genetic programming [56, 50],
and more generally on evolutionary computation [33], re-
searchers pointed out the importance of maintaining (and
controlling) diversity of individuals in a population of can-
didate solutions during the process of evolution. This can be
achieved during the crowding evaluation or during the selec-
tion of candidate reproducers [61]. Diversity has been con-
sidered on the syntax (or genotype) level as well as on the
semantics (or phenotype) level of solutions. In this study, we
offer to study both.

Among other striking works on diversity, Crepinsek et
al. [87] conducted a major meta-study. Referring to explo-
ration and exploitation viewpoints, authors see diversity as
an important characteristic to address the drawbacks of the
evolution process. They classify and name diversities de-
pending on their nature (genotypic, phenotypic, or a mix of
both), on their mode of application (measuring distance or
entropy among a population, taking into account statistics of
genes and/or behaviors in one generation or with a histori-
cal perspective). In this work, authors consider the control
of diversity as a way to achieve balance between phases of
exploration and exploitation during the evolution. For an in-
depth investigation on diversity, we strongly recommend the
reader to consider reading this seminal work.

State-of-the-Art investigations on diversity focus on ”Di-
mensionality Reduction” [48, 1, 83, 92]. In the same vein,
NSGA-III has been designed to foster diversity control on
Many-Objective Optimization Problem (MaOOP) [30, 31].
We target a specific kind of problem in which only two or
three objectives must be considered at maximum. More, the
example-based configuration specifically provides with a dis-
tinct objective dedicated to the semantic evaluation of candi-
date solutions. Therefor, we consider that NSGA-II is more
appropriate in our case.

The pressure toward which candidates will be elected for
reproduction is another mechanism to control diversity [4].
As a matter of fact, the closest work to ours was performed
by Byron et al. [19]. In their study, authors evaluate the im-
portance of phenotypic diversity versus an estimated Ham-
ming diversity applied on selection factors during the choice
of reproducers. Along with a syntactic heuristic, they use
a weighted value for diversity that considers the resolution
rate of training elements. They conclude that when applied
as selection factor, genotypic diversity seems more suitable
than phenotypic diversity. The nature and the results of the
experiment unveil a need for more investigation on the topic
since they illustrate their approach on the only King-Rook-
King problem. In the same manner, Eshelman et al. [35]
offer, for instance, to prevent incest and more generally to
favor parents that are at a distance from each other, and Szu-
bert et al. [82] favor antagonist behaviors for reproduction.

Promoting Social Diversity for the Automated Learning of Complex MDE Artefacts 17

The history of evolution has also been used to help decide
whether parents are fit for reproduction or not [62, 40]. In
all cases, these approaches require an important adaptation
that is difficult to apprehend with complex MDE artifacts.

Diversity can be controlled through the choice of genetic
operators [27]. Burks et al. [18] propose a new crossover
method that acts on the root of tree-like solution represen-
tations to augment (deepen) diversity. As a consequence, a
broader exploration of the solution space takes place (in-
stead of a common random pick crossover leading to super-
ficial changes). Adapting this kind of diversity to an MDE
artifact, such as a WFR set or transformation rules, is a com-
plex operation though and must be tailored in a ad hoc man-
ner to every new problem. We plan to explore this possibility
in the future.

As emphasized by Spears et al. [79], decomposing pop-
ulations reveals to being also beneficial for diversity mainte-
nance and the same year, Ryan et al. [68] propose ”disassor-
tative mating” which involves two populations: one has its
individuals ranked depending on their fitness, the other has
its individuals ranked on the sum of their size and weighted
fitness. In the same fashion, Benbassat et al. [13] separate
the population into subpopulations (buckets) based on simi-
larity to bias selection (i.e., individuals from all buckets will
be used for reproduction). Muller-Bady et al. [65] offer to
inject populations during the evolution to stir genetic ma-
terial and augment diversity. We experimented with similar
methods, but the small benefits were drowned by the results
of the Social Semantic Diversity.

Decomposition-based MOEAs are based on transform-
ing the multi objective problem into a set of single-objective
optimization problems that are tackled simultaneously [23].
The difficulty of these kinds of approaches lies in the se-
lection of proper weights that may depend on the form of
the Pareto front. Decomposition-based approaches investi-
gate the use of the star discrepancy measure in evolutionary
diversity optimization [66]. The work is empirically evalu-
ated with two settings studied in the literature, namely di-
versity optimization for images and Traveling Salesperson
Problem instances. In the context of learning WFR artifacts
though objectives are specific (i.e., for a semantic goal, size
control, and optionally diversity improvement). This context
avoid the possibility to put them into a single weighted ob-
jective.

Along these lines, Seada et al. [74] describe an approach
to capture dynamic changes in the relationship between se-
lection, genotype-phenotype mapping and loss of population
diversity. Finally, Galvan Lopez et al. [41] reminds us to be
careful about the impact and locality of genetic operators.

Hitherto, there is no convergence regarding the benefits
of diversity. As Affenzeller et al. [2] concluded recently, ”di-
versity needs to be considered in the context of fitness im-
provement, and that more diversity is not necessarily ben-

eficial in terms of solution quality.” We address this issue
with the use of SSDcd which helps evolutionary computa-
tion converge and fosters generalizability of the solutions.
Moreover, the dimension on which SSD is measured is di-
rectly related to the end purpose of a solution and no more
precision need be detailed and implemented. Finally, our
approach (with SSDcd or SSDobj) is independent of the
domain definition and comes at no costs since examples’
resolution (solutions’ execution) must be, nevertheless, per-
formed for fitness evaluation.

8 Conclusion

In this paper, we propose an innovative social semantic di-
versity measure for multi-objective genetic programming,
and we study its impact on the search process for learning
model well-formedness rules from examples and counter ex-
amples. The Social Semantic Diversity (SSD) is measured in
a way that does not take into account the only individualis-
tic fitness (i.e., how many learning examples an individual
resolves) but considers as well a social dimension (i.e., what
does that individual bring to the general fitness of the pop-
ulation). We integrated SSD in a genetic-programming ver-
sion of NSGA-II algorithm as (i) an additional objective,
and (ii) as an alternative to the crowding distance. For the
sake of completeness and comparison, we also defined two
genotypic diversity measures, one problem-domain agnos-
tic, and the other dependent on the problem domain.

We evaluated the three different diversity measures, as
both an additional objective or an alternative to the crowding
distance, on the problem of learning well-formedness rules
for three metamodels. Our results are compelling evidence
that injecting our social semantic diversity in the learning
process, especially as an alternative to the crowding dis-
tance, improves the convergence and the quality of the learned
artifacts. The two genotypic diversity measures, however,
did not bring substantial improvement to standard learning
with diversity boost.

For problems with binary decisions, i.e., a solution does
or does not solve a learning example, the proposed measure
and its integration in the multi-objective genetic program-
ming algorithm are agnostic with respect to the learned arti-
fact, and the input/output examples used to guide the learn-
ing. This allows our social semantic diversity measure to be
applied to a wide range of problems. The social diversity
measure can be adapted, for non binary-decision problems,
by integrating the degree with which a solution solves an
example.

In the specific category of learning model-driven engi-
neering artifacts, other studies are necessary to confirm the
important gain in convergence and quality of the learned ar-
tifacts. We expect, in particular, to conduct some of these

18 Edouard R. Batot, Houari Sahraoui

studies, especially for model transformation learning. Fi-
nally, we encourage further replication of our work to deter-
mine whether different multi-objective GP algorithms could
benefit as well from our discovery, outside the MDE prob-
lems.

References

1. S. F. Adra and P. J. Fleming. Diversity management in
evolutionary many-objective optimization. IEEE Trans-
actions on Evolutionary Computation, 15(2):183–195,
2011.

2. Michael Affenzeller, Stephan M. Winkler, Bogdan
Burlacu, Gabriel Kronberger, Michael Kommenda, and
Stefan Wagner. Dynamic observation of genotypic and
phenotypic diversity for different symbolic regression
gp variants. In Proc. of the Proc. of the Genetic and
Evolutionary Computation Conf., GECCO ’17 Com-
panion, pages 1553–1558. ACM, 2017.

3. Joshua E. Auerbach, Giovanni Iacca, and Dario Flore-
ano. Gaining insight into quality diversity. In Proc.
of the Proc. of the Genetic and Evolutionary Computa-
tion Conf., GECCO ’16 Companion, pages 1061–1064.
ACM, 2016.

4. T. Back. Selective pressure in evolutionary algorithms:
a characterization of selection mechanisms. In Proc. of
the First IEEE Conference on Evolutionary Computa-
tion. IEEE World Congress on Computational Intelli-
gence, pages 57–62, 1994.

5. Islem Baki and Houari Sahraoui. Multi-step learning
and adaptive search for learning complex model trans-
formations from examples. ACM Trans. on Soft. Eng.
and Methodology, X:36, 2015.

6. Islem Baki, Houari Sahraoui, Quentin Cobbaert,
Philippe Masson, and Martin Faunes. Learning implicit
and explicit control in model transformations by exam-
ple. In Proc. of the Int. Conf. on Model-Driven Engi-
neering Languages and Systems, volume 8767, pages
636–652. 2014.

7. Zoltan Balogh and Dániel Varró. Model transformation
by example using inductive logic programming. Int. J.
on Soft. and Systems Modeling, 8(3):347–364, 2009.

8. Edouard Batot and Houari Sahraoui. A generic frame-
work for model-set selection for the unification of test-
ing and learning mde tasks. In Proc. of the Int. Conf.
on Model-Driven Engineering Languages and Systems.
ACM, 2016.

9. Edouard Batot and Houari Sahraoui. Injecting social
diversity in multi-objective genetic programming: The
case of model well-formedness rule learning. In Inter-
national Symposium on Search Based Software Engi-
neering, pages 166–181, 2018.

10. Edouard Batot, Wael Kessentini, Houari A. Sahraoui,
and Michalis Famelis. Heuristic-based recommenda-
tion for metamodel - OCL coevolution. In Proc. of
the Int. Conf. on Model-Driven Engineering Languages
and Systems. ACM, 2017.

11. Benoit Baudry and Martin Monperrus. The multiple
facets of software diversity: Recent developments in
year 2000 and beyond. ACM Comput. Surv., 48(1):
16:1–16:26, 2015.

12. Lawrence Beadle and Colin G. Johnson. Semantic anal-
ysis of program initialisation in genetic programming.
Genetic Programming and Evolvable Machines, 10(3):
307–337, March 2009.

13. Amit Benbassat and Yuri Shafet. A simple bucketing
based approach to diversity maintenance. In Proc. of
the Proc. of the Genetic and Evolutionary Computation
Conf., GECCO ’17, pages 1559–1564. ACM, 2017.

14. Y. Benjamini and Y. Hochberg. Controlling the false
discovery rate: A Practical and powerful approach to
multiple testing. J. Roy. Statist. Soc., 57:289–300, 1995.

15. Tommaso F. Bersano-Begey. Controlling exploration,
diversity and escaping local optima in gp: Adapting
weights of training sets to model resource consump-
tion. In John R. Koza, editor, Late Breaking Papers at
the 1997 Genetic Programming Conference, pages 7–
10, 1997.

16. P. A. N. Bosman and D. Thierens. The balance between
proximity and diversity in multiobjective evolutionary
algorithms. IEEE Transactions on Evolutionary Com-
putation, 7(2):174–188, 2003.

17. E. K. Burke, S. Gustafson, and G. Kendall. Diversity
in genetic programming: an analysis of measures and
correlation with fitness. IEEE Transactions on Evolu-
tionary Computation, 8(1):47–62, Feb 2004.

18. Armand R. Burks and William F. Punch. An efficient
structural diversity technique for genetic programming.
In Proc. of the Proc. of the Genetic and Evolution-
ary Computation Conf., GECCO ’15, pages 991–998.
ACM, 2015.

19. James Byron and Wayne Iba. Population diversity as a
selection factor: Improving fitness by increasing diver-
sity. In Proc. of the Proc. of the Genetic and Evolution-
ary Computation Conf., GECCO ’16, pages 953–959,
2016.

20. Juan José Cadavid, Benoit Baudry, and Houari A.
Sahraoui. Searching the boundaries of a modeling space
to test metamodels. In Proc. of the Int. Conf. on Soft-
ware Testing Verification and Validation, pages 131–
140, 2012.

21. Juan Jose Cadavid, Benoit Combemale, and Benoit
Baudry. Ten years of Meta-Object Facility: an Analysis
of Metamodeling Practices. Research Report RR-7882,
AtlanMod, 2012.

Promoting Social Diversity for the Automated Learning of Complex MDE Artefacts 19

22. Juan Jose Cadavid, Benoit Combemale, and Benoit
Baudry. An analysis of metamodeling practices for
MOF and OCL. Computer Languages, Systems and
Structures, 41:42 – 65, 2015.

23. Joel Chacón Castillo, Carlos Segura, Arturo Hernández
Aguirre, Gara Miranda, and Coromoto León. A multi-
objective decomposition-based evolutionary algorithm
with enhanced variable space diversity control. In Proc.
of the Proc. of the Genetic and Evolutionary Computa-
tion Conf., GECCO ’17 Companion, pages 1565–1571.
ACM, 2017.

24. G. Chen, C. P. Low, and Z. Yang. Preserving and ex-
ploiting genetic diversity in evolutionary programming
algorithms. IEEE Transactions on Evolutionary Com-
putation, 13(3):661–673, 2009.

25. R. Clariso and J. Cabot. Fixing defects in integrity
constraints via constraint mutation. pages 74–82, Sep.
2018.

26. Vipul K. Dabhi and Sanjay Chaudhary. A survey on
techniques of improving generalization ability of ge-
netic programming solutions. CoRR, abs/1211.1119,
2012.

27. Duc-Cuong Dang, Tobias Friedrich, Timo Kötzing,
Martin S. Krejca, Per Kristian Lehre, Pietro S. Oliveto,
Dirk Sudholt, and Andrew M. Sutton. Escaping lo-
cal optima with diversity mechanisms and crossover.
In Proc. of the Proc. of the Genetic and Evolution-
ary Computation Conf., GECCO ’16, pages 645–652.
ACM, 2016.

28. Duc-Hanh Dang and Jordi Cabot. On automating in-
ference of OCL constraints from counterexamples and
examples. In Proc of the Sixth Int. Conf. on Knowl-
edge and Systems Engineering KSE, pages 219–231.
Springer Berlin Heidelberg, 2014.

29. Edwin D. de Jong, Richard A. Watson, and Jordan B.
Pollack. Reducing bloat and promoting diversity using
multi-objective methods. In Proc. of the 3rd Annual
Conference on Genetic and Evolutionary Computation,
GECCO’01, pages 11–18, 2001.

30. K. Deb and H. Jain. An evolutionary many-
objective optimization algorithm using reference-point-
based nondominated sorting approach, part i: Solving
problems with box constraints. IEEE Transactions on
Evolutionary Computation, 18(4):577–601, 2014.

31. Kalyanmoy Deb and Dhish Kumar Saxena. On finding
pareto-optimal solutions through dimensionality reduc-
tion for certain large-dimensional multi-objective opti-
mization problems.

32. Kalyanmoy Deb, Samir Agrawal, Amrit Pratap, and
T. Meyarivan. A fast elitist non-dominated sort-
ing genetic algorithm for multi-objective optimisation:
NSGA-II. In Int. Conf. on Parallel Problem Solving
from Nature - PPSN, 2000.

33. A. E. Eiben and C. A. Schippers. On evolutionary ex-
ploration and exploitation. Fundam. Inf., 35(1-4):35–
50, 1998.

34. Anikó Ekárt and S. Z. Németh. A metric for genetic
programs and fitness sharing. In Riccardo Poli, Wolf-
gang Banzhaf, William B. Langdon, Julian Miller, Peter
Nordin, and Terence C. Fogarty, editors, Genetic Pro-
gramming, pages 259–270, Berlin, Heidelberg, 2000.
Springer Berlin Heidelberg.

35. Larry J. Eshelman and J. David Schaffer. Crossover’s
niche. In Stephanie Forrest, editor, Proc of the 5th
Int. Conf. on Genetic Algorithms, pages 9–14. Morgan
Kaufmann, 1993.

36. Martin Faunes, Juan Cadavid, Benoit Baudry, Houari
Sahraoui, and Benoit Combemale. Automatically
searching for metamodel well-formedness rules in ex-
amples and counter-examples. In Proc. of the Int. Conf.
on Model-Driven Engineering Languages and Systems,
pages 187–202, 2013.

37. Martin Faunes, Houari Sahraoui, and Mounir
Boukadoum. Genetic-programming approach to
learn model transformation rules from examples. In
Proc. of the Int. Conf. on Theory and Practice of Model
Transformation, volume 7909, pages 17–32. 2013.

38. Adel Ferdjoukh, Florian Galinier, Eric Bourreau, An-
nie Chateau, and Clémentine Nebut. Measuring Differ-
ences To Compare Sets Of Models And Improve Diver-
sity In MDE. In ICSEA: International Conference on
Software Engineering Advances, Athenes, Greece, Oc-
tober 2017.

39. Félix-Antoine Fortin and Marc Parizeau. Revisiting
the nsga-ii crowding-distance computation. In Proc. of
Int. Conf. on Genetic and Evolutionary Computation,
GECCO. ACM, 2013.

40. Thomas Gabor and Lenz Belzner. Genealogical dis-
tance as a diversity estimate in evolutionary algorithms.
In Proc. of the Proc. of the Genetic and Evolution-
ary Computation Conf., GECCO ’17 Companion, pages
1572–1577. ACM, 2017.

41. Edgar Galván-López, James McDermott, Michael
O’Neill, and Anthony Brabazon. Towards an under-
standing of locality in genetic programming. In Proc.
of the Proc. of the Genetic and Evolutionary Computa-
tion Conf., GECCO ’10, pages 901–908. ACM, 2010.

42. Kavita Ganesan. Rouge 2.0: Updated and improved
measures for evaluation of summarization tasks. 2015.

43. Iván Garcı́a-Magariño, Jorge J. Gómez-Sanz, and
Rubén Fuentes-Fernández. Model transformation by-
example: An algorithm for generating many-to-many
transformation rules in several model transformation
languages. In Richard F. Paige, editor, Theory and Prac-
tice of Model Transformations, pages 52–66. Springer
Berlin Heidelberg, 2009.

20 Edouard R. Batot, Houari Sahraoui

44. Martin Gogolla, Antonio Vallecillo, Loli Burgueno, and
Frank Hilken. Employing classifying terms for test-
ing model transformations. In Proc. of the Int. Conf.
on Model-Driven Engineering Languages and Systems,
pages 312–321, 2015.

45. David E. Goldberg. Genetic Algorithms in Search,
Optimization and Machine Learning. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1st
edition, 1989.

46. M. Harman, Y. Jia, and Y. Zhang. Achievements, open
problems and challenges for search based software test-
ing. In Proc. of the Int. Conf. on Software Testing Veri-
fication and Validation, pages 1–12, 2015.

47. Kahina Hassam, Salah Sadou, and Régis Fleurquin.
Adapting ocl constraints after a refactoring of their
model using an mde process. In 9th ed. of the BElgian-
NEtherlands software eVOLution seminar, pages 16–
27, 2010.

48. Z. He and G. G. Yen. Many-objective evolutionary algo-
rithm: Objective space reduction and diversity improve-
ment. IEEE Transactions on Evolutionary Computa-
tion, 20(1):145–160, 2016. Comparaison with NSGA-
III (Niching for many objective.

49. Abram Hindle, Earl T. Barr, Zhendong Su, Mark Gabel,
and Premkumar Devanbu. On the naturalness of soft-
ware. In Proc. of the Int. Conf. on Software Engineer-
ing, ICSE ’12, pages 837–847, 2012.

50. John H. Holland. Adaptation in Natural and Artificial
Systems: An Introductory Analysis with Applications to
Biology, Control and Artificial Intelligence. MIT Press,
1992.

51. David Jackson. Phenotypic diversity in initial genetic
programming populations. In Anna Isabel Esparcia-
Alcázar, Anikó Ekárt, Sara Silva, Stephen Dignum, and
A. Şima Uyar, editors, Genetic Programming, pages
98–109. Springer Berlin Heidelberg, 2010.

52. M. Kessentini, W. Kessentini, H. Sahraoui,
M. Boukadoum, and A. Ouni. Design defects de-
tection and correction by example. In Proc. of the Int.
Conf. on Program Comprehension, pages 81–90, 2011.

53. Marouane Kessentini, Houari A. Sahraoui, and Mounir
Boukadoum. Model transformation as an optimization
problem. In Proc. of the Int. Conf. on Model-Driven
Engineering Languages and Systems, pages 159–173.
Springer, 2008.

54. Marouane Kessentini, Houari Sahraoui, Mounir
Boukadoum, and Omar Ben Omar. Search-based
model transformation by example. Int. J. on Soft. and
Systems Modeling, 11(2):209–226, 2010.

55. Marouanne Kessentini, Houari Sahraoui, Mounir
Boukadoum, and Omar Ben Omar. Search-based model
transformation by example. Int. J. on Soft. and Systems
Modeling, 11(2):209–226, 2012.

56. John R. Koza. Genetic Programming: On the Program-
ming of Computers by Means of Natural Selection. MIT
Press, Cambridge, MA, USA, 1992.

57. Chin-Yew Lin. Rouge: A package for automatic eval-
uation of summaries. In Proc. ACL workshop on Text
Summarization Branches Out, page 10, 2004.

58. H. Liu, L. Chen, K. Deb, and E. D. Goodman. Inves-
tigating the effect of imbalance between convergence
and diversity in evolutionary multiobjective algorithms.
IEEE Transactions on Evolutionary Computation, 21
(3):408–425, 2017.

59. Jesús J. López-Fernández, Esther Guerra, and Juan
de Lara. Example-based validation of domain-specific
visual languages. In Proc. of the Int. Conf. on Soft-
ware Language Engineering, SLE 2015, pages 101–
112, 2015.

60. Sean Luke and Liviu Panait. A comparison of bloat con-
trol methods for genetic programming. Evol. Comput.,
14(3):309–344, September 2006.

61. R. Manner, Samir Mahfoud, and Samir W. Mahfoud.
Crowding and preselection revisited. In Parallel Prob-
lem Solving From Nature, pages 27–36. North-Holland,
1992.

62. Nicholas Freitag McPhee and Nicholas J. Hopper. Anal-
ysis of genetic diversity through population history. In
Proc. of the Proc. of the Genetic and Evolutionary Com-
putation Conf., GECCO’99, pages 1112–1120. Morgan
Kaufmann Publishers Inc., 1999.

63. Nicholas Freitag McPhee, Brian Ohs, and Tyler Hutchi-
son. Semantic building blocks in genetic programming.
In Genetic Programming, pages 134–145. Springer
Berlin Heidelberg, 2008.

64. Chihab eddine Mokaddem, Houari Sahraoui, and Eu-
gene Syriani. Recommending model refactoring rules
from refactoring examples. In Proc. of the Int. Conf.
on Model-Driven Engineering Languages and Systems,
MODELS ’18, pages 257–266, 2018.

65. Robin Mueller-Bady, Martin Kappes, Inmaculada
Medina-Bulo, and Francisco Palomo-Lozano. Main-
taining genetic diversity in multimodal evolutionary al-
gorithms using population injection. In Proc. of the
Proc. of the Genetic and Evolutionary Computation
Conf., GECCO ’16 Companion, pages 95–96. ACM,
2016.

66. Aneta Neumann, Wanru Gao, Carola Doerr, Frank Neu-
mann, and Markus Wagner. Discrepancy-based evo-
lutionary diversity optimization. In Proc. of the Proc.
of the Genetic and Evolutionary Computation Conf.,
GECCO ’18, pages 991–998. ACM, 2018.

67. M. F. Porter. Readings in information retrieval. chap-
ter An Algorithm for Suffix Stripping, pages 313–316.
1997.

Promoting Social Diversity for the Automated Learning of Complex MDE Artefacts 21

68. Conor Ryan. Racial harmony in genetic algorithms.
1994.

69. Hajer Saada, Xavier Dolques, Marianne Huchard,
Clémentine Nebut, and Houari A. Sahraoui. Genera-
tion of operational transformation rules from examples
of model transformations. In Proc. of the Int. Conf.
on Model-Driven Engineering Languages and Systems,
pages 546–561, 2012.

70. Horacio Saggion, Simone Teufel, Dragomir Radev, and
Wai Lam. Meta-evaluation of summaries in a cross-
lingual environment using content-based metrics. In
Proc. of the 19th Int. Conf. on Computational Linguis-
tics - Volume 1, COLING ’02, pages 1–7. Ass. for Com-
putational Linguistics, 2002.

71. Jesús Sanchez-Cuadrado, Juan de Lara, and Esther
Guerra. Bottom-up meta-modelling: An interactive ap-
proach. In Proc. of the Int. Conf. on Model-Driven En-
gineering Languages and Systems, volume 7590, pages
3–19. 2012.

72. J. David Schaffer. Multiple objective optimization with
vector evaluated genetic algorithms. In Proceedings
of the 1st International Conference on Genetic Algo-
rithms, pages 93–100, Hillsdale, NJ, USA, 1985. L. Erl-
baum Associates Inc.

73. Douglas C Schmidt. Model-driven engineering. IEEE
Computer Society, 39(2), 2006.

74. Haitham Ahmed Seada, Mohamed Abouhawwash, and
Kalyanmoy Deb. Towards a better diversity of evo-
lutionary multi-criterion optimization algorithms using
local searches. In Proc. of the Proc. of the Genetic and
Evolutionary Computation Conf., GECCO ’16 Com-
panion, pages 77–78. ACM, 2016.

75. C. Segura, A. Hernández-Aguirre, F. Luna, and E. Alba.
Improving diversity in evolutionary algorithms: New
best solutions for frequency assignment. IEEE Trans-
actions on Evolutionary Computation, 21(4):539–553,
2017.

76. Bran Selic. What will it take? A view on adoption of
model-based methods in practice. Int. J. on Soft. and
Systems Modeling, 11(4):513–526, 2012.

77. Terence Soule and James A. Foster. Effects of code
growth and parsimony pressure on populations in ge-
netic programming. Evolutionary Computation, 6(4):
293–309, 1998.

78. Karen Sparck Jones. Document retrieval systems. chap-
ter A Statistical Interpretation of Term Specificity and
Its Application in Retrieval, pages 132–142. 1988.

79. William M. Spears. Simple subpopulation schemes. In
In, pages 296–307. World Scientific, 1994.

80. Michael Strommer and Manuel Wimmer. A framework
for model transformation by-example: Concepts and
tool support. In Richard F. Paige and Bertrand Meyer,
editors, Objects, Components, Models and Patterns,

pages 372–391. Springer Berlin Heidelberg, 2008.
81. Michael Strommer, Marion Murzek, and Manuel Wim-

mer. Applying model transformation by-example
on business process modeling languages. In Jean-
Luc Hainaut, Elke A. Rundensteiner, Markus Kirch-
berg, Michela Bertolotto, Mathias Brochhausen, Yi-
Ping Phoebe Chen, Samira Si-Saı̈d Cherfi, Martin Do-
err, Hyoil Han, Sven Hartmann, Jeffrey Parsons, Geert
Poels, Colette Rolland, Juan Trujillo, Eric Yu, and Es-
teban Zimányie, editors, Advances in Conceptual Mod-
eling – Foundations and Applications, pages 116–125.
Springer Berlin Heidelberg, 2007.

82. Marcin Szubert, Anuradha Kodali, Sangram Ganguly,
Kamalika Das, and Josh C. Bongard. Reducing antago-
nism between behavioral diversity and fitness in seman-
tic genetic programming. In Proc. of the Proc. of the
Genetic and Evolutionary Computation Conf., GECCO
’16, pages 797–804. ACM, 2016.

83. Y. Tian, R. Cheng, X. Zhang, Y. Su, and Y. Jin. A
strengthened dominance relation considering conver-
gence and diversity for evolutionary many-objective op-
timization. IEEE Transactions on Evolutionary Compu-
tation, 23(2):331–345, 2019.

84. Leonardo Vanneschi, Mauro Castelli, and Sara Silva. A
survey of semantic methods in genetic programming.
Genetic Programming and Evolvable Machines, 15(2):
195–214, 2014.

85. Dániel Varró. Model transformation by example. In
Proc. of the Int. Conf. on Model-Driven Engineering
Languages and Systems, pages 410–424, 2006.

86. Dániel Varró, Oszkár Semeráth, Gábor Szárnyas, and
Ákos Horváth. Towards the Automated Generation
of Consistent, Diverse, Scalable and Realistic Graph
Models, pages 285–312. Springer International Publish-
ing, Cham, 2018.

87. Matej Črepinšek, Shih-Hsi Liu, and Marjan Mernik.
Exploration and exploitation in evolutionary algo-
rithms: A survey. ACM Comput. Surv., 45(3):35:1–
35:33, July 2013.

88. J. Whittle, J. Hutchinson, and M. Rouncefield. The
state of practice in model-driven engineering. Software,
IEEE, 31:79–85, 2014.

89. Manuel Wimmer, Michael Strommer, Horst Kargl, and
Gerhard Kramler. Towards model transformation gener-
ation by-example. In 40th Hawaii Int. Conf. on Systems
Science, page 285, 2007.

90. Hao Wu. Generating metamodel instances satisfying
coverage criteria via smt solving. In Proc. of the Int.
Conf. on Model-Driven Eng. and Soft. Development,
pages 40–51, 2016.

91. Bart Wyns, Peter De Bruyne, and Luc Boullart. Charac-
terizing diversity in genetic programming. In Proceed-
ings of the 9th European Conference on Genetic Pro-

22 Edouard R. Batot, Houari Sahraoui

gramming, EuroGP’06, pages 250–259, Berlin, Heidel-
berg, 2006. Springer-Verlag.

92. Y. Yuan, H. Xu, B. Wang, B. Zhang, and X. Yao.
Balancing convergence and diversity in decomposition-

based many-objective optimizers. IEEE Transactions
on Evolutionary Computation, 20(2):180–198, 2016.

	Caratula_Article_Postprint_CC_BY_NC_ND_ca
	batot2022_sosym_socialdiversity

