

Universitat Oberta de Catalunya

 Arxiu de recerca

Citació per a la versió publicada

Gómez-Gutiérrez, J.A., Clarisó, R. & Cabot, J. (2022). A Tool for
Debugging Unsatisfiable Integrity Constraints in UML/OCL Class
Diagrams. Lecture Notes in Business Information Processing, 450 267-
275. doi: 10.1007/978-3-031-07475-2_18

DOI
http://doi.org/10.1007/978-3-031-07475-2_18

Handle O2
http://hdl.handle.net/10609/147152

Versió del document

Aquesta és una versió acceptada del manuscrit.
La versió en el Repositori O2 de la Universitat Oberta de Catalunya pot ser
diferent de la versió final publicada.

Drets d’ús i reutilització

Aquesta versió del manuscrit es fa disponible amb una llicència Creative
Commons del tipus Atribució No Comercial No Derivades (CC BY-NC-ND)
http://creativecommons.org/licenses/by-nc-nd/4.0, que permet baixar-la i
compartir-la sempre que se'n citi l'autoria, però sense modificar-la ni
utilitzar-la amb finalitats comercials.

Consultes

Si creieu que aquest document infringeix els drets d’autor, contacteu amb
l’equip de recerca: repositori@uoc.edu

http://doi.org/10.1007/978-3-031-07475-2_18
http://doi.org/10.1007/978-3-031-07475-2_18
http://hdl.handle.net/10609/147152
http://creativecommons.org/licenses/by-nc-nd/4.0
mailto:repositori@uoc.edu

A Tool for Debugging Unsatisfiable Integrity
Constraints in UML/OCL Class Diagrams

Juan Antonio Gómez-Gutiérrez1[0000−0002−5541−0141]*, Robert
Clarisó1[0000−0001−9639−0186], and Jordi Cabot2[0000−0003−2418−2489]

1 Universitat Oberta de Catalunya, Barcelona, Spain,
{juanto, rclariso}@uoc.edu
2 ICREA, Barcelona, Spain,
jordi.cabot@icrea.cat

Abstract. Software models are the basis of the Model-Driven Engineer-
ing paradigm. The most popular modeling notation is UML class dia-
grams, which can be annotated with OCL predicates to describe complex
integrity constraints.

When creating and managing UML/OCL models, a challenge for do-
main engineers is diagnosing faults. Problems like inconsistencies among
integrity constraints can render a model useless. While existing verifica-
tion tools provide ample support for detecting faults, users have less sup-
port when trying to understand and fix them. In this paper, we present a
tool aimed at helping domain engineers locate, understand and fix faults
in UML/OCL class diagrams. This tool is built as a plug-in within an
existing UML modeling tool, the UML Specification Environment (USE).

Keywords: UML, OCL, class diagram, verification, integrity constraint,
USE, model debugging

1 Introduction

In the software development process, the relevant characteristics of a system can
be captured using a model, e.g., a UML diagram. Software models are power-
ful tools for communication among stakeholders and documentation of design
decisions. Moreover, in the Model-Driven Development paradigm, models are
the central asset of the software development process, from which other assets
like source code are (semi)automatically derived. As a result, the correctness of
software models affects the quality of the final software product.

UML class diagrams are a popular notation for modeling structural features.
This formalism can be enriched by defining complex integrity constraints using
the Object Constraint Language (OCL). OCL is a textual notation that enables
the definition of class invariants and pre/postconditions for operations.

As UML/OCL models grow more complex, it may be necessary to check that
there are no inconsistencies, e.g., constraints that become unsatisfiable due to
the interactions with other constraints. Detecting such errors is a complex task.

Furthermore, it is even harder to understand their causes in order to repair the
model, rewriting the incorrect constraints in a proper way.

In this paper, we present MVM (Model Validator Mixer)3, a modeling tool for
domain engineers that helps them locate, understand and fix consistency prob-
lems in UML/OCL class diagrams. To this end, MVM computes and organizes
information about groups of inconsistent constraints and sample instances that
satisfy most (but not all) integrity constraints. MVM is implemented as a plug-
in for the UML Specification Environment (USE) [4], a modeling tool offering
advanced features for the verification and validation of UML/OCL models.

2 Related Work

Several works have considered the formal verification of UML class diagrams
annotated with OCL constraints, e.g., PLEDGE [12], USE Model Validator [7],
UMLtoCSP/EMFtoCSP [5,2] or AuRUS [9], among others. These tools can check
correctness properties like finite satisfiability, i.e., whether there is a finite in-
stance of the class diagram that satisfies all UML and OCL integrity constraints
simultaneously. If the property holds, an example instance is computed as out-
put, otherwise the method warns about the lack of satisfying instances. Other
tools such as the Alloy Analyzer [6] or VIATRA [10] can check equivalent prop-
erties for closely related conceptual modeling formalisms.

Nevertheless, these tools focus on either detecting faults efficiently or gener-
ating high quality example instances (realistic, diverse, . . .) [12,11]. Thus, once a
fault has been detected there is little support to help the designer locate, under-
stand and fix the problem(s). In the following, we discuss three approaches that
work in this direction: unsatisfiable cores, max-satisfiabilty and model repair.

An unsatisfiable core is a subset of integrity constraints that is unsatisfi-
able. If the class diagram is inconsistent, it is possible to compute a small (or
even minimal) unsatisfiable core of integrity constraints, helping to locate the
fault [13,9,8]. These techniques can be used for model debugging (also called
fault localization): identifying the fragment(s) of a specification that are caus-
ing the fault [14,17]. Conversely, using a maximum satisfiability algorithm it is
possible to compute the largest set of constraints that can be satisfied simulta-
neously [15,16].

A final set of techniques aim to generate repairs, i.e. small (or even minimal)
changes to a model that fix a particular fault. Some of these methods have
targeted Alloy specifications [14,17,1] and UML/OCL class diagrams [3]. As a
drawback, the catalog of fixes (mutation operators) has to be established a priori
and, in some cases, additional predicates to validate the fix must be defined.
Instead, our approach aims to help the designer locate, understand and fix faults.
That is, it does not assume that the model is almost correct and can be fixed with
small updates. Information such as unsatisfiable cores and max-satisfiability is
combined with examples and useful feedback to help the designer understand
the fault.

3 You can download the tool at: https://github.com/juanto2021/MVM#readme

https://github.com/juanto2021/MVM#readme

3 Presentation of MVM

3.1 Context

Our goal with MVM is helping domain engineers debug problems with their
UML/OCL class diagrams. Rather than offering a stand-alone tool with yet
another syntax and GUI for creating model, we have aimed at extending an
existing toolkit. Thus, we have integrated MVM inside the UML Specification
Environment (USE).

USE already offers several features for the verification and validation of UM-
L/OCL class diagrams. First, it uses a textual syntax for enconding both the
class diagram and the OCL constraints. Then, it offers GUIs to visualize the
class diagram, instances (object diagrams) and constraints. Moreover, it can
check whether an object diagram satisfies all or some integrity constraints. And,
finally, it includes a plug-in called Model Validator [7] that can determine if
the constraints are satisfiable or not. To this end, it uses a bounded verification
solver that constructs a valid instance of the class diagram (satisfiable) or re-
ports its absence within the bounded domains (unsatisfiable). When the result
is unsatisfiable, no further feedback is provided by USE (see Section 2 for the
feedback provided by other extensions).

MVM will supply feedback aimed at helping domain engineers diagnose and
fix the problem. It will use USE’s notation to describe the UML/OCL class
diagrams and USE’s GUI to visualize sample instances.

3.2 Feedback

A UML/OCL class diagram may contain one or more consistency errors that
need to be fixed. All of them will exhibit the same symptom (the model is
unsatisfiable), but their causes should be fixed independently.

Each consistency error may be caused by a single incorrect invariant or an
unintended interaction between several invariants. To this end, we will provide
the following information to the domain engineer:

– Minimal unsatisfiable cores: Sets of OCL invariants that cannot be simul-
taneously satisfied and that become satisfiable if any member of the set is
removed. While each unsatisfiable core is potentially an independent error,
several cores that share some constraints may indicate a problem in the
constraints included in their intersection.

– Max-satisfiable constraints and instances: Sets of OCL invariants that can
be satisfied as a whole, together with sample instances satisfying only those
max-satisfiable constraints. The goal is showing the domain engineer what
such instances would look like, in order to help him have a better idea of
how the current constraints should be modified.

– “What-if” scenarios: Sample instances that would be legal if one constraint
in the unsatisfiable core is dropped. Again, the rationale is helping the do-
main engineer figure out whether such instances should be made valid by

Fig. 1. Model Animals.

rewriting the corresponding constraint.For example, in Figure 2 you can see
in the rightmost tab which combinations are satisfiable if you eliminate this
invariant. Also, double-clicking on any of the proposed combinations creates
an object diagram with a sample valid instance.

The central idea is presenting this information in a cohesive and usable way
that helps the user understand the consistency problems that need to be ad-
dressed, their causes and candidate repairs.

3.3 Running example

In order to illustrate the operation of MVM, we will use the UML class diagram
in Figure 1 as our running example. It contains 2 classes (Person and Pet),
each with different attributes, several invariants and an association. This model
fragment could reflect work in progress to add new features to an existing system.

This class diagram has two separate consistency issues. First, invariant validAge
cannot be satisfied. Age was probably intended to be in the range from 1 to 99
years, but the relational operators got reversed by mistake:

context Person inv validAge: -- Invariant 5

self.age <= 0 and self.age > 99

The second problem affects invariants related to the weight of pets: one
(validSmallerThanWeight) establishes an upper bound of the weight of pets,
while two others require the existence of a heavier pet (existsWeightGreaterPets)
or require the pets owned by some person to be heavier (allWeightGreaterPets).
Intuitively, the upper bound for the weight should be increased, or the require-
ments on heavier pets be lowered.

Fig. 2. Errors tab in the MVM dialog box.

context Person inv allWeightGreaterPets: -- Invariant 4

self.pet→forAll(p|p.weight>5)

context Pet inv existsWeightGreaterPets: -- Invariant 6

Pet.allInstances()→exists(p:Pet|p.weight>5)

context Pet inv validSmallerThanWeight: -- Invariant 8

self.weight < 4

In the following, we will show how MVM can be used to identify these issues
and help domain engineers come up with potential solutions.

3.4 User interface

MVM displays the information about consistency errors in a dialog box consisting
of three tabs: Errors, Best approximate solutions and Statistics.

Errors In this tab, we show the minimal combinations of invariants that are
unsatisfiable (minimal unsatisfiable cores). It consists of the following panels:

– Faulty combinations: The leftmost panel shows the minimal unsatisfiable
core. When a combination is selected in this list, the following two views are
synchronized.

– Example instances without the selected invariant: This panel shows examples
of satisfiable combinations that do not contain one invariant from the core.
Double-clicking a combination (each excludes one invariant from the core)
creates an object diagram that satisfies the invariant in that combination.

– OCL for inv: For convenience, this panel displays the OCL definition of the
selected invariant.

Figure 2 depicts this user interface for the running example. In this dialog
box you can see in the upper left part, a list that shows three faulty combinations
of invariants that cannot be satisfied:

Fig. 3. Object diagram depicting a scenario where invariants 5 and 7 are violated.

– 5 (validAge): This single invariant is unsatisfiable on its own.
– 4-8 (allWeightGreaterPets, validSmallerThanWeight): Even though each in-

variant is satisfiable on its own, the combination of both is unsatisfiable.
– 6-8 (existsWeightGreaterPets, validSmallerThanWeight): Same as before.

The first core is disjoint from the rest, so this is a separate error that should be
repaired independently. Regarding the last two cores, their intersection suggests
a potentially shared cause within invariant 8 (validSmallerThanWeight). In
order to understand these faults, the domain engineer can inspect instances that
violate only one of the constraints in this unsatisfiable core, using the rightmost
panel. For instance, if we are studying invariant 5 (validAge), we can inspect an
instance that satisfies the combination of invariants 1-2-3-4-6-7 (which excludes
5). Figure 3 shows the object diagram depicting such instance, as shown in USE.

Best approximate solutions This tab shows the satisfiable combinations with
the highest number of invariants:

– Invariants: The leftmost panel shows the list of satisfiable combinations with
the highest number of invariants.

– Combination panel: When clicking on a combination, the invariants that
compose it are shown in the upper right panel.

– OCL for inv: When clicking on a specific invariant, the definition of that
invariant is shown in the lower panel.

Figure 4 shows the information this tab. In a similar way to that described for
the “Errors” tab, when clicking on a combination, the invariants that compose
it will be shown in the upper right list and, when clicking on a specific invariant,
its definition will be shown in the lower part.

Statistics The computation of unsatisfiable cores relies on USE’s Model Val-
idator to check if a given combination of invariants is satisfiable or not. If a
combination of invariants is deemed unsatisfiable, supersets of this combination
will also be unsatisfiable. Similarly, if a combination is found to be satisfiable, it
is not necessary to explore subsets of this combination. Thus, it is not necessary
to invoke the Model Validator for each combination: many calls can be pruned.

Fig. 4. Best approximate solutions.

Fig. 5. Statistics

This tab shows information about the computation of unsatisfiable cores and
sample instances. It describes the CPU time spent searching for combinations,
the number of calls to the solver, and the number of calls that produced a
satisfiable/unsatisfiable result. Figure 5 depicts this panel.

4 Conclusions And Future Work

In this paper we have presented MVM, a tool for debugging consistency errors
in UML/OCL class diagrams. This tool complements existing UML/OCL tools
such as USE by detailing which are the unsatisfiable invariants and the best pos-
sible combinations, giving feedback to the user in the form of potential instances
for relevant scenarios.

As future work, we will improve the usability of the user interface, e.g.,
providing step-by-step suggestions to fix the model; and improve the efficiency of

the calculation, by introducing different strategies for enumerating unsatisfiable
cores and proposing heuristics tailored for OCL invariants.

Acknowledgements. This work is partially funded by the Spanish Agencia
Estatal de Investigación through the project “LOw-COde development of Smart
Software” (LOCOSS, PID2020-114615RB-I00/AEI/10.13039/501100011033).

References

1. Brida, S.G., Regis, G., Zheng, G., Bagheri, H., Nguyen, T., Aguirre, N., Frias, M.:
Bounded exhaustive search of Alloy specification repairs. In: ICSE’21. pp. 1135–
1147. IEEE (2021)

2. Cabot, J., Clarisó, R., Riera, D.: On the verification of UML/OCL class diagrams
using constraint programming. JSS 93, 1–23 (2014)

3. Clarisó, R., Cabot, J.: Fixing defects in integrity constraints via constraint muta-
tion. In: QUATIC’18. pp. 74–82. IEEE (2018)

4. Gogolla, M., Büttner, F., Richters, M.: USE: A UML-based specification environ-
ment for validating UML and OCL. Science of Computer Programming 69, 27–34
(2007). https://doi.org/10.1016/j.scico.2007.01.013

5. González, C.A., Büttner, F., Clarisó, R., Cabot, J.: EMFtoCSP: A tool for the
lightweight verification of EMF models. In: FormSERA’12. pp. 44–50 (2012).
https://doi.org/10.1109/FormSERA.2012.6229788

6. Jackson, D.: Software abstractions: logic, language, and analysis. MIT Press (2012)
7. Kuhlmann, M., Hamann, L., Gogolla, M.: Extensive validation of OCL models by

integrating SAT solving into USE. In: TOOLS’11. pp. 290–306. Springer (2011)
8. Przigoda, N., Wille, R., Drechsler, R.: Analyzing inconsistencies in UML/OCL

models. J. of Circuits, Systems and Computers 25(03), 1640021 (2016)
9. Rull, G., Farré, C., Queralt, A., Teniente, E., Urṕı, T.: AuRUS: explaining the

validation of UML/OCL conceptual schemas. SoSyM 14(2), 953–980 (2015)
10. Semeráth, O., Nagy, A.S., Varró, D.: A graph solver for the automated generation

of consistent domain-specific models. In: ICSE’18. pp. 969–980 (2018)
11. Semeráth, O., Varró, D.: Iterative generation of diverse models for testing specifi-

cations of DSL tools. In: FASE’18. vol. 18, pp. 227–245 (2018)
12. Soltana, G., Sabetzadeh, M., Briand, L.C.: Practical constraint solving for gener-

ating system test data. ACM TOSEM 29(2), 1–48 (2020)
13. Torlak, E., Chang, F.S.H., Jackson, D.: Finding minimal unsatisfiable cores of

declarative specifications. In: FM’08. pp. 326–341. Springer (2008)
14. Wang, K., Sullivan, A., Khurshid, S.: Automated model repair for Alloy. In:

ASE’18. pp. 577–588. IEEE (2018)
15. Wu, H.: MaxUSE: a tool for finding achievable constraints and conflicts for incon-

sistent UML class diagrams. In: iFM’17. pp. 348–356. Springer (2017)
16. Zhang, C., Wagner, R., Orvalho, P., Garlan, D., Manquinho, V., Martins, R.,

Kang, E.: AlloyMax: bringing maximum satisfaction to relational specifications.
In: ESEC-FSE’21. pp. 155–167 (2021)

17. Zheng, G., Bagheri, H., Nguyen, T.: Debugging declarative models in Alloy. In:
ICSME’20. pp. 844–848. IEEE (2020)

https://doi.org/10.1016/j.scico.2007.01.013
https://doi.org/10.1109/FormSERA.2012.6229788

	Caratula_Article_Postprint_CC_BY_NC_ND_ca
	A_Tool_for_Debugging_Unsatisfiable_Integrity_Constraints_in_UMLOCL_Class_Diagrams
	A Tool for Debugging Unsatisfiable Integrity Constraints in UML/OCL Class Diagrams

