

Django REST Framework (DRF) Secure Code
Guidelines

Anuar Manuel Nader Meljem
University Master's Degree in Cybersecurity and Privacy
Business security

Pau del Canto Rodrigo
Victor Garcia Font
Andreu Pere Isern Deyà

January 2023

Esta obra está sujeta a una licencia de
Reconocimiento-NoComercial-CompartirIgual
3.0 España de Creative Commons

http://creativecommons.org/licenses/by-nc-sa/3.0/es/

i

ACKNOWLEDGEMENTS

I would like to thank my family and friends for their love and support throughout
this journey. Their constant belief in me has been a constant source of
motivation and inspiration.

I am especially grateful to Laura for her support, understanding and patience as
I worked on this project. Her love and laughter kept me going during the
challenging times.

I would also like thank H., F., M., V. and T. for their love and support inspired
me to move forward. They are a constant source of love and joy.

I am grateful to my colleagues, especially to Sergio and Giuseppe, for their
assistance during this project.

I would also like to thank my supervisor, Pau del Canto Rodrigo, for his valuable
guidance and support. Without his help, this project would not have been
possible.

ii

 FICHA DEL TRABAJO FINAL

Título del trabajo:
Django REST Framework (DRF) Secure
Code Guidelines

Nombre del autor: Anuar Manuel Nader Meljem

Nombre del consultor/a: Pau del Canto Rodrigo

Nombre del PRA:
Victor Garcia Font

Andreu Pere Isern Deyà

Fecha de entrega (mm/aaaa): 01/2023

Titulación o programa:
Máster Universitario en Ciberseguridad y
Privacidad

Área del Trabajo Final: Seguridad empresarial

Idioma del trabajo: Inglés

Palabras clave
Django, Django REST Framework,
Seguridad

Resumen del Trabajo

El propósito de esta tesis, titulada "Django REST Framework (DRF) Secure
Code Guidelines”, es proporcionar orientación sobre cómo escribir código
seguro al utilizar la librería Django REST Framework (DRF) para el desarrollo
de interfaz de programación de aplicaciones (API por sus siglas en inglés de
Application Program Interface). La investigación busca responder las
siguientes preguntas: ¿Cuáles son las mejores prácticas de código seguro en
el contexto de DRF? ¿Cuáles son las vulnerabilidades comunes de las que
deben estar al tanto los desarrolladores que utilizan DRF, y cómo se pueden
evitar?

Para responder a estas preguntas, la metodología de este trabajo incluye la
investigación de las mejores prácticas de código seguro en el contexto de
DRF, así como el examen de vulnerabilidades comunes y cómo evitarlas. Los
resultados de esta investigación incluyen un conjunto de recomendaciones o
directrices para el código seguro con DRF, que incluyen una lista de
verificación y una presentación.

Los principales hallazgos de este trabajo incluyen un resumen de la
importancia del código seguro en general, así como consideraciones
específicas para los desarrolladores que utilizan DRF. La tesis también
proporciona sugerencias para futuras investigaciones o áreas de mejora en el
área de código seguro con DRF.

En general, esta tesis busca proporcionar orientación valiosa y
recomendaciones para escribir código seguro con DRF en el contexto del
desarrollo de APIs web. Siguiendo estas directrices, los desarrolladores

iii

pueden asegurar que sus aplicaciones web basadas en DRF sean seguras y
resistentes a las vulnerabilidades comunes.

Abstract

The purpose of the work titled "Django REST Framework (DRF) Secure Code
Guidelines" is to provide guidance on how to write secure code when using the
Django REST Framework (DRF) for web application development. The
research aims to address the following questions: What are the best practices
for secure coding in the context of DRF? What are the common vulnerabilities
that developers using DRF should be aware of, and how can they be
prevented?

To answer these questions, the methodology for this work involves researching
best practices for secure coding in the context of DRF, as well as examining
common vulnerabilities and how to prevent them. The results of this research
include a set of recommendations or guidelines for secure coding with DRF,
including a cheat sheet and a presentation.

The main findings of this work include a summary of the importance of secure
coding in general, as well as specific considerations for developers using DRF.
The thesis also provides suggestions for further research or areas for
improvement in secure coding with DRF.

Overall, this thesis aims to provide valuable guidance and recommendations
for writing secure code with DRF in the context of web application
development. By following these guidelines, developers can ensure that their
DRF-based web applications are secure and resistant to common
vulnerabilities.

iv

Index

1 Introduction ... 1
1.1 Context and justification of the work .. 1

1.2 Objectives ... 2
1.3 Study of the ethical, social, and environmental impact 3
1.4 Methodology .. 4
1.5 Work Plan .. 6
1.6 Summary of products obtained ... 8

1.7 Brief description of the other chapters of the work 8
2 Python API development state of the art ... 9

2.1 Django ... 9
2.2 REST APIs .. 11
2.3 Django REST Framework ... 12

3 Web security state of the art .. 14
3.1 OWASP Top 10 ... 16

3.2 OWASP API Security Top 10 .. 20
3.3 CWE/SANS TOP 25 .. 22
3.4 SSDLC .. 24

4 DRF Security Guideline ... 26

4.1 Framework Security .. 26
4.2 Vulnerable dependencies .. 34

4.3 Dependency confusion .. 36

4.4 Secure Code ... 39

4.5 Secure Deployment ... 53
5 OWASP Cheat Sheet .. 56
6 Conclusions and future work ... 59

7 Glossary .. 60
8 Bibliography .. 62

9 Annexes .. 68
9.1 Appendix 1 - Django REST Framework (DRF) Cheat Sheet 68

v

Figure list

Figure 1. Gantt Chart of PEC 1, PEC 2 and PEC 3 .. 6
Figure 2. Gantt Chart of PEC 4, Video Delivery and Defense 7
Figure 3. Average cost of all cyber-attacks in the US and Europe from 2021 to
2022 by country [24] ... 14
Figure 4. Leading risks to businesses worldwide from 2018 to 2022 [26] 15

Figure 5. Icons of OWASP Top 10 – 2021. Source: OWASP 16
Figure 6. Comparison of OWASP Top 10 across the years 18
Figure 7. CWE Top 25 2021 vs 2022. Source: MITRE 23
Figure 8. Phases of SSDLC. Source: Snyk .. 25
Figure 9. Django supported versions. Source: Django Download 28

Figure 10. Twilio’s approach to prevent Dependency Confusion. Source: Twilio
Blog .. 37

Figure 11. Screenshot of how the new DRF CS will look like 56
Figure 12. Screenshot of the Contributing Guide to propose a new CS 57
Figure 13. Screenshot of the issue I created to propose the new CS 57
Figure 14. Screenshot of the issue I created to propose the new CS 58

 1

1 Introduction

Cisco Global 2021 Forecast Highlights [1] estimates that, globally, IP traffic will

reach 278.1 Exabytes per month in 2021. One hour of standard definition

streaming of Netflix [2] consumes 1 GB. One Exabyte approx. equals to

1,073,741,824 GB. According to a 2019 Akamai traffic review, API calls

represent 83 percent of web traffic [3]. As we can see, APIs are critical for

Today’s Internet.

Python is an open-source programming language created by a Dutch

programmer named Guido van Rossum in 1991. It is a high-level, general-

purpose programming language. Its design philosophy emphasizes code

readability with the use of significant indentation [4]. It runs on almost every

operating system available today, with the latest updated version being

released in March 2022 [5]. Python usage among developers is 48% according

to Statista and It is the 4th most used [6] programming language only behind

JavaScript (1st), HTML/CSS (2nd) and SQL (3rd).

Django is a very popular Python-based web framework that handles most of the

heavy lifting of building a website. According to Stack Overflow “2022 Developer

Survey”, Django is the most popular Python based Web Framework [7]. Django

follows a philosophy of “batteries-included”, masking much of the underlying

complexity, allowing for rapid and secure development. Some of the common

web development problems that Django solves are authentication, connecting

to a database, logic, security, among others.

There are also thousands of third-party packages that add functionality to

Django itself, the most prominent of which is Django REST Framework, which

allows developers to transform any existing Django project into a powerful web

API.

1.1 Context and justification of the work

There are no public Secure Code Guidelines for Django nor for Django REST

Framework (DRF). The lack of such guidelines significantly increases the

cognitive load of developers when making decisions and increases the risk of

adding security bugs to DRF applications.

Having security guidelines available, generally, empower developers to write

better code, especially since the software will not have security vulnerabilities.

The guideline created with this work will also help security professionals

(auditors, consultants, etc.) and engineering managers have a guideline to use

2

as a reference when checking that the software produced by the developing

team is secure.

The desired results are specific guidelines for secure coding of REST APIs

using Django Rest Framework (DRF). This should make it easy for people

writing software to make better security decisions.

1.2 Objectives

The intention of this project is to generate guidelines for secure coding of REST

APIs using Django Rest Framework (DRF).

The general objective of the project is to create a document with clear and

concise guidelines on how to code secure APIs using DRF. The resulting

guideline should be clear enough for people who are writing DRF applications to

follow and to provide them enough detail and context in case they want to

understand why something is being recommended. The specific objectives to

be achieved are:

1. Research and document the state of the art of web security in 2022.

2. Understand and briefly explain the history, architecture and operation

of Django.

3. Understand and briefly explain the history, architecture and operation

of DRF.

4. Understand, analyze, and explain the DRF settings that have an

impact on the security of the application.

5. Understand, analyze, and explain the DRF functions that might be

used in an unsafe way.

6. Provide guidance on what aspects of an DRF application should be

considered and reviewed to have a secure application.

7. Provide guidance on recommended settings, functions, and

architectural approaches to follow to have a secure application.

The first objective will help us have a better context about what we should

protect in our web applications.

The following two objectives help have context of the specific technologies that

are covered in this project. The minimum depth that must be obtained from

each objective must be sufficient to understand how they work, and to be able

to use and configure them in a safe way. This means that it is not necessary to

understand everything related to the frameworks.

Objectives four and five are focused on the secure usage of the technologies.

They will be required to perform a study of literature, documents and if needed

even reading the code. Objectives six and seven is where the expected product

will be created.

3

1.3 Study of the ethical, social, and environmental impact

Sustainability

This work should not have a significant impact in terms of sustainability because

it has no impact on the environment. The only requirement it has is a running

computer and in most cases the computer will already be running with the

existence of this work or not.

The work will be 100% digital, hence there is no impact on printing and shipping

several copies of this document.

The negative impacts of this work can be countered with the saved hours of

forensic analysis, urgent meetings, crisis, etc. that will be averted if developers

follow the guidelines described here.

Ethical behavior and Social Responsibility

This work has a positive impact in terms of ethical behavior and social

responsibility because it empowers developers to write safer Django

applications, hence reducing the number of hacks, data loss, attacks on

individual privacy and other negative impacts of unsafe software.

It is important to mention that this work can also have a negative impact since

malicious actors can also use this to write safer code for nefarious tools. Since

this impact exists on every open source project, and the benefits are always

greater than the damages.

A possible mitigation might be the usage of Ethical licenses as described in

https://ethicalsource.dev/licenses/. Anyhow such licenses are not commonly

used, can be complex to understand and they are not industry accepted yet.

Finally, the usage of such a license will not really have an impact to prevent

hackers, crackers, and other malicious actors from using the knowledge in this

work. It may stop unethical companies from using this guideline, but this will

need to be enforced with lawsuit or trial and it is not easy nor cheap.

Diversity, Gender, and Human Rights

This work should not have a negative impact in terms of diversity, gender, or

human rights. Given that it will be available for everyone, it could be considered

a positive impact to reduce gender inequality and general inequality to give

opportunities for everyone to learn.

https://ethicalsource.dev/licenses/

4

After the work is done, I will consider working in a Spanish translation so more

people could have access to this knowledge.

This work will be done with a mindful consideration of all genders gender

perspective. Some of the actions to assure this, are the following:

- Consider every author, without considering the gender of the author.

- Make a final product that could be used by every user, no matter their

gender.

- Constantly and actively consider that this work will not reinforce biases or

stereotypes.

- Use an inclusive language when possible. I will use they/them pronouns

to refer to individuals, that way we are not having a bias towards any

gender.

The previous considerations also apply to other aspects as race, origin, sexual

orientation, religion, or any other aspect that might be a factor of discrimination.

This work should be as inclusive as possible.

1.4 Methodology

There are several strategies that could be followed to develop this project, some

of those are:

- Interviews – Interviewing subject matter experts (SME) and gathering

information about security concerns, best practices, and guidelines to

write secure code.

- Literature review/research – Searching and reading relevant

documents about the topic.

- Code review – Reviewing the Django and DRF code base.

- Historic review of vulnerabilities – Searching and reviewing

vulnerabilities that have appeared in Django and DRF.

The main methodology used to develop the project will be literature

review, including books, blog posts, documentation and other relevant

documents, analysis and documenting relevant findings. It will have a circular

flow, that is, it will be repeated as many times as necessary until the objectives

set are achieved.

The other methodologies will not be used, because they are either very time

consuming (code review), have significant dependencies on people’s availability

(interviews) or will have a limited visibility of the problem and will not necessarily

help to prevent future problems (historic review of vulnerabilities).

5

This project will be delivered in six stages:

➢ PEC 1. Work plan – Will include an index, description of the problem to

solve, goals, methodology, list of tasks, work plan, state of the art and

study of the ethical, social, and environmental impact.

➢ PEC 2. Follow up delivery – Will include, at least, a revised version of

the previous delivery plus the sections “State of the art” and “Security

state of the art”

➢ PEC 3. Follow up delivery – Will include, at least, a revised version of

the previous delivery plus the sections “Security Guidelines”

➢ PEC 4. Final delivery – Will have all the sections.

➢ Video Delivery – A video, of a maximum of 15 minutes, in which I will

clearly and concisely summarize the work done and present the final

product.

➢ Defense – Defense of the work and final product.

In the first 3 stages, after delivery, I will receive feedback from my tutor. I will

also ask coworkers and SME some time so they can provide feedback.

 6

1.5 Work Plan

The following images describe the planning of the work with a Gantt Chart:

Figure 1. Gantt Chart of PEC 1, PEC 2 and PEC 3

7

Figure 2. Gantt Chart of PEC 4, Video Delivery and Defense

 8

1.6 Summary of products obtained

The following products will be obtained from this work:

✓ Work memory. Document with the results of the investigation and the

secure code guidelines for Django REST Framework. It includes

information about the history, and secure configuration of the

technologies covered.

✓ Cheat Sheet. Document with practical recommendations about the

findings and how to write secure DRF code.

✓ Presentation. Document with a summary of the work. It is used to give a

presentation about the work.

✓ Virtual presentation. A video with sound, of a maximum duration of 15

minutes, where the work carried out throughout the semester and the

results obtained are clearly and concisely synthesized. The investigation

and its results are explained, and the final product is presented.

1.7 Brief description of the other chapters of the work

In chapter 1, the purpose and objectives of the work are explained. A brief

contextualization and a justification of the reason for the work done.

In chapter 2, the state of the art of the main technologies covered: Django,

REST APIs and Django REST Framework (DRF).

In chapter 3, the state of the art of security. This will include context to

understand why the secure code guidelines are relevant.

In chapter 4, the security guidelines are presented. This will be the most

technical chapter and it will include all relevant findings.

In chapter 5, explanation of OWASP Cheat Sheet project and a cheat sheet for

DRF.

In chapter 6, the conclusions of the work carried out according to the results

obtained are documented.

9

2 Python API development state of the art
2.1 Django

2.1.1 What it is

Django is a very popular, free, and open source, high-level Python-based web

framework that encourages rapid development and clean, pragmatic design by

handling the challenging parts of building a website: authentication, connecting

to a database, logic, security, and so on. [8]

The framework relies on the traditional model-view-controller (MVC)

architecture, although in Django it is called a model-template-view (MTV)

architecture [9].

It is a collection of three important components: Model, View, and Template.

The Model acts as a data access layer which handles the data in the

database.

The View is used to execute the business logic and interact with a model

to carry data and render a template.

The Template is a presentation layer which handles the User Interface

part completely.

In Django a project is a web application. An application, or also known as an

“app”, is a Python package that provides a set of features and may be reused in

various projects. From the Django documentation [10]:

Applications include some combination of models, views, templates,

template tags, static files, URLs, middleware, etc. They’re generally wired

into projects with the INSTALLED_APPS setting and optionally with other

mechanisms such as URLconfs, the MIDDLEWARE setting, or template

inheritance.

The most popular online directory of applications is https://djangopackages.org/

which is also an open-source project. That website helps find information about

open-source Django Apps, Frameworks, and other useful software [11].

https://djangopackages.org/

10

2.1.2 History

Django was initially developed in 2005 and named after the guitarist Django

Reinhardt. From the Django documentation site, we can get the history [9]:

World Online, a newspaper Web operation, is responsible for building

intensive Web applications on journalism deadlines. In the fast-paced

newsroom, World Online often has only a matter of hours to take a

complicated Web application from concept to public launch.

…

In summer 2005, World Online decided to open-source the resulting

software, Django. Django would not be possible without a whole host of

open-source projects – Apache, Python, and PostgreSQL to name a few

– and we’re thrilled to be able to give something back to the open-source

community.

Development of Django is supported by an independent foundation established

as a 501(c)(3) non-profit in 2008. Like most open-source foundations, the goal

of the Django Software Foundation is to promote, support, and advance its

open-source project: in our case, the Django Web framework [12].

It is quite popular, some of the global companies that use Django are [9] [13]

Instagram, Belvo, National Geographic, Mozilla, Spotify, Pinterest among

others.

2.1.3 Security

Security on Django can be grouped in four areas:

1. Framework – This includes all the CVEs related to the Django

Framework. This is handled by the Django Security Team and from a

developer perspective the action required is to keep the Django package

updated.

2. Deployment – This is related to the deployment of a Django project. It

includes the Django settings and the security of the infrastructure, like

Database, web server, application server, cache, or any other

infrastructure, where the Django application is deployed. It included

proper configuration of the Django settings, proper and secure

configuration of the servers, and keeping the operating system and

applications updated.

3. Secure code – This is related to the correct and safe usage of the

Django Framework. Even though Django does a pretty good job in

https://www.djangoproject.com/foundation/teams/#security-team

11

providing functions that are safe, It is possible to write insecure code in

Django.

4. Business logic – This is related to flaws in the design and

implementation of an application that allow an attacker to have an

unintended behavior, potentially causing a malicious goal. This type of

vulnerabilities can happen on any programming language and framework

since they are vulnerabilities in the design and implementation.

This document will cover all the areas described above and will go into detail in

the last two aspects.

2.2 REST APIs

An application programming interface (API) is a way for two or more computer

programs to communicate with each other. It is a type of software interface,

offering a service to other pieces of software [14].

For web APIs the dominant architectural pattern is known as REST

(REpresentational State Transfer), first proposed in 2000 by Roy Fielding in his

dissertation thesis [15]. Today it is common for websites to adopt an API-first

approach of formally separating the back end from the front-end. This allows a

website to use a dedicated JavaScript front-end framework, such as React or

Vue, giving a better user experience, allowing a decoupled architecture, along

with possible separation of duties like front-end developers and back-end

developers [15].

One of the main advantages of having the backend expose API is that when the

current front-end frameworks are eventually replaced by newer, the backend

API can remain the same. No major rewrite is required.

Another major benefit is that one single API can support multiple front ends

written in different languages and frameworks. For example, JavaScript for web

front ends, Java for Android apps and Swift for iOS apps. All can use the same

API communicating with the same underlying database back-end [15].

12

2.3 Django REST Framework

2.3.1 What it is

From the Django REST Framework (DRF) GitHub README.md [16]:

Django REST framework is a powerful and flexible toolkit for building

Web APIs.

Some reasons you might want to use REST framework:

• The Web browsable API is a huge usability win for your

developers.

• Authentication policies including optional packages for OAuth1a

and OAuth2.

• Serialization that supports both ORM and non-ORM data sources.

• Customizable all the way down - just use regular function-based

views if you don't need the more powerful features.

• Extensive documentation, and great community support.

DRF is an app for Django that mimics many of Django’s traditional conventions

and makes it a great and easy option for building a REST API on top of a

Django project.

It is the most popular Django app, for creating REST APIs, in GitHub with 24.3k

stars.

2.3.2 History

According to a 2014 Kickstarter campaign, DRF was initially released in

January 2011 by Tom Christie and was almost exclusively developed in his

personal time [17].

Tom Christie created a Kickstarter campaign to get funding for the release of

version 3.3 of DRF. The campaign was launched on July 17th, 2014, and it was

last updated in October of 2015 [18]. The campaign was very successful with

440 backers pledging £32,650. The original goal was £4,000 and the biggest

stretch goal was £12,000 for an Admin interface.

On October 28th, 2015, version 3.3 of DRF was released, making the Kickstarter

campaign achieve its goal [19]. As of the writing of this section, the last version

released of DRF was 3.14 [20].

Django REST Framework is a powerful and accessible way to build web APIs

[15]. Some of the global companies that use DRF are [21] Sentry, Retool,

Robinhood, Belvo, O’Reilly Media, Digital Ocean, among others.

13

2.3.3 Security

Security on DRF is very similar to security on Django as described in the

section 2.1.3 Security, the four areas described there apply here too.

Even the DRF Security Policy states that “Security issues are handled under the

supervision of the Django security team” and it should be reported to them [22].

14

3 Web security state of the art

According to Hiscox “Cyber Readiness Report 2022” Cyber-attacks have

intensified in the past 12 months. 48% of companies reported a cyber-attack in

the past 12 months and the median cost of an attack is just under $17,000.

Anyhow, attacks can be way more expensive, for example the single largest

cyber-attack suffered in 2021 in Germany cost $3,400,000 USD [23].

The average cost in thousand U.S. dollars per country:

Figure 3. Average cost of all cyber-attacks in the US and Europe from 2021 to 2022 by

country [24]

According to Imperva’s 2022 Report “Quantifying the Cost of API Insecurity”,

who analyzed 117,000 cybersecurity incidents, API insecurity has annual losses

of between $41- 75 billion USD globally. Imperva estimated the total cyber loss,

which represents any damage, loss, claim or cost directly or indirectly attributed

to a cyber incident [25].

15

According to Allianz, Cyber Incidents is the leading risk for business worldwide

in 2022 and has been quite important for the last 5 years:

Figure 4. Leading risks to businesses worldwide from 2018 to 2022 [26]

Reducing risk by having proper cyber security practices and having secure web

applications, including APIs, is critical for any business additionally it can help

them save a significant amount of money by preventing cybersecurity incidents.

The Open Web Application Security Project (OWASP) is a nonprofit foundation

that works to improve the security of software. They are widely known for their

OWASP Top 10 list, which highlights the most critical security concerns for web

application security [27]. Sections 3.1 OWASP Top 10 and 3.2 OWASP API

Security Top 10 will go into more detail of those lists.

The SANS Institute, officially the Escal Institute of Advanced Technologies, is a

private U.S. for-profit company founded in 1989 that specializes in information

security, cybersecurity training, and certifications. With the ongoing mission to

empower cyber security professionals with the practical skills and knowledge

they need to make our world a safer place. It is one of the most recognized

institutions in the topic of cybersecurity training [28] [29]. Since 2009 SANS,

with MITRE, have been making the list “CWE/SANS TOP 25 Most Dangerous

Software Errors” [30]. Section 3.3 CWE/SANS TOP 25 will go into more detail of

the SANS TOP 25 list.

16

Finally, a process that helps organizations develop secure software is called the

Secure Software Development Life Cycle (SSDLC). It includes activities such as

security requirements gathering, security design, security testing, and security

deployment. The benefits of using the SSDLC include improved security,

reduced development costs, and improved software quality [31] [32]. Section

3.4 SSDLC will go into detail of the SSDLC.

3.1 OWASP Top 10

The OWASP Top 10 is a standard awareness document for developers and

web application security, created by the Open Web Application Security Project

(OWASP) nonprofit foundation. It represents a broad consensus about the most

critical security risks to web applications [33]. According to the OWASP Top 10

Archives, the first release was in 2003 and there have been other six releases:

2004, 2007, 2010, 2013, 2017 and 2021 [34].

The OWASP Top 10 2021 list [35] is:

Figure 5. Icons of OWASP Top 10 – 2021. Source: OWASP

The categories, with a brief explanation extracted from the OWASP site [33]

are:

A01:2021-Broken Access Control – Access control enforces policy such that

users cannot act outside of their intended permissions. Failures typically lead to

unauthorized information disclosure, modification, or destruction of all data or

performing a business function outside the user's limits.

https://www.owasptopten.org/the-release-of-the-owasp-top-10-2021

17

A02:2021-Cryptographic Failures – Previously known as Sensitive Data

Exposure, which was a broad symptom rather than a root cause. The renewed

focus here is on failures related to cryptography which often leads to sensitive

data exposure or system compromise.

A03:2021-Injection – The 33 CWEs mapped into this category have the

second most occurrences in applications. Some of the more common injections

are SQL, NoSQL, OS command, Object Relational Mapping (ORM), LDAP, and

Expression Language (EL) or Object Graph Navigation Library (OGNL)

injection. Cross-site Scripting is now part of this category too.

A04:2021 Insecure Design – Is a new category for 2021, with a focus on risks

related to design flaws. Insecure design is a broad category representing

different weaknesses, expressed as “missing or ineffective control design.”

There is a difference between insecure design and insecure implementation.

One of the factors that contribute to insecure design is the lack of business risk

profiling inherent in the software or system being developed, and thus the

failure to determine what level of security design is required.

A05:2021 Security Misconfiguration – A vulnerability that occurs when the

software is not properly configured from a security standpoint. Some examples

of this are: Missing appropriate security hardening, unnecessary features are

enabled or installed, default accounts and passwords, etc. The former category

for XML External Entities (XXE) is now part of this category.

A06:2021 Vulnerable and Outdated Components – Was previously titled

Using Components with Known Vulnerabilities.

A07:2021 Identification and Authentication Failures – Was previously

Broken Authentication. Confirmation of the user's identity, authentication, and

session management is critical to protect against authentication-related attacks.

This category is still an integral part of the Top 10, but the increased availability

of standardized frameworks seems to be helping.

A08:2021 Software and Data Integrity Failures – Software and data integrity

failures relate to code and infrastructure that does not protect against integrity

violations. Insecure Deserialization from 2017 is now a part of this larger

category.

A09:2021 Security Logging and Monitoring – This category is to help detect,

escalate, and respond to active breaches. Without logging and monitoring,

breaches cannot be detected. Failures in this category can directly impact

visibility, incident alerting, and forensics.

18

A10:2021 Server-Side Request Forgery (SSRF) – A vulnerability that occurs

whenever a web application is fetching a remote resource without validating the

user-supplied URL. It allows an attacker to coerce the application to send a

crafted request to an unexpected destination, even when protected by a firewall,

VPN, or another type of network access control list (ACL).

Using as a base the document “2017-2003_Comparison” Christian Heinrich

elaborated1, I created a comparison list with every OWASP Top 10 release:

Figure 6. Comparison of OWASP Top 10 across the years

Table notes:
[1] Renamed “Broken Access Control” from T10 2003

[2] Split “Broken Access Control” from T10 2003

[3] Renamed “Command Injection Flaws” from T10 2003

[4] Renamed “Error Handling Problems” from T10 2003

[5] Renamed “Insecure Use of Cryptography” from T10 2003

[6] Renamed “Web and Application Server” from T10 2003

[7] Split “Insecure Configuration Management” from T10 2004

[8] Reconsidered during T10 2010 Release Candidate (RC)

[9] Renamed “Unvalidated Parameters” from T10 2003

[10] Renamed “Injection Flaws” from T10 2007

[11] Split “Broken Access Control” from T10 2004

[12] Renamed “Insecure Configuration Management” from T10 2004

1 Accessible at https://github.com/OWASP/Top10/tree/master/2017-2003_Comparison

https://github.com/OWASP/Top10/tree/master/2017-2003_Comparison

19

[13] Split “Broken Access Control” from T10 2004

[14] Renamed “Improper Error Handling” from T10 2004

[15] Renamed “Insecure Storage” from T10 2004

[16] Renamed “Failure to Restrict URL Access” from T10 2010

[17] Renamed “Insecure Cryptographic Storage” from T10 2010

[18] Split “Insecure Cryptographic Storage” from T10 2010

[19] Split “Security Misconfiguration” from T10 2010

[20] Split “Broken Access Control” from T10 2013

[21] “A4:2014-Insecure Direct Object References” and “A7:2013-Missing Function Level Access Control”

merged into “A5:2017-Broken Access Control”

[22] “A5:2017-Broken Authentication” now includes CWEs that are more related to identification failures

and was renamed into “A7:2021-Identification and Authentication Failures”

[23] “A3:2017-Sensitive Data Exposure” was renamed into “A02:2021-Cryptographic Failures”, focusing on

failures related to cryptography as it has been implicitly before

[24] “A05:2021-Security Misconfiguration” now includes the former category for “A4:2017-XML External

Entities (XXE)”

[25] Cross-site Scripting is now part of this category

[26] “A8:2017-Insecure Deserialization” is now a part of this larger category, named “A08:2021-Software

and Data Integrity Failures”

[27] “A09:2021-Security Logging and Monitoring Failures” was previously “A10:2017-Insufficient Logging &

Monitoring”. This category is expanded to include more types of failures. Failures in this category can

directly impact visibility, incident alerting, and forensics

[28] “A06:2021-Vulnerable and Outdated Components” was previously titled “Using Components with

Known Vulnerabilities”

As we can see, there is a tendency change, and it makes sense when we see

how technologies have changed from the early 2000s to today’s technologies.

For example, buffer overflow no longer appears in the list, even that it was the

risk rated as #1 in 2003, and that makes sense since those are vulnerabilities

most common in the C and C++ languages and today very few web applications

are written in those languages. The only common web technology written in C

and C++, as of today, are web servers and those have already been “battle

tested” for more than one decade.

Insecure communications are another risk that no longer appears in the Top 10

and that may be linked to the ease of use, along with the reduced costs of

today’s encryption technologies with comparison to early 2000s.

The risks that have been present on all releases of the Top 10 are "Injection",

"Cross Site Scripting (XSS)", "Broken Authentication and Session

Management", "Broken Access Control" and "Sensitive Data Exposure". All

those risks have in common that they are more related with the proper design

and coding of the web applications and not the technology used.

20

3.2 OWASP API Security Top 10

In 2019 OWASP released the first version of the “OWASP API Security Top 10”,

a project very similar to “OWASP Top 10”, but with a sole focus on APIs. The

“OWASP API Security Top 10 – 2019” risks, with a brief explanation, are [36]

[37]:

API1:2019 Broken Object Level Authorization

Failures in the Authorization logic at the object level.

API2:2019 Broken User Authentication

Failures in the Authentication logic at the user level.

API3:2019 Excessive Data Exposure

Exposure of all object properties without considering their individual sensitivity.

API4:2019 Lack of Resources & Rate Limiting

Imposing no restrictions on the size or number of resources that can be

requested by the client may lead to Denial of Service (DoS), but also leaves the

door open to attacks such as brute force.

API5:2019 Broken Function Level Authorization

Failures in the Authentication logic at the function level. This may be caused by

complex access control policies with different hierarchies, groups, and roles,

and an unclear separation between administrative and regular functions.

API6:2019 Mass Assignment

Binding clients provided data to data models, without proper properties filtering

based on an allow list, usually leads to Mass Assignment.

API7:2019 Security Misconfiguration

A vulnerability that occurs when the software is not properly configured from a

security standpoint. Some examples of this are: open cloud storage,

misconfigured HTTP headers, unnecessary HTTP methods, permissive Cross-

Origin resource sharing (CORS), and verbose error messages containing

sensitive information.

API8:2019 Injection

Injection flaws, such as SQL, NoSQL, Command Injection, etc., occur when

untrusted data is sent to an interpreter as part of a command or query.

21

API9:2019 Improper Assets Management

APIs must be properly hosted and deployed, having an API version inventory

play an important role. This vulnerability includes issues such as deprecated

API versions and exposed debug endpoints.

API10:2019 Insufficient Logging & Monitoring

This category is to help detect, escalate, and respond to active breaches.

Without logging and monitoring, breaches cannot be detected. Failures in this

category can directly impact visibility, incident alerting, and forensics.

The following table is a recap of both lists:

Vulnerability OWASP Top 10 –
2021

OWASP Top 10 API -
2019

Broken Access Control Yes – A01:2021

Yes

API1:2019 (object)

API5:2019 (function)

Cryptographic Failures Yes – A02:2021 Partially – API3:2019

Injection Yes – A03:2021 Yes – API8:2019

Insecure Design Yes – A04:2021 No

Security Misconfiguration Yes – A05:2021 Yes – API7:2019

Vulnerable and Outdated

Components
Yes – A06:2021 Partially – API9:2019

Identification and Authentication

Failures
Yes – A07:2021 Yes – API2:2019

Software and Data Integrity Failures Yes – A08:2021 No

Security Logging and Monitoring Yes – A09:2021 Yes – API10:2019

Server-Side Request Forgery (SSRF) Yes – A10:2021 No

Excessive Data Exposure No Yes – API3:2019

Lack of Resources & Rate Limiting No Yes – API4:2019

Mass Assignment No Yes – API6:2019

Improper Assets Management No Yes – API9:2019

22

3.3 CWE/SANS TOP 25

Since 2009 SANS, with MITRE, have been making the list “CWE/SANS TOP 25

Most Dangerous Software Errors” [30]. SANS last release of this list was in

20212 MITRE has released the 2022 list. The Top 25 security vulnerabilities,

from the 2022 MITRE list, are [38]:

Rank ID Name Score

1 CWE-787

Out-of-bounds Write 64.2

2
CWE-79

Improper Neutralization of Input During Web Page
Generation ('Cross-site Scripting')

45.97

3
CWE-89

Improper Neutralization of Special Elements used in
an SQL Command ('SQL Injection')

22.11

4 CWE-20

Improper Input Validation 20.63

5 CWE-125

Out-of-bounds Read 17.67

6
CWE-78

Improper Neutralization of Special Elements used in
an OS Command ('OS Command Injection')

17.53

7 CWE-416

Use After Free 15.5

8
CWE-22

Improper Limitation of a Pathname to a Restricted
Directory ('Path Traversal')

14.08

9 CWE-352

Cross-Site Request Forgery (CSRF) 11.53

10 CWE-434

Unrestricted Upload of File with Dangerous Type 9.56

11 CWE-476

NULL Pointer Dereference 7.15

12 CWE-502

Deserialization of Untrusted Data 6.68

13 CWE-190

Integer Overflow or Wraparound 6.53

14 CWE-287

Improper Authentication 6.35

15 CWE-798

Use of Hard-coded Credentials 5.66

16 CWE-862

Missing Authorization 5.53

17
CWE-77

Improper Neutralization of Special Elements used in
a Command ('Command Injection')

5.42

18 CWE-306

Missing Authentication for Critical Function 5.15

19
CWE-119

Improper Restriction of Operations within the
Bounds of a Memory Buffer

4.85

20 CWE-276

Incorrect Default Permissions 4.84

21 CWE-918

Server-Side Request Forgery (SSRF) 4.27

22
CWE-362

Concurrent Execution using Shared Resource with
Improper Synchronization ('Race Condition')

3.57

23 CWE-400

Uncontrolled Resource Consumption 3.56

24
CWE-611

Improper Restriction of XML External Entity
Reference

3.38

25
CWE-94

Improper Control of Generation of Code ('Code
Injection')

3.32

2 https://www.sans.org/top25-software-errors/ consulted on 27th October 2022

https://cwe.mitre.org/data/definitions/787.html
https://cwe.mitre.org/data/definitions/79.html
https://cwe.mitre.org/data/definitions/89.html
https://cwe.mitre.org/data/definitions/20.html
https://cwe.mitre.org/data/definitions/125.html
https://cwe.mitre.org/data/definitions/78.html
https://cwe.mitre.org/data/definitions/416.html
https://cwe.mitre.org/data/definitions/22.html
https://cwe.mitre.org/data/definitions/352.html
https://cwe.mitre.org/data/definitions/434.html
https://cwe.mitre.org/data/definitions/476.html
https://cwe.mitre.org/data/definitions/502.html
https://cwe.mitre.org/data/definitions/190.html
https://cwe.mitre.org/data/definitions/287.html
https://cwe.mitre.org/data/definitions/798.html
https://cwe.mitre.org/data/definitions/862.html
https://cwe.mitre.org/data/definitions/77.html
https://cwe.mitre.org/data/definitions/306.html
https://cwe.mitre.org/data/definitions/119.html
https://cwe.mitre.org/data/definitions/276.html
https://cwe.mitre.org/data/definitions/918.html
https://cwe.mitre.org/data/definitions/362.html
https://cwe.mitre.org/data/definitions/400.html
https://cwe.mitre.org/data/definitions/611.html
https://cwe.mitre.org/data/definitions/94.html
https://www.sans.org/top25-software-errors/

23

MITRE provide the following visual representation of the difference in 2021 and

2022 Top 25 lists:

Figure 7. CWE Top 25 2021 vs 2022. Source: MITRE

As we can see, most CWEs remain present, they only shift a few positions up or

down. The 3 new entries in the Top 25 are:

• CWE-362 - Concurrent Execution using Shared Resource with Improper

Synchronization ('Race Condition')

• CWE-94 - Improper Control of Generation of Code ('Code Injection')

• CWE-400 - Uncontrolled Resource Consumption

The 3 entries that fell off the Top 25 are:

• CWE-200 - Exposure of Sensitive Information to an Unauthorized Actor

• CWE-522 - Insufficiently Protected Credentials

• CWE-732 - Incorrect Permission Assignment for Critical Resource

The next section will cover the SSDLC, which has stages that help reduce the

chances of vulnerabilities being present in the application being developed.

https://cwe.mitre.org/top25/archive/2022/2022_cwe_top25.html

24

3.4 SSDLC

The Secure Software Development Life Cycle (SSDLC) is a process that can be

used by organizations to develop more secure software, it covers the entire

development process. The SSDLC includes several security-focused activities

that should be completed at each stage of the software development process.

By following the SSDLC, organizations can improve the security of their

software products and better protect themselves from potential attacks [39].

The SSDLC includes the following stages: requirement gathering and analysis

(also known as planning), design, implementation (also known as build,

development, or coding), testing (also known as verification), deployment (also

known as release) and maintenance [39].

A brief explanation of each stage [40]:

Requirement gathering and analysis – The process of gathering and

analyzing information about the software that is to be developed. Including

expectations for the product and documenting them. This information can be

used to identify potential security risks and to determine the appropriate security

controls that should be implemented.

Design – The process of creating a detailed plan for the software. Threat

modeling will be done to identify potential vulnerabilities. In this stage, it should

also be specified how system authentication will be performed and where

secure communication is required. The resulting plan should consider the

security risks that have been identified and should include measures to mitigate

those risks.

Implementation – The process of creating the actual software. During this

stage, the security controls that were designed in the previous stage should be

put in place. Here secure code guidelines should be provided to the

development team. Ensuring the use of security libraries available in the

framework and doing source code analysis (SAST) is part of this stage too.

Testing – The process of verifying that the software works as intended. This

stage also includes testing the security controls to ensure that they are

effective.

Deployment – The process of making the software available to users. This

stage includes ensuring that the software is properly configured and that all

security controls are in place.

25

Maintenance – The process of making changes to the software after it has

been deployed. This stage includes ensuring that security controls are still in

place and that the software remains compliant with security policies and

procedures.

The stages of the SSDLC, with the security activities that could be performed

are:

Figure 8. Phases of SSDLC. Source: Snyk

The previous image does not include maintenance since some authors consider

that to not be part of the scope or be included in Deployment.

This work will focus mainly on the stage implementation since that’s when

coding takes place. Secure Code Guidelines are critical for that stage since they

empower developers to write safer code and to make less mistakes. Knowledge

of this guide can benefit other stages too.

To have properly secure software, the team should do the full SSDLC,

especially the earlier stages since that is where more information about the

system, expectations and requirements is gathered.

https://snyk.io/learn/secure-sdlc/

26

4 DRF Security Guideline

Every programming language and framework has characteristics that make

them unique.

Python is a high-level, general-purpose programming language. For example,

some attacks like a Buffer Overflow (BOF), that are quite common in low-level

languages such as C, will not happen in Python.

In this chapter I will only cover attacks that affect Django and Django REST

Framework (DRF). This chapter will have the following sections:

Framework Security – An overview of the Django Security Policies and the

Settings relevant for security in Django and DRF.

Vulnerable dependencies – An explanation of what dependencies are, how

can we keep track of them and an explanation of some tools to keep track of the

vulnerabilities and fix them.

Dependency confusion – An explanation of this type of attack, how it works

and how to prevent it.

Secure Coding – This section covers the most common attacks on a Django

and DRF app, maps them to the vulnerabilities described in the previous section

and explains how to prevent them. It also covers some open source Static

Application Security Testing (SAST) tools and briefly explains Business Logic

attacks.

Secure Deployment – This section will provide a brief overview of how to

safely deploy a DRF application. It will cover the settings that must be changed

in a production environment, explain Django’s system checks, and briefly

explain how CI/CD can help improve the security posture of the application.

4.1 Framework Security

Let us remember, from the introduction, that Django follows a philosophy of

“batteries-included”, that also includes that many security aspects are already

taken care of by the Framework.

However, not everything is secure by default. In this section, I will explain the 3

aspects that are key to make an API developed with Django and Django REST

Framework (DRF) secure:

27

1. Django Security Policies – Explain the Security Policies of the

framework and project so we have context and understand what is

expected from the development team of an application built on Django.

2. Django Settings – Explain the Django Settings relevant from a security

point of view.

3. DRF Settings – Explain the DRF Settings relevant from a security point

of view.

4.1.1 Django Security Policies

Django’s development team has the following security policies [41]:

Reporting of Security Issues

Security issues should be reported via email (security@djangoproject.com) and

they will reach Django Security team3. These emails can be encrypted with the

public key ID 0xfcb84b8d1d17f80b.

Supported version

The Django team provides official security support for the following versions of

Django:

• The main development branch. It is hosted on GitHub4 and it will

become the next major release of Django. It is important to mention that

security issues that only affect this version are fixed in public without

going through the disclosure process.

• The two most recent Django releases.

• Long-term support release. Usually It is one at a time, anyhow there is

an overlap, every 2 years, where 2 LTS releases are supported at the

same time.

As of Today (November 12, 2022), the supported versions are:

• 3.2 – It is the long-term support (LTS) release.

• 4.0 – It is the second most recent Django release.

• 4.1 – It is the most recent Django release.

• 4.2 (WIP) – It is the current main development branch. As of today, it has

a version of 4.2.a05 (also known as 4.2.dev20221111083513). It will be

released in April 2023.

3 https://www.djangoproject.com/foundation/teams/#security-team
4 https://github.com/django/django/tree/main
5 https://github.com/django/django/blob/main/django/__init__.py#L5

mailto:security@djangoproject.com
https://www.djangoproject.com/foundation/teams/#security-team
https://github.com/django/django/tree/main
https://github.com/django/django/blob/main/django/__init__.py#L5

28

Finally, a diagram from the Django website with the supported versions [42]:

Figure 9. Django supported versions. Source: Django Download

The mainstream support includes security fixes, data loss bugs, crashing bugs,

major functionality bugs in newly introduced features, and regressions from

older versions of Django.

The extended support only includes security fixes and data loss bugs.

Disclosure of security issues

The Django security team process for taking a security issue from private

discussion to public disclosure involves multiple steps. Approximately one week

before public disclosure, two notifications are sent:

1. Notification on django-announce mailing list6 of the date and approximate

time of the upcoming security release, as well as the severity of the

issues.

2. Notification to a list of people and organizations who receive advance

notification. This notification includes detailed information about the issue

and remediation. The list is primarily composed of operating-system

vendors and other distributors of Django. More information can be found

on “Who receives advance notification”.

On the day of disclosure, Django Security team will take the following steps:

1. Apply the relevant patch to Django’s codebase.

2. Issue the relevant release. That is a new package on the Python

Package Index, the Django website and tagging the new release in

Django’s git repository.

6 https://docs.djangoproject.com/en/4.1/internals/mailing-lists/#django-announce-mailing-list

https://www.djangoproject.com/download/#supported-versions
https://docs.djangoproject.com/en/4.1/internals/security/#who-receives-advance-notification
https://docs.djangoproject.com/en/4.1/internals/mailing-lists/#django-announce-mailing-list

29

3. Post a public entry on the official Django development blog7, with all

the relevant information.

4. Post a notice to the django-announce mailing list and oss-

security@lists.openwall.com mailing lists that link to the blog post.

The previous process can be considerably faster if It is believed to be

particularly time-sensitive, for example due to a known exploit in the wild.

Finally, Django Security team classifies severity levels with the following logic:

High Medium Low

Remote code execution

SQL injection

Cross site scripting

(XSS)

Cross site request

forgery (CSRF)

Denial-of-service attacks

(DoS)

Broken authentication

Sensitive data exposure

Broken session

management

Unvalidated

redirects/forwards

Issues requiring an

uncommon configuration

option

Django REST Framework has a very simple security policy [43]:

Security Policy

Reporting a Vulnerability

Security issues are handled under the supervision of the Django security

team.

Please report security issues by emailing security@djangoproject.com.

The project maintainers will then work with you to resolve any issues

where required, prior to any public disclosure.

7 https://www.djangoproject.com/weblog/

https://www.djangoproject.com/foundation/teams/#security-team
https://www.djangoproject.com/foundation/teams/#security-team
mailto:security@djangoproject.com
https://www.djangoproject.com/weblog/

30

4.1.2 Django Settings

According to Django documentation8, the core settings are over 180 different

settings, this is very complex. It is not reasonable to ask every developer to

review every setting and understand it.

The following list includes the settings I consider relevant from a security

standpoint in a Django project that builds an API. For each setting, I give a brief

description of what it controls and what value should it contain [44] [45] [46]:

DEBUG – A Boolean value that controls debug mode. It shall be False

(default) in any production (or any Internet facing) system.

DEBUG_PROPAGATE_EXCEPTIONS – A Boolean value that controls if

responses with status code 500 should propagate. It should be False

(default) in any production (or any Internet facing) system.

SECRET_KEY – A secret key that is used to provide cryptographic

signing, and should be set to a unique, unpredictable value. By default, it

is empty, and it should never be hardcoded into the settings file.

SECRET_KEY_FALLBACKS – A list of fallback secret keys. This setting

is used to allow rotation of the SECRET_KEY. Having multiple old key

values in SECRET_KEY_FALLBACKS adds additional overhead to all

checks that Do not match an earlier key. This list should be as small as

possible, ideally empty.

It is important to understand and verify the settings of every module, either a 3rd

party or a Django module like “django.contrib.auth” and the application used on

the Django application. Not every module nor application has secure defaults.

A secret is any piece of information that gives access to information or

resources. The most common types of secrets are Account credentials

(username and password), API Keys, Passwords, SSH keys and Encryption

keys.

It is important to never hardcode secrets on the settings file, or any other file,

including the username or password to connect to the email provider (setting

“EMAIL_HOST_PASSWORD”), database (setting “DATABASES”), cache

(setting “CACHES”).

8 https://docs.djangoproject.com/en/4.1/ref/settings/

https://docs.djangoproject.com/en/4.1/ref/settings/

31

Secrets, including database URLs with username and password, should be

handled by a Secret Manager like Hashicorp Vault9, AWS Secret Manager10,

among others.

Other aspects that are important, from a security standpoint, of Django

application configuration (settings) are:

Security Middleware

The setting MIDDLEWARE contains a list of middleware to use. The

Middleware “django.middleware.security.SecurityMiddleware” 11 provides some

security functionalities, anyhow none of them are very relevant for API projects

since most of them are related to browser security and the security headers

(HSTS, Cross origin, Content Type, etc.).

External Systems

The database should only be accessible to Django. It should never be exposed

to the Internet. The same applies for the caching system.

HTTP Host header attacks protection

The settings “ALLOWED_HOSTS” and “USE_X_FORWARDED_HOST” should

be properly set to prevent HTTP Host header attacks12. If the Django application

is deployed with a well architected approach13, it should not be a problem

handled by Django and instead by the Application Load Balancer.

Logging

The settings “LOGGING” and “LOGGING_CONFIG” are related to how the

application logs events. This is critical for any application. Generation, storage

and analysis of logs should also be part of the well architected approach.

Secure Communications

Incoming traffic

Django has many settings to control HTTPS14 like

“SECURE_HSTS_INCLUDE_SUBDOMAINS”, “SECURE_SSL_HOST”, among

others. Anyhow It is recommended to not do HTTPS at the Django layer and

handle that on something like a network load balancer, application load

9 https://www.hashicorp.com/products/vault
10 https://aws.amazon.com/secrets-manager/
11 https://docs.djangoproject.com/en/4.1/ref/middleware/#module-django.middleware.security
12 https://docs.djangoproject.com/en/4.1/topics/security/#host-header-validation
13 AWS Well-Architected: https://aws.amazon.com/architecture/well-architected/
Microsoft Azure Well-Architected Framework: https://www.microsoft.com/azure/partners/well-
architected
14 https://docs.djangoproject.com/en/4.1/topics/security/#ssl-https

https://www.hashicorp.com/products/vault
https://aws.amazon.com/secrets-manager/
https://docs.djangoproject.com/en/4.1/ref/middleware/#module-django.middleware.security
https://docs.djangoproject.com/en/4.1/topics/security/#host-header-validation
https://aws.amazon.com/architecture/well-architected/
https://www.microsoft.com/azure/partners/well-architected
https://www.microsoft.com/azure/partners/well-architected
https://docs.djangoproject.com/en/4.1/topics/security/#ssl-https

32

balancer, WAF or proxy [47]. It will be easier, and it is a better separation of

responsibilities.

Outgoing traffic

Any outgoing traffic, for example to connect to the cache, the database, the

email provider (Django setting “EMAIL_USE_TLS”), etc. should be done over

an encrypted channel (TLS).

Many of the previous settings are related to a well architected application and

are outside of the scope of this document.

Finally, many Django settings are not covered here since they are either not

related to a regular API application (for example, cookies, CSRF or XSS

prevention) or they should be handled by something else like an application

load balancer, WAF or proxy (HTTP Headers, HTTPS, etc.). Anyhow those

should be reviewed and properly configured if they are needed, for example for

the admin panel.

4.1.3 DRF Settings

All the Django REST Framework (DRF) configuration is done under the

namespace REST_FRAMEWORK, usually in the settings.py file, anyhow it can

be in a different file if Django recognizes that file as part of the application

settings. An example of the configuration is:

REST_FRAMEWORK = {

 'DEFAULT_RENDERER_CLASSES': [

 'rest_framework.renderers.JSONRenderer',

],

 'DEFAULT_PARSER_CLASSES': [

 'rest_framework.parsers.JSONParser',

]

}

33

According to DRF documentation15 it has 40 different settings. The following list

includes the settings I consider relevant from a security standpoint in a Django

project that builds an API. For each setting, I give a brief description of what it

controls and what value should it contain [15] [48] :

DEFAULT_AUTHENTICATION_CLASSES – A list of authentication

classes that determines the default set of authenticators used when

accessing the request.user or request.auth properties. In other words,

what classes should be used to identify which user is authenticated.

Defaults are 'rest_framework.authentication.SessionAuthentication'16,

'rest_framework.authentication.BasicAuthentication'17, that means that by

default it checks the session and basic authentication for the user. If

more than 1 class is specified an OR operation is performed.

DEFAULT_PERMISSION_CLASSES – A list of permission classes that

determines the default set of permissions checked at the start of a view.

Permission must be granted by every class in the list, that is if more than

1 class is specified an AND operation is performed.. Default is

'rest_framework.permissions.AllowAny'18, that means that by default

every view allows access to everybody.

DEFAULT_THROTTLE_CLASSES – A list of throttle classes that

determines the default set of throttles checked at the start of a view.

Default is empty, that means that by default there is no throttling in place.

DEFAULT_PAGINATION_CLASS – The default class to use for

queryset pagination. By default, pagination is disabled. Lack of proper

pagination could lead to Denial of Service (DoS) in cases where there’s a

lot of data19.

The previous settings are part of the API policy settings, and they are applied to

every APIView class-based view, or @api_view function-based view. Anyhow,

each view (either class or function based) can have a different authentication,

permission, and throttling policy by configuring it on the view.

DRF also includes the authentication scheme “rest_framework.authtoken”20, it is

highly recommended to not use it since it stores the keys in plaintext21.

15 https://www.django-rest-framework.org/api-guide/settings/
16 https://www.django-rest-framework.org/api-guide/authentication/#sessionauthentication
17 https://www.django-rest-framework.org/api-guide/authentication/#basicauthentication
18 https://www.django-rest-framework.org/api-guide/permissions/#allowany
19 For very large datasets Cursor Pagination is the best approach https://www.django-rest-
framework.org/api-guide/pagination/#cursorpagination
20 https://www.django-rest-framework.org/api-guide/authentication/#tokenauthentication

https://www.django-rest-framework.org/api-guide/settings/
https://www.django-rest-framework.org/api-guide/authentication/#sessionauthentication
https://www.django-rest-framework.org/api-guide/authentication/#basicauthentication
https://www.django-rest-framework.org/api-guide/permissions/#allowany
https://www.django-rest-framework.org/api-guide/pagination/#cursorpagination
https://www.django-rest-framework.org/api-guide/pagination/#cursorpagination
https://www.django-rest-framework.org/api-guide/authentication/#tokenauthentication

34

4.2 Vulnerable dependencies

According to Synopsys “2022 Open Source Security and Risk Analysis Report”,

97% of the software projects reviewed contained open source components and

78% of the code in codebases was open source [49]. That means that most of

the software that most companies use was not written by them. It is important to

keep track of these dependencies because they can introduce security

vulnerabilities or break compatibility with other software.

A software Bill of Materials (SBOM) is a list of all the software dependencies for

a given piece of software. The National Telecommunications and Information

Administration define a SBOM as [50]:

A Software Bill of Materials (SBOM) is a formal record containing the

details and supply chain relationships of various components used in

building software.

These components, including libraries and modules, can be open source

or proprietary, free or paid, and the data can be widely available or

access restricted.

The purpose of an SBOM is to help developers and security researchers

understand what a piece of software is made of, and to identify any potential

security vulnerabilities.

Python has many ways to manage dependencies such as pip, Poetry, pyenv

setuptools, conda, easy_install, pipenv, among others [51]. Anyhow, the most

common and the current best practice is to use pip with a “requirements.txt” file.

In order to keep it more organized, It is possible to have multiple requirements

files [52] [53], for example:

• base.txt for packages used in all environments.

• local.txt for packages required for local development.

• ci.txt for packages required for the CI/CD pipeline.

• production.txt for the live production servers.

Since dependencies are much of the code in most codebases, it is critical to

scan and make sure they do not have vulnerabilities. OWASP Top 10 – 2021

“A06:2021-Vulnerable and Outdated Components” is the category for the

issue described in this section.

21 Discussed in issue 4227 and verified in the view and model.

https://github.com/encode/django-rest-framework/issues/4227
https://github.com/encode/django-rest-framework/blob/master/rest_framework/authtoken/views.py
https://github.com/encode/django-rest-framework/blob/master/rest_framework/authtoken/models.py

35

There are several tools, known as Software composition analysis (SCA), to help

with this, two of the most common are:

Github’s Dependabot

According to Github’s website [54]:

Dependabot is GitHub’s supply chain security experience and makes it

easy to find and fix vulnerable dependencies in your repository

Dependabot has powerful features such as:

- Automatic pull requests to fix security alerts as they happen.

- Easy to configure via a dependabot.yml file22.

- It is free for codebases hosted on Github.com

Snyk Open Source

According to Synk’s website [55]:

Snyk Open Source provides a developer-first SCA solution, helping

developers find, prioritize, and fix security vulnerabilities and license

issues in open source dependencies.

Snyk Open Source has powerful features such as:

- Automatic pull requests to fix security alerts as they happen.

- Centralized reports.

- Integrate to the CLI and CI/CD tools.

Additionally, Snyk has a great free tool called Snyk Advisor23 that gives valuable

information about a package such as Popularity, Maintenance, Security and

Community. This allows developers to compare packages and choose the best

package for their needs, considering the security posture of the package.

It is important to mention that any Software composition analysis (SCA) that

reviews the Django project dependencies and make sure there are no

vulnerabilities in the dependencies used should be enough to prevent issues

regarding Vulnerable dependencies.

22https://docs.github.com/en/code-security/dependabot/dependabot-version-
updates/configuration-options-for-the-dependabot.yml-file
23 https://snyk.io/advisor/python

https://docs.github.com/en/code-security/dependabot/dependabot-version-updates/configuration-options-for-the-dependabot.yml-file
https://docs.github.com/en/code-security/dependabot/dependabot-version-updates/configuration-options-for-the-dependabot.yml-file
https://snyk.io/advisor/python

36

4.3 Dependency confusion

In February 2021, Alex Birsan published a blog post called “Dependency

Confusion: How I Hacked Into Apple, Microsoft and Dozens of Other

Companies”24 where he explained a dependency chain attack that he named

dependency confusion [56].

The attack works on several programming languages like JavaScript (NodeJS),

Python and Ruby. It can be summarized as:

1. Find an internal package (e.g., shopify-cloud)

2. Publish a (malicious) package with the same name

3. Wait for the build pipeline to download your malicious package

For Python, the language which this work covers, Pip is the package-

management system most widely used to install and manage software

packages. When using the CLI argument “--extra-index-url”, a common way to

reference an internal pip server for internal dependencies, works in the following

way:

1. Checks whether library exists on the specified (internal) package index

2. Checks whether library exists on the public package index (PyPI)

3. Installs whichever version is found. If the package exists on both, it

defaults to installing from the source with the higher version

number.

That is dangerous since an attacker can create a malicious package with the

same name, and a higher version number, as an internal package and execute

code on the machine.

The problems of installing another package than the expected one are many,

including loss of desired functionality, the software not behaving as expected,

unknown bugs among many others. Anyhow, the biggest problem is that the

undesired package may be malicious and do nefarious activities on the server

such as steal secrets, data, delete files, launch attacks against other servers,

etc.

According to Checkmarx researcher Yehuda Gelb [57]:

A worrying feature in pip/PyPi allows code to automatically run when

developers are merely downloading a package. Also, this feature is

alarming due to the fact that a great deal of the malicious packages we

are finding in the wild use this feature of code execution upon installation

to achieve higher infection rates.

24 https://medium.com/@alex.birsan/dependency-confusion-4a5d60fec610

https://medium.com/@alex.birsan/dependency-confusion-4a5d60fec610

37

The previous is extremely dangerous since malicious package can cause

damages just by being downloaded (pip download <package_name>)25, even

before execution or even installation.

There are ways to mitigate the execution of code when downloading a package,

anyhow the best mitigation is to make sure all the packages used are not

malicious.

According to Microsoft whitepaper “3 ways to mitigate risk when using private

package feeds”, this attack can be prevented [58]:

For Python: Use the index-url option in pip’s configuration file or command

line to specify the feed, overriding the default. Avoid the extra-index-url

option, which is additive and may lead to having multiple indexes.

The previous recommendation should be used along an internal and trusted

server and have that server include all packages needed.

A correct approach, especially for a company with many software projects is the

one Twilio described in their blog post called “Dependencies, Confusions, and

Solutions: What Did Twilio Do to Solve Dependency Confusion”, that is

summarized in the following image [59]:

Figure 10. Twilio’s approach to prevent Dependency Confusion. Source: Twilio Blog

A brief explanation of each step:

Naming Convention for All Internal Packages – There should be a clear

convention for naming all internal packages. Something like “company_” that all

internal packages follow. Do all the renaming as needed and help teams do this

25 This behavior is not a bug but rather a feature in the pip design

https://www.twilio.com/blog/avoiding-dependency-confusion-attacks
https://www.twilio.com/blog/avoiding-dependency-confusion-attacks

38

if needed. Old packages not following the internal naming convention should be

deleted.

Block Proxying of Certain Packages – Any public package that has a name

collision with internal packages should be blocked. If possible, we should also

block known malicious packages or any other package that does not follow the

company guidelines (package health, license, etc.)

Internal Package Manager as Single Source – Every build should exclusively

use the Internal Package Manager.

Restrict Deployed Hosts from Accessing the Registry – Deployed hosts

should not access the registry (nor public nor internal) and only access the build

artifact.

Controls For Laptop Access – Same restrictions, especially accessing only

the internal registry, should apply to laptops if possible.

To prevent using malicious packages, either because of dependency confusion

or just because the package is malicious, you can use the following tools that

help detect malicious packages:

DataDog’s Guarddog – GuardDog is a CLI tool that allows it to identify

malicious PyPI packages. It runs a set of heuristics on the package source code

(through Semgrep rules) and on the package metadata [60] [61].

Synk Open Source Vulnerability Database – Snyk has a database about

Open Source Vulnerabilities26, including known packages with malware. An

example of a package with malware can be found in

https://security.snyk.io/package/pip/aes44.

Safety DB – Safety DB is a database, licensed under CC BY-NC-SA 4.0, of

known security vulnerabilities in Python packages. The data is made available

by pyup.io and synced with this repository once per month [62].

26 https://security.snyk.io/

https://security.snyk.io/package/pip/aes44
https://security.snyk.io/

39

4.4 Secure Code

On Section “4.4.1 Secure Code” I will cover the most common attacks on a

Django and Django REST Framework app, on what list they are present and the

methods to prevent them.

On Section “4.4.2. Open Source SAST” I will cover some open source Static

Application Security Testing (SAST) tools to detect the vulnerabilities covered in

this section.

On Section “4.4.3. Business Logic” I will explain Business Logic attacks.

4.4.1 Secure Code

Django, along with Django REST Framework, follow the philosophy of “batteries

included” so they take care of many things, security included. In order to give

developers flexibility to build whatever solution they want, for example that

could require a very specific SQL query, it also includes functions to have full

control of certain situations. Nevertheless, the incorrect usage of such functions

could lead to vulnerabilities.

Django Documentation has a page named “Security in Django” with an

overview on some attacks and protections, I will briefly go over them [63]:

4.4.1.1 Cross site scripting (XSS) protection

This attack does not apply for APIs.

It is present in OWASP Top 10, inside A03:2021-Injection and in the 2022

MITRE list, finding #2 Improper Neutralization of Input During Web Page

Generation ('Cross-site Scripting').

Django by default escape27 specific characters which are particularly dangerous

to HTML.

The ways to prevent it are:

1. If you are using templates, every attribute value should be quoted.

2. Be careful when using is_safe and mark_safe with custom template tags.

3. Do not turn autoescape off

4. Add Content Security Policy Headers

27 https://docs.djangoproject.com/en/4.1/ref/templates/language/#automatic-html-escaping

https://docs.djangoproject.com/en/4.1/ref/templates/language/#automatic-html-escaping

40

4.4.1.2 Cross site request forgery (CSRF) protection

This attack does not apply for APIs.

No longer present in OWASP Top 10, last year it appeared was 2013.

Present in the 2022 MITRE list, finding #9 Cross-Site Request Forgery

(CSRF).

Django has built-in protection against most types of CSRF attacks. The

important thing to prevent this is to deploy the Middleware

“CsrfViewMiddleware” and be extra careful when marking a view with the

csrf_exempt decorator since that will disable CSRF protections for that view.

4.4.1.3 SQL injection (SQLi) protection

It is present in OWASP Top 10, inside A03:2021-Injection, OWASP API

Security Top 10, inside API8:2019 Injection and in the 2022 MITRE list, finding

#3 Improper Neutralization of Special Elements used in an SQL Command

('SQL Injection').

Django by default protects SQL queries to injections by using query

parameterization.

Django also provides developers power to write raw queries or execute custom

SQL. Incorrect usage of these powers is the only case where a SQLi can

happen.

Developers should avoid using the dangerous methods raw()28, extra()29 and

custom SQL30 (via cursor.execute()). If those methods are unavoidable for the

application, no user input should be used. If that is unavoidable too, proper

cleaning and filtering should be done on those inputs, anyhow the general

recommendation is avoid doing this since there is a chance the filtering is not

done properly or there is a way to bypass it.

28 https://docs.djangoproject.com/en/4.1/topics/db/sql/#executing-raw-queries
29
https://docs.djangoproject.com/en/4.1/ref/models/querysets/#django.db.models.query.QuerySet.
extra
30 https://docs.djangoproject.com/en/4.1/topics/db/sql/#executing-custom-sql

https://docs.djangoproject.com/en/4.1/topics/db/sql/#executing-raw-queries
https://docs.djangoproject.com/en/4.1/ref/models/querysets/#django.db.models.query.QuerySet.extra
https://docs.djangoproject.com/en/4.1/ref/models/querysets/#django.db.models.query.QuerySet.extra
https://docs.djangoproject.com/en/4.1/topics/db/sql/#executing-custom-sql

41

4.4.1.4 Clickjacking protection

This attack does not apply for APIs.

Not present in OWASP Top 10, nor 2022 MITRE list.

Django has clickjacking protection with the middleware

“django.middleware.clickjacking.XFrameOptionsMiddleware”, that will add an

HTTP Header to prevent the site being rendered inside a frame.

4.4.1.5 SSL/HTTPS

Django has several settings to enforce the use of HTTPS, but I suggest this is

done on a separate layer of the network architecture, for example being

handled by a proxy, a load balance, a CDN, a WAF, etc.

The proper configuration of HTTPS is outside the scope of this work.

What should be verified is that the site is only accessible by HTTPS, and it has

secure configuration, sites like https://www.ssllabs.com/ can help verify that.

4.4.1.6 Host header validation

Not present in OWASP Top 10, nor 2022 MITRE list.

This should be handled by the external layer of the network architecture, for

example being handled by a proxy, a load balance, a CDN, a WAF, etc.

Anyhow, a proper configuration on Django is an extra security measure that

could be done. This is easily prevented by setting the proper value on the

settings field ALLOWED_HOSTS31 and Django will reject any request with a

host not present in that list.

4.4.1.7 Referrer policy

This attack does not apply for APIs.

Not present in OWASP Top 10, nor 2022 MITRE list.

Django has the setting “SECURE_REFERRER_POLICY” that allows to

configure the Referrer Policy header32, this might be relevant for privacy

concerns regarding users browsing.

31 https://docs.djangoproject.com/en/4.1/ref/settings/#std-setting-ALLOWED_HOSTS
32 https://docs.djangoproject.com/en/4.1/ref/middleware/#referrer-policy

https://www.ssllabs.com/
https://docs.djangoproject.com/en/4.1/ref/settings/#std-setting-ALLOWED_HOSTS
https://docs.djangoproject.com/en/4.1/ref/middleware/#referrer-policy

42

4.4.1.8 Cross-origin opener policy

This attack does not apply for APIs.

Not present in OWASP Top 10, nor 2022 MITRE list.

Django has the setting “SECURE_CROSS_ORIGIN_OPENER_POLICY” that

allows to configure the Cross-Origin Opener Policy header33.

4.4.1.9 Session security

This attack does not apply for APIs.

This is related to Cookie security34 and it is not a good practice to have APIs

using Cookies or sessions, especially for REST APIs since they shall be

stateless. Every request shall be stateless and isolated from other requests.

Not present in OWASP Top 10, nor 2022 MITRE list.

4.4.1.10 User-uploaded content

This attack rarely applies to APIs.

Not present in OWASP Top 10, nor 2022 MITRE list.

If the API handles user-uploaded content, especial considerations35 must be

taken to make sure this is done safely. It is best if this could be done and

handled by a specialized third party like a storage service.

4.4.1.11 Additional security topics

Django mentions the following considerations about security36:

✓ Make sure that your Python code is outside of the web server’s

root. This will ensure that your Python code is not accidentally

served as plain text (or accidentally executed).

✓ Take care with any user uploaded files.

✓ Django does not throttle requests to authenticate users. To protect

against brute-force attacks against the authentication system, you

may consider deploying a Django plugin or web server module to

throttle these requests.

33https://docs.djangoproject.com/en/4.1/ref/settings/#std-setting-
SECURE_CROSS_ORIGIN_OPENER_POLICY
34 https://docs.djangoproject.com/en/4.1/topics/http/sessions/#topics-session-security
35 Some of them described in https://docs.djangoproject.com/en/4.1/topics/security/#user-
uploaded-content
36 https://docs.djangoproject.com/en/4.1/topics/security/#additional-security-topics

https://docs.djangoproject.com/en/4.1/ref/settings/#std-setting-SECURE_CROSS_ORIGIN_OPENER_POLICY
https://docs.djangoproject.com/en/4.1/ref/settings/#std-setting-SECURE_CROSS_ORIGIN_OPENER_POLICY
https://docs.djangoproject.com/en/4.1/topics/http/sessions/#topics-session-security
https://docs.djangoproject.com/en/4.1/topics/security/#user-uploaded-content
https://docs.djangoproject.com/en/4.1/topics/security/#user-uploaded-content
https://docs.djangoproject.com/en/4.1/topics/security/#additional-security-topics

43

✓ Keep your SECRET_KEY, and SECRET_KEY_FALLBACKS if in

use, secret.

✓ It is a good idea to limit the accessibility of your caching system

and database using a firewall.

✓ Take a look at the Open Web Application Security Project

(OWASP) Top 10 list which identifies some common

vulnerabilities in web applications. While Django has tools to

address some of the issues, other issues must be accounted for in

the design of your project.

✓ Mozilla discusses various topics regarding web security. Their

pages also include security principles that apply to any system.

Additionally, the following are some protections worth discussing [44] [64].

4.4.1.12 Remote Code Execution (RCE) protection

It is present in OWASP Top 10, inside A03:2021-Injection and A05:2021-

Security Misconfiguration in OWASP API Security Top 10, inside API8:2019

Injection and in the 2022 MITRE list, findings: #4 Improper Input Validation,

#6 Improper Neutralization of Special Elements used in an OS Command

('OS Command Injection'), #12 Deserialization of Untrusted Data, #17

Improper Neutralization of Special Elements used in a Command

('Command Injection') and #25 Improper Control of Generation of Code

('Code Injection').

The following python built-ins functions execute code: eval(), exec() and

execfile(). If the application makes use of this functions, no arbitrary user input

should ever reach them37.

The pickle module38 is another unsafe module of Python. Only data where we

have complete control, and there is no way for a user to tamper with should be

unpickled. It is trivial to construct a malicious pickle data file which will execute

arbitrary code during unpickling [65]. This includes the pandas.read_pickle39

which is also unsafe.

If the Django app uses PyYAML40, the method load() should be used carefully

since it can also lead to RCE. The easiest mitigation is to use the method

37 It’s hard to properly sanitize this, especially if a wide array of values is allowed. A nice write-
up of how a blocklist approach can be bypassed is present at
https://nedbatchelder.com/blog/201206/eval_really_is_dangerous.html
38 The pickle module implements binary protocols for serializing and de-serializing a Python
object structure.
39 https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_pickle.html
40 https://pyyaml.docsforge.com/

https://nedbatchelder.com/blog/201206/eval_really_is_dangerous.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_pickle.html
https://pyyaml.docsforge.com/

44

safe_load(), if It is not possible, the parameter “Loader=yaml.SafeLoader”

should be used.

4.4.1.13 Mass assignment protection

It is present in OWASP API Security Top 10, inside API6:2019 Mass

Assignment and in the 2022 MITRE list, finding #4 Improper Input Validation.

The mass assignment vulnerability happens when database fields that are

intended to be updated only through special processes are open to general

update processes. When using ModelForms, always use Meta.fields (allow list

approach) and never use Meta.exclude (blocklist approach) since it is easy to

forget or make a mistake (for example, when updating the model in the future)

that could lead to this type of vulnerability.

Additionally, do not use:

ModelForms.Meta.fields = “__all__”

45

4.4.1.14 Identification and Authentication Failures protection

Failures in Authentication are present in OWASP Top 10, inside A07:2021

Identification and Authentication Failures, in OWASP API Security Top 10,

inside API2:2019 Broken User Authentication and in the 2022 MITRE list,

finding #14 Improper Authentication and finding #18 Missing Authentication

for Critical Function.

Django REST Framework has the setting “DEFAULT_AUTHENTICATION_

CLASSES”. Proper configuration of this setting is key to prevent this

vulnerability.

The setting expects “A list or tuple of authentication classes”. The default value

is:

['rest_framework.authentication.SessionAuthentication',

 'rest_framework.authentication.BasicAuthentication']

Using classes without bugs is also key to prevent this vulnerability.

From DRF documentation [66]:

If no class authenticates, request.user will be set to an instance of

django.contrib.auth.models.AnonymousUser, and request.auth will be set

to None.

It is important to know that just checking if the request has a user is not enough

since the user AnonymousUser might be set.

Finally, the authentication setting can also be overwritten on a class using the

APIView class-based views and modifying the variable authentication_classes.

On a function based view, it could be modified with the decorators @api_view

and @authentication_classes.

46

4.4.1.15 Authorization Failures protection

Failures in Authorization are present in OWASP Top 10, inside A01:2021-

Broken Access Control, in OWASP API Security Top 10, inside API1:2019

Broken Object Level Authorization and API5:2019 Broken Function Level

Authorization and in the 2022 MITRE list, finding #16 Missing Authorization

and finding #20 Incorrect Default Permissions.

Django REST Framework has the setting “DEFAULT_PERMISSION_

CLASSES” proper configuration of this setting is key to prevent this

vulnerability.

The setting expects “A list or tuple of permission classes”. The default value is:

['rest_framework.permissions.AllowAny']

It is important to change the default value if the functions or view require some

level of authorization. Using classes without bugs is also key to prevent this

vulnerability.

From DRF documentation [67]:

Before running the main body of the view each permission in the list is

checked. If any permission check fails, an exceptions.PermissionDenied

or exceptions.NotAuthenticated exception will be raised, and the main

body of the view will not run.

The authorization setting can also be overwritten on a class using the APIView

class-based views and modifying the variable permission_classes.

On a function based view, it could be modified with the decorators @api_view

and @permission_classes. All the above could be grouped as Function Level

Authorization.

DRF also support object-level permission, which is used to determine if a user

should be allowed to act on a particular object, which will typically be a model

instance. For views where the method “get_object()” is override, there’s a need

to explicitly call the “.check_object_permissions(request, obj)” method,

otherwise this vulnerability will exist. An example of a proper get_object metod:

def get_object(self):

 obj = get_object_or_404(self.get_queryset(), pk=self.kwargs["pk"])

 self.check_object_permissions(self.request, obj)

 return obj

47

4.4.1.16 Resources & Rate Limiting protection

It is present in OWASP API Security Top 10, inside API4:2019 Lack of

Resources & Rate Limiting and in the 2022 MITRE list, finding #23

Uncontrolled Resource Consumption.

Django REST Framework has the setting “DEFAULT_THROTTLE_CLASSES”

proper configuration of this setting is key to prevent this vulnerability.

The setting expects “A list or tuple of throttle classes”. The default value is

empty. For most installations It is important to change the default value.

Throttling is like permissions because it determines if a request should be

authorized. The main difference is that throttling relies on temporary limits,

based on time such as second, minute, hour or day. Authentication is a key

component for a proper throttling strategy. Authentication can be either user

based or anonymous usage and rely on the client IP addresses for throttling.

Finally, the throttling setting can also be overwritten on a class using the

APIView class-based views and modifying the variable throttle_classes.

On a function based view, it could be modified with the decorators @api_view

and @throttle_classes.

4.4.1.17 Server-Side Request Forgery protection

It is present in OWASP Top 10, inside A10:2021 Server-Side Request

Forgery (SSRF) and in the 2022 MITRE list, finding #21 Server-Side Request

Forgery (SSRF).

Preventing of SSRF attacks on applications using DRF is not different that on

other languages or frameworks41. Proper validation of URLs should be done

before making a request.

Django includes the class URLValidator42 and the validator

validate_ipv4_address()43.

41 OWASP provides a guide to prevent SSRF on https://owasp.org/www-
community/attacks/Server_Side_Request_Forgery
42 https://docs.djangoproject.com/en/4.1/ref/validators/#django.core.validators.URLValidator
43 https://docs.djangoproject.com/en/4.1/ref/validators/#validate-ipv4-address

https://owasp.org/www-community/attacks/Server_Side_Request_Forgery
https://owasp.org/www-community/attacks/Server_Side_Request_Forgery
https://docs.djangoproject.com/en/4.1/ref/validators/#django.core.validators.URLValidator
https://docs.djangoproject.com/en/4.1/ref/validators/#validate-ipv4-address

48

4.4.1.18 Excessive Data Exposure protection

It is present in OWASP API Security Top 10, inside API3:2019 Excessive Data

Exposure.

The excessive data exposure vulnerability, in DRF, happens when the serializer

displays too much information about a model. It is also more present on public

endpoints.

To prevent this vulnerability, the team should do a thorough review of what

fields are returned on each view.

Finally, if the serializer is inheriting from ModelSerializer, it is highly

recommended to not use the exclude Meta property since a change in the

model, for example adding a sensitive attribute, could lead to this vulnerability

[68].

 49

4.4.1.19 Summary tables

OWASP API Security Top 10

OWASP API Security Top 10 How to prevent it

API1:2019 Broken Object Level

Authorization

On class-based views verify the variable authentication_classes.
On a function based view, verify the decorators @api_view and
@authentication_classes

API2:2019 Broken User Authentication Verify the setting value DEFAULT_AUTHENTICATION_ CLASSES

API3:2019 Excessive Data Exposure Verify the data returned by the serializer

API4:2019 Lack of Resources & Rate

Limiting

Verify the setting value DEFAULT_THROTTLE_CLASSES

On class-based views verify the variable throttle_classes.
On a function based view, verify the decorators @api_view and @ throttle_classes

API5:2019 Broken Function Level

Authorization

Verify the setting value DEFAULT_PERMISSION_ CLASSES

On class-based views verify the variable authentication_classes.
On a function based view, verify the decorators @api_view and

@authentication_classes

API6:2019 Mass Assignment Don’t use meta.exclude, instead use meta.fields

Never use ModelForms.Meta.fields = "__all__"

API7:2019 Security Misconfiguration Review Django Settings (especially DEBUG and SECRET_KEY) and the whole

content of the settings file

API8:2019 Injection Don’t use any user controlled variables in the methods:

raw, extra and cursor.execute (SQLi)

eval, exec, execfile, pickle.load and yaml.load (RCE)

API9:2019 Improper Assets Management Not related to code. Do proper asset management.

API10:2019 Insufficient Logging &

Monitoring

Review the application is doing proper logging and there are alerts and monitors

on those logs.

50

OWASP Top 10 2021

OWASP Top 10 2021 How to prevent it?

A01:2021-Broken Access Control Verify the setting value DEFAULT_PERMISSION_ CLASSES

On class-based views verify the variable permission_classes
On a function based view, verify the decorators @api_view and @permission_classes

A02:2021-Cryptographic Failures Django can handle TLS, anyhow it’s best to do it with a proxy or webserver before Django

A03:2021-Injection Don’t use any user controlled variables in the methods:

raw, extra and cursor.execute (SQLi)

eval, exec, execfile, pickle.load and yaml.load (RCE)

A04:2021 Insecure Design Not related to code. Do a secure design

A05:2021 Security

Misconfiguration

Review Django Settings (especially DEBUG and SECRET_KEY) and the whole content of

the settings file

A06:2021 Vulnerable and

Outdated Components

Not related to code. Update the components

A07:2021 Identification and

Authentication Failures

Verify the setting value DEFAULT_AUTHENTICATION_ CLASSES

On class-based views verify the variable authentication_classes
On a function based view, verify the decorators @api_view and @authentication_classes

A08:2021 Software and Data

Integrity Failures

Not related to code. Do signature verification before updating or installing software.

A09:2021 Security Logging and

Monitoring

Review the application is doing proper logging and there are alerts and monitors on those

logs.

A10:2021 Server-Side Request

Forgery (SSRF)

Do proper URL validation before making a request.

 51

4.4.2 Open Source SAST

A Static Application Security Testing (SAST) tool is a software security analysis

tool that can be used to identify vulnerabilities in software applications. SAST

tools can help to improve the security of software applications by identifying

potential security issues early in the software development process [69].

There are many different SAST options each will have their unique attributes

such as speed, complexity to set up, quality of findings, price, among others. I

will cover three open source solutions:

Bandit – Bandit is a tool designed to find common security issues in Python. To

do this Bandit processes each file, builds an Abstract Syntax Tree (AST)44 from

it, and runs appropriate plugins against the AST nodes. Once Bandit has

finished scanning all the files it generates a report. Bandit was originally

developed within the OpenStack Security Project and later rehomed to PyCQA

[70].

Semgrep – Semgrep is a fast, open-source, static analysis engine for finding

bugs, detecting vulnerabilities in third-party dependencies, and enforcing code

standards. Developed by “Return To Corporation” (usually referred to as r2c)

and open-source contributors. It works based on rules45, which can focus on

security, language best practices, or something else. Creating a rule is easy

and semgrep is very powerful. For Django there are 29 rules46.

PyCharm Security – Pycharm-security is a plugin for PyCharm, or JetBrains

IDEs with the Python plugin. The plugin looks at Python code for common

security vulnerabilities and suggests fixes. It can also be executed from a

Docker container47. It has about 40 checks and some are Django specific [71].

All 3 tools run locally or in the build environment, there is no need to upload

code.

Finally, each project should be confident they are using a SAST tool that’s

updated, maintained, and has good findings. If possible, running a secondary

SAST once a month is useful to detect gaps in findings.

44 https://docs.python.org/3/library/ast.html
45 Found at the registry: https://semgrep.dev/explore
46 https://semgrep.dev/p/django
47 https://pycharm-security.readthedocs.io/en/latest/installation.html#installation-from-docker

https://docs.python.org/3/library/ast.html
https://semgrep.dev/explore
https://semgrep.dev/p/django
https://pycharm-security.readthedocs.io/en/latest/installation.html#installation-from-docker

52

4.4.3 Business Logic

The National Vulnerability Database (NVD) categorizes Business Logic Errors

as [72]:

CWE-840: Business Logic Errors – Weaknesses in this category identify

some of the underlying problems that commonly allow attackers to

manipulate the business logic of an application. Errors in business logic

can be devastating to an entire application. They can be difficult to find

automatically, since they typically involve legitimate use of the

application's functionality. However, many business logic errors can

exhibit patterns that are similar to well-understood implementation and

design weaknesses.

An easy way to understand business logic flaws is:

“Ways of using the legitimate processing flow of an application in a way that

results in a negative consequence to the organization.”

Business logic flaws will rarely be detected by automatic scanners or can be

detected with a “checklist security approach”. They require true understanding

of the business, the system and how they interact.

They are often the most critical in terms of consequences, as they are deeply

tied into the company’s process, anyhow they Do not follow a pattern48.

48 Examples of this vulnerabilities can be found in Jeremiah Grossman’s slides “Seven Business
Logic Flaws that put your Website at Risk” found at https://owasp.org/www-pdf-
archive/FROCo8_JeremiahGrossman_BizLogicFlaws.pdf

https://owasp.org/www-pdf-archive/FROCo8_JeremiahGrossman_BizLogicFlaws.pdf
https://owasp.org/www-pdf-archive/FROCo8_JeremiahGrossman_BizLogicFlaws.pdf

53

4.5 Secure Deployment

Special considerations should be taken before deploying an application to

production, especially if the application should be accessible by everyone on

the Internet.

In this section I will cover the basics for doing a secure deployment of a Django

and Django REST Framework app.

It is important to mention that each application is unique and has its own

architecture, business requirements, security requirements, technical

capabilities, resources, among others. It is best to have their own process,

anyhow this section should help as a starting point.

4.5.1 Settings

As explained in section “4.1.2 Django Settings”, the Django settings DEBUG,

DEBUG_PROPAGATE_EXCEPTIONS, SECRET_KEY,

SECRET_KEY_FALLBACKS are very important49 for a production environment.

Secrets should never be hardcoded on the settings file or any other file since

it is a poor practice because it can compromise security, make maintenance

difficult, and hinder portability. It is recommended to handle secrets with a

secret manager.

As explained in section “4.1.3 DRF Settings” DRF settings will hardly change.

Anyhow, if there is an authentication, permission or throttle class that’s only

used for local development or debugging, for example to allow all access, it

should be removed before the application is deployed in production.

Settings such as ALLOWED_HOSTS, CACHES, DATABASES,

EMAIL_BACKEND among others tend to be specific per each environment.

A good practice that some teams follow is to have separate files, all inside a

folder called settings, for each environment. An example of that is:

• settings/base.py the basic common configuration used in all

environments.

• settings/local.py with the specific settings required for local

development. This usually includes debug features.

• settings/ci.py with the specific settings required for the CI/CD

pipeline. Should be very similar to production, but it may have

additional classes to allow testing or more verbose errors.

49 The most important settings are DEBUG and SECRET_KEY.

54

• settings/production.py for the live production servers.

4.5.2 System Checks

Django Documentation has a page for the system check framework [73] that

says:

The system check framework is a set of static checks for validating

Django projects. It detects common problems and provides hints for how

to fix them. The framework is extensible so you can easily add your own

checks.

Checks can be triggered explicitly via the check command. Checks are

triggered implicitly before most commands, including runserver and

migrate. For performance reasons, checks are not run as part of the

WSGI stack that is used in deployment. If you need to run system checks

on your deployment server, trigger them explicitly using check.

It's a good practice to generate a list of requirements, especially security

requirements, that are needed for each deployment and create a system check

for each one of those. System checks should be part of a deployment process

and in case a system check fails, the whole deployment should fail.

Django has good documentation on how to write new system check:

https://docs.djangoproject.com/en/4.1/topics/checks/

4.5.3 CI/CD

An in-depth analysis of CI/CD is outside of the scope of this document since It is

a huge topic. CI/CD stands for three things [74]:

• Continuous integration. Automated build and test processes ensure

that code in the main branch is always production-quality.

• Continuous delivery. Every code change that passes the CI process

are automatically published to a production-like environment.

Deployment into the live production environment may require manual

approval but is otherwise automated. The goal is that your code should

always be ready to deploy into production.

• Continuous deployment. Code changes that pass the previous two

steps are automatically deployed into production.

Not every environment with continuous delivery has continuous deployment

since there may be regulatory or business requirements where a manual

approval is required.

https://docs.djangoproject.com/en/4.1/topics/checks/

55

A proper CI/CD pipeline gives the business, and developers, enough

confidence about their code and their deployment process that they can push

new code multiple times per hour.

A robust CI/CD pipeline should also include security checks. For a Django

application, the following are a good idea to have:

• SAST analysis – As explained in section “4.4.2 Open Source SAST”.

Paid tools are also available.

• Dependency checks – The checks explained in sections “4.2

Vulnerable dependencies” and “4.3 Dependency confusion”.

• System Checks – As explained in section “4.5.2 System Checks”.

Additional steps could be added like DAST, an inhouse regression testing

framework and any other tools the team feel needed.

Having a robust CI/CD pipeline requires many teams to communicate and work

together. Security should never impose, or in any way force, their tools into a

CI/CD pipeline since that would create friction and teams will try to find a way to

bypass them if they keep adding friction.

The best approach is to add security tools in a gradual manner and have a

timeline that adjusts with the business. For example, having a 6 month plan to

add all 3 tools:

1. Communicate the plan with the teams and ask for feedback.

2. Start with the tools that will cause lower friction and less work for the

teams. Probably creating a first iteration of custom system checks.

3. Continue with SAST on warning mode (not failing the pipeline).

4. Ask teams to work on the findings. Provide help and resources so they

can fix the issues.

5. Integrate the Dependency checks.

6. Repeat step 4, but with the dependency checks.

7. Establish and share a deadline when the SAST will be a blocking

factor in the pipeline.

8. Establish and share a deadline when the Vulnerability checks will be a

blocking factor in the pipeline.

In every step keep an open mindset and a good communication channel with

every other team involved. Having a weekly office hour for teams to reach out

and solve questions is a good practice.

56

5 OWASP Cheat Sheet

The OWASP Cheat Sheet Series is a collection of documents that provide

guidance on how to secure web applications and APIs. The series includes

cheat sheets on a variety of topics, including secure coding practices, input

validation and sanitization, authentication, and authorization, and more. It’s

another project of OWASP.

Each cheat sheet in the series provides a concise overview of a particular

security concept, along with practical tips and examples to help developers

implement secure coding practices in their projects. The cheat sheets are

intended to be used as a reference resource, rather than a comprehensive

guide, and are designed to be easily accessible and useful for developers at all

levels of experience.[75]

As of December 2022, there is no Cheat Sheet for Django REST Framework. In

this chapter I will present the Cheat Sheet I created and the experience of

submitting it for review.

Cheat Sheet

I created a Cheat Sheet, and once it is accepted, it will look like:

Figure 11. Screenshot of how the new DRF CS will look like

57

The complete text is in “9.1 Appendix 1 - Django REST Framework (DRF)

Cheat Sheet”.

To submit a new Cheat Sheet, the project has a Contributing Guide50 that I

followed. From the guide:

Figure 12. Screenshot of the Contributing Guide to propose a new CS

The issue I created51 to propose the new Cheat Sheet (CS) looked like:

Figure 13. Screenshot of the issue I created to propose the new CS

50 https://github.com/OWASP/CheatSheetSeries/blob/master/CONTRIBUTING.md
51 https://github.com/OWASP/CheatSheetSeries/issues/1034

https://github.com/OWASP/CheatSheetSeries/blob/master/CONTRIBUTING.md
https://github.com/OWASP/CheatSheetSeries/issues/1034

58

On Dec 26th, 2022, I created a PR to introduce the first version of the draft of

the DRF Cheat Sheet and it was accepted as a draft on January 2nd, 2023:

Figure 14. Screenshot of the issue I created to propose the new CS

On January 4th, 2023, the PR that published the draft was accepted and the

“Django REST Framework (DRF) Cheat Sheet” is officially published52:

Figure 15. Screenshot of the issue I created to propose the new CS

52 At the URL:
https://cheatsheetseries.owasp.org/cheatsheets/Django_REST_Framework_Cheat_Sheet.html#
introduction

https://github.com/OWASP/CheatSheetSeries/pull/1049
https://cheatsheetseries.owasp.org/cheatsheets/Django_REST_Framework_Cheat_Sheet.html#introduction
https://cheatsheetseries.owasp.org/cheatsheets/Django_REST_Framework_Cheat_Sheet.html#introduction

59

6 Conclusions and future work

In conclusion, the work successfully achieved its objectives of providing

guidance on how to write secure code when using the Django REST

Framework (DRF). However, the timeline for this work was not without

challenges. The main section, "DRF Security Guidelines," took longer to

complete than expected, particularly the portion on "Secure Code." Additionally,

there were a few changes made to the organization and presentation of the

document, as is often the case with initial planning.

The methodology for this work was followed, except for interviews. Due to a

lack of availability of experts, it was not possible to conduct interviews as part of

the research process. Anyhow a more in-depth analysis of the literature was

done along with in-depth research of publicly available information.

Despite these challenges, the research for this thesis resulted in the

development of a set of recommendations or guidelines for secure coding with

DRF, including a cheat sheet and a presentation. These guidelines provide

valuable information for developers looking to ensure the security of their DRF-

based APIs.

Additionally, the ethical, social, and environmental impacts of this work were all

positive. By promoting the use of secure coding practices, this work helps to

protect the privacy and security of users of web applications built with DRF. This

can have a positive impact on society, as it helps to prevent data breaches and

other security incidents that can have serious consequences.

There are several potential areas for future work in this field. One possibility is

to create a vulnerable API where the guidelines could be tested and refined.

Another option is to develop a course that teaches developers how to use these

guidelines in practice. Additionally, translating this work into Spanish and other

languages could help to make the guidelines more widely accessible to a global

audience. Finally, creating guidelines for secure network segmentation,

implementing a firewall, using a WAF, and restricting Django admin access

using a firewall could further enhance the security of the system.

Overall, the "Django REST Framework (DRF) Secure Code Guidelines" provide

a valuable resource for developers looking to write secure code with DRF in the

context of web application development. With further research and

development, these guidelines have the potential to become an even more

valuable tool for ensuring the security of web applications built with DRF.

60

7 Glossary

API – An application programming interface (API) is a way for two or more

computer programs to communicate with each other [14].

Buffer overflow (BoF) – Also known as buffer overrun is a type of vulnerability

where a program, while writing data to a buffer, overruns the buffer's boundary

and overwrites adjacent memory locations. This often leads to a Denial of

Service (DoS) condition, anyhow it can also lead to an attacker being able to

execute code on the targeted system.

CVE – The Common Vulnerabilities and Exposures (CVE) system provides a

reference-method for publicly known information-security vulnerabilities and

exposures. MITRE’s documentation defines CVE Identifiers (also called "CVE

names", "CVE numbers", "CVE-IDs", and "CVEs") as unique, common

identifiers for publicly known information-security vulnerabilities in publicly

released software packages [75].

Denial of Service (DoS) – Is an attack meant to shut down a machine, network

or system making it inaccessible to its intended users.

Django – Python-based free and open-source web framework that handles

most of the heavy lifting of building a website. It follows the model–template–

views (MTV) architectural pattern.

Django REST Framework – Django REST framework is a powerful and flexible

toolkit for building Web APIs.

HTTP – The HyperText Transfer Protocol (HTTP) is the underlying network

protocol that enables transfer of hypermedia documents on the Web, typically

between a browser and a server so that humans can read them [76].

HTTPS – The secure variant of HTTP. It is an extension of HTTP, also referred

to as HTTP over TLS.

MITRE – An American not-for-profit organization that manages federally funded

research and development centers (FFRDCs) supporting various U.S.

government agencies in the aviation, defense, healthcare, homeland security,

and cybersecurity fields, among others [77].

Python – High-level, general-purpose programming language. Its design

philosophy emphasizes code readability with the use of significant indentation.

61

Programming Language – A system of notation for writing computer

programs. Some examples are C, Python, Java, Ruby and Rust.

REST API – The dominant architectural pattern for APIs and it means

REpresentational State Transfer.

SANS Institute – Also known as just “SANS” is a private U.S. for-profit

company founded in 1989 that specializes in information security, cybersecurity

training, and certifications.

Secret – Credentials are often called “secrets”. Any private piece of information

that acts as a key to unlock protected resources or sensitive information in

tools, applications, etc. should be considered a secret. The most common types

of secrets are Account credentials (username and password), API Keys,

Passwords, SSH keys and Encryption keys.

Vulnerability - A weakness in a piece of computer software which can be used

to access things one should not be able to gain access to [75].

TLS – Transport Layer Security (TLS) is a cryptographic protocol designed to

provide communications security over a computer network. The protocol can be

used in applications such as email, instant messaging, and voice over IP, but its

use in securing HTTPS remains the most publicly visible [78].

YAML – YAML is a human-readable data-serialization language. It is commonly

used for configuration files and in applications where data is being stored or

transmitted. YAML stands for yet another markup language or YAML ain’t

markup language (a recursive acronym), which emphasizes that YAML is for

data, not documents.

62

8 Bibliography

[1] Cisco, "Global - 2021 Forecast Highlights," Cisco, 2021. [Online].
Available: https://www.cisco.com/c/dam/m/en_us/solutions/service-
provider/vni-forecast-
highlights/pdf/Global_2021_Forecast_Highlights.pdf. [Accessed 9
October 2022].

[2] Netflix, "How to control how much data Netflix uses," [Online]. Available:
https://help.netflix.com/en/node/87. [Accessed 09 October 2022].

[3] Akamai, "[state of the internet] / security Retail Volume 5, Issue 2," 02
2019. [Online]. Available:
https://www.akamai.com/site/it/documents/state-of-the-internet/state-of-
the-internet-security-retail-attacks-and-api-traffic-report-2019.pdf.

[4] Wikipedia contributors, "Python (programming language)," Wikipedia,
The Free Encyclopedia., 16 October 2022. [Online]. Available:
https://en.wikipedia.org/w/index.php?title=Python_(programming_langua
ge)&oldid=1116394427. [Accessed 16 October 2022].

[5] L. S. Vailshery, "Statista," Statista, 5 May 2022. [Online]. Available:
Python - Statistics & Facts. [Accessed 09 October 2022].

[6] Statista, "Most used programming languages among developers
worldwide as of 2022," 2022. [Online]. Available: https://www-statista-
com.eu1.proxy.openathens.net/statistics/793628/worldwide-developer-
survey-most-used-languages/. [Accessed 09 October 2022].

[7] Stack Overflow, "2022 Developer Survey," Stack Overflow, 2022.
[Online]. Available: https://survey.stackoverflow.co/2022/#most-popular-
technologies-webframe. [Accessed 09 October 2022].

[8] Django Project, "The web framework for perfectionists with deadlines |
Django," Django Project, [Online]. Available:
https://www.djangoproject.com/. [Accessed 14 October 2022].

[9] Django Project, "FAQ: General," Django , [Online]. Available:
https://docs.djangoproject.com/en/4.1/faq/general/#why-does-this-
project-exist. [Accessed 14 October 2022].

[10] Django Project, "Applications," [Online]. Available:
https://docs.djangoproject.com/en/4.1/ref/applications/. [Accessed 14
October 2022].

[11] Django Packages, "Django Packages : Frequently Asked Questions,"
Django Packages, [Online]. Available: https://djangopackages.org/faq/.
[Accessed 14 October 2022].

[12] Django Project, "About the Django Software Foundation," Django,
[Online]. Available: https://www.djangoproject.com/foundation/.
[Accessed 14 October 2022].

[13] Trio Blog, "9 Examples of Companies Using Django in 2022," Trio ,
[Online]. Available: https://www.trio.dev/blog/django-applications.
[Accessed 14 October 2022].

[14] Wikipedia contributors, "API," Wikipedia, The Free Encyclopedia, 12
October 2022. [Online]. Available:
https://en.wikipedia.org/w/index.php?title=API&oldid=1115721711.

63

[Accessed 14 October 2022].

[15] W. S. Vincent, Django for APIs: Build web APIs with Python and Django,
WelcomeToCode, 2022.

[16] encode, "encode/django-rest-framework: Web APIs for Django. ,"

Github.com, [Online]. Available: https://github.com/encode/django-rest-
framework. [Accessed 14 October 2022].

[17] T. Christie, "Posts - Django REST framework 3 by Tom Christie -
Kickstarter," Kickstarter, [Online]. Available:
https://www.kickstarter.com/projects/tomchristie/django-rest-framework-
3/posts. [Accessed 14 October 2022].

[18] T. Christie, "Django REST framework 3 by Tom Christie - Kickstarter,"
Kickstarter, [Online]. Available:
https://www.kickstarter.com/projects/tomchristie/django-rest-framework-
3. [Accessed 14 October 2022].

[19] T. Christie, "3.3 Release," Kickstarter, [Online]. Available:
https://www.kickstarter.com/projects/tomchristie/django-rest-framework-
3/posts/1391664. [Accessed 14 October 2022].

[20] Django REST framework, "Django REST framework 3.14," Django REST
framework, [Online]. Available: https://www.django-rest-
framework.org/community/3.14-announcement/. [Accessed 14 October
2022].

[21] Django REST framework, "Funding - Django REST framework," Django
REST framework, [Online]. Available: https://fund.django-rest-
framework.org/topics/funding/#our-sponsors. [Accessed 14 October
2022].

[22] encode, "Security Policy," Github, [Online]. Available:
https://github.com/encode/django-rest-framework/security/policy.
[Accessed 16 October 2022].

[23] Hiscox Group, "22054 - Hiscox Cyber Readiness Report 2022-
EN_0.pdf," 2022. [Online]. Available:
https://www.hiscoxgroup.com/sites/group/files/documents/2022-
05/22054%20-%20Hiscox%20Cyber%20Readiness%20Report%202022-
EN_0.pdf. [Accessed 17 October 2022].

[24] Hiscox; Forrester Research, "Average costs of all cyber attacks in the
United States and Europe from 2021 to 2022, by country," statista,
[Online]. Available: https://www-statista-
com.eu1.proxy.openathens.net/statistics/1327147/median-cost-attacks-
in-cyber-security-united-states-europe/. [Accessed 17 October 2022].

[25] Imperva, "Quantifying the Cost of API Insecurity," Imperva, Marsh-
McLennan, 2022.

[26] Allianz, "Leading risks to businesses worldwide from 2018 to 2022,"
statista, [Online]. Available: https://www-statista-
com.eu1.proxy.openathens.net/statistics/422171/leading-business-risks-
globally/. [Accessed 17 October 2022].

[27] Open Web Application Security Project® (OWASP), "Open Web
Application Security Project® (OWASP)," Open Web Application Security
Project® (OWASP), [Online]. Available: https://owasp.org/. [Accessed 17

64

October 2022].

[28] SANS Institute, "About SANS Institute," SANS Institute, [Online].
Available: https://www.sans.org/about/. [Accessed 17 October 2022].

[29] Wikipedia contributors, "SANS Institute," Wikipedia, The Free
Encyclopedia., 7 October 2022 . [Online]. Available:
https://en.wikipedia.org/w/index.php?title=SANS_Institute&oldid=111470
9978. [Accessed 17 October 2022].

[30] Centro Criptológico Nacional, "CWE/SANS publica la lista de los 25
errores de software más peligrosos," CCN CERT, 10 January 2011.
[Online]. Available: https://www.ccn-cert.cni.es/seguridad-al-dia/noticias-
seguridad/895-cwesans-publica-la-lista-de-los-25-errores-de-software-
mas-peligrosos.html. [Accessed 17 October 2022].

[31] Wikipedia contributors, "Systems development life cycle," Wikipedia, The
Free Encyclopedia., 4 October 2022 . [Online]. Available:
https://en.wikipedia.org/w/index.php?title=Systems_development_life_cy
cle&oldid=1114002735. [Accessed 17 October 2022].

[32] Wikipedia contributors, "Application security," Wikipedia, The Free
Encyclopedia., 26 August 2022 . [Online]. Available:
https://en.wikipedia.org/wiki/Application_security. [Accessed 17 October
2022].

[33] OWASP, "OWASP Top Ten," Open Web Application Security Project,
[Online]. Available: https://owasp.org/www-project-top-ten/. [Accessed 23
October 2022].

[34] OWASP , "Top10/archives at master · OWASP/Top10," Github, [Online].
Available: https://github.com/OWASP/Top10/tree/master/archives.
[Accessed 23 October 2022].

[35] B. Glas, "The Release of the OWASP Top 10:2021," OWASP, 24
September 2021. [Online]. Available: https://www.owasptopten.org/the-
release-of-the-owasp-top-10-2021. [Accessed 23 October 2022].

[36] OWASP, "OWASP API Security Top 10 2019," OWASP, 2019.

[37] Open Web Application Security Project, "OWASP API Security Project,"
OWASP , [Online]. Available: https://owasp.org/www-project-api-
security/. [Accessed 27 October 2022].

[38] The MITRE Corporation, "2022 CWE Top 25 Most Dangerous Software
Weaknesses," MITRE , [Online]. Available:
https://cwe.mitre.org/top25/archive/2022/2022_cwe_top25.html.
[Accessed 27 October 2022].

[39] Snyk, "Secure Software Development Lifecycle (SSDLC)," Snyk Blog,
[Online]. Available: https://snyk.io/learn/secure-sdlc/. [Accessed 28
October 2022].

[40] E. Johnson, "Securing the Software Development Lifecycle," SANS, 15
April 2015. [Online]. Available: https://www.sans.org/blog/securing-the-
software-development-lifecycle/. [Accessed 28 October 2022].

[41] Django Project, "Django’s security policies," Django Project, [Online].
Available: https://docs.djangoproject.com/en/4.1/internals/security/.
[Accessed 12 November 2022].

[42] Django Project, "Download," Django Project, [Online]. Available:

65

https://www.djangoproject.com/download/. [Accessed 12 November
2022].

[43] T. Christie, "Security Policy," Github, 16 March 2022. [Online]. Available:
https://github.com/encode/django-rest-framework/security/policy.
[Accessed 12 November 2022].

[44] D. R. G. a. A. R. Greenfeld, Two Scoops of Django 3.x, Feldroy Shop PS
Feldroy LLC., 2021.

[45] Django Project, "Settings," Django Project, [Online]. Available:
https://docs.djangoproject.com/en/4.1/ref/settings/. [Accessed 13
November 2022].

[46] W. Vincent, "Django Best Practices: Security," Learn Django, 24 October
2022. [Online]. Available: https://learndjango.com/tutorials/django-best-
practices-security. [Accessed 13 November 2022].

[47] AWS Amazon, "Application Load Balancer," AWS Amazon, [Online].
Available: https://aws.amazon.com/elasticloadbalancing/application-load-
balancer/. [Accessed 13 November 2022].

[48] Django REST Framework, "Settings," Django REST Framework,
[Online]. Available: https://www.django-rest-framework.org/api-
guide/settings/. [Accessed 14 November 2022].

[49] Synopsys, "2022 Open Source Security and Risk Analysis Report," 2022.
[Online]. Available:
https://www.synopsys.com/content/dam/synopsys/sig-assets/reports/rep-
ossra-2022.pdf. [Accessed 14 November 2022].

[50] National Telecommunications and Information Administration, "SBOM
FAQ," 16 November 2022. [Online]. Available:
https://www.ntia.gov/files/ntia/publications/sbom_faq_-_20201116.pdf.
[Accessed 14 November 2022].

[51] L. Irsigler, "A (soft) introduction to Python dependency management,"
Snyk, 14 September 2021. [Online]. Available:
https://snyk.io/blog/introduction-to-python-dependency-management/.
[Accessed 14 November 2022].

[52] A. R. G. Daniel Roy Greenfeld, A Wedge of Django, Feldroy, 2021.

[53] riptutorial, "Using multiple requirements files," riptutorial, [Online].
Available: https://riptutorial.com/django/example/8561/using-multiple-
requirements-files. [Accessed 14 November 2022].

[54] B. O'Shea, "How Dependabot empowers you to keep your projects
secure," Github, 6 April 2022. [Online]. Available:
https://github.blog/2022-04-06-how-dependabot-empowers-you-to-keep-
your-projects-secure/. [Accessed 14 November 2022].

[55] Snyk, "Open Source Security Management | SCA Tool | Snyk," Snyk,
[Online]. Available: https://snyk.io/product/open-source-security-
management/. [Accessed 14 November 2022].

[56] A. Birsan, "Dependency Confusion: How I Hacked Into Apple, Microsoft
and Dozens of Other Companies," Medium, 9 February 2021. [Online].
Available: https://medium.com/@alex.birsan/dependency-confusion-
4a5d60fec610. [Accessed 15 November 2022].

[57] Y. Gelb, "Automatic Execution of Code Upon Package Download on

66

Python Package Manager," Checkmarx Security, 29 August 2022.
[Online]. Available: https://medium.com/checkmarx-security/automatic-
execution-of-code-upon-package-download-on-python-package-
manager-cd6ed9e366a8. [Accessed 19 November 2022].

[58] Microsoft, "3 ways to mitigate risk when using private package feeds,"
[Online]. Available:
https://azure.microsoft.com/mediahandler/files/resourcefiles/3-ways-to-
mitigate-risk-using-private-package-
feeds/3%20Ways%20to%20Mitigate%20Risk%20When%20Using%20Pri
vate%20Package%20Feeds%20-%20v1.0.pdf. [Accessed 15 November
2022].

[59] L. EPPALAGUDEM, "Dependencies, Confusions, and Solutions: What
Did Twilio Do to Solve Dependency Confusion," Twilio Blog, 03 August
2021. [Online]. Available: https://www.twilio.com/blog/avoiding-
dependency-confusion-attacks. [Accessed 18 November 2022].

[60] DataDog, "Github's GuardDog," DataDog, [Online]. Available:
https://github.com/DataDog/guarddog. [Accessed 19 November 2022].

[61] C. T.-D. Ellen Wang, "Finding malicious PyPI packages through static
code analysis: Meet GuardDog," DataDog, 15 November 2022. [Online].
Available: https://securitylabs.datadoghq.com/articles/guarddog-identify-
malicious-pypi-packages/. [Accessed 19 November 2022].

[62] pyupio, "safety-db," Github, 1 November 2022. [Online]. Available:
https://github.com/pyupio/safety-db. [Accessed 26 November 2022].

[63] Django Project, "Security in Django," Django Project, [Online]. Available:
https://docs.djangoproject.com/en/4.1/topics/security/. [Accessed 20
November 2022].

[64] W. S. Vincent, Django for Professionals,
https://djangoforprofessionals.com, 2020.

[65] Python Software Foundation, "pickle — Python object serialization,"
Python Software Foundation, 21 November 2022. [Online]. Available:
https://docs.python.org/3/library/pickle.html. [Accessed 21 November
2022].

[66] Django REST Framework, "Authentication," Django REST Framework,
[Online]. Available: https://www.django-rest-framework.org/api-
guide/authentication/. [Accessed 25 November 2022].

[67] Django REST Framework, "Permissions," Django REST Framework,
[Online]. Available: https://www.django-rest-framework.org/api-
guide/permissions/. [Accessed 25 November 2022].

[68] Django REST Framework, "Serializers," Django REST Framework,
[Online]. Available: https://www.django-rest-framework.org/api-
guide/serializers/#specifying-which-fields-to-include. [Accessed 25
November 2022].

[69] mikecodase, "codase," codase, 8 February 2022. [Online]. Available:
https://codase.com/sast-tools-everything-you-need-to-know/. [Accessed
26 November 2022].

[70] PyCQA, "bandit," Github, 28 October 2022. [Online]. Available:
https://github.com/PyCQA/bandit. [Accessed 26 November 2022].

67

[71] pycharm-security, "PyCharm Python Security plugin," Read The Docs,
[Online]. Available: https://pycharm-
security.readthedocs.io/en/latest/index.html. [Accessed 26 November
2022].

[72] MITRE, "CWE CATEGORY: Business Logic Errors," MITRE, [Online].
Available: https://cwe.mitre.org/data/definitions/840.html. [Accessed 26
November 2022].

[73] Django Project, "System check framework," Django Project, [Online].
Available: https://docs.djangoproject.com/en/4.1/topics/checks/.
[Accessed 27 November 2022].

[74] Microsoft, "CI/CD for microservices architectures," Microsoft, [Online].
Available: https://learn.microsoft.com/en-
us/azure/architecture/microservices/ci-cd. [Accessed 27 November
2022].

[75] OWASP, " OWASP Cheat Sheet Series," OWASP, [Online]. Available:
https://cheatsheetseries.owasp.org/index.html. [Accessed 20 December
2022].

[76] Wikipedia contributors, "Common Vulnerabilities and Exposures,"
Wikipedia, The Free Encyclopedia., 15 July 2022. [Online]. Available:
https://en.wikipedia.org/w/index.php?title=Common_Vulnerabilities_and_
Exposures&oldid=1098348060. [Accessed 16 October 2022].

[77] Mozilla Foundation, "HTTP," Mozilla Foundation, [Online]. Available:
https://developer.mozilla.org/en-US/docs/Glossary/HTTP. [Accessed 16
October 2022].

[78] Wikipedia contributors, "Mitre Corporation," Wikipedia, The Free
Encyclopedia., 21 August 2022. [Online]. Available:
https://en.wikipedia.org/w/index.php?title=Mitre_Corporation&oldid=1105
777011. [Accessed 16 October 2022].

[79] Wikipedia contributors, "Transport Layer Security," Wikipedia, The Free
Encyclopedia., 17 September 2022 . [Online]. Available:
https://en.wikipedia.org/w/index.php?title=Transport_Layer_Security&oldi
d=1110721112. [Accessed 16 October 2022].

68

9 Annexes
9.1 Appendix 1 - Django REST Framework (DRF) Cheat Sheet

The source code of the Cheat Sheet is:

Django REST Framework (DRF) Cheat Sheet

Introduction

This *Cheat sheet* intends to provide quick basic Django REST Framework

security tips for developers.

The Django REST framework abstracts developers from quite a bit of

tedious work and provides the means to build APIs quickly and with ease

using Django. New developers, those unfamiliar with the inner workings of

Django, likely need a basic set of guidelines to secure fundamental

aspects of their application. The intended purpose of this doc is to be

that guide.

Settings

All the Django REST Framework (DRF) configuration is done under the

namespace REST_FRAMEWORK, usually in the settings.py file. From a

security perspective, the most relevant ones are:

DEFAULT_AUTHENTICATION_CLASSES

A list of authentication classes that determines the default set of

authenticators used when accessing the request.user or request.auth

properties. In other words, what classes should be used to identify which

user is authenticated.

Defaults are 'rest_framework.authentication.SessionAuthentication',

'rest_framework.authentication.BasicAuthentication', that means that by

default it checks the session and basic authentication for the user.

DEFAULT_PERMISSION_CLASSES

A list of permission classes that determines the default set of

permissions checked at the start of a view.

Permission must be granted by every class in the list. Default is

'rest_framework.permissions.AllowAny'18, that means that by **default

every view allows access to everybody.**

DEFAULT_THROTTLE_CLASSES

69

A list of throttle classes that determines the default set of throttles

checked at the start of a view.

Default is empty, that means that by default there is no throttling

in place.

DEFAULT_PAGINATION_CLASS

The default class to use for queryset pagination. **Pagination is

disabled by default.** Lack of proper pagination could lead to Denial of

Service (DoS) in cases where there’s a lot of data.

OWASP API Security Top 10

The [OWASP API Security Top 10](https://owasp.org/www-project-api-

security/) is a list of the most critical security risks for APIs,

developed by the [Open Web Application Security Project

(OWASP)](https://owasp.org/). It is intended to help organizations

identify and prioritize the most significant risks to their APIs, so that

they can implement appropriate controls to mitigate those risks.

This section is based on this. Your approach to securing your web API

should be to start at the top threat A1 below and work down, this will

ensure that any time spent on security will be spent most effectively

spent and cover the top threats first and lesser threats afterwards.

After covering the top 10 it is generally advisable to assess for other

threats or get a professionally completed Penetration Test.

API1:2019 Broken Object Level Authorization

When using object-level permissions:

DO: Validate that the object can be accessed by the user using the method

`.check_object_permissions(request, obj)`. Example:


```python 

def get_object(self): 

    obj = get_object_or_404(self.get_queryset(), pk=self.kwargs["pk"]) 

    self.check_object_permissions(self.request, obj) 

    return obj 

``` 


DO NOT: Override the method `get_object()` without checking if the

request should have access to that object.

API2:2019 Broken User Authentication

DO: Use the setting value DEFAULT_AUTHENTICATION_CLASSES with the correct

classes for your project.

70

DO: Have authentication on every non-public API endpoint.

DO NOT: Overwrite the authentication class on a class-based (variable

`authentication_classes`) or function-based (decorator

`authentication_classes`) view unless you are confident about the change

and understand the impact.

API3:2019 Excessive Data Exposure

DO: Review the serializer and the information you are displaying.

If the serializer is inheriting from ModelSerializer DO NOT use the

exclude Meta property.

DO NOT: Display more information that the minimum required.

API4:2019 Lack of Resources & Rate Limiting

DO: Configure the setting DEFAULT_THROTTLE_CLASSES.

DO NOT: Overwrite the throttle class on a class-based (variable

`throttle_classes`) or function-based (decorator `throttle_classes`) view

unless you are confident about the change and understand the impact.

EXTRA: If possible rate limiting should also be done with a WAF or

similar. DRF should be the last layer of rate limiting.

API5:2019 Broken Function Level Authorization

DO: Change the default value (`'rest_framework.permissions.AllowAny'`) of

DEFAULT_PERMISSION_CLASSES.

DO NOT: Use `rest_framework.permissions.AllowAny` except for public API

endpoints.

DO: Use the setting value DEFAULT_PERMISSION_CLASSES with the correct

classes for your project.

DO NOT: Overwrite the authorization class on a class-based (variable

`permission_classes`) or function-based (decorator `permission_classes`)

view unless you are confident about the change and understand the impact.

API6:2019 Mass Assignment

When using ModelForms:

DO: Use Meta.fields (allow list approach).

DO NOT: Use Meta.exclude (block list approach).

71

DO NOT: Use `ModelForms.Meta.fields = "__all__"`

API7:2019 Security Misconfiguration

DO: Setup Django settings `DEBUG` and `DEBUG_PROPAGATE_EXCEPTIONS` to

False.

DO: Setup Django setting `SECRET_KEY` to a random value. Never hardcode

secrets.

DO: Have a repeatable hardening process leading to fast and easy

deployment of a properly locked down environment.

DO: Have an automated process to continuously assess the effectiveness of

the configuration and settings in all environments.

DO: Ensure API can only be accessed by the specified HTTP verbs. All

other HTTP verbs should be disabled.

DO NOT: Use default passwords

API8:2019 Injection

DO: Validate, filter, and sanitize all client-provided data, or other

data coming from integrated systems.

SQLi

DO: Use parametrized queries.

TRY NOT TO: Use dangerous methods like `raw()`, `extra()` and custom SQL

(via `cursor.execute()`).

DO NOT: Add user input to dangerous methods (`raw()`, `extra()`,

`cursor.execute()`).

RCE

DO NOT: Add user input to dangerous methods (`eval()`, `exec()` and

`execfile()`).

DO NOT: Load user-controlled pickle files. This includes the pandas

method `pandas.read_pickle()`.

DO NOT: Load user-controlled YAML files using the method `load()`.

DO: Use the `Loader=yaml.SafeLoader` for YAML files.

72

API9:2019 Improper Assets Management

DO: Have an inventory of all API hosts and document important aspects of

each one of them, focusing on the API environment (e.g., production,

staging, test, development), who should have network access to the host

(e.g., public, internal, partners) and the API version.

DO: Document all aspects of your API such as authentication, errors,

redirects, rate limiting, cross-origin resource sharing (CORS) policy and

endpoints, including their parameters, requests, and responses.

API10:2019 Insufficient Logging & Monitoring

DO: Log all failed authentication attempts, denied access, and input

validation errors with sufficient user context to identify suspicious or

malicious accounts.

DO: Create logs in a format suited to be consumed by a log management

solution and should include enough detail to identify the malicious

actor.

DO: Handle logs as sensitive data, and their integrity should be

guaranteed at rest and transit.

DO: Configure a monitoring system to continuously monitor the

infrastructure, network, and the API functioning.

DO: Use a Security Information and Event Management (SIEM) system to

aggregate and manage logs from all components of the API stack and hosts.

DO: Configure custom dashboards and alerts, enabling suspicious

activities to be detected and responded to earlier.

DO: Establish effective monitoring and alerting so suspicious activities

are detected and responded to in a timely fashion.

DO NOT: Log generic error messages such as: Log.Error("Error was

thrown"); rather log the stack trace, error message and user ID who

caused the error.

DO NOT: Log sensitive data such as user's passwords, API Tokens or PII.

Other security Risks

Below is a list of security risks for APIs not discussed in the OWASP API

Security Top 10.

Business Logic Bugs

73

Any application in any technology can contain business logic errors that

result in security bugs. Business logic bugs are difficult to impossible

to detect using automated tools. The best ways to prevent business logic

security bugs are to do threat model, security design review, code

review, pair program and write unit tests.

Secret Management

Secrets should never be hardcoded. The best practice is to use a Secret

Manager. For more information review OWASP [Secrets Management Cheat

Sheet](https://cheatsheetseries.owasp.org/cheatsheets/Secrets_Management_

Cheat_Sheet.html)

Updating Django and DRF and Having a Process for Updating Dependencies

An concern with every application, including Python applications, is that

dependencies can have vulnerabilities.

One good practice is to audit the dependencies your project is using.

In general, it is important to have a process for updating dependencies.

An example process might define three mechanisms for triggering an update

of response:

- Every month/quarter dependencies in general are updated.

- Every week important security vulnerabilities are considered and

potentially trigger an update.

- In EXCEPTIONAL conditions, emergency updates may need to be applied.

The Django Security team has a information on [How Django discloses

security

issues](https://docs.djangoproject.com/en/4.1/internals/security/#how-

django-discloses-security-issues).

Finally, an important aspect when considering if a new dependency should

be added or not to the project is the "Security Health" of the library.

How often it's updated? Does it have known vulnerabilities? Does it have

an active community? etc. Some tools can help with this task (E.g. [Snyk

Advisor](https://snyk.io/advisor/python))

SAST Tools

There are several excellent open-source static analysis security tools

for Python that are worth considering, including:

Bandit – [Bandit](https://bandit.readthedocs.io/en/latest/) is a tool

designed to find common security issues in Python. To do this Bandit

processes each file, builds an Abstract Syntax Tree (AST) from it, and

runs appropriate plugins against the AST nodes. Once Bandit has finished

74

scanning all the files it generates a report. Bandit was originally

developed within the OpenStack Security Project and later rehomed to

PyCQA.

Semgrep – [Semgrep](https://semgrep.dev/) is a fast, open-source, static

analysis engine for finding bugs, detecting vulnerabilities in third-

party dependencies, and enforcing code standards. Developed by “Return To

Corporation” (usually referred to as r2c) and open-source contributors.

It works based on rules, which can focus on security, language best

practices, or something else. Creating a rule is easy and semgrep is very

powerful. For Django there are 29 rules.

PyCharm Security – [Pycharm-security](https://pycharm-

security.readthedocs.io/en/latest/index.html) is a plugin for PyCharm, or

JetBrains IDEs with the Python plugin. The plugin looks at Python code

for common security vulnerabilities and suggests fixes. It can also be

executed from a Docker container. It has about 40 checks and some are

Django specific.

Related Articles and References

- [Django’s security

policies](https://docs.djangoproject.com/en/4.1/internals/security/)

- [Security in

Django](https://docs.djangoproject.com/en/4.1/topics/security/)

