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Fishing is  one of  the ecosystem serv ices  that  p lay
a key ro le  around the wor ld .
I t  i s  vulnerable  to  suffer ing from overexploitat ion
(overf ishing) ,  which is  a  g lobal  concern nowadays.

I t  i s  in  the top 10 l i st  of  the most  f ished species
worldwide (1,360K tons in  2020) .
I t  i s  the 2nd most  caught  marine species  in
Ecuador  (160k tons in  2021) .
I t ' s  found in  the Indian and Pacif ic  Oceans,  and i ts
diet  is  based on zooplankton and smal l  f i sh .

OVERFISHING1
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S.  japonicus is  on the l i st  of  b io logical ly
sustainable  f ishery stocks .
The Southeast  Pacif ic  ocean had the highest
percentage (66.7%)  of  stocks  f ished at
unsustainable  levels .

FAO* pursues "Conserve and sustainably  use the
oceans,  seas  and marine resources  for  sustainable
development"  (SDG14)  and encourages countr ies
to contr ibute to restor ing aquat ic  habitats .

UNSUSTAINABILITY3
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I t  i s  important  to  understand the distr ibut ion of
the abundance of  the species  to  manage and
monitor  the f ishery stocks .
This  knowledge a lso contr ibutes  to  the
ident i f icat ion of  overf ished grounds and potent ia l
f ish ing zones.  

To construct  a  map of  the abundance distr ibut ion
of  the species  on the Ecuador ian coast  by us ing
neural  networks  so that  potent ia l  f i sh ing grounds
and zones in  need of  restorat ion are ident i f ied.
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GOALS
To character ize  the spat iotemporal
distr ibut ion of  the abundance of
Scomber japonicus.

To predict  potent ia l  f i sh ing zones with
the ideal  environmental  and
spat iotemporal  condit ions for  Scomber
japonicus by us ing neural  networks .
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 WORK PLAN
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WORK PLAN IN ACTION

METHODS &
RESULTS



2,146 dai ly  f ish ing records provided by IPIAP,
registered by f ishery observers  on board.
Records between 2017-01 and 2022-05
219 coded areas of  5X11.5 mi les  ( lat  x  long) ,  with the
central  coordinates  ident i f ied.  Only  66 areas had a
f ishing history.
Locat ion of  the Ecuador ian coast :  f rom 01°21'  N ( lat )
and 03°35'  S  ( lat )
The catch was reported in  tons.

1. Datasets import and single files creation

Taken from the sensor  MODIS records (NASA Aqua
satel l i te ) .
Unit  of  measurement:  mgxm-3
Monthly  f i les  with.  Resolut ion of  1 km.

FISHING RECORDS1

2 OCEAN CHLOROPHYLL CONCENTRATION
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Taken from the sensor  MODIS records (NASA Aqua sate l l i te ) .
Unit  of  measurement:  degree Cels ius
Monthly  f i les .  
Resolut ion:  1 km.  
Accuracy:  0.5º  C.

1. Datasets import and single files creation

Taken from NOAA satel l i te  records.
Unit  of  measurement:  m/s
Monthly  f i les .   
Height  of  measurement:  10 MASL.
Accuracy:  1ºx1º ( long x  lat )  

SEA SURFACE TEMPERATURE3

4 WIND MAGNITUDE
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(*) NOAA: National Oceanic and Atmospheric Administration



2. Estimation of IPIAP area limits

Given the central  coordinates  (Px i ,  Pyi ) ,  l imits  were
est imated for  each 5x11.5 (mi les )  area,  by est imating
the longitude (Qxi j )  and lat i tude (Qyi j )  of  the four
vert ices  ( j )  of  each polygon-area  ( i ) .  These est imations
were based on the reverse of  the Havers ine d istance.
Assumptions (est imations around the equator ) :  

Distance between degrees  are  s imi lar  for  longitude
and lat i tude.
Earth radius  is  6 ,378.14 km

1

2
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LIMITS ESTIMATION



3 + 4. Classification, aggregation & datasets join

A correct ion was needed for  the lat itude  l imits  so that
adjacent  areas share the same l imit .  The distance between
the est imated l imits  that  should match was div ided by two
and added (or  subtracted)  to  them.

1

2
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CORRECTION OF THE LIMITS ESTIMATION

The l imits  were used to cluster  the oceanographic  points
that  are  within them and aggregate (average)  their
information  in  order  to  get  a  s ingle  value per  area and
month of  each feature.
The left  jo in  was used in  order  to  get  as  many rows as  in
the f ish ing records dataset .  Match features  were the area
and month of  the catch.

2 DATASETS JOIN



5. Dataset preparation, validation and filters

The catch per  unit  of  effort  (CPUE )  was est imated as  the average of  the
catch per  net .
In  order  to  scale  and interpret  the CPUE value,  the re lat ive abundance
index was est imated ( IAR )  as  CPUE div ided by the maximum histor ical
CPUE of  the month.
IAR ranges between 0 and 1,  where one stands for  the maximum re lat ive
abundance of  the species .
In  order  to  use a  symmetr ic  var iable  as  a  response in  the model ,  the
square root  transformation  was appl ied to IAR

1
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RESPONSE VARIABLE DEFINITION



5. Dataset preparation, validation and filters

Fishing logs  dur ing the closure months  (March and September ,
according to IPIAP)  were removed from the dataset .
36 outl iers  in  the CPUE variable  were a lso removed,  according to the
adjusted boxplot  method for  asymmetr ic  d istr ibut ions (whisker
length = 3)  s ince CPUE is  natural ly  b iased.  

2
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DATA VALIDATION AND FILTERS



5. Dataset preparation, validation and filters

Imputation  of  68 miss ing
values  from the
chlorophyl l  concentration
var iable  by us ing the
Inverse Distance Weighing  
interpolat ion method
( IDW).  The power
parameter  was a=2
The f inal  dataset
decreased to 1,836
examples .

3
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DATA VALIDATION AND FILTERS



6. Data analysis and variables selection

Most f ish ing captures  were registered in  2021,  2020 and 2017.  Whereas 2019
had the lowest  number of  f ish ing records.  However ,  2022-02 registered more
events  than other  months.  
IAR general ly  increases  when temperature decreases  (standardized average by
month) .  The highest  IAR was registered in  2018-10 y  2019-10 .

1
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TEMPORAL DIMENSION

Most f ish ing records occurred in  the
areas located between longitudes  N-
M, and lat itudes  between 28-27,
regardless  of  the month.  However ,  the
highest  IAR was registered in  L30,  L31
and P30 .  
In  general ,  the south of  the
Ecuador ian coast  has been the most
frequent  zone among the f ishers .

2 SPATIAL DIMENSION



6. Data analysis and variables selection

Chlorophyl l  concentration ranged between
0.17 and 7.64 mg/m3,  but  was highly  skewed.
Sea surface temperature ranged between
18°C and 29.63°C,  and the wind magnitude
was  between 1.73 m/s and 7.15 m/s.  Both
features  were v i rtual ly  symmetr ic  around
their  mean values .
CPUE ranged between 0 and 54 tons per  net ,
and the average IAR was 0.18,  regardless  of
the area or  month of  the catch .
The corre lat ion between each var iable  and
sqrt IAR was weak.  
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VARIABLES OF INTEREST



7. Model

Type:  MLP
Layers :  4
Input  nodes:  6
Nodes of  h idden layer  1:  32
Nodes of  h idden layer  2:  7
Output nodes:  1
Act ivat ion funct ions:  ReLu,  L ineal
Total  parameters :  463 (224,  231,  8)

1
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MODEL FEATURES

(*) Analysis conducted in R  version 4.1.2. Models built on
Keras.

Training:  1 ,088 examples  f rom 2017-1 to 2021-5 (59.3%)
Val idat ion:  373 examples  f rom 2021-6 to 2021-11 (20.3%)
Test  :  375 examples  f rom 2021-12 to 2022-5 (20.4%)

SAMPLES

2

Epochs:  50
Batch s ize:  32
Optimizer :  RMSProp
Loss  funct ion:  MSE
Metr ic :  MAE



7. Model

3

2
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The  average RMSE  in  the test  sample was 0.2  and the MAE of  the predicted IAR
was on average 0.02 .
The percentage of  unexpla ined var iabi l i ty  was on average 51%.
The model  underest imated  some values .

MODEL PERFORMANCE



7. Model
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MODEL PERFORMANCE
When transforming the sqrt IAR to IAR res iduals ,  the underest imation in  the highest
IAR values  is  more evident  s ince these values  were predicted over  0.6  units  below the
actual  values .



8. Predictions and maps

The monthly  oceanographic  information of  a l l  219 areas was used to predict  IAR.
Later ,  the monthly  d istr ibut ion of  the predicted IAR was compared to the monthly
abundance calculated from the f ishery records (66 areas) .  The comparison displays
that  the model  learned about the monthly  trend,  even though the values  were
underest imated.  This  mainly  affects  the January and February predict ions.

1
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PREDICTIONS

Distribution of observed values (66 areas) Distribution of predicted values (219 areas)



8. Predictions and maps

2

2
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MAPS

Some areas
predicted as
highly  abundant
have low (b lack
border)  or  no
fishery record
(b lue border ) .

For example:
From the J25-J31
areas  and others
from the row 31



8. Predictions and maps
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MAPS

In  the  second
semester  of  the
year ,  IAR is
predicted to be
low ,  even
though the
south appears
more abundant.
Also,  some areas
are not
predicted
because of  the
missing values
in  chlorophyl l .



CONCLUSIONS
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The S.  japonicus capture has been
observed in  30% of  the areas  in  Ecuador ,
where the most  abundant ones s ince
2017 have been coded as  L30 and L31 ,
and the most  f requent  areas were
located in  the N-M and 28-27 zone ,
regardless  of  the month.
February and January  were the most
frequent  and abundant months in  the
records.
The areas located in  the south were
predicted with the highest  IAR (Castro
Hernández et  a l .  2000) .

The model  expla ins  49%  of  total
var iabi l i ty ;  i ts  main d isadvantage is  the
predict ion of  h igher  IAR values .
Nonetheless ,  i t  kept  the spatial  and
monthly  trend .
No correlat ion was reported between the
input  and the response variable .
However ,  an indirect  re lat ionship
between sea surface temperature and
IAR  was observed across  the months
(Canales  & Jurado 2021) .  
Potential  f ishing zones  of  the species
are between the  J25-J31 and al l  the
areas  in  the 31st  row .  In  addit ion,  the
least  f requent  areas in  the south should
also be considered PFZ.
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Less  complex models  performed better
(Armas et  a l .  2022;  Wang et  a l .  2015) .
Also,  smal ler  batch s izes  and the use of
ReLu improved the  model  performance
(Masters  & Luschi  2018) .
Taking oceanographic  measurements  at
the moment of  the capture and
designing an adequate sample  plan  p lay
a key ro le  in  predict ion accuracy.
The main chal lenges in  th is  work were at
the dataset  preparat ion and model ing
stages.

The proposed maps contr ibute to  the
SDG14 accomplishment  as  long as  IPIAP
uses them as a  decis ion-making tool .
The data qual i ty  and sample s ize  were
the main l imitat ions of  th is  research,
restr ict ing the search of  models ,  e .g . ,
RNN.
Nonetheless ,  th is  work becomes an
approach toward explor ing the
abundance distr ibut ion of  the marine
species  in  Ecuador ,  which a lso offers
opportunit ies  to  improve the sampl ing
process  and data analys is  in  th is  regard.
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