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Abstract
La identidad celular puede considerarse un importante mecanismo supresor de tu-
mores. En este contexto, el esclarecimiento de los mecanismos reguladores de
dicha identidad, fundamentalmente de la actividad de los factores de transcripción
que regulan la expresión de distintos programas transcripcionales, resulta esen-
cial. Tomando como punto de partida la estructura tridimensional de la cro-
matina a partir de los datos proporcionados por la técnica Assay for Transposase-
Accessible Chromatin using sequencing (ATAC-seq), se pretenden esclarecer las redes
transcripcionales implicadas en el mantenimiento de las condiciones homeostáticas
en páncreas murino para posteriormente reconocer aquellos programas transcrip-
cionales implicados en la pérdida de identidad celular necesaria en el proceso car-
cinogénico. Para ello, se dispone de datos provenientes de animales modificados
genéticamente usados como modelos en el estudio del adenocarcinoma pancreático
ductal (pancreatic ductal adenocarcinoma, PDAC). Con este trabajo se espera tener
una mejor comprensión de las redes de regulación génica y por tanto de la relación
existente entre los factores de transcripción, sus lugares de unión y los genes involu-
crados en el cáncer estudiado. Con la creación de estas redes se podrán confirmar
resultados obtenidos experimentalmente, aśı como servir de base para nuevas inves-
tigaciones, estableciéndose una relación bidireccional entre el trabajo computacional
y el realizado en el laboratorio. Asimismo, se espera poder presentar la información
aqúı obtenida como un recurso que pueda ser empleado por otros investigadores
para sus trabajos. Todo ello tiene el objetivo final de conocer mejor y combatir el
cáncer de páncreas.
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Abstract
Cell identity can be considered an important tumor suppressor mechanism. In this
context, the clarification of the regulatory mechanisms of said identity, fundamen-
tally of the activity of the transcription factors that regulate the expression of dif-
ferent transcriptional programs, is essential. Taking the three-dimensional structure
of the chromatin as a starting point from the data provided by the technique As-
say for Transposase-Accessible Chromatin using sequencing (ATAC-seq), the aim is
to clarify the transcriptional networks involved in the maintenance of homeostatic
conditions in the murine pancreas to later recognize those transcriptional programs
involved in the loss of necessary cellular identity in the carcinogenic process. For
this, data are available from genetically modified animals used as models in the
study of pancreatic ductal adenocarcinoma (PDAC). With this work, it is expected
to have a better understanding of gene regulation networks and therefore of the re-
lationship between transcription factors, their binding sites and the genes involved
in the studied cancer. With the creation of these networks, results obtained experi-
mentally can be confirmed as well as serve as a basis for new research, establishing
a bidirectional relationship between computational work and that carried out in the
laboratory. Likewise, it is expected that the information obtained can be presented
as a resource that can be used by other researchers for their work. All of this has
the ultimate goal of better understanding and combating pancreatic cancer.
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1. Introduction

The pancreas is a glandular organ present in vertebrates that is divided into
exocrine and endocrine functional components. Only 5% of its mass is made up of
endocrine cells that form structures called islets of Langerhans which produce and
secrete insulin and glucagon that regulate glucose homeostasis. Therefore, most of
this organ is made up of exocrine cells that synthesize the hydrolytic digestive en-
zymes that are transported to the intestine where they contribute to the digestion of
carbohydrates, proteins and lipids. Exocrine cells are classified into acinar and duc-
tal cells, the former being specialized in synthesizing, storing and secreting digestive
enzymes while the latter form the ducts that transport them to the duodenum [1]
[2].

Pancreatic ductal adenocarcinoma (PDAC) represents 90% of cancers arising in
this organ. It is highly aggressive, with a mean survival time of 5 months following
diagnosis and a 5-year survival of 5%, due to a lack of early diagnosis and poor
response to treatments [3] [4].

The phenotype of the cells that constitute PDAC is generally ductal, both in
terms of morphology and antigen expression. There is evidence in genetically en-
gineered mouse models (GEMMs) that PDAC can originate from all exocrine cells
[5] [6] [7] [8]. Its origin is debated although it has been described that it may be a
consequence of the loss of cellular identity of the acinar cells by a process known as
acinar to ductal metaplasia (ADM). As a consequence of this process, acinar cells
transdifferentiate into ductal-type cells. Oncogenic genetic insults and environmen-
tal stress can promote ADM to pancreatic intraepithelial neoplasia (PanIN) [9], a
precancerous lesion.

Loss of acinar identity is considered a starting point of carcinogenesis, as a con-
sequence of the tissue damage to which it is associated [10] [11]. This identity is
controlled by specific gene expression which, in turn, is regulated by the interaction
of transcription factors (TFs) [12], proteins that bind to specific DNA sequences
controlling the transcription of genetic information from DNA to RNA. These TFs
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bind to DNA in cis regulatory elements such as enhancers and promoters and, ac-
cording to the TF, they up-regulate or down-regulate the gene whose expression
they are controlling. Acinar identity is driven by specific genetic programs that
group several genes controlled by well-defined DNA-binding TFs, and these in turn
can be classified into transcriptional modules, a set of genes co-regulated by a single
TF. The ability to remain in their differentiated state of acinar cells has been sug-
gested to act as a suppressor mechanism for tumor processes [13] [14], which implies
that knowing the transcriptional modules associated with this process is essential to
better understand the mechanisms that give rise to cancer.

Biological interactions associated with regulatory mechanisms are highly com-
plex and therefore their study is not trivial. However, thanks to the computa-
tional advances associated with biology, strategies such as Gene Regulatory Net-
works (GRNs) [15] [16] [17] [18] have been developed to help with this purpose,
which from experimental data allow inferring biological behaviors and functions.
The use of networks together with the use of Next-Generation Sequencing (NGS)
technologies allows the study and understanding of biological mechanisms such as
transcriptional regulation, modeling their behavior and the interactions between the
different actors that are part of it.

In order to study transcriptional regulation, GEMMs that mimic the initial steps
of carcinogenesis can be used. These models may carry mutations present in human
PDAC such as the G12V activating mutation of Kras [19] oncogene, or knockout of
genes, such as Gata4 and Gata6, involved in epithelial differentiation in the pancreas
[20] [21].

One way of approaching the study of transcriptional regulation is by using
ATAC-seq [22] and footprinting. ATAC-seq is an experimental procedure by which
the accessibility of open chromatin for the entire genome is studied.

This work addresses a study of the transcriptional regulation of the mouse pan-
creas when it is subjected to perturbations (mutated Kras, knockout of Gata4,
knockout of Gata6 and induced pancreatitis) in order to analyze acinar identity. For
this, NGS technologies and bioinformatics tools have been used to generate tran-
scriptional networks from the data. From ATAC-seq dataset, the open chromatin
regions (OCRs) [23] are studied, which allow to perform a footprinting analysis and
finally to locate the transcription factor binding sites (TFBSs). From this infor-
mation, the relationship between TF and genes can be inferred and transcriptional
networks can be generated. With this approach, the regulation of acinar identity has
been studied under homeostatic conditions and in contexts in which it is challenged
by specific genetic insults, by the inflammation of the pancreas (pancreatitis), or by
both possibilities.
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The networks generated in this work can be used as a source of information to
define transcriptional modules and their biological functions for various perturbation
situations that are precursors of PDAC. It can also serve as a bidirectional tool to
both validate and generate hypotheses.
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2. Results

2.1 Homeostatic pancreas

ATAC-seq is an experimental procedure by which the accessibility of open chro-
matin for the entire genome is studied. OCRs are transcriptionally active areas of
DNA as they allow access to RNA polymerase and allow the process of DNA tran-
scription to begin. The hyperactive Tn5 transposase cuts and inserts adapters into
regions where chromatin is accessible. The OCRs are defined from the insertion sig-
nal of Tn5 since it is here where the TFs bind to the genome. A decrease in signal
indicates the presence of a portion of DNA bound to proteins and therefore Tn5
cannot cut this region. These areas where the signal decreases are called footprints
[24] and will be used to determine how TFs interact with the genome.

The analysis of the pancreatic homeostatic data was performed to test the
methodology and to check the stability of the data. For this purpose, a dataset
previously studied in another study was analyzed for cross-validation. The data
were obtained from a publicly accessible ATAC-seq atlas [25] consisting of 66 pro-
files from 20 different tissues. The four replicates corresponding to the pancreas
were used, two of them from male mice and the other two from female mice.

The raw data was processed using the ENCODE ATAC-seq pipeline developed
by Anshul Kundaje’s laboratory [26]. This pipeline performs the alignment of short-
read sequencing data contained in raw FASTQ files to obtain the Binary Alignment
Map (BAM) and Browser Extensible Data (BED) files. The BAM files contain the
mapped reads to the reference genome and from them the footprint analysis of the
accessible regions is carried out to obtain the BED files which hold the coordinates
of the regions of enrichment or peaks. These peaks files were extracted for female
and male and the consistency of the peak calls between replicates was ensured taking
as threshold 0.05 of Irreproducible Discovery Rate (IDR) [27]. To ensure that the
signals were biologically relevant and did not contain erroneous data due to noise,
a merge was performed between the male replicates, on one side, and the female
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replicates, on the other side, using the mergePeaks function of the HOMER bioin-
formatics software [28]. To carry out these merges, it was taken into account that
that there was a large overlap between the two replicates of each sex that allowed
the merge to be performed with the guarantee that no information would be lost.

In order to increase the information used with respect to the previous analysis, in
which only the OCRs from the intersection of the two signals were considered, it was
decided to take into account all existing OCRs in the signals. For this purpose, the
intersection between the two signals obtained previously, one for male and the other
for female, was calculated and two sets of data were extracted. One corresponding
to the intersection of both datasets plus the exclusive data of male and the other
to the intersection plus the exclusive data of female. This procedure resulted in
56,249 OCRs for the male and intersection data and 42,504 OCRs for the female
and the intersection, compared to the 38,424 OCRs obtained in the analysis prior to
this work. Therefore, the number of OCRs increased by 46.39% for the male data
and 10.62% for the female data. Therefore, the starting data available were four
BAM files (two for male and two for female), which were not modified in any way,
and two BED files with the peaks (one for male and one for female), obtained after
performing the merges.

To find the TFBSs in the detected OCRs, a footprinting analysis was performed
by studying the Tn5 cut signal in order to locate the areas where there was signal
depletion in the accessible regions, which would indicate protein binding to DNA.
To carry out this task, TOBIAS [29] was used, a bioinformatics toolkit specifically
designed to perform a footprinting analysis from the ATAC-seq signal. The first step
of the analysis consisted in correcting the ATAC-seq signal since the Tn5 transposase
prefers for specific areas of the DNA [30] [31]. This causes a sequence-dependent
transposition site bias that distorts the input information and alters the identifi-
cation of the footprints [32] [33]. To correct this bias the TOBIAS ATACorrect
module was used, which takes as input arguments the ATAC-seq reads, the peak
files of the areas of interest and a dinucleotide weight matrix (DWM) [34] to gen-
erate the expected Tn5 insertion signal for each region. This signal is subtracted
from the input data obtaining the corrected signal (Figure 1A). To determine which
regions of the signal obtained were footprints, the TOBIAS ScoreBigwig tool was
used to evaluate them and obtain the footprint score for each of them. The result
is obtained by calculating the difference between the background mean signal and
the footprint mean signal, which considers the flanking regions that help to locate
footprints whose signal is not so clear (Figure 1B).

The scores obtained were then associated with the TF binding motif data to
calculate the specific binding coordinates of each TF. However, before doing this,
the list of TFs was restricted to study only those present in acinar cells with the
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aim of being more precise in the analysis of the transcriptional regulation involved
in cell differentiation. The TFs involved in the acinar activity of the pancreas
were chosen from the analysis of RNA-seq and scRNA-seq datasets. These datasets
were obtained in our own laboratory in experiments performed on the pancreas of
wild type (WT) mice. From the signal of the RNA-seq, the TFs present in WT
mouse pancreas were ranked according to their expression levels. Subsequently, a
fine adjustment was carried out with the scRNA-seq data [35] allowing to choose
only those TFs present in acinar cells. A threshold of 3 RPKM was established to
differentiate between true biological signals from noise (Supplementary Figure 2).
The complete list of selected TFs can be consulted in Supplementary Table 1.

Once the list of TFs was obtained, they were associated with their corresponding
Position Weight Matrix (PWM). The PWMs are matrices which contain the loga-
rithmic probability of the presence of each nucleotide in every one of the positions of
a particular motif (Figure 1C). They were obtained from CIS-BP [36] and JASPAR
[37]. In order to associate the motifs with the footprints and integrate these differ-
ent sources of information to predict the TFBSs, the TOBIAS BINDetect tool was
used. The result provided by it allows discriminating between bound and unbound
TFBSs by setting a threshold value.

For the construction of the networks, it was necessary to define the pair formed
by each TFBS and their target gene (TG). This task was carried out with the
HOMER annotation function to associate peaks with the closest gene. Once these
relationships were obtained, networks were modeled with the TOBIAS CreateNet-
work tool. Four TF-TG networks were generated from the obtained data, two for
the male replicates and another two for those of the female. These networks are
defined by the nodes, which represent the regulated or regulator genes, according
to whether they are regulated by any of the TFs studied or not. When they are
incoming nodes, that is, when the connections leave them towards the gene of inter-
est, they must be interpreted as regulator genes and when they are outgoing nodes,
that is, when they receive the connections, they act as regulated genes. These con-
nections between nodes are called edges and represent the regulation of one gene,
which codes for a TF, on another gene. The number of regulatory processes between
genes in the transcriptional networks was recorded, as this value was used to check
how the conformation of the networks changed when the input data were modified.

At this point, two networks were available, the network corresponding to the
previous work, in which only the OCRs contained in the intersection between the
male and female peaks were taken into account, and the one obtained for the work
developed so far in which all the OCRs present at the union between the peaks were
used. The number of genes (nodes) and regulatory relationships (edges) of both
networks was very similar, with a 6.97% increase for the first parameter (10,701 vs.

17



Figure 1: Data analysis of homeostatic conditions. A) Correction of the ATAC-seq signal because of Tn5
bias. B) Score of footprints obtaining the difference between the mean background signal and the mean signal of
the footprint. C) BINDetect module. Association between footprints scores and PFMs. D) CreateNetwork module.
TFBS-target gene data pairs. E) Venn diagram with OCRs for male and female replicates. Nodes and edges for
intersection network, all peaks network and the merge of the both previous networks. The network resulting from
the merge is very similar in size to the two previous networks, which shows the robustness of the network with all
peaks despite having used more OCRs than the intersection network. F) Venn diagram of the TFBS coordinates
for the intersection, all peaks, and ChIP-seq data. ChIP-seq motif analysis and overlap. The first motif enriched
in the overlap coincides with 86.48% of the targets for the TF studied, which shows that the ATAC-seq data are
reliable. Figures 1A,1B, 1C and 1D have been modified from Bentsen, M. et al., 2020.
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10,004) and an 8.14% increase for the second (267,329 vs. 247,213). In order to
check whether the results obtained in the second network were similar with respect
to the results of the first network from a qualitative point of view, an intersection
was performed between the two networks. The number of genes and of regulatory
relationships did not change significantly with respect to the two original networks.
The first parameter was reduced by 1.58% (9,846 vs. 10,004) with respect to the
first network and by 7.99% (9,846 vs. 10,701) with respect to the second one; the
second parameter was reduced by 9.63% (223,397 vs. 247,213) with respect to the
first network and by 16.43% (223,397 vs. 267,329) with respect to the second one
(Figure 1E).

Once it was confirmed that the process followed to obtain the network provided
reliable results, a further analysis was performed to ensure that the data obtained
by inference were supported by biological data. In order to cross-validate the foot-
print strategy, ChIP-seq data from different TFs with a relevant role in pancreatic
differentiation acinar identity were taken advantage of. As shown in Figure 1F, the
vast majority of GATA6 footprints found in ATAC-seq signal were included in the
corresponding ChIP-seq peaks. Additionally, motif analysis from these compart-
ments confirmed the high specificity of the footprinting approach as demonstrated
with the higher percentage of TF GATA6 motif found in OCRs (86.48%) versus
TF GATA6 ChIP-seq peaks (59.64%). The strategy followed in this work to define
the interactions between TFs may be less sensitive and have less resolution than an
experimental analysis such as ChIP-seq, but according to the data obtained, it is
nevertheless more specific in its results.

Therefore, this first analysis has shown that the procedure followed allows the
construction of robust transcriptional networks from the data of an ATAC-seq anal-
ysis. Comparison with experimental data ensures that these data are reliable and
can be used to study the behavior of acinar identity in the pancreas.

2.2 Perturbation data

Once our strategy was defined and validated under homeostatic conditions, the
next step of this research was to determine how transcriptional regulation was af-
fected when acinar identity was disturbed. A set of seven datasets generated within
our own research group was studied. These seven datasets simulate perturbation
situations that are precursors in the appearance of PDAC: mutated Kras, knock-
out of Gata4, knockout of Gata6 and pancreatitis. Unlike the data on homeostatic
conditions which came from a disaggregation of the complete pancreatic tissue, in
this case the Fluorescent Activated Cell Sorter (FACS) technique [38] has been used
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to differentiate between the different cell types of the pancreas and obtain only the
data corresponding to the epithelial cells.

Specifically, the datasets used are NT p48Cre (2 replicates), NT p48Cre; NT
Gata4KO (3 replicates), NT p48Cre;NTGata6KO (2 replicates), PBS Kras* (2
replicates), PBS Kras*;NTGata4KO (3 replicates), Cae Kras* (3 replicates) and
Cae Kras*;NTGata4KO (3 replicates). P48Cre indicates that a Cre recombinase
cDNA has been inserted into the first coding exon of the Ptf1a gene which it is useful
to induce pancreas-specific recombination [39]. Kras* represents mutated Kras with
the mutation G12V [19] [40].

As with the homeostatic data, the same procedure was followed to generate the
networks for the perturbation data. After obtaining the footprints, obtained from
ATAC-seq analysis, their coordinates were annotated in order to assign each region
to the gene that is closest to it. The motifs present in each footprint were determined
by their PWM, thus allowing transcriptional regulations to be defined. This process
was performed for each of the dataset replicates, so a network was generated for each
of them. In order to obtain a single network per dataset, the intersection between
each of its replicates was carried out.

Table 1 shows the results obtained in terms of the number of genes and tran-
scriptomic regulations in the networks obtained from the perturbation data and
from homeostatic data.

Initial number of OCRs Nodes/Edges TF-TG
Homeostatic 60329 10662/247377
NT p48Cre 78043 12538/421127
NT Gata6KO 68042 13438/434027
NT Gata4KO 82060 13648/554632
PBS Kras* 72163 12933/454601
PBS Kras* Gata4KO 85412 13770/600016
Cae Kras* 83334 16214/870194
Cae Kras* Gata4KO 122822 15872/869532

Table 1: Nodes and edges for homeostatic networks and all perturbation data networks.

The first entry in the table, which refers to the network generated under home-
ostatic conditions, shows the lowest number of OCRs, 60,329, while the situation
with the most perturbations, that is, the dataset in a context of mutated Kras,
Gata4KO and pancreatitis, the highest number, 122,822. According to the results
obtained, it was observed that as the number of perturbations increases, so does
the number of regulatory relationships between genes of each network. For exam-
ple, comparing NT Gata4KO (one perturbation) and PBS Kras* Gata4KO (two

20



perturbations) there was a 4.1% increase in the number of OCRs (85,412 versus
82,060). The same situation occurred when comparing PBS Kras* Gata4KO (two
perturbations) with Cae Kras* Gata4KO (three perturbations), with a remarkable
43.8% increase (122,822 versus 85,412).

As a consequence of the increase in OCRs, the topological characteristics of
the networks also changed. Using the same example datasets, it was observed that
among the datasets NT Gata4KO (one perturbation) and PBS Kras* Gata4KO
(two perturbations) there was a 0.89% increase in the number of genes (13,770 versus
13,648) and 8.18% increase in the regulatory relationships between genes (600,016
versus 554,632). The same situation occurs when going from PBS Kras* Gata4KO
(two perturbations) to Cae Kras* Gata4KO (three perturbations), with a 15.27%
increase in the number of genes (15,872 versus 13,770) and a 44.92% increase in the
regulatory relationships between genes (869,532 versus 600,016).

This suggests that as the pancreas was challenged with more perturbations,
the transcriptomic stability of acinar identity was reduce and new transcriptional
programs were activated, thus generating a higher level of network complexity.

2.3 Intersection of the networks

In order to study the behavior of the pancreas under the action of different
perturbations, pairwise comparisons were made between the networks. Each of the
comparisons performed was aimed at isolating the effect of the perturbations studied.

The following comparisons were studied: for situations with one perturbation
NT p48Cre;NTGata4KO vs NT p48Cre (Gata4 deletion specific networks), NT
p48Cre;NTGata6KO vs NT p48Cre (Gata6 deletion specific networks) and PBS
Kras* vs p48Cre (constitutive Kras activation specific networks); for situations
with two perturbations PBS Kras*;NTGata4KO vs PBS Kras* (Gata4 deletion
in a mutated Kras context specific networks) and Cae Kras* vs PBS Kras* (acute
inflammatory insult in a mutated Kras context specific networks); and finally, for
situations with three perturbations Cae Kras*;NTGata4KO vs Cae Kras* (acute
inflammatory insult upon Gata4 deletion in a mutated Kras context specific net-
works).

To isolate the effect of perturbations, an intersection was performed between
each pair of networks to obtain the exclusive regulatory relationships between genes
of each network that constitute the specific networks. In Venn diagrams, the right
regions are those that represent the specific transcriptional network for each pertur-
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bation (Figure 2).

Figure 2: Venn diagrams displaying pairwise comparisons of perturbation specific networks. The
region to the right in each diagram represents the specific network for the particular perturbation in each comparison.

2.4 Topological study of subnetworks

The network obtained in the previous steps were very massive and offered a
multitude of possibilities to study them. With the aim of extracting data that
provide relevant information about the transcriptional regulation involved in acinar
differentiation the networks were interrogated by exploring their topology.

Using the degree, a topological parameter of the network that defines the number
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of connections of each node, the genes that were part of each specific subnet were
ranked by the value of this factor. With these values it was studied how the position
in the ranking of each gene changed between the control network and the specific
network with which it was compared. This process was repeated for each condition.

It is expected that if a gene increases or decreases its position in the list it is
because its activity has changed, either positively or negatively, as a consequence of
the alteration of the number of OCRs. Therefore, a significant change in positions
between the two networks suggests that the transcriptional regulation of acinar
identity has changed. For this reason, a threshold of >50 change positions was
chosen to take into account those genes whose relevance in the network changed
substantially, either because they regulated the expression of a greater number of
genes or because of the opposite.

To show the information more clearly, the data was divided into two independent
graphs, one for the nodes that had increased positions and the other for the nodes
that had decreased positions (Figure 3A).

In the graphs obtained, the list on the left represents the nodes of the network
taken as control and the list on the right represents the nodes of the specific network
of the perturbation of interest. The nodes appear ranked by their degree within each
network. In parentheses, the number of positions that the node has changed in the
ranking between both networks is shown. The change of positions and the value
of degree was the relevant information in these comparisons. With these data it is
possible it is possible to quickly check which nodes are the ones that change their
positions the most, that is, those that have gained more relevance in the specific
network with perturbation (Figure 3B). The rest of the graphs corresponding to
pairwise comparisons can be consulted in Supplementary Figure 3.

2.5 Individual TF subnetworks

After studying the specific network of each perturbation, the analysis of these
networks was deepened by extracting subnetworks of certain genes. Subnetworks
show all those genes that regulate or are regulated by a specific gene. In the context
of this work, the second case was of greater interest, since it allowed to test the
impact of one gene on the network.

In order to choose the direct regulatory relationships between genes, which are
those that ensure greater confidence that such regulation was occurring, the data
set was filtered for those proximal regulatory events. For this purpose, only genes
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Figure 3: Venn diagrams for all pairwise comparison where the edges are compared. A) Origin of the
data, graph with all position changes, filtering of 50 positions or more and division of the graph according to whether
the nodes increase their positions or decrease them. B) Close detail of the nodes that increase their position in the
pancreatitis specific network in a mutated Kras context.

encoding TFs whose TFBSs were located in transcription start site (TSS) regions
were chosen for the sake of greater reliability in gene assignment. For the rest of the
genes, the TFBSs associated with the TFs they encode were in regions close to the
gene but not exactly in the TSS, such as in the intergenic regions or the TTS.

Junb is one of the most highly ranked genes in terms of degree in the pancreatitis-
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Figure 4: Study of transcriptional networks. A) Network of genes that are regulated or that regulate Junb
in the specific network of pancreatitis in a mutated Kras context. There is only one regulator gene, Heyl, the rest
are regulated by Junb. Unlike the previous networks, the nodes represented in this network were selected because
their footprint was found on a TSS region, which ensures a more direct connection. White nodes are genes related
to immune system. B) Biological functions obtained in Enrichr from genes that are regulated by Junb. C) Network
of genes that are regulated by or that regulate Gata6 in the specific network of Gata4KO. The genes regulated by
Gata6 are on the left and the genes that regulate Gata6 are on the right.
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specific subnetwork (Figure 3B) under the context of mutated Kras. It is known to
act as a thermostat in the pancreas and its activity is related to pre-inflammatory
stages [41]. When analyzing the genes, it is observed that among others it is linked
to inflammatory genes which corroborates the function described in the literature
(Figure 4A).

To verify that the new genes regulated by Junb were indeed involved in the
inflammation of the pancreas, a functional analysis was carried out. It was found
that the first biological activity described for them was the inflammatory response,
as expected (Figure 4B).

This is one example of the type of topological analyses that can be performed on
the network and the bidirectional relationship that can be established between the
biological results and the information provided by the network. Another possible
analysis is the study of the behavior of GATA6 for the specific network of Gata4KO
since experiments carried out in the research group where this work is developed
suggest that a compensatory effect of GATA6 occurs when Gata4 is knocked out.
The network obtained showed that in the specific network of Gata4KO, Gata6 was
regulated by more genes and it also regulated more genes (Figure 4C).

2.6 Web application

The two previous analyses are only two examples of how to exploit the data as
there are many other alternatives. Given the impossibility of addressing all these
options in this work, it was decided to create an interactive tool that would allow to
consult the networks in a fast and user-friendly manner. For this purpose, a web ap-
plication was developed that collects information on the eight specific transcriptional
networks previously studied.

The application can be consulted at this link:

https://jmartinezv.shinyapps.io/Shiny_app/

It contains the following elements:

• Network selection panel (Figure 5A). By default, the Homeostatic condition
is loaded. The remaining options correspond to each perturbation-specific
subnetwork. When selecting another dataset, a Venn diagram is shown cor-
responding to one of the comparisons made between networks. This Venn
diagram shows the number of edges for each of the networks (the control net-
work and the network of the perturbation of interest) and for their intersection.
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The edges of each perturbation-specific subnetwork are shown in the red por-
tion of the diagram. These are all the options that can be selected with the
Network menu:

– Homeostatic

– Effect of Gata4 KO - Context: No treatment

– Effect of Gata6 KO - Context: No treatment

– Effect of mutated Kras - Context: PBS

– Effect of Gata4 KO - Context: PBS & Mutated Kras

– Effect of caerulein (pancreatitis) - Context: Mutated Kras

– Effect of Gata4 KO - Context: Caerulein & Mutated Kras

– Effect of caerulein (pancreatitis) - Context: Gata4 KO & Mutated Kras

• TF Degree panel (Figure 5B). Two tables are shown containing the nodes of
the control network (left panel) and those of perturbation-specific subnetwork
(right panel) ranked by degree. In Homeostatic condition only one panel is
shown since no comparison between networks is made.

• Data filtering panel (Figure 5C). These are the parameters with which the
table can be filtered:

– Footprint : the footprint from which we extract the motif to which a TF
binds. The sequence logo obtained from the PWM is also shown.

– Footprint location: it is the annotated genomic location. A pie chart is
shown with the proportion of each of the locations where the TF can bind:
Exon, Intergenic, Intron, Promoter-TSS and Transcription Termination
Site (TTS).

– TFBS score: This score reflects how well the footprint matches the input
TF motif. Once selected, a density plot of the data is displayed.

– Footprint score: This score reflects the quality of the depletion of ATAC-
seq signal for a particular footprint. All footprints included passed the
default threshold considered by TOBIAS. Once selected a density plot of
the data is displayed.

– Search box : to perform any type of search.

• Data table (Figure 5D). Once a perturbation-specific subnetwork is selected
displays all the information. The table is dynamically updated when filtered
and can be downloaded through the Download table button.
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• Functional analysis (Figure 6). In order to get biological insights into the
queried information, functional enrichment analysis can be done on the target
genes using EnrichR package. Output results are displayed as an enrichment
plot and table. Different databases can be interrogated:

– WikiPathways 2019 Mouse

– KEGG 2019 Mouse

– MSigDB Hallmark 2020

– GO Biological Process 2021

– GO Cellular Component 2021

– GO Molecular Function 2021

– ENCODE and ChEA Consensus TFs from ChIP-X

– ChEA 2016

– RNAseq Automatic GEO Signatures Mouse Down

– RNAseq Automatic GEO Signatures Mouse Up
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Figure 5: ATAC-seq footprint network analyzer. A) Network selection panel. B) TF Degree panel. C)
Data filtering panel. D) Table with all the data.
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Figure 6: ATAC-seq footprint network analyzer. Functional analysis A) Graphical representation of the
functional analysis. B) Table with the data of the functional analysis.
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3. Discussion

In this work, transcriptional networks of the acinar cells of the mouse pancreas
have been obtained both for homeostatic conditions and for scenarios in which the
pancreas is challenged, as occurs with the Gata4, Gata6 knockouts, the Kras mu-
tation and with the induction of pancreatitis by caerulein treatment. To construct
them, ATAC-seq data were used to obtain the OCRs. From these regions, and us-
ing the TOBIAS pipeline, the TFBS were obtained and finally the networks were
generated. To determine wether the TFs that are specific to pancreatic acinar cells,
RNA-seq and scRNA-seq data have been used which, together with the analysis of
footprints, made it possible to identify the specific TFBS. With this information,
TF-TG networks were generated to model the interactions between regulator genes
and the genes that are regulated by them in order to study the regulation of acinar
cell identity in mouse pancreas.

The reanalysis of the homeostatic pancreas data allowed to define the process
of generation of the transcriptional networks for the perturbation data. The merge
of the peaks files of each replicate ensured more robust data without compromising
the reliability of the networks. The use of RNA-seq data allowed to identify TFs
present in the pancreas while scRNA-seq data served to restrict the TFs to those
present only in acinar cells.

There are many ways to interrogate networks and extract information from
them. In this work, it has been proposed a topological study of the networks,
analyzing the degree of the genes that are part of them and the creation of individual
subnetworks for specific regulatory genes such as Junb or Gata6.

The transcriptional networks of some PDAC precursor perturbations were stud-
ied, such as the Kras mutation, the Gata4 and Gata6 knockout and the presence
of pancreatitis. For them, six comparisons were proposed that made it possible to
study the effect of each of these perturbations in isolation. In this way, specific
networks were obtained for the Gata4 knockout (both in basal conditions and in the
context of mutated Kras together with pancreatitis), the Gata6 knockout (for basal
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conditions), the effect of Kras mutation and the effect of pancreatitis in the context
of mutated Kras. The study of the network analysis revealed an upward trend in the
number of OCRs to the number of perturbations of each situation. This also implies
that a greater number of perturbations would imply networks with more regulatory
relationships between genes, which could explain the loss of acinar identity. Among
all the perturbations, the presence of pancreatitis is the one that most modifies the
topology of the networks, with a significant increase in the OCRs compared to the
homeostatic network or those corresponding to the rest of the perturbations. This
may reflect not only the changes in the activity of the networks in acinar cells but
also changes in the cellular composition of the tissue analysed.

The information that can be extracted from the networks is wide-ranging, since
individual genes can be studied observing which genes regulate this individual gene
in particular or if it is a gene that regulates others genes. The regulatory relation-
ships of a certain gene can also be studied in the context of a specific network in
which a related gene is knockout, as occurs with Gata6 and Gata4 respectively.
Another possibility is to study the networks to link them with results obtained ex-
perimentally, verifying the biological function of the genes that are regulated by a
specific gene, as has been done in this work with Junb.

Apart from the aforementioned ways of interrogating networks, the manner of
analyzing them topologically can also be varied. The study conducted here has
considered two different approaches. On the one hand, an unbiased analysis, ranking
the genes by degree and checking how their positions change in the ranking between
two determined networks. And on the other hand, a biased analysis, interrogating
the network for specific genes, also using a proximal regulation on this occasion.

A web application has been developed to offer a simple and clear way of accessing
information. Its purpose is to serve as a query tool and to simplify access to data
on the transcriptional networks obtained. In addition, functionalities can be further
added according to the feedback received. In fact, as a future work, it is expected to
add information from RNA-seq data obtained in the same experiment as the ATAC-
seq data used to show which genes are up-regulated or down-regulated, offering an
even more complete view of transcriptional activity.

However, this study also presents some limitations in the process followed to
obtain the transcriptional networks.

• The ATAC-seq signal is less sensitive than ChIP-seq signal because it is un-
biased, that is, it does not focus on a protein but on all those that leave a
footprint. ChipSeq relies on the quality and specificity of the antibodies and
this can vary from one TF to another. This explains why in Figure 3 there are
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a large number of regions of the ChIP-seq data that do not coincide with the
ATAC-seq data. ATACseq is unbiased in this regard although its analysis does
not return direct evidence but inferred information. Despite this limitation,
supplementary Figure 1 shows how the ATAC-seq data are enriched not only
in the areas that coincide with ChIP-seq for the motif in question, but also in
the areas that are outside the overlap. This indicates that the ATAC-seq sig-
nal, although it does not allow to detect as many binding regions as ChIP-seq,
its results are reliable. On the other hand, the ChIP-seq signal could also be
altered by experimental variations which would explain why certain regions
defined by ATAC-seq do not intersect with the ChIP-seq data.

• The analysis of the footprints carried out is an inference from the signal de-
pletion observed in the ATAC-seq data and the fit of the motifs with the foot-
prints. This implies that the data obtained is a statistical estimate and must
be considered when drawing conclusions. One way to mitigate this limitation
is to be more restrictive in terms of TFBS score.

• Due to the lower sensitivity of ATAC-seq, motif sequence similarity might
produce assignment of footprints to different TFs of the same family. In this
case protein specific resolution might not be possible and results should be TF
family considered.

• Different cell populations have been used between the homeostasis data and
the rest of the data. The former came from a disaggregation of the whole
pancreatic tissue and the latter from FACS sorted epithelial cells. Therefore,
this must be taken into account when making comparisons between both ex-
periments.

• The conclusions obtained from the networks need validation by orthologous
techniques. In this regard integration with bulk RNA-seq, scRNA-seq and
scATAC-seq (data are available for the same perturbation data set studied in
this work) is needed.

Despite the limitations, the generated networks are a source of information that
can be interrogated in a multitude of different ways. It can therefore serve as a
resource both to raise new hypotheses and discover new regulatory mechanisms. In
addition, it can also work in the opposite direction, serving as a confirmation tool
for results obtained experimentally.

The whole transcriptional network study developed in this master thesis and
summarized in the web app tool will serve both to confirm experimental data and,
more interestingly, to generate novel hypotheses and therefore draw some light into
future lines of research.
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4. Methods

4.1 Datasets

For the analysis under homeostatic conditions, a publicly accessible mouse pan-
creas ATAC-seq from an ATAC-seq atlas [25] was used. 8-week-old male and female
C57BL/6J mice were utilized and housed in a pathogen-free, temperature-controlled
environment under a 12-hour night/day cycle and were sacrificed by cervical dislo-
cation. The organs were cut into two or three pieces and remained frozen at -80 ºC
until the extraction of the nuclei.

The ATAC-seq data from the mouse pancreas that were subjected to some type
of perturbation came from a collaboration between Mónica Pérez, from the CNIO,
and Scott Lowe’s laboratory at Sloan-Kettering Institute, New York. Their con-
tribution was very important for this project so her willingness to help was greatly
appreciated. The GEMMs used were NT p48Cre: p48+/Cre, NT Gata4KO : p48+/Cre;
Gata4lox/lox, NT Gata6KO : p48+/Cre;Gata6lox/lox, PBS/CAE Kras* : p48+/Cre;
Kras+/LSL-G12Vgeo and PBS Kras*; Gata4KO: p48+/Cre; Kras+/LSL-G12Vgeo; Gata4lox/lox.
The mice used were sacrificed at 10-12 weeks. PBS or cerulein treatment to induce
pancreatitis consisted of eight hourly intraperitoneal injections of 80 µg/kg of the
CCK analogue caerulein (Bachem) or PBS for two consecutive days. Mice were
sacrificed four days after the first injection of caerulein/PBS by CO2 inhalation.

4.2 ATAC-seq analysis

Paired-end raw FASTQ files were analyzed using the ENCODE ATAC-seq pipeline.
To execute the pipeline from FASTQ to peak calling, Caper (Cromwell Assisted
Pipeline ExecutoR) was used with the following instruction:

caper run [WDL script] -i
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[Input: JSON file containing information of genomic data files]

With the Cutadapt v2.5 tool [42] the adapter sequences were eliminated. Next,
Bowtie2 v2.3.4.3 [43] was used to map the reads to the reference genome (mm10,
GRCm38, December 2011) obtaining the SAM (Sequence Alignment Map) files.
These files were transformed into the BAM format with SAMtools v1.9 [44]. The
reads that met some of the following characteristics were located and eliminated
with the Sambamba v0.6.6 [45] tool: not being mapped, not forming a primary
alignment, being duplicated or being mapped to mitochondrial DNA (chrM). PCR
duplicates were removed with Picard’s MarkDuplicates [46]. Finally, the accessible
regions were defined by peak calling using MACS2 [47] and the resulting peaks were
those that appeared in all replicates for a threshold of 0.05 IDR.

Quality control showed that the results were reliable. The two PCR bottleneck
coefficients, PBC1 and PBC2 [48], were studied. PBC1 shows the ratio between
genomic locations where a read is uniquely mapped and locations to which some
read maps uniquely. PBC2 is the ratio between the number of genomic locations
where only one read maps uniquely and the number of genomic locations where two
reads map uniquely. The replicates also passed the TSS enrichment threshold in
OCRs for the mm10 genome.

4.3 Footprinting analysis

The footprinting analysis was performed with the TOBIAS toolkit. The AT-
ACorrect module was utilized to correct the readings taking into account the bias
introduced by Tn5. The ScoreBigwig function was used to calculate the footprint
scores of cutsites across accessible regions. With BINDetect, the TF binding events
were studied from the footprints and information on the motifs. A threshold p-
value of 0.001 was chosen to differentiate between TF bound or unbound. With the
CreateNetwork function, the associations between the TF bounds and the target
genes were modeled. Using the results returned in this last step, the transcriptional
networks were created.

4.4 Peak merging and annotation

The peaks files of the homeostatic pancreas analysis were merged, those of male
on the one hand and those of female on the other, to obtain a consensus file of peaks
to obtain more robust OCRs. The peaks files of the perturbed pancreas analysis
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were also merged and in this case a merge was performed for each perturbation data
set. This process was carried out using the mergePeaks function of the HOMER
software [28]. The -d given option was used to ensure literal overlaps between the
peaks of each replicate.

Peak annotation was done with the HOMER annotatePeaks.pl function. The
reference genome used was mm10 (GRCm38, December 2011). Peaks were anno-
tated from a gtf annotation file obtained from the UCSC Genome Browser [49].

With the HOMER findMotifsGenome.pl function, motif analysis was performed
to locate enriched motifs both in the ChIP-seq signal and in the data obtained from
ATAC-seq.

4.5 Transcription factor binding motifs

Information regarding TF binding motifs was obtained from CIS-BP. The motifs
of TEAD2, SOX9, RBPJL, NFYB, FOXA3 and ETS2 were obtained from JASPAR
CORE 2020 as they were not present in CIS-BP.

The motifs were restricted to those corresponding to the TFs expressed in acinar
cells. RNA-seq data were used to select them and TFs with an expression level
greater than 3 RPKM were chosen. ScRNA-seq data was utilized to limit motif
information to those TFs with ≥1 acinar cell expression.

The motif files were manipulated in R with Bioconductor Universal motif pack-
age [50].

4.6 Network visualization and analysis

Venn diagrams, density charts and bump charts were calculated with RStudio
v1.1.419 [51].

The networks were represented with Cytoscape v3.8.2 [52]. The calculation
of the intersections and differences between networks were also made with this tool
using themerge functionality of its options menu. Within this function, to obtain the
portion of the network of interest when performing the difference between networks,
it is necessary to place the network of interest first and the control network second.
To obtain subnets of a larger network from a desired node (or nodes) it was necessary
to follow the following menu path: Select desired nodes >File >New network >From
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selected nodes-All edges. The previous process returned all the connections with the
node of interest, both in those cases in which it was an incoming node (regulated
gene) and an outgoing node (regulatory gene). To keep only the cases in which the
node of interest is outgoing, the following was done: The node of interest is selected
in the subnetwork >Select >Nodes >First Neighbors of Selected Nodes >Directed:
outgoing. The case for incoming nodes is analogous. The ranking by degree of
the network nodes was carried out with the cytoHubba [53] plugin integrated in
Cytoscape. The biological functions from a set of genes were obtained with the
Enrichr online tool [54].

4.7 Web application development

For the development of the application, the R Shiny package [55] was used. This
package contains the necessary tools and functions to create a dashboard in which
to display the information that the developer wants.

The code is split between ui and server blocks. The first defines the aspects
related to the user interface and the graphical aspects of the application. The second
describes the logic behind the functions performed by the application.

Filters like slider inputs or select inputs are provided by the Shiny package. The
table is defined with the DataTable class from the DT package. The application
makes use of reactive programming to update the displayed information in real time.
For the functional analysis, the enrichR package was used, which contains functions
that allow access to the content of the Enrichr online tool. For the pie chart and
the density plots, the ggplot2 package was used. The web has been organized using
a 12-column grid system. For specific modifications of the visual design of the web
not supported by Shiny, direct calls to HTML were used.

The website was published on the internet using the Shinyapp.io hosting service
provided by Rstudio.

4.8 Code availability

The code executed to carry out the footprinting analysis and the generation of
the graphs can be consulted at the following link:

https://github.com/FranSoriano/BioinfoTFM
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Supplementary Information

Figure 1: Motif analysis of Ptf1a. Although the overlap in this case is not very good, the motif analysis shows
how the ATAC-seq signal is enriched in Ptf1a in all its regions.
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Figure 2: Density plot of gene expression in acinar cells and table with first top 100 expressed TFs.
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Figure 3: Variation of the position occupied by the TFs in the lists ranked by their degree for the
pairwise comparison between networks. Graphs analogous to those in Figure 3A for the rest of the comparisons
between networks carried out in this work.

XBP1 SREBF1 MYC RBPJ TFE3 TERF2 NFKB2 KLF16 THAP1 HES7 ERG NPAS2
BHLHA15 ETS2 BACH1 FOXA2 ESRRA FOXJ2 TRP53 DDIT3 HSF2 RORA ETV1 SNAI1
RBPJL DBP IRF3 MGA STAT1 HEYL POU2F1 SP2 NKX2-2 ELK1 E2F3 MESP2
ATF4 USF2 HIF1A NFE2L2 HES6 NR2F2 KDM2B LIN54 TCF7 WT1 GLIS3 SOX5
ATF5 NR2F6 SMAD5 ETV6 E2F4 MEIS1 TGIF1 CEBPD IRF7 HOMEZ TGIF2 HOXA5
TEAD2 MLXIP CLOCK MAX CREBL2 ETS1 NFYA MLXIPL ELF4 FOXO6 IRF4 AR
ATF6 NR5A2 CDC5L RREB1 FOXK1 SOX6 GLIS2 RFX5 ELK4 ATF7 NAIF1 NKX6-1
KLF15 HBP1 TCF4 FOXO1 RFX7 TCF3 NFIL3 SP100 GMEB1 SP4 EBF3 BCL6B
JUND UBP1 CTCF PBX1 FOXP2 ELK3 MNT OVOL2 TCF7L1 FLI1 ARID3A HAND2
CENPB KDM2A CREBZF EHF NFYB TIGD2 DNMT1 SOX18 E2F2 MYPOP ATF3 STAT4
NFE2L1 NFAT5 SREBF2 GABPA GMEB2 SIX5 RFX1 RBAK TFAP4 JDP2 GLI3 INSM1
MYRF CEBPG USF1 MAFK HNF1B SOX13 RARG PRRX1 BCL6 SIX4 NFATC4 KLF7
CXXC1 CEBPA TET3 MECP2 HSF1 SOX12 JUNB FOXN3 RELB TRPS1 KLF5 TCF21
CUX1 CREB3 SMAD3 SRF IRF2 ETV3 MEF2A MEF2C CREM NFE2L3 SNAI3 TBX3
TEF STAT6 SMAD4 ELF2 PHF21A IRF9 MYNN SETBP1 PPARG GRHL1 HEY1 POU2F2
NR3C1 SP1 ARNT SOX9 GFI1 KLF4 MEIS3 TCF7L2 HLF BHLHE41 PAX6 RARB
KLF9 MEIS2 ATF6B CREB3L2 HNF1A SOX4 TFEB ARID5B MITF SP110 TBX2 HOXB4
GATA4 RELA FOXA3 ATF2 MECOM EGR1 NR4A2 OVOL1 OSR1 KLF12 KLF8 NEUROD1
IRF6 MEF2D FOXO4 ARID2 BBX GRHL2 HES1 MAFB HIC1 ONECUT1 VDR MYBL2
PTF1A HNF4A ATF1 BHLHE40 MTF1 KLF2 PKNOX1 MAFG ARID3B PROX1 TET1 GATA5
RXRA MLX TCF12 GATA6 ETV5 FOSL2 PLAGL2 PDX1 SOX7 BARX1 NKX2-3 SNAI2
NFIC FOXP4 NFIX FOXJ3 NR1H3 ARNTL TFCP2 ARID5A BCL11A HLX SOX17 MYB
STAT3 AHCTF1 JUN PLAGL1 ELF3 PRDM4 KLF11 TBP IRF5 RFX2 PRDM1 HOXB3
CREB3L1 RXRB YY1 CREB1 FOXN2 CEBPB RARA RFX3 REST FOXJ1 RUNX1 HOXB7
TFDP2 CIC SPDEF HMG20B STAT2 NR2C1 HMBOX1 CUX2 MAFF MEOX1 FOXM1

Table 1: The 299 TFs selected, from TFs expressed in acinar cells, as input for the building of transcription factor
networks.
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