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Abstract
To meet increasingly restrictive requirements and improve quality of service (QoS),
Internet of Things (IoT) systems have embracedmulti-layered architectures leveraging
edge and fog computing. However, the dynamic and changing IoT environment can
impact QoS due to unexpected events. Therefore, proactive evolution and adaptation
of the IoT system becomes a necessity and concern. In this paper, we present a model-
based approach for the specification and execution of self-adaptive multi-layered IoT
systems. Our proposal comprises the design of a domain-specific language (DSL) for
the specification of such architectures, and a runtime framework to support the system
behaviuor and its self-adaptation at runtime. The code for the deployment of the IoT
system and the execution of the runtime framework is automatically produced by
our prototype code generator. Moreover, we also show and validate the extensibility
of such DSL by applying it to the domain of underground mining. The complete
infrastructure (modeling tool, generator and runtime components) is available in a
online open source repository.
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1 Introduction

Nowadays, billions of connected devices sense, communicate, and share information
about their environment. To manage all these devices, traditional Internet of Things
(IoT) systems rely on cloud-based architectures, which allocate all processing and
storage capabilities to cloud servers. Although cloud-based IoT architectures have
advantages such as reduced maintenance costs and application development efforts,
they also have limitations in bandwidth and communication delays [1]. Given these
limitations, edge and fog computing have emerged with the goal of distributing pro-
cessing and storage closer to data sources (i.e. things). As a result, new IoT systems
aim to leverage the advantages of edge, fog, and cloud computing by following a
multi-layered architecture.

Nevertheless, creating such complex designs is a challenging task. Even more
challenging is managing and adapting IoT systems at runtime to ensure the opti-
mal performance of the system while facing changes in the environmental conditions.
Indeed, IoT systems are commonly exposed to changing environments that induce
unexpected events at runtime (such as unstable signal strength, latency growth, and
software failures) that can impact its Quality of Service (QoS). To deal with such
events, a number of runtime adaptation rules should be automatically applied, e.g.
architectural adaptations such as auto-scaling and offloading tasks.

In this sense, a better support to define and execute complex IoT systems and
their (self)adaptation rules to semi-automate the deployment and evolution process
is necessary [2]. A usual strategy when it comes to modeling complex domains is to
develop a domain-specific language (DSL) for that domain [3]. In short, a DSL offers
a set of abstractions and vocabulary closer to the one already employed by domain
experts. Nevertheless, current IoT modeling approaches do not typically cover multi-
layered architectures [4–7] and even less include a sublanguage to ease the definition
of the dynamic rules governing the IoT system. Our research aims at overcoming
this situation by presenting a model-based infrastructure for the specification and
runtime execution of multi-layered IoT architectures, including self-adaptation rules.
Our proposal combines a DSL for the specification of static and dynamic aspects of
this type of systems together with a runtime infrastructure and a code-generator able
to semi-automate their deployment and runtime monitoring and adaptation.

This work is an extension of our study presented in [8], in which we proposed a
first version of a DSL for IoT systems and a proof of concept of a code generator. The
current work extends this previous contribution to the following aspects:

• Metamodel improvement: we have enhanced the metamodel to support modeling
new DSL concepts such as sensor threshold values, publish/subscribe messaging
and data persistence for containers.

• Runtime support: we have developed a framework based on the MAPE-K [9] loop
to automatically monitor, execute the expected behaviour and self-adapt the IoT
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system by executing the IoT execution rules modeled with the DSL, including
rules for the self-adaptation of the system to ensure its QoS.

• Code generator enhancements: We now generate the code required to support the
execution of the whole system at runtime (including the code for infrastructure
monitoring and system management tools).

• a DSL extension for the mining industry: we propose an extension of our DSL
focused on the modeling and operation of IoT systems in the underground mining
industry, highlighting the ability to reuse the DSL in other domains.

• Empirical evaluations: we have designed and conducted empirical experiments to
validate the expressiveness and usability of our DSL and the correctness of the
generated code.

The remainder of the paper is organized as follows: Section 2 presents a running
example to illustrate our approach. Section 3 introduces the DSL to specify multi-
layered IoT systems and adaptation rules. Section 4 present an extension of our DSL
for IoT systems deployed in underground mining. In Sect. 5, we present the DSL
implementation, the framework to support IoT systems at runtime, and code gener-
ation. In Sect. 6, we validate the usability of our DSL and the generated runtime.
Finally, the related work to this research is summarized in Sect. 7, and the conclusions
and future work are presented in Sect. 8.

2 Running example

Wewill use a Smart Building scenario as a running example to illustrate our approach.
Smart buildings seek to optimize different aspects such as ventilation, heating, lighting,
energy efficiency, etc [10].

For the purposes of our example, let’s assume that a hotel company (Hotel Beach)
wants to reduce fire risks by automating disaster management in its hotels. A fire
alarm and monitoring system are implemented in each of the company’s hotels. We
will assume that all buildings (hotels) have three floors with two rooms each. Fig. 1
presents an overview of the 1st floor. Based on this, the infrastructure (device, edge,
and cloud layers) of the company hotel IoT system would be as follows:

• Device layer Each room has a temperature sensor, a carbon monoxide (CO) gas
sensor, and a fire water valve. Furthermore, an alarm is deployed on the lobby.
Each sensor has a threshold measurement to activate the corresponding alarm,
e.g., a person should not be continuously exposed to CO gas level of 50 parts per
million (ppm) for more than 8 hours.

• Edge layer In each room, an edge node receives the information collected by the
sensors of the device layer and run a software container (C1 and C2) for analyzing
sensor data in real time to check for the presence of smoke and generate an alarm
state that activates the actuators. A fog node (linked to the edge nodes), located in
this same floor, runs the C3 container (running App2, a machine learning model to
predict fires), and C4 (running App3, in charge of receiving and distributing data,
typically a Message Queuing Telemetry Transport (MQTT).
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Fig. 1 Overview of the smart building IoT system, first floor

• Cloud layer The cloud layer has a cloud server node that runs the C5 container,
a web application (App4) to display historical information of sensor data and of
fire incidents in any of the hotel’s property of the company.

This covers the static view of the system. But in any IoT system, there are critical
applications that should be available all the time. For example, the availability of
the containers running App1 (real-time smoke monitoring) should be guaranteed.
However, some environmental factors can impact their availability. In these cases, the
IoT system must self-adapt to guarantee its operation. For instance, a flooding could
cause failures in the edge-a1 node; then it will be necessary tomigrate theC1 container
to another suitable node to ensure the continuous monitoring of the smoke presence.

Our research addresses this type of architectural adaptations by proposing a rule-
based language for the runtime execution of IoT systems that can also be used to
address their functional requirements. An example of this latter case would be a rule
stating that when one of the room sensors detects CO gas greater than 400 ppm, an of
the alarms should be triggered. The next section shows how we can model all these
concepts.

3 A DSL for the specification of multi-layered IoT systems

A DSL is defined by three core ingredients [3]: the abstract syntax (i.e., the concepts
of the DSL and their relationships), the concrete syntax (the notation to represent
those concepts), and its semantics which are hardly ever formalized but based on the
shared understanding of the domain. In this chapter, we present our DSL for modeling
multi-layered IoT architectures (Sect. 3.1) and their dynamic (3.2) rules.
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3.1 Modeling the IoT architecture

Traditionally, IoT system architectures consisted of two layers: device and cloud [11].
The device layer is composed by sensors (devices that sense physical properties such as
temperature and humidity), actuators (devices such as valves, fans, or alarms that can
influence an automated process), and network devices that send data to the cloud layer,
composed of servers that run the application logic. Today, multi-layered architectures
based on edge and fog computing have emerged to increase the flexibility of pure
cloud deployments and help meet non-functional IoT system requirements [12].

There are several definitions for edge and fog computing. [13] states that edge
computing enables computations to be performed at the edge, supporting cloud and
IoT services. On the other hand, [14] defines fog computing as a bridge between the
cloud and the edge of the network to facilitate the deployment of new IoT applications
providing computation, storage, and network services. There are strong similarities
between these two concepts, but the main difference is where the processing takes
place. While fog computing take place on LAN-connected nodes usually close to end
user devices, edge computing takes place on personal devices directly connected to
sensors and actuators, or on gateways physically close to these [14, 15].

Edge and fog computing can leverage containerization as a virtualization tech-
nology [16]. Containers, compared to virtual machines, are lightweight, simple to
deploy, support multiple architectures, have a short start-up time, and are suitable for
dealing with the heterogeneity of edge and fog nodes. In terms of communications,
asynchronous message-based architectures are typically chosen, especially for IoT
systems that require high scalability [17]. The publisher/subscriber pattern and the
MQTT protocol are becoming the standard for Machine-to-Machine communications
[18], where messages are sent (by publishers) to a message broker server and routed
to destination clients (subscribers).

Our DSL enables the specification of all these concepts.

3.1.1 Abstract syntax

The abstract syntax of aDSL is commonly defined through ametamodel that represents
the domain concepts and their relationships. Fig. 2 shows our metamodel that abstracts
the concepts required to define multi-layered IoT architectures.

The sensors and actuators of the device layer are modeled using the Sensor and
Actuator concepts that inherit from the IoTDevice concept. All IoTDevices have a
connectivity type (such as Ethernet, Wi-Fi, ZigBee, or another). The location of
IoTDevices can be specified through geographic coordinates (latitude and longitude
attributes). Moreover, Sensors and Actuators have a type represented by the concepts
SensorType and ActuatorType to organize different sensors belonging to the same
category and be able to define global rules for them. For instance, following the run-
ning example (Fig. 1), there are temperature and smoke type sensors, and there are
valve and alarm type actuators. We also cover the concepts for specifying MQTT
communications: IoTDevices are publishers or subscribers to a topic specified by the
relationship to the Topic) concept. The gateway of an IoTDevice can be modeled
through the gateway relationship with the EdgeNode concept. Via this gateway, the
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Fig. 2 Multi-layer IoT architecture metamodel

sensor can communicate with other nodes, e.g., the MQTT broker node. Additionally,
the threshold value and unit of the monitored variable by a sensor can be represented
through the attributes threshold and unit.

Physical (or even virtual) spaces such as rooms, stairs, buildings, or tunnels can
be represented by the concept Region. A Region can contain subregions (relationship
subregions in the metamodel). For example, region Floor1 (Fig. 1) contains subre-
gions Room1, Room2, Lobby, and Stairs. IoTDevices, EdgeNodes, and FogNodes are
deployed and are located in a region or subregion (represented by region relationships
in the metamodel). Back to the running example, the edge-a1 node is located in the
RoomA1 region of Floor1 of the Hotel Beach, while the fog-f1 node is located in the
Lobby region of Floor1.

Edge, fog and cloud nodes are all instances of Node, one of the key concepts of
the metamodel. Communication between nodes can be specified via the linkedNodes
relationship, as we may want to indicate what nodes on a certain layer could act as
reference nodes in another layer. Nodes can also be grouped in clusters that work
together. A Node can host several software containers according to its capabilities and
resources (primarily cpuCores, memory, and storage). The CPU and memory usage
of a container can be restricted through cpuLimit and memoryLimit attributes. Each
software container runs an application (represented by the concept Application) that
has a minimum of required resources specified by the attributes cpuRequired and
memmoryRequired. The repository of the application image is specified through the
imageRepo attribute. The container volumes and their paths (a mechanism for persist-
ing data used and generated by containers) are represented by the Volume concept.
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Fig. 3 Application and Regions modeling example

3.1.2 Concrete syntax

The concrete syntax refers to the type of notation (such as textual, or graphical) to
represent the concepts of the metamodel. Graphical DSLs involve the development
of models using graphic items such as blocks, arrows, axes, and so on. Textual DSLs
involve modeling using configuration files and text notes. Though most DSLs employ
a single type of notation, they could benefit from offering several alternative notations,
each one targeting a different type of DSL user profile. This is the approach we follow
here, leveraging the benefits of using a projectional editor.

Projectional editors enable the user’s editing actions to directly change the Abstract
Syntax Tree (AST) without using a parser [19]. That is, while the editing experience
simulates that of classical parsing-based editors, there is a single representation of
the model stored as an AST and rendered in a variety of perspectives thanks to the
corresponding projectional editors that can dealwithmixed-language code and support
various notations such as tables, mathematical formulas, or diagrams.

Indeed, we take advantage of JetBrains Meta Programming Systems (MPS) projec-
tional editors to define a set of complementary notations for the metamodel concepts.
We blend textual, tabular, and tree view, depending on the element to be modeled. We
next employ these notations to model our running example (Sect. 2). More technical
details on the implementation of our concrete notations are presented in Sect. 5.

3.1.3 Example scenario

We present next how to model the IoT architecture of the running example (Sect. 2)
using ourDSL. First, Fig. 3a depicts themodeling of the applicationApp1, including its
technical requirements and repository address. Then, Fig. 3b shows the specification
of theHotel Beach regions, in particular those onFloor 1 (four subregions: twoRooms,
the Lobby and the Stairs).

Additionally, IoT devices can be modeled using a tabular notation. Fig. 4 shows
the list of sensors and actuators located in the RoomA1 region (we have omitted some
parameters for readability purposes. To specify the nodes of the systemarchitecture,we
propose a tabular notation as well (Fig. 5 shows edge-a1 and fog-f1 node modeling).
The node description includes the layer it belongs to, the hardware properties, the
regions where it is located, and the hosted application containers. Each container
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Fig. 4 IoT devices modeling example (tabular notation)

Fig. 5 Nodes and containers modeling example (tabular notation)

includes the specification of the application to be executed, limits, and volumes (e.g.,
the volume of the C4 container for the configuration of the MQTT broker).

3.2 Modeling dynamic rules

The dynamic environment of an IoT system requires dealing with expected an unex-
pected events. The former may trigger actions to comply with the standard behaviour
of the system (e.g. to turn on an alarm upon detection of fire), unexpected ones may
require a self-adaptation of the system itself to continue its normal operation. This
section presents a rule-based language that can cover both types of events (and even
mix them in a single rule). This facilitates an homogeneous of all the dynamic aspects
of an IoT system.

To decide what unexpected environmental situation should we include and what
the standard patterns of response are common in the self-adaptation of IoT systems,
we rely on our previous systematic literature review [11]. For instance, the three
architectural adaptations (offloading, scaling, and redeployment) addressed in this
study were identified in the SLR. Our language covers all of them and even enables
complex rules where policies involving several strategies can be attempted in a given
order.

3.2.1 Abstract syntax

The metamodel representing the abstract syntax for defining the rules is depicted in
Fig. 6.

Every rule is an instance of Rule that has a triggering condition, which is an expres-
sion.We reuse an existing Expression sublanguage to avoid redefining in our language
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all the primitive data types and all the basic arithmetic and logic operations to manip-
ulate them. Such Expression language could be, for instance, the Object Constraint
Language (OCL), but to facilitate the implementation of the DSL later on, we directly
reused the MPS Baselanguage. The metamodel extends the generic Expression con-
cept by adding sensor andQoSconditions that can be combined alsowith all other types
of expressions (e.g., BinaryOperations, Literals, or BooleanConstants) in a complex
conditional expression.

A SensorCondition represents the occurrence of an event resulting from the analysis
of sensor data (e.g., the detection of dioxide carbon gas by the gas-a1 sensor). Note
that SensorCondition conditions can be linked to specific sensors or to sensor types to
express conditions involving a group of sensors.

Similarly, theQoSCondition is a relational expression that represents a threshold of
resource consumption or QoS metrics. This condition allows checking aMetric (such
as Latency, CPU consumption, and others) on a specific node or a group of nodes
belonging to a Region or Cluster. For example, the condition cpu(Hotel Beach− >

edge_nodes) > 50% is triggered when the CPU consumption on the edge nodes of
the Hotel exceeds 50%.

Moreover, we can define that the condition should be true over a certain period (to
avoid firing the rule in reaction to minor disturbances) before executing the rule. Once
fired, all or some of the actions are executed in order, depending on the allActions
attribute. If set to false, only the number of Actions specified by the attribute action-
sQuantity must be executed, starting with the first one in order and continuing until
the required number of actions have been successfully applied.

For the sake of clarity, we have grouped the rule concepts into two categories:
Architectural Adaptation Rules and Functional Rules but note that they could be all
combined, e.g., a sensor event could trigger at the same time a functional response
such as triggering an alarm and, at the same time, an automatic self-adaptation action,
such as scaling of apps related to the event tomake sure the IoT system has the capacity
to collect more relevant data).

Among the self-adaptation patterns, the Offloading action consists in migrating a
container from a source node to a destination node. This migration can be among
nodes of different layers. The container relationship represents the container that will
be offloaded. The target node is specified by the targetNode relationship. However, if
the target node does not have the resources to host the container, a cluster or a group of
nodes in a Region can be specified (targetRegion and targetCluster relationships) to
offload the container. The Scaling action involves deploying replicas of an application.
This application is represented by the app relationship, and the number of replicas
to be deployed is defined by the instances attribute. The replicas of the application
are deployed in one or several nodes of the system represented by the targetNodes,
targetCluster, and targetRegion relationships. The Redeployment action consists in
stopping and redeploying a container running on a node. The container to redeploy
is indicated by the container relationship. Finally, the OperateActuator action is to
control the actuators of the system (e.g., to activate or deactivate an alarm). The
message attribute represents the message that will be published in the broker and
interpreted by the actuator.
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Fig. 6 IoT system dynamic rules metamodel

3.2.2 Concrete syntax

Rules are specified thanks to a textual notation using as keywords the names of the
metaclasses of the abstract syntax. The conditions follow the grammar of a relational
expression with the use of mathematical symbols (such as <, >, and =) and logical
operators (such as&and ‖). The rule editor (see Sect. 5) offers a powerful autocomplete
feature to guide the designer through the rule creation process.

3.2.3 Example scenario

We show how to use the rule’s concrete syntax to model two example rules from the
smart building example.

First, to guarantee the execution of theC4 container deployed on the fog-f1 node, we
modeled the rule as shown in (Fig. 7a). This rule offloads the container C4 hosted on
node fog-f1 to a nearby node (e.g., node edge-b1) when the CPU consumption exceeds
80% for one minute. If the edge-b1 node does not have the necessary resources to host
that new container (when the rule is activated), a Region (e.g., Floor1) can be specified
so that a suitable node will be searched there. However, if this offloading action cannot
be executed, for example, because in Floor1 there is no node capable of hosting the
container, then we must define a backup action. Therefore, we have modeled a second
action (Scaling) to deploy a new container instance of the App3 application on any
of the nodes of the Hotel Beach. When a list of actions is specified, the checkbox all
actions controls whether all or only a certain number of them should be performed.
All actions in the list will be performed. For Rule 1, only one action (the first one, or
the second one if the first one fails) will be executed.

Secondly, we model another rule (see Fig. 7b) to activate the alarm (a-lobby) when
any gas sensors in the Floor1 region (gas-a1 or gas-b1) detects a gas concentration
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Fig. 7 Example of rule modeling

greater than 400ppm for 10 seconds. The “On” message is published in the broker
topic consumed by the actuator (a-lobby alarm). Note that there are two ways to model
this rule. While Option 1 involves all CO type sensors on Floor 1, Option 2 directly
involves both gas sensors.

4 DSL extension: coal undergroundmining

Our DSL can be used as is to model any type of multi-layered IoT system. However, it
has also been designed to be easily extensible to further tailor it to specific types of IoT
systems. As an example, we present an extension of our DSL to model underground
mining systems as this is a key economic sector in the local region of one of the
authors and there is a need for a better modeling of these systems, e.g., for analysis of
regulatory compliance.

Indeed, the dynamic and hostile environment of the underground mining industry
threatens the operation of IoT systems (e.g. by causing physical damage to the devices)
implemented primarily to monitor and ensure the safety of workers. Explosive and
toxic gases, risk of geotechnical failure, fire, high temperatures and humidity are some
of the risks. Therefore, mining IoT systems must cope with these unexpected changes
by self-adapting to guarantee a proper run-time operation.

In addition to system self-adaptations, our DSL should support expressing mining
functional requirements. For example, in Colombia, the safety regulation for under-
ground mining works (decree 1886 of 2015) determines limits for the concentration of
explosive and toxic gases. If any of these limits is exceeded, a series of actions/adapta-
tions must be performed such as turning on alarms, activating the ventilation system,
etc.

To better cope with these scenarios, our extended DSL offers new modeling prim-
itives (see Fig. 8). All concepts that inherit from Region represent physical spaces. A
Tunnel can be Internal orAccess. Eachmine access tunnel (Drift, Slope, or Shaft) must
have one or more entrances (represented by the entries relationship). Finally, check-
points (areas of theminewhere gases, temperature, oxygen, and airflow aremonitored)
are specified through the CheckPoint concept. Each CheckPoint could contain mul-
tiple IoTDevices (sensors or actuators) represented by the devices relationship in the
metamodel.
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Fig. 8 Excerpt of the DSL extension metamodel

Fig. 9 Mine structure modeling

We offer a tree-based notation for modeling the relevant regions1 that make up
the mine structure. Figure 9 presents an example of the modeling of an underground
mine containing two entries (Entry A andEntry B) in each of its inclined access tunnels
(SlopeA and SlopeB), an internal tunnel (Internal), and a (Room) with two exploitation
work fronts (W-front 1 and W-front 2).

At each mine control point, the airflow should be controlled by the fans. While
very fast air currents can produce fires, very low air currents may not be efficient
in dissipating gas concentrations. To involve control points directly in the adaptation

1 Note that our DSL is focused on the structure and rules governing the “behaviour” of the IoT system of
the mine, it does not pretend to replace other types of 3D mine mining models.
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rules, we have also modified our language. This extension of the DSL enables the
modeling of conditions such as (Control Point A → air Flow) > (2m/s).

All the other concepts directly reuse the notation of the core DSL presented in Sect.
3.

5 Tool support

In this section, we describe the implementation and tool support for both our DSL and
the core runtime framework responsible for monitoring and self-adapting IoT systems
at runtime. Once both are described, we discuss the link between the two, i.e. the code
generator that takes as input the model specified with our DSL and generates the code
for runtime deployment and execution of the system.

5.1 DSL tool support

Our DSL is created using MPS, an open-source language workbench developed by
JetBrains. By building the DSL on top of MPS, we automatically get a projectional
editor for the DSL with facilities the implementation of the different notations high-
lighted in the previous sections. The DSL editor is freely available in our repository
[20].

In particular, to develop the modeling environment for the DSL, we had to define in
MPS three core elements: structure, editors and constraints. The structure is equivalent
to the abstract syntax of the DSL. Projection editors define the desired Abstract Syntax
Tree (AST) code editing rules. For our DSLWe have defined textual, tabular, and tree
view editors by implementing the mbeddr2 extension of MPS.

For example, Fig. 10 shows the definition of the tabular editor for modeling the
Sensor concept. We have used the partial table command to define the table structure
(cells, content, and column headers). By defining this editor, the user is enabled to
model Sensors using a tabular notation as shown in Fig. 4.

Finally, constraints restrict the relationships between nodes as well as the allowed
values for properties. We have used this constraint mechanism to embed in the editor
several well-formedness rules required in our DSL specification. For instance, we have
added constraints to avoid repeated names, constraints to limit the potential values of
some numerical attributes, constraints to restrict the potential relationships between
nodes, and other constraints that prevent ill-formed models from being built.

5.2 Runtime tool support

Figure 11 summarizes an operational view of our architecture by distinguishing design
time (left-hand side) and runtime (right-hand side).

At design time, the user creates an initial IoT system specification model using the
modeling editor for the DSL described in the previous section. The code generator,
presented in Sect. 5.3, transforms such a specification into a set of deployment and

2 http://mbeddr.com/.

123

http://mbeddr.com/


I. Alfonso et al.

Fig. 10 Definition of the tabular editor for the Sensor concept

configuration options that describe aMAPE-K loop [9] which is performed at runtime.
This section covers these components so that we can then describe in the next section
how they are generated from the DSL definition.

The MAPE-K loop is a reference model to implement adaptation mechanisms in
auto-adaptive systems. This model includes four activities (monitor, analyze, plan,
and execute) in an iterative feedback cycle that operate on a knowledge base (see
Fig. 11). These four activities produce and exchange knowledge and information to
apply adaptations due to changes in the IoT system.

Based on the MAPE-K loop, our runtime architecture is composed of a set of
components and technologies to monitor, analyze, plan, and execute adaptations as
illustrated in the right-hand side of Fig. 11). We next describe how our architecture
particularizes the generic MAPE-K concepts for self-adaptive IoT systems.

5.2.1 Monitor

In the monitoring stage, information about the current state of the IoT system is
collected and stored. The collected information is classified into two groups: (1) infras-
tructure andQoSmetrics (presented inTable 1); and (2) information that is published in
the system’s MQTT broker topics such as temperature, humidity, gas levels, and other
types of sensor data. These two kinds of information are aligned with the addressed
types of events to be detected, i.e., QoS events and sensor events.
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Fig. 11 Overview

Table 1 QoS and Infrastructure metrics

Metric Exporter Description

Availability Kube-state-metrics Equal to 1 if the component being monitored is
available, 0 otherwise

CPU Node exporter Number of seconds the CPU has been running in a
particular mode

RAM Node exporter Available and total Ram memory of the node

Disk usage Node exporter Available and total disk space of the node

Bandwidth in Node exporter Number of bytes of incoming network traffic to the node

Bandwidth out Node exporter Number of bytes of outgoing network traffic from the
node

We have implemented Prometheus Storage3 (a time-series database) to store the
information collected by the exporters and monitors (such as kube-state-metrics4 and
node-exporter5). Exporters are deployed to convert existing metrics from third-party
apps to Prometheus metrics format. The information collected and stored can be
queried in real time through the Prometheus user interface or the Grafana dashboard.

5.2.2 Analyze

The information collected in themonitoring phasemust be analyzed, and changes in the
system that require adaptations must be identified. To deal with this, we have imple-
mented Prometheus Alerting Rules to define alert conditions based on Prometheus
query language expressions (PromQL) and to send notifications about firing alerts to
the next MAPE-K loop phase. Each IoT system rule specified through the DSL is
transformed into an alert rule of Prometheus.

3 https://prometheus.io/docs/prometheus.
4 https://github.com/kubernetes/kube-state-metrics.
5 https://github.com/prometheus/node_exporter.
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5.2.3 Plan

According to the analysis made in the previous stage, an adaptation plan is generated
with the appropriate actions to adapt the system at runtime. The adaptation plan con-
tains the list of actions (scaling, offloading, redeployment, and operate actuator) that
the user has defined for each rule via the DSL. In this stage, Prometheus AlertManager
is used to handle the alerts from the previous stage (Analyze) and routing the adapta-
tion plan to the next stage (Execute). The adaptation plan is sent as an HTTP POST
request in JSON format to the configured endpoint (i.e., to the Adaptation Engine).

5.2.4 Execute

In the Execute stage, the actions are applied to the IoT system following the actions
defined in the adaptation plan. To achieve this, we have built an Adaptation Engine,
an application developed using Python, flask, and the python API to manage the
Kubernetes orchestrator. The adaptation engine can apply two sets of actions: (1)
architecture adaptations through the orchestrator (e.g., autoscaling an application or
offloading a pod); and (2) regular system operations such as controling a system
actuator by sending it an instruction (e.g., a message to turn on or off an alarm). This
adaption is generic and can be used to run any IoT system modeled with our DSL,
including its mining extension.

5.2.5 Putting it all together: example scenario

To better understand how the different elements cooperate, we will exemplify how
the framework monitors and executes tge rule specified in Fig. 7b. Code for the rule
management is automatically generated ( Sect. 5.3), including YAML6 manifests for
deployment, configuration and execution of the monitors, exporters, Prometheus, the
Adaptation Engine and other software components implemented in theMAPE-K loop.

In the Monitoring stage, the exporters gather information about CPU consumption
of the fog-f1 node. This information is stored in the Prometheus database. Then, in
the Analysis stage, the condition of the rule is verified by executing query expressions
in PromQL language. For example, the expression (executed by Prometheus Alerting
Rules) that checks if theCPUconsumptionof the fog-f1 node exceeds 80%for 1minute
is presented in listing. 1 Note that we are calculating the average amount of CPU time
used excluding the idle time of the node. If the condition is true, the alert signal is
sent to the Alert Manager component of the next stage of the cycle (Plan). When the
alert is received, the adaptation plan is built containing the two actions (offloading
and scaling) and their corresponding information such as container to be offloaded,
application to be scaled, number of instances, target nodes and target regions. In the
Execute stage, the Adaptation Engine component first performs the Offloading action,
and only if it fails, then the second action (Scaling) is performed.

1 - alert: ram -consumption

6 YAML is a data serialization language typically used in the design of configuration files.
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2 expr: 100 - (avg by(node_hostname) (rate(
node_cpu_seconds_total{mode=

3 ‘‘idle ’’,node_hostname=‘‘fog-f1’’}[15s])) * 100)
> 80

4 for: 1m

Listing 1 Query expression to check CPU consumption of fog1-f1 node

5.3 Code generator

To configure and run the runtime infrastructure of an IoT system from its DSL model,
we have implemented a model-to-text transformation that generates YAML files to
deploy the IoT system’s container-based applications and the components of each
stage of ourMAPE-K loop based framework, including its internal logic. In particular,
the generated code includes the following components:

• The container-based IoT applications specified in the input model. Following the
running example of Sect. 2, the YAML manifests for deployment of containers
C1, C2, C3, C4, and C5 are generated

• YAMLManifests to deploy the monitoring tools and exporters such as kube-state-
metrics, node-exporter, and mqtt-exporter

• YAMLcode to deploy and configure the Prometheus Storage, PrometheusAlerting
Rules, and Prometheus Alert Manager components. The PromQL code to define
the rules (e.g., the code shown in Listing 1) is also generated as a Prometheus
configuration file

• YAML manifiest to deploy the Adaptation Engine
• and the Grafana application to display the monitored data stored in the Prometheus
database.

Due to space limitations, we do not show here the model-to-text transformation.
You can find all this information in the project repository [20], including the generated
code for the running example from Sect. 2.

6 Empirical evaluation

Wehave designed and conducted three experiments to validate our DSL and its accom-
panying infrastructure.

6.1 Language validation

We conducted two experiments to validate the expressiveness and ease of use of our
DSL: Experiment 1, focused on specific mining concepts, and Experiment 2, focused
on core architectural concepts, both based on the basic methodology for conducting
usability studies [21]. Both also cover the modeling of adaptation rules.

We report here the results ofExperiment 1. Full details ofExperiment 2 are available
on the project repository7).
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6.1.1 Experiment design and setup

We designed the experiment to validate the expressiveness and usability of the DSL
regarding the modeling of the mine structure, the control points, sensors and actuators,
and rules to manipulate such actuators (e.g., turn on the mine ventilation system when
the methane gas sensor exceeds the threshold value).

Eight subjects participated in the experiment. Participants were experts from the
mining domain, but had not been exposed to our DSL before. The goal was to check
whether they were able to use it and get their feedback on the experience.

The experiment consisted of an asynchronous screening test (pre-questionnaire) to
assess subjects’ prior knowledge and suitability for participation, and a synchronous
exercise (virtual meeting) with two parts (Sessions 1 and 2). The materials and exer-
cises provided to the participants, the questionnaires and the anonymized answers can
be found in the repository of our DSL extended to the mining industry domain.7

• Pre-questionnaire (10min): this screening questionnaire (Q0) was conducted prior
to the start of Sessions 1 and 2 to ensure that participants had a basic level ofmining
knowledge including the structure of underground coal mines, gas monitoring
systems, and modeling tools in this domain.

• Session 1 (50 min): In the first 20 minutes, we introduced basic knowledge of IoT
systems and the use of the DSL implemented in MPS to model the structure of
underground mines, the control points and the IoT devices deployed (sensors and
actuators). Next, the participants performed the first modeling exercise about an
underground coal mine (with the structure shown in Fig. 9), two control points
(one at each working face) with three gas sensors and an alarm, a fan, and a
control door in the internal tunnel. Each participant was provided with a virtual
machine configured with the necessary software to perform the modeling exercise.
Finally, the participants filled out a questionnaire (Q1) about the usability and
expressiveness of the DSL to model the concepts of the first exercise.

• Session 2 (40 min): In Session 2, we first introduced the basic concepts of
self-adaptive systems and the design of rules using our DSL. Next, participants
performed the second exercise: modeling three rules involving sensor data and
actuator operation. For example, if any of the methane gas sensors throughout the
mine exceed the threshold value for 5 seconds, then turn on the fan and activate
the alarms. Finally, participants completed the questionnaire Q2 to report their
experience modeling the rules. Q2 also contained open-ended questions to obtain
feedback on the use of the entire tool and suggestions for improvement.

The experiment was conducted in Spanish on three different dates in 2022. The first
author of the paper conducted the virtual meetings and ensured that all were equally
well executed.

6.1.2 Results

Four of the participants were involved in education (either students, teachers, or
researchers), while the remaining four were involved in industry. All of them are

7 https://github.com/SOM-Research/IoT-Mining-DSL.
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Fig. 12 Validation results

aware of the terminology used in the design and structure of underground coal mines.
Only two participants were not familiar with cyber-physical or IoT systems formining.
The modeling tools in mining context that they have used are AutoCAD8 and Mine-
sight9 for the graphical design of the mine structure, and VentSim10 for ventilation
system simulations. None of them were familiar with MPS.

Figure 12a presents the responses from questionnaires Q1 and Q2 related to the
ease of use of the DSL. Most of them reported that the modeling of the mine structure,
the control points, the devices (sensors and actuators), and the rules were easy. The
results are positive and can also be evidenced by the number of right and wrong
concepts modeled by the participants (Fig. 12b). The number of errors were low (12
of 188 modeled concepts): three incorrect Rule-conditions by wrong selection of the
unit of measure, four incorrect Actuators by wrong assignment of actuator type and
locationwithin themine, threemissingSensors notmodeled, and two incorrectRegions
(working faces) whose type was not selected.

Through the open-ended questions in questionnaires Q1 and Q2, participants sug-
gested the following improvements to the DSL.

• Include the specification of the coordinates for each region and control points of the
mine. Additionally, it would be useful to specify the connection between internal
tunnels.

• The condition of a rule has a single time period. However, it would be useful
to associate two time periods for conditions composed of two expressions. For
example, the condition tempSensor A > 30C(10seconds)&& tempSensor B >

35C(20seconds).
• The mine ventilation system can be activated periodically at the same time each
day. It would be useful if the DSL could model rules whose condition is associated
with the time of day.

8 https://www.autodesk.com/products/autocad.
9 https://its.mines.edu/software-title/minesight/.
10 https://ventsim.com.
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6.1.3 Threats to validity

Although validation problems in empirical experiments are always possible, we have
looked for methods to ensure the quality of the results, analyzing two types of threats:
internal and external.

Internal validation concerns factors that could affect the results of the evaluation.
To avoid defects in the planning of the experiments and the questionnaires (protocol),
all authors of the paper discussed the protocol including the modeling exercises, the
dependent variables, and the questions of the questionnaires. In addition, a senior
researcher (not in the authors list) in empirical experiments validated the question-
naires. Another common thread is related to the low number of samples to successfully
reveal a pattern in the results. Thirteen users total participated in this empirical val-
idation. Eight participants were involved in Experiment 1, and five different ones in
Experiment 2. Although the size of the participant group for this type of validation
continues to be a matter of discussion, studies suggest 3 to 10 participants (depending
on the level of complexity) are sufficient. For example, a popular guideline in this area
is given by Nielsen and Landauer [22], who suggest that five participants are likely to
discover 80% of the problems.

External validity addresses threats related to the ability to generalize results to other
environments. For example, to validate the population and avoid sampling bias, we
conducted a pre-questionnaire to the participants to ensure that they had the necessary
basic knowledge and that there was no substantial difference between participants.
In addition, at the beginning of each session, we introduced the definition of the
concepts required for the experiment. It is important to emphasize that the participants
of Experiment 1 were related to the topics of the mining domain, while those of
Experiment 2 were computer science researchers.

6.2 Runtime framework validation

To evaluate the self-adaptation capability of our approach and the correctness of the
code-generation and runtime infrastructure, we conducted experiments to test the
architectural adaptations (scaling, offloading, and redeployment).

For each adaptation assessment we have designed a simple scenario in which an
IoT system faces an event that forces adaptations. We have validated that starting from
the IoT model including a specified rule triggered by such event, the code-generator
creates the deployment infrastructure to run the IoT system and assess that such system
actually adapts as expectedwhen the event is triggered.Wehave collected and analyzed
metrics such as CPU consumption, node availability, and time spent in each stage of
the MAPE-K loop to also show the benefits of such self-adaptive architecture when
the system is under pressure.

The design of these experiments and the results are in the appendices of the paper
that can be found in the project repository. 11

11 https://github.com/SOM-Research/selfadaptive-IoT-DSL/blob/main/docs/paper-appe.pdf.
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7 Related work

Modeling of cloud architectures has been widely studied, including provisioning
of resources for cloud applications. Nevertheless, most proposals do not cover
multi-layered architectures involving fog and edge nodes. This is also the case for
Infrastructure-as-code (IaC) tools.

Someworks such as [23–25] focus on the cloud layer. Others, like [5–7] are oriented
towards the edge and fog layers. In particular, studies such as [5, 6] focus on the
modeling of sensors, actuators, and software functionalities, while [7] addresses the
modeling of application deployment at the fog layer. Works like [26, 27] are oriented
towards lower-level communication aspects and individual IoT component behaviours.

A few proposals are closer to ours in terms of the static modeling of IoT systems,
such as [28, 29] but using less expressive DSLs and, especially, limited possibilities
when it comes to the definition of rules, including self-adaptive ones.

Indeed, support for (self-adaptive) rules is less covered by previous approaches.
For instance, rules for cloud architectures are the topic of works such as [30–33] that
propose only partial solutions, as they either restrict the parts of the system that could
be adapted or offer a limited expressiveness in the definition of the rules (e.g., no
trigger condition).

Among themost powerful solutions, Lee et al. [4] present a self-adaptive framework
where IoT systems are modeled as finite-state machine. However adaptations are only
enabled at the device layer level and self-adaptive rules are not possible. Garlan et al.
[34] present Rainbow, a framework for adapting a software system when a constraint
(expressed in terms of performance, cost, or reliability) is violated. Similarly,Weyns et
al. [35] propose MARTA, an architecture-based adaptation approach to automate the
management of IoT systems employing runtimemodels. However, neither Rainbow or
MARTAcover the specification ofmulti-layer architectures, nor rules combining them,
and their rules are coarse-grained (e.g. not at the container level). Finally, Petrovic et
al. [29] propose SMADA-Fog, a semantic model-driven approach to deployment and
adaptation of container-based applications in Fog computing scenarios. SMADA-Fog
does not allow the specification of complex adaptation rules composed of various
conditions and actions. Moreover, grouping nodes and IoT devices according to their
location is not possible, forbidding the possibility to apply adaptations on group of
nodes belonging to a cluster or a given region.

Concerning the specification of IoT systems in underground mining domain, works
such as [36–38] focus on the design or deployment of the device layer (sensors and
actuators) of monitoring systems, but do not address the mine structure specification,
runtime adaptations, and deployment of containerized applications. To sum up, ours
is the first proposal that enables the specification, deployment and execution of multi-
layer IoT architectures (device, edge, fog, and cloud) and the definition of complex
rules covering all layers (and combinations of) involving multiple conditions and
actions that can, potentially, engage groups of nodes in the same region or cluster
of the IoT system. Moreover, our proposal can be easily extended and specialized in
different domains as shown with the underground mining scenario.
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8 Conclusions and future work

We have presented a model-based approach for the specification and runtime execu-
tion of multi-layered architectures of IoT systems and their self-adaptation rules. Our
approach comprises a newDSL tomodel such systems, a code generator, and a runtime
infrastructure, based on the MAPE-K loop, to monitor and execute the IoT system at
runtime based on a variety of rules, involving architectural adaptations and rules to
address functional requirements. The full process is assisted by a set of open-source
tools that have been released as part of this work. We have also validated the usability
and extensibility of the DSL.

As part of our future work, we will continue to enrich the DSL based on the
suggestions made by the experiment participants, including a new visual renderer
of the modeled architecture to complement the current projections. We also plan to
facilitate the definition of complex self-adaptive rules by predefining a set of common
patterns such as canary, rolling update, and blue-green deployment strategies that
could be directly referenced in the definition of a rule.Moreover, we are also interested
to automatically discover potentially useful adaptation rules by analyzing historical
log data from the IoT system (e.g., focusing on previous system crashes) with machine
learning. Finally, we are creating additional extensions to the DSL. In particular, one
to model Wastewater Treatment Plants as part of an ongoing European project.
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