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Abstract

Value investors usually consider that each financial product has an intrinsic value and that
the market price will, eventually, tend towards that value. Under this philosophy, investors
following this school of thought usually buy assets that are underpriced with respect to their
intrinsic values in hopes of selling it in the future at a higher price. This is what is known as
a buy and hold strategy. In this thesis, we present an analysis of whether option contracts,
a derivative financial product, can be used to increase the revenues obtained under the same
market conditions. To do so, we use a series of analytical tools based on the theory of stochastic
differential equations and Monte Carlo simulations. We consider different stochastic models for
the market such as a linear drift and volatility one, a geometric Brownian motion, a constant
elasticity of variance model and a Schwartz’s model. To generate Monte Carlo samples the Euler
method is employed. The results obtained indicate that, indeed, revenues can be increased with
this kind of strategies, yet depending on some hyperparameters of each strategy the uncertainty
can also increase or even lead to greater losses than the buy and hold one. Therefore, they
should be correctly tuned according to the investors risk-aversion profile. Finally, we apply this
strategy in a real market, the S&P500 ETF, to validate that the theoretical results still hold
in a more realistic situation. To tune the hyperparameters in this real situation we perform a
parameter estimation in a Bayesian framework using a nested sampling algorithm.

Resumen

Los inversores en valor normalmente consideran que cada producto financiero tiene un valor
intŕınseco y que el precio de mercado tenderá hacia ese valor de forma eventual. Bajo esta
filosof́ıa, los inversores compran esos activos que están subvalorados en el mercado con respecto
a dicho valor intŕınseco esperando que en algún momento el precio de mercado aumente. Esta
estrategia es la que comúnmente se conoce como comprar y mantener. En este trabajo presen-
tamos un análisis del posible uso de estrategias basadas en contratos de opciones para aumentar
los beneficios obtenidos bajo las mismas hipótesis. Para ello, usamos una serie de herramien-
tas anaĺıticas basadas en la teoŕıa de las ecuaciones diferenciales estocásticas y simulaciones
de Monte Carlo. Se consideran diferentes modelos estocásticos para el mercado incluyendo un
modelo de volatilidad y drift constantes, un movimiento Browniano geométrico, un modelo de
elasticidad constante de la varianza y el modelo de Schwartz. Para generar muestras aleatorias en
las simulaciones de Monte Carlo se emplea el método de Euler. Los resultados obtenidos indican
que, efectivamente, los beneficios se pueden incrementar con este tipo de estrategias, pero tienen
una serie de hiperparámetros que definen la estrategia que pueden hacer que la incertidumbre
aumente o que incluso se aumenten las pérdidas. Por lo tanto, estos hiperparámetros se tienen
que optimizar de acuerdo al perfil y aversión al riesgo de los inversores. Finalmente, aplicamos
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esta estrategia en un mercado real, el del ETF S&P500, para validar que los resultados teóricos
aun se mantienen para una situación más realista. Para poder optimizar los hiperparámetros
en este mercado se realiza una inferencia Bayesiana usando un algoritmo de nested sampling.

Keywords: value investing, option contracts, stochastic differential equation, Monte Carlo
simulation, Bayesian inference, nested sampling.

Palabras clave: inversión de valor, contratos de opciones, ecuaciones diferenciales es-
tocásticas, simulaciones de Monte Carlo, inferencia Bayesiana, nested sampling.
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1 — Introduction

There are different ways in which agents typically invest in a financial market. One of the
widely accepted approaches is the so-called Value Investing (VI) and is based in finding the
intrinsic value of a company using the available information and buying only the stocks that
trade at a smaller price in the market than its intrinsic one ([1]–[3]). Therefore, this trading
philosophy has a major axiom and is that with time, the market is going to agree with the true
value of the stock. This is the major source of revenues from this strategy.

On the other hand, option contracts are another way to trade in the market [4]. They give
the option (and thus the name) to buy or sell a given underlying asset, for an agreed fixed price
at a given date. The seller always receives a monetary compensation for this contract which
is referred as the premium [4]. Depending on how the evolution of the underlying asset price
is, this contract will benefit one part or the other. The advantage of this derivative asset is
that allows for more flexibility, since it lets the market agents have revenues even if the asset
decreases its value. The counterpart is that they usually require a greater expertise to be traded.

In this project we assess the usage of option contracts, instead of the Buy and Hold (BH)
approach, to increase the revenues of VI. To do so, the appropriate mathematical and computa-
tional tools are going to be applied. Firstly, a modelization of the market in terms of a stochastic
process will be done. With this modelization, the statistical properties of some strategies will
be analyzed analytically. This first analysis should already be able to answer simple questions
about how good are the different strategies with respect to each other. Then, the same set of
stochastic equations will be solved numerically to check the validity of the previous results and
also to use more advanced strategies or optimize them. Finally, these strategies will be applied
to a real market situation to test their applicability in a real situation. In this particular case,
the ETF S&P500 will be used [5].

All this procedure will be done assuming the basic axiom of VI which states that with enough
time the price of the underlying asset will reach its intrinsic value. This will be translated in
some mathematical restrictions that will be discussed later in this work.

1.1 Justification

The major interest in pursuing this project is that VI is a well known, extended and accepted
philosophy and has been proven to yield very high returns; any improvement to the trading
strategy will generate extra revenues at no more cost. Great part of the work required when
VI strategies are applied goes into the actual company valuation. Therefore, adding the extra
step of a trading following a strategy based on option contracts should only improve the results
almost at no cost.

If good strategies are found, they could be used by hedge funds or private investors that
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already apply VI strategies to raise their revenues when applying them instead of a traditional
BH. Therefore, it could, in principle, benefit any reader that is interested in the topic from an
academic perspective but also from a practical point of view, since the impact is potentially
high, even if no dominant strategies are found. In that case, it will be mathematically and
computationally confirmed that a BH strategy under VI axioms is the best approach.

Furthermore, even if no strictly dominant strategy is found, they will have different expected
values and variances, which can represent better strategies depending on the investor’s risk-
aversion profile. This means more flexibility for future investors when designing their portfolios:
they will be able to decide from a variety of market exposure and potential profits. And this
is precisely why option contracts are a great product to achieve such richness of combinations
that can adapt to every investor’s profile and risk-aversion.

1.2 Objectives

Following the aforementioned structure of this work, the main objectives that will serve at
the same time as milestones are:

• Understand and construct a time continuous stochastic model. To start, a suit-
able stochastic model needs to be used. It will be important to understand the assumptions
and consequences of the choice of the stochastic model that will be used. This can also
imply that different ones might be tested to cover a reasonable range of markets.

• Analytically solve the stochastic models. After the market model has been chosen,
an analytical investigation should be performed. Some models admit analytical solutions
and therefore allow for closed form expressions when assessing the different strategies’
payoffs. Therefore, in this project this step should be followed as much as possible.

• Numerically solve the set of equations. To check the analytical results, numerical
Monte Carlo simulations can be performed. Additionally, this computational tool can also
be used to test some complicated trading strategies that precludes the analytical treat-
ment. Moreover, this approach allows for an easy optimization of some trading strategies
hyperparameters.

• Test the strategies in a real market. While the conclusions that might be extracted
from the mock market generated by a stochastic model are interesting, there will be un-
modeled features that only real markets have. Therefore, the final objective is to test them
in a realistic situation.

In a general way, the main objective is to develop a theory and methodology that allows
the investigation of new strategies that might potentially increase the revenues of a typical BH
strategy. Therefore, making it as generic as possible will be desirable for future inclusions of
new market models and/or strategies.

1.3 Literature review

The analysis that is being done is grounded on the same ideas as VI. This philosophy is
based on the believe that each asset has an intrinsic or book value which might differ from that
at which trades in the market. An important step is then to correctly value an asset and for
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that there is an extensive literature available (e.g. [1]–[3]). This strategy has proven successful
for a variety of investors and hedge funds [1] and, therefore, the literature already points out
that it is sensible to try to improve the revenues but starting from this paradigm. Apart from
this generic axiom, for the rest of this work, VI will not be further studied, for it is outside of
the scope.

Instead, the focus will rely on the mathematical analysis of the market and the different
strategies. To this end, mathematical literature on stochastic differential equations will be
needed.

For Itô calclculus and stochastic differential equations, some classical works, such as Øsk-
endal’s [6], Evans’ [7] or Shreve’s [8] will be used. These references represent the foundations of
all the mathematical tools that will be used throughout this work. On the other hand, options
will be studied from the classical perspective of Black and Scholes [9] and Merton [10] and more
recent references also use them ([4], [11], [12]). The reason is that to obtain the premium of an
option, a model needs to be assumed. Since, again, this is out of the scope of the project the
analysis will be kept using the simplest of those but that will already be capable of extracting
significant conclusions.

For the Monte Carlo simulations, Refs. [6], [11] will be used. They introduce the subject,
describe various techniques to be employed and discuss their pros and cons. Finally, for the
Bayesian inference we can use the likelihood proposed in Refs. [12], [13] and for the actual
sampling of the posterior, the nested sampling algorithm as described in [14], [15] will be used.

Regarding the specifics being studied (i.e. a strategy using options as a complement to
the classical buy and hold from value investing) there is very little scientific and peer-reviewed
information available. Some investors have disclosed some options contracts that they have used
but in any case there is no rigorous mathematical study analyzing them. The little literature
available further justifies this work.

Additionally, a very important decision to be made is regarding the software to use. To this
end, there are mainly two main ones that we can use: Mathematica ([16]) and MatLab ([17]).
The former is perfectly suited to deal with the analytical calculations that we pretend to carry
out and, therefore, will help to extract the statistical properties that we want. The latter can
numerically solve stochastic differential equations and, therefore, will be used for Monte Carlo
simulations.

1.4 Ethical and social implications

This work, due to its nature, does not treat in any way ethical or social issues. Therefore, it
is not applicable a section on this matter.
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2 — Mathematical models

For the purpose of analyzing the different strategies, a time continuous representation of
the market will be used. In this chapter, the initial mathematical tools that will be used are
introduced, then a description of option contracts alongside its valuation is presented, followed
by a description of the strategies considered and closed by an explanation of various market
models that can be used.

2.1 Initial considerations

A general probability space (Ω,F ,P) will be considered, being Ω a given set, F a σ-algebra
as described in Definition 1 and P a probability measure as stated in Definition 2.

Definition 1. A σ-algebra F is a family of subsets of Ω such that [6]:

• ∅ ∈ F

• ∀F ∈ F =⇒ Ω \ F ∈ F

• If A1, A2, ..., An ∈ F =⇒
n⋃

i=1

Ai ∈ F

Definition 2. A probability measure is a function P : F → [0, 1] such that [6]:

• P (∅) = 0, P (Ω) = 1

• If A1, A2, ..., An ∈ F with Ai ∩Aj = ∅, ∀i ̸= j then

P

(
n⋃

i=1

Ai

)
=

n∑
i=1

P (Ai)

In general, the value of a stock at time t will be denoted by St and it will be governed by
the following generic Stochastic Differential Equation (SDE) [18]

dSt = µ(t, St)dt+ σ(t, St)dWt (2.1)

where µ : [0, T ] × Ω → R denotes the drift of the process, σ : [0, T ] × Ω → R the variance and
Wt is a Wiener process as described in Definition 3. The initial condition will be denoted as
St=0 ≡ S0.

Definition 3. We define by Wiener process any continuous stochastic process Wt, ∀t ∈ [0, T ]
such that:
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• W0 = 0.

• Wt −Ws is independent of Wt′ −Ws′ for 0 ≤ s′ < t′ ≤ s < t ≤ T .

• Wt −Ws ∼ N (0, t− s).

It will be useful to know some important properties for this random process. The pdf of Wt

is

pWt(x) =
1√
2πt

exp

{
−x2

2t

}
, (2.2)

which implies E [Wt] = 0, Var [Wt] = t and K(t, s) = cov(Wt,Ws) = min(t, s).

Equation (2.1) is suitable to be represented as an Itô integral as

St = S0 +

∫ t

0
µ(s, Ss)ds+

∫ t

0
σ(s, Ss)dWs . (2.3)

This representation of the SDE allows for a study of the statistical properties of the stochastic
process as long as these integrals can be solved. Itô’s lemma (defined in Lemma 1) will be used
to solve these integrals. This lemma is based itself on the following Taylor expansion of the
differential of a stochastic function

df(x) = f ′(x)dx+
1

2
f ′′(x)dx2 +O(dx3) . (2.4)

Additionally, the following assumptions are also commonly made [6]

dt2 = 0, dtdWt = 0, dW 2
t = dt (2.5)

Lemma 1. Let f(t, x) ∈ C2 and a stochastic process dSt = µ(t, St)dt+ σ(t, St)dWt, then

df(t, x) =

(
∂f

∂t
+ µ

∂f

∂x
+

1

2
σ2∂

2f

∂x2

)
dt+ σ

∂f

∂x
dWt (2.6)

To integrate a function g(t,Wt) ∈ C2 with respect to a Wiener process

I =

∫ t

0
g(s,Ws)dWs , (2.7)

one can use Itô’s lemma, yielding∫ t

0
g(s,Ws)dWs = f(t,Wt)− f(0, 0)−

∫ t

0

∂f

∂t
(s,Ws) +

1

2

∂g

∂x
(s,Ws)ds , (2.8)

where f(t, x) is the antiderivative of g(t, x) with respect to the second argument. This is ∂f
∂x =

g(t, x). This would reduce the problem to solving integrals of the form

I =

∫ b

a
f(s, Ss)ds . (2.9)

While this is a random variable in general, we might compute some relevant quantities, such
as the expected value or the variance. To do so we need to use two important properties. The
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first one is that the expected value of the integral will equal the integral of the expected value
of the integrand. This is

E
[∫ b

a
Stdt

]
=

∫ b

a
E [St] dt . (2.10)

Similarly, to estimate the variance of an integral with a stochastic process as integrand, we
will rely on the autocovariance function K(t, s) as

Var
[∫ b

a
Stdt

]
=

∫ b

a

∫ b

a
K(t, s)dtds (2.11)

where the covariance function is defined as

K(t, s) = E [St, Ss]− E [St]E [Ss] (2.12)

At this stage is also important to study the existence and uniqueness of the original SDE
as defined in Eq. (2.1). Applying Theorem 1, the conditions that the SDE must fulfill are Eqs.
(2.13) and (2.14) and, therefore, we the different models of the market are presented they should
be checked to assess if the problem is well-posed.

Theorem 1. Existence and uniqueness of solution for stochastic differential equa-
tions ([6]) Let T > 0 and µ : [0, T ]×Ω → R and σ : [0, T ]×Ω → R be measurable functions for
which (linear growth assumption)

|µ(t, x)|+ |σ(t, x)| ≤ C(1 + |x|), x ∈ Ω, t ∈ [0, T ] (2.13)

for some arbitrary constant C and where |σ|2 =
∑

|σi,j |2 and which additionally satisfy that
(global Lipschitz assumption)

|µ(t, x)− µ(t, y)|+ |σ(t, x)− σ(t, y)| ≤ D|x− y|, x, y ∈ Ω, t ∈ [0, T ] (2.14)

for some constant D. Let also Z be a random variable, independent of the σ-algebra generated by
Ws(·), s ≥ 0 and such that E

[
|Z|2

]
< ∞. Them the stochastic differential equation as defined in

Eq. (2.1) has a unique t−continuous solution St(ω) that is adapted to the filtration FZ
t generated

by Z and Ws(·) with s ≤ t and

E
[∫ T

0
|St|2dt

]
< ∞ . (2.15)

2.2 Option contracts

Options are defined as contracts between a buyer and a seller for which the former has the
right, yet no the obligation, to buy or sell a specific quantity of an underlying asset. Moreover,
to acquire this right it pays a quantity of money, called the premium, to the seller of the contract
who, in its turn, is obliged to execute the other part of the deal in case the holder was willing
to exercise it [4]. The buying or selling of this underlying asset will be done at a specified price,
called the strike price, on or before a specified date, called the maturity of the option. These
type of contracts are considered to be derivative financial products as they depend on the price
of an underlying asset, yet not in a linear way. Moreover, it is important to mention that there
are different types of options and each one of them will have a different kind of behavior. For
example, American options can be exercised at any time between the contract signing and the
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maturity date, while European options can only be exercised at the specified date [4]. Similarly,
other exotic options exist that can introduce different payoffs.

Apart from modeling the market, a proper model of the option contracts will be needed. The
theory that will be employed in this case is the basic and classical theory by Black, Scholes and
Merton ([9], [10]). The basic formalism assumes a market that follows a geometric Brownian
motion as

dSt = µStdt+ σStdWt , (2.16)

and a risk free, non-stochastic, bond that follows [18]

dBt = rBtdt , (2.17)

being r the risk-free interest rate.

The question is then to determine the value of an option contract that we will be denoted
by V and that will be a stochastic variable as it will depend on the value of the asset, which is
stochastic in nature. One can apply Itô’s lemma to get to ([9], [18], [19])

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0 , (2.18)

where σ is the volatility of the underlying asset.

Equation (2.18) is a Prtial Differential Equation (PDE) that will be subject to boundary and
initial conditions in order to be fully specified. These will depend on the type of contract and
only some of them will be considered throughout this project. For example, a vanilla European
call option would have the following final condition (i.e. specified at t = T )

V (t = T, S) = max(S −K, 0) , (2.19)

and the boundary conditions

lim
S→0

V (t, S) = 0 lim
S→∞

V (t, S) = S . (2.20)

Assuming constant volatility, Eq. (2.18) can be integrated analytically for some simple cases.
For example, for a European vanilla call option, this is [19]

C(t, St|K,σ, r, T ) = StN(d1)−Ke−r(T−t)N(d2) , (2.21)

with N(x) being the standard normal distribution,

d1 =
log(St/K) +

(
r + σ2/2

)
(T − t)

σ
√
T − t

(2.22)

and

d2 =
log(St/K) +

(
r − σ2/2

)
(T − t)

σ
√
T − t

. (2.23)

Similarly, for a put European option, this is

P (t, St|K,σ, r, T ) = Ke−r(T−t)N(−d2)− StN(−d1) . (2.24)

This valuation is important because will determine the premium of the option contract.
Therefore, selling a call or put will imply collecting the premium while buying any of these
contracts will mean paying upfront the premium.
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2.3 Proposed strategies

We will define the payoff of a strategy as a function ξ : [0, T ] × Ω → R that in the most
general case will depend on the value of the asset and, therefore, will be stochastic in nature.

Buy and hold

The easiest and most common, yet nonetheless, a strategy anyway, is that of buy and hold.
It consists on buying an asset at a given price and selling it at its intrinsic value. Therefore,
the payoff is going to be linearly related to the price of the stock. The payoff function for this
strategy is then

ξ(t) = St − S0 , (2.25)

which solution coincides with that of Eq. (2.1). This already indicates that the expected
value and variance are those of the underlying asset implying the same expected returns and
volatility. This strategy, albeit simple, has reported great revenues to big hedge funds and
private investors [1]. Therefore, we will compare the other strategies with this one, since in case
of no clear improvement, a buy and hold will usually be safer, as experience has shown.

Selling puts while waiting to sell the asset (strategy 1)

Assuming that the price of the asset is going to reach the intrinsic valuation of such asset
is a core aspect of the VI philosophy. But, while this happens, there is time in between in
which under the traditional BH strategy one can only wait. The question here is: what if in the
meantime we sell puts to increase our revenues? Since we are assuming that the price will go
up, we should always collect the premium.

We first need to define the maturity of the options. There is no easy way of determining it
because of the stochastic nature of the market. Nonetheless, we can get an educated guess of a
reasonable value. We will assume constant drift and volatility and since we know that at a time
T the PDF of the stochastic process is going to be

pST
(S) =

1√
2πTσ

exp

{
−(S − Tµ)2

2Tσ2

}
, (2.26)

then the CDF will be

FST
(S) =

1

2

[
1 + erf

(
S − Tµ√

2Tσ

)]
. (2.27)

We can determine the time Tα at which with a α confidence level, the price will not have
yet arrived at Sv (the valuation price). In this way we ensure ourselves that when the contract
expires the price of the asset will still have not reached it’s intrinsic value. Solving the equation
FST

(∆S = Sv − S0) = α yields the maturity

Tα =
2∆Sµ+ 2θ2ασ

2

2µ2
±

√
2∆Sθ2αµσ

2 + θ4ασ
4

µ4
, (2.28)

where we have defined θα = erf−1 (2α− 1) and typically α = 0.05. Under reasonable parameters
the positive solution will be the one to employ.
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Then, we can consider the situation where we acquire the stock and where we sell N puts.
The payoff in this case will be

ξ(t) = (St − S0) +N min[St −K,P (t = 0, S0|K,σ, r, Tα)]Θ(t− Tα) , (2.29)

where Θ(x) is the Heaviside step function. It becomes clear that this strategy differs from the
buy and hold one by the second term. Assuming that t > Tα (which by construction should be
the predominant case) we can express it as

ξ(t) =

{
St(N + 1)− S0 −NK if St −K ≤ P

St − S0 +NP if St −K > P
, (2.30)

which can give a little bit of more insight. If we plot this function for a given set of parameters
(for now completely random but reasonable) the result is the one displayed in Fig. 2.1. The
first image shows the payoff obtained in the classical buy and hold strategy. The result only
depends on St and in a linear way. On the other hand, if we consider that we sell one put, the
payoff function does strongly depend on both the execution price (K) and St. Although the
maximum payoff increases a little bit for this region of the parameter space, in general there is
more possibilities of loosing if compared to the previous buy and hold strategy. Specially when
the execution price is big, the chances of loosing more money increase. When we consider more
contracts, the winning region decreases but the possible revenues increase. There are again two
very differentiated regions and correspond to where the jump of the payoff functions occurs.

Figure 2.1: Example of the payoff obtained for a simple buy and hold strategy, selling N = 1
and selling N = 10 puts. The rest of parameters are: σ = 0.1, Sv = 60, S0 = 40, µ = 5 and
r = 0.02.

Although this seems the holy grail it is of great importance pointing out that the number of
contracts that can be signed is not infinite. In the rare, yet not impossible event, that the stock
price dropped, the amount of loses can be big, and the seller of the put should have the money
ready to make the payment. This is why in practice, N will be limited by the budget.

Selling calls while waiting to buy the asset (strategy 2)

This strategy has a complete different premise. We now consider the case where our valuation
is lower than the current market or traded price. Therefore, under the VI paradigm, we shouldn’t
do anything, for it is overpriced and only wait until this price is low enough to buy it. This
means losing a precious time that we could be using to obtain revenues and this is where this
strategy might be used.

10
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While we are waiting for the price to come down we can sell puts as well. In this way, if the
price drops to or below the one that we wanted to buy the stock we will buy it and that’s already
good, because we were already comfortable with paying this amount to acquire the stock, but
if the price doesn’t drop we will be able to keep the premium.

In this case the payoff is very simple because it directly coincides with that of the puts

ξ(t) = N min[St −K,P (t = 0, S0|K,σ, r, Tα)]Θ(t− Tα) , (2.31)

In this case, though, we are considering that the market has a negative drift (i.e. µ < 0)
as would do under the VI axioms. This strategy yields a similar, yet different result than the
previous one as can be seen in Fig 2.2.

Figure 2.2: Example of the payoff obtained selling N = 1 and N = 10 puts while waiting the
price to go down. The rest of parameters are: σ = 0.1, Sv = 40, S0 = 60, µ = −5 and r = 0.02.

There are two very differentiated regions in this case divided by the line St = K. When
St > K there are positive revenues, whilst for St < K there are losses. There is a clear
asymmetry in the amounts that can be won and the ones that can be lost. As expected, the
amount of possible losses surpasses that of the revenues. In this case, the effect of increasing
the number of contracts is completely linear.

2.4 Market models

We have introduced in Eq. (2.1) a general stochastic equation. We can now consider some
particular cases of the form of the functions µ(t, St) and σ(t, St) that are able to capture the
dynamics of the market.

The simplest, yet very interesting, case is that of considering that both are constants, i.e.
µ(t, St) = µ, µ ∈ R and σ(t, St) = σ, σ ∈ R. This case is general enough to accommodate a
wide variety of process and, therefore, will always be the first one that will be used. As stated
before, it is important to check whether this SDE actually has a solution. The fist condition
that must be fulfilled is that of linear growth and it can be easily checked that indeed

|µ|+ |σ| ≤ C(1 + |x|) ,

as for example C = |µ| + |σ| already satisfies this condition. The global Lipschitz condition is
also satisfied since

|µ− µ|+ |σ − σ| = 0 ≤ D|x− y| .

11
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We can find the solution to this SDE by simply evaluating Eq. (2.3). This inmediately yields

St = S0 + µ

∫ t

0
dt+ σ

∫ t

o
dWt = S0 + µt+ σWt , (2.32)

From this solution it easy to compute certain basic properties of this market. The first of
them is that the expected value will be

E [St] = E [S0 + µt+ σWt] = S0 + µt , (2.33)

while its variance
Var [St] = Var [σWt] = σ2Var [Wt] = σ2t . (2.34)

Finally, the pdf of the price at a time t will be

pSt(S) =
1√

2πσ2t
exp

{
−(S − S0 − µt)2

2σ2t

}
(2.35)

Another very important model found in the literature is that of the geometric Brownian
motion ([9], [10]) as has been introduced with the option contracts. In that case, the function
of the drift is µ(t, St) = µSt, µ ∈ R and the one for the volatility, σ(t, St) = σSt, σ ∈ R. This
one produces an exponential growth.

The conditions of linear growth in this case is verified since

|µSt|+ |σSt| ≤ C(1 + St)

(µ+ σ)St ≤ C(1 + St)

and for example with C = µ + σ this condition is automatically verified. On the other hand,
the global Lipschitz condition states that

|µSt − µSs|+ |σSt − σSs| ≤ D|St − Ss|

µ(St − Ss) + σ(St − Ss) ≤ D|St − Ss|

which again is easily satisfied for D = µ+ σ.

To integrate this SDE the following relation simplifies the analysis

d lnSt =
dSt

St
− (dSt)

2

2S2
t

=
dSt

St
− σ2

2
dt , (2.36)

since plugging now the definition of dSt for this SDE yields,

d lnSt =

(
µ− σ2

2

)
dt+ σdWt . (2.37)

This is now exactly as the previous linear SDE only that solving for lnSt instead of St. It is
immediate to see that the solution sought is

St = S0 exp

{(
µ− σ2

2

)
t+ σWt

}
. (2.38)

12



Option Contracts to Maximize Revenues under Value Investing Axioms

This SDE has an expected value of

E [St] = S0e
tµ , (2.39)

a variance of
Var [St] = S2

0e
2tµ
(
etσ

2 − 1
)

, (2.40)

and the pdf at any given time of

pSt(S) =
1

S
√
2πtσ2

exp

−

(
lnSt − lnS0 − tµ+ tσ2

2

)2
2tσ2

 (2.41)

A variannt of this model is what is known as Constant Elasticity of Variance model (CEV)
and changes the volatility function to σ(t, St) = σSγ

t , σ, γ ∈ R [11]. Despite being a small
modification, it has a huge impact, since now this SDE doesn’t have a closed analytical solution.
The only quantity that can be estimated is the expected value and is the same as in the geometric
Brownian motion case. Therefore, we will need to use the Monte Carlo techniques to obtain
various paths and compute the desired properties of this market.

We can finally consider a process of the form

dSt = γ[µ− ln(St)]Stdt+ σStdWt (2.42)

as has previously been successfully used to model commodities and other markets [20], [21]. We
will call it Schwartz’s model as it was introduced in Ref. [20]. This process can be converted into
the widely known Ornstein-Uhlenbeck process by transforming it into the variable Xt = ln(St).
To prove this we perform this change of variable to obtain

dSt = γ [µ−Xt] e
Xtdt+ σeXtdWt . (2.43)

At the same time, applying Itô’s lemma,

dSt = d
(
eXt
)
= eXtdXt +

1

2
eXtdX2

t , (2.44)

which combined with Eq. (2.43) leads to

dXt +
dX2

t

2
= γ [µ−Xt] dt+ σdWt . (2.45)

To obtain the value of dX2
t we can consider Itô’s lemma but for the inverse transformation.

The result is

dXt = d(lnSt) =
dSt

St
− 1

2S2
t

dS2
t , (2.46)

which directly allows to square it to find the sought value equaling

dX2
t =

dS2
t

S2
t

+O
(
dS3

t

)
. (2.47)

Finally, the value of dS2
t can be obtained by directly squaring both sides of Eq. (2.42),

yielding

dS2
t = γ2[µ− lnSt]

2S2
t dt

2 + γ[µ− lnSt]S
2
t σdtdWt + σ2S2

t dW
2
t = σ2S2

t dt , (2.48)

13
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and where Itô’s assumptions (relations described in Eq. (2.5)) have been used. This implies
that

dX2
t = σ2dt , (2.49)

and that the stochastic process that follows the new variable is

dXt = γ[κ−Xt]dt+ σdWt , (2.50)

with

κ = µ− σ2

2γ
. (2.51)

Equation (2.50) is indeed the so-called Ornstein-Uhlenbeck SDE and can be integrated. We
define a new variable Yt = Xt − κ, which modifies the SDE to

dYt = −γYtdt+ σdWt . (2.52)

Now, introducing yet a new variable of the form Zt = eγtYt and noting that

dZt = γeγtYtdt+ eγtdYt = σeγtdWt , (2.53)

we can explicitly integrate this SDE to get

Zt = Z0 + σ

∫ t

0
eutdWu . (2.54)

Undoing the changes of variables we arrive to the solution

Xt = κ+ e−γt(X0 − κ) + σ

∫ t

0
eutdWu . (2.55)

The original random process has then a mean of

E [St] = exp

(
e−γt lnS0 +

σ2
(
1− e−2γt

)
4γ

+ κe−γt
(
eγt − 1

))
, (2.56)

and a variance

Var [St] =
1

2γe2γt

(
e

σ2

2γ (1−e−2γt) − 1

)
exp

(
−σ2 + e2γt

(
4γκ+ σ2

)
+ 4γeγt(lnS0 − κ)

)
. (2.57)

Finally, the pdf at time t of this process can be found and equals

pSt(S) =

√
γe2γt

S2πσ2(e2γt − 1)
exp

(
−
γe2γt

(
lnS − e−γtκ

[
lnS0 + eγt − 1

])2
σ2 (e2γt − 1)

)
. (2.58)

With these four SDEs there is a representative enough selection of models that can be used
to study the different strategies. Depending on the market characteristics, the strategies might
yield a different outcome. Therefore, it will be important in a real application that the correct
market model is employed. This is why in Chapter 4 the Bayesian inference is introduced and
a proper way to decide which one fits best the market data is described.
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3 — Monte Carlo simulations

In this chapter, the Monte Carlo simulations will be described and the main results obtained
presented. This step is extremely important since some market models do not admit an analytic
solution and also because some strategies are hard or impossible to be treated analytically.
Therefore, being able to generate sample paths of the stochastic process and analyzing the
statistics associated to them is the most generic way to perform the study.

This chapter contains three sections. The first one will introduce the methods that can be
used to generate Monte Carlo sample paths of a SDE. The second one will display some results
obtained by applying such methods. The third one discusses how a strategy can be optimized
to match some investors criteria.

3.1 Generation of samples

First of all, in this section the methods to simulate a generic SDE will be presented. An
important concept to be taken into account is that of the order of convergence. Intuitively, this
is how fast the error between the numerical approximation and the true solution tends to zero
with the refinment of the discretization. In the case of the SDEs we can distinguish between
the strong and weak order of convergence. They are defined in Definition 4 and Definition 5,
respectively.

Definition 4. (as stated in Ref. [11]) The time-discrete approximation Xδ of the continu-
ous time random process X, being δ the maximum time increment, is said to have a γ strong
convergence rate if for any given time horizon T then

E [|Xδ(T )−X(T )|] ≤ Cδγ , ∀δ < δ0 , (3.1)

being δ0 and C constants.

Definition 5. (as stated in Ref. [11]) The time-discrete approximation Xδ of the continuous
time random process X, being δ the maximum time increment, is said to have a β weak conver-
gence rate if for any given time horizon T and any 2(β + 1) continuous differentiable function
g then

|Eg[Xδ(T )]− Eg[X(T )]| ≤ Cδβ, ∀δ < δ0 , (3.2)

being δ0 and C constants.

For each numerical scheme considered, then, its convergence can be computed. Usually, faster
convergence is desired but it is not the only characteristic to be taken into account. In general,
other properties of the numerical scheme have to be considered, since they can be as important as
the convergence. One of such is the stability of the numerical scheme, as the solution for typical
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problems must be kept bounded and finite. Equally important is the computation time. Higher
order schemes, although yielding a faster convergence, can have slower computation times. This
usually is related to the numerical complexity, which increases for such schemes. Therefore, a
good balance between fast rate of convergence and computational time must be reached.

Some of the numerical schemes that can be used are:

• Euler scheme. Considering the general SDE introduced in Eq. (2.1) the Euler approxi-
mation to generate the i+ 1 sample is defined as

Si+1 = Si + µ(ti, Si)(ti+1 − ti) + σ(ti, Si)(Wi+1 −Wi) . (3.3)

It becomes clear that this scheme is an explicit one, as at each time step only the previous
state is needed. Similarly, the only needed ingredient is that of generating an increment
of the Wiener process, but according to its properties described in Definition 3, this can
be computed as

W (t+∆t)−W (t) ∼ N (0,∆t) ∼
√
∆tN (0, 1) . (3.4)

This numerical scheme has a strong convergence rate of γ = 1/2 [11], weak convergence
β = 1 and can be implemented very easily. At the same time, it is extremely fast as allows
for a vectorization and parallelization in a straight forward manner. There is no iteration
needed at each time step, only the sampling from a standard normal distribution, which
is already efficiently implemented in the vast majority of modern computer languages.

• Milstein scheme. This approach slightly differs from Euler’s scheme by adding a second
order term. Using Itô’s lemma, the approximation of Si+1 can be computed as [11]

Si+1 =Si + µ(ti, Si)(ti+1 − ti) + σ(ti, Si)(Wi+1 −Wi)

+
1

2
σ(ti, Si)

∂σ

∂x
(ti, Si)

{
(Wi+1 −Wi)

2 − (ti+1 − ti)
}

.
(3.5)

The advantage of this other scheme is that it possess a faster converge rate. More precisely,
the strong and weak convergence rates are γ = β = 1. As long as the derivative of the
volatility function can be found, this approach will yield a better convergence. As it
happened with the Euler scheme, this one is completely explicit and only requires to
draw random numbers from a standard normal distribution. Therefore, it is also easily
implemented in any programming language and will be fast to evaluate.

• Predictor-corrector scheme. This family of algorithms have usually two steps. The
first one is trying to predict the future value by using a simple Euler iteration. This means
that the predicted value at the future time is

S̃i+1 = Si + µ(ti, Si)∆t+ σ(ti, Si)
√
∆tZ , (3.6)

where Z ∼ N (0, 1). Then, the final estimation is the corrected version of the predicted
step and it is computed as [11]

Si+1 =Si +
(
αµ̃(ti+1, S̃i+1) + (1− α)µ̃(ti, Si

)
∆t

+
(
ησ(ti+1, S̃i+1) + (1− η)σ(ti, Si)

)√
∆tZ ,

(3.7)
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being

µ̃(ti, Si) = µ(ti, Si)− ησ(ti, Si)
∂σ

∂x
(ti, Si) . (3.8)

The two parameters α ∈ [0, 1] and η ∈ [0, 1] control the predictor-corrector behavior. For
example, setting both of them to 0 one recovers the Euler method.

Any of these schemes can generate samples from the different market models considered and
with enough accuracy. After the samples are drawn, the pdf of S(T ) can be estimated by means
of the kernel density estimator. This is computed as [22]

f̂h(x) =
1

nh

n∑
i=1

K

(
x− xi

h

)
, (3.9)

where (x1, x2, ..., xi, ..., xn) are independent and identically distributed samples drawn from the
distribution, h > 0 is usually called the bandwidth and controls the smoothing of the density
estimation and K(x) is the kernel function. For the present analysis, the standard normal
distribution is used for the latter. This implies

K(x) =
1√
2π

exp

{
−x2

2

}
. (3.10)

The bandwidth h will be tuned manually to observe a smooth enough distribution and to
start iterating an optimal value will be used. Defining the mean integrated squared error as [23]

MISE(h) = E
[∫ (

f̂f (x)− f(x)
)2

dx

]
, (3.11)

and under weak assumptions on the pdf and the kernel employed, one can find that the minimum
of the asymptotic of the MISE is found at [23]

h = Cn−1/5 , (3.12)

where C is a constant that depends on the unknown density and its derivatives. As a rule of
thumb and assuming that the underlying distribution is Gaussian, the optimal bandwidth is [23]

h =

(
4σ̂

3n

)1/5

, (3.13)

being σ̂ the estimation of the width of the underlying Gaussian distribution. This value is the
one used to start iterating to find a good smoothing parameter for the kernels displayed in this
work.

3.2 Application to the market models

With any of the methods discussed in Sec. 3.1 we can generate a set of sample paths for the
different market models considered. Due to its simplicity in the implementation and the fast
sampling speed, the Euler method i going to be employed.

First of all, we can simulate each one of the markets and compare some of them with the
theoretical pdfs that are expected. The first of them is the lienar SDE model. For a maturity of
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T = 10, n = 100 steps (i.e. ∆t = 0.1), µ = 5, σ = 10 and S0 = 40 the result is that displayed in
Fig. 3.1. This one, since has a simple pdf is easy to cross-check and indeed the results match up
to a reasonable degree. This means that for this model we are able to generate reliable samples.

The next one to be tested is that of the geometric Brownian motion. For a maturity of
T = 0.3, n = 100 steps (i.e. ∆t = 0.003), µ = 5St, σ = St/2 and S0 = 40 the paths are displayed
in Fig. 3.2. In this case the pdf obtained is the characteristic log-normal distribution expected
for this stochastic process. It also matches very well with the theoretical prediction derived.

For the CEV model with the same time parameters as the Brownian motion but with µ = 5St,
σ = St/2 and S0 = 40 and γ = 0.6 we obtain the sample paths shown in Fig. 3.3. In this case it is
worth mentioning that since the specific choice of γ has been smaller than 1 this has reduced the
uncertainty and the obtained distribution resembles more that of a Gaussian and the dispersion
between each path has decreased, as it has to be expected by the form of the SDE.

Finally, in the case of Schwartz’s model, using the same time parameters as for the Brownian
and CEV models, µ = 2(5 − lnSt)St, σ = St and S0 = 40, we obtain the results displayed in
Fig. 3.4. All in all, the method of generating samples via the Euler scheme works as intended
for all the different market models that are considered trhoughout this work.

Figure 3.1: Sample paths of N = 10, 000 Monte Carlo simulations for µ = 5, σ = 10 and S0 = 40.

Figure 3.2: Sample paths of N = 10, 000 Monte Carlo simulations for µ = 5St, σ = St/2 and
S0 = 40.
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Figure 3.3: Sample paths of N = 10, 000 Monte Carlo simulations for µ = 5St, σ = St/2 and
S0 = 40 and γ = 0.6.

Figure 3.4: Sample paths of N = 10, 000 Monte Carlo simulations for µ = 2(5− lnSt)St, σ = St

and S0 = 40.
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3.3 Optimization of the strategy

With the MC simulations we can study the pdf of the payoff for the buy and hold strategy
as well as for any strategy proposed. For example, for a linear market we obtain the results
obtained in Fig. 3.5 for both the buy and hold and the so-defined strategy 1 for different values
of the execution price.

Figure 3.5: Probability density function of the buy and hold strategy and the strategy 1 for
different execution prices and the following market parameters: µ = 5, σ = 10, S0 = 40 and
r = 0.02.

These results already point out that by using option contracts we are able to modify the
payoff distribution. In this case, it strongly depends on the choice of the execution price K.
When this starts to get bigger than the actual initial price the tail of the distribution over the
losses increases. This means that the risk of losing money is bigger. On the other hand, if the
execution price is kept under the initial price, then the distribution is such that increases the
revenues without compromising much the losses.

This behavior is clearly suited to be recast as an optimization problem, since there is going
to be a perfect choice of parameters that allows the investor to decide between revenues and
risk exposure. This is strongly dependent on the risk aversion of the investor and this is out of
the scope of this dissertation. Therefore, we are going to adopt a conventional and simplistic,
yet widely known and used measure of the performance of each combination of parameters: the
Sharpe Ratio (SR). Th SR is defined as [24]

SR =
E [R]√
Var [R]

, (3.14)

where R simply denotes the returns. What this ratio measures is the expected returns and
penalizes it with the uncertainty on those returns. Maximizing this ratio implies maximizing
the returns while minimizing the variance at the same time. A plot of the SR for different values
of the execution price K is displayed in Fig. 3.6.

This simple criterion already yields an optimal value of the execution price, which is Kopt =
11.2. This fixes all the variables and the investor would be able to make the purchase of the
asset and sell the put options.
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Figure 3.6: Sharpe ratio of the strategy 1 for different execution prices and the following market
parameters.

In practice, this is a very simplistic approach and other measures can be used to assess the
behavior of a portfolio. For example, the Sortino ratio, defined as [25]

SoR =
E [R]−Rtarget

DR
, (3.15)

being Rtarget the target expected returns and

DR =

√∫ Rtarget

−∞
(Rtarget − r)2pR(r)dr , (3.16)

where pR(r) represents the pdf of the returns. This ratio measures the risk-adjusted returns
compared to a target investment assuming a downside risk. It is then analogous to Sharpe’s
ratio but instead of comparing it to a risk-free asset, is compared to this expected or desired
portfolio.

Another ratio that might be considered is the so-called upside-potential ratio. It is computed
as [26]

U =
E [(Rr −Rmin)+]√
E
[
(Rr −Rmin)2−

] , (3.17)

where the new operators are defined as

(ξ)+ =

{
ξ if ξ ≥ 0

0 else
, (3.18)

and (ξ)=(−ξ)+. This ratio measures the upside performance and penalizes the downside risk.

Finally, we can mention the Omega ratio. It is defined as [27]

Ω(θ) =

∫ ∞

θ
|1− F (r)|dr∫ θ

−∞
F (r)dr

, (3.19)
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being F (r) the cumulative distribution function and θ the target return threshold that defines
the frontier between gain and loss. This ratio simply measures the probability of winning over
the probability of losing. Therefore, it can shed light not about the expected return but rather
the chances of improving with respect to the threshold θ.

In practice, since this optimization criteria is strongly dependent on the investor or its client,
we will restrict our optimization to that of maximizing the Sharpe ratio. In the end it is a simple,
universal, and widely accepted metric and already provides a quantity that measures at the same
time the expected returns and the risk in the operation. If in the future another criterion is
used, it is left to the reader to check whether the other ratios perform well and really contain a
maximum.
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4 — Application to a real market

In this last section the methods proposed will be applied in a real financial market. The main
idea is to test the range of validity of them and to answer the main question of this dissertation
which is whether we can actually improve the revenues by applying option contracts to a value
investing scenario.

4.1 Bayesian inference

The first step needed to be able to test our strategies in a real environment is to obtain the
parameters of the market. This is, starting from the general stochastic differential equation as

dSt = µ(t, St|θθθ)dt+ σ(t, St|λλλ)dWt , (4.1)

where we have explicitly included the dependency of the drift and volatility on two vectors, θθθ
and λλλ, we will estimate precisely the values of these hyperparameters of each model.

The basic theory of Bayesian Inference (BI) relies on Bayes’ Theorem, since the posterior
probability of the parameters that we are looking for will be

p(θθθ,λλλ|S) = L(θθθ,λλλ|S)π(θθθ,λλλ)
Z

, (4.2)

being π(θθθ,λλλ) the prior distribution of the parameters, SSS = {S0, S1, ...SN} the vector containing
the discrete samples at times t = i∆t, i ∈ [0, N ], the Bayesian evidence defined as

Z =

∫
p(θθθ,λλλ|α)p(α|S)dα =

∫
ΩΘΘΘ

L(ΘΘΘ)π(ΘΘΘ)dΘΘΘ , (4.3)

and the likelihood function [12], [13]

L(θθθ,λλλ|S) =
N∏
i=1

1√
2πσ2(Si−1|λλλ)∆t

exp

{
− 1

2σ2(Si−1|λλλ)∆t
(Si − Si−1 − µ(Si−1|θθθ)∆t))2

}
. (4.4)

To easily deal with the large values that usually the likelihood can take we will use the
log-likelihood instead. This is

logL(θθθ,λλλ|S) = −N log(
√
2π∆t)−

N∑
i=1

log [σ(Si−1|λλλ)]−
1

2∆t

N∑
i=1

[
Si − Si−1 − µ(Si−1|θθθ)∆t

σ(Si−1|λλλ)

]2
.

(4.5)
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The technique to sample from the posterior distribution that will be used is that known as
Nested Sampling (NS). This is a set of algorithms that allow for a fast sampling of the posterior
distribution only by evaluating the likelihood and drawing samples of the prior. At the same
time it outputs the Bayesian evidence.

Firstly introduced by Ref. [14], this method consists in evaluating the evidence over the
prior volume as

Z =

∫ 1

0
L(X)dX , (4.6)

where

X(λ) =

∫
ΩΘΘΘ:L(ΘΘΘ)≥λ

π(ΘΘΘ)dΘΘΘ . (4.7)

The term X is known as the cumulant prior mass and covers all likelihood values greater
than λ. This means that we are dividing the space into different iso-likelihood contours in a
high-dimensional space of values defined by λ [15]. Dividing the space by m points ordered such
as

0 < Xm < ... < X2 < X1 < 1

allows for a simple estimation of lower bound of the evidence as [14]

Zlb =

m∑
i=1

(Xi −Xi+1)Li (4.8)

while an upper bound is

Zub =
m∑
i=1

(Xi−1 −Xi)Li +XmLmax . (4.9)

With this information a simple trapezoidal rule or any other traditional integration technique
can be used to find the evidence. For example, applying a second-order trapezoidal rule we get
that [15]

Ẑ =
∑
∀i

p̂i , (4.10)

with

p̂i =
1

2
[L(ΘΘΘi−1) + L(ΘΘΘi)] [Xi−1 −Xi] . (4.11)

The interesting property of this method is that as a consequence we can obtain very easily
samples of the posterior probability function as [15]

p(θθθ,λλλ|S) = Ẑ−1
∑
∀i

p̂i(ΘΘΘi)δ(ΘΘΘ|ΘΘΘi) . (4.12)

Additionally, from the evidence outputted by the NS algorithm, Ẑ, we can easily compute
an estimation of the Bayes Factor between two models as

B̂ =
ẐM1

ẐM2

π(M1)

π(M2)
, (4.13)

and assuming that the prior probabilities of each model is the same and taking the logarithm,
the log-Bayes factor is

log B̂ = log ẐM1 − log ẐM2 . (4.14)

Jeffrey’s criterion states that if log B̂ > 2 there is strong evidence of M1 being better than
model M2 to explain the data, while if log B̂ < 0 the opposite is true [28].
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4.2 S&P500

We can try to apply the strategies employed to one of the most widely known indices: the
S&P500. This is one of the most capitalized indices used in the financial market and represents
of the order of an 80% of the entire market capitalization [5]. This ETF is constructed taken the
500 most important companies as estimated by the firm Standard & Poors. By its construction,
it is one of the most representative indices of the entire situation of the market and, therefore,
it is considered as the most stable financial product based on equities [5]. This is why it is
interesting to use this index instead of a precise company, but the methodology described is
general enough to be adapted to any financial product as long as it admits option trading.

The priors chosen for the different market models employed in this work are detailed in Tab.
4.1 and with all this information the NS can be performed for each one of them.

Model Variable Distribution

Linear
µ Uniform(0.1, 5)
σ Uniform(10, 40)

Geometric
µ Uniform(10−4, 10−3)
σ Uniform(10−3, 10−2)

CEV
µ Uniform(10−4, 10−3)
σ Uniform(10−2, 10−1)
γ Uniform(0, 3)

Schwartz
µ Uniform(1, 10)
σ Uniform(10−4, 10−2)
γ Uniform(10−4, 10−2)

Table 4.1: Priors used for the nested sampling when applied to the S&P500 market for various
market models.

In Figs. 4.1, 4.2, 4.3, 4.4 the posterior distributions of the parameters obtained with the
nested sampling are presented. In Ref. [12] the Maximum Likelihood Estimators (MLE) are
found for the linear model and equal

µ̂ =
ST − S0

T
≈ 0.76 , (4.15)

for the mean and

σ̂ =

√√√√ 1

T

n∑
i=1

(∆Si)2 −
2

nT
(ST − S0)2 ≈ 15.54 , (4.16)

for the volatility. These numbers are in extreme agreement with those obtained with the nested
sampling algorithm as displayed in Fig. 4.1. Therefore, we can assume that they are valid
and use those estimations of the mean and variance to proceed with the optimization of the
strategies.

The results of the NS are summarized in Tab. 4.2 while the Bayes factors compared to the
linear case are then:

• logBGeometric = 6, 034

• logBCEV = 6, 033
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Figure 4.1: Posterior distribution of the parameters for the linear model obtained with the
nested sampling algorithm.

Figure 4.2: Posterior distribution of the parameters for the geometric model obtained with the
nested sampling algorithm.
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Figure 4.3: Posterior distribution of the parameters for the CEV model obtained with the nested
sampling algorithm.
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Figure 4.4: Posterior distribution of the parameters for the Schwartz model obtained with the
nested sampling algorithm.
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• logBSchwartz = 6, 021

Using Jeffrey’s criterion, we can conclude that there is a very strong evidence towards the
linear model. We therefore might adopt that one for the rest of the analysis of the real market.

Model logZ µ σ γ

Linear −4, 167 0.76+0.10
−0.09 15.53+0.06

−0.06 −
Geometric −10, 201 4.70× 10−4+0.18×10−4

−0.20×10−4 3.26× 10−3+0.2×10−5

−0.2×10−5 −
CEV −10, 200 4.41× 10−4+0.33×10−4

−0.32×10−4 14.85× 10−3+2.73×10−4

−2.28×10−4 0.80+0.02
−0.02

Schwartz −10, 188 7.63+0.01
−0.01 3.25× 10−3+0.1×10−5

−0.1×10−5 5.37× 10−3+0.26×10−3

−0.28×10−3

Table 4.2: Results obtained with the nested sampling when applied to the S&P500 market for
various market models.

4.3 Optimizing the parameters of the strategy

With the parameters found in the previous section, we can optimize our strategies’ hyper-
parameters so that are the theoretical optimal ones.

We perform a set of MC simulations using the procedure described in Sec 3.1 with the best
fit parameters. The results, alongside the true market evolution is presented in Fig. 4.5. With
this MC sample paths we can repeat the procedure of testing the strategy proposed.

Figure 4.5: Simulated paths for the S&P500 alongside the real data. Time is in trading days
after the 21/11/2012. The vertical dashed line indicates the split between the set of data used
to find the model hyperparameters and the testing set of data.

The first thing to compute is the pdf of the buy and hold strategy and compare it to that of
the strategy 1. This is displayed in Fig. 4.6 for two different values of the risk-free interest rate.

The first interesting conclusion that we can extract is that the level of the risk-free interest
rate, which usually is bounded to the bonds, is a key parameter in order for the strategy to
succeed. If this is too high, then the premium paid for the puts is so low that the actual strategy
yields the same revenue as the buy and hold strategy or does even worse if the execution price
is too high. On the other hand, if the risk-free is relatively low (as we have also been seeing
after the great recession) then there is margin for this strategy to increase the revenues. It is
important to stress out that the way in which the value of the premium has been computed
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Figure 4.6: Probability density functions for the paths simulated using the best fit parameters
for the buy and hold and the strategy 1.

is by applying the Black-Scholes formalism and the real market makers might opt for different
calculation techniques and, therefore, yielding different results.

In any case, we can plot the SR for both of these cases and optimize the strategy accordingly.
This is displayed in Fig. 4.7.

Figure 4.7: Sharpe ratio for different calues of the execution price obtained with the simulated
paths of the S&P500 fit parameters.

The optimal execution price for the scenario in which the risk-free rate is of r = 0.001 equals
Kopt = 1465. This would be all needed to place the orders in the market.

4.4 Testing the strategies with the real market

Now that the strategies have been tuned to be theoretically optimal in our parametrization
of the market, we can finally ask ourselves what would have been the actual outcome if we would
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have applied it.

The results are summarized in Tab 4.3. It becomes clear how in the context studied we can
indeed increase the revenues by using a strategy based on option pricing. The increase in the
revenues, though, is highly dependent on the premium paid for the puts and this, in its turn,
depends on the market conditions, execution price and maturity. We can only choose the two
latter but as displayed in Fig. 4.6 if the market conditions are not favorable there is no choice
of a set of parameters that can improve the outcome.

Payoff Returns Annualized returns Improvement

Buy and Hold 1, 129.93 52.5% 19.2% −
Strategy 1 (r = 0.02) 1, 129.93 52.5% 19.2% 0%

Strategy 1 (r = 0.001) 1, 696.51 78.9% 28.8% 9.6%

Table 4.3: Comparison of the performance that would have been obtained with the different
strategies if they would have been applied in the S&P500 index.

These results are very promising. In the context of low interest rates, the premiums payed
for the puts are high and, therefore, it is a good scenario to apply this strategy. In the particular
case of the S&P500 we could have increased the revenues by a 26% by applying this strategy
instead of the buy and hold. This is equivalent to an extra 9.6% annually.

As a final remark, it is important to point out that those numbers are subject to the actual
conditions that we have established. These are that the pricing of the put is computed using
a Black-Scholes model and that we knew the intrinsic value. Both of them can have a strong
impact if in a real situation are different or just unknown. Specially, not knowing how a premium
is computed can compromise the optimization procedure and, as we have also shown, if this is
not correctly chosen it can even increase the losses. Leaving these caveats aside, we have shown
that it’s still possible to find a situation in which option contracts can really increase the outcome
of an investment.
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Conclusions

The main question to be answered in this dissertation was whether there is a way to increase
the revenues using option contracts under the traditional assumptions made in value investing
philosophies. To do so, the mathematical concepts around stochastic differential equations and
its analytical and numerical treatment have been explained. To perform the latter, a Monte
Carlo approach has been followed and with its results a proper study of the performance of the
strategies proposed has been made.

Some of the key results obtained with the mock market are that there are combinations of
parameters that allow an increase of the revenues compared to only following a buy and hold
strategy. They also provide an evidence of some combinations that are worse. Therefore, there
is margin for an optimization of the strategy hyperparameters to find the optimal value that fits
the investor’s investing style.

Then, a Bayesian inference has been performed over real data of the S&P500 index to find
the best stochastic model and its parameters. With this, a set of Monte Carlo simulations
has been performed in order to evaluate the strategies performance under this realistic market
conditions. The results have pointed out that that the effect of the risk-free interest rate is very
relevant. If this is too large, the premium collected of the puts is very small and there is no
difference when compared to the buy and hold strategy. On the other hand, when the risk-free
interest rate is low enough, then there is room to increase the revenues.

Summarizing, we have shown that indeed it is possible to increase the revenues by using
option contracts under the conditions assumed by the value investing community.
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Assessment

First of all, I would like to thank the director of this thesis, Prof. Dr. Aslanidis, to support
it from the very beginning and for giving me the freedom to develop this project. I know that
this topic is not common at all in a Bachelor’s degree of this kind. For me it has been very
fruitful having done it, since for personal interests I wanted to develop a project more focused
on the theoretical side and in a quantitative field. Similarly, it has a real world application in
the financial sector and for future job or graduate schools applications it might be an interesting
way of showing my interests and capabilities to the recruiters.

Completing this project has been definitely challenging. I have done the vast majority of it
while being abroad, as my primary occupation is as a PhD student in Physics and I was visiting
the California Institute of Technology (Caltech), in the US, during this semester. Therefore,
sometimes meeting the time constraints has been somehow difficult, but in the end, managing
to finish it has been a great experience. Also, being able to apply my knowledge of data science
and mathematics, which I do as part of my PhD, in the area of economics, has been extremely
interesting.
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Self-evaluation

This project has many positive aspects that I would like to highlight. The first of them
is that it requires more knowledge than the one expected from someone graduating from this
Bachelor’s degree. The level of mathematics, data science and statistics involved exceeds the
contents covered during the studies. Similarly, the methodology employed I believe is new and
innovative, as I have not seen it in the available literature. I therefore believe that is a good
point for this project to having contributed in advancing the knowledge on the topic with a
quantitative approach. A third major point is that of the results. In my opinion they are
very good, promising, they correctly answer the question asked at the start of the project and,
moreover, they point out that these kind of strategies can produce extra revenues. But this
is no longer an intuitive result but rather the result of a thorough study that combines both
analytical and numerical techniques that quantitatively support these claims.

On the other hand, there are some caveats or possible improvements that I believe are worth
mentioning as well. The first of them is that due to time constraints the amount of strategies
tested is not long enough. In the end, numerically only one has been evaluated and put into test
and it is, in fact, a very simple one. Similarly, the amount of assumptions carried out, such as
the valuation of option premiums using the plain Black-Scholes model or that the intrinsic value
is known; may prevent this work from being already prepared to be applied in a real company.

These two major negative points have a straight-forward solution, which is assessing other
strategies that might be more complicated and trying to reduce the number of assumptions.
Both of them should be considered for future work before implementing them in a real situation
with real money at stake. In any case, the methodology employed, the codes used and the theory
described in the project establish correctly the grounds to include these changes immediately.
In other words, this project has settled the grounds of this analysis.
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