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Resum del Treball 

Com a conseqüència de la crisis climàtica, la comunitat científica està dedicant 

cada vegada més esforços en el desenvolupament d’alternatives sostenibles 

als combustibles fòssils. Encara que no es tant conegut com l’energia eòlica o 

solar, l’ús de microorganismes i/o dels seus components cel·lulars per a la 

producció de biocombustibles i altres bioproductes està guanyant rellevància. 

No obstant, a llarg termini, aquests processos requereixin una important 

optimització per a que siguin econòmicament rentables. Històricament, 

aquesta optimització s’ha fet de forma un tant precària i a través de l’ús de 

mètodes subòptims (p.e. COST: change one single variable at a time). En 

qualsevol cas, si apliquem un disseny experimental i les eines computacionals 

adequades, podem obtenir resultats força robustos sense invertir ni massa 

temps ni massa esforç.  



   

En aquest projecte, volem aplicar el disseny d’experiments (DoE) i alguns 

algoritmes de Machine Learning (Naive Bayes, Support Vector Machines, 

Random Forests, Artificial Neural Networks) per a optimitzar un procés 

bioindustrial per a l’empresa Photanol, l’objectiu de la qual es transformar CO2 

i llum solar en àcids orgànics a partir de soques modificades genèticament del 

cianobacteri Synechocystis PCC 6803. Sense entrar més en detall, la nostra 

finalitat és -mitjançant l’ús de classificadors- identificar aquelles combinacions 

de pH, temperatura i osmolaritat (π) que resulten en una taxa de consum 

d’àcid làctic -dels contaminants biològics que habiten els nostres reactors- 

segura (β < 0.1 mM/dia).  

Abstract 

Because of the climate crisis, the scientific community has been developing 

and exploring carbon neutral alternatives to fossil fuels. Although it is not as 

well-known as wind or solar energy, the use of microbial cell factories to 

produce biofuels and other bioproducts is gaining prominence lately. 

Nonetheless, on the long term, those processes require an important 

optimization to make them feasible and economically profitable. Historically, 

this optimization has been carried out by using suboptimal methods (e.g. 

COST: change one single variable at a time). Nevertheless, by applying the 

proper experimental design and by using the adequate computational tools, 

we can obtain solid results without investing too much time or effort. In this 

project, we aim to use design of experiments (DoE) and some Machine 

Learning algorithms (Random Forests, Support Vector machines, Artificial 

Neural Networks) to optimize a bioindustrial process for the company Photanol, 

whose goal is to turn CO2 and sunlight into organic acids by cultivating 

genetically engineered strains of the photosynthetic cyanobacteria 

Synechocystis PCC 6803. Without going yet into further detail, our goal is to -

through the use of classifiers- identify those combinations of pH, temperature 

and osmolarity (π) that result in a safe lactate consumption rate of the 

biological pollutants that inhabit our photobiorreactors (β < 0.1 mM/day). 
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1. Introduction 
 

 

1.1. Background and justification of the MTP 

1.1.1. General description 

 

Recently, the use of fossil fuels has been recognized as unsustainable because 

of their non-renewable nature and influence on the accumulation of CO2 and 

other harmful gases in the atmosphere. Since the oil crisis in the 1970s and due 

to the increasing demand for food, energy, and valuable chemicals, research and 

development on renewable, novel, and sustainable processes has been carried 

out. Nevertheless, to outcompete and replace fossil fuels, these processes must 

be reliable and economically profitable to build and operate1. The use of biological 

matter as a feedstock to generate fuels and valuable chemicals is a promising 

alternative that could make the economy more sustainable, being this sector 

declared to have potential for future growth, reindustrialization, and approaching 

societal challenges2.  

 

Currently, most bio-based industrial processes revolve around the conversion, 

via microorganisms, of carbohydrate compounds into diverse array of valuable 

chemicals, such as amino acids, vitamins, and organic acids. Unfortunately, for 

these production platforms, the cost of the carbohydrate feedstock is a significant 

fraction of the total expenses. In response to this problem, the use of 

photosynthetic organisms has been shown as an alternative approach, in which 

these costs could be eliminated. In addition, with the concern about global 

warming, the interest in processes that couple CO2 capture to chemical synthesis 

is increasing3. Currently, two major technologies are employed with 

photosynthetic organisms. First, plant-based biofuel production via fermentation 

of its sugar content to ethanol and, secondly, algae derived biodiesel production 

through lipid extraction of biomass from large-scale cultures. Both technologies 

consist essentially of two phases. First, solar energy and CO2 are converted into 

highly complex molecules and structures. In the second phase, a small fraction 

of these cellular components is converted to small molecules (as ethanol) in the 

case of plants, or are extracted and converted chemically to fatty acid-methyl 

esters in the case of algae. Hence, much of the light energy is lost in 

nonfermentable waste. In addition, both processes are limited by the capacity of 

the phototrophs to intracellularly store the substrates to be fermented or 

extracted4. Thus, although the use of photosynthetic organisms seems to yield 

some advantages compared to heterotrophic fermentative microorganisms, 

further research needs to be conducted to increase the overall efficiencies. 
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The use of engineered photosynthetic microorganisms as catalytic units, 

continuously producing bio-products extracellularly would minimize the number 

of steps from starting material to product and would not suffer from the 

disadvantages previously presented. Looking over the metabolic pathways which 

occur in photosynthetic organisms and in chemoheterotrophs (Fig. 1), we can 

observe that glyceraldehyde-3-phosphate (GAP) is in a central position for both.  

 

 
 
Figure 1: Schematic representation of the photofermentation concept. This idea is based on the 
introduction of a fermentation metabolic pathway from a chemotroph into a photosynthetic 
microorganism. Merging of both pathways occur through the central metabolite GAP (Angermayr 
et al., 2009). 

 

 

For the former ones, GAP is a key metabolite in the Calvin cycle, whereas, for 

the latter ones, it plays the role as intermediate in numerous anaerobic catabolic 

pathways. The essence of the Photanol concept is then, using the methods of 

synthetic biology5, to design and construct a metabolic network which combines 

phototrophic and fermentative metabolism into a new network that uses H2O, 

CO2, and solar energy as input and has a fermentation product as output. This 

type of metabolism, which we refer to as Photofermentation, involves a minimal 

number of steps in the conversion of CO2 to biofuel, by bypassing the formation 

of the complex set of molecules of biomass. Therefore, the theoretical efficiency 

of biofuel production can be significantly increased as compared to first-

generation and second-generation biofuel production processes. This approach 

is not limited to ethanol, but rather allows for a range of products as broad as 
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those from glycolysis-based fermentations found in nature. Thus, a collection of 

strains can be envisaged, obtained by introducing the proper fermentation 

cassette through the application of molecular genetic engineering. Diverting the 

carbon flow from GAP to some product, away from the natural flow toward cell 

synthesis, will usually lower the organisms’ fitness. Therefore, the physiological 

effects of genetically introducing a metabolic pathway into a microbe are 

extremely difficult to predict and it should be realized that it is just the first step. 

Controllable and stable expression demands thorough understanding of the 

organism’s genetic, regulatory, and metabolic makeup. Obviously then, the 

choice of the organism to use as a production platform in a Photanol approach 

should be guided by our level of knowledge of the organism6. 

 

Despite the potential of photosynthetic microorganisms (hereafter microalgae) for 

bio-based industrial processes, large scale culture technologies usually fail to 

produce high titers of biomass and bioproducts. One of the main causes, is the 

presence of biological pollutants, mainly heterotrophic bacteria and fungi, which 

use some nutrients present in the medium and the extracellular polymeric 

substances (EPS) and soluble microbial products (SMP) produced by 

cyanobacteria7,8. Therefore, these contaminants compete for nutrients and 

consume the bio-products, reducing the efficiency of the overall processes. 

Moreover, the presence of biological pollutants might cause sudden and massive 

death of microalgal cells. To overcome the challenges that these biological 

pollutants arise, substantial research has been conducted to find feasible 

strategies to control them. Traditionally, some attempts have been directed 

towards filtration9 or the addition of chemicals to kill or inhibit the pollutants. 

Among them, the most commonly used options are pesticides, quinine 

sulphate10, formaldehyde, ammonia or hydrogen peroxide11,12. Even though, the 

use of chemicals is a viable solution, these substances tend to also compromise 

the growth and productivity of the production strains. Therefore, as an alternative, 

it is quite common to adjust the environmental conditions to an optimum range at 

which the native microalgae have a favorable growth status while the biological 

pollutants have not. Adjusting the pH to acidic or alkaline values is the most 

common approach but there are other alternatives as using thermophilic and/or 

halophilic strains that can handle high temperature and salinities13,14.  

 

1.1.2. Justification of the MTP 

 

One of the main issues that we must face when trying  to optimize an industrial 

process, is the lack of time and resources15. As we will mention in the coming 

sections, neither the COST (change one factor at a time) nor the FFD (full factorial 

design) designs are feasible for our case. The former would lead to suboptimal 

results whereas the latter would involve an unrealizable number of experiments. 

Design of experiments (DoE) offers a promising solution to estimate proper 
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operating conditions. This approach has been successfully employed to develop 

and optimize processes in the pharmaceutical, chemical, and food industries16. 

Nevertheless, in a classical DoE approach, Linear Regression-like algorithms are 

used. These techniques have some limitations, including the shapes that they 

can use to model data, poor extrapolation properties, and sensitivity to outliers17. 

Modeling with some Machine Learning algorithms overcomes many of these 

shortcomings by implementing many smaller models to interpret sections of data. 

Therefore, in this project we intend to use few of these algorithms jointly with 

Oversampling and Cross Validation techniques to model our data and, in 

consequence, to optimize our bioindustrial process. In fact, this project is crucial 

for the subsistence and success of our company serving as a precedent for other 

optimization projects that can be carried out in the future. In general, R18 will be 

our preferred coding language. Mainly, this decision was based on the fact that 

this language is open source, has excellent tools for data visualization and we 

are extensively used to its syntax. Besides, the R language has become very 

popular because it contains powerful libraries that easily combine different 

machine learning techniques. It also provides a simple way to share code 

between researchers. 

 

 

1.2. Objectives 

1.2.1. Main objectives 

 

• Definition of those combinations of pH, temperature and osmolarity which 

lead to a safe lactate consumption rate (β ≤ 0.1 mM/day). 

• Construction of some classifiers based on Machine Learning algorithms 

that are capable of discerning between safe and not safe experimental 

conditions. 

 

1.2.2. Specific objectives 

 

Literature review 

 

• Characterization of other studies that rely on DoE. 

• Preselection of few Machine Learning classifiers that fit our data type. 

 

Experimental design & data gathering 

 

• Contextualization of the problem. 
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• Definition of an experimental design that implies a reasonable number of 

experiments that can be carried out in a realistic time frame.  

• Guarantee the repeatability of the experiments. 

 

Exploratory Data Analysis (EDA) 

 

• Descriptive analysis of the data. 

 

Modelling  

 

• Application of oversampling techniques to overcome class imbalance. 

• Construction of an array of classifiers based on the following Machine 

learning algorithms: 

o Naïve Bayes. 

o Random forests. 

o Artificial Neural Networks. 

o Support Vector Machines. 

 

• Assessing the performance and hyperparameter optimization over the 

classifiers. 

• Selection of the best algorithms. 

• Making predictions and validating the classifiers. 

• Identification of patterns and visualization of the predictions. 

• Updating the classifiers. 

 

1.3. Environmental, ethical, and social impact 
 

During the redaction of this thesis we decided to make use of plural first-person 

pronouns. The rationale behind this decision was, first, to avoid using biased or 

sexist language and, secondly, to acknowledge other researchers and students 

that participated directly or indirectly in this project. Therefore, we assured that 

there are no negative connotations towards any gender in this report. Regarding 

the environmental impact of this MTP, the main milestone of this project was, 

after all, to optimize our bioindustrial processes and, as a consequence, make 

our platform an economically feasible alternative to fossil fuels. Although 

Photanol is still a significantly young company, we work hard to restore the 

balance in our planet and inspire other companies and investors to join the 

change.  
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Besides, it is also important to mention that during the execution of the cultivation 

experiments and all the work related to the data gathering we tried to minimize -

as much as possible- the use of disposable material and to diminish the amount 

of generated waste. Finally, in terms of the ethical impact of this project, my only 

concern is that Photanol protects a significant part of its knowledge through the 

use of patents. Even though I am aware of how research works in the private 

sector, and I can understand that companies of the size of Photanol need to 

prevent others from copying or selling their concept, personally, I believe in a fully 

open and unrestricted scientific model. These thoughts are even stronger when 

talking about research that has to do with environmental issues and climate 

change. 

 

 
1.4. Approach and methodology 
 

This MTP has been divided into two main sections. The first part revolves around 

the experimental design and the gathering of the data whereas the second block 

relies on the modelling of this data. We will start by conducting an extensive 

literature review that will provide us with an idea of the methodology that other 

researchers used to tackle similar cases and that will guide us through the 

process of defining a solid experimental design. Amongst others, this will involve 

defining the range of values that we want to evaluate for each of the predictors, 

the number of experiments that will define each of the experimental subspaces, 

the duration of the experiments and the execution of some preliminary tests. 

Besides, this plan will be discussed with a team of professionals that will ensure 

its robustness. Once the experimental design is ready, we will start carrying out 

the cultivation experiments where we will monitor the variation of our predictors 

and our response variable. As opposed to most MTPs carried out in this program, 

the data gathering will constitute a big part of our project. In any case, once all 

the data has been collected, we will advance to the phase that is most relevant 

for this MTP: the data analysis. In general, R18 is going to be our preferred coding 

language, but it might be that we use some Python19 libraries for the graphical 

visualization of the results. After conducting a descriptive analysis of this data 

(EDA), a set of classifiers based on some of the most popular Machine Learning 

algorithms will be built. Then, the hyperparameters for each of these algorithms 

will be optimized and the performance of the classifiers will be compared. The 

best classifier will be selected and used to make predictions over unseen data. 

Afterwards, the outcome of these predictions will be analyzed and plotted to 

identify some underlying patterns. Some predictions will be validated by carrying 

out some extra cultivation experiments in the lab. Finally, the classifier that was 

used to make the predictions will be updated and a new and improved version 

will be released. 
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1.5. Planning 

1.5.1. Main tasks and prioritization 

 
Hereafter, a list containing the main tasks and their respective time frames is 

attached.  

 

• Experimental design (3-10-22, 7-10-22). 

• Isolation, characterization, and stocking of the (3-10-22, 7-10-22). 

• Selection of the best experimental setup and preliminary tests (3-10-22, 7-

10-22). 

• Evaluation of the first experimental subspace (10-10-22, 25-10-22).  

• Evaluation of the second experimental subspace (25-10-22, 7-11-22). 

• Evaluation of the second experimental subspace (7-11-22, 21-11-22). 

• Algorithm preselection (7-11-22, 12-11-22). 

• Oversampling and construction of the first prediction models (21-11-22, 

25-11-22). 

• Evaluation of the model performance and parameter optimization (21-11-

22, 25-11-22). 

• Selection of the best model and running predictions (21-11-22, 25-11-22). 

• Validation of the predictions (28-11-22, 12-12-22). 

• Updating the models and new predictions (12-12-22, 16-12-22). 

• Identification of patterns in the data and conclusions (12-12-22, 16-12-22). 

• Redaction of the project report (3-10-22, 15-01-23). 

• Preparation of the presentation (27-12-22, 15-01-23). 

 

1.5.2. Calendar 

 
Regarding the plan of the Project, we thought it would be very beneficial to inform 

about the phases of this project through a Gannt diagram. 
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TASK START END l m m j v s d l m m j v s d l m m j v s d l m m j v s d l m m j v s d l m m j v s d l m m j v s d l m m j v s d l m m j v s d l m m j v s d l m m j v s d l m m j v s d l m m j v s d l m m j v s d

Experimental design and

 preparation of the equipment

Experimental design 3-Oct-22 7-Oct-22

Isolation, characterization and 

stocking of the contaminants
3-Oct-22 7-Oct-22

Selection of the experimental setup 

+ first test
3-Oct-22 7-Oct-22

Testing the first experimental 

subspace
10-Oct-22 25-Oct-22

 Testing the second experimental

 subspace
25-Oct-22 7-Nov-22

Testing the thrid experimental 

subspace
7-Nov-22 21-Nov-22

Data analysis and modeling

Preselection of algortihms 7-Nov-22 12-Nov-22

Oversampling + construction 

of the first prediction models
21-Nov-22 25-Nov-22

Evaluation of the model 

performance
21-Nov-22 25-Nov-22

Parameter optimization 21-Nov-22 25-Nov-22

Selection of the best models 21-Nov-22 25-Nov-22

Running predictions 21-Nov-22 25-Nov-22

Validation of the predictions 28-Nov-22 12-Dec-22

Updating the models + new 

predictions
12-Dec-22 16-Dec-22

Evaluation of the results

Identification of patterns in the data + 

conclusions
12-Dec-22 16-Dec-22

Graphical representation of the 

experimental space
12-Dec-22 16-Dec-22

Redaction of the report

Preparation on the presentation 27-Dec-22 15-Jan-23

Redaction of the report 3-Oct-22 15-Jan-23

oct 3, 2022 oct 10, 2022 oct 17, 2022 oct 24, 2022 oct 31, 2022 nov 7, 2022 nov 14, 2022 nov 21, 2022 ene 2, 2023nov 28, 2022 dic 5, 2022 dic 12, 2022 dic 19, 2022 dic 26, 2022
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1.5.3. Milestones 

 
To ensure the fulfillment of all the project stages and, therefore, submit the final 

report before the deadline (15/01/2023), we decided to stablish several 

milestones with their respective deadlines. This way, we will be able to strictly 

monitor the project and we will avoid facing organization issues.  

 
 

• Milestone 1: finish the experimental design (7/10/2022). 

• Milestone 2: characterization and preparation of the contaminant stocks 

(7/10/2022). 

• Milestone 3: submit the work plan (17/10/2022). 

• Milestone 4: bibliographic research, algorithm preselection (12/11/2022). 

• Milestone 5: finish the data gathering for all the experimental subspaces 

(21/11/2022). 

• Milestone 6: descriptive analysis of the data (28/11/2022). 

• Milestone 7: submit PEC2 (21/11/2022). 

• Milestone 8: data modeling and evaluation of the performance of the 

preliminary models (25/11/2022). 

• Milestone 9: model optimization and selection of the best model 

(25/11/2022). 

• Milestone 10: making predictions with the models (25/11/2022). 

• Milestone 11: model validation (12/12/2022). 

• Milestone 12: updating the model and making new predictions. 

• Milestone 13: identification of patterns in the predictions (16/12/2022). 

• Milestone 14: graphical representation of the experimental space 

(16/12/2022). 

• Milestone 15: submit PEC3 (24/12/2022). 

• Milestone 16: submit final report and the presentation (15/01/2022). 

• Milestone 17: thesis public defense (03/02/2023). 
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1.6. Risk analysis 

1.6.1. Data gathering 

 

• Limited amount of time for the data gathering: considering that each of 

the experiments will take approximately 2 weeks and that the amount of 

photobioreactors that we have available is limited (≈ 8-9), the number of 

experimental subspaces that we will be able to test is limited. In 

consequence, we think that 3 subspaces are a realistic number. 

• Reproducibility: during the project, 2 types of photobioreactors will be 

used (PSI, Applikon). Although the experimental conditions will be the 

same, some important features as the morphology, the volume or the 

agitation and aeration systems are slightly different. Therefore, it is 

mandatory that we prove that both setups generate comparable outcomes 

by carrying out some validation experiments. 

 

1.6.2. Data analysis 

 

• Reliability of the predictions: previously, in this section, we anticipated 

that we will probably manage to test 3 experimental subspaces (27 

experiments). This implies that our models will be built with a limited 

amount of data. Although there are some algorithms that perform quite 

well with little data or we can use some resampling (Bootstrapping) or 

some validation techniques (k-Fold Cross validation) to improve the 

prediction performance, we must understand that the reliability of our 

models will be a bit limited and, therefore, we will have to be very critical 

with the interpretation of the predictions. 

• Type of data: we can already anticipate that for several experiments, we 

will obtain null lactate consumption rates (β = 0 mM/day). This will signify 

that we will have to deal with a zero-inflated distribution and, in 

consequence, class imbalance. It is crucial to realize that this phenomenon 

will directly affect the type of algorithm that we will use and will imply using 

some oversampling techniques to balance the data. 

 
 
1.7. Expected results 
 
Through the application of the procedure explained in the coming sections, we 

expect to obtain a classifier that can predict -with high accuracy- whether a 

specific combination of pH, T, π leads to a safe β (β ≤ 0.1 mM/day) or not (β > 

0.1 mM/day).  
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Considering the knowledge that Photanol has gathered over the years, we can 

anticipate that, regardless of the temperature and π, all those experimental 

conditions with pH ≥ 11.5 will result in a null or very low β and, therefore, will be 

safe. On the other hand, if we focus our attention on the temperature, based on 

information found in the literature, we can predict that those experiments with ≥ 

50˚C will also be safe. In the case of π we ignore what to expect. Honestly, we 

foresee that those conditions with π ≥ 1 M NaCl will be safe, but we cannot affirm 

it. Additionally, we suspect about the existence of a correlation between these 

factors, but we ignore how strong is the interaction. In fact, we know that if we 

increase the value of one of these factors, we can lower the other ones without 

making our process unsafe. In consequence, it is crucial to understand how these 

factors behave and which impact they have on the definition of our experimental 

space. As soon as we obtain this information, we can overlap the safe regions of 

our experimental space (safe consumption envelope) with the space defined by 

the boundaries of our bioindustrial process (industrial envelope) and the limits of 

the candidate strains (strain envelope). As a result, we will obtain a fourth space 

that will contain those conditions that are safe and feasible for our bioindustrial 

process (operational envelope) (Fig. 2). 

 
 

 
 
 
Figure 2: Venn diagram showing the convergence (known as operational envelope) between the 
safe consumption envelope (blue), industrial envelope (green), and strain envelope (turquoise). 

 
 
 
1.8. Structure of the MTP 

1.8.1. CAA1 

 
Definition and work plan.   

safe 
consumption 

envelope

strain 
envelope

industrial 
envelope
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1.8.2. CAA2 

 
Work development (phase 1). Since before the end of this phase we will not be 

able to finish the data gathering, we will keep focus our efforts on the first two 

specific objectives. Besides, we will start redacting the Materials & Methods and 

State of the art sections. 

 

1.8.3. CAA3 

 

Work development (phase 2). This will include the third and fourth specific 

objectives and is going to be the busiest part of the MTP. On the one hand, it will 

include the EDA, the modelling of the data, the optimization of the classifiers and 

the execution of the predictions. Moreover, we will focus the rest of our attention 

on finishing the redaction and submitting the first version of our memory. 

 

1.8.4. CAA4 

 
Final report and presentation. During this phase, we will align with our supervisor 
in order to  
 

1.8.5. CAA5 

 
Public defense in front of the board of examiners. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



13 
 

2. State of the art 
 

 

2.1. The COST approach 
 
Since the foundation of Photanol -but especially since last year- we have been 

diverting a large part of our efforts towards the development of contamination 

control strategies for our large-scale Synechocystis PCC6803 cultures. Apart 

from growing our strains at an alkaline pH (≈ pH 11) we also explored other 

options such as increasing the osmotic strength (π) or the temperature. 

Nevertheless, to stablish the effectiveness of those factors we tried always to find 

their optimums independently and sequentially, overlooking the effects of their 

interactions. This approach is usually referred as COST (change one separate 

factor at a time) or OFAT (one factor at a time) and it can lead to suboptimal 

results20,21. For example, let’s suppose that we want to optimize an enzymatic 

process (maximize the yield) by modifying two factors: volume and pH of the 

bioreactor. To do so, we start by defining a range of values (hereafter levels) for 

the factor 1 (volume) and we run a set of identical tests where we only change 

this factor. Once the optimal is defined (V = 550 mL), we fix this value, and we 

find the optimum for the second factor (pH = 4.5). As mentioned, the main issue 

of using this approach is that, since it does not consider the possible interaction 

between factors, it can lead to inaccurate conclusions (Fig. 3). Therefore, to 

overcome these drawbacks, we propose to apply a factorial design.  

 

 
 
Figure 3: Definition of the optimal experimental conditions by COST (empty circles) as opposed 
to the real values (contour plot). 
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In a full factorial design (FFD), we would test the experimental conditions that 

result from all the possible combinations of the levels of our factors. This might 

be an option when we are working with few factors and/or factors that have few 

levels but, since the number of experiments increases exponentially with the 

number of factors/levels (mn; m = levels, n = factors), it soon becomes 

overwhelming and unfeasible (Table 1).   

 

 
 
Table 1: Number of necessary experiments in a full factorial design in respect of the number of 
factors (n) and the number of levels per factor (m). 

 

 

2.2. Design of experiments as an alternative strategy 
 
Given that, in our project, we are planning to test the effect of 3 factors (pH, 

temperature and π) over β, and we intend to evaluate more than 5 levels per 

factor, a full factorial design is not an option (> 125 experiments). For those 

situations we can use a fractional factorial design or FrFD (sometimes also 

referred as design of experiments or DoE)22–24. The goal of this strategy is to 

extract the maximum amount of information regarding the factors from as few 

observations as possible16. Although there are many different designs like the 

Central Composite Design (CCD)20 (Fig. 4B) or the Box-Behnken design (BBD)25 

(Fig. 4C), we decided to use a much simpler design. This consists in defining 2 

levels per factor (-1 and +1), joint crossing them and testing all the possible 

combinations (Fig. 4A). Therefore, we will obtain a cubical space that will be 

delimited by 8 vertices or experimental conditions (hereafter experimental 

subspace). In order to increase the amount of information provided by our 

experimental subspace, we agreed to include an extra experimental condition in 

the centre of the cube that will act as a compass. Depending on the complexity 

of our optimization process and our experimental design of choice, it might be 

that one experimental subspace is enough to model the results and identify 

patterns.  
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Figure 4: Schematic representation of experimental designs for three factors: (A) our design (m 
= 3, n = 2); (B) central composite design (CCD); (C) Box-Behnken design (BBD); and (D) three 
factor and level full factorial design. 
 

 

Nevertheless, in our case, it is very unlikely that 9 experiments will suffice. In 

consequence, we will use a slightly different approach. Our idea is to use the 

optimal outcome of the first experimental subspace to define a second and -

afterwards- a third subspace (Fig. 5). In other words, the experimental design 

shown in Fig. 4A, will be applied -most likely- three times, being every new 

experimental subspace dependent on the previous ones. It is very important to 

clarify that, when defining the optimal vertex of an experimental subspace, this 

does not have to be the one with a lowest β. Other factors as the industrial 

applicability or the physiological boundaries of our cyanobacterial strains are 

crucial and, therefore, will play an important role in our decision. For example, at 

pH ≥ 12 and/or temperatures ≥ 60˚C, β will be probably 0 mM/day but no 

cyanobacterial strain can handle those conditions. Moreover, the energy 

necessary to maintain a bioreactor running at 60˚C is unfeasible. After stablishing 

few experimental subspaces, we could assume that the β for the combination of 

pH, T, π that we obtained is optimal or -at least- way more optimal than the 

combination that we would have obtained by using the COST approach. 
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Figure 5: Definition of the optimal experimental conditions by applying the DoE approach.  

 

 

Reached this point, we can put all the collected data together and model it. 

Basically, the idea behind the modelling is to generate an array of prediction 

models that will allow us to explain how β varies in function to our predictors (pH, 

T, π). In other words, we want to obtain some algorithms that -given some values 

for our predictors- predict whether that experimental condition is safe or not safe. 

In the section Approach and Methodology, we will dive a bit more into the 

methods that we will use for the construction of the prediction models. We will get 

back to that in the next section. 

 

 

2.3. Classical DoE vs our approach 
 

Classically, in DoE, linear regression and ANOVA models are combined to model 

the relationship between a quantitative variable (response) and the predictors 

and to study the interaction within predictors26–28.  Nevertheless, in some 

situations, linear models (LM) might not be the best solution. Previously, 

Rodriguez et al., successfully applied artificial neural networks as an alternative 

to LM29. Getting back to our case, since we ignore if the distribution of our data is 

linear, it might be more adequate to use non-linear algorithms. Moreover, since 

we expect a lot of our experiments to result in no lactate consumption whatsoever 

(β = 0 mM/day), our data will suffer from what we know as zero-inflated 

distribution30.  
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As its name suggests, zero inflation indicates that a dataset contains an 

excessive number of zeros. If not properly modeled, the presence of excess zeros 

can invalidate the distributional assumptions of the analysis, jeopardizing the 

integrity of the scientific inferences31. The zeros can also arise several 

computational difficulties32–34. There are many options to deal with this situation, 

being common to use zero-inflated Poisson (ZIP) regression models. 

Nevertheless, since our goal is ultimately to discern whether a combination of pH, 

T and π is safe or not for accumulating lactate (safe: β ≤ 0.1 mM/day; not safe: β 

> 0.1 mM/day) the use of classification algorithms instead of regression models 

might simplify things and improve the performance. If we choose to move towards 

classification and to generate a new response variable by converting β into a 

binary categorical variable, we will encounter a different problem: class 

imbalance. Class imbalance occurs when the distribution of the classes is biased 

or skewed, being a common issue in the Machine Learning and Data mining 

community.  

 

 

 
 
Figure 6: Schematic representation of how the undersampling and oversampling techniques 
work. 

 
 
The class-imbalance distribution can make most classical classification 

algorithms neglect the significance of the minority class and tend toward the 

majority class35,36.  Although some algorithms perform quite well over class-

imbalanced data (e.g. Random forests, Decision Trees), there are other solutions 

as Random Undersampling or Oversampling. The former is based on reducing 

the observations from the predominant class whereas for the latter we try to 

generate more observations from the minority class usually by replicating the 

samples from the minority class (Fig. 6). Finally, the last issue that we will 

encounter when trying to model our data is the lack of observations. As 

mentioned previously, if we test 3 experimental subspaces, we will end with a 

dataset that will contain only 27 observations. The main consequence of this 

feature is underfitting and, therefore, low performance in our predictions (Fig. 7). 

Underfitting occurs when the prediction model cannot capture the underlying 

trend of the data. 
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Figure 7: Schematic representation of how an underfitted, overfitted or balanced prediction model 
work. 

 

 

In line to what we mentioned before, something we can consider implementing is 

data augmentation through the generation of synthetic random samples37. In 

other words, we can use the Bootstrap method38 or other data augmentation 

techniques to increase the size of our data set and overcome both the lack of 

data and class imbalance (Fig. 8).  

 

 
 
Figure 8: Schematic representation of the process of data augmentation through the creation of 
random synthetic samples. 

 

 

In the next section we will review four Machine Learning algorithms that were 

selected to build our classifiers, explaining briefly how they work and reviewing 

their strengths and weaknesses.  
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3. Materials & Methods 
 
 
3.1. Preparation of the inoculum 

2.1.1. Synechocystis PCC 6803 

 
Synechocystis PCC 680339 (hereafter wt) cells were pre-cultured in 500 mL 

shake flasks containing 2x BG11 medium (Table 24) + 20 mM NaHCO3. The 

flasks were placed in one of our red-light incubators (35 °C, 1% CO2, 150 rpm, 

300 μE·m-2·s-1) and, once they reached an OD730 of 20, the cultures were spined 

down, the supernatant was discarded, and cells were concentrated 10x in the 

same medium. These inoculums were kept at 4 °C for a maximum of 2 days and 

plated for a biological contamination assessment before their use. 

 

2.1.2. Contaminants 

 

Raw samples 

 
A 10 L sample was collected from a contaminated reactor located in the Pilot 

plant and concentrated 10 times (cell count: 108-109 cfu/mL). The cultivation 

conditions at sampling time were T = 30°C, pH ≈ 10.75, π = 0 M NaCl. After 

concentrating the sample, it was mixed with glycerol (12-15%) and 10 mL aliquots 

were prepared and stored at -80 °C.  

 
Top 10 

 
For each of the top 10 contaminants (see Table 2), cells were precultured in the 

dark (30 °C, 120 rpm) until they reached an OD600 of 1 (≈ 8∙108 cfu/mL). 

Afterwards, we mixed -in 2x BG11 + 20 mM NaHCO3 + 12% glycerol- the 

appropriate volumes to have the same concentration of each of the contaminants 

and a final cell count of 107 cfu/mL. The resulting mixture was plated to assess 

the actual cfu/mL. 0.5 mL aliquots were prepared and stored at -80 °C.  

 

Israelian soil 

 
In order to obtain a new “zoo” of contaminants that was better adapted to high 

temperatures, a soil sample from the Dead Sea was collected. Regarding the 

sample treatment, the soil was resuspended in 1x BG11 + 5 mM TES + 20 mM 

NaHCO3 + wt (OD730 ≈ 1) + 20 mM lactate. Contaminants were grown in the dark 

(30 °C, 120 rpm) for approximately 24 hours and, afterwards, we plated the 

culture to assess the cfu/mL. Finally, 10 mL stocks were prepared (12% glycerol) 

and kept at -80 °C. 
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Common master mix 

 
For the validations we decided that it was more representative to broaden the 

diversity and to increase the presence of the most abundant contaminants by 

combining the raw sample, the top 10 contaminants and the sample from the 

Dead Sea. Equivalent cell counts of each of the samples were mixed in 2x BG11 

+ 20 mM NaHCO3 + 12% glycerol (cell count: 107 cfu/mL). 0.5 mL stocks were 

prepared and kept at -80 °C. 

 

 

3.2. Data gathering 

3.2.1. Normal experiments 

 
Co-cultures of wt (OD730 ≈ 2) and contaminants (raw samples, initial cell count: 

103-104 cfu/mL) were grown in either 400 mL or 1.5 L photobiorreactors (PSI or 

Applikon respectively) containing 1x BG11 + 20 mM TIC (different ratios 

NaHCO3/Na2CO3 depending on the desired pH) + 5 mM TES + 50 mM lactate. 

Cells were bubbled with air (PSI: 200 mL/min, Applikon: 300 mL/min), subjected 

to a full dark regime and exposed to a specific combination of pH, temperature, 

and osmolarity. pH was kept constant by dosing NaOH through a peristaltic pump 

connected to either a Biocontroller or the PSI software (PSI: 1-1.5 M, Applikon: 2 

M). 

 

3.2.2. Validations 

 
Co-cultures of wt (OD730 ≈ 2) and contaminants (common master mix, initial cell 

count: 103-104 cfu/mL) were grown in either 400 mL or 1.5 L PBRs containing 1x 

BG11 + 20 mM TIC (NaHCO3/Na2CO3) + 5 mM TES + 50 mM lactate. Cells were 

bubbled with air (PSI: 200 mL/min, Applikon: 300 mL/min), subjected to a full dark 

regime and exposed to a specific and constant combination of pH, temperature, 

and osmolarity. pH was kept constant by dosing NaOH (PSI: 1-1.5 M, Applikon: 

2 M). 

 

Top 10 lactate 

Erythrobacter neustonensis40 Roseococcus suduntuyensis41 

Mongoliitalea lutea42 Mucilaginibacter kameinonensis43 

Roseinatronobacter monicus44 Solitalea canadensis45 

Paracoccus marinus46 Pseudomonas stutzeri47 

Flavobacterium haoranii48 Malikia spinosa49 

Table 2: Top 10 biological contaminants found in our photobioreactors containing lactate 
producing strains. 
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3.3. Analytical Procedures 
 
2 mL samples were taken from the photobiorreactors -at least once per day- and 

Lactate and TES concentrations were determined by High-performance liquid 

chromatography (HPLC). Moreover, we kept track of the inline and offline pH and 

temperature, and of the dO2 and salinity. In some cases, contaminants were 

plated in BG11-J and/or LB plates (Table 25) to relate the OD600 to cell counts. 

 
 

3.4. Evaluating lactate consumption 
 
The parameters used to evaluate the contaminants’ lactate consumption were 

the corrected lactate concentration (corrected by the evaporation factor), the 

OD600 and -most importantly- the β (average lactate consumption rate in mM/day). 

Additionally, before the classifiers were built, a binary variable (Class) was 

generated by fixing a threshold on β (safe: β ≤ 0.1 mM/day, not safe: β > 0.1 

mM/day). 

 
 
3.5. Data modelling 

3.5.1. Exploratory Data Analysis (EDA) 

 
Before we started modelling the data, an exploratory data analysis was 

conducted. The goal during EDA is to visualize and understand our 

data. Although EDA is quite systematic, since it depends on the nature of our 

data and our criterium and experience as data analysts, it is considered to be a 

very open and creative process. For our particular case, we started using the 

functions str (utils), datatable (DT50) and plot_intro (DataExplorer51) to 

assess the structure of our dataset and whether we had some anomalies as -for 

example- missing values. Afterwards, making use of the library ggplot252, we 

studied the distribution of our response (β) through the construction of a 

histogram and a density plot. The next step was to evaluate the joint covariance 

of our variables; also known as covariation. Since the values of our predictors 

were fixed by us (control variables), we skipped the covariance study within 

predictors. Nevertheless, the covariation between β and each of the predictors 

was estimated. Once again, we used ggplot2 to construct the scatterplots. 

Since the ultimate goal of this MTP was to end up with a classifier capable of 

discerning between safe and unsafe conditions, we thought it would be interesting 

to evaluate the joint effect of our predictors over the distribution of our binary 

variable Class. Therefore, we used ggplot2 to build a second array of 

scatterplots where we crossed all the possible combinations within predictors and 

where we used a colorscale to differentiate both classes. Besides, a 4D plot (x = 

pH, y = temp, z = π, colorscale = class) was built with the library plotly53 in order 

to improve the visualization.  
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The final part of this process was repeated after balancing the classes of our 

dataset. For this purpose, the function upSample was used (caret54). All the code 

related to the EDA is attached in the script EDA.R. 

 

3.5.2. Construction & optimization of the classifiers 

 
Once the EDA was finished, we utilized some Machine Learning R packages 

(caret, e107155, klaR56, randomForest57, nnet58) to model the data and to 

obtain some high-performance classifiers. As mentioned before, the predictors 

used during this process were the pH, temperature and π whereas the response 

variable was Class (Fig. 9). The employed algorithms were Naïve-Bayes (NB), 

Support Vector Machine (SVM), Random Forest (RF), and Artificial Neural 

Network (ANN). A detailed explanation of each of these algorithms will be 

provided later in this section.  

 

 

 
 
Figure 9: Predictors and response used to model our data and performance metrics used to 
select the best classifiers. 

 

 

Regardless of the algorithm, the implemented pipeline was the same. To start, 

we made use of the functions trainControl and train of the package caret 

to build a set of classifiers, carry out a random search and, as a result, find the 

most optimal hyperparameters.  

 

The function trainControl controls some computational nuances of the train 

function as the resampling method (method), the number of folds or resampling 

iterations (number) or the number of repeats (repeats). In our case, since we 

decided to implement a 5-fold cross validation with 10 repeats, the arguments 

used were method = repeatedcv; number = 5 and repeats = 10.  
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On the other hand, train fits the algorithm into the data using the rules defined 

by the trainControl function. Besides, it sets up a random grid for each of the 

hyperparameters and evaluates the performance for all the constructed models. 

The best classifiers were selected after the evaluation of the following 

performance metrics: accuracy, kappa, ROC, sensitivity, and specificity. Then, 

once we had a rough idea of which were the best hyperparameters, we carried 

out a grid search. To do so, we used the same functions but, this time, the values 

tested for the hyperparameters were defined manually in the tuneGrid argument 

of the function train. Same performance metrics were used to assess the 

reliability of the models. Finally, the performances of the best classifiers for each 

of the algorithms were contrasted and the best classifier was selected. All the 

code used along this process can be found in any of the scripts used for the 

modelling (e.g. SVM (classification.R). 

 
 

Support Vector Machines (SVM) 

 
Support Vector Machines (SVMs) are a type of supervised Machine Learning 

algorithms that can be employed both for classification and regression problems. 

They were initially proposed by Cortes and Vapnik59 in the late 1990s and have 

gained popularity since then within the scientific community60–62. They can solve 

linear and non-linear problems and they proved to be successfully applied in all 

kinds of domains, including text classification63, handwritten digit recognition64, 

face recognition65, bioinformatics66, among many others. The idea of SVM for 

classification is simple: the algorithm creates a boundary called hyperplane that 

splits the data. The Maximum Margin Hyperplane (MMH) is the hyperplane that 

generates the greatest separation between the classes. The support vectors are 

the points from each class that are the closest to the MMH; each class must have 

at least one support vector, but it is possible to have more than one (Fig. 10). In 

many real-world cases, the relationships between variables are nonlinear. A key 

feature of SVMs is their ability to map the problem into a higher dimension space 

using a process known as the kernel trick. In doing so, a nonlinear relationship 

may suddenly appear to be quite linear. SVMs with nonlinear kernels are 

extremely powerful classifiers. Some of the most popular kernels are the linear 

kernel (no transformation), polynomial kernel, sigmoid kernel, and Gaussian RBF 

kernel (Fig. 11). There are no rules on how to assign a kernel to a certain learning 

job. This will depend mainly on th amount of training data, the relationships 

between the predictors and the nature of the learning task. Therefore, it is strongly 

recommended to apply a bit of trial and error and to evaluate several kernels. 

Moreover, it is important to evaluate different values for some of the 

hyperparameters. 

 



24 
 

 
 
Figure 10: Schematic representation of how SVM-classifiers work. 
 

 

 
 
Figure 11: Graphical representation of how different SVM kernels split the data for the famous 
dataset iris. 
 

 

Strengths: 

 

• Can be used both for regression and classification. 

• They perform well when there is a clear margin of separation. 
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• Effective in high dimensional spaces (high number of predictors). 

• Effective when the number of dimensions is greater than the number of 

samples. 

• Not very prone to overfitting. 

• Easier to implement than other algorithms like ANNs. 

 

 

Weaknesses: 

 

• Performs poorly when the margin between classes is not well defined. 

• Choosing the proper kernel is not always easy. 

• Difficult to fine tune some of the hyperparameters (like C or γ). 

• Could be slow to train. 

 

 

Naïve Bayes (NB) 

 
Naïve Bayes (NB) is one of the most popular, simplest, and fastest supervised 

Machine Learning classifiers that is based in the Bayes Theorem. It is quite 

popular because it can outperform highly advanced classification techniques 

without requiring much computational resources67. Naïve Bayes has been 

applied successfully for text classification68,69, diagnosing medical conditions70,71 

or for the detection of anomalies in computer networks. This algorithm is named 

as such because it makes some "naive" assumptions about the data. Naïve 

Bayes assumes that all the predictors in the dataset are equally important and 

independent which is rarely true in most real-world applications. 

 

 
 
Figure 12: Mathematical formula of the Bayes Theorem. 
 

 

The mathematical formula of this theorem is shown in Fig. 12 where P(A) and 

P(B) are the probabilities of the events A and B without regarding each other. 

P(A|B) is the probability of A conditional on B and P(B|A) is the probability of B 

conditional on A. In Naïve Bayes classification, A is categorical outcome events 

or the response whereas B is the array of predictors.  

Strengths: 

 

• Simple, fast, and very effective. 

• Suitable for multiclass datasets. 
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• Works well with small datasets and numerical predictors. 

• You can obtain the probability of the predictions. 

 

 

Weaknesses: 

 

• Assumes that all predictors are independent from each other.  

• Normally it gives worse results than the other ML algorithms presented in 

this MTP. 

 
 

Artificial Neural Networks (ANN) 

 

Artificial neural networks (ANNs) mimic the behavior of the human brain in the 

processing of input signals that are transformed into output signals72. Our brains 

are composed of billions of neurons which process and transfer information 

through electrochemical signals. External information (input) is collected by the 

dendrites, processed in the neural cell body and, eventually, converted into an 

output and transferred to the next neuron. Likewise, ANNs are composed of 

artificial neurons (also known as nodes) that receive inputs from the outside 

(predictors) or from other neurons that are allocated in more external layers. 

These inputs are processed, and an output is generated and either transmitted 

to the next layer of neurons or used as the final decision of the classifier. 

 

 
 
Figure 13: Schematic representation of the simplest ANN: the perceptron. 
 

In order to understand how this algorithm functions let’s have a look at Fig. 13. In 

this figure the simplest possible version of an ANN is presented (perceptron). In 

the first step, the inputs from the predictors (xi) are transferred to the only neuron 

that composes the network. These inputs form the so-called input layer and are 

linked to weights (wi) that make these signals more or less relevant. On the other 
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hand, the neuron is part of what we know as the hidden layer. Once the inputs 

reach the neuron, the information is processed, and an output is generated. In 

this case, since there are no more neurons in the hidden layer, the output would 

be the predicted class. The case of the multiperceptron is very similar. In fact, the 

only difference is that between the output and the input layer we have several 

nodes that are interconnected and that rely on each other (Fig. 14) .  

 

 
 
Figure 14: Graphical representation of a multiperceptron. 
 

 

Although it is recommended to define the optimal number of neurons in the 

hidden layers by applying a bit of trial and error, the following formula might help 

(Fig. 15). 

 

         
 
 
Figure 15: Rule of thumb that might be used to define the optimal number of neurons in the 
hidden layer. 

 

 

Similarly to what we did for the SVM and NB, we attach a list of the strengths and 

weaknesses of this algorithm: 

 

Strengths: 

 

• Can be used both for regression and classification. 
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• Can be used to model non-linear and complex relationships. 
• Does not impose restriction on the predictors. 

• Outstanding performance over large datasets. 

• Small sensibility to outliers. 

 

 

Weaknesses: 

 

• Require huge amounts of data.  

• Computational expensive. 

• Optimization process can be challenging. 

• Prediction models produced are almost incomprehensible. 

 

 

Random Forests (RF) 

 
Random forest (RF) is a Supervised Machine Learning Algorithm that came into 

the spotlight in 200173 and that has been widely used to solve Classification and 

Regression problems. It successfully faced some challenges as predicting drug 

response in cancer cell lines74, identifying DNA-binding proteins75, and localizing 

cancer to particular tissues from a liquid biopsy76. The rationale behind this 

algorithm is simple; it builds decision trees on different samples and takes their 

majority vote for classification and average in case of regression. To better 

understand how this algorithm works, let’s have a look at how a decision tree 

works in a classification problem. For that purpose, we will use the example 

shared in Fig 16. Imagine that our data set consists of the numbers that are 

presented at the top of the figure. The features or predictors are the color and 

whether the number is underlined or not. To classify the observation, the decision 

tree goes through several decision steps (also known as decision nodes). For 

instance, the first decision node refers to the question: is it red? If that observation 

is not red, it will be classified as blue. In contrast, if the answer is yes, we will 

advance to the next decision node. In the next node the question is: is it 

underlined? If the answer is yes, the observation will be classified as red 

underlined numbers whereas, if the answer is no, it will be classified as a red not 

underlined number. Therefore, the idea of Random forests is very simple: the 

wisdom of the crowds. They consist of a large number of individual decision trees 

that work as a committee or ensemble. Each individual tree makes an 

independent prediction and, afterwards, the class with the most votes is selected. 
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Figure 16: Schematic representation of a decision tree classifier. 

 

 

Strengths: 

 

• Can be used both for regression and classification. 

• Can be used to model non-linear and complex relationships. 

• Can handle both small and big datasets. 

• Small sensibility to outliers. 

• Small sensibility to class imbalance. 

 

 

Weaknesses: 

 

• Computational expensive.  

• More prone to overfitting. 

 

 

3.5.3. Making & visualizing predictions 

 
Once the best classifiers were selected, we proceeded to make some predictions. 

With that purpose in mind, two parallel approaches were used. The former 

consisted in making predictions over few specific conditions, whereas the latter 

was based on making hundreds of thousands of predictions and plotting the 

outcome in order to visualize the consumption envelope. 
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Predictions over specific conditions 

 

A tibble (tidyverse77) or data.frame object was created by defining a sequence 

of values for each of our predictors (pH, temp, osm). Afterwards, the function 

predict from the package stats was used to predict the expected outcome for 

each of these conditions. The arguments passed to this function were the 

classifier (object) and the dataset containing the experimental conditions 

(newdata). The code used to make these predictions is shown in any of the 

scripts used for the modelling. 

 

 

Extensive predictions & visualization of the consumption envelope 

 

The second main application of the classifiers was to run hundreds of thousands 

of predictions and to build some graphs in order to visualize the lactate 

consumption envelope. Apart from the functions mentioned in the previous 

section, we made use of seq (base), crossing (tidyr78), and plot_ly 

(plotly). The first function was used to create long sequences of values for each 

of the predictors whereas the second was used to cross join these predictors. 

Once we had the dataset with all the experimental conditions, predict was used 

to make the predictions. Finally, for the graphical representation of these 

predictions we used either ggplot2 (3D plots) or plot_ly (4D plots). 

 
 

3.5.4. Validating the predictions & updating the model 

 

Last but not least, we had to validate and update the models. In order to do so, 

the Chassis strain team chose some interesting conditions that they wanted to 

evaluate, and we carried out the experiments. Afterwards, the models were 

updated. This process can be repeated as many times as desired in order to 

increase the models’ performance.  
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4.  Results 
 
 
4.1. Exploratory Data Analysis (EDA) 
 
The first step in any data analysis process is the exploration of the data. The 

dataset that was used for our study consists of 31 observations which correspond 

to cultivation experiments where the pH, temperature, and osmotic strength 

(predictors) were controlled, and where the average daily lactate consumption 

rate (β) was monitored (response). A short description of the variables, their 

corresponding data type, and a basic statistical summary are presented in Table 

3A and Table 3B. 

 

A) 

 

Variable Description Data type 

pH pH fixed during the experiment Numeric continuous 

temp Temperature fixed during the experiment [˚C] Numeric continuous 

osm Osmolarity fixed during the experiment [M NaCl] Numeric continuous 

qvcd or β 
Average daily lactate consumption rate [mM 

lactate/day] 
Numeric continuous 

 
B) 

 pH temp osm β 

Min 9.00 30.00 0.30 0.00 

1st Quantile 10.00 35.00 0.30 0.00 

Median 10.50 45.00 0.70 0.00 

Mean 10.37 44.19 0.74 4.60 

3rd Quantile 10.88 50.00 1.00 1.40 

Max 11.50 55.00 1.40 36.48 

 
Table 3: Table including some general information about the variables of our dataset (A). 
Summary table including the minimum, 1st quantile, median, mean, 3rd quantile and max of each 
of the variables of our dataset (B). 

 
 
Even though we were dealing with a very small dataset (31 x 4), it was interesting 

to carry out a preliminary exploration. As expected, our 4 variables were 

continuous, all rows were complete (no missing values) and there were no 

missing columns (Fig. 17). Without doubt, one of the most relevant features that 

we could investigate was how our variables are distributed. Although our 

predictors are quantitative variables and they were treated as such during the 

modelling, since only few values were tested and they were frequently repeated, 

it was convenient to treat them as categorical variables to study their distribution. 

Therefore, instead of generating an array of histograms we built three barplots 

that showed the most common values tested for each of the predictors.  



32 
 

As shown in Fig. 18, regarding the pH, 9, 10.5, and 10.75 were the most common 

values. As for the temperature and π the most frequent values were 45 and 55 

˚C and 0.3 and 1 M NaCl respectively. 

 

 
 
Figure 17: Barplot displaying the data type of the variables and the percentage of complete rows 
and missing observations. 

 
 

 
 
Figure 18: barplots showing the distribution of the predictors (pH, temperature, and osmolarity). 

 
 

A) 

 
 
Figure 19: histogram showing the distribution of β. 
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Nevertheless, it was significantly more interesting to study how β is distributed. 

To do so, we decided to build a histogram (Fig. 19). The main conclusion that we 

could draw from this plot was that our response is left skewed and suffers from 

what is referred to as zero-inflated distribution. In other words, our data is not 

normally distributed. This hypothesis was confirmed after building a Q-Q plot 

(Figure 20) and applying some statistical tests (Shapiro Wilk: 1.5e-08, Anderson-

Darling: 2.6e-16, Kolmogorov-Smirnov: 5.3e-05).  

 

 
 
Figure 20: Q-Q plot of β showing the distribution of the sample quantiles versus the distribution 
of the theoretical quantiles.  

 

 

This had several implications but the main one was that, since our data is not 

normally distributed, it was not recommended to use OLS Regression methods 

to model the data. There were several options that could help us overcome this 

issue. On the one hand, we could resort to Zero-inflated Poisson (ZIP) or Zero-

inflated Negative Binomial Regression. Another interesting solution was to build 

a mixed prediction model that would combine a classifier with a regressor. The 

former would filter out those observations that are expected to be zeros and the 

latter would predict the β. Finally, it could also be wise to just build a classifier 

instead of a regressor. After all, as previously mentioned, the goal of this analysis 

was to identify which experimental conditions are safe for our industrial process. 

In other words, we wanted to make sure that a given experimental condition 

results into a lactate consumption rate that is lower than a certain value. Thus, by 

defining this threshold, we could create a new binary variable that could be used 

to build a classifier instead of a regressor. This way we could simplify the 

resolution of our problem and -most surely- improve the reliability of our 

predictions. We will get back to that in the next section. Even though we decided 

to move towards the construction of a classifier, something that was interesting 

to study was the covariation within β and each of our predictors (Fig. 21). The 

covariation between predictors was not assessed because the values of these 

variables were defined by us and, therefore, they are completely independent 

from each other.  
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A) 

 
B) 

 
C)

 
 
Figure 21: Scatter plots showing the covariation within β and each of the predictors (pH, temp, 
osm). 

 
 

Let’s start with the pH (Fig. 21A). After plotting all the observations of our dataset, 

we observed that, even though there seems to be a negative correlation with β, 

a lot of observations at low pH have a β = 0. This could be explained by the fact 

that these observations correspond to experiments that had high temperatures 

and/or high osmolarities. Therefore, it was more interesting to plot only those 

observations that belong to experiments carried out at low temperature (30 ˚C) 

and low π (0.3 M NaCl). As shown in Fig. 22A, by filtering out those data points, 

the existence of a negative correlation became more obvious. As for the 

covariation between the temperature and β we observed a very similar pattern.  
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Once again, although we seem to observe a negative correlation in Fig. 21B, we 

identified some outliers (e.g., the two data points at 45 that have a β ≈ 30 

mM/day). Nevertheless, as soon as we removed those observations pertaining 

to experiments at high pH (> 9) and high osmolarity (> 0.3 M NaCl), our 

hypothesis was corroborated (Fig. 22B). Finally, regarding the covariation 

between π and β, even though the plot containing the whole dataset suggested 

that there might be a negative correlation within these variables, we also identified 

some outliers (Fig. 21C).  

 

A) 

 
B) 

 
C) 

 
 
Figure 22: Simplified scatter plots showing the covariation within β and each of the predictors 
(pH, temp, osm). 
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Nonetheless, as opposed to the other two predictors, when we filtered out those 

datapoints with pH ≤ 10.5 and temperature ≤ 30 ˚C, the negative correlation 

between these variables seemed to be very weak (Fig. 22C). 

 

 

4.2. Creating a new variable 
 
As previously stated in section 4.1, after the EDA, we decided that it would be 

more adequate to convert β into a binary categorical variable by defining a 

threshold (0.1 mM/day) that would split our experiments into safe (β ≤ 0.1 

mM/day) and not safe (β > 0.1 mM/day) conditions. Hereunder we present a 

follow-up of the EDA where we studied how our class is distributed for each of 

the possible combinations between predictors. Although we could observe some 

clusters, we could not stablish clear boundaries between the two classes (Fig. 

23). This was mainly a consequence of the fact that we have 3 predictors that 

interact with each other and that we were visualizing our observations in a three-

dimensional space (x = predictor 1, y = predictor 2, colorscale = class). In 

consequence, we decided that it would be more representative to plot all these 

observations in a 4D plot were x = pH, y = temperature, z = π and colorscale = 

class.  

 

 

A) 

 
B) 

 
 
 
 

https://1drv.ms/u/s!AiKOx4WFLykogfI8qgp8S77RUgWzcg?e=FC8uoj
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C) 

 
 
Figure 23: Scatter plots displaying how the variable class is distributed for each of the possible 
combinations within the predictors (imbalanced dataset). 

 
 
This plot displayed clearer boundaries. In any case, most importantly, what we 

could conclude from these plots is that our dataset suffers from class imbalance 

(29%: safe, 71%: not safe). 

 
 
4.3. Balancing the data 
 
Although upsampling methods were only applied over the training sets that were 

used to build the classifiers, we thought it would be interesting to use it over the 

whole dataset and to remake the plots presented in Fig. 24.  

 

A) 

 
B) 
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C) 

 
 
Figure 24: Scatter plots displaying how the variable class is distributed for each of the possible 
combinations within the predictors (balanced dataset). 

 
 
This way we could observe the effect that upsampling has over a dataset with 

class imbalance (Fig. 24). Moreover, similarly to what was done in section 4.2, a 

4D plot was generated with the balanced data. 

 
 
4.4. Construction & optimization of the classifiers 
 

Once the EDA and the modifications over the dataset were finalized, we 

proceeded to model the data. Regardless of the used algorithm, the core of the 

protocol was the same. As mentioned in the Materials & Methods section, this 

process revolved around the construction of an array of classifiers and the 

adjustment of some of their features. Essentially, these adjustments consisted in 

balancing the class imbalance of the training set and of tweaking some 

hyperparameters that are specific for each of the algorithms. Employing a 5-fold 

Cross Validation with 10 repeats, we evaluated the performance and selected the 

best classifiers. The parameters used for this evaluation were the accuracy, 

kappa, sensitivity, sensibility, and ROC. It is important to highlight that we aimed 

for the models with the highest values for these parameters and with a ratio 

sensitivity/specificity as close as possible to 1. Therefore, our goal was to obtain 

a classifier that is as reliable as possible and that is equally good at predicting 

both classes or -at least- a bit better at predicting which experiments are safe. 

After all, it is worse to predict that a condition is not safe when is safe (false 

negative or error type II) than to predict that a condition is safe, test it, and realize 

that is not safe (false positive or error type I). Hereunder we present the obtained 

results. 

 

4.4.1. Naïve Bayes (NB) 

 
To begin with, we will talk about the simplest of the selected algorithms: Naïve 

Bayes. As previously discussed, despite its simplicity and the assumption that all 

https://1drv.ms/u/s!AiKOx4WFLykogfI7AUjKwl2KeRizlA?e=VkHTO4
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predictors are independent, for some datasets, this algorithm can achieve 

performances that are beyond one’s expectations. Therefore, we considered that 

it would be interesting to include it in the analysis. The hyperparameters that were 

tweaked were the factor of the Laplace correction formula (fL), the kernel density 

estimate (usekernel) and the bandwidth of the kernel (adjust). Initially, to optimize 

these hyperparameters, a random search was applied and, once we had a 

decently optimized classifier, a grid search was carried out. The results obtained 

from the random search over NB-classifiers built with imbalanced data are 

presented in Table 4. Note that both fL and adjust were held constant at a value 

of 1. 

 

usekernel fL adjust acc kappa ROC sens spec sens/spec 

FALSE 0 1 0.78 0.39 0.87 0.90 0.48 1.87 

TRUE 0 1 0.79 0.46 0.91 0.88 0.57 1.54 

 
Table 4: Results obtained from the hyperparameter random search over NB-classifiers built with 
an imbalanced training set. Accuracy, kappa, ROC, sensibility, and specificity were used as 
performance metrics. 
 

 

The use of a kernel had a positive impact over the accuracy, kappa, ROC, and 

specificity. Additionally, as a result of the increase over the specificity, the 

sensitivity experienced a slight decrease, resulting -however- in a better ratio 

sensitivity/specificity (1.54 instead of 1.87). The improvement was particularly 

significant for kappa (from 0.39 to 0.46) and the specificity (from 0.48 to 0.57). 

Same hyperparameters were tested over a set of NB-classifiers constructed with 

balanced data (Table 5). 
 

usekernel fL adjust acc kappa ROC sens spec sens/spec 

FALSE 0 1 0.77 0.45 0.85 0.79 0.70 0.89 

TRUE 0 1 0.8 0.56 0.9 0.77 0.87 1.13 

 
Table 5: Results obtained from the hyperparameter random search over NB-classifiers built with 
a balanced training set. Accuracy, kappa, ROC, sensibility, and specificity were used as 
performance metrics. 
 

 

Similarly to what we observed for the imbalanced data, the use of the kernel 

density estimation led to a better classifier. Although the accuracy was very 

similar to what we observed for the imbalanced data, the kappa increased from 

0.46 to 0.56. Most importantly, the specificity increased from 0.57 to 0.87 and 

overtook the sensitivity (0.77), leading to a ratio sensitivity/specificity slightly 

higher than 1 (1.13). Finally, once it was proved that applying the kernel density 

estimation and using a balanced training set were beneficial, a grid search was 

applied to screen 11 equidistant values ranging from 0 to 1 for fL and adjust. The 

highest accuracy and kappa were reached for fL = 0.5 and adjust = 0.7 (Figure 

25).  
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Figure 25: Heatmap showing the results obtained from the grid search over NB-classifiers built 
with a balanced training set. The combination of different values of adjust and fL was tested over 
the accuracy and kappa. 

 
Therefore, our classifier could be improved a bit further (Table 6). 
 

usekernel fL adjust acc kappa ROC sens spec sens/spec 

TRUE 0.5 0.7 0.81 0.59 0.90 0.80 0.85 0.94 

 
Table 6: Hyperparameters and performance metrics of the selected NB-classifier. 

 

4.4.2. Support Vector Machine (SVM) 

 
The next algorithm to be evaluated was Support Vector Machines. Three kernels 

(linear, polynomial, radial) and their corresponding hyperparameters were tested.  

 

Linear kernel 

 

The results obtained from the hyperparameter random search over linear SVM-

classifiers built with imbalanced data are shown in Table 7.  
 

kernel C weight acc kappa ROC sens spec sens/spec 

Linear 0.25 1 0.80 0.42 0.91 0.91 0.5 1.82 

Linear 0.25 2 0.80 0.57 0.94 0.76 0.9 0.85 

Linear 0.25 3 0.81 0.62 0.95 0.74 0.99 0.74 

Linear 0.5 1 0.78 0.41 0.93 0.87 0.55 1.57 

Linear 0.5 2 0.84 0.67 0.95 0.8 0.95 0.85 

Linear 0.5 3 0.87 0.74 0.96 0.82 1 0.82 

Linear 1 1 0.80 0.49 0.91 0.85 0.68 1.24 

Linear 1 2 0.86 0.71 0.94 0.82 0.96 0.86 

Linear 1 3 0.88 0.75 0.95 0.85 0.97 0.87 

 
Table 7: Results obtained from the hyperparameter random search over linear SVM-classifiers 
built with an imbalanced training set. Accuracy, kappa, ROC, sensibility, and specificity were used 
as performance metrics. 
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Regardless of the cost function (C), those classifiers with weight = 3, showed the 

best overall performance whereas, regardless of the weight, the optimal value for 

C was 1. As a consequence of class imbalance, most classifiers had a ratio 

sensitivity/specificity slightly lower than 1, being the selected classifier the one 

with the closest ratio to 1 (0.87). The use of a balanced training set slightly 

improved the specificity and overall performance of the classifiers (Table 8). Once 

again, the optimal value for C was 1 while, this time, the optimal weight was 2. In 

comparison to the optimal classifier obtained with the imbalanced data, the 

accuracy, the kappa, the ROC, and the sensitivity experienced a small increase. 

Although the specificity stayed constant, due to the increase over the sensitivity, 

the ratio sensitivity/specificity got closer to 1 (0.91). 

 

kernel C weight acc kappa ROC sens spec sens/spec 

Linear 0.25 1 0.81 0.6 0.95 0.77 0.92 0.84 

Linear 0.25 2 0.79 0.59 0.95 0.7 1 0.7 

Linear 0.25 3 0.8 0.61 0.96 0.72 1 0.72 

Linear 0.5 1 0.86 0.71 0.95 0.82 0.96 0.86 

Linear 0.5 2 0.88 0.77 0.95 0.84 1 0.84 

Linear 0.5 3 0.88 0.76 0.96 0.83 1 0.83 

Linear 1 1 0.86 0.7 0.95 0.85 0.91 0.93 

Linear 1 2 0.91 0.8 0.96 0.88 0.97 0.91 

Linear 1 3 0.9 0.79 0.95 0.87 0.97 0.90 

 
Table 8: Results obtained from the hyperparameter random search over linear SVM-classifiers 
built with a balanced training set. Accuracy, kappa, ROC, sensibility, and specificity were used as 
performance metrics. 
 

 
Polynomial kernel 

 
The next kernel to be tested was the polynomial kernel. The tuned 

hyperparameters were the degree of the polynomial (degree), the scale, and -

once again- the cost function (C).  
 

kernel d s C acc kappa ROC sens spec sens/spec 

Polynomial 1 0.001 0.25 0.71 0 0.9 0.97 0.05 19.34 

Polynomial 1 0.001 0.5 0.71 0 0.93 0.93 0.28 3.34 

Polynomial 1 0.001 1 0.71 0 0.93 0.90 0.45 1.99 

Polynomial 1 0.01 0.25 0.71 0 0.92 0.91 0.51 1.79 

Polynomial 1 0.01 0.5 0.71 0 0.91 0.91 0.51 1.77 

Polynomial 1 0.01 1 0.71 0 0.91 0.90 0.56 1.6 

Polynomial 1 0.1 0.25 0.71 0 0.91 0.90 0.54 1.66 

Polynomial 1 0.1 0.5 0.71 0 0.89 0.88 0.57 1.55 

Polynomial 1 0.1 1 0.71 0.07 0.91 0.90 0.53 1.69 

Polynomial 2 0.001 0.25 0.71 0 0.93 0.94 0.23 4.07 

Polynomial 2 0.001 0.5 0.71 0 0.92 0.92 0.44 2.08 

Polynomial 2 0.001 1 0.71 0 0.92 0.89 0.55 1.62 

Polynomial 2 0.01 0.25 0.71 0 0.91 0.89 0.49 1.82 

Polynomial 2 0.01 0.5 0.71 0 0.91 0.89 0.5 1.78 

Polynomial 2 0.01 1 0.71 0 0.91 0.89 0.59 1.51 

Polynomial 2 0.1 0.25 0.71 -0.01 0.90 0.90 0.44 2.03 

Polynomial 2 0.1 0.5 0.71 0.08 0.90 0.89 0.5 1.78 

Polynomial 2 0.1 1 0.78 0.38 0.91 0.88 0.46 1.9 
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Polynomial 3 0.001 0.25 0.71 0 0.92 0.91 0.47 1.93 

Polynomial 3 0.001 0.5 0.71 0 0.92 0.90 0.5 1.8 

Polynomial 3 0.001 1 0.71 0 0.92 0.90 0.46 1.96 

Polynomial 3 0.01 0.25 0.71 0 0.92 0.91 0.5 1.81 

Polynomial 3 0.01 0.5 0.71 0 0.92 0.90 0.54 1.67 

Polynomial 3 0.01 1 0.71 0 0.92 0.89 0.58 1.53 

Polynomial 3 0.1 0.25 0.70 0.03 0.90 0.88 0.51 1.73 

Polynomial 3 0.1 0.5 0.77 0.36 0.91 0.89 0.55 1.61 

Polynomial 3 0.1 1 0.81 0.48 0.89 0.89 0.57 1.56 

 
Table 9: Results obtained from the hyperparameter random search over polynomial SVM-
classifiers built with an imbalanced training set. Accuracy, kappa, ROC, sensibility, and specificity 
were used as performance metrics. 

 
 
The results obtained from the hyperparameter random search over polynomial 

SVM-classifiers built with imbalanced data are shared in Table 9. Most classifiers 

performed very poorly, having kappas of 0 and very low specificities. In contrast, 

the observed sensitivities were very high (≈ 0.90). The hyperparameters that led 

to the best classifier were degree = 3, scale = 0.1, and C = 1. Nevertheless, the 

overall performance and, especially, the ratio sensitivity/specificity was worse 

than what we observed for the linear kernel (1.56 vs 0.9).  
 

kernel d s C acc kappa ROC sens spec sens/spec 

Polynomial 1 0.001 0.25 0.66 0.41 0.60 0.52 0.59 0.87 

Polynomial 1 0.001 0.5 0.66 0.40 0.60 0.54 0.60 0.9 

Polynomial 1 0.001 1 0.65 0.39 0.60 0.55 0.61 0.91 

Polynomial 1 0.01 0.25 0.66 0.40 0.60 0.55 0.60 0.92 

Polynomial 1 0.01 0.5 0.66 0.41 0.80 0.61 0.83 0.74 

Polynomial 1 0.01 1 0.66 0.40 0.90 0.65 0.97 0.67 

Polynomial 1 0.1 0.25 0.69 0.45 0.90 0.76 0.87 0.87 

Polynomial 1 0.1 0.5 0.76 0.51 0.90 0.81 0.72 1.12 

Polynomial 1 0.1 1 0.8 0.60 0.90 0.81 0.88 0.92 

Polynomial 2 0.001 0.25 0.66 0.41 0.60 0.56 0.60 0.93 

Polynomial 2 0.001 0.5 0.67 0.42 0.60 0.55 0.56 0.97 

Polynomial 2 0.001 1 0.65 0.39 0.60 0.53 0.58 0.91 

Polynomial 2 0.01 0.25 0.67 0.42 0.80 0.60 0.84 0.71 

Polynomial 2 0.01 0.5 0.65 0.39 0.90 0.66 0.97 0.68 

Polynomial 2 0.01 1 0.66 0.40 0.90 0.67 0.93 0.72 

Polynomial 2 0.1 0.25 0.78 0.55 0.90 0.85 0.67 1.27 

Polynomial 2 0.1 0.5 0.8 0.60 0.90 0.83 0.89 0.93 

Polynomial 2 0.1 1 0.83 0.66 0.90 0.82 0.89 0.93 

Polynomial 3 0.001 0.25 0.67 0.42 0.60 0.53 0.57 0.93 

Polynomial 3 0.001 0.5 0.66 0.40 0.60 0.55 0.59 0.93 

Polynomial 3 0.001 1 0.67 0.43 0.60 0.56 0.61 0.91 

Polynomial 3 0.01 0.25 0.66 0.41 0.90 0.68 0.95 0.71 

Polynomial 3 0.01 0.5 0.66 0.41 0.90 0.71 0.95 0.74 

Polynomial 3 0.01 1 0.73 0.48 0.90 0.84 0.77 1.09 

Polynomial 3 0.1 0.25 0.83 0.68 0.90 0.83 0.84 0.98 

Polynomial 3 0.1 0.5 0.84 0.69 0.90 0.85 0.87 0.97 

Polynomial 3 0.1 1 0.84 0.67 0.90 0.82 0.87 0.95 

 
Table 10: Results obtained from the hyperparameter random search over polynomial SVM-
classifiers built with a balanced training set. Accuracy, kappa, ROC, sensibility, and specificity 
were used as performance metrics. 
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Balancing the data helped to improve the performance but it was still worse than 

what we obtained with the linear kernel (Table 10). This time, the selected 

hyperparameters were degree = 3, scale = 0.1 and C = 0.5. 

 

Radial kernel 

 
Finally the last kernel to be assessed was the radial kernel. First, the results 

obtained from the random search over the classifiers constructed with 

imbalanced data are shown (Table 11). In this case, only the value of the cost 

function (C) was modified. The bandwidth of the kernel function (σ) was held 

constant at a value of 0.39. The achieved performances were better than what 

was obtained for the polynomial kernel but worse than what was observed for the 

linear kernel. Therefore, these results suggested that amongst the tested kernels, 

the linear kernel was the best option to model our data. 
 

kernel C acc kappa ROC sens spec sens/spec 

Radial 0.25 0.71 0 0.94 0.83 0.77 1.08 

Radial 0.5 0.75 0.23 0.94 0.83 0.78 1.06 

Radial 1 0.86 0.67 0.97 0.85 0.82 1.04 

 
Table 11: Results obtained from the hyperparameter random search over radial SVM-classifiers 
built with an imbalanced training set. Accuracy, kappa, ROC, sensibility, and specificity were used 
as performance metrics. 

 

 

This hypothesis was confirmed when we used the balanced training set (Table 

12). Although all the performance metrics improved significantly and the overall 

performance was comparable to what we obtained for the best linear classifier, 

making use the Occam’s razor principle, we decided to stick to the linear kernel. 
 

kernel C acc kappa ROC sens spec sens/spec 

Radial 0.25 0.81 0.6 0.96 0.83 0.86 0.97 

Radial 0.5 0.84 0.65 0.99 0.89 0.88 1.01 

Radial 1 0.88 0.74 0.99 0.93 0.96 0.97 

 
Table 12: Results obtained from the hyperparameter random search over radial SVM-classifiers 
built with a balanced training set. Accuracy, kappa, ROC, sensibility, and specificity were used as 
performance metrics. 

 
 

Grid search (Linear kernel) 

 

Now that we knew which was the best kernel and that we already had a very 

promising classifier, we decided to conduct a grid search by testing a sequence 

of values for C and weight (from 0 to 5, by 0.25). The results of this screening are 

shown in Figure 26 in the form of a heatmap. The optimal hyperparameters for 

this classifier were weight = 3.5 and C = 2.25. The performance metrics obtained 

for this classifier are presented in Table 13.  
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The accuracy, ROC, and specificity were perfect or -at least- very close to 1 (0.92, 

0.96, and 0.95 respectively). The kappa was also very high (0.81). The only 

drawback was that the sensitivity was slightly lower than the specificity (0.90 vs 

0.95) and, therefore, the ratio sensitivity/specificity was a bit lower than 1 (0.95). 

In any case, we could conclude that this was the best classifier so far. 

 

 
 
Figure 26: Heatmap showing the results obtained from the grid search over linear SVM-classifiers 
built with an imbalanced training set. The combination of different values of C and weights were 
tested over the accuracy and kappa. 

 
 

kernel C weight acc kappa ROC sens spec sens/spec 

Linear 2.25 3.5 0.92 0.81 0.96 0.90 0.95 0.95 

 
Table 13: hyperparameters and performance metrics of the selected SVM-classifier. 

 

4.4.3. Random Forest (RF) 

 
Then, the next algorithm to be assessed was Random Forest. As previously done 

for NB and SVM we started with the imbalanced data, and -afterwards- we moved 

to the balanced data. Three hyperparameters were evaluated: the regularization 

value (coefReg), the importance coefficient (coefImp) and the number of 

variables randomly sampled as candidates at each split (mtry). Hereunder the 

results obtained from the hyperparameter random search over RF-classifiers built 

with imbalanced data are presented (Table 14). Regardless of the values of the 

hyperparameters, all classifiers displayed very similar performances (acc: 0.82-

0.83; kappa: 0.63-0.66, ROC: 0.91-0.93, sensitivity: 0.78-0.8, specificity: 0.91-

0.93). Moreover, the sensitivity/specificity ratio was slightly lower than 1 (0.85-

0.86) suggesting that our classifiers have a bit of a struggle with predicting the 

positive class (safe). In contrast to what we observed for NB and SVM, the use 

of a balanced training set did not have a significant impact over the performance 

metrics (Table 15). 
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mtry coefReg coefImp acc kappa ROC sens spec sens/spec 

2 0.01 0 0.82 0.63 0.91 0.79 0.92 0.85 

2 0.01 0.5 0.82 0.63 0.92 0.79 0.92 0.85 

2 0.01 1 0.83 0.66 0.92 0.8 0.93 0.86 

2 0.505 0 0.82 0.63 0.92 0.78 0.92 0.85 

2 0.505 0.5 0.82 0.64 0.93 0.79 0.92 0.86 

2 0.505 1 0.82 0.64 0.93 0.8 0.91 0.88 

2 1 0 0.82 0.64 0.92 0.79 0.93 0.85 

2 1 0.5 0.82 0.64 0.93 0.79 0.92 0.86 

2 1 1 0.83 0.65 0.93 0.79 0.93 0.85 

3 0.01 0 0.82 0.63 0.91 0.78 0.92 0.85 

3 0.01 0.5 0.83 0.64 0.93 0.8 0.92 0.86 

3 0.01 1 0.83 0.66 0.92 0.8 0.93 0.86 

3 0.505 0 0.83 0.65 0.92 0.79 0.93 0.85 

3 0.505 0.5 0.83 0.66 0.93 0.8 0.93 0.86 

3 0.505 1 0.83 0.65 0.92 0.79 0.93 0.85 

3 1 0 0.83 0.66 0.92 0.8 0.93 0.86 

3 1 0.5 0.83 0.66 0.91 0.8 0.93 0.86 

3 1 1 0.82 0.64 0.92 0.79 0.92 0.86 

 
Table 14: Results obtained from the hyperparameter random search over RF-classifiers built with 
an imbalanced training set. Accuracy, kappa, ROC, sensibility, and specificity were used as 
performance metrics. 

 

 

Nevertheless, the best model so far was built with a balanced training set (mtry = 

3, coefReg = 1, and coefImp = 0).  

 

mtry coefReg coefImp acc kappa ROC sens spec sens/spec 

2 0.01 0 0.81 0.62 0.93 0.77 0.93 0.83 

2 0.01 0.5 0.81 0.6 0.93 0.77 0.91 0.84 

2 0.01 1 0.82 0.62 0.93 0.8 0.9 0.88 

2 0.505 0 0.81 0.6 0.93 0.78 0.9 0.86 

2 0.505 0.5 0.83 0.65 0.93 0.79 0.93 0.85 

2 0.505 1 0.82 0.64 0.95 0.78 0.94 0.83 

2 1 0 0.82 0.63 0.93 0.78 0.93 0.84 

2 1 0.5 0.81 0.63 0.92 0.77 0.93 0.83 

2 1 1 0.83 0.66 0.95 0.8 0.94 0.85 

3 0.01 0 0.82 0.63 0.93 0.78 0.93 0.84 

3 0.01 0.5 0.81 0.62 0.93 0.77 0.92 0.84 

3 0.01 1 0.82 0.64 0.93 0.79 0.92 0.86 

3 0.505 0 0.81 0.61 0.94 0.77 0.92 0.83 

3 0.505 0.5 0.8 0.6 0.94 0.77 0.91 0.84 

3 0.505 1 0.81 0.6 0.93 0.78 0.89 0.88 

3 1 0 0.84 0.67 0.94 0.81 0.94 0.86 

3 1 0.5 0.83 0.65 0.96 0.79 0.93 0.85 

3 1 1 0.83 0.65 0.96 0.8 0.93 0.86 

 
Table 15: Results obtained from the hyperparameter random search over RF-classifiers built with 
a balanced training set. Accuracy, kappa, ROC, sensibility, and specificity were used as 
performance metrics. 

 

 
Lastly, we decided to carry out a grid search to fine tune the hyperparameters. 

The mtry was fixed at 3 whereas the same sequence was defined for coefReg 
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and coefImp (from 0 to 1, by 0.01). The outcome of this search is presented in 

Figure 27 in the form of a heatmap. 

 

 
 
Figure 27: Heatmap showing the results obtained from the grid search over RF-classifiers built 
with an imbalanced training set. The combination of different values of coefReg and coefImp were 
tested over the accuracy and kappa. 

 
 
The optimal hyperparameters amongst the tested combinations were coeReg = 

0.67 and coefImp = 0.89. The obtained performance metrics were acc: 0.84, 

kappa: 0.68, ROC: 0.94, sens: 0.81, spec: 0.95 (Table 16). 
 

mtry coefReg coefImp acc kappa ROC sens spec sens/spec 

3 0.67 0.89 0.84 0.68 0.94 0.81 0.95 0.85 

 
Table 16: hyperparameters and performance metrics of the selected RF-classifier. 

 

4.4.4. Artificial Neural Network (ANN) 

 

Finally, it was the turn for the Artificial Neural Network. Two hyperparameters 

were evaluated: the number of units in the hidden layer (size) and the 

regularization parameter (decay). The results obtained from the random search 

over classifiers built with imbalanced data are presented in Table 17. Although 

most classifiers had a  decent performance, those with decay = 0 were slightly 

better. On the other hand, for this decay, the optimal size was 5.  Balancing the 

training set had a very modest effect on improving the performance (Table 18). 

The observed accuracy for all the classifiers was above 0.86 whereas the kappa 

was higher than 0.70. Regarding the best classifiers, whereas the accuracy and 

the sensitivity did not change (0.89 and 0.87 respectively), the kappa went slightly 

up (from 0.74 to 0.76). Moreover, the ROC and the specificity increased (from 

0.89 to 0.90 and from 0.91 to 0.94).  
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Nevertheless, in order to avoid the risks linked to oversampling, we decided to 

select the classifier built with an imbalanced training set (size = 5, decay = 0). 

 
size decay acc kappa ROC sens spec sens/spec 

1 0.00E+00 0.86 0.63 0.93 0.9 0.75 1.2 

1 1.00E-04 0.86 0.62 0.94 0.92 0.72 1.28 

1 1.00E-01 0.75 0.21 0.95 0.95 0.25 3.8 

3 0.00E+00 0.88 0.72 0.9 0.88 0.88 1 

3 1.00E-04 0.87 0.71 0.91 0.86 0.89 0.97 

3 1.00E-01 0.78 0.3 0.95 0.94 0.35 2.69 

5 0.00E+00 0.89 0.74 0.89 0.87 0.91 0.96 

5 1.00E-04 0.87 0.69 0.93 0.85 0.89 0.96 

5 1.00E-01 0.78 0.32 0.95 0.94 0.37 2.54 

 
Table 17: Results obtained from the hyperparameter random search over ANN-classifiers built 
with an imbalanced training set. Accuracy, kappa, ROC, sensibility, and specificity were used as 
performance metrics. 

 
 

size decay acc kappa ROC sens spec sens/spec 

1 0.00E+00 0.88 0.71 0.94 0.89 0.87 1.02 

1 1.00E-04 0.89 0.75 0.94 0.9 0.89 1.01 

1 1.00E-01 0.87 0.73 0.95 0.85 0.92 0.92 

3 0.00E+00 0.89 0.74 0.89 0.89 0.89 1.00 

3 1.00E-04 0.88 0.72 0.92 0.87 0.89 0.98 

3 1.00E-01 0.89 0.76 0.95 0.86 0.94 0.91 

5 0.00E+00 0.89 0.76 0.90 0.87 0.94 0.93 

5 1.00E-04 0.86 0.70 0.92 0.85 0.90 0.94 

5 1.00E-01 0.87 0.72 0.95 0.83 0.95 0.87 

 
Table 18: Results obtained from the hyperparameter random search over ANN-classifiers built 
with a balanced training set. Accuracy, kappa, ROC, sensibility, and specificity were used as 
performance metrics. 
 

 
 

 
 
Figure 28: Heatmap showing the results obtained from the grid search over ANN-classifiers built 
with an imbalanced training set. The combination of different values of decay and size were tested 
over the accuracy and kappa. 
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As done for all the other algorithms, a grid search was carried out for the 

hyperparameters decay and size. For the former, we tested a sequence within 0 

and 0.1, and for the latter we used a sequence from 1 to 10. As seen in Figure 

28, regarding the accuracy, the optimal hyperparameters were size = 9 and decay 

= 0. The performance metrics of the classifier constructed with these values are 

shown in Table 19. 

 
size decay acc kappa ROC sens spec sens/spec 

9 0.00E+00 0.91 0.78 0.91 0.91 0.90 1.01 

 
Table 19: Hyperparameters and performance metrics of the selected ANN-classifier. 
 

 
4.5. Selecting the best algorithm 
 
Once the optimal classifier for each of the algorithms was selected, we decided 

to contrast their performances. As seen in Table 20 and Fig. 29, the best classifier 

was the SVM, followed very closely by the ANN. Although they had similar 

accuracies (0.92 vs 0.91), the kappa was slightly higher for the SVM (0.81 vs 

0.78). As for the sensitivity and specificity, whereas the former was a bit higher 

for the ANN (0.91 vs 0.90), the latter was a bit higher for the SVM (0.95 vs 0.90). 
 

algorithm hyperparameters acc kappa ROC sens spec sens/spec 

NB 
Usekernel = T, fL = 0,  

adjust = 1, balanced train 
0.81 0.59 0.90 0.8 0.85 0.94 

SVM 
C = 2.25, weights = 3.5, 

imbalanced train 
0.92 0.81 0.96 0.90 0.95 0.95 

RF 
mtry = 3, coefReg = 0.67,  

coefImp = 0.89, balanced train 
0.84 0.68 0.94 0.81 0.95 0.85 

ANN 
size = 9, decay = 0, 

imbalanced train 
0.91 0.78 0.91 0.91 0.90 1.01 

 
Table 20: Hyperparameters, accuracy, kappa, ROC, sensibility, specificity, and ratio 
sensibility/specificity of the best classifiers obtained for each of the algorithms. 
 

 

 

 
Figure 29: Barplot containing the accuracy, kappa, ROC, sensibility, specificity, and ratio 
sensibility/specificity of the best classifiers obtained for each of the algorithms. 
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Therefore, since the reliability of these two classifiers was comparable, we 

decided to use them both to make predictions. In the next section, we will analyze 

and contrast the outcome of these predictions. Apart from the evaluation of the 

performance metrics previously presented, we thought that it could be interesting 

to compare the training time and prediction time (over 1100000 experimental 

conditions) of each of the algorithms (Table 21). Except for the NB algorithm, the 

rest of the algorithms had very low training (≈ 0 sec) and prediction times (≈ 1 

sec). 

 

algorithm training time [s] prediction time [s] 

NB 0.02 257.62 

SVM 0 0.81 

RF 0 1.19 

ANN 0.01 1.21 

 
Table 21: Training time and prediction time (over 1100000 experimental conditions) in seconds 
of the best classifiers for each of the implemented algorithms. 

 
 
4.6. Making & visualizing predictions 
 
Now that we had the two best classifiers, the next step was to use them to make 

predictions over unseen data. With that objective, two parallel strategies were 

used. Whereas the first approach was meant to be a tool to carry out a quick 

screening over potentially interesting conditions, the second strategy was meant 

to be a more exploratory and visual alternative that would help us to navigate 

through the lactate consumption envelope. 

4.6.1. Predictions over specific conditions 

 
As stated in the Materials & Methods section, the first approach consisted of 

generating a short dataset containing few combinations of pH, T & π and, 

afterwards, using the classifiers to predict whether these conditions were safe or 

not. Although the ultimate goal of this project was to provide the Chassis team 

with this tool, we considered that it would be interesting to run some predictions 

as an example and share them in this report. Therefore, predictions were carried 

out over 11 experimental conditions (including 3 conditions that we already 

tested). For each of the conditions, the prediction was repeated 1100000 times 

and the percentage of the principal outcome was calculated (Table 22).  

 

pH T [˚C] π [mM NaCl] Prediction (SVM) Prediction (ANN) Actual value 

9 55 0.3 Safe (100%) Safe (100%) - 

11.5 30 1 Safe (100%) Safe (100%) Safe 

9.5 38 1 Safe (100%) Safe (100%) - 

9.75 47 0.3 Safe (100%) Safe (100%) - 

11 35 0.4 Not safe (100%) Safe (100%) - 

10.2 46 0.3 Safe (100%) Safe (100%) - 

9 30 0.3 Not safe (100%) Not safe (100%) - 
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9 45 0.3 Not safe (100%) Not safe (100%) Not safe 

9.5 45 0.3 Not safe (100%) Not safe (100%) - 

10 45 0.3 Safe (100%) Safe (100%) Safe 

9 42 0.6 Not safe (100%) Not safe (100%) - 

 
Table 22: Predictions carried out with the SVM and ANN-classifiers over 11 experimental 
conditions (1100000 repetitions). 

 

4.6.2. Visualizing the consumption envelope 

 
The idea behind the second strategy was to make predictions for hundreds of 

thousands of combinations of pH, T and π and on plotting them to visualize the 

decision regions (safe and not safe) defined by the algorithms. The advantage of 

this approach is that it is more visual and provides a better overall picture of how 

our classifiers stablish the boundaries within classes. Since in our optimization 

project we were working with 4 dimensions (pH, T, π and Class), some questions 

arise on how to deal with the visual representation of the consumption envelope. 

Mainly, two approaches were considered. On the one hand we decided to fix a 

specific level for one of the predictors (e.g. π = 0.3 M NaCl) and plot the other 

two predictors. A colorscale was used to discern between safe and not safe 

conditions. Additionally, to get a better perception of the overall consumption 

envelope we built up some interactive 4D plots.  

 

3D plots 

 
Hereunder, three 3D plots containing the predictions carried out by the best SVM-

classifier are presented. Three slices were made. The first slice was taken at π = 

0.3 M (Fig. 30A), the second slice at T = 30 ˚C (Fig. 30B) and, finally, the last 

slice was taken at pH = 9 (Fig. 30C). Since the used kernel was linear, the 

boundaries observed between classes were defined by perfectly straight lines. 

Moreover, as hypothesized, a negative correlation was observed between the 

predictors, meaning that the increase of one of these predictors allows us to lower 

the ones without making the process unsafe. Temperature proved to be the most 

relevant factor, followed by the pH and, lastly the osmolarity. Some other 

conclusions that we could draw from these plots are: 

 

 

• When π = 0.3 M NaCl: 

o Approximately, half of the predictions were safe. 

o And pH ≈ 9, T needs to be ≥ 48 ˚C. 

o And pH ≈ 9.5, T has to be ≥ 46 ˚C. 

o And pH ≈ 10, T needs to be almost 45 ˚C. 

o And pH ≈ 11, T needs to be ≥ 40 ˚C. 
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o And pH ≈ 11.5, T needs to be ≥ 37 ˚C. 

A) 

 
B) 

 
C) 

 
 
Figure 30: Consumption envelope obtained with the best SVM-classifier. The safe conditions are 
shown in green whereas the not safe conditions are shown in red. A) pH vs temperature at low 
osmolarity (0.3 M NaCl). B) pH vs osmolarity at low temperature (30 ˚C). C) Temperature vs 
osmolarity at low pH (9). 

 
 

• When T = 30 ˚C: 

o Most predictions were unsafe. 

o And pH = 10.5, π has to be ≥ 1.3 M NaCl. 

o And pH = 11, π needs to be ≥ 1.1 M NaCl. 

o And pH = 11.5, π needs to be ≥ 0.9 M NaCl. 
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• When pH = 9: 

o Again, approximately half of the predictions are safe. 

o As mentioned before, when π = 0.3 M NaCl, T has to be ≥ 48 ˚C. 

o When π = 0.6 M NaCl, T needs to be ≥ 45 ˚C. 

o When π = 1 M NaCl, T needs to be ≥ 42 ˚C. 

o When π = 1.25 M NaCl, T has to be ≥ 38 ˚C. 

 
A) 

 
B) 

 
C) 

 
 
Figure 31: Consumption envelope obtained with the best ANN-classifier. The safe conditions are 
shown in green whereas the not safe conditions are shown in red. A) pH vs temperature at low 
osmolarity (0.3 M NaCl). B) pH vs osmolarity at low temperature (30 ˚C). C) Temperature vs 
osmolarity at low pH (9).  
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Similarly to what we did for the SVM, we used the ANN-classifier to make 

predictions over the same experimental conditions. The same slices were taken 

and contrasted to what was obtained before. Although the conclusions that we 

could drew from these plots were very similar to what we concluded previously, 

the consumption envelope predicted by the ANN was slightly different to what the 

SVM defined (Fig. 31). Apart from the fact that the boundaries between classes 

were slightly curvy, the algorithm predicted that at π = 0.3 M NaCl, regardless of 

the temperature, all the conditions with a pH ≥ 11.25 were safe. Moreover, 

unexpectedly, the classifier predicted that at, T = 30 ˚C, some conditions with pH 

≥ 11.25 and low π were safe. Finally, although these results will not be 

commented in this MTP, in the annex, you can find the 3D plots obtained with the 

NB and RF-classifiers (Fig. 32 & Fig. 33). 

 

 

4D plots 

 
Even though we already got a broad idea of how our consumption envelope 

looks, it is suboptimal to visualize it in a 3D space. In order to avoid taking slices 

of the consumption envelope and be able to observe the whole space in a unique 

plot, we constructed three 4D plots for each of the classifiers (all predictions, safe 

predictions, and not safe predictions). Unfortunately, since this document does 

not allow the visualization of interactive 4D plots, hereunder we attach few links 

that bring the reader to a website were a proper visualization can be carried out. 

The 4D plots obtained with the NB and RF-classifiers are also presented. 

 

• SVM (4D plots): all predictions; safe predictions; not safe predictions. 

• ANN (4D plots): all predictions; safe predictions; not safe predictions. 

• NB (4D plots): all predictions; safe predictions; not safe predictions. 

• RF (4D): all predictions; safe predictions; not safe predictions. 
 
 
4.7. Validating predictions & updating the model 
 
 

Even though 5-fold CV with 10 repeats was applied to evaluate the performance 

of the classifiers, any modelling project needs to culminate with a validation 

process. Thus, in order to prove the reliability of our selected classifiers, some 

predictions had to be verified. Due to the limited amount of time, only 4 

experimental conditions were selected. The predictions obtained from the best 

SVM, and ANN-classifiers are presented and contrasted with the actual outcomes 

in Table 23. Similarly to what was done in section 4.6.1, for each of the 

experimental conditions, the prediction was repeated 1100000 times. Both the 

ANN and the SVM classified all the validations correctly, being all the predictions 

consistent. Therefore, the two algorithms showed a perfect accuracy. Moreover, 

the outcome of these experiments strengthened the previous hypothesis that -at 

https://1drv.ms/u/s!AiKOx4WFLykogfJov7PZxS32wmAI3w?e=4UCsdd
https://1drv.ms/u/s!AiKOx4WFLykogfJmHOmV4xwjhg6Wdg?e=md76JS
https://1drv.ms/u/s!AiKOx4WFLykogfJZNfERaY4okkqckg?e=vUOdHL
https://1drv.ms/u/s!AiKOx4WFLykogfJPU8wyKc5BheYLNA?e=fmpB8m
https://1drv.ms/u/s!AiKOx4WFLykogfJQ_RDa5HphHm7ubA?e=VXMeJx
https://1drv.ms/u/s!AiKOx4WFLykogfJNRcedPYv698D2DA?e=l58FxW
https://1drv.ms/u/s!AiKOx4WFLykogfJWTHHgwQoicnE6_w?e=gHeuyT
https://1drv.ms/u/s!AiKOx4WFLykogfJSkmsKHLPxVCSoIw?e=cSwho7
https://1drv.ms/u/s!AiKOx4WFLykogfJLJlqGGSmXBoiC6A?e=Cc2Frm
https://1drv.ms/u/s!AiKOx4WFLykogfJnkEBrNuMR4N43iA?e=VY2jzG
https://1drv.ms/u/s!AiKOx4WFLykogfJlQ5oO9U1r02lsCQ?e=RETrwz
https://1drv.ms/u/s!AiKOx4WFLykogfJTfVAB6SyFp7ADtA?e=eQMim1
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low pH- temperature is the most effective factor whereas osmolarity has very 

moderated effect. In fact, that is why, even when we increase the osmolarity to 

0.6 M NaCl, 42 ˚C is not enough to keep the contaminants away from consuming 

our lactate. 

 

pH T [˚C] π [mM NaCl] Prediction (SVM) Prediction (ANN) Actual value 

9 45 0.3 Not safe (100%) Not safe (100%) Not safe 

9.5 45 0.3 Not safe (100%) Not safe (100%) Not safe 

10 45 0.3 Safe (100%) Safe (100%) Safe 

9 42 0.6 Not safe (100%) Not safe (100%) Not safe 

 
Table 23: Experimental conditions tested for the validations jointly with the predictions made by 
the selected SVM and ANN-classifiers and the experimental outcomes. 

 
 

To finalize this project the classifiers were updated with the outcome from the 

validations and a newer and better version of the classifiers was obtained (v 2.0). 

Although making predictions with the new version of the classifiers is out of the 

scope of this project, it is important to understand that the more validations and, 

in consequence, the more updates that we carry out, the higher robustness our 

classifiers will have. 
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5. Conclusions  
 
 
As previously stated, the goal of this project was to improve the lactate production 

yield of our bioindustrial process by limiting the activity of the biological pollutants 

that inhabit our industrial scale photobiorreactors. To do so, three factors were 

studied (pH, temperature and osmolarity) and the average daily lactate 

consumption rate of the contaminants in mM/day (β) was monitored. In terms of 

the experimental design and the modelling, an uncommon but promising 

procedure was employed. Most articles on process optimization rely either on the 

COST approach or on the combination of DoE and OLR regression methods. The 

first option was never considered due to the fact that this method leads to an 

unnecessarily large number of experiments, and, most importantly, that it does 

not study the possible interactions among the factors. On the other hand, since 

our data was not normally distributed, the second option was also discarded. As 

previously commented, although there exist several options to deal with this 

problematic (e.g. Zero-Inflated-Poisson or hybrid classifier-regressor models), in 

this project we decided to combine the DoE approach with Machine Learning 

algorithms to build an array of classifiers that can predict if certain combinations 

of the mentioned factors prevent the loss of the lactate that we produce (β < 0.1 

mM lactate/day). Four of the most broadly used ML algorithms were evaluated 

(Naïve-Bayes, Support vector machines, Random forests, and Artificial neural 

networks) and some of their main hyperparameters were tweaked. The best 

classifiers for every of the algorithms were selected and contrasted with each 

other. The SVM and ANN showed the best performances (accuracy: ≈ 0.9, kappa: 

≈ 0.8, sensitivity: ≈ 0.9, specificity: 0.9-0.95) followed by the RF (accuracy: ≈ 0.85, 

kappa: ≈ 0.7, sensitivity: ≈ 0.8, specificity ≈ 0.95) and lastly by the NB algorithm 

(accuracy: ≈ 0.8, kappa: ≈ 0.6, sensitivity: ≈ 0.8, specificity ≈ 0.85). Therefore, the 

ANN and SVM-classifiers were selected and used to run predictions over unseen 

data and map the lactate consumption envelope. In broad terms, these 

predictions brought us to the conclusion that temperature is the most important 

factor to keep the lactate consumption under control, followed by the pH and, 

finally, the osmolarity. Moreover, the boundaries between those conditions with 

either an acceptable or unacceptable lactate consumption were defined. This 

information was shared with the chassis team and their team members were 

instructed in order to be able -if necessary- to make further predictions. 

 

Although the reliability of the classifiers was higher than expected, these 

prediction models have some limitations. First, since our dataset had only 31 

observations, they might suffer from some issues related to the use of small 

datasets. This includes a higher sensitivity to outliers and overfitting and/the 

incapacity to reflect reality. During the course of this project, in order to fix these 

problems, some powerful tools such as k-fold cross validation and oversampling 

were used. Whereas the former helped to prevent overfitting and allowed us to 
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get a better understanding of our models’ reliability, the latter did not show a 

significant positive effect. On the other hand, on the long term it is recommended 

to carry out more experiments and use additional data to update the classifiers 

and make them more robust and accurate. Secondly, the dichotomization of β 

has some serious implications. As previously mentioned, the reasons why we 

decided to do it were to be able to deal with our non-normally distributed data and 

to simplify the modelling. Although this process is rarely advised, if a continuous 

response variable falls into two well-defined categories, it is generally accepted. 

Nevertheless, it is impossible to fully bypass all the issues related to this 

transformation. By dichotomizing, you are asserting that there is a straight line 

between the two classes of your response. For example, in our particular case, 

by splitting β into Safe and Not safe experiments, you assert that those are the 

only two values that matter. There is a risk of lactate consumption in Safe, and 

there is one in Not safe. But what if the consumption rises steadily for a while, 

then flattens out, then rises again before finally spiking at high values? All of that 

is lost. Luckily for us, all those experiments with β ≤ 0.1 displayed a β exactly 

equal to 0 mM lactate/day. In other words, we did not observe any Safe 

experimental conditions with a β ∈ (0, 0.1] making the problematic substantially 

less relevant. 

 
Regarding the further steps that this project should take, it is strongly advised to 

carry out few more validations in order to evaluate and increase the reliability of 

our classifiers and of the lactate consumption envelope. Besides, we might want 

to cross the safe lactate consumption envelope with the strain and the industrial 

envelope in order to obtain the lactate operational envelope. Finally, it could be 

also interesting to define the product and operational envelope of glycolate, the 

other major organic acid that is produced in our facilities.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



57 
 

6. Glossary 
 

 

• ANN: Artificial Neural Network. 

• ANOVA: Analysis of Variance. 

• COST: Change one factor at a time. 

• CV: Cross validation. 

• DoE: Design of Experiments. 

• EDA: Exploratory Data Analysis. 

• FFD: Full Factorial Design. 

• FrFD: Fractional Factorial Design. 

• NB: Naïve-Bayes. 

• OFAT: One factor at a time. 

• OLS: Ordinary least squares. 

• RF: Random Forest. 

• ROC: Receiver Operating Characteristic. 

• SVM: Support Vector Machine. 

• T: Temperature. 

• ZIP: Zero Inflated Poisson. 

• β: Average lactate consumption rate in mM per day. 

• π: Osmotic strength. 
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8. Annex 
 
 
8.1. Code 
 
The code used during the course of the MTP can be found in this Git repository. 
 
 
8.2. Tables 
 

     

 Ingredient Formula mg/L µmol/L 

Trace metal 
mix 

Boric acid H3BO3 2.86 46.26 

Manganese chloride tetrahydrate Cl2Mn 1.81 9.15 

Zinc sulfate heptahydrate ZnSO4 0.22 0.77 

Sodium molybdate Na2MoO4 0.39 1.61 

Copper sulfate pentahydrate CuSO4 0.08 0.32 

Cobalt Nitrate hexahydrate CoN2O6 0.049 0.17 

S1a 

Magnesium disodium EDTA MgNa2C10H16N2O8 0 0.00 

Titriplex Na2C10H16N2O8 5 13.43 

Citric acid C6H8O7 0 0.00 

Ammonium Iron citrate C6H8O7 F3+ + NH3 0 0.00 

Ferric Chloride hexahydrate FeCl3 4 14.80 

Magnesium sulfate heptahydrate MgSO4 147.88 599.97 

S1b Extra titriplex (S1b) Na2C10H16N2O8 13.6 36.60 

S2 (a&b later) 
Sodium nitrate NaNO3 1000 11763.32 

Calcium chloride dihydrate CaCl2 36 244.88 

S3 Potassium Phosphate dibasic K2HPO4 40 229.66 

 
 

LB medium (plates) 

Chemical Formula g/L Labcode 

Difco bacto tryptone C19H14O2 10 T125 

Difco yeast extract - 5 Y5 

Sodium chloride NaCl 5 N59 

Agar C14H24O9 15  A22 

BG11-J medium (plates) 

Chemical Formula mL/L Labcode 

S1a See Table A1 2.5 - 

S2a See Table A1 2.5 - 

S2b See Table A1 2.5 - 

S3 See Table A1 2.5 - 

TES-KOH 1M (pH 9) C6H15NO6S 10 T1/T6 

Thiosulphate 30% S2O3
−2 10 T2 

Sodium bicarbonate 1M NaHCO3 10 N5 

Glucose 1M C6H12O6 10 G1 

LB 9x See Table 23 5.55 - 

 
Table 24: Composition of the LB and BG11-J plates. 

 

https://github.com/marcgarcia9385/MTP-2023
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8.3. Figures 
 
A) 

 
B) 

 
C) 

 
 
Figure 32: Consumption envelope obtained with the best NB-classifier. The safe conditions are 
shown in green whereas the not safe conditions are shown in red. pH vs temperature at low 
osmolarity (0.3 M NaCl). B) pH vs osmolarity at low temperature (30 ˚C). C) Temperature vs 
osmolarity at low pH (9).  

 
 
A) 
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B) 

 
C) 

 
 
Figure 33: Consumption envelope obtained with the best RF-classifier. The safe conditions are 
shown in green whereas the not safe conditions are shown in red. pH vs temperature at low 
osmolarity (0.3 M NaCl). B) pH vs osmolarity at low temperature (30 ˚C). C) Temperature vs 
osmolarity at low pH (9).  
 


