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Resum del Treball 

El càncer de mama (CM) és el tipus de càncer més freqüent i la primera causa de mort per 

càncer entre les dones (2020), i aproximadament el 35% de les dones diagnosticades amb CM 

invasiu desenvolupen metàstasi (MCM). Tot i amb els avenços, la taxa de supervivència a cinc 

anys amb un esdeveniment de MCM és del 29%, amb un temps de supervivència mitjà de 18-

24 mesos. Actualment, el coneixement sobre els factors implicats en la progressió del CM cap 

a metàstasis encara és pobre i poc entesa. 

Per tot això és fonamental millorar el coneixement sobre el perfil genètic i molecular del 

CM i la seva probabilitat de colonitzar altres òrgans, per poder predir amb precisió el risc de 

progressió de cada pacient i determinar el tractament adequat segons cada cas. Tenint en 

compte aquestes dades, aquest projecte s'ha centrat en l'ús de diverses tècniques òmiques 

per millorar el coneixement de les MCM, tenint com a objectiu principal definir un perfil 

multiòmic de MCM que diferenciï aquells casos de CM que progressaran a càncer metastàtic 

d’aquells que no ho faran. 

Per aquest motiu, s'han analitzat i integrat 3 òmiques comparant mostres de tumor 

primari amb mostres de metàstasi. Aquestes anàlisis ha permès constatar diferències 

significatives a nivell d'expressió gènica, metilació i CNV, i determinar una llista de 10 gens 

implicats en processos clau en la metàstasi com l’adquisició de mobilitat de les cèl·lules 

tumorals i la inhibició de l'apoptosi. 

Abstract 

Breast cancer (BC) is the most frequently diagnosed cancer and the first cause of cancer 

death among women in 2022, and approximately 35% of women diagnosed with invasive BC 



 

 

will develop metastasis (MBC). Even with all the advances, the five-year survival rate with an 

MBC event is 29%, having a median survival time of 18-24 months. Currently, the knowledge 

about the factors involved in breast cancer progression to a metastatic event is still poor.           

Considering all this data about MBC it is crucial to improve the knowledge about the 

genetic and molecular profile of breast cancer and its probability to colonize other organs, to 

be capable of predicting with precision the progression risk of each patient, and to determine 

the appropriate treatment according to each case. Taking all this into consideration, this 

project has focused on using diverse omics techniques to improve the knowledge of MBC, 

having as the main objective to define an MBC multi-omics risk profile that characterizes 

those BC cases that will progress to metastatic cancer from the ones that will not.  

For this reason, 3 omics have been analyzed and integrated comparing primary tumor 

samples against metastasis samples. These analyzes have made it possible to verify significant 

differences at the level of gene expression, methylation and CNV, and determine a list of 10 

genes involved in key processes in metastasis such as the acquisition of tumor cell mobility 

and the inhibition of apoptosis. 
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1. INTRODUCTION  

1.1 Context and justification  

Breast cancer (BC) is the most frequently diagnosed cancer and the first cause of cancer death 

among women in 2020 [1]. The advances, during the last decades, improve the detection, 

diagnosis, and treatments, which have greatly improved the global average survival [2]. Currently, 

the five-year survival rate after diagnosis is 99% for localized BC and 86% for Regional BC [3]. 

Nevertheless, and despite all the advances, the five-year survival rate for distant stage (with a 

metastatic event) is 29% [4], having a median survival time of 18-24 months [5].  

There are two systems for breast cancer classification: molecular, which is based on the gene 

expression pattern of the tumors, and histological classification, which is based on the location, 

invasiveness, and histological appearance of the tumor. These classifications determine the 

prognosis and the type of treatment to apply to each patient [6] [7] [8]. Nonetheless, recent studies 

would indicate that this prediction and prognostic systems are insufficient, therefore the 

classification of breast cancer is a field in constant study and growth [9].    

Albeit controversial, the most accepted molecular classification includes 4 subtypes: Luminal A, 

Luminal B, HER2 and Basal-like [6] [10]. The histological classification is divided into two classes, in 

situ and invasive carcinoma. As in situ carcinoma, invasive carcinomas are divided into two sub-

types, the Invasive Ductal Carcinoma (IDC) and the Lobular Invasive Carcinoma (ILC).  

IDC is the most common type of breast cancer, representing about 70-80% of the total number 

of cases [11], and is defined as a malignant proliferation of the epithelial cells inside the duct, with 

evolution and local stroma invasion through the duct wall [12]. Nevertheless, IDC is a very 

heterogeneous disease including tubular, mucinous, clear cell, and sebaceous carcinoma, with 

different clinical outcomes and histological and morphological phenotypes [13].      

Metastasis Breast cancer (MBC) is the most advanced stage of the tumor (also known as stage 

IV) and is defined as the speeding of breast tumor cells to a secondary organ where a secondary 

tumor will grow. This secondary tumor is the result of a complex and dynamic cascade of steps. 

Emphasize, that approximately 35% of women diagnosed with invasive BC will develop a metastasis 

[14].  

Taking into account all this data about metastasis it is crucial to improve the knowledge about 

the genetic and molecular profile of breast cancer and its probability to colonize other organs, to be 

capable of predicting with precision the progression risk of each patient, and to determine the 

appropriate treatment according to each case, as well as, to improve the treatment of BC so that it 

does not progress to metastasis.  

High-throughput sequencing techniques are constantly growing, and have been essential in 

genomics, transcriptomics, and epigenetics. The combination of various types of omics data and its 

integration into multi-omics analyses is allowing a better study and interpretation of disease 

biology at multiple levels to improve prognosis, diagnosis, and treatments [15]. Cancer is a complex 
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disease and its hallmarks capabilities acquisition of the transition from normal to malignancy 

alterations are driven by molecular aberrations in the genome, epigenome, transcriptome, 

proteome, and metabolome of the cancer cell. Then it is obvious that multi-omics analyses would 

be needed (advantageous) to understand the cancer progression and develop new biomarkers 

and/or effective personalized therapies [16] [17] [18] [19]. The use of omics is wild extended in 

breast cancer investigation. One key application was its classification into molecular subtypes 

thanks to gene array technologies [6] [10], and multi-omics has confirmed it [20]. Recent studies 

using multi-omics analysis of invasive breast cancer have developed a machine learning model that 

can predict the patient’s response to a determined therapy [21], which is a clear example of the 

potential of applying multi-omics and the direct effect it can have on patients’ life.    

Taking all this into consideration, this project will focus on using the integration of diverse omics 

techniques to improve the knowledge of MBC and define a predictive profile, that helps to choose 

an appropriate treatment for each patient and to develop new biomarkers and therapeutic 

opportunities.  

 

1.2 Objectives 

In this scenario, the principal objective of this project is: 

1. Define a multi-omics risk profile of MBC, that characterizes those BC cases that will progress to 

metastatic cancer from the ones that will not. To achieve this overall objective, the following 

three sub-objectives are proposed: 

1.1. Analyze different omics through dedicated bioinformatics tools. (Transcriptomic, 

epigenetic, and genomic data analysis). 

1.2. Integrate the multi-omics data and characterize the MBC profile. 

1.3. Validate the MBC profile. Eventually, if the time allows it, an algorithm that will be 

capable of predicting the probability of a metastatic event on a diagnosed breast cancer 

through the multi-omics MBCs risk profile described in the main objective will be 

proposed. 
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1.3 Approach and method to follow 

To achieve the purpose of this project, a linear work plan has been developed composed of 

several tasks described in section 1.4. The workflow is shown in Figure 1.  

 

Figure 1. Workflow of multi-omics data analysis.  

 

The following methods will be followed to complete these tasks. Most data processing and 

analysis will be done with R [22]. 

The first part was the selection of a public dataset: Bibliographic research has been done for 

public cohorts of Breast Cancer patients with several omics data available. TCGA_BRCA public 

cohort was selected, as that cohort contains several levels of omics data such as gene expression, 

DNA methylation, DNA copy number alterations, and clinic data (Table 1). The Metastatic Breast 

Cancer Project (February 2020) (MBCP), and the METABRIC [23] database will be used to validate 

the data obtained with TCGA_BRCA. After downloading the data, an analysis of the patient’s cohort 

will be performed (age, type of cancer, survival, etc.). 
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Table 1. Public data cohorts selected from the bibliography.   

The following steps will be involved in the analysis of the different omics. Transcriptome, 

methylome and copy number alterations (CNA), from Primary tumor vs metastatic samples, will be 

analyzed first independently, and secondly, in an integrative analysis (Fig. 1). Before the analysis of 

the different omics, a preprocessing (Quality control and normalization) of the data will be 

performed. 

RNA-seq data from TCGA-BRCA cohort will be used for differential expression analysis, and the 

differentially expressed genes (DEGs) obtained (upregulated or downregulated) from these 

analyses will be used to determine the genes related to the Metastatic progression.  

Methylation profiling datasets will be used to detect differentially methylated regions (DMCs) 

and genes (DMGs). The objective is to detect the genes that are hypermethylated or 

hypomethylated.  

The copy number variations (CNV) map will be downloaded from GDC and will be used to study 

what genes gains and deletions are associated with IDC (how many, where are they, and with which 

genes are associated). Secondly, CNA gene list will be used for the multi-omics data integration.  

Following, tasks related to the multi-omics data integration will be done.  Once gene 

expression, methylation, and CNA independent analysis have been completed, all these data will be 

integrated to determine an IDC Metastatic high-risk profile and then a deep analysis of these gene 

sets will be done analyzing pathways, networks, PPi interactions, and its relation with overall 

survival in DCIS patients. First, DEGs, MEGs, and CNA genes lists obtained in the individual analysis 

will be overlapped. Secondly, the triple intersected resulting list will be used for a person 

correlation analysis between the DNA methylation level and RNA expression. Third, genes with a 

significant negative correlation between DMGs and DEGs (hypermethylated lowly-expressed genes 

and hypomethylated highly expressed) will be chosen. Next, the top hypermethylated lowly-

expressed and top hypomethylated highly expressed genes will be selected taking into 

consideration the data of the multi-omics integration and its function, pathways, and network 

study (GO, KEGG and PPI).   

REFERENCE ORIGIN DATA TYPE SAMPLS to ANALYZE 

TCGA-BRCA  
 PanCancer Atlas [24] 

 
cBioPortal 

mRNA expression (RNA Seq V2 RSEM) 

IDC simples: 
Primary tumor vs 
Metastatic  

Methylation (HM450) 

Copy-number alterations 

Clinical data 

The Metastatic Breast Cancer 
Project (February 2020) 

cBioPortal Clinical data IDC samples. 

METABRIC cBioPortal Clinical data IDC samples 
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Lastly, The Metastatic Breast Cancer Project (MBCP), and METABRIC clinical information will be 

used to validate the Metastatic high-risk profile. The gene expression of the most robust genes 

(top Hypermethylation-low expression hub genes and top hypomethylation-high expression hub 

genes) will be validated in overall survival analyzed in IDC breast samples of MBCP, and METABRIC 

datasets.   

Additionally, IDC Metastatic high-risk profile will be try integrated into a predictive model using 

machine learning. This point will be studied deeper if there is enough time. 

1.4 Work Plan:   

1.4.1 Task and Timeline 

The tasks and milestones that must be done to complete the objectives are described in the 

Grantt diagram (Fig. 2). Briefly, the tasks are divided into four blocks (referred to de PECs deadline), 

the first bloc is the project planning (including the elaboration of this work plan). In the second 

block, the main project part will be done and includes the multi-omics data analysis, its integration, 

and validation. This block is divided into two PECs. The third bloc is the final manuscript redaction 

and the fourth block is the oral defense preparation. 

0. WORK PLAN ELABORATION: 

0.1. Bibliographic research 

0.2. Public dataset research, and selection.  

0.3. Planification and elaboration of PEC 1 Work Plan 

PAC 1. Submit Work Plan 

1. TASKS CORRESPONDING TO THE FIRST SUB-OBJECTIVE:  

Analyze different omics through dedicated bioinformatic tools.  

1.1. TASK 1: Determine a list of genes differentially expressed in MBC, through a transcriptomic 

data analysis.  

a) RNA-seq raw data preprocessing and normalization  

b) Differential Expression Analysis to determine differential gene expression (DEG) 

between primary tumor and metastatic samples.  

1.2. TASK 2: Determine a list of differentially methylated sites and genes in MBC, through 

epigenetic data analysis. 

a) DNA methylation raw data preprocessing and normalization  

b) Differential Methylation CpG sites and genes identification between primary tumor 

and metastatic samples. 

1.3. TASK 3: Determine a list of Copy Number Variations (CNV), through genomic data analysis. 

a) Raw data preprocessing and normalization  

b) Copy Number Variations (CNV) identification between primary tumor and metastatic 

samples. 

PAC 2. Write and submit the first report.  

2. TASKS CORRESPONDING TO THE SECOND SUB-OBJECTIVE:  
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Integrate the multi-omics data obtained in the first objective, and characterize the MBC profile.   

2.1. TASK 1: Define a risk profile combining the obtained molecular markers in the 

transcriptomic, epigenomic, and genomic analysis.  

2.2. TASK 2: Determine the differences between MBC and primary BC according to their 

profile. 

2.3. TASK 3: Analyze biologically the biological value of the obtained markers through 

functional enrichment (GO, KEGG pathway, and PPI)  

3. TASK CORRESPONDING TO THE THIRD SUB-OBJECTIVE:  

Validation of the MBC risk profile is defined in the second objective. 

3.1. TASK 1: Look at prognosis in TCGA and another patient's cohort.  

3.2. TASK 2: Apply a prediction algorithm. 

PAC 3. Write and submit a second report. 

 

4. MANUSCRIPT: 

4.1. TASK 1: Manuscript writing 

PAC 4. Submit final manuscript. 

5. ORAL PROJECT DEFENSE: 

5.1. TASK 1: PowerPoint Preparation  

PAC 5. Oral defense.  

 

1.4.2 Risk analysis 

Analysis of the problems that may arise during the development of this work, and their possible 

solutions.  

• Problems in the breast cancer data set selection. There are a large number of breast cancer data 

sets, but generally, they are from primary tumor samples, or on the contrary only samples of 

metastasis. TCGA database has both types of samples, but the proportion between them is very 

large (200-400 primary tumor vs 4-6 metastasis samples, depending on the type of omics). In 

order to solve those problems, primary tumor samples can be filtered according to their stage 

(TNM Staging System). The numerical distance and variability within the primary tumor group 

would be reduced.       

• Problems with computational resources. A large amount of data will be generated, which will 

require a large Ram memory. If the computer is not sufficient, access to a server will be 

requested or the scrip with the analysis will be sent to a third person.   

• Problems with the timings. It is possible that some tasks take more time than planned, in this 

case, the sub-objective of developing a predictive algorithm will be eliminated. 
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• Problems in the bioinformatic tool selection. General R packages (that can be used in multiple 

types of data, like limma) will be used. However, if the analysis cannot be performed with these 

tools, it will be substituted by specific TCGA packages or by already developed application.        
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Figure 2. Gantt Diagram with the working plan defined. 

WEEK

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0.1.   Bibliographic research

0.2.   Database research

0.3.   Planification and elaboration of PEC 1 Work Plan

PAC 1. Submit work plan.

1. ANALIZE DIFFERENT OMICS 

1.1. Task 1: Define a score

1.2. Task 2: Methylation Analysis

1.3. Task 3: Mutation Landscape- CNA:

2. INTEGRATE THE MULTI-OMICS DATA: 

2.1. Task 1: Multi-omics Datasets Integration 

2.2. Task 2: Determine the differences between MBC and BC 

2.3. Task 3: Analyze the biological value 

3. VALIDATE THE MBC SCORE

3.1. Task 1: Look at prognosis in another patient's cohort

3.2. Task 2: Apply a prediction algorithm

4.1. Task 1: Manuscript writing

PAC 4. Submit final manuscript.

5.1. Task 5: Preparation 

PAC 5. Oral defense

TASK

0.- WORK PLAN ELABORATION

WORK DEVELOPMENT

PAC 3. Write and submit second report.

PAC 2. Write and submit first report.

PAC 2

PAC 3

4. MANUSCRIPT

PAC 4

5. ORAL PROJECT DEFENSE

PAC 5

PAC 1
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1.5 Impact on sustainability, ethical-social, and diversity 

No gender distinctions have been made when searching for bibliographic references. Despite 

the analysis carried out, only the samples from women have been taken into account, therefore 

the results obtained are only applicable to them, the reason is that breast cancer is the majority 

among this population and a very minority among men. 

On the other hand, if it is possible to determine a profile of tumor biomarkers capable of 

predicting metastasis in breast cancer, it would have a great social impact, allowing for improved 

diagnosis, prognosis, and treatment of patients with this type of cancer. 

The results of this TFM have no positive or negative impact on environmental, sustainability, 

and/or ecological footprint aspects. Memory’s sections brief description 

Below is a brief description of the section that will be part of the final report to f this TFM.   

• Section 2: State of the art. This section will be revised on breast cancer, omics techniques, 

and their integration.    

• Section 3: Materials and methods. The methodology used during the multi-omics analysis 

and its integration will be defined in this chapter. Mainly, it will describe the R tools and 

packages used.  

• Section 4: Results. This section will be the main part of the TFM and will consist of the results 

obtained according to the objectives and tasks.    

• Section 5: Discussion. The results obtained in the analysis will be compared and contrasted 

with the bibliography.      

• Section 6: Conclusions. Conclusions will be drawn according to the results obtained and the 

bibliographic review. In addition, the difficulties and limitations of the present work will be 

exposed.   

• Section 7: Bibliography. 

• Section 8: Supplementary material. 
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2. STATE-OF-THE-ART  

As mentioned in the introduction, breast cancer is the most common type of cancer among 

women, and metastasis is the main cause of death for diagnosed women, representing 90% of 

breast cancer deaths [25] [26]. Despite these overwhelming data, today there are no tools that 

distinguish those breast cancers with metastatic potential from those that do not. A large majority 

of omics studies focus on the study of primary tumors, and few on their metastases, and those 

that exist have focused on defining only mutations between primary tumors vs. metastatic 

samples [27] [28] [29]. The differences found in these studies cannot fully explain the 

heterogeneity in the evolution of breast cancer [30], nor do they present a clear translational 

goal, which is a clear indication of the need to expand the studies aimed at the deeper 

characterization of metastasis. In this context, it should be noted that recent studies have shown 

that tumors that presented similar genetic profiles, with the use of new technologies and the use 

of multi-omics approaches, are very different. It has been shown that studies involving the 

integration of multiple omics improve specificity and sensitivity, increasing the potential for the 

discovery of new biomarkers, prognostic factors, and therapies. 

Additionally, the increase in new sequencing technologies and the cost reduction have led to 

an increase in databases that, beyond gene expression, also offer data from other omics such as 

methylation, metagenomics, CNV, SNPs among others. What databases exist for breast cancer 

and metastasis will be discussed later. 

1.1 Omics integration 

The continuous and fast advance of the high-throughput sequencing techniques and 

informatic tools is allowing the study of biological systems at multiple layers, which can also be 

called omics and which include RNA expression (transcriptomics), methylation profiles, chromatin 

remodeling, chromosomal conformation (epigenomics), DNA sequence (genomics), metabolites 

levels (metabolomic), protein profile expression (proteomics), the interaction between molecules 

(interactomics), etc [31] [32] [33] [34] [35]. 

In the same way, some omics study external components as metagenomics, which studies 

microorganisms that live in a specific niche inside another organism (Ex. sequencing the gut 

microbiome), or toxicogenomic (or pharmacogenomics), which studies how a determined drug 

affects an organism [32] [31].   

Each of the omics described can identify key elements in a phenotype of interest or a certain 

disease, however, their study separately does not consider the complexity of biological systems. 

All the data generated by these omics can be combined, in a process known as data integration in 

a multi-omics study. Data integration allows a better understanding of organisms at different 

levels, as well as diseases such as cancer [2] [1].   

Objectives that can be achieved with the integration of multi-omic data are detailed below.  

- Classify and determine disease subtypes. 
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- Build prediction/risk models. 

- Identify diagnostic, prognostic, and driver genes biomarkers candidates.  

- Deriving insight into disease biology. Deciphering the molecular mechanisms and the 

interactions between them (Pathways and networks).  

1.1.1 Integration approaches and methods  

Currently, there are many methods and approaches for integrating multiple omics data, which 

can also be classified in several ways. 

Two different approaches exist for the integration of multi-omics layers:  

- Simultaneous integration (or Parallel integration): Use all the omics data at the same time in 

a single modeling step, without previous single-omics analysis. It considers the 

complementary data associated with each omic and the correlation between omics. Only 

applicable to samples that come from the same individuals/cohort. 

- Step-wise integration (or sequential integration): consists of several steps. The first is single 

omics analysis or in a specific combination, and the second step implies integration. 

Applicable to samples from different cohorts. The integration of multi-omics layers between 

different cohorts limited the integration methods that it can use.     

On the other hand, there are several methods of integration, here it’s have been divided 

according to mathematical methods (as Cavill et al do) [36]. Additionally, some of the tools 

available to perform the integration are detailed in Table 2, some are exclusive to each method 

others can perform the integration by applying different methods [32] [37] [38] [39]. Moreover, 

these tools could also be classified according to the types of omics they accept.  

1- Conceptual integration. First, the individual analysis of each omics is carried out. Second, a 

relationship is sought between the results obtained.  

2- Statistical integration. It consists of looking for statistical relationships. They can be divided 

into four subgroups. Add that these methods are not mutually exclusive and that they can be 

used in the same study.  

a. Correlation. Look for correlation between elements of two omics, applying statistical 

methods such as Person and Spearman correlation, Goodman's range test, robust linear 

models, and partial correlations.   

b. Concatenation. Join the data from the different omics (concatenate), and then analyze the 

integrated data as a whole. Self-Organizing Maps [40] [41], K-means cluster analysis [42], or 

random forest [43] are standard techniques for concatenation data integration. 

c. Multivariate analysis. Simultaneous observation and analysis of more than one statistical 

variable. It allows analysis of more than three variables and is used in those sets of data 

that present high collinearity (similar profiles). The principal component analysis (PCA) [44] 
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and the partial least squares (PLS) [45] methods are the most used techniques in 

multivariate analysis.  

d. Pathways-base integration. Based on the use of pre-existing biological data in the 

literature, i.e. the use of pathways and networks databases. This approach allows the 

determination and visualization of complex interactions between components such as 

genes, proteins, etc. Also, can be defined as a Knowledge-based approach.   

3- Machine learning techniques. Methods that allow the integration of omic data automatically 

through the use of algorithms that can recognize patterns and use them to make predictions 

[48]. Machine learning models are divided into 3 methods: Supervised, Unsupervised, and 

Reinforcement learning [46]. 

Table 2. Summary of tools for the integration of multi-omics data. 

Tool Method 
Applicatio
n 

Omics supported Objective 

CNAmet Correlation R 
CNV, DNA methylation, gene 
expression (numerical and 
categorical) 

Disease subtyping, 
Biomarker 
prediction 

PFA Concatenation MATLAB 
DNA methylation, miRNA, gene and 
protein expression (numerical) 

Disease subtyping.  

SNF 
Concatenation 

R/ 
MATLAB 

DNA methylation, miRNA, gene and 
protein expression (numerical) 

Disease subtyping.  

Pathways-base 
integration 

 

MetaGeneAlyse Concatenation Web tool  Gene expresion, metabolite data Disease subtyping.  

PSDF Concatenation MATLAB CNV, gene expression (Categorical) Disease subtyping.  

moCluster 
Multivariate 
análisis 

R Multi-omics (numerical) Disease subtyping.  

MFA 
Multivariate 
análisis 

R 
Multi-omics (numerical and 
categorical) 

Disease subtyping.  

rMKL-LPP 
Multivariate 
análisis 

Web tool  Multi-omics (numerical) Disease subtyping.  

iNMF 
Multivariate 
análisis 

Python Multi-omics (numerical)  

FSMKL 

Multivariate 
análisis 

MATLAB 
Multi-omics (numerical and 
categorical) 

Biomarker 
prediction Machine 

learning 

PMA 
Multivariate 
análisis 

R 
Multi-omics (numerical and 
categorical) 

Biomarker 
prediction 

sMBPLS 
Multivariate 
análisis 

MATLAB Multi-omics (numerical) Desease insight 

T-SVD 
Multivariate 
análisis 

R Multi-omics (numerical) Desease insight 

mixOmics 
Multivariate 
análisis 

R 
Multi-omics (numerical and 
categorical) 

Disease subtyping 
and biomarker 
prediction 

MCIA 
Multivariate 
análisis 

R Multi-omics (numerical) 
Disease subtyping 
and disease insight 
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iCluster  R 
CNV, DNA methylation, gene 
expression (numerical) 

Disease subtyping 
and Biomarker 
prediction 

MethylMix 
Multivariate 
análisis 

R 
Gene expresion and DNA 
methylation 

 

 NetICS 
Pathways-base 
integration 

MATLAB 
Multi-omics (numerical and 
categorical) 

Biomarker 
predictor 

PARADIGM  
Pathways-base 
integration 

Python Multi-omics (numerical) 
Disease subtyping 
and insight 

Cytoscape 
Pathways-base 
integration 

Software 
Multi-omics (numerical and 
categorical) 

Biomarker 
predictor, disease 
insight 

ConsensusPathDB
  

Pathways-base 
integration 

Web tool  
Protein and gene expression, 
metabolism data, gene regulation, 
and drug-target. 

Biomarker 
predictor, disease 
insight 

IMPaLA 
Pathways-base 
integration 

Web tool 
Gene and protein expression and 
metabolomics 

Biomarker 
predictor, disease 
insight, Disease 
subtyping 

MetaCore 
Pathways-base 
integration 

Web tool 
Gene and protein expresion, siRNA, 
microRNA 

Disease insight 

 Ingenuity IPA 
Pathways-base 
integration 

Software Gene expression, miRNA, SNP data 
Biomarker 
predictor, disease 
insight 

Paintomics 
Pathways-base 
integration 

Web tool 
Gene and protein expression, 
metabolomics, miRNA 

Biomarker 
predictor, desease 
insight 

InCroMAP 
Pathways-base 
integration 

Software 
Gene and protein expression, 
miRNA and DNA methylation, 

Biomarker 
predictor, disease 
insight 

INMEX 
Pathways-base 
integration 

Web tool Gene expression and metabolomics 
Biomarker 
predictor, disease 
insight 

 

The 3 omics used in the present study are described in more detailed below, as well as a brief 

description of the techniques, methods, tools, and datasets that are available for their 

identification, study, and integration.     

1.1.2 Genomics 

Genomics is the study of whole DNA sequences (genome – WGS) of an organism, including the 

coding regions (<2%) and the non-coding regions (>98%) [47]. Looking inside an individual’s 

genome can allow identifying mutations and/or variations that discriminate between health and 

disease. The variants that can be distinguished in a genome are [48]: 

- Single Nucleotides Variations, single nucleotide changes in DNA sequence in contrast with 

the reference sequence. Common variations (frequency in the population >1%) are called 

Single Nucleotide Polymorphisms (SNPs) [49] [50] and are the more abundant class of genetic 

variants. 
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- Small/short insertions and deletions (indels) of more than one nucleotide. Indels are the 

second most abundant class of genetic variants.  

- Structural variations (SVs) are large genomic alterations in chromosome structures (> 1kb) 

[39], they can be classified into unbalanced variants (Deletions, duplications, and insertions) 

and balanced variants [40] (Inversions and translocations). Balanced variants do not alter the 

copy number of a determined DNA sample vs reference, conversely the unbalanced variants 

yes, for this reason also are called Copy Number Variations (CNVs).  

o Copy Number Variations (CNVs) are an abnormal number of copies of a specific 

segment of DNA (between 1 kb and 5 Mb) in a reference genome. Deletions and 

duplications are widely extended in the human genome with a frequency between 4.8 

and 9.5% [51] [52]. 

In the present TFM only CNV data from SNP-array has been used, for this reason, the next sections 

are related to this technique.  

 

● Technologies for the CNV detection   

 Since 2003 the most used techniques for CNV detection were SNP-array and array-based 

comparative genomic hybridization (arrayCGH). The bases of SNP-array are the same as the DNA 

microarray [53]. 

Microarray-based techniques: Microarray has its origin in the Southern blot technique, which 

only allowed gene study one by one. In 1995 in Science journal was describe the microarray as it is 

known today, which allows the study of diverse genes at a time, a fact that meant a change of 

paradigm and era in science [54]. The basis of microarray consists of the hybridization (pairing of 

the complementary bases) between the samples of interest attached to a fluorescent dye (target), 

and a collection of known DNA fragments attached to a surface chip (probes). The hybridization 

between targets and probes is measurably applying a laser light, the emitted fluorescence is 

proportional to the quantity of DNA in the sample of interest. In SNP-array the probes are allele-

specific oligonucleotide (ASO), and the target nucleic acid sequences also are labeled with 

fluorescent dye [55] [53]. 

SNP-array technique has some handicaps like limited coverage for genome, low resolution, and 

difficulty in detecting novel and rare mutations. Most recently high-throughput sequencing has 

merged as a potent substitute for microarray techniques [56]. 

Sequencing-based techniques: Next-generation sequencing history is long, and it starts with 

the discovery of the double-helix structure of DNA in 1953, after this discovery the race for 

sequencing began and several attempts were made. The first-generation sequencing method was 

developed by Frederick Sanger, who sequenced the first complete DNA genome of a 

bacteriophage in 1977 [57] [58], and was the bases for the Human Genome Project. The complete 

human genome sequencing, achieved in 2003, took 13 years and 3 billion USD [59] [60].   
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Sanger sequencing (or first-generation sequencing) is based on the random base-by-base 

(dNTPs) incorporation by a DNA polymerase in a single-stranded DNA template during in vitro 

DNA replication [58]. It was the main sequencing method used for 40 years, but recently it has 

been replaced by the next generation sequencing (NGS).  

The NGS (or Second-generation sequencing), was developed 15 years ago and has become an 

essential tool in molecular biology since it allows for sequencing DNA and RNA much more 

cheaply and quickly than Sanger sequencing [61] [62]. It is based on DNA segmentation into 

several fragments, that are sequenced with 10-30 million reads per sample. The last step is 

computational, the sequenced reads are aligned to a reference sequence (genome or 

transcriptome) [63]. Although this technology has existed for a decade, it is still revolutionizing 

science, and it is expected that it will continue to do in the next years [64]. Some of the most used 

NGS platforms are Illumina, IonTOrrent, and BGI/MGI among others [65]. 

1.1.3 Transcriptomics 

Transcriptomics is the study of all the RNA molecules (also called transcripts), including coding 

RNA (<4%) which is transduced into proteins, and non-coding (>95%) RNAs, in an organism, cell, 

or tissue in a concrete situation (example in disease), based in its gene expression profiles. Coding 

RNA is known as messenger RNA (mRNA)), and non-coding RNA includes ribosomic RNA (rRNA), 

transfer RNA (tRNA), micro-RNA (miRNA), and non-coding RNA [66] [67]. 

The mRNA study allows, mainly, to know which part of the genome is transcribed and 

therefore which genes are expressed. Indirectly, also allows the study of post-transcriptional 

processes such as alternative splicing and the prediction of protein isoforms [68]. 

In the present TFM only RNA data from RNA-sequencing, has been analyzed and integrated, for 

this reason, the next sections are related to this technique.    

Currently, transcriptomes are obtained by the same DNA detection techniques: microarray 

and sequencing, described in the previous section. Gene expression analysis using mRNA by 

DNA microarray or sequencing required a previous step, mRNA is extracted and converted to 

complementary DNA (cDNA), and then hybridized to microarray or sequenced.  

1.1.4 Epigenomics 

Epigenomics is the study of all the epigenetic changes in the genetic material in a cell or 

organism (epigenome). Understanding epigenetics as the study of gene expression regulation 

(when and how a determined gene is turned on or off) through chromatin remodeling, DNA 

packaging, histone modification, and DNA methylation [69] [70]. 

DNA methylation consists of the addition of a methyl group (CH3) to carbon 5 of the cytokine 

residues of the DNA by the methyltransferase enzyme. The addition of this methyl group leads 

gene expression regulation by inhibiting the binding of transcription factors or by the recruitment 
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of proteins involved in gene repression. Methylation is a reversible modification mediated by 

demethylase enzymes, and it is estimated that 3% of the total DNA in humans is methylated [71]. 

Most methylations take place in cytokines that are followed by a guanine, these areas are 

known as CpG sites, non-CpG methylation sites are present in human embryonic cells, but this 

kind of methylation is lost in mature tissues. In addition, it is important to mention that the 

location of the CpG sites in the genes (intergenic regions, CpG islands, gene body) is important 

and has different effects on genes, it will go into more detail in the results section [72].   

In the present TFM only methylation data from bisulfite sequencing has been analyzed and 

integrated, for this reason, the next sections are related to this technique.  

● Identifying DNA methylation - technologies  

There are several techniques to identify DNA methylation, it can be divided into three 

categories depending on the aim of the study. To determine the methylation status of a specific 

gene of interest, there are bead array, PCR, and pyrosequencing, among others. On the other 

hand, if the goal is to know the general methylation status of the entire genome there are high-

performance liquid chromatography-ultraviolet (HPLC-UV), Liquid chromatography coupled with 

tandem mass spectrometry (LC-MS/MS), ELISA-based methods, etc. Lastly, for the identification of 

differential methylation: there are array or bead hybridization and Bisulfite Sequencing [73]. 

The last one, the Bisulfite Sequencing technique, is the “gold-standard” technology for the 

detection of DNA methylation, and consist of treating the samples with sodium bisulfite, which 

causes unmethylated cytosine residues to be converted to uracil, while methylated ones remain 

unchanged. Next, uracils are recognized as thymines after successive PCR amplification 

and sequencing [74].   

1.2 Breast Cancer database 

In the last decade and with the increase in the use of techniques such as sequencing, a large 

amount of data from different omics has been generated. Some of them are of public access, 

others with restrictions on demand. These databases contain sensitive information regulated 

under ethical and legal norms. 

Some repositories are specific to one type of omic data, others to specific diseases with data 

from one or multiple omics as well as epidemiological data, while others are large consortia that 

combine data from all types of experiments (Multi-omics data repositories) [37]. 

Below are some examples related to metastatic breast cancer databases: 

- The Cancer Genome Atlas (TCGA) 

https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga   

TCGA is one of the largest multi-omic data repositories that exists, it consists of more than 

20,000 samples of primary tumors from 33 different types of cancer, among them breast 

cancer, and associated with some of these samples there are blood, normal tissue and 

https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
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metastasis (among others). The omic data you can find in it is multiple from CNV, mutations, 

metabolomics, RNA-seq, DNA-seq, miRNA, clinical information, and histological data.  

 

- Molecular Taxonomy of Breast Cancer International Consortium (METABRIC). 

https://ega-archive.org/studies/EGAS00000000083  

METABRIC is an exclusive database of breast cancer, containing genomic, transcriptomic, 

promoter methylation (RRBS), and clinical data from more than 2000 primary tumor samples 

and 548 matched normal samples collected in the UK and Canada. It is the most extensive 

breast cancer database with different omics. 

 

- Gene Expression Omnibus (GEO). https://www.ncbi.nlm.nih.gov/geo/ 

GEO is a general public repository of omics data managed by the National Center for 

Biotechnology Information (NCBI), and gene expression, methylation, and DNA data from 

arrays and sequencing submitted by the research community.  

 

- The Metastatic Breast Cancer Project. www.mbcproject.org 

Ongoing dataset with 379 primary and metastatic samples from 301 patients with breast 

cancer. This study includes whole-exome sequencing (Mutations, CNV, and structural 

variants), RNA-sequencing, and clinical data.  

 

- UK Biobank. https://www.ukbiobank.ac.uk/  

UK Biobank contains more than half a million genetic and epidemiological data (lifestyle and 

diet). The data was collected in a prospective study that was carried out between 2006 and 

2010, in total they have more than 10,000 samples from patients who had breast cancer 

when the study starts or who developed one during it. It is mainly aimed at the study of risk 

factors related to cancer and lifestyle. 

 

- cBioPortal. https://www.cbioportal.org/  

cBioPortal is a cancer-specific repository that offers different services. First it is a gateway to 

many types of databases with a very simple finder, including TCGA and METABRIC databases. 

Second, it is a web tool that performs analysis with the data chosen and visualized in a very 

simple way. The data are from multiple projects and many types of cancer, for example, 

there are 27 different databases of breast cancer. It should be noted that there is an R 

package that facilitates downloading and analyzing the data from this portal (cBioPortalData 

– Bioconductor). 

 

Of all these studies, TCGA dataset was selected to develop the present work, because TCGA 

is the only one that met the requirements of having data from 3 omics, and clinical survival data in 

primary tumor and metastasis samples.  

https://ega-archive.org/studies/EGAS00000000083
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
http://www.mbcproject.org/
https://www.ukbiobank.ac.uk/
https://www.cbioportal.org/
https://www.cbioportal.org/
https://www.cbioportal.org/
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3. MATERIALS AND METHODS 

3.1 Breast Cancer dataset – sample selection 

The breast cancer dataset used and analyzed in this work has been downloaded from the 

Cancer Genome Atlas Program (https:://cancergenome.nih.gov/) (TCGA-BRCA database) through 

the R package TCGAbiolinks (GDCquery, GDCdownload, and GDCprepare). TCGA-BRCA was 

composed of 1098 cases with a primary solid tumor, blood, normal tissue, and metastatic samples 

among others, and contains RNA-seq, DNA methylation, mutation, CNV, and clinical data. 

Before downloading, groups selection was performed, the eligibility criteria include:  

● Sample type (sample_type): primary solid tumors and metastasis sample 

● Samples subtype (primary_diagnosis): only the Invasive Ductal Carcinoma (IDC) subtype 

● Pathological stat (ajcc_pathologic_m): In Primary Tumor samples, only the pathologic M 

state equal to M0 was included to eliminate the Primary Tumor samples with a metastasis 

event. Metastatic samples do not include this data. 

● Stage (ajcc_pathologic_stage): In Primary Tumor samples, only the tumor stage equal to I 

(I, IA, IB) and II (II, IIA, IIB) samples were included. Metastasis samples do not include this 

data. 

● Gender (gender): only women have been included in this study. 

Selection criteria have been applied to have two well-differentiated groups between primary 

and metastatic tumors. The barcodes of the resulting samples were saved for the subsequent 

download of the data from the different omics. A summary of downloaded data: 

Table 3. Summary of downloaded data according to omics. 

Type Method 
Nº Primary 

Tumor 

Nº 

Metastasi
s 

TCGA 
Biospecimen 

N.A 2171 8 

Gene Expression 
Illumine HiSeq 2000 RNA-

seq 
529 6 

DNA Methylation 
Illumina Human Methylation 

450 (HM450) 
319 4 

CNV 
Affymetrix Genome-wide 

Human SNP array 6.0 
781 6 

The TCGA data are classified according to 4 levels of processing. Level 1: Raw data obtained 

from arrays or sequencing. Level 2: Processed data. Level 3: Processed and segmented data. Level 

4: processed and annotated data. The downloaded levels of each omic are detailed below in the 

corresponding section.  
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The Metastatic Breast Cancer Project (MBCP) (Provisional, February 2020) and METABRIC 

datasets have been downloaded from cBioPortal and used as validation datasets. 

3.2 Statistical analysis and code availability 

R software (version 4.2.1) (https://www.r-project.org/) has been used for all the statistical 

analyses. The details of each experiment (statistical analysis and significance) are detailed in the 

corresponding Materials and Methods section and figure legends.  

Detailed R scripts used in this study are available in GitHub repository at 

https://github.com/nmoragas/TFM_UOC.  

3.3 RNA expression data analysis 

TCGA-BRCA mRNA gene expression data measured by the Illumina HiSeq 2000 RNA 

sequencing have been obtained by TCGAbiolinks [75] R package using the following parameters: 

● project = "TCGA-BRCA",  

● barcode = barcodes after group selection, 

● data.category = "Transcriptome Profiling", 

● data.type = "Gene Expression Quantification", 

● experimental.strategy = "RNA-Seq", 

● workflow.type = "STAR - Counts",  

● sample.type = c("Primary Tumor", "Metastatic")) 

RNA-seq data download includes gene expression row counts (number of reads overlapping a 

given gene and sample without normalization), of 529 primary tumor and 6 metastasis samples.  

Row data preprocessing includes the transformation to counts per million (CPM), filtering 

(counts >10), creation of a DGEList, and normalization using the EdgeR packages. Data 

normalization has been done, first using calcNormFactors R function, which calculates scaling 

factors to convert raw library sizes into effective library sizes, and then has been performing the 

scale normalization by voom function. Supplementary Figure 1A-B shows the distribution pre-

normalized and normalized, and the trend of the mean-variance (log-cpm) before and after fitting 

to a linear model using voom [76], a step necessary for the differential gene expression analysis 

with limma (Supplementary Figure 1C-D). These data do not present missing values. 

 Differential Gene Expression (DEGs) analyses have been performed using limma [77] and 

EdgeR [78] packages. A gene has been considered significantly differentially expressed with a p-

value < 0.05. DEGs obtained (upregulated or downregulated) from these analyses have been listed 

and plotted using ggplot2 package [79] [80] [81].   

3.4 DNA methylation data analysis  

TCGA-BRCA DNA methylation data measured by Illumina Human Methylation 450 (HM450) 

platform have been obtained with the TCGAbiolinks R package using the following parameters: 

https://www.r-project.org/
https://github.com/nmoragas/TFM_UOC
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● project = "TCGA-BRCA",  

● barcode = barcodes after group selection, 

● data.category = "DNA methylation", 

● data.type = "Methylation beta value", 

● platform = "Illumina Human Methylation 450",  

● sample.type = c("Primary Tumor", "Metastatic")) 

DNA methylation data are level 3, which includes normalized beta values (methylation at 

known CpG sites) per probe (Probe IDs) of 319 primary tumor samples and 4 metastasis samples, 

with a total of 485577 CpG methylated sites.   

Data preprocessing steps include deletion of missing values (N/A), probes containing SNPs 

(overlap), and probes that have been demonstrated to map multiple places in the genome [82], 

after preprocessing, 333315 methylation sites have remained. As a control, a density plot of β-

values of the primary tumor and metastasis samples was made, which shows a similar pattern 

between them (Supplementary Figure 2).  

The EdgeR package was used to determine the differential methylated CpGs (DMCs). CpG 

sites have been considered significantly differentially methylated (hypermethylated or 

hypomethylated) with a p-value < 0.05. DMCs obtained from these analyses have been listed and 

plotted using the ggplot2 package [83] [84] [85]. 

DMCs have been annotated with the genes to which they belong with the 

IlluminaHumanMethylation450kanno.ilmn12.hg19 package [86]. 

3.5 Copy Number Variation data analysis 

Copy Number Variations (CNVs) data measured by Affymetrix Genome-Wide Human SNP 

Array 6.0) have been obtained by TCGAbiolinks R package using the following parameters: 

● project = "TCGA-BRCA",  

● data. Category = barcodes after group selection, 

● data.category = "Copy Number Variation", 

● data.type = "Copy Number Segment",  

● sample.type = c("Primary Tumor") or c("Metastatic")) 

CNV data are level 3 and includes data from 781 primary tumors and 6 metastasis samples. 

First, CNV data have been checked, it did not contain missing values and a density plot have been 

made to see the mean segment of the samples, both types of samples have a correct distribution 

with the highest peak at 0 (Supplementary Figure 3). Ggplot2 package has been used to plot 

primary tumor and metastatic sample counts in an exploratory analysis.  

Next, the GAIA (Genomic Analysis of Important Aberrations) package has been used to 

identify recurrent CNV only in metastatic samples [87]. This package first identifies deletions and 

amplifications with a corrected p-value <0.0001 comparing a sample matrix with a genomic 

probes matrix (SNP6 GRCh38 Liftover Probeset download from GDC website), and secondly 

annotates the CNVs to the corresponding gene using the biomaRt package [88]. 
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3.6 Omics data integration 

Once gene expression, methylation, and CNA independent analysis have been completed, all 

these data have been integrated to determine an IDC Metastatic gene set and then a deep 

analysis of these gene sets has been done analyzing pathways and networks where they are 

involved and the relationship between them. 

Data integration has been done in several steps. First, DEGs, MEGs, and CNA selected in the 

individual analysis have been conceptually integrated through their overlap using ggvenn function 

based on ggplot2 package [89]. Secondly, the triple intersected genes result of these overlapping 

(the gene set) have been analyzed in depth from several points of view: analyzing the relationship 

between genes and their methylation (methylation sites and correlation with gene expression), as 

well as their joint involvement in pathways and networks (Described in next section 3.7). 

Correlation between gene expression and methylation has been calculated using a Pearson 

correlation (r >0.3 and p-value < 0.05) analysis between the gene set normalized expression and 

the β values of CpGs, using a specific R function designed by Hamid Ghaedi [90], and ggpubr and 

ggscatter packages.  

3.7 Functional Enrichment Analysis (GSEA - KEGG ) 

Different enrichment analyses have been performed using the following gene-set libraries: 

Ontology Gene Set (C5), Oncogenic Signature Gene set (C6), Hallmark Gene Set (H), downloaded 

directly from the MSigDB (The Molecular Signatures Database) database [91]. The defined 

metastatic gene set has been divided into up and down-regulated gene expression. Then, in each 

of the two groups created, has been studied which processes from the  gene-set libraries are 

enriched using enricher R package (Bioconductor) with a p-value < 0.05.  

The Kyoto Encyclopaedia of Genes and Genomes (KEGG) database has been used to perform 

pathway enrichment analysis. The metastatic gene set has been divided into up and down-

regulated gene expression and it has been studied using enrichKEGG R package (Bioconductor) 

with a p-value < 0.05.  

 The results have been plotted with dotplot function of lattice package (only the first 10 

pathways results have been plotted). 

To predict and analyze the functional network between the enriched pathways determined in 

the previous step, EnrichmentMap App [92] has been used and visualized in Cytoscape software 

(FDR q-value < 0.05).   

3.8 Top Gens validation in MBCP and METABRIC database 

To validate the top gens obtained from the data integration, the Metastatic Breast Cancer 

Project (MBCP) and the METABRIC database have been used. Clinical and gene expression data 

have been downloaded from cBioPortal web. In both cases and prior to the analysis data selection 
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have been made, only IDC samples has been selected, duplicate gene have been removed, and 

expression data have been transformed to z-score. MBCP data have been used to analyses top 

top gen relation to the clinical features: metastasis status and time to metastasis, using the 

Wilcoxon text with p-value < 0.05 and differences have been plotted with ggplot2 R package. 

METABRIC dataset have been used to analyses the top gene expression relation to the Overall 

Survival (OS) and to the Relapse Free Survival (RFS), the differences have been indicated with 

Kaplan-Maier plots using the survival and survminer R package, p-value <0.05.  

  



 

30 

4. RESULTS 

The breast cancer dataset from TCGA (TCGA-BRCA) is a large cohort that includes data from 

diverse sample types and diverse molecular information. The current study has analyzed only the 

mRNA, DNA methylation, and copy number alteration (CNA) data from Invasive Breast Cancer 

(IDC), comparing metastatic (TM) vs Primary tumor (TP) samples. Taking into consideration the 

eligibility criteria it has been identified a different number of Primary Tumor and Metastatic 

samples depending on the molecular data. These patients and molecular samples are listed in 

Table 3. Data from the three omics were first analyzed separately and then in an integrative way. 

4.1 Identification of differentially expressed genes in metastatic samples 

After pre-processing RNA-seq data as mentioned in the Material and Methods section (3.3 

RNA expression data analysis) (results in Supplementary Figure 1), an exploratory analysis was 

performed. The counts were transformed to log2 and analyzed by Principal Component Analysis 

(PCA) sorted by sample type, to look at whether the samples of metastases presented a 

distinctive pattern. PCA plot shows that the metastatic gene expression pattern does not present 

differences from primary tumors (Figure 3A), however, a differential profile has been seen on the 

left side of the plot, which corresponds to the basal subtype (Figure 3B).  

Differential expression analysis was assessed with voom-limma method between read counts 

from primary and metastatic RNA-seq samples. A total of 1689 DEGs have been obtained, 869 

down-regulated and 820 up-regulated in metastatic samples compared to primary samples, 

volcano plot in Fig 1C shows the expression for every gene in the comparison, and Table 4 the top 

20 genes ranked by p-value (p-value >0.05). The top five most significantly up-regulated genes in 

metastatic samples are C7, CD22, MST1, GRIK5, and F10, all protein-coding genes. The top five 

down-regulated genes are AC005291.2, TBX5-AS1, SFRP2, C3orf80, and TBX5, the first two are 

lncRNA genes, and the other three are protein-coding genes. 
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Figure 3. Differential Gene Expression analysis of metastatic samples. A-B) Principal component analysis 

(PCA) of log2 RNA-seq counts between sample type (A), and sample subtype (B) comparing metastatic vs 

tumor primary samples. Ellipse indicates a 90% confidence interval of groups. C) Volcano plot of the 

difference expression genes in metastatic samples vs primary tumor samples (p-value < 0.05). A total of 

1689 DEGs, 869 down-regulated and 820 up-regulated, represented between the log2 Fold-Change and the 

log10 p-value. FC: Fold Change.         
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gene_type gene_name level logFC AveExpr t P.Value adj.P.Val B 

ENSG00000273388.1 lncRNA AC005291.2 2 -5,43665 -0,94041 -8,30345 8,22E-16 1,49E-11 23,81866 

ENSG00000112936.19 protein_coding C7 1 5,559323 1,995661 7,303886 1,01E-12 9,18E-09 18,38124 

ENSG00000255399.4 lncRNA TBX5-AS1 1 -3,90759 0,894768 -6,85752 1,93E-11 1,16E-07 14,8048 

ENSG00000145423.5 protein_coding SFRP2 2 -6,43062 8,233741 -6,18982 1,19E-09 4,73E-06 11,3932 

ENSG00000012124.17 protein_coding CD22 1 2,683749 2,517614 6,175106 1,3E-09 4,73E-06 11,53916 

ENSG00000180044.5 protein_coding C3orf80 2 -2,94984 1,607013 -5,85536 8,28E-09 2,36E-05 9,423909 

ENSG00000089225.20 protein_coding TBX5 1 -3,31005 1,361162 -5,83844 9,12E-09 2,36E-05 9,318614 

ENSG00000261039.3 lncRNA LINC02544 2 -4,29904 0,744506 -5,79049 1,19E-08 2,52E-05 9,068855 

ENSG00000149968.12 protein_coding MMP3 2 -6,69726 2,717329 -5,76362 1,39E-08 2,52E-05 8,937667 

ENSG00000105989.10 protein_coding WNT2 1 -4,58471 2,978126 -5,7635 1,39E-08 2,52E-05 8,956835 

ENSG00000232679.2 lncRNA LINC01705 2 -4,44902 -1,15948 -5,70604 1,91E-08 3,13E-05 8,649624 

ENSG00000167749.11 protein_coding KLK4 2 -5,80277 0,375268 -5,69157 2,07E-08 3,13E-05 8,579178 

ENSG00000162267.12 protein_coding ITIH3 2 2,56458 -0,69369 5,6497 2,61E-08 3,63E-05 8,581422 

ENSG00000134443.10 protein_coding GRP 1 -6,22791 0,883065 -5,56151 4,22E-08 5,46E-05 7,947352 

ENSG00000228203.7 lncRNA GRASLND 2 -3,35698 0,39646 -5,47361 6,77E-08 8,18E-05 7,527034 

ENSG00000006788.14 protein_coding MYH13 2 -3,53291 -1,65126 -5,45872 7,33E-08 8,18E-05 7,455695 

ENSG00000180785.10 protein_coding OR51E1 1 -2,49928 0,704597 -5,45014 7,67E-08 8,18E-05 7,427125 

ENSG00000173531.15 protein_coding MST1 1 1,985869 1,515526 5,410875 9,45E-08 9,52E-05 7,492624 

ENSG00000133110.15 protein_coding POSTN 2 -3,13957 9,675425 -5,39846 1,01E-07 9,63E-05 7,401517 

ENSG00000105737.9 protein_coding GRIK5 2 2,302981 0,061809 5,378538 1,12E-07 0,000102 7,281366 

Table 4. Top 20 significant up-regulated and down-regulated genes in metastatic comparing to primary tumor samples with its gene annotations. 
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4.2 Identification of differential DNA methylation regions in metastatic samples 

DNA methylation data required a more complex preprocessing than RNA-seq data since it was 

necessary to eliminate rows with missing values, SNPs overlapping probes, and probes that have 

been demonstrated to map to multiple places in the genome (results in Supplementary Figure 2).  

Next, an exploratory analysis was performed, first, the β-values were analyzed by PCA to see if 

there was a differential profile between metastatic and primary tumor samples. The PCA shows 

that metastatic samples do not present a differential profile (Figure 4A), both primary tumors and 

metastatic samples exhibit high epigenetic variability, however, as in the gene expression, there is 

a difference in the basal subtypes of the primary tumor samples (Figure 4B). In parallel, a box plot 

has been generated with the average methylation values between the metastatic and primary 

tumor samples, although not significant, the metastatic samples have a lower methylation 

average than the primary tumor ones (Figure 4C). 

Following the exploratory analysis, normalized data were used to identify differentially 

methylated CpGs (DMCs) using limma R package applying p-value < 0.05. A total of 34,128 DMCs 

have been determined (it represents 10,2% of the total CpGs analyzed (333315)), of which 30802 

are hypomethylated and 3326 are hypermethylated. It should be noted that the hypomethylated 

DMCs represent more than 90% of the total DMCs found compared to 10% of hypermethylated 

ones. The volcano plot in Figure 4D shows the gene-annotated DMRs, and in Table 4 the top 20 

genes annotated DMCs ranked by p-value (p-value >0.05). The top five most significantly 

hypermethylated genes annotated DMCs in metastatic samples are IER2, SPINT2, MREG, 

PRR19_PAFAH1B3, and PRR7, three of which are promoter associated. The top five 

hypomethylated genes annotated DMCs are FKRP, HDAC4, NR5A1, COMT, and MASP2, the first 

two are lncRNA genes, and the other three are protein-coding genes.   

Additionally, DMC chromosomic location was analyzed. DMCs are distributed throughout the 

genome and chromosomes 1, 2 and 6 contain a larger percentage, with 9.4%, 7.8%, and 7.3% 

respectively (Figure 5A). Second, DMCs locations were analyzed according to genes and CpG 

islands. Regarding the genes, the hypomethylated DMCs have been mainly found in the body of 

the genes and the intergenic zones (IGR) at a ratio of 39% and 31% respectively. On the other 

hand, the hypermethylated DMCs present a greater proportion in the gene promoter zones, 

TSS200 (18%), TSS1500 (16%), and 5'UTR (13%) (Figure 5B), which would agree with the fact that 

there are 46% of hypermethylated DMCs in the CpG island area (islands are usually in the 

promoters, 5'UTR and 1st exon) Hypomethylated DMC and respective CpG islands have been 

mainly in ope sea areas (39%) (Figure 5C). 
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Figure 4. Differential DNA methylation profile in metastatic samples. A-B) Principal component analysis 

(PCA) of β-values between sample type (A), and sample subtype (B) comparing metastatic vs tumor primary 

samples. Ellipse indicates a 90% confidence interval of groups. C) β-values mean. Box plot of the differences 

in the methylation levels (β-values mean) between primary tumor vs metastatic samples. D) Volcano plot of 

gene annotated DMRs in metastatic samples vs primary tumor samples (p-value < 0.05). A total of 34128 

CpG sites, 3326 hypermethylated and 30803 hypomethylated, were fond and represented between the 

log2 Fold-Change and the log10 p-value and annotated with the genes where they belong.  
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 chr pos strand 
Relation_ 
to_Island 

Gene 
RefGene_ 

Group 
logFC AveExpr t P.Value adj.P.Val B 

cg27297025 chr19 47259588 - Island FKRP Body -2,7253441 5,8984612 -8,9903424 2,1066E-17 7,0217E-12 27,6632066 

cg18359321 chr2 240058950 - N_Shelf HDAC4 Body -1,7217728 5,05139421 -8,8510504 5,7811E-17 9,6347E-12 26,7405803 

cg13661129 chr9 127269876 + S_Shelf NR5A1 TSS200 -1,8140787 2,46610387 -8,2522686 3,9783E-15 3,845E-10 22,8725894 

cg03724721 chr22 19939061 - OpenSea COMT 5'UTR -1,9918643 3,80276154 -8,2308059 4,6143E-15 3,845E-10 22,7370347 

cg00523012 chr19 13264324 + Island IER2 Body 1,41674946 -6,1866303 8,10289407 1,111E-14 6,8551E-10 21,933792 

cg12888113 chr1 11107048 - OpenSea MASP2 Body;Body -1,8408701 6,00937614 -8,0683213 1,4067E-14 6,8551E-10 21,71806 

cg12528056 chr11 60619955 - Island GPR44 3'UTR -2,4330618 5,97351641 -8,0649247 1,4397E-14 6,8551E-10 21,6968972 

cg14451382 chr5 1876397 - Island NA 
 

-2,9270374 0,82096889 -7,9491595 3,1573E-14 1,3155E-09 20,9790458 

cg08231577 chr1 117077088 + Island CD58 Body -1,533621 5,38560436 -7,3969946 1,206E-12 4,4666E-08 17,6501705 

cg21435684 chr17 80255457 - S_Shelf NA 
 

2,04553513 -4,8623527 7,33116881 1,8402E-12 6,1337E-08 17,2642084 

cg15375239 chr19 38755287 - Island SPINT2 5'UTR 1,0579897 -6,4284235 7,29085012 2,3807E-12 6,8877E-08 17,0289872 

cg08182975 chr2 7164527 + OpenSea RNF144A Body -1,8473419 4,40019047 -7,281425 2,5281E-12 6,8877E-08 16,9741307 

cg15427886 chr8 55379663 + Island NA 
 

-4,2703507 0,42815252 -7,271889 2,6864E-12 6,8877E-08 16,91868 

cg09187505 chr6 106434429 - Island NA 
 

-4,0217433 4,20290176 -7,144983 5,9953E-12 1,4274E-07 16,1855918 

cg01778114 chr2 216877947 + Island MREG Body 1,20525166 -5,220954 7,13275208 6,4742E-12 1,4386E-07 16,1154196 

cg18517898 chr19 36435675 + Island LRFN3 Body -1,8609022 6,18113809 -7,0993782 7,9811E-12 1,6626E-07 15,9243782 

cg27324804 chr7 101509161 + OpenSea CUX1 Body -1,6217908 5,71482482 -7,0015657 1,4679E-11 2,7177E-07 15,3681554 

cg07493465 chr6 149301241 - OpenSea UST Body -2,3394407 3,79104967 -6,9947834 1,5309E-11 2,7177E-07 15,3297921 

cg10848272 chr14 70653719 - N_Shore SLC8A3 5'UTR -3,2797162 0,63163133 -6,9928658 1,5492E-11 2,7177E-07 15,31895 

cg27320983 chr19 1230171 + Island C19orf26 3'UTR -1,721587 6,77709189 -6,9613593 1,8824E-11 3,1372E-07 15,1411219 

Table 5. Top 20 significant hypermethylated and hypomethylated CpG regions in metastatic samples comparing to primary tumor samples with its gene annotations.  

 

 



 

36 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.- DMCs distribution in metastatic samples. A) Manhattan plot of the DNA methylation sites (CpG 

sites) in metastatic samples based on p-values, organized according to their location on different 

chromosomes. B) Genomic region of DMCs. Percentage of the CpG sites (hypermethylated, 

hypomethylated, and both together (All)) referring to its distribution across gene regions, divided into 

promoters (1stExon, 3’UTR, 5’UTR, gene body, intra-genic regions (IGR), TSS1500, and TSS200). C) Genomic 

localization of DMCs sites related to CpG islands. Percentage of the CpG sites (hypermethylated, 

hypomethylated, and both together (All)) referring to its localization related to CpG islands, divided into 

Island, opensea, CpG self, and CpG shore.    
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4.3 Identification of significant Copy Number Variation (CNV) in metastatic samples 

After download CNV data, exploratory analysis of Primary Tumor and Metastatic samples CNVs 

were performed. Table 6 shows the number of CNVs downloaded for each type of sample. 

Sample Type Count Mean sd 

Metastatic 4296 -0.1216501 0.9150725 

Primary Sample 611725 -0.1428994 1.0293197 

Table 6.  Summary table of downloaded CNV data. sd = 
standard deviation.   

 The density plot of the segment means of Primary Tumor and Metastatic samples shows that 

metastatic samples have an increase in the density (segment mean different from 0), this could 

indicate differences in the number of amplifications and deletions (Supplementary Figure 3). 

Figure 6A plot (segment mean values plot) confirms this fact, it can be observed that the segment 

means of the primary tumor samples are centered at 0, with no peaks. However, the metastatic 

samples, despite also presenting a peak centered at 0, also observe two peaks above and below 

0.3 and -0.3, respectively, indicative of the presence of CNV. In addition, the average of metastatic 

samples is significantly different from the primary tumor samples (Figure 6A). In the same way, a 

bar plot was generated of the segment mean but divided between chromosomes, and according 

to whether they represent a gain or a loss in the primary tumor and metastatic samples 

separately to see how the aberrations are distributed along the genome (Figure 6B). 

After the exploratory analysis, the identification of recurrent CNVs (amplifications and 

deletions) of metastatic samples were detected using GAIA as described in materials and 

methods. As a result, 4288 genes with CNVs have been obtained, including 2733 with 

amplifications and 1555 with deletions. After duplicate deletion, there is a total of 2221 genes 

with CNV, 1299 with amplifications, and 922 with deletions. The arrangement of this CNV 

according to its location on the chromosomes is shown in Figure 6C and Table 7. 

Chromosomes 6 9 13 14 15 16 20 23 

Amplification 2 463 0 0 0 372 0 462 

Deletion 0 0 349 540 10 0 23 0 

Table 7.  Summary table of CNV (amplifications and deletions) in metastatic samples 
divided by chromosome localization.  

Table 8 shows some of the genes that present CNVs. 10 with amplification: DDX39BP1, 

MCCD1P1, SLC1A1, SPATA6L, RP11, PPAPDC2, CDC37L1, AK3, RCL1, and MIR101, and 10 with 

deletion: STARD13, AL138999.1, RFC3, RNU5A, AL161891.1, VDAC1P12, SNORA25, LINC00457, 

GAMTP2, and NBEA. Also, the chromosome where the CNVs are found are shown, amplifications 

are only found on 4 chromosomes, 6, 9, 16, and 23, and deletions on 4 different ones, 13, 14, 15, 

and 20.   
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Figure 6. Identification of recurrent CNV in Metastatic samples. A) Violin plot of the segment mean 

distribution of primary tumor and metastatic samples. Discontinuous lines represent the values used for 

the detection of CNVs in the GAIA approach ( >0.3 as amplification and < -0.3 as deletion). B) Box plot 

representing the segment mean divided by chromosomes, and by the gain (top) and the loss (bottom) of 

primary tumor samples (left), and metastatic samples (right). C) Bar plot of the identification of the 

recurrent CNVs in metastatic samples distributed by chromosomes, and by the amplifications (top) and the 

delations (bottom).   
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GeneSymbol chr Aberration q-value AberrantRegion GeneRegion 

DDX39BP1 6 Amp 8,71875E+14 6:29881490-1 6:29874320-29874686 

MCCD1P1 6 Amp 8,71875E+14 6:29881490-1 6:29875560-29876422 

SLC1A1 9 Amp 1,88822E+14 9:66189025-1 9:4490444-4587469 

SPATA6L 9 Amp 1,88822E+14 9:66189025-1 9:4553386-4666674 

RP11 9 Amp 1,88822E+14 9:66189025-1 9:4633027-4633756 

PPAPDC2 9 Amp 1,88822E+14 9:66189025-1 9:4662298-4665256 

CDC37L1 9 Amp 1,88822E+14 9:66189025-1 9:4679559-4708398 

AK3 9 Amp 1,88822E+14 9:66189025-1 9:4711155-4742043 

RCL1 9 Amp 1,88822E+14 9:66189025-1 9:4792869-4885917 

MIR101 9 Amp 1,88822E+14 9:66189025-1 9:4850291-4850381 

STARD13 13 Del 1,1811E+14 13:68677373-0 13:33677272-33924767 

AL138999.1 13 Del 1,1811E+14 13:68677373-0 13:33911020-33911109 

RFC3 13 Del 1,1811E+14 13:68677373-0 13:34392186-34540695 

RNU5A 13 Del 1,1811E+14 13:68677373-0 13:34403676-34403786 

AL161891.1 13 Del 1,1811E+14 13:68677373-0 13:34486129-34486218 

VDAC1P12 13 Del 1,1811E+14 13:68677373-0 13:34656566-34657447 

SNORA25 13 Del 1,1811E+14 13:68677373-0 13:34674848-34674975 

LINC00457 13 Del 1,1811E+14 13:68677373-0 13:35009587-35214822 

GAMTP2 13 Del 1,1811E+14 13:68677373-0 13:35148341-35148803 

NBEA 13 Del 1,1811E+14 13:68677373-0 13:35516424-36247159 

Table 8. 20 of the detected CNVs in metastatic samples with their gene annotations.   

.  
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4.4 Identification of metastatic 3-omics gene set  

4.4.1 3 - omics data conceptual integration 

Once the annotation of the genes differentially expressed, methylated, and with differences in 

their CNV patterns has been obtained, this data was conceptually integrated through their 

comparison to obtain which genes are found in common in the 3 analyses. A metastatic gene set of 

24 genes has been found (Figure 7A), which correspond to ADAMTSL1, ANGEL1, ATXN2L, CCL21, 

CCNA1, CLN3, COG3, DDX58, HS3ST2, IRX3, IRX6, LRFN5, MAZ, MMP2, NEK9, NETO2, PRRT2, SALL1, 

SLC25A15, STX4, TBX6, THSD1 and TMEM229B (Table 9).  

In Table 9 apart from the genes resulting from the integration, there are the associated 

differentially methylated CpGs. A large majority of these genes have hypomethylated DMCs 

regardless of whether they are up or down-regulated. In total, 20 genes (83.3%) are hypomethylated 

and 3 hypermethylated (12.5%). Curiously STX4 is hyper/ hypomethylated in different DMRs (Table 

9). 

Taking into account that it is described that methylation leads to the cancer suppressor gene's 

inactivation in cancer, it was studied in more depth because most of the selected genes are 

hypomethylated regardless of their expression. For this reason, it has been looked at where the 

DMCs are concerning CpG islands and genes. Regarding the genes, the hypomethylated DMCs have 

been mainly found in the body of the genes and the TSS1500 promoter region at a ratio of 38% in 

both cases. On the other hand, the hypermethylated DMCs are present in two locations, in the body 

at 67% and in the TSS1500 promoter regions at 33% (Figure 7B). Regarding the CpG Island position, in 

both cases, hypomethylated and hypermethylated DMCs are mainly in the island with 42% and 67% 

respectively (Figure 7C). 

In addition, the correlation between gene expression and methylation levels of DMCs were 

studied. Although not in a very strong way, broadly speaking, gene expression and methylation 

correlate positively, i.e. in upregulated genes hypermethylation is seen, and in downregulated genes 

hypomethylation (Figure 7D). However, this trend could be influenced by the previously mentioned 

fact that a large majority of genes are hypomethylated. Supplementary Figure 4 shows the 

correlation individually for the 24 genes of the metastasis gene set, where it can be observed that 

some of the genes have a negative correlation (In those cases where a gene has more than one 

methylated DMCs only a representative case is shown).  
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Figure 7. Integration of DEG, DMR and CNVs data of metastatic samples. A) Venn Diagram of significant DEG, 

DMR and CNVs gene annotation overlapping. B) Genomic region of DMCs. Percentage of the CpG sites 

(hypermethylated and hypomethylated) referring to its distribution across gene regions, divided into 

promoters (1stExon, 3’UTR, 5’UTR, gene body, intra-genic regions (IGR), TSS1500, and TSS200). C) Genomic 

localization of DMCs sites related to CpG islands. Percentage of the CpG sites (hypermethylated and 

hypomethylated) referring to its localization related to CpG islands, divided into Island, opensea, CpG self, and 

CpG shore. D) Scatter plot of gene expression and DNA methylation correlation. Each point represents a 

significant up/down methylated CpG site and its gene pair.   
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Gene 
Gene_ 

expression 
chr Name 

DNA_ 
Methylation 

Relation_to_Island 
Gene_ 
Group 

Aberration 

ADAMTSL1 Down chr9 

cg06294856 Hypo N_Shore Body 

Amp 

cg13739410 Hypo OpenSea Body 

cg06500883 Hypo Island Body 

cg13468759 Hypo OpenSea Body 

cg14523394 Hypo Island Body 

cg13883376 Hypo OpenSea Body 

cg14003978 Hypo OpenSea Body 

ANGEL1 Up chr14 cg05349242 Hypo OpenSea 3’UTR Del 

ATXN2L Up chr16 
cg23051598 Hypo Island 5’UTR 

Amp 
cg05785839 Hypo OpenSea 3’UTR 

CCL21 Up chr9 cg27443224 Hypo OpenSea 1stExon Amp 

CCNA1 Down chr13 

cg14089714 Hypo N_Shore TSS1500 

Del cg26345046 Hypo N_Shore TSS1500 

cg19866195 Hypo N_Shore TSS1500 

CLN3 Up chr16 cg09900266 Hypo OpenSea 3’UTR Amp 

COG3 Up chr13 cg22419414 Hypo OpenSea Body Del 

DDX58 Down chr9 cg14277298 Hypo OpenSea 3’UTR Amp 

HS3ST2 Down chr16 

cg09869531 Hypo OpenSea Body 

Amp 

cg19064258 Hypo Island 1stExon 

cg03132773 Hypo Island TSS1500 

cg16399049 Hypo Island TSS200 

cg08214995 Hypo Island 1stExon 

IRX3 Down chr16 cg13660279 Hypo Island Body Amp 

IRX6 Down 

chr16 cg02787087 Hypo N_Shore Body 

Amp chr16 cg05099576 Hypo N_Shore Body 

chr16 cg02198701 Hypo N_Shore 3’UTR 
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chr16 cg02602550 Hypo S_Shore Body 

chr16 cg04834436 Hypo Island Body 

chr16 cg06431877 Hypo S_Shore Body 

LRFN5 Down 
chr14 cg04784672 Hypo S_Shore 5’UTR Del 

chr14 cg13526007 Hypo S_Shore TSS200 Del 

MAZ Up 

chr16 cg12521167 Hyper Island Body 

Amp 

chr16 cg16518772 Hyper Island Body 

chr16 cg04588455 Hyper Island Body 

chr16 cg00564759 Hyper Island Body 

chr16 cg07675334 Hyper Island Body 

MMP2 Down 

chr16 cg08133699 Hypo OpenSea Body 

Amp 

chr16 cg09530163 Hypo N_Shore TSS1500 

chr16 cg26795346 Hypo S_Shelf Body 

chr16 cg12317456 Hypo N_Shore TSS1500 

chr16 cg08318842 Hypo N_Shore TSS1500 

chr16 cg01821058 Hypo N_Shore TSS1500 

NEK9 Up chr14 cg08310116 Hypo S_Shore TSS1500 Del 

NETO2 Down 
chr16 cg05532446 Hypo N_Shelf Body 

Amp 
chr16 cg03283929 Hypo OpenSea 3’UTR 

PRRT2 Up chr16 cg04203429 Hyper N_Shore TSS1500 Amp 

RCBTB1 Up chr13 cg11801959 Hypo OpenSea Body Del 

SALL1 Down 

chr16 cg06724588 Hypo Island TSS1500 

Amp 

chr16 cg06274671 Hypo Island TSS1500 

chr16 cg06232807 Hypo Island TSS1500 

chr16 cg05404010 Hypo Island TSS1500 

chr16 cg05213609 Hypo Island TSS1500 

chr16 cg02288754 Hypo Island Body 

chr16 cg09016242 Hypo Island TSS1500 
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chr16 cg07498275 Hypo Island TSS1500 

chr16 cg06653699 Hypo Island TSS1500 

chr16 cg02864757 Hypo Island Body 

chr16 cg00310215 Hypo Island TSS1500 

chr16 cg27423760 Hypo Island TSS1500 

chr16 cg01146232 Hypo Island TSS1500 

chr16 cg01500945 Hypo Island TSS1500 

chr16 cg08776356 Hypo Island TSS1500 

chr16 cg04844564 Hypo Island Body 

SLC25A15 Up 
chr13 cg16989646 Hypo Island 5’UTR 

Del 
chr13 cg00151919 Hypo N_Shore TSS1500 

STX4 Up 
chr16 cg05916757 Hypo N_Shelf 3’UTR 

Amp 
chr16 cg09775103 Hyper Island Body 

TBX6 Up chr16 cg05806717 Hypo N_Shore 5’UTR Amp 

THSD1 Down 
chr13 cg04549287 Hypo OpenSea Body 

Del 
chr13 cg23498925 Hypo OpenSea Body 

TMEM229B Up 
chr14 cg25006823 Hyper S_Shore TSS1500 

Del 
chr14 cg20454158 Hyper S_Shore TSS1500 

Table 9. Summary of metastatic gene set resulting from the integration of the DEG, DMR and CNV data of the metastatic samples against primary tumor samples. 
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4.4.2 Pathway characteristics of metastatic gene set 

The metastatic gene set, defined in the conceptual data integration, was analyzed in more 

depth to determine how it could be influencing the evolution of breast cancer and its real 

importance in the metastatic state. For this reason, the possible involvement of these genes in 

several previously described biological mechanisms was analyzed through the analysis of several 

genes sets such as GO, Hallmarks, Cancer gene set, and KEGG.  

It is necessary to mention that the number of genes that form the metastatic gene set is small, 

and this fact makes it difficult to see enriched processes. Therefore, having as an objective to 

practice the more technical aspects in the use of programs such as Cytoscape, the enrichment of 

processes involving only 1 gene of the set gene was considered valid.   

The enrichment analysis has determined that the upregulated genes are positively involved 

(enriching) in processes related to membrane organization and fusion, as well as with several 

processes related to the SNARE family of proteins such as vesicle transport (Figure 8A, C). 

Likewise, the use of the Hallmarks database has determined that some of the upregulated genes 

are involved in apical junctions (Figure 8B). All these processes seem to be related to each other, a 

fact that will be analyzed later with the use of the Cytoscape tool. However, no enriched 

processes have been found when the cancer database was used. The upregulated genes involved 

in these processes are PRRT2, STX4, CLN3, and CCL21. 

On the other hand, it has been possible to relate downregulation genes with cell junction 

assembly (Figure 8A) and with apoptosis (Figure 8B). The downregulated genes involved in these 

processes are IRX3, THSD1, LRFN5, MMP2, and CCNA1. 

Besides, the enrichment analysis with KEGG database has determined that both upregulated 

and downregulated genes are implicated in NF-kappa B signaling pathway. The genes involved in 

these processes are CCL21 and DDX58 respectively.     

It must also be stated that enriched processes have been observed that are not mentioned and 

are involved in topics as diverse as urogenital development or abnormal iris morphogenesis. 

Those have been discarded for not having relationship with cancer and have not been further 

analyzed. Notwithstanding, and considering that these are processes related to development, it 

would be necessary to analyze them in depth in the case of looking for treatment targets. 

Considering the results obtained from the enrichment analysis with the GO database with the 

upregulated genes, the results were integrated using the EnrichmentMap app (Cytoscape) to 

visualize the relationship between them. This analysis has determined three large blocks, all of 

them related to vesicle transport and cellular mobility. Regarding the networks of downregulated 

genes, highlight those involved in gap junction assembly, key in maintaining the cell-cell junctions 

of the epithelial monolayer of the breast, and in avoiding the epithelial-mesenchymal transition 

(Figure 9). 
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Seeing that there is a pattern of functionality in 10 of the 24 genes (PRRT2, STX4, CLN3, and 

CCL21 as up-regulated genes and IRX3, THSD1, LRFN5, MMP2, CCNA1 and DDX58 as down-

regulated), this set of genes has been selected as top genes set for validation.  

 

 

Figure 8. Enrichment analysis of metastatic gene set divided by up/downregulation gene expression. A) 

Gene Ontology (GO) enrichment analysis. B) Hallmark enrichment analysis. C) Kyoto Encyclopedia of Genes 

and Genomes (KEGG) enrichment analysis. P-value < 0.05. 
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Figure 9. Enrichment Map of Metastatic Gene set corresponding to the GO Enrichment Analysis divided 

by up/downregulation gene expression. General visualization using EnrichmentMap app in Cytoscape. GO-

terms have been represented by nodes, the size represents the number of genes assigned to the process, 

and the color represents the group. (Green represents the process enriched by downregulated genes, and 

brown represents the process enriched by up-regulated genes).   
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4.5 External Validation of metastatic top genes in multiple databases 

Genes selected as top genes were validated in two independent databases, the Metastatic 

Breast Cancer Project (MBCP) and the METABRIC database to determine their potential as 

metastatic predictors.  

First, using the MBCP database, the relationship between the top genes expression and the 

presence of metastasis or not has been analyzed, in this case, no significant difference has been 

observed.  

Next, the relationship between top gene expression and the time to present a metastasis 

event (in days) was analyzed. To make this comparison, two groups have been generated, one 

with high expression and another with low expression, for each gene separately. In this case, only 

a significant difference has been observed in the case of CLN3, which determines that at higher 

expression, more time to present a metastasis event, which would go against the hypothesis 

presented in this work, since this gene in the TCGA database would be a marker of poor prognosis 

(Figure 10). 

Considering that no positive results have been obtained in the MBCP validation, and therefore 

top genes would not be valid for predicting metastasis, it has been decided to see if, on the 

contrary, they could have some functionality in determining the prognosis of breast cancer 

regardless of the presence of metastasis. For this reason, a second database has been selected to 

carry out the validation. In this case, the METABRIC database was used to analyze the relationship 

between the expression of top genes with overall survival (OS) and relapse-free survival (RFS). In 

this case, the top genes were divided into up/down-regulated genes and in turn, these two groups 

were divided into two other groups according to high and low expression. 

No significant differences have been obtained in the Kaplan-Meier analysis, but yes a trend 

that determines that upregulated genes could be decreasing OS and RFS. On the contrary, a high 

expression of the top genes found downregulated in TCGA would seem to correlate with a greater 

OS and RFS (Figure 11).  
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Figure 10. Metastatic Gene set expression in the Metastatic BreastCancer Project (MBCP) validation clinical 

cohort. Box plots representing time to Metastasis in days and state of no metastasis vs metastasis depending on 

gene expression of gene set, each gene individual. A) Up-regulated genes, and B) Downregulated genes more 

significantly after the enrichment analysis. 

 

 

Figure 11. Metastatic Gene set expression in the METRABRIC validation clinical cohort.  Kaplan-Meier 

analysis of A) Overall survival (OS) Probability between high and low expression of upregulated (left), and 

down-regulated (right) genes from the metastatic gene set. B) Relapse Free Survival (RFS) probability 

between high and low expression of upregulated (left), and down-regulated (right) genes form the 

metastatic gene set.  

 

  



 

51 

5. DISCUSSION 

Tumor metastasis is the main cause of death in breast cancer patients, despite this fact, the 

mechanism by which a primary tumor evolves into metastasis remains poorly understood and 

currently, there is no treatment to prevent it. Most studies found in the literature focus on the 

study of primary tumors and few on the mechanism of metastasis. The study of metastasis 

progression presents great difficulty since it has been described that the differences between 

primary tumors and its metastasis are minimal, presenting similar genetic profiles [93] [94] [95].    

Another major limitation of this study has been the number of metastasis samples used it has 

worked. Only 4-6 metastasis samples have been available in front of more than 1000 primary 

tumor samples, which did not allow for example to look at differences between IDC subtypes or 

to look at differences between the places where the metastasis is found. Fact that could be key in 

defining a good prediction model. There are indeed databases with more metastatic samples, but 

these databases only have RNA sequences and no other omics, for this reason, have been 

discarded.  

Despite these difficulties, it has been possible to obtain some results, and more importantly, it 

has been possible to work with several bioinformatics tools and increase the knowledge in this 

field.  

In this study, after individual omics analysis and data integration, 10 genes have been 

identified/proposed as top genes in the evolution of breast cancer towards a metastatic event, 

PRRT2, STX4, CLN3, CCL21, IRX3, THSD1, LRFN5, MMP2, CCNA1, and DDX58. The first 4 genes are 

upregulated, have CNV amplification, and are hypomethylated, except PRRT2 which is 

hypermethylated in metastatic samples vs primary tumor samples. On the other hand, the last 6 

genes, are downregulated and hypomethylated (DDX58, IRX3, MMP2 have CNV amplification and 

THSD1, LRFN5, and CCNA1 deletions).  

The results obtained with upregulated genes are in the same line as the fact that the 

hypomethylation of certain genes correlates with its upregulation and activation and with its role 

in cancer development, a process widely described in several types of cancer including breast 

cancer [96] [97] [98]. In the same way, it has also been described that CNV (amplification) of 

certain genes is involved in the development of cancer, altering the expression of certain genes in 

a positive way [99] [100] [101].  

Contrary to what was expected, all the obtained downregulated genes are hypomethylated, 

when it is widely described that in a cancer context, generally, hypomethylated genes are genes 

that are upregulated, and those that are hypermethylated are downregulated [102] [103] [104]. 

However, it has also been described that DNA hypomethylation is associated with chromatin 

repression and gene silencing [105], as well as gene body hypomethylation, has been related to 

the loss of gene expression in various cancers [106] [107]. This would explain why the IRX3, 

THSD1, LRFN5, MMP2, CCNA1, and DDX58 genes have been hypomethylated and downregulated. 
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The enrichment study of all these genes has shown that they are involved in several processes, 

among which those involved in cell mobility and vesicle transport should be highlighted since they 

have been obtained for all the genes. 

Transmembrane acid transport, pinocytosis, and endocytosis by caveolin are processes related 

to the Wnt pathway. This pathway is involved in various cellular functions such as migration and 

cell polarity. In addition, its involvement in cancer is widely described, specifically, it has been 

described that in breast cancer, it is mainly involved in proliferation and metastasis [108] [109]. 

These processes are also related to the internalization of membrane proteins such as cadherins, 

integrins among others involved in cell-cell adhesion, which favors the mesenchymal epithelium 

transition (EMT), the increase in cell motility and therefore metastasis [110] [111].  

Above all, the enrichment of the pathways involving the SNARE protein family should be 

highlighted. Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) are 

involved in the transport of proteins through transmembrane vesicles, including those involved in 

the formation of invadopodium and consequently cell mobility, invasion, and metastasis [112] 

[113] 

On the other hand, it has been determined that some of the genes found to be downregulated 

are also involved in processes related to the membrane and mobility, such as gap junction 

assembly. Gap junctions are needed to maintain the mono epithelial cell layer that conforms 

breast duct, its dis-assembly is one of the first breast cancer steps [114]. This fact is consistent 

with the rest of the enriched pathways, if there is a downregulation of genes involved in 

maintaining and forming gap junctions, i.e. loss of these, it increases cell mobility. 

Apart from the decrease in cell anchorage, the downregulation of genes related to apoptosis 

has been determined. Apoptosis pathways are typically inhibited in cancer processes [115].  

However, top genes could not be validated as predictors of metastasis or as predictors of poor 

prognosis. This could be due to the limitations mentioned at the beginning of this section. 
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6. CONCLUSIONS 

The following conclusions have been reached: 

1.- Metastatic breast cancer samples present significant differences at the level of gene 

expression, methylation, and CNV concerning primary tumor samples. 

2.- The metastatic samples present a greater proportion of hypomethylated genes than 

hypermethylated ones. 

3.- The integration of the three omics data defined 10 top genes: PRRT2, STX4, CLN3, CCL21, 

IRX3, THSD1, LRFN5, MMP2, CCNA1, and DDX58. 

4.- The key process in the evolution of a primary tumor towards a metastatic process is the 

acquisition of tumor cell mobility as well as the inhibition of apoptosis. 

5.- However, the first objective proposed in this work, of defining a multi-omic risk profile of 

MBC, could not be completed. The list of genes resulting from the analysis is not able to predict 

metastasis. 

Apart from the more biological conclusions, it is also necessary to define some conclusions at 

the learning level: 

- The development of this work has allowed the acquisition of a wider knowledge of 

databases as well as of the various existing omics. 

- Acquisition of experience in handling, preprocessing, and statistical analysis of various 

biological data. 

- The acquisition of experience in omics data integration as well as in the use of R and 

computer tools such as Cytoscape. 

6.1 Future Perspectives 

Bearing in mind that it has not been possible to validate top genes as predictors of metastasis, 

the following is proposed: 

-  As mentioned in the discussion, one of the limitations of this work is the size of the 

metastatic cohort, for this reason, the same analysis should be performed in a larger 

cohort. With a larger cohort, it would be possible to carry out the analysis independently 

for each subtype of IDC or divide by the site where the metastasis has occurred. 

- Compare primary tumor without metastases (with a good prognosis) with primary tumor 

that have developed a metastasis (poor prognosis).  

- Another approach would be to repeat the integration, applying various statistical 

methods of integration and comparing the results. 

- To validate the results of the top genes, they could be compared with existing breast 

cancer risk scores. 
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- Finally, there has not been enough time and positive results to generate a risk prediction 

algorithm.   
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7. ANNEXES 

7.1 Supplementary Figure 1 

  

Supplementary Figure 1. Pre-processing of the RNA-seq data from primary and metastatic tumor 

samples. A) Density plot of row data before filtering and normalization. B) Density plot of the data after 

filtering and normalizing. C) Scatterplot of all the data showing the trend of the variance (log-cpm), the red 

curved line indicates that the samples have an overdispersion and that they need to be adjusted to a linear 

model to apply the voom function. D) Scatterplot of all the data showing the trend of the variance after 

applying the lmFit function. The straight line indicates that the variance no longer depends on the average 

level of expression and it is appropriate to proceed to the study of the differential expression.  
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7.2 Supplementary Figure 2 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure 2. B-values density plot of the primary tumor and metastatic samples.  
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7.3 Supplementary Figure 3  

 

Supplementary Figure 3. Density of segment means of the primary tumor (A) and metastatic (B) samples 

(separately because otherwise the density of the metastatic samples was not seen). In both cases, the 

density is the expected, and the peaks of the segment mean are 0.  
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7.4 Supplementary Figure 4  
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Supplementary Figure 4. Individual correlation between gene expression and DMCs methylation of the final 

metastatic gene set in the metastatic samples. Blue line represents the lineal correlation.   
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