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Abstract— Inventory robots produce accurate 
results while reducing costs. Such robots are 
specialized in navigating around store/warehouse 
facilities while reading radiofrequency identification 
(RFID) tags. However, commercial stores pose a 
serious challenge to navigation capabilities since these 
scenarios are likely to be modified relatively frequently. 
Current solutions involve having to re-map the 
modified layout and redesign the robots’ routes. This 
means that a human operator must direct the robot 
through the target area, reducing the autonomy and 
scalability of these solutions. The main goals of this 
article are: first, assessing the feasibility of RFID-based 
exploration to enable autonomous mapping of inventory environments; and second, comparing the classical robotic 
navigation based on waypoints to the RFID-based navigation strategy. It will be shown that RFID-based strategies can 
be used to successfully build maps autonomously and obtain similar inventory accuracies when compared the 
current non-autonomous strategies. 

Index Terms— Inventory robots, RFID, exploration, navigation, e-logistics. 

I. INTRODUCTION

OWADAYS, companies adopting robotic inventory 

solutions benefit from reducing inventory time and cost, 

and increasing their accuracy, eliminating human errors, 

having zero training time and consistent performance, and 

showing an innovative brand image [1], [2]. However, 

although there are many current solutions in the market, these 

robots are bulky (bothering customers) and expensive, which 

slows down the broad market adoption.  

Besides, such solutions require an installation phase, which 

has a detrimental impact on the scalability. The reason is that 

robots require a map to localize themselves in the environment 

and a predefined route to navigate such space [3]. But current 

solutions for inventory robots require a human operator to 

build the map, i.e. to drive a robot throughout the target area 

[1], [4] while the robot is doing simultaneous localization and 

mapping (SLAM) [5]–[7]. This way the navigable area is 

bounded, and the mission route is optimized for a particular 

inventory layout. In later missions, the robot localizes itself on 

the map using the robot odometry and sensor measurements 

[5], [7].  
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To date, there are no commercial solutions or scientific 

papers that propose an autonomous exploration framework for 

inventory robots. The key to achieve fully autonomous 

inventory robots lies in their ability to autonomously map 

inventory environments. Hence, autonomous exploration is 

expected to solve the scalability issues of current solutions [8]. 

In the last years, there has been a huge interest for autonomous 

exploration and several techniques have been developed [3], 

[9]–[11]. These can be classified in frontier-based techniques 

[12], [13], metaheuristic algorithms [14], bio-inspired 

techniques [3], such as Particle Swarm Optimization (PSO), 

methods based on convolutional neural networks (CNNs) and 

deep reinforcement learning [15], and clustering techniques 

[16]. The main drawback of these techniques is that they still 

require a configuration phase to set the boundaries for the 

exploration area, otherwise the robots will extend the 

exploration area to the whole available area. Constrained 

exploration is essential for creating a map that is limited to the 

inventory area, which is crucial for enabling autonomous 

itinerary planning in RFID inventory environments. This type 

of mapping allows a robot to autonomously design its own 

inventory itinerary, composed of a set of waypoints starting 

from the initial position and crossing the layout-specific set of 

waypoints within the inventory environment's target area, up 

to the final location. 

An exploration method based on the attraction of the robot 

towards the inventory items (RFID exploration) would 

Inventory Robots: Performance Evaluation of 
an RFID-Based Navigation Strategy 

S. López-Soriano and Rafael Pous, Member, IEEE

N 



8  IEEE SENSORS JOURNAL, VOL. XX, NO. XX, MONTH X, XXXX 

 

automatize the system installation processes and/or posterior 

system reconfigurations, this is required due to layout 

modifications. Moreover, such method is expected to enable 

autonomous optimization of itinerary planning for robotic 

inventory missions. Scilicet, autonomously designing a 

specific route, consisting in a series of autonomously 

generated waypoints, that maximizes the inventory accuracy. 

To that end, the RFID technology [17], used broadly in 

inventory applications [18]–[20], will be used as the backbone 

of the proposed exploration strategy for inventory 

applications. 

RFID is one of the most used technologies for inventory 

processes globally, and it has been applied to robotics 

applications in the past [21]–[28]. RFID transponders are used 

to identify and locate items, machinery, humans, etc. During 

the last two decades, RFID technology has been used in 

robotics for localizing robots and items [21], [22], trajectory-

tracking [23], navigation [24], [25], obstacle avoidance [26], 

autonomous exploration of unmapped areas [27], [28], etc. In 

[24], the authors propose a coverage algorithm that optimizes 

the exploration task by balancing multiple criteria in low tag 

density scenarios. However, the scalability problem is not 

solved since it assumes the possession of a known map. In 

addition, inventory is a high tag density problem, which is not 

assessed in this study. In [27], robots autonomously deploy 

RFID tags along their trajectories to coordinate the multi-robot 

exploration respectively. The approach suggested in [28] 

proposes an RFID-based navigation strategy, also called RFID 

stigmergy, to tackle the inventory problem for autonomous 

collaborative robots. RFID-based navigation requires low 

computation, and it does not require a configuration phase. 

However, RFID-based navigation hasn’t been compared to the 

classical navigation approach using a predefined route.  

The goals of this work are: first, developing an autonomous 

exploration method based on the RFID technology that 

enables to produce maps of inventory layouts with constrained 

boundaries, and second, comparing the classical waypoint 

navigation [29] to the RFID-based navigation and analyze the 

results. Thus, this document provides the following 

contributions:  

1) the first demonstration of the efficacy of RFID-based 

autonomous exploration for optimizing the mapping of 

the target area in inventory environments, 

2) an experimental comparison between the waypoint 

navigation and the RFID-based navigation.  

In the following sections, it will be demonstrated that 

RFID-based exploration can be used to build maps of 

unknown real-life scenarios autonomously, and such resulting 

maps are well fitted for inventory missions (i.e., the map limits 

approach the boundaries of the area required to navigate the 

inventory layout according to the classical map-based 

navigation using waypoints). To that end, the experiments 

included in this work are performed in a dynamic real scenario 

consisting of a library full of students, what is to say, 

including unpredictable dynamic obstacles during the 

experiments.  

 

  
(a) (b) 

 

 
(c) 

Fig.1. (a) Image of the robot prototype. (b) Layout of the library 

floor. The area of interest (blue dotted line) contains the shelves filled 

with the tagged items (books). (c) Map, containing the waypoints 

used for navigation, obtained by a human-driven robot prototype. 

II. MATERIALS AND APPLICATION 

Unlike current commercial solutions, the robot used for the 

experiments consists of a simple, small, and low-cost design. 

The prototype is shown in Fig.1(a). It consists of a commercial 

base [30], a raspberry pi4 model B [31], a cyglidar [32], a 

ydlidar [33], an RFID reader [34] and 4 reader antennas [35], 

oriented towards the front, left, back and right sides 

respectively.  
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The tests are conducted in the library of the Pompeu Fabra 

University [36]. The library is a dynamic scenario, where the 

items are books placed on shelves distributed throughout the 

room. Fig.1(b) illustrates the layout of the library floor. The 

whole room area is 21 x 19 m2. The area of interest is 16 x 12 

m2 and contains two rows of 8 and 9 shelves filled with RFID 

tagged books. In total, there are 10 horizontal aisles and 3 

vertical aisles. Fig.1(c) shows the map of the area, obtained by 

driving the robot across the environment. The ground truth 

(Ngt) has been carried out manually by a human operator and it 

consists of 6000 UHF RFID tags that univocally identify the 

tagged books. 

The inventory performance [37] is assessed in terms of two 

parameters, namely the inventory accuracy (iacc) and the 

inventory time (ti). The inventory accuracy is calculated as (1), 

where Nic is the inventory count (number of unique tags read 

during the inventory mission) and Ngt is the total number of 

tags in the ground truth. The inventory time is set to 100 

minutes for the inventory performance to be compared in 

terms of iacc amongst all proposed strategies. 

ic
acc

gt

N
i

N
=  (1) 

III. RFID-BASED EXPLORATION 

In this section, we present a novel method for autonomous 

RFID-based exploration of inventory environments. The 

proposed methodology uses the ability of the robots to sense 

the RFID tags in different directions of the environment in a 

heuristic function (see equation 2), and it combines it with the 

concept of frontier-based exploration. This strategy is intended 

to explore, solely, the areas of interest of the inventory layout, 

i.e., areas where fixtures filled with tagged items are located. 

The flowchart of the proposed method is depicted in Fig.2. 

First, the RFID environment is sensed in the four directions of 

the antennas of the robot. Simultaneously, the SLAM 

gmapping algorithm [38] is used to build the map while 

localizing the robot on it. From the last map update, the set of 

explorable frontiers (Fk) at step k are updated. Next, a frontier 

fk is selected from the set of current frontiers, Fk. The heuristic 

function for the selection of the next explorable frontier, 

select_frontier(Fk), takes as its argument the set of all existing 

 

Fig.2. Flowchart of the proposed RFID-based frontier exploration algorithm. 
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frontiers, Fk = {f1, f2, …, fN}, and it returns the next frontier, fk, 

as a result (see equation 2). This function is intended to obtain 

the frontier, fk, with the maximum reward R(fk) amongst all 

explorable frontiers. The reward for a specific frontier, R(fi), is 

calculated as the quotient between the number of tag readings, 

obtained in the vicinities of each frontier, and the shortest path 

distance from the robot to such frontier. The function for the 

frontier selection is mathematically expressed as: 

 

𝑓𝑘 = 𝑠𝑒𝑙𝑒𝑐𝑡_𝑓𝑟𝑜𝑛𝑡𝑖𝑒𝑟 𝐹𝑘 = argmax
𝑓𝑖

𝑅 𝑓𝑖 

= argmax
𝑓𝑖

 𝑇𝑎𝑔𝑠(𝑓𝑖) 

 𝑟𝑓𝑖
− 𝑟′ 

 

 

(2) 

 

where the function argmax returns the argument fi that 

maximizes R(fi), |Tags(fi)| returns the number of different tags 

read by the robot in the direction of the frontier fi, from the 

closest robot pose to such frontier from which fi has been 

discovered or updated, |rfi-r’| accounts for the shortest path 

distance from the current robot pose r’ to the position of the 

frontier rfi. At each exploration step k, the algorithm checks if 

a frontier has been discovered or updated, and the 3-tuple (fi, 

r’, |Tags(fi)|) is stored or updated. And fi is composed of N 

frontier cells, C = {c1, c2, …, cN}, for N ≥ 1. The frontier cells 

are obtained using frontier-tracing frontier detection (FTFD) 

[13]. The exploration goal Ge(fk), at the step k, is computed as 

the average value of the positions, cn, of all cells forming fk 

(see equation 3). 

𝐺𝑒 𝑓𝑘 =
1

𝑁
 𝑐𝑛

𝑁

𝑛=1

 

 

(3) 

Finally, the robot navigates to the exploration goal, after 

which the kth step concludes. If, at any step, there are no more 

unexplored frontiers, or the RFID attraction from all frontiers 

is lower than a specific threshold α, the exploration mission 

terminates. 

In the experiment depicted in Fig.3, a map is built using RFID 

exploration. The figure illustrates a sequence of steps 

conducted during an exploration mission (Fig.3(a)-Fig.3(e)). 

Then, Fig.3(f) illustrates an image representation of the map 

built during the autonomous exploration. Fig.3(f) shows that 

the map is automatically constrained to the area of interest of 

the inventory layout. In contrast, in the map generated by a 

human operator of Fig.1(c), the map bounds are decided by 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Fig.3. Illustration of an example of the RFID-based autonomous exploration. (a) depicts the schematic of the discovered frontiers at 

the starting position. At this point, the RFID tag readings are assigned to the different frontiers, Fk, depending on the relative 

orientation between the robot and the frontier fi, and the shortest path distance to all frontiers is calculated. (b)-(e) show a series of 

snapshots at different steps of an exploration mission. (b) corresponds to the first exploration goal, Ge(F1), which is computed by 

summing the positions of all cells in the frontier f1 divided by the number of cells in f1, and (c), (d) and (e) correspond to steps 2, 4 

and 5. (f) Illustrates the image of the map at the end of the exploration mission.  
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the operator. Consequently, manually generated maps usually 

contain areas that lack interest from the point of view of the 

inventory mission. This fact can be observed looking at the 

distant right and left walls, and the higher left corner of 

Fig.1(c), which have not been mapped in the autonomous case 

illustrated in Fig.3(f). It is clear,  

then, that this new strategy enables autonomous map building 

for inventory applications, and it also makes possible to 

perform an inventory mission while doing the autonomous 

exploration task. In addition, RFID exploration constrains the 

map boundaries to the surroundings of the inventory area, and 

it is expected that it can enable autonomous planning of 

itineraries for inventory missions. 

IV. WAYPOINT NAVIGATION VERSUS RFID-BASED 

NAVIGATION 

This section describes four different approaches addressing 

the inventory problem, namely RFID stigmergy [28], 

waypoint navigation [29], [39], RFID stigmergy with adaptive 

Monte Carlo Localization (AMCL) [5], and RFID-based 

exploration. The last two methods are proposed, for the first 

time to date, in this contribution.  

A. RFID-based navigation 

The RFID navigation consists of an ordered series of 

navigation goals that are obtained in real time, and the set of 

selected goals depends on the arrangement of the RFID tags 

around the environment. When a navigation goal is reached, 

the robot stops and starts sensing the environment for RFID 

tags in the surroundings during a time interval τ. After τ 

seconds, the RFID attraction towards each of the four 

directions, corresponding to the four antennas in the robot, is 

computed from equation (4). This means that the robot can 

autonomously set goals in one of the following directions: 

front, left, right and back. And the attraction function returns 

the rewards for each of the four RFID sensing directions, 

according to the number of tags read by each antenna. Finally, 

the navigation goal (Gn,k) for the step k is obtained at the 

direction of higher “attraction” (tag readings), from equations 

4 and 5.  

The attraction, A(d), towards each direction d = {front, 

right, back, and left} is defined as the number of new tags 

added to the inventory (nd) by antenna d, plus all tags read by 

antenna d (Nd) during the last round, divided by the total 

number of times that such Nd tags have been read during the 

whole inventory mission. 

𝐴(𝑑) = 𝑛𝑑 +
𝑁𝑑

𝑡𝑜𝑡𝑎𝑙(𝑁𝑑) 
 
 

(4) 

𝐺𝑛 ,𝑘 = max
𝑑

𝐴(𝑑) 
 

(5) 

Fig.4 displays the instant at which the robot reaches the goal 

selected at the step k-1 and computes the attraction towards 

the four directions. TABLE I presents the attraction values 

sensed from the four antennas for the case illustrated in Fig.4. 

 

Fig.4. Image of the robot during an inventory mission using RFID-

based navigation. The green arrow represents the path of the robot, 

including the previous route and the next goal. The lengths of the 

colored arrows (yellow, pink, cyan and red) represent the attraction 

felt in that direction, according to TABLE I. 

TABLE I 
EXAMPLE OF THE COMPUTATION OF THE NAVIGATION GOAL 

Step A(front) A(left) A(back) A(right) Gn 

k-1 30.0 5.3 3.2 7.3 front 

k 10.0 46.1 8.3 34.1 left 

 

The robot localization is performed using the robot 

odometry with respect to a fixed initial frame. The sensor used 

in these experiments is a 2D/3D dual solid state time-of-flight 

(ToF) lidar [32]. 

An example of an inventory mission using RFID navigation 

is illustrated in Fig.5. The robot position in the x-y plane is 

depicted in Fig.5(a). The starting positions for Robot 1 and 

Robot 2 are (−8, 6) and (8, −6) respectively. As we can 

observe, the odometry data is not reliable and, therefore, there 

is a high localization error that makes it difficult to distinguish 

the library layout from the robot routes. In other words, it’s 

not possible to know exactly which areas have been visited by 

each of the robots. Although this doesn’t affect the inventory 

performance, having a precise localization can bring important 

information on the outcome of the stigmergic algorithm. And 

it would be strictly necessary for stock localization 

applications. However, inventory localization is out of the 

scope of this contribution. 

In Fig.5(b) the number of unique tags read by each of the 

robots is depicted along the mission time. As we can see, both 

robots have similar performance. In this example, the accuracy 

reaches slightly over 92% by the end of the inventory mission. 

Finally, we observe that the inventory task is automatically 
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well balanced between the two robots, each contributing 

approximately half of the tags. 

 
(a) 

 
(b) 

Fig.5. RFID navigation: (a) odometry-based position estimation 

collected during an inventory mission using the RFID-based 

stigmergic navigation and (b) number of unique tags read during the 

mission by the two robots.  

 

B. Waypoint navigation 

This navigation strategy is based on following waypoints in 

a known map. The map of Fig.1(c) is built using SLAM with a 

2D lidar [33]. The robot localizes itself in the map using 

AMCL. The sensors used during the inventory missions are 

[33] and [32] for localization and obstacle avoidance 

respectively.  

Two independent robot routes have been designed by a 

human operator (Fig.6), for each of the robots, to share the 

inventory area proportionally. The routes avoid direct 

encounters of the robots, which would impair the navigation, 

just as any other dynamic obstacle. The routes end at the 

starting waypoint, so that robots navigate in continuous loops.  

Here, Robot 1 starts from waypoint 30 and Robot 2 starts at 

waypoint 1. Fig.6(b-c) shows the results of an inventory 

mission using the waypoint navigation strategy. Fig.6(b) plots 

the robot positions during the inventory mission. We can 

notice a huge improvement in the robot localization due to the 

use of AMCL. While the routes are not designed to cross the 

library central axis, i.e., the line formed by waypoints 2, 5, 8, 

11, 14, 17, 20, 23, 26 and 29, eventually the robots cannot 

plan a straight trajectory to the next waypoint due to the 

presence of dynamic obstacles. Examples of this issue can be 

seen for 2 < x < 4 and y = 0, where robot 1 crosses the central 

axis of the library to reach the next waypoint through another 

aisle. 

 

 
 

(a) 

 
(b) 

 
(c) 

Fig.6. Waypoint navigation: (a) Illustration of the robot routes for a 

single loop. The routes are divided in two halves for each robot. 

Circles mark the starting and ending points. Squares mark the same 

exact waypoint at the two halves of the route.  (b) Robots’ positions 
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following the route of waypoints. (c) Number of unique tags read 

during the mission by the two robots. 

Fig.6(c) depicts the inventory performance of the waypoint 

navigation and highlights the performance difference between 

the two robots. The robots' routes are designed to share the 

inventory area. However, Robot1 reads 1997 tags while 

Robot2 reads 2792 tags. Robot1 reads fewer tags because its 

navigation area contains one less shelf than Robot2's area. 

This difference accounts for approximately 1/10 of Robot2's 

readings, around 273 tags. However, the main disparity arises 

from the difference in tag density between the areas traveled 

by Robot2 and Robot1. This difference is illustrated in Fig.7, 

which shows the estimated positions of all the tags in the 

environment, computed using a simple localization technique 

proposed in [2]. Fig.7 reveals that, for positive x values, the 

tag density is higher than for negative x values.  

 

Fig.7. Estimated localization of the tags in the environment using a 

simple localization technique presented in [2]. 

C. RFID-based navigation with AMCL 

In this case, the robot uses AMCL to provide a better 

approximation of its own position over time compared to the 

odometry-based localization used in the simple RFID 

navigation. The map and the sensors used during these 

experiments are the same as for the waypoint navigation. This 

mode provides good localization accuracy that will be useful 

for analyzing the RFID navigation. An example of the 

positions of the robots during an inventory mission is 

illustrated in Fig.8. In this case, Robot 1 (blue dots) starts from 

(8, −6) and Robot 2 (red dots) starts at (−8, 6).  

In this experiment, the length of a complete path covering 

all the target area is 166 meters. Thus, Fig.8 shows that the 

robots cover 80.15% of the length of the complete path in the 

specified mission time (100 min), corresponding to blue and 

red dots. The coverage is split in 45.2% for Robot 1 and 

39.75% for Robot 2, with an inter-robot overlapping of the 

4.8%. However, increasing the duration of the experiments 

lead to higher coverage as proven by mission time extension 

to 9000 seconds, represented by the orange and green traces 

(Fig.8). In consequence, the coverage increased to 90.35%. 

Robot 1 went up to 53.6% and Robot 2 up to 47.6%, while the 

overlapping also increased to 10.8%.  

 

Fig.8. RFID navigation with AMCL: x and y coordinates of the 

robots poses (Robot 1 in blue and green, and Robot 2 in red and 

orange). 

Fig.8 shows that some of the areas are visited more than 

once. This is illustrated by a higher density of the tracks, while 

some previously unvisited aisles have been covered during the 

time extension. It’s worth noticing that some areas are less 

visited than others. The main reason is that, as illustrated in 

Fig.7, some areas have a lower density of tags, so the robot 

doesn’t feel attraction towards those areas. Moreover, other 

nearby areas have a much higher tag density, thus deviating 

the robot attraction towards the more populated zones.  

As already mentioned, in the waypoint navigation, the area 

corresponding to the central vertical aisle is only partially 

covered by the robots, unless they find an obstacle that 

prevents them to traverse the aisle. These differences in the 

area coverage, between the waypoint-based navigation and the 

RFID navigation, might not be negligible, since a strong 

multipath effect is present in RFID inventory environments 

which could make some tags readable only from specific 

locations of the map.  

Fig.8 brings out another direct consequence of using RFID 

navigation. That is, an area visited by one robot is rarely 

visited by the other robot. Thus, each robot covers 

approximately half of the area of interest. Assuming that the 

number of robots is properly dimensioned to the inventory 

area, a robot team made up of the proposed prototypes could 

scale to very large areas, such as amazon facilities.  

D. Comparative analysis 

In this section, RFID-based navigation and waypoint-based 

navigation are compared in terms of inventory performance. 

Fig.9 shows the results of ten inventory missions, five for each 
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strategy, shown as red stars. The average of the realizations 

for each strategy is marked as a blue triangle. The ground truth 

consists of 6000 tags. 

The results show that compared to the waypoint navigation, 

the RFID-based navigation has slightly higher mean and 

considerably higher standard deviation in terms of the 

inventory accuracy. However, in terms of mission time, the 

waypoint navigation presented much higher deviation and 

lower average since robots can finish the inventory mission 

once they complete the mission route. In this scenario, longer 

times are produced by dynamic obstacles, generally persons 

walking inside the library.  

It is worth mentioning the most common issues encountered 

during the tests that affected the results. All tests have been 

performed in a real library, during the hours that it is opened 

to the public, and therefore, students, cleaning services, 

security and library staff were walking freely through the 

library aisles during the missions, which made the navigation 

task more difficult. In addition, the robots could be 

momentarily close to each other during the inventory mission. 

This issue has been demonstrated to be a source of 

interference for lidar sensors [40], and it actually occurred 

several times during the experiments.  

The consequence of the previous problems is that the 

navigation stack needs to cope with the dynamic and/or 

interference-generated obstacles by triggering recovery 

behaviors or choosing a new goal. This issue can make the 

routes differ slightly from the expected ones, as we saw in the 

waypoint navigation subsection, and it can also have an 

impact on the inventory accuracy. 

 

Fig.9. Comparison between the inventory performance following the 

waypoint navigation (orange dots) and the RFID-based attraction 

navigation (blue dots). 

In the waypoint navigation, the robots do not have to stop 

and listen to the RFID environment, and they are in constant 

motion which leads to higher power consumption, but they 

still must deal with navigation issues such as dynamic 

obstacles or navigating across narrow aisles. In contrast, when 

using the RFID navigation strategy, before deciding a 

navigation goal, robots need a short time (tRx) to gather the 

RFID information to compute the attraction function (1). This 

process has a detrimental impact on the mission performance 

that depends on the specific time quantity tRx.    

V. CONCLUSION 

This contribution presents 1) a comparison of RFID-based 

and waypoint-based navigation strategies for inventory robots, 

and 2) it demonstrates, for the first time to date, the efficacy of 

RFID stigmergic algorithms to autonomously map inventory 

areas. It has been proved that the map generated by this 

approach is not only as accurate as the manually generated 

map, but that it better adapts to the area of interest 

corresponding to the zone occupied by the shelves containing 

the tags. 

Two different navigation strategies, namely waypoint 

navigation and RFID-based navigation have been tested and 

compared for teams of two robots. RFID-based navigation has 

proven to achieve similar inventory accuracies than the 

waypoint navigation strategy in a slightly longer inventory 

time. But the reader must realize that the RFID-based strategy 

is fully autonomous. This also implies that, RFID-based 

navigation does not require re-mapping after layout 

modifications, which can happen during the battery charging 

or in the middle of a mission. Particularly, this last case would 

be especially critical since the robot navigation could fail 

making the robot navigation crash. In addition, RFID-based 

navigation is also a better solution for environments with 

dynamic tag density, where items are rapidly input and output, 

requiring recursive inspection of specific areas. Therefore, 

RFID-based navigation is more suitable for perpetual 

inventory applications, and it enables the scalability of the 

system that a “plug and play” solution requires.   
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