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Abstract

Path-based data is increasingly used in mobility applications. This type of data has multiple

uses, among them studying and predicting travelers behavior. Paths are usually represented

as a sequence of vertices on a road network graph, sequences of geographical coordinates and

omitting its temporal component. In this work, we propose a novel, generic and optimized

representation of Path Datasets which can be used for any type of data. Such approach is

designed to be efficient for collecting, storing and processing path-based data associated to

Road Network trips. This approach is novel, as it considers representing paths collectively by

origin vertex using tries to index paths uniquely. In particular, for path storage, where we use

two effective techniques: DFUDS and Adaptive Edge Offset Compression. We evaluate this

approach with other baseline approaches using synthetically generated Path Datasets, to assess

the gains in performance (computation time, memory, and storage size) and explain them mainly

through a quantity we define, the overlap θ. Results show this approach is more efficient for

higher overlap among the paths stored, and never worse than storing for the generated path

datasets. The only exception is for the collection stage, in which time and space complexity are

higher in some situations.

Keywords: path dataset, trie, road networks
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Chapter 1

Introduction

Path-based data has become more and more popular and useful over time. The proliferation

of multiple mobility services, ranging from route recommendation, to fleet planning, and, con-

sequently, the huge amount of data collected, raises the question of how to store such vast

amounts of path-base (aka. trajectory-based) data. For the scope of this thesis, we call the

collection of individual paths together with any data associated to each of them, a Path Dataset.

Using the information contained in them, opens the door to analyzing and understanding per-

formances of those applications, as well as discovering patterns in travelers behavior, or more

generally, Traffic Modelling. That is why, efficient methods are needed to manage this type of

data.

The objective of the present dissertation is developing a efficient representation to collect,

store and process Path Datasets in the context Traffic Modeling applications, such as the ones

developed by [Aismun]. This implies restricting our research to Path Datasets generated in

Road Networks and describing the paths as sequences of vertices on the Road Network Graph.

Regarding the latter, this representation is used because when path-based data is collected, it is

as a temporal sequence of geographical coordinates {(ti ,
(
xi , yi

)
}n

i=1. However, this data cannot

be directly used to model the traveler choices, and is mapped to a sequence of vertices (choice)

on a graph (choice set). We also omit the time component in order not to broaden excessively

the scope of this thesis.

We have found few works addressing the problem at hand. In the literature, many of the

approaches focus on compressing Path Datasets in the finest detail. This is likely because, those

approaches are generic and, unlike us, they know in advance, the use of this data, and therefore

1
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2 Introduction

the acceptable level of detail. See [4] and [13] for more information on those approaches. Among

the ones matching our use case, we have only found references for efficiently storage of paths:

[10], [17] and [14]. The first two use trained machine-learning models in a specific scenario to

reduce the size of frequently used sub-paths. Those methods are effective, but one of its major

disadvantages is the need of training it, which involves a substantial computational burden and

may not be robust to changes of the Path Datasets. The third one relies on robust features

of Road Networks to encode the vertices of the vertex sequence. However, is a component for

storing (efficiently) and not a full solution.

We propose an approach tailored to our use case, which is representing Path Datasets in a set

of origin -Trie pairs, each Trie indexing the data of all paths of the same origin. In this way,

each node of the Trie labels a different path and the data associated to it. This representation

shares make the path descriptions shared, reducing accordingly the time and space complexities.

For simplicity, we will only consider the data associated to each path is the number of instances

(f.i. travelers) it is realized in the Path Dataset. However, our approach admits extension to

any kind of data. Finally, regarding the store & restore of this data to disk, we proposed an

approach combining [14] together with a succinct representation called DFUDS, [3].

This master thesis is divided in the following sections:

• Theoretical framework. In this chapter, we provide all the preliminary knowledge and

notation needed to comprehend the rest of the thesis.

• Literature Review. There, we discuss in detail some of the most relevant works in

literature that are relevant for our work.

• Problem Description. Where we describe the problem at hand in accurately and specific

goals any solution must achieve.

• Proposed Solution: Compressed Trie Indexation. This chapter describes our approach

in full detail, including the algorithms and complexity analysis of them.

• Experimental Design. There, we discuss how to carry out the experimentation to validate

our solution consistently, including key aspects of the implementation of our solutions.

• Analysis of Results. Where, we analyze the results obtained from applying the Experi-

mental Design on different use cases and discuss them.

• Conclusions & Future Work. Finally, there we expose the conclusions based on the

results obtained and discuss potential future work built upon the one in this thesis.



Chapter 2

Theoretical Framework

In this section, we provide the preliminary knowledge and notation to understand the topics

discussed in the following sections.

2.1 Graph theory

2.1.1 Definitions

Graphs are used to describe problems in multiple applications, ranging from internet connec-

tivity to modelling social relationships or transportation networks. They are used to describing

relationships (edges) between objects (vertices). The formal definition of a graph ([9]) is the

following one:

Definition 2.1.1 (Graph). A graph G(V ,E) a pair (origin and destination) where V is a set whose

elements are called vertices (singular: vertex), and E is a set of paired vertices, whose elements

are called edges.

We use the notation e = e(v, w) to label an edge e ∈ E that has as origin vertex v ∈V and w ∈V

as destination vertex. Besides the base definition, more definitions are needed in order to provide

a complete description of the operations and algorithms we can use upon them.

3
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v1

v2

v3 v4 v5

v6

v7

v8

Figure 2.1: Example of graph. The enumerated circles represent vertices and the lines connecting them,
edges .

Definition 2.1.2 (Adjacency). v ∈ V is adjacent to w ∈ V if there is an edge with v as origin

vertex and w as destination vertex or vice versa.

Definition 2.1.3 (In-degree). The in-degree (or incoming-degree) of v ∈V , di (v), is The number

of edges with v as destination vertex.

Definition 2.1.4 (Out-degree). The out-degree (or outgoing-degree) of v ∈ V , do(v), is The

number of edges with v as origin vertex.

Additionally, some more concepts are used to describe the properties and results of graphs:

Definition 2.1.5 (Walk). A walk of length L from v ∈ V to w ∈ V is a sequence of edges

{ei }i=1,...,L for which:

• The origin of the first edge in the sequence is v. e1 = e1(v, v1).

• The destination of the last edge in the sequence is w . eL = eL(vL , w).

• The destination vertex of the i -th edge in the sequence is the origin vertex of the (i +1)-th

one in the sequence. Except for the last one.

∀i < L−1, ei (vi , vi+1) & ei+1(vi+1, vi+2) (2.1)

We use the following notation to describe walks:

e(v1, v2) e(v2, v3) e(v3, v4) . . . e(vL , vL+1) (2.2)

Notice a walk of length L traverses L +1 vertices. Those vertices may be repeated or not, in

case they are not repeated, we call the sequence a Path.
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Definition 2.1.6 (Path). A path of length L from v ∈ V to w ∈ V is a walk L from v ∈ V to

w ∈V without repeated nodes, i.e., without loops.

Paths and walks allows us to describe the combination of edges that connect two vertices and

their properties. The definition of connectivity is the generalization of adjacency:

Definition 2.1.7 (Connected vertices). v ∈V is connected to w ∈V if exists a walk from v to

w .

A path may be represented a sequence of vertices {vi }L
i=1. Alternatively, we can also use Edge

Offsets (e), which are obtained by enumerating the outgoing edges of a vertex. Therefore,

edge offsets range from 0 to do(vv ). In this way, the Edge Offset, e representation would be

the original vertex v0 plus a sequence of Edge Offsets, {ei }L−1
i=1 . This will be described in more

detail in Adaptive Edge Offset Compression.

The previous definitions are applicable to any graph. However, for different uses, different

requirements and restrictions arise and with them, different types of graphs. There are multiple

ways to categorize graphs, but among all categorizations, there are three categorizations which

are the most relevant ones for this work:

• Directed/Undirected. In a directed graph, an edge expresses a one-way relationship.

Therefore, x → y expresses that x is related to y but y is not necessarily related to x. In

an undirected graph, if an edge related x to y it also related y to x.

• Simple/Multigraphs. Simple graphs are those graphs for which at most one edge exists

between any pair of nodes. In contrast to multigraphs, for which a pair of nodes may be

connected by more tan one edge.

• Weighted/Unweighted. Weighted graphs are the ones which, for each edge, have, ad-

ditionally, a weight associated. In such a way that, the weight of traversing a set of edges

is the sum of the weights of each individual edge. Weights usually describe the penalty of

traversing an edge.

For the scope of this work, only simple directed graphs will be considered. We will additionally

consider weighted graphs when modeling the routes chosen by travelers, as they tend to minimize

its experience cost (weight).
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2.1.2 Graph Representations: CRS

In order to represent a graph, we need to represent two sets: the vertices and the edges. We will

discuss only the case for simple directed graphs. Firstly, vertices can be indexed with numbers

from 1 to the cardinality of |V |. And we also use this indexation to index the vertices implicitly in

the data structure. Custom type of indexing vertices can always be built on top of it. However,

the main complexity comes from representing the relations between vertices, the edges. There

are two main approaches for this:

• Adjacency Matrix. A |V |×|V | matrix where each cell of row r and column c is 1 if there

is an edge from vertex labeled as r to vertex labeled as c.

• Adjacency List. A list of |V | lists is used. Where each sub-list is associated to an (origin)

vertex, r , and it stores of the associated destination vertices c. Therefore, is of size do(v).

An example of those representations is:

Figure 2.2: a) Example graph. b) and c) Adjacency matrix and list representations of graph.

Adjacency matrices are in general more efficient for dense graphs, where the in/out-degree of

each node is similar than the number of nodes in the graph: di (v) ≃ |V | and do(v) ≃ |V |. In

contrast, adjacency lists are more efficient in time and space for very sparse graphs: di (v) ≪
|V | and do(v) ≪ |V |. Unfortunately, Adjacency list implementations typically suffer from poor

locality in memory because they are implemented as pointer to multiple non-contiguous blocks

of memory.

To overcome this, the Compressed Sparse Row(CRS) format has been developed. This format

is a specific type of adjacency lists in which the destination vertices are located for each vertex

consecutively in a single list. In this way, two lists are needed: the once containing the destination
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vertex labels of size E for directed graphs (Edge Destination) and another to indicate, for

each vertex c, the position where the associated destination’s range start (Source Degrees).

An additional end of range marker is needed in order to indicate the end of the last vertex

destinations (END). Because the ranges are consecutive, the (i+1)-th vertex start marks the

i-th vert end. Therefore, only V +1 indices are needed for the second list. The memory layout

for example of the previous figure would be the following one:

1 2 3 4 5 E N D

0 2 6 8 11 14

2 5 1 3 4 5 2 4 2 3 5 1 2 4 −

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Source
Degrees

Edge Des-
tinations

Figure 2.3: Example of CRS graph representation of graph Figure 2.2.

This approach achieves an excellent locality by using just two blocks of contiguous memory. In

exchange. however, adding and removing edges can be very expensive, because memory blocks

are contiguous and adding or removing the edge at the j -th position implies moving also all the

ones after it, in worst case O (E). Implementations of this can be found in well-known libraries

such as Boost.

2.1.3 Trees

A tree is a special type of graph which has many interesting properties and applications. It is

defined as follows:

Definition 2.1.8. Tree

A tree (T ) is a graph satisfying that between any two nodes (aka vertices) there is a unique

path that connects them.

Notice, we refer to nodes instead of vertices in the case of trees. We use this notation in order

https://www.boost.org/doc/libs/1_61_0/libs/graph/doc/compressed_sparse_row.html
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to make easier following the notation in this work, as in some cases we will talk simultaneously

of tree nodes and other graphs vertices.

It can be proved that this definition implies that all nodes are connected, there are no loops

(walks with same initial and final vertex) and that |E | = |V |−1. This is proven in Theorem 2.2

of [9]. An example of tree is the following one:

Figure 2.4: Example of tree graph.

We can distinguish two type of nodes, those with degree 1 and the rest. The ones with degree

one are called leaf nodes and those with more are called internal nodes. In particular, the tree

described in the previous figure is called a rooted tree:

Definition 2.1.9 (Rooted Tree). Let T = T (V ,E) be a tree.

• T is a rooted tree if one of its vertices has been designated as the root.

• The level of a vertex, v of a rooted tree, is the length of the path which goes from the

root to v. The level of the root is 0.

• Any vertex of a rooted tree that is not a leaf is an internal vertex.

• If in a rooted tree, v is the vertex that immediately precedes w on the path from the root

to w, then v is the parent of w and w is a child of v.

Using a rooted tree allows us tree vertices and indices because there is a bijection between paths

from the root to each vertex in the tree. This makes trees a structure specially useful to index

structured data. Another relevant type of tree are k-ary trees:

Definition 2.1.10 (k-ary tree). A k-ary tree is a tree whose nodes can have up to k child nodes.

In particular, 2-ary trees are also called binary trees.
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Finally, we need to describe a special type of operation on trees: tree traversals:

Definition 2.1.11 (Tree Traversal). A tree traversal is an operation that visits each vertex of

the tree T exactly once.

These operations are used to iterate all vertices of a tree optimally, and can also be used to

generate a global order for all vertices of trees. The different traversal types are defined by the

order in which the nodes are visited. There are actually multiple possible orders and therefore

types of traversals, but in this work we only consider the most relevant ones: pre-order, post-

order, in-order and level-order traversal, which arise from iterating the vertices using Depth First

Search or Breadth First Search. For the details of them, please refer to [9].

2.2 Tries

A Trie, T , of N nodes is a k-ary search tree (of N nodes) in which each edge has a label

associated. Each node n ∈ T represents a sequence of labels: the one obtained when traversing

from the root to the target node. An example of Trie is the following one:

1 rail
2 rain
3 rift
4 ring
5 road
6 rome
7 romb
8 row
9 rows

r

1 2 3 4 5 6 7

8

9

a

i

l n

i

f

t

n

g

o

a

d

m

e b

w

s

Figure 2.5: Example of Trie representing the list of words on the left side of the image.

The fact that the path between the origin and a node exists and is unique ensures that each

sequence is labelled uniquely (bijection). In this way, for a given node, the sequence label

represented by the node is a prefix to all the label sequences of the descendant nodes of the

Trie. One of the main strengths of this data structure is its ability to exploit the shared nature

of trees to index label sequences using an smaller representation. Tries the following operations

basic operations:
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Operation Description Average Worst
getRoot gets the root node O(1) O(1)
getChilds gets a set of pairs of child node and label of the associated edge

w.r.t. parent node n ∈ T , {(ni , li )}L
i=1

O(k) O(k)

numChilds returns the number of child nodes of n ∈ T O(1) O(1)
findChild if exists, returns the child node of n whose associated edge has label

l ∈L . Otherwise, returns null
O(1) O(k)

insertChild findChild(n,l) and if not found inserts a child to node n with label l O(1) O(k)
removeChild does findChild(n,l) and, if node is found is leaf, removes it O(1) O(k)

Table 2.1: Trie operations descriptions and time complexities in Average and in Worst Case.

And have space complexity of O (|N |). This will always be equal or lower than storing each of

those sequences separately. However, the particular number of N will depend on the composition

of the label sequences contained in the Trie. This data structure can be adapted to multiple

scenarios. In many cases, it is used to replace hash tables because elements can include in a

collision-free manner. Relevant uses of tries are: as auxiliary data structures for storing, full-text

search (as suffix tree), web search engines, DNA sequence alignment or internet routing.

A special type of tries are Compressed Tries (or Radix Trees) in which there are no unused

single-child nodes. They can be built from any Trie by accumulating the labels sequences

associated to consecutive single-child nodes. This results in a more compact representation of

the Trie, i.e, with fewer nodes but encompassing the same set of sequences. An example of this

is:

1 rail
2 rain
3 rift
4 ring
5 road
6 rome
7 romb
8 row
9 rows

r

1 2 3 4 5

6 7

8

9

ai

l n

i

ft ng

o

ad m

e b

w

s

Figure 2.6: Example of radix tree (Compressed Trie) build from the one in 2.5. representing the list of
words on the left side of the image.
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2.3 Spatial and Road Networks

A defined in [1], a spatial network is a graph in which the vertices or edges are spatial elements

associated with objects embedded in space. These type of graphs are used to describe cases

where the underlying space is relevant and where the graph’s topology alone does not contain

all the information. It includes transportation networks (such as bus or airlines), infrastructure

networks (road networks, power grid, . . . ) among others.

Among them, we are particularly interested in Road Networks graphs. Those are directed

simple graphs which describe the possible decisions a traveler can make to go from its origin to

its destination. Vertices represent the road segments (sections) where the traveler is, while the

edges represents the possible changes of road segments (turns at intersections).

A B C

D E

F G H I

J

Figure 2.7: Example of road network (left) and its associated graph reprensetation (right). Labels A-J
correspond to the different road segments in the network.

In road networks, the spatial embedding generates very particular features besides some of

which are very relevant for this master thesis. Firstly, the spatial distribution of the nodes

also determines the connectivity of the graph. Because the probability of two nodes being

connected is inversely proportional to the distance among them. This produces the formation

of connectivity hubs: clusters of relatively high degree vertices which are highly connected and

even form cliques.

Those hubs are usually connected among them by longer road segments WITH higher capacity

and lower degree vertices. This can be observed clearly in the following map of highways in

Spain:

Those properties are translated into a degree distribution, p(k), which tends to have a strong bias

towards lower degrees with few nodes highly connected (hubs). This makes p(k) a quantity of
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Figure 2.8: Spain highway road networks map obtained from Wikipedia. High capcity roads are coloured
in this map and, as can be observed, there are connected hubs close to or at densely populated regions.

interest for this type of network, and empirical observations ([1]) show it approximately follows:

p(k) =
{

∝ k−α, i f k ≤ k̂

∝ 0, i f k > k̂

}
(2.3)

k̂ is the maximum degree in the graph and α> 0. Unlike other types of graphs, it exhibits a limit

in number of connections. For instance:

Figure 2.9: Example of degree distribution of european road networks based on the data extracted from
Network Repository.

https://en.wikipedia.org/wiki/Highways_in_Spain
https://networkrepository.com/road-euroroad.php
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2.4 Data Compression

Data compression is the field of Computer Science that studies how to represent information

using fewer data. The information is an abstraction that refers to anything that can provide

knowledge when interpreted, and data is the medium in which this information is represented,

which is measured in bits. The methods implementing compression and decompression are

called: Encoder/Decoder. The following picture exemplifies this:

Figure 2.10: Compression/Decompression process description. Image extracted from Apple Compres-
sion for Developers.

The main objective of data compression is minimizing the size of the data, which represents

some information. And there are multiple applications in which the size data occupies is prob-

lematic: multimedia compression, DNA sequencing storage, file compression, etc. However, the

requirements for them may be different in one crucial aspect: whether information can be lost

or not. This classifies algorithms in two main categories:

• Lossless: no information can be lost. This first category is described by the field of

Information Theory , which was invented by Claude Shannon. This field attempts to

quantify the amount of bits required to store a certain amount of information. For that,

the Shannon-Entropy is defined as:

Definition 2.4.1 (Shannon Entropy). Given X a random variable with {vi }N
i=1 possible

values, with associated probabilities pi , the Entropy of X is defined as:

H(x) =−
N∑

i=1
pi log2

(
pi

)
(2.4)

https://developer.apple.com/documentation/compression
https://developer.apple.com/documentation/compression
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This formula provides the way to know the minimal number of bits needed to represent a

set of variables. This is stated in the Source-Coding Theorem:

Theorem 1 (Source-Coding Theorem). Let {X j }M
j=1 be a set of independent identically-

distributed random variables each with entropy H(X ). They cannot be compressed into

more than N · H(X ) bits without losing information in the limit N →∞.

This result is theoretical, and it may not be achieved in real implementations of compression

algorithms. However, it sets a common ground to compare the efficiency of compression

algorithms.

• Lossy: information may be lost. Contrary, to the first category, the restriction is relaxed

and instead of not losing information, a certain loss (distortion), R, is accepted. This is

described by the Rate-Distortion theory. However, this theory is not as successful as the

previous one because distortion is not an easily-measurable property. It usually depends

on the device that extracts information from the data (f.i. human perception and the

different image formats).

Multiple compression methods exist of each type, some of them better tailored to certain prob-

lems than others. To give some examples: Huffman Coding, Arithmetic Coding, LZW. Also,

combinations among them are possible, such as DEFLATE, which combines LZW and Huffman

coding and is one of the most effective and used lossless compression algorithms nowadays.

It does so by defining a sliding window in which LZW dictionary is build and latter Huffman

minimizes the code words associated to the words in this dictionary.

In the following subsections, we will give a brief overview on some of those methods and concepts

related to this. For a more detailed explanation of those methods, please refer to [16] and [12].
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2.4.1 Individual Variables Compression

In this subsection, we focus on those algorithms relevant for this thesis that compress individual

symbols independently rather than sequences of them. In particular, two of the approaches used

in this thesis: Binary Coding and Unary Coding.

2.4.1.1 Binary Coding

The binary number system consists on representing any natural number in 2-based system:

representing any natural number (n ∈N) as a sum of powers of 2.

n =
∞∑
i

bi ·2i (2.5)

When bi is the i -th bit a value (0 or 1). A straightforward result is that the range of i can

be reduced to that such that n < 2i , as, any bi larger than that would be only a 0 in the bit

representation. In other words, with just B bits are used, all numbers from 1 to 2B can be

represented. Therefore, a more efficient way to store to express the previous relation is:

n =
B∑
i

bi ·2i (2.6)

Where B is the number of bits used to represent the number. It must be greater than ⌈log2(n)⌉,
which is the integer obtained from rounding up (ceiling) the result of the logarithm (which may

not be an integer). For instance, the number 23 needs log2(23) = ⌈log2(4.52)⌉ = 5 bits to be

expressed in binary:

23 = 1+2+4+0+16 = 1 ·20 +1 ·21 +1 ·22 +0 ·23 +1 ·24 ↔ (11101) (2.7)

The number of bits used can be adapted to the range of sizes of the variables in use.

For the scope of this work, only integer indices from a set of R possibilities to be binary en-

coded/decoded. The following algorithms transform indices to/from sequences of 0s and 1s.
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Algorithm 1 encodeNumberBinary
Input: n a natural number to be coded and R is the maximum value an index can take.
Let q be a natural number.
Let S be a sequence of bits.
while S.size < ⌈log2(R)⌉ do

S.append( n % 2 )
n ← n/2

end while
Output: S

Algorithm 2 decodeNumberBinary
Input: Let S be a sequence of ⌈log2(R)⌉. Where R is the maximum value an index can take.
Let n be a natural number, from 0 to R.
Let b be a natural number.
Let S be a sequence of bits.
b ← 1
while S.i sEmpt y() is false do

b ← S.popLast()
if b then == 1:

n ← n +b
end if
b ← b ∗2

end while
Output: n

In the algorithms above, we take the convention that the power-base of each bit is in descendant

order.

2.4.1.2 Unary Coding

Binary format, assumed the range of values is known. When it is not the case, or if the range

of values is much larger than the natural numbers we need to encode, other methods can be

used: for instance, Unary Coding.

Unary Coding consists of storing a stream of bits in which a number n is encoded using n −1

consecutive 1-bits before a final 0-bit indicating the end of the bit sequence. Therefore, for

storing number n requires n bits. For instance, the number 9 is encoded as:

9 ↔ 111111110 (2.8)

Using a 32-bit integer for this number would be a waste in this case. Here it is clear, one of the

advantages of this method: it is adaptive. The larger the number, the more bits it uses. The

formal algorithms to encode and decode are:
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Algorithm 3 encodeNumberUnary
Input: v an natural number value to be coded.
Let i be a natural number.
Let S be a sequence of bits.
i ← 0
while i < v do

S.append(1)
i ← i+1

end while
S.append(0)
Output: S

Algorithm 4 decodeNumberUnary
Input: Let S be a bit sequence.
Let v be a natural number v > 0.
Let S be a sequence of bits.
v ← 0
b ← S.popFront()
while b == 1 do

v ← v+1
b ← S.popFront()

end while
v ← v+1
Output: v

When comparing this approach to the binary system, n v.s. ⌈log2(V )⌉ is asymptotically extremely

inefficient. However, if the range at hand is large (or unbounded), but values tend to be around

the lower bound of the range. For instance, a range [1,232] where most values are below 10 is

a suitable example of this.
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2.4.2 Data deduplication

Data deduplication is the process of replacing the duplicated pieces of data by a shared copy

plus reference to it. With this technique we can achieve significant reductions in the size of

the data depending on the case. Consider, for instance, the paths of travelers on a graph. It is

highly likely that many of those are repeated in densely-populated areas, in which people trips

tend to people have the same origins and destination. Instead of storing multiple times the same

path, a single instance of the path plus references to it would be more efficient.

This step can achieve a great reduction in size. How much will depend on the trade-off between

and, that is, on the size of the pointer from the original positions to the shared copy of the data

chunks.

As a side effect, deduplication can deeply affect the compression algorithm by changing the

frequency of patterns that appear, avoiding overrepresenting of repeated sequences. This is

exemplified in the following figure:

Figure 2.11: Example of data deduplication. As can be observed, all blocks can be stored only once in
exchange of references to this block. This is optimal if the blocks are big enough for all cases too, except
for C, which will be stored only once anyway but needs to store an additional pointer.
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Literature Review

This section attempts to explain in detail the main features of the most relevant works of

literature used or references in this work. It is divided into three different sections, one covering

each of them.

3.1 Adaptive Edge Offset Compression

Besides ideas in the academic literature, there is a simple, robust and effective technique IBM

has patented. An adaptive compression method based on to compress paths on scale-free graphs

([14]). The approach represents paths as an edge offset sequence plus an initial vertex. The

range of each of the edge offsets is determined by the vertex the edge belongs to. This is

used to adapt the number of bits used to binary-code the edge offset sequence of the path.

As each node of degree k can have an edge offset from 0 to k −1, the number of bits needed

is ⌈(log2(d)⌉, while for d = 1 no bit is needed, because there is either none or a single possible

outcome. Finally, the case d = 0 is never realized, by contradiction: if a vertex has out-degree

0 the paths traversing it can only end there. The formal description of the encode and decode

algorithms are the following:

Algorithm 5 encodeEdgeOffset
Input: A data stream which D, a graph G(V ,E), a vertex v ∈V and the edge offset l
v ←G .g etOut g oi ng Deg r ee(v)
if d is not equal to 1 then

writeToBinary(D,l,d)
end if
Output:

19
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Algorithm 6 decodeEdgeOffset
Input: A data stream which D, a graph G(V ,E), a vertex v ∈V
d ←G .g etOut g oi ng Deg r ee(v)
if d is not equal to 1 then

l ← readFromBinary(D,l,d)
else
end if
Output: l

For instance, the edge offset 1 in a vertex of 4 out-edges can be coded as the bits 10 with 2 bits

0 → 00, 1 → 10 2 → 10 3 → 11. A more complex example is the one shown in the patent itself:

Figure 3.1: Example of adaptive edge offset compression. Edges show their labels as outgoing and
incoming edges, and the dashed lines indicate the path considered. The edge offset sequence of this
path is 0010. When encoding it, the first, second and fourth edge offset are not needed, because the
out-degrees of the associated nodes are either 0 or 1. Only the third edge offset is coded, but using a
single bit.

To encode/decode a sequence, we need to apply those algorithms and calculate the associated

vertices recursively:

Algorithm 7 encodeEdgeOffsetSequence
Input: A data stream which D which can be written in bits, a graph G(V ,E), the initial vertex v of the edge offset sequence and
sequence itself, H .
L ← H.size
I ← iterator at begin of H
Let w be a vertex of graph G.
encodeNumberUnary(D,L)
w ← v
while I.hasNext() do

l ← I.next()
l ← encodeEdgeOffset(D,w,l)
w ← G.getOutgoingVertex(w,l)
i ← i+1

end while
Output: w
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Algorithm 8 decodeEdgeOffsetSequence
Input: A data stream which D which can be read in bits, a graph G(V ,E), and the initial vertex v of the sequence.
L ← decodeNumberUnary(D)
w ← v
i ← 0
while i < L do

l ← decodeEdgeOffset(D,w,G)
H.append(l)
w ← G.getOutgoingVertex(w,l)
i ← i+1

end while
Output: (w, H)

This approach is specially well-suited for road networks. Since the degrees are on usually very

low, except a few ones which are large.

As a final comment, notice that two additional pieces of data are needed to compress the whole

path: the length of the path and the initial vertex. The authors propose using fixed-length

variables to encode both of them, this step is actually depending on the available context of

each situation as is not dependent on the properties of spatial graphs.

3.2 Compression of multisets of sequences

The efficiency of compression methods depends, in part, on the prior knowledge about the data

being compressed. In some situations, this data is arranged in specific formats and specific

methods can be designed to exploit it. This is the case of Multisets of sequences.

Definition 3.2.1 (Multiset of sequences). A multiset of sequences (M) over alphabet Σ is a set

of sequences of symbols of Σ.

This definition does not require sequences to be any specific order or have some relationship

among them. The general problem of storing this (order-agnostic) set is what is known as

the bag-of-words problem. This problem arises in many areas: natural language processing,

information retrieval (IR) or computer vision.

Besides being free of choosing the order in which data is stored, solving this problem can

also exploit another property of multiset sequences. Given that sequences are defined over

finite alphabets, it is possible (and in some cases likely) that data deduplication can be applied

over repeated subsequences.This opens the possibility of further reducing the size of the data,

specially for smaller alphabets and/or larger sequences.
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All in all, this makes tries a natural way to represent multisets of words. Because this data

structure naturally deduplicates the prefixes of the sequences stored in them. And is, therefore,

the common way in which data is organized before compression in the literature [6].

Using this representation, many methods are proposed to compress this data structure. The

first one to do this was Reznik et al. [15], who proposed storing the multiset of words as a

regular k-ary tree. Using enumerative coding to identify the trees, instead of storing the tree

explicitly. Even though the space-saving is up to log(Σ!), the approach may underperform for

non-regular trees.

In order to outperform Reznik’s approach, [8], proposed an alternative way of storing multisets of

sequences. In this case, the multiset of m binary sequences from n bits (a 2n space) are used to

build a binary Trie. Even if it was described for the binary alphabet, it can be generalized to any

alphabet by converting each symbol individually to binary. The approach consists of building a

Trie of the n sequences and converting it into a binary sequence formed by taking the differences

in suffixes of each branch of the Trie with respect to the previous one in lexicographical order.

The encoding step encoding takes O (m(n + log(m))) steps. The decoding phase consists of

undoing this conversion, which has a complexity of O (Σn). One of the best results of this

approach is that the compression ratio tends asymptotically with a large n up to 5/3 of the

estimated entropy for an independently and randomly distributed bag of m words. This work

only considered equal-sized words, but the extension to multiple words with different length is

expected to be straightforward.
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3.3 Succinct Representation of Cardinal Trees

Borrowing the definition from [3], a Cardinal Tree is defined as:

Definition 3.3.1 (Cardinal Tree). By a cardinal tree (or Trie) of degree k, we mean a rooted

tree in which each node has up to k children and each child of a given node is labeled by a

unique integer from the set {1, 2, . . . , k}.

This type of tree is generic and usable on any alphabet. For instance, a Trie collecting the

words in a dictionary or one that models all possible sequence of choices over a finite set of

possibilities.

Cardinal trees may be represented in multiple ways. However, the fact that each child of a node

can be labelled to an ordered set allows some optimizations to be done in its representation.

Different approaches have been developed to use this knowledge to avoid representing explicitly

the tree structure: succinct representations.

Instead of representing a cardinal tree using explicit pointers between nodes, succinct cardinal

tree representations make use of the order in which a traversal visits the nodes of the Trie. In

this way, only the labels of the child nodes are stored explicitly. Here we only give an overview

of them because all of them are discussed in detail [3].

• Level-Order Unary Degree Sequence representation (LOUDS). The number of child

nodes of each node is encoded as a prefix of d+1 bits, d 1 and a 0 to mark the end (similarly

to Unary Coding). On top of it, a second set of d bits is used to indicate if the i -th child

out of the k possible child nodes actually exists or not. However, level-order (Breadth

First Search) encoding scatters the node information across the encoding. Indeed, the

higher the node, the farther apart their child nodes are. This hinders the performance of

caching strategies in memory or disk.

• Balanced Parenthesis representation (BP). Consists essentially on recording the infor-

mation of the pre-order traversal (Depth-First Search) of the tree starting from the root.

That is parenthesis, indicating if the move along the tree was up (")") or down ("(") and

the Trie nodes visited. Its main drawback is that labels of child nodes are scattered across

the encoding, accessing from the i -th label the next one requires traversing the whole

subtree of i .
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• Depth-First Unary Degree Sequence representation (DFUDS) The clever combina-

tion of the good of the previous approaches. This approach follows a pre-order traversal

as BP however, at each node visited for the first time it codes the labels associated to the

edge to its child nodes. Therefore, the labels of a node are always stored in a contiguously

(good for caching) but keeps the node data belonging to the same branches close.

The space complexity of this algorithm is N symbols of the alphabet plus N counters indicating

the number of child nodes of each node and its time complexity O (N ). However, as explained,

they have substantial practical differences which make DFUDS the best one among them.

While each method has its strong and weak points, the authors prove in [3], the DFUDS is the

one providing the best space and runtime complexities. In the following figures, we can see an

example of how each method encode the example cardinal tree:

Figure 3.2: Cardinal tree example (top left) and the representation of the different ways to encode in
[3]. LOUDS (top right), BP (bottom left) and DFUDS (bottom right).



Chapter 4

Problem Description

The problem considered in this dissertation is developing a generic representation of a collection

of path data (Path Dataset) obtained from a road network graph, G(E ,V ), which can be used

to efficiently collect data once, store it and process it multiple times. Given this formulation, it

is assumed no prior knowledge or auxiliary data is available on this data, besides G(E ,V ). Such

conditions are met in traffic simulation or when developing a scalable solution which collect and

process path data.

Before proceeding any further, we provide a formal definition of what we call a Path dataset:

Definition 4.0.1 (Path Dataset). A Path Dataset (P) is a collection of path-related data

indexed by the description of paths realized on a graph G(E ,V ).

Examples of Path Datasets are: the set of paths followed by commuters in a city in during a day,

the paths followed by public transport users during a day or the set of airplane routes around

the globe. All those example refer to Spatial Network graphs, however, we are only considering

the Road Network type.

We consider that path descriptions are vertex sequences starting at origin and ending at the

destination. And, for simplicity, we only consider the number of instance of a given path is

considered as travel data. Extending this problem to arbitrary types of individual traveler data

is straightforward.

25
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The definition of Path Dataset emphasizes that traveler data associated to paths, rather than

the paths associated to data instances. Understanding it in this way eases thinking of a single

representation for path descriptions. The following figure exemplifies this:

Figure 4.1: Usual representation of travel data representation (left) and representation of Path dataset
of travel data (right).

After discussing the concept of Path Dataset, we are prepared to delve in the details of ho

Path Datasets are used. As previously explained, in our problem we consider Path datasets are

generated by collecting paths once and consumed multiple times. The use of this pattern can

be divided into three consecutive steps: collection, store & restore and process. The following

figure represents each of them:

Figure 4.2: Representation of the different stages in the usage pattern of the Path Datasets. The
coloured squared boxes represent the data associated to the path; the curved lines between circles.

More specifically, each stage may be described as follows:

• Collection. Creation, out of individual instance of path descriptions and the related

data, the data structures representing the Path Dataset. Besides efficiency in time and

space, the solution should allow the possibility of collecting paths in an undetermined order

without compromising its efficiency.
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• Store & Restore. Storing and restoring in long-term storage (disk) of the Path Dataset.

The objective is providing a format in which data may not be accessible but occupies less

space. This is stage is understood as an encode/decode a pair of algorithms. Both of

them, should allow, by extension, encoding and decode a fraction of the whole dataset.

To be able to process parts of the Path Dataset and avoid loading/unloading all of it.

Regardless of the solution used, we have to consider also the possibility of using addi-

tional compression tools such as 7zip, WinRAR or libraries such as ZLIB together. And

understand if those algorithms can further reduce the long-term storage size.

• Process: providing the path description of all collected paths and the associated data.

With this, we assume that all paths restored want to be processed. Regarding order, we

assume that as the data instead associated to each path is and independent, and the

solution is free to use the most suitable order to iterate it.

4.1 Mitigation Strategies

In this section, we describe some generic approaches which may attempt to solve the problem

and discuss why none of this problem for us.

• Standard compression approaches. Using common commands or tools (DEFLATE,

Linux compress or WinZip among others) can greatly reduce the size of the data. How-

ever, this approach alone will not be able to dissipate the performance bottlenecks of the

Collection and Process stages. Moreover, being general-purpose, they may not capture

effectively the patterns and correlations Path Dataset exhibit.

• Distributed representation. A divide and conquer strategy. Instead of storing the whole

dataset in the same device, it is divided in subset (probably segmented and organized).

Each subset is stored separately (f.i. in different devices). This is a brute-force possibility

which, in exchange, requires adding multiple devices. While this is always a possibility, it

increases the cost of the application at hand and, therefore, should be a last resort.

• Path processing on-the-fly. By processing the paths as soon as they are collected and

then releasing the resources representing them. However, while this approach can fit

the single-collection multiple process pattern, it is not a practical way to tackle the vast

majority of problems.
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Chapter 5

Proposed Solution: Compressed Trie
Indexation

In this section, we discuss the solution proposed to efficiently collect, store & restore and process

a Path Dataset. Our proposal consists of using Compressed Tries (with CT as acronym)

representing a collection of paths as edge offset sequences. To exemplify it, consider the

following case in which the following set of paths:
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0
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1
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3

root
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3

Figure 5.1: Collection of individual paths shown as a sequence of edge offsets (left) compared to Trie
collective representation (right). In the first case 19 nodes and 14 edge offsets are represented, while in
the second only 9 nodes and 8 edge offsets are.

We chose this design for several reasons:

• Single description of realized paths. If multiple identical paths are collected, they are

mapped to the same node in the Trie. In this case, only an instance of the path description

is stored.

29
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• Shared path description for overlapping paths. Paths descriptions which overlap will

share also the Trie nodes which describe them in their overlap. For instance, the sequences

{0,1,0}, {0,1} and {0,2,0} in Figure 5.1. This will occur in Road Networks, because it is

likely that travelers with the same origin have similar paths close to it: the number of

possible paths is limited by space. This situation is symmetric to the destination.

• Robustness due to Edge Offsets As discussed in Adaptive Edge Offset Compression.

Edge Offsets in Road Networks have usually a low range of values; bounded by the out-

degree regardless of the size of the network. Paths represented as Edge Offset sequences

will occupy the same regardless of the size of the network: unlike vertices, which are

labelled from 1 to V (the number of vertices in the graph). Using Edge Offsets we can

have efficient implementations which will be robust and admit any graph size.

• Compact Edge Offset Sequences descriptions representation As it is a Compressed

Trie, each edge has associated a sequence of labels rather than a single one. This reduces

the amount of vertices to be represented.

The Trie representation may be used for different groups of paths. At first sight, the idea of

accumulating as many paths as possible in a single Trie is appealing because the more paths

added, the more likely there will be some overlap. However, this also results in a loss of context:

we will now less about the paths in the Trie. Which specially relevant for compression. Therefore,

we consider three possible levels of grouping for tries:

• None

In this case, the Compressed Trie may encode all the possible edge offset sequences. This

maximizes the amount of data that is shared. However, we will need to represent the

original vertex of each path explicitly. Moreover, the maximum number of child nodes will

be undetermined (loss of context) and to compress or serialize the Trie we will need to

assume this number is bounded by the maximum degree of the whole graph. For a road

network, this number may significantly larger than for the vast majority of vertices, possible

causing a significant downgrade of the Adaptive Edge Offset Compression efficiency.
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• Origin (or Destination)

This means grouping the paths collected in multiple Compressed Tries, one for each origin

vertex (or, symmetrically, destination). Clearly, The total number of Trie nodes and edges

needed to describe all tries would be larger than in the previous case. In exchange, we

would only need to store the starting vertex once for all paths in each Compressed Trie.

Additionally, in this case, each node in each Trie can be mapped to a vertex in the graph

by just following the corresponding edge offset sequence from the root to the node. In

this way, the context is always carried along and the Adaptive Edge Offset Compression

compression is the optimal.

• Origin-Destination

This option is the most disaggregated case. Therw would be a Trie for each origin-

destination pair. However, this disaggregation does not provide any additional information

we know how to exploit. Because, in a Trie, a branch splits, their child branches never

join again. This is contrary to what occurs in paths with common origin and destination.

On the whole, which is the best option will depend on the Path Dataset in particular and

experimentation should be carried out. However, given the discussion above, we think the best
choice and our choice is grouping tries by origin vertex.

The discussion until now gives us an overall understanding of how paths will be represented in

our proposed solution. In the forthcoming sections, we will discuss the details of this solution

for each stage.

5.1 Collection

In this stage, tries are used to collect paths with a common origin vertex incrementally. The

collection works in two consecutive steps: Collection of Trie the first one adding paths to a

Trie, and Trie Compression, by building a Compressed Trie, in which there are no single-child

nodes. The details of both steps are explained in detail in the next sections.
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5.1.0.1 Collection of Dense Trie

The collection of each Trie can be decomposed in multiple calls of the operation insertSequence,

which creates the required nodes to represent the input path and flags whether they represent

a collected sequence or not (sequence node flag). This process can be further decomposed into

finding the Trie nodes pending to add and adding them to the Trie (Trie.insertChild).

Algorithm 9 insertSequence
Input: the Trie T and the label input sequence S.
Q, n = findMissingEdges( T , S )
while Q is not empty do

l ←Q.pop()
n ← T.i nser tC hi ld(n, l )

end while
Flag n as sequence node
Output: T

We define the first operation as findMissingEdges: find the sequence of missing edges in the

Trie for a path with edge offset sequence P = e1, ...,eL and a Trie T . This operation consists

of iterating the path sequence forward and find which is the node associated to the maximal

sub-path represented starting from the origin of the path. The output is the division of the path

in what is represented in the Trie and what is not. The formal description of the algorithm is

the following:

Algorithm 10 findMissingEdges
Input: the Trie T and the input sequence S. Let Q be a queue containing the labels of SI in sequence order. Let n be a node of the
Trie. Null if no such node exists.
n ← T.g etRoot ()
while n not null || Q not empty do

l ←Q.pop()
n ← T. f i ndC hi ld(n, l )

end while
Output: Q , n

It is clear that the complexity of the findMissingEdges and the calls to insertChild in algorithm

insertSequence always sum exactly L, because the number of nodes in the Trie and those not

are complementary sets and sum L. Therefore, the overall complexity of storing a set of N

sequences of lengths Li is O
(∑N

i=1(Li )
)

operations.

To exemplify the Collection of Trie step, consider the collection of the following sequences

{0,1,0}, {0,2,0}, {1,0}, (again) {0,1,0} and {1,0,3}. The sequence of operations would be the

following, in green, the added nodes in each step, and, in red, nodes representing paths.:
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Figure 5.2: Exemplification of path-collection process on a Trie based on input sequences of Figure 5.1.

To implement those operations, we choose representing the Trie as a graph in CRS format and

a vector with the data associated to each node. In this case, the data is just the times the path

appears in the dataset.
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The CRS format supports efficiently the addition of full nodes O (d +1) for a node with degree

d . However, it doesn’t support modifications of an already added node; as it may imply moving

all elements in one of the destinations array, which can have a complexity of O (E) for a graph

G(V ,E). And, in our case, we don’t know the total number of child nodes for a Trie node until

the end of the collection. Then, in order to avoid adding partial nodes and adding edges, we

directly add nodes densely: by reserving space for all the possible child nodes (given by the

outgoing edges of the graph node) and flagging edges which are not used in the Trie. Using

this approach, the final state of the collected Trie of the previous example would be:

root

1

- 2

3

- -

-

4

5

- - -

6

7

- - - 8

-

-

0

0 1

0

0 1

1

2

0

0 1 2

1

0

0 1 2 3

0

2

Figure 5.3: Representation of Dense Trie resulting from collecting sequences in Figure 5.2. In gray
we have all those nodes that are not flagged as used. Nodes are labelled in addition order. As we can
see, more nodes than needed will be added, depending on the possible child labels each node can have.
Nevertheless, this inefficiency is temporary and will be handled in the Trie compression substage.

5.1.0.2 Trie Compression

In this subsection, we explain how to build a Compressed Trie out of a Dense Trie build. This

process is essentially removing all redundant data after collection, without affecting the path

data represented in it. For this, there are three pieces of data which can be removed:

• Unused nodes: Those nodes which do not represent a path may be included in hyperedges

in order to reduce the size of the Trie.

• Unused edges: during the Construction of the Dense Trie. For each node, all its possible

child nodes are pre-allocated, but some will not represent any edge offset sequence in the

end.
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With the objective of having a minimal representation of the Trie. Still, we have some freedom

to aggregate nodes in different ways. In the following example, we present two ways of doing

so for the Trie obtained in Figure 5.3:
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Figure 5.4: Representation of Trie compression alternatives based on Trie from Figure 5.1. The left
option compressed unused nodes and edges, but only if they are single-child nodes. The right one does
so regardless of the number of child nodes.

In both cases, we have removed redundant nodes and included them in redundant edges. The

difference, however, is that in the right case, removing node "1" had two side effects: the root

has one more child node and a label was duplicated. The first goes in detriment of the use

(later) of the Adaptive Edge Offset Compression method, and the second may lead to a large

repeated label sequences in the Compressed Trie. For this reason, we choose to compress using

the left approach: only removing nodes that are unused and are single-child nodes.

After this discussion, we can finally define a Compressed Trie Hyperedge as:

Definition 5.1.1 (Compressed Trie Hyperedge). Let T be a Trie, a Trie hyperedge h is an edge

that connects a node v to one of its descendants w in T which fulfill the following conditions:

• v has more than one child.
• w has a number of child nodes different from one.
• h is a label sequence obtained from accumulating the labels along the path from v to w

in T .
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Applying this definition, we can define an algorithm that identifies hyperedges using the following

algorithm:

Algorithm 11 collectHyperEdge
Input: the Trie T , s a node of T such that T.numC hi l d s(s) == 1.
Let h be a label sequence
Let n be a Trie node
Let l be a label
n ← s
while T .numChilds(n) is 1 and T .numUsed(n) = 0 do

n,l ← T.getChilds(e).front()
h.append( l )

end while
Output: n,h

The complexity of this algorithm is exactly the size of H ; the length of the sequence of only-child

nodes plus one. By construction, all edges will be in a hyperedge. This algorithm collectHyperEdge

can be combined with a Breadth-First Search in order to efficiently collect all hyperedges that

would be built from a Dense Trie. This is the aim of the next algorithm:

Algorithm 12 collectAllTrieHyperEdges
Input: the Trie T and R a processor of hyperedges.
Let Q be a queue
Let v be a Trie node
v ← root
Q.enqueue(v)
while Q is not empty do

v ← Q.dequeue()
for dow, l in T .getChilds(n):

n,h ← collectHyperEdges(v,l)
h.prepend(l)
Call R(v,w,h)
if n is flagged as used then

Q.enqueue(n)
end if

end for
end while

This algorithm will require O (Mu) steps to complete, where Mu is the number of used edges in

the Dense Trie. Because it will necessarily traverse all the used edges of the Trie T in order to

collect all the edges in hyperedges. In other words because
∑

e
∑

H(v,e) = Mu. Notice we could

have also developed this algorithm as a DFS-like version and the result and complexities would

be the same. However, the BFS approach will be more efficient for building a CRS-like Trie.

As for Dense Tries, we will represent a Compressed Trie as a CRS-like tree with the different

that in this case, we require an auxiliary data structure to indicate the labels associated to edges

of the Compressed Trie. The label of each hyperedge in this case is a sequence of edge offsets.

In order to represent it, we also use a CRS format to have all sequences compacted in the
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contiguous block of memory. The data layout of the Compressed Trie in (left) figure Figure 5.4

would be:

Root 1 3 5 7 8

0 2 4 4 4 5

1 7 3 5 8 −

0 1 3 5 7 8

0 1 0 1 0 2 0 3 −

Root 1 3 5 7 8

0 0 2 1 1 1

Trie Source Degrees

Trie Hyperedge Destinations

Hyperedge Source Degrees

Edge Labels

Used node count

Figure 5.5: Example data layout of Compressed Trie.

Finally, the algorithm to build the Compressed Trie is a direct extension collectAllTrieHyperEdges

for which, the observed R(v, w,h) once it has collected all child hyperedges of v as with a normal

CRS graph. Regarding the edge offset sequences of hyperedges, they are added consecutively

in a CRS-like fashion to the Hyperedge Source Degrees and Edge Offsets.

Finally, the overall complexity of building a Compressed Trie is of Mu because it will consist of

two parts: collecting the hyperedges which are already O (Mu) and adding the hyperedges to the

Compressed Trie. This second part comprises: adding the hyperedges itself to the CRS graph,

representing the tree Hyperedge Source Degree and Hyperedge Destinations which is in total

O (H) and adding each of the hyperedge label sequences to the compacted sequence lists which

is O (Mu). Therefore, the overall complexity of the Compression Trie is O (Mu).
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5.2 Storage

In this section, we explain how our solution stores efficiently our proposal of Path Dataset. The

storage, as in the Adaptive Edge Offset Compression approach, consists of storing the graph plus

data describing the paths. This second part is further divided into two: storing the origin-based

indexation and storing the Compressed Tries. Each aspect is discussed in a different subsection

of the following ones.

5.2.1 Graph Storage

Storing the graph will depend on the application. The decision of the representation and format

of the graph storage is up to the user and is then out of the scope of this work.

The only restriction on this decision is that, to use our implementation, that the graph used to

store and retrieve the Path Dataset is identical: included the indexation of edges and nodes.

Otherwise, our solution will lead to inconsistent results. This is a minimal and common require-

ment (see Adaptive Edge Offset Compression) that any implementation should fulfill. Because

of this, we will not attempt to optimize its storage, and will directly use CRS graph encoded

with fixed width variables (from C++).

5.2.2 Origin — Compressed Trie Storage

In this section, we discuss how stored all the groups of paths encoded as (origin vertex, Com-

pressed Trie) pairs. As with the graph storage, part of the details are customizable. And because

our approach splits the paths into origin-tries, different storage and retrieval strategies can be

devised.

However, our approach is less sophisticated. It consists: storing these origin-Trie pairs in a

Sparse way; serializing each pair consecutively. The layout would be:

v1 T1 v2 T2 . . . vN TNData Stream

Figure 5.6: Data layour of origin-Trie pair storage.

An alternative would be storing a Dense index, where each entry would be associated to the

i -th origin. It would be more efficient if most origins had a Trie associated, but we cannot
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evaluate if that would be the case and if that approach is worth the effort. Whatever the case,

remember this indexation is customizable, so it is up to a potential user to decide which is the

most suitable one for their case.

Another possibility is using metadata to access only to a specific origin-Trie. As depicted in the

following diagram:

v1 v2 . . . vN

. . .

T1 T2 . . . TN

Origin-Trie Pointers

Data Stream

Figure 5.7: Data layout of origin-indexed storage of tries.

This grants the possibility of storing and restoring fractions of the whole Path Dataset.

Even more advanced indexation approaches could be used (such as [2]), but they are out of the

scope of this work. The key aspect is that any of those strategies may be built from reading

the whole Path Dataset (probably just once).

After this discussion on how tries and vertices are organized in the storage, we need to determine

how to store origin vertices and Compressed Tries efficiently. The following two subsections

covert each topic.

5.2.2.1 Origin vertex storage

We store the origin vertices using the order in which they are represented in V of graph G =
G(V ,E). If there are |V | vertices, we will need ⌈log2 (|V |)⌉ bits for each of them because we store

them separately. Therefore, we would need to store K ⌈log2 (|V |)⌉ for K origin-Trie pairs.

5.2.2.2 Compressed Trie Storage

In this section, we will discuss how the Compressed Trie is stored efficiently with the path-related

data. Firstly, we need to consider which information needs to be stored:

• Trie Structure: relationships between the Trie nodes.
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• Hyperedge label sequences. Sequences of edge offsets.

• Path data (Usage count): in our case, just the number of paths. But in a more general

case, any data associated to it.

This is achieved by using a DFUDS-like approach, in which we customize the data stored for

each node its child hyperedges and the usage count. We chose DFUDS approach instead of

any other in section Compression of multisets of sequences. An extension of [8] would be a

possible alternative. However, there are three main concerns with it. The first one is that it

decontextualizes all the data by converting it into a binary tree and uses a single type of coding,

ignoring the features of the data stored: number of child nodes, symbols of edges, length of

hyperedges. . . The second one is that it seems the binary version of the Balanced Parenthesis

approach, which is inferior to the DFUDS as discussed previously. The third one is that, DFUDS

stores the sequences contained in the Trie in lexicographic order, and storing the data sorted

can ease the compression of Trie in algorithms such as DEFLATE.
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After this discussion, we can continue and describe encode/decode algorithms of our approach:

Algorithm 13 encodeCompressedTrie
Input:the Compressed Trie node T , the associated origin graph vertex r , graph G and an output data stream D:
Let n be Trie node.
Let v, w be graph vertices.
Let h, be a label sequence.
Let C be a tuple sequence of Trie nodes and the associated graph nodes.
Let IC be an iterator over C .
Let S be a stack of IC and w pairs.

i ← 0
S ←;
n ← T.getRoot()
v ← r
C ← T.getChilds( n )
I ← iterator of T.getChilds( n )
S.push( ( I, v ) )

while S is not empty do
I,w ← S.top()

if I.hasNext() then
n,h ← I.next()
v ← G.getOutgoingVertex(w,h)
encodeCompressedTrieNode( D, G, T, n, v )

if T.numChilds(n) > 0 then
u ← encodeUsage( T.getUsage(n) )
C ← T.getChilds( n )
I ← iterator of T.getChilds( n )
S.push( ( I, v ) )

end if

else
v,l ← S.pop()

end if

end while

The decoding algorithm is symmetric to this one. But, additionally, takes advantage of the fact

that all the node description is encapsulated through encodeCompressedTrieNode in order to build

the Compressed Trie on-the-fly as described in Trie Compression. The algorithm description is:
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Algorithm 14 decodeCompressedTrie
Input: the origin-vertex associated to a (non-empty) Compressed Trie r , the graph G and an input data stream D.
Let n be a Trie node.
Let v, w be graph vertices.
Let h be a label sequence.
Let T be a Compressed Trie.
Let H be a set of hs.
Let C be a tuple sequence of Trie nodes and the associated graph nodes.
Let IC be an iterator over C .
Let S be a stack of IC and v pairs.

i ← 0
S ←;
n ← T.getRoot()
v ← r
decodeTrieHeader(D,G)
H ← decodeCompressedTrieNode(D,G,v)
T.insertChilds( n, H )
Ci ← T.getChilds( n )
ICi

← iterator at begin of Ci
S.push( ( ICi

, v ) )

while S is not empty do
I, w ← S.top()

if I.hasNext() then
i ← i + 1
n,h ← I.next()
v ← G.getOutgoingVertex(w,h)
H ← decodeCompressedTrieNode(D,G,v)

u ← decodeUsage(D)
T.setUsage(n,u)

if H is not empty then

T.insertChilds( n, H )
Ci ← T.getChildNodes( n )
S.push( ICi

, w )
end if

else
S.pop()

end if

end while

Output: T

As both algorithms are extensions of a DFS traversal, each of them run in O(Nc ) steps plus

the call in each of those steps, the encodeCompressedTrieNode and decodeCompressedTrieNode

and encodeUsage and decodeUsage, respectively. Therefore, the overall complexity will be

determined once those functions are so.

A great advantage of this approach is that we can encapsulate all the information related to a

node inside those two calls or at with an additional third one if a header is used to encode/decode

common properties of the Trie. This opens the door to customizing the previous algorithms.
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For the present case, decodeUsage and encodeUsage will only be used to indicate the number of

repeated paths. We will encode it with encodeNumberUnary and decodeNumberUnary algorithms

for simplicity and because, the marginal cost of adding a path is just one bit, which is the lowest

possible value. However, there is possibility of using better suited approaches like Variable-

Length-Quantity coding. However, the evaluation of more sophisticated approaches of encoding

arbitrary numbers is left for future work.

The last piece of information missing in the coding of Compressed Tries are nodes and their

child hyperedges. We can visualize for instance as:

0

1

0

1 3

1

Figure 5.8: Representation of an isolated Trie node (blue) with three child hyperedges whose edge offset
sequences are: {0,1,0}, {1} and {3,1,2,3}.

In order to store the node and all its hyperedges we exploit the fact that the Compressed Trie

represents a set of paths and each node can be mapped to a vertex in the graph that generated

it. As a result of this, the number of child nodes of a Trie node can have is bounded by the

degree of the vertex. Hence, we can apply Adaptive Edge Offset Compression in order to encode

and decode the number of child nodes optimally using the following algorithms:

Algorithm 15 encodeSizeSubsetOutgoingEdges
Input: A data stream which D, a graph G(V ,E) AND a vertex v ∈V . and the edge offset l
d← G.getOutgoingDegree(v)
writeToBinary(D,l,d+1)
Output:

Algorithm 16 decodeSizeSubsetOutgoingEdges
Input: A data stream which D, a graph G(V ,E) and a vertex v ∈V .
d← G.getOutgoingDegree(v)
l ← readFromBinary(D,l,d+1)
Output: l

They are almost equal to encodeEdgeOffset and decodeEdgeOffset. The difference is because

https://en.wikipedia.org/wiki/Variable-length_quantity
https://en.wikipedia.org/wiki/Variable-length_quantity
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edge offsets for a node with out-degree N range from 0, to N −1 while the size of a subset of

outgoing edges goes from 0 to N .

Finally, we can describe the algorithms encodeCompressedTrieNode and decodeCompressedTrieNode.

They are just the encoding and decoding of a list of hyperedge label sequences in the same order:

Algorithm 17 encodeCompressedTrieNode
Input: the Trie node n ∈ T , the Trie T , a graph G, the associated graph vertex v and a data stream D:
Let v, w be graph vertices.
Let m be Trie node.
Let h be a label sequence (edge offsets).
Let C be a sequence of Trie node and hyperedge label pairs.
Let P be a sequence of Trie node and graph vertices.

P ← ;
C ← T.getChilds(n)
encodeSizeSubsetOutgoingEdges( D, IC .numNexts(),v,G)
for (m,h) in C do

w ← encodeEdgeOffsetSequence( D, v, h )
W.append( ( m, w ) )

end for
Output : W

Algorithm 18 decodeCompressedTrieNode
Input: the Trie node n ∈ T , the Trie T , a graph G, the associated graph vertex v and a data stream D:
Let v, w be graph vertices.
Let h be a label sequence (edge offsets).
Let Q be a sequence of hyperedge edge offsets.

Q ← ;
K ← decodeSizeSubsetOutgoingEdges( D, v, G )
while i < K do

w ← decodeEdgeOffsetSequence( D, v )
Q.append( ( w, H ) )
i ← i+1

end while
Output : Q

Now that are pieces are in place, we are able to determine the complexity of encode and decode

a Compressed Trie both in space and time.

Theorem 2 (Encode Compressed Trie Time Complexity). For a Compressed Trie of Nc and

total number of edge offsets M , the time complexity of the encodeCompressedTrie algorithm is:

O (Nc +M)

Proof. The algorithm encodeCompressedTrie does O (Nc ) steps. Each of those steps includes a

call to encodeUsage and encodeCompressedTrieNode. The first one having a complexity of is
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O (1). And the second one O (
∑

i∈Hn |hi |) for each node n, where, Hn and hi the associated label

sequences of the i-th child edge. Therefore, the total complexity is:

O

( ∑
n∈Tc

(
1+ ∑

i∈Hn

|hi |
))

The statement of this theorem is obtained from simplifying this formula using Nc = ∑
n∈T and

M =∑
i∈Hn |hi |.

Theorem 3 (Decode Compressed Trie Time Complexity). For a Compressed Trie of Nc and

total number of edge offsets M , the time complexity of the decodeCompressedTrie algorithm is:

O (Nc +M)

Proof. Analogous to the proof for encodeCompressedTrie.

Regarding spatial complexity, however, cannot be evaluated exactly because edge offsets are

compressed using Adaptive Edge Offset Compression and because of the usage number being

coded using Unary Coding. However, we can give an upper bound of without includes the usage

counts, which can be arbitrarily big.

Theorem 4 (Coding Compressed Trie Space Complexity). For a Compressed Trie of Nc and

total number of edge offsets M , the space complexity of the storing a Compressed Trie Node

using the encodeCompressedTrie algorithm is upper-bounded by:

Nc⌈log2(d +1)⌉+M
(
1+⌈log2(d)⌉)

Where d is the maximum degree found on the graph G, used to describe the edge offsets coded

in T .

Proof. The result is obtained from summing the contribution of each of the algorithms. The

first term comes from the fact that each node needs to store the number of child nodes, which

requires ⌈log2(di +1)⌉ bits, where di is the vertex of the graph associated to this Trie node. In

total, this is:

∑
i
⌈log2(di +1)⌉
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Using the fact that di < d , the sum can be written as the first of this theorem statement.

∑
i
⌈log2(di +1)⌉ ≤∑

i
⌈log2(d +1)⌉ = Nc⌈log2(d +1)⌉

The second term comes directly from encoding the edge offset sequences of each hyperedge.

Each sequence will require the coding of its edge offsets and of the length, which, as we use

Unary Coding is a bit per edge offset in the sequence. That means, each hyperedge sequence,

h, requires:

|hi |∑
i=1

(1+⌈log2(di +1)⌉)

Using the fact that di < d , the sum can be written as the first of this theorem statement.

|hi |∑
i=1

(1+⌈log2(di +1)⌉) ≤
|hi |∑
i=1

(1+⌈log2(d +1)⌉) = M
(
1+⌈log2(d)⌉)

Using, again, the fact that di < d we can simplify this expression as:

Nc⌈log2(d +1)⌉+M
(
1+⌈log2(d)⌉)

With the formulae shown in the previous theorems, we clearly see that all complexities related

to the storage we propose depend directly on the size of the Compressed Trie, given by Nc and

M .
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5.3 Process

In this section, we explain how to process or visit all paths in the Path Dataset; using the

algorithm iteratePath. Because paths are grouped by origin vertex in tries, we just need to

describe how to obtain the paths contained in each of those tries. This operation implies

visiting all nodes in the Trie, Tc (N ) and the vertex sequence v1, ..., vL associated to each of

them.

If we just want to extract the path of a single node, it can be achieved by recursively by taking

the parent of each node until the root node and accumulating the labels of each edge traversed

in a stack. At the end, popping the stack will generate the path (node sequence). This is

described in the following algorithm:

Algorithm 19 iteratePath
Input: the Trie node Tc and a node m, the graph vertex r associated to the root and the graph G:
Let S be a stack of Trie Tc nodes.
Let P be a node sequence.
Let l be a label (edge offset).
Let h be a h sequence.
Let n be a node of the Trie Tc .
Let v be a vertex of the graph G.

n ← m

while n ̸= T.g etRoot () do
n,h ← T.getParent(v)
for l ∈ h do

S.push(l )
end for

end while

n ← r
while S is not empty do

l ← S.pop()
v ← G.getOutgoingVertex(v,l)
P.append(v)

end while

Output: P

Given an edge offset sequence of length L (that is a path of L+1 nodes) this algorithm requires

L steps to build the stack and L to build the node sequence from the stack. Therefore, the

total number of steps is, O (L), with at most, O (L), space complexity due to the stack. If this is

used for multiple paths of length {Li }N
i=1, the time complexity will be O (

∑N
i=1 Li ) and the space

complexity will be O
(
{Li }N

i=1

)
.

However, this is clearly redundant if we need to apply these operations on more than one node.
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Because when multiple paths overlap, the nodes on the overlap will be visited multiple times.

Therefore, we can devise an accumulative-approach in which we minimize the times a node

is visited and reduces this time complexity by exploiting those overlaps without increasing the

spatial complexity. We extend pre-order traversal (DFS) to achieve this. By definition, during

a pre-order traversal each node is visited exactly once. That is something that could also be

achieved using the level-order traversal (Breadth First Search). However, the pre-order traversal,

this ensures we only need a single stack to traverse all the paths needed. This is described in

the following algorithm, which is a version of the DFS which uses a stack of iterators:

Algorithm 20 iteratePaths
Input: a non-empty Compressed Trie node T , the graph vertex r associated to the root, the graph G and path observer R.
Let v, w be graph vertices.
Let n be a Trie node.
Let S be a stack.
Let P be a node sequence.
Let H be a label sequence.
Let v be a node.

v ← r
P.append( r )
Cn ← T.getChilds(n)
ICn ← iterator at begin of Cn
S.push( (ICn ,v) )
while S is not empty do

I,w ← S.top()

if I.hasNext() then
n,h ← I.next()

for l ∈ h do
v ← G.getOutgoingVertex(v,l)
P.append( v )

end for

if T then.getUsage(n) > 0:
Call R(P )

end if

Cn ← T.getChilds(n)
if Cn is not empty then

ICn ← iterator at begin of Cn
S.push( (ICn ,v) )

else
for l ∈ h do

P.pop()
end for

end if
else

n,h ← S.pop()
for l ∈ h do

P.pop()
end for

end if

end while



5.3. Process 49

By virtue of the DFS each node iterator is acquired Nchi l d s times, that is a total of
∑

v∈T Nchi l d s(v) =
N and each node is pushed and popped exactly once to the stack: N pushes and N pops in

total. The total complexity is O (N +Nu ·R(P )).

Notice also that, when implementing this algorithm S and P can easily be implemented by the

same data structure (one such as std::vector<> in C++) as the stack will have the node sequence

that would be collected in P . Had we used the Breadth First Search algorithm, we would need

to store partial path sequences until the leaves of the Trie were reached, and that would heavily

increase the space complexity of this approach. This is essentially extracting most part of the

edge offset sequences in the Trie simultaneously, which would be much less efficient in space.

An example of the steps of this algorithm follows using the Trie described in Graph Represen-

tations: CRS. In this case, the iterator of child edges of v is just the child node id:

Step Stack (parent node, child node, length) Path Call R(P )
Initial {r oot } {X } -

1 {(r oot ,1,1)} {X ,0} N
2 {(r oot ,1,1), (1,3,2)} {X ,0,1,0} Y
3 {(r oot ,1,1), (1,5,2)} {X ,0,2,0} Y
4 {(r oot ,1,1)} {X ,0} NA
5 {(r oot ,7,2)} {X ,1,0} Y
6 {(r oot ,7,2), (7,8,1)} {X ,1,0,3} Y
7 {(r oot ,7,2)} {X ,1,0} NA
8 {} {X } NA

Table 5.1: Process operation on Trie example. X is the initial vertex. Notice that R(P ) is only called
(Y ) once for each used node and that there is no call to R(P ) (N) when traversing the node 1 because
it was not used. The rest of cases are associated to pops done to the stacks and therefore, no possible
call to R(P ) can occur (N A).
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Chapter 6

Experimental Design

In this section, we explain in detail the methodology and tools used to assess the solution

proposed. That is validating and evaluating the performance both in time and space, considering

the characteristics of the current Path Dataset and graph under study. The explanation of each

of those aspects is discussed in different subsections.

In Reference Path Datasets Implementation, we discuss in detail the implementation of the

implementation of Path Dataset used as references to assess the features of our approach.

Regardless of which representation is used to represent Path Datasets, we use the generic

validation strategy discussed in Path Dataset Validation subsection. This consists on ensuring

the Path Dataset collected and retrieved are the same regardless of the representation of the

Path Dataset. Without it, any comparison or further analysis is, obviously, futile.

To do this comparison and evaluate metrics, we need to consider relevant use cases. On one side,

we need to use Road Network graphs from real-world examples. This is done using data from

Open Street Maps and explained in the section Graph Extraction From Open Street Maps. On

the other side, we need to obtain Path Datasets based on this graph with different compositions

(number of paths, length of those paths,...). This is discussed in the Synthetic Path Dataset

Generation subsection.

Lastly, in the Measurements subsection, we discuss all the metrics designed to analyze the

efficiency of our method. This includes basic performance metrics (computation time, mem-

ory, and size in disk) for each of the stages described in the Problem Description as well as

characterization metrics to understand them.

51
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6.1 Reference Path Datasets Implementation

As described in Proposed Solution: Compressed Trie Indexation, the two main aims of the design

of our methods are deduplicating the data used to represent a Path Dataset and using different

compression techniques in order to minimize the size of this data. This is mainly achieved by

using Compressed Tries and, in serialization, Adaptive Edge Offset Compression, respectively.

In this section, we describe the implementations of Reference Path Datasets as Path Lists,

which will serve us as baseline to assess the Compressed Trie format. For this, this section is

split into the Representation, Collection and the Storage Formats.

6.1.1 Representation

In order to represent efficiently Path Lists and as similarly to the CT format, we also represent

the lists in CRS format. The memory layout is analogous to the one shown in 5.5:

0 3 6 8 10

0 1 0 0 2 0 1 0 1 0 3 −

0 1 2 3

2 1 1 1

Path Source Degrees

Path Edge Offsets

Used node count

Figure 6.1: Example data layout of a Path List format built from the Paths in 5.2.
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6.1.2 Collection

As explained in Problem Description, the Collection stage consists of accumulating path data

and path descriptions which arrive individually into a Path Dataset, which, by definition, has

a single description (entry) of each path. This consolidation is done naturally in tries, but for

Path Lists we need to perform additional operations.

We split the Collection stage in an Accumulation step and a Consolidation step. In the former,

paths and their data are collected and stored in a list, being possible that paths descriptions are

duplicated. In the latter, using this path lists, all paths are sorted lexicographically. That groups

equal path descriptions in O (N log(N )) for N collected paths. Then we just need to consolidate

this data in O (N ). This is exemplified with lists of integers in the following figure:

1 4 3 1 2 1 5 2

1 1 1 2 2 3 4 5

(1,3) (2,2) (3,1) (4,1) (5,1)

Accumulated List

Sorted List

Consolidated List

Figure 6.2: Exemplification accumulation and consolidation stages for Path List format using a list of
natural numbers. In the Consolidated List we see the numbers appearing in the Accumulated List and
their frequency

This can be then added to the Path Dataset efficiently. The alternative would be doing a linear

search over all the paths every time we need to add a path which sums up to O (N 2).

6.1.3 Storage

In order to assess the Storage quality of our approach, we need to understand the impact of

Compressed Trie format and Adaptive Edge Offset. And for this, different implementations are

proposed in this section, which isolate the impact of each of those. The rest of aspects which

are not evaluated are implemented analogously to what is described in Compressed Trie Storage:

• Graph Storage. Exactly the same as the one described in Graph Storage.
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• Origin Paths Storage. In our approach, we store a single origin vertex and all edge offset

sequences associated to paths starting at it. In this way, a single origin vertex needs to be

stored.

• Paths Storage The approach used here is representing each path as an individual and

independent sequence of vertices or edge offsets. This, together with the previous point,

is essentially the base scenario on top of which we propose the Compressed Trie approach.

Both of them can be jointly represented as:

{
vi ,ki , {n j .e j }hi

j=1

}
i∈V̂ (6.1)

Where vi represents the coding of vertex vi in V̂ ⊂V and ki is the number of paths starting

at this vertex. Then ni , j is the coding of number of occurrences of path j = 1, ..,ki , both

encoded using Unary Coding (encodeNumberUnary and decodeNumberUnary). Finally, ei , j is

the coding of the edge offset sequences. The following is an example of this layout:

v9 k9 n9,1 e9,1 . . . n9,k9 e9,k9 . . . vN kN nN ,1 eN ,kN . . . nN ,kN eN ,kN

Figure 6.3: Representation of Reference Path Dataset serialized data layout.

Over this base description, we can build the different variants that will allow us understanding

the efficiency of our approach. The variants are summarized in the following table:

Acronym Path Order Edge Offset Coding
PL UNSORTED FEO Unsorted (randomly) Fixed width variable: std::uint8_t
PL UNSORTED AEO Unsorted (randomly) Adaptive Edge Offset Compression

PL SORTED AEO Sorted (lexicographically) Adaptive Edge Offset Compression

Table 6.1: Different variations of Reference Path Dataset Implementations.

Among the Path List formats, the closest version to the features to CT (Compressed Trie) is

PL SORTED AEO and is the one expected to have a more similar performance. On the other

side, PL UNSORTED FEO and PL UNSORTED AEO can be used to evaluate the efficiency

of Adaptive Edge Offset Compression. While PL UNSORTED AEO and PL SORTED AEO

can be used to consider the impact of sorting when used together with the implementation of

the DEFLATE algorithm from ZLIB.

https://www.zlib.net/


6.2. Path Dataset Validation 55

6.2 Path Dataset Validation

The validation of the Path Dataset consists on ensuring the Path Dataset after storage and

retrieval is the same for all approaches used. This is a compulsory test for any lossless com-

pression method to be valid. In our case, the reference will be the Path Dataset generated in

Synthetic Collection Profile Generation, while the case of target to compare will be the same

dataset but in our proposed solution. To compare them, we will need to put them in a common

format.

This format is a CSV, where each row codes a path and the usage count of this path (the data).

The first column is this number, the second the origin vertex and the rest are the edge offsets

of the path. In order to compare efficiently, all rows are sorted in Lexicographic order. In this

way, the paths instances will be in strict total ordering. And we will be able to do a row-by-row

comparison to determine if the reference output is equal to the original or not. An example of

this format is the following:

n3,1 ; v3 ; 0 ; 0 ; 0 ;
n3,2 ; v3 ; 0 ; 0 ; 1 ;
n3,3 ; v3 ; 0 ; 1 ;
n3,4 ; v3 ; 1 ; 2 ;
n3,5 ; v3 ; 1 ; 1 ;
n3,1 ; v1 ; 1 ; 0 ; 1 ; 4;
n3,2 ; v1 ; 1 ; 0 ; 1 ; 4;
n3,1 ; v7 ; 0 ; 0 ; 1 ;
n7,1 ; v7 ; 1 ; 0 ;
n7,2 ; v7 ; 1 ; 1 ; 0 ;

Figure 6.4: Representation of Path List export format. Each row represents a realized path together
with the number of times it is realized. All rows are sorted lexicographically.

The line-by-line comparison can then be done easily using tools such as KDiff3.

https://en.wikipedia.org/wiki/Lexicographic_order
https://kdiff3.sourceforge.net/
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6.3 Graph Extraction From Open Street Maps

Open Street Maps is an open-data service that allows exporting map-based data from anywhere

in the world. Its data is rich, accurate, and validated by a committed community, and it is used

for many applications and research. For large regions, auxiliary Planet OSM and Osmosis are

needed (and used) in order to extract filtered subsets of data. We use it in order to obtain road

network data for the use cases in section Analysis of results.

Once this data is exported, we use NetworkX and GeonetworkX to import a directed graph and

apply the following modifications to build a consistent road network graph with the information

required:

• Remove isolated vertices . Those vertices cannot belong to any non-redundant path and

probably arise from missing data in the OSM database.

• Remove self-loops edge. Those are spurious edge that cannot represent any path in a

road network. They have not been observed directly but are preventively removed.

• Collect vertex attributes . Vertex attributes will be its geographical coordinates (latitude

and longitude) and flags indicating whether vertices may be origin or destination. To decide

which vertices are origins and/or destinations, we use the OSM edge property highway,

which indicates the type of road. We assume trips endpoints are either living_streets or

residential, consistently with OSM Documentation. Vertices which have outgoing access

edge may be origins and those that have incoming access edges may be destinations of

trips.

• Collect edge attributes, Only the weight is relevant, which will be the accumulation of

the Open Street Maps ways lengths.

https://www.openstreetmap.org/#map=15/41.6366/2.3057
https://planet.openstreetmap.org/
https://github.com/openstreetmap/osmosis
https://networkx.org/
https://geonetworkx.readthedocs.io/en/latest/
https://wiki.openstreetmap.org/wiki/Key:highway
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• Contracting redundant vertices. We define as redundant vertices as those with in-degree

and out-degree exactly one and are neither origin nor destination vertices. Because they

do not provide any information on the decisions made by travelers, as there is no other

possible choice than moving forward. For instance, the one indicated as blue:

x1

x2

x3 x4 x5

x6

x7

Figure 6.5: In this graph example can be observed, for trips not starting or ending at x4 this
vertex plays no role in this graph. Therefore contracting all verices along the blue arrow (x3, x4, x5)
in a single vertex reduces the size of the graph without losing any information.

This result translated to the coding of edge offset sequences, this contraction leads to the

shortest sequences by removing edge offsets associated to 1-out-degree vertices. There-

fore, it can only reduce the coded size of edge offset sequences. In the case of Adaptive

Edge Offset Compression however, this will have no effect as edge offsets associated to

1-out-degree vertices occupy 0 bits.

The final format used as input to our processes is the In DOT format. Which is a generic graph

format supported by many visualizers and graph libraries such as Boost Graph Library .

https://graphviz.org/doc/info/lang.html
https://www.boost.org/doc/libs/1_82_0/libs/graph/doc/index.html
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6.4 Synthetic Path Dataset Generation

A Path Dataset is obtained from collecting paths on a graph. Characterizing a Path Dataset

from real traffic is a complex task which depends on the geometry, land use (f.i. population

density), destination choice and route choice strategy of travelers. And, unfortunately, we do

not have access to this type of data and in the amounts and variety we would need.

Our approach is generating realistic Path Datasets synthetically. Besides overcoming this limi-

tation, this approach also adds the possibility of sampling sensible paths datasets from different

scenarios and, thus, having Path Datasets of different compositions. In this way, we can extract

conclusions which are more robust than using a small sample of Path Datasets. The main

challenge of this approach is sampling cleverly over the large number of possible Path Datasets

which can be realized on the same graph.

We divide this approach into three consecutive steps: synthetic origin-destination generation,

synthetic path generation and synthetic collection order generation.

Figure 6.6: Overview of the steps involved in Syhnethic the Path Dataset Generation. As can be
appreciated, the output of OD generation is an input for Path Generation. And the output of the latter
is required to produce a Collection profile.

Each of the steps will be discussed in detail in the forthcoming sections.

6.4.1 Synthetic Origin-Destination Generation

As with Path Datasets, real origin-destination data is not available in this thesis, mainly because

we have not found a free source of this data. The reason is likely that either complex models

or large surveys need to be carried out to obtain it. All of this makes it a valuable asset for

transport consulting companies and Departments of Transport.
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Instead, we generate this data by selecting non-repeated origin-destination non-repeated pairs

of vertices out of the possible origins and destinations. As explained previously, we only consider

those vertices flag accordingly as origins and destination. And then, using a uniform distribution

to select the origin/destination vertices

p(vi , v j ) =
{

0, i f i = j
1

|V |(|V |−1) , other wi se

}
(6.2)

This uniform probability has the disadvantage of not accounting for the distance between origin

and destination or their location. In spite of this, this approach allows us having a Path Dataset

with the same number of paths per origin, on average. And this homogeneity eases the analysis

of the results. Additionally, some filtering is used in order to discard unrealistic paths, and

control the amount and similarity among them:

• Distance Filtering (λ): by calculating the length between origin and destination if the

distance is below the minimum, λ. This minimum models, how eager are travelers to walk,

as for shortest distance, the main transportation mode is walking.

• Geographical Filtering (r ): by determining a circle of radius r from a reference point,

p, we determine the candidate origins and destinations that may be eligible as origin and

destination. With this we can influence the possible number of origins and destinations

and the number of vertices in a path.

• Density Filtering (ρ,κ): by setting a fraction, ρ, we select the number of OD pairs

considered out of all the possible ones and control the similarity of paths in the dataset.

Complementary to this, we can also use a maximum number of queries κ for this purpose.

Depending on the case, one or the other may be more useful for describing the situation

in mind.

Those filters allow us to control the composition of Path Datasets with just three meaningful

parameters r , λ and ρ. The only care we need to take is ensuring λ< 2ρ, otherwise there will

be no origin-destination pair.
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6.4.2 Synthetic Path Generation

Once the origin-destination targets are known, the paths need to be generated and collected.

This is done by calculating the shortest paths between the pairs of the previous vertices. This is

an approximation as mentioned in [17] and [1], as travelers tend to minimize their travel costs,

which are, in general, related to distance. Nevertheless, users do not always follow the exact

shortest path, but may follow variations of it. In order to emulate this, we introduce some noise

in the costs using a truncated Gaussian Distribution on the weights of each edge:

p(x) =
 0, i f x ≤ 0

1
σ
p
π

e
−(x−µ)2

2σ , i f x > 0

 (6.3)

Where x is the weight of the edge, which cannot be negative. Where µ is the average cost of

the edge and σ the variance of the costs and will be coded as σ = αµ. Where α is called the

deviation, a common factor to all edges for simplicity.

6.4.3 Synthetic Collection Profile Generation

The theoretical analysis, suggests the order of collection does not have an impact on the algo-

rithm complexity. However, in practice because this may not be true due to two factors: cache

misses and memory allocations. Both of them penalize runtimes and, thus, characterizing their

effect of the collection order is necessary. Because in a real-world use case, we can expect paths

will be collected in an undetermined order.

For this, running multiple performance measurements on the same Path Dataset is necessary but

collecting the paths in different orders. In order to achieve it, our approach consists on randomly

shuffling the input paths. This is done by combining the algorithm std::random_shuffle and the

std::random_device to provide a pseudo-random order from the C++ Standard Library in the

implementation.

https://en.cppreference.com/w/cpp/standard_library
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6.5 Measurements

In this section, we describe meaningful metrics to evaluate if our Proposed Solution: Compressed

Trie Indexation is acceptable given our Problem Description. Therefore, we need metrics to

measure the performance of each stage of the problem and other metrics to characterize the

scenario under study.

Those measurements will sometimes be affected by processes out of our control. This is spe-

cially true for performance measurements, as nowadays computers perform multiple processes

concurrently. In those cases, multiple measurements should be taken and their variability as-

sessed. Due to this, we will consider taking their average and standard deviation. For derived

measurements, the deviation will be calculated using a simplified version of Propagation of Errors

(formula 2.10 of [11]).

6.5.1 Characterization Measurements

These measurements will be used to characterize the use case at hand. We aim to provide

a set of measurements that allows to explain all the behaviors observed in the performance

measurements, at least qualitatively. In this section, we provide the formal definitions for each of

them. They are divided into Graph Measurements, Path Dataset Measurements and Compressed

Trie Measurements.

6.5.2 Graph Measurements

• Number of vertices. Number of vertices in the graph.

• Number of edges. Number of edges in the graph.

• In-degree distribution. Histogram of the number of vertices of each possible in-degree

in the graph.

• Out-degree distribution. Histogram of the number of vertices of each possible out-degree

in the graph.

• Degree distribution. Histogram of the number of vertices of each possible degree (in-

degree plus out-degree) in the graph.
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6.5.2.1 Path Dataset Measurements

• Number of different paths. Total number of different paths contained in the Path

Dataset.

• Path Size. The number of edges of the realized path sizes in the Path Dataset.

6.5.2.2 Compressed Trie Measurements

We defined a single measurement for Compressed Tries to understand qualitatively the reduction

of size by using a Trie representation compared to an individual representation of sequences

(paths):

Definition 6.5.1 (Overlap). The Overlap, θ ∈ [0,1], of a Compressed Trie, T (P ) representing a

set of paths P = {p}|P |
i=1 with common origin, is the ratio over the number of edges of the Trie

over the sum of the number of edges of each individual path:

θ (T (P )) = 1 -

(
eT (P )∑

p∈P
eT (p)

)
Where eT is the number of edges of Trie T .

When the θ ≃ 1, the number of edges in the Trie are much fewer than those needed to represent

each path separately. On the opposite case, θ ≃ 0, the Trie representation requires almost the

same number of edges to represent paths. In the extreme case, θ = 0, we find, for instance,

when there is a single path, in which case using a Trie or a list of individual paths has the same

size. The fewer labels a Trie requires, the more efficient it is compared to a Path List.

However, in order to make the analysis of this measurement practical, we will consider its

aggregate version for a Path Dataset which, in general, contains many tries:

Definition 6.5.2 (Total Overlap). The Total Overlap, θ ∈ [0,1], of a Path Dataset (P ) com-

posed of a Compressed Trie T (Po) for each realized vertex origin o ∈O which represents all paths

starting at this vertex Po is:

θ (P ) = 1 -

( ∑
o∈O

eT (Po )∑
o∈O

∑
p∈Po

eT (p)

)
Where eT is the number of edges of Trie T .
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6.5.3 Performance Measurements

The performance measurements to be considered in this work are direct measurements of time

and space. The performance measurements will be the following ones:

• Duration (ms): time elapsed between start and end of stage. Implemented using std::chrono.

• Memory Usage (bytes): difference between the memory used by the application at the

beginning and the one at the end of the stage. Implemented using the PSAPI.

• Size (bytes): size of file storing the Path Dataset in disk. Only applicable to the Storage

Stage, including their combination with DEFLATE. Implemented using std::filesystem.

Those measurements will be applied to the different stages described in the Problem Description.

However, a distinction must be made for the Collection stage. This stage is actually divided

in two for both Compressed Tries and for Path Lists into an Accumulation and Consolidation

steps. In the case of Compressed Trie, the Accumulation is the Collection of Dense Trie and

in the Consolidation is the Trie Compression. Therefore, a single set of measurements for the

whole Collection stage will not suffice, and we will measure the performance of those steps too.

https://en.cppreference.com/w/cpp/chrono
https://learn.microsoft.com/es-es/windows/win32/psapi/psapi-functions
https://en.cppreference.com/w/cpp/filesystem/file_size
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Chapter 7

Analysis of results

In this section, we analyze the results obtained from applying the Experimental Design to the

selected use cases. We have chosen to work on the Metropolitan Area of Barcelona. The reasons

behind this decision are the scale, the heterogeneity of the graphs described, as it exhibits urban

and interurban traffic networks. And also the fact that is a densely populated region and prone

to have a mobility issues such as congestion. Therefore, a target region where path data can

be used to solve those problems.

The analysis is split in two different kinds of experiment. A parametric analysis in some chosen

regions in order to understand how our solution performs against the approaches in Reference

Path Datasets Implementation. And a scale analysis, where we choose the Valles region in order

to estimate in a larger and interurban case which are the expected scales of the performance

measurements.

All tests and experiments are carried out with a computer provided by Aimsun S.L.U with the

following specifications:

Specification Description
Manufacturer Dell Inc.
Model Precision 5550
Processor Intel Core i9-10885H CPU @ 2.40GHz (16 CPUs), 2.4GHz
Memory 64 GB RAM Dual Channel DDR4 (2666 MHz)
Disk PC601A NVMe SK hynix 512 GB (SSD)
Operative System Windows 10 Enterprise 64-bit (10.0, Build 19045)

Table 7.1: Specifications of the computation setup used for the experiments run in this master thesis.
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7.1 Case Study: Barcelona Center Area

This section is divided in two sections: the Graph Description, where we describe the features of

the graph used to generate the Path Datasets. And the Parametric Analysis, where we analyze

of the different approaches considered in this thesis, for different scenarios.

7.1.1 Graph Description

The specific road network selected is the one defined by the following bounding box extracted

from Open Street Maps:

Figure 7.1: Bounding box of the BCN region road network under study. The path queries considered
are only the ones between origins and destination within the circle of 3km radius around the point in
red located at (latitude,longitude)=(41.40,2.17). This region is defined as it is in order to mitigate the
computation burden of the parametric analysis.

The graph it comprises (after simplification) 33,913 vertices, with 8,690 vertices as origins and

8,694 vertices as destinations, and 68,484 edges.
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The degree distributions before simplification are the following ones:

Figure 7.2: Histogram of vertices degree of the BCN road network graph prior to contraction of
redundant edges.

After contracting redundant nodes, the distributions become:

Figure 7.3: Histogram of vertices degree of the BCN road network graph after contraction of redundant
edges.

The contraction step provides the expected results, eliminating many single-incoming and/or

single outgoing edges and shifting the degree distributions to 2-in and 2-out degrees.
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7.1.2 Parametric Analysis

As already commented, the Path Datasets are generated synthetically as explained in Synthetic

Path Dataset Generation. Given the number of parameters controlling path generation, the

number of combinations and, in consequence, the runtime of those experiments may be exces-

sive. For this reason, we have chosen to use predefine values for some parameters we expect

not to give relevant insights. This is summarized in the following table:

Parameter Pre-defined value
Number of Path Dataset samples 10

Number of Batches 10
Deviation 5 %

Minimum Distance 1 km

Table 7.2: Parameters set to fixed pre-defined values for Case Study: Barcelona Center Area, Parametric
Analysis.

We chose the Number of Path Dataset samples, number of Batches and the Deviation to

be fixed to those values because, manually testing our application, we found it induces some

variability in the paths found without incurring in an excessive computational burden. We also

assume travelers will choose the option to walk if the origin and destination are below 10 min

close, which is corresponds to 1 km at a normal, 5 km/h pace. Even if those values are suitable

enough for our case, a more rigorous and exhaustive analysis should be carried out. In order to

ensure the bias in the results is not relevant.

In any case, this leaves us with the parameters controlling the Distance Filtering (r ) w.r.t a

certain point and Density Filtering (ρ,κ), which help us condition the three main measurements:

Total Overlap and Path sizes.

subsubsec:compressed_trie_measurements
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In order to characterize the Path Dataset, we evaluate the behavior of the characterization

metrics for different parametrization and see the way in which the different metrics evolve. We

do it by generating random Path Dataset, fixed r but varying ρ:

Figure 7.4: Characterization measurements plots for a parametric analysis centered at point 1 consid-
ering candidates in radius of r = 2500.0 m for several different ρ values.

The correlation between the number of paths and the number of paths on a fixed-radius circle is

as expected. The more paths picked without repetition of a fixed region, the more likely are they

to overlap. While we expect the Compressed Trie format benefits from an increasing overlap,

the path list one is expected to be unsensitive to it. Therefore, this scenario is suitable to test

the asymptotic behavior of Compressed Trie format against the Path List format considering

the overlap.

We also find path sizes are long but variate regardless of the number of paths. This makes

this measurement unsuitable for characterizing the different Path Datasets. But motivates the

improvement of our approach, for instance by searching for more efficient alternatives for Unary

Coding to code path sizes.
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Having understood the feature of the battery of Path Datasets generated, we are ready to

understand the associated performance measurements of all stages of the Problem Description.

Before this, however, a comment is needed. In all plot, we represent all formats even though

the Path Lists ones (PL UNSORTED FEO, PL UNSORTED AEO, PL SORTED AEO) are

expected to have exactly the same performance for all stages not involving serialization, as their

in-memory representation is the same.

1. Collection

Figure 7.5: Performance plots for Accumulation. The left plot shows the relative duration.
Whose values range from 2000 ms to 12000 ms for the base case. The right plot shows the
memory consumption in bytes for different overlaps.

Figure 7.6: Performance plots for Consolidation. The left plot shows the relative duration.
Whose values are always below 2000 ms. The right plot shows the memory consumption in bytes
for different overlaps.
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Figure 7.7: Performance plots for Collection ( Accumulation + Consolidation ). The left plot
shows the relative duration. Whose values are below the 12000 ms.

We see that, overall, Collection consumes more time than the Path List format. In

exchange, the total memory consumption is lower, for θ > 0.4, which could be expected

because it is the memory occupies by the Dense Trie against the memory occupies to have

a list of paths, which may be repeated.

In general, both time and memory consumption decrease (in relative terms) with the

overlap when compared to the Path Dataset, as expected. However, this step cannot be

fully understood without analyzing its two sub-steps: accumulation and consolidation.

The Accumulation is slower for the CT format regardless of the overlap, even though it

reduces for higher overlaps. While Consolidation also speeds up with overlaps, with respect

to path lists and at a certain point it overpasses it. However, the Accumulation step is

dominant, making the Collection step slower, overall. Regarding memory consumption,

the accumulation uses more memory than path lists. After consolidation, it is clear that

memory is further reduced in the Compressed Trie case for all cases, even though it is

better the higher the overlap.

As a summary, we see that CT is slower for collection but asymptotically more efficient

for representing Path Datasets in memory. However, we also need to consider the fact

that during the steps of Collection, the memory consumption is also higher for a wide

range of overlaps.
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2. Store & Restore

Figure 7.8: Duration comparison plots for the Serialization and the Deserialization steps. In both
cases the PL SORTED AEO and PL UNSORTED AEO overlap, because they are in the same
range of durations.

Figure 7.9: Size (left) and memory (right) comparison plots for the the Deserialization step. In
the size case, the PL SORTED AEO and PL UNSORTED AEO overlap, because they are in the
same range of durations. The right case, as previously mentioned, all PL formats overlap.

Serialization and Deserialization results are consistent among the methods in both duration

and size. It is clear, that the PL SORTED FEO case is the less efficient among them. Over

it, the PL UNSORTED AEO and PL SORTED AEO provide an improvement independent

of the overlap, and, therefore, on the number of paths. The gain in size is between 3.Ø3 and

5. This is partially due to the Adaptive Edge Offset Coding. While PL SORTED FEO uses

8 bits for each edge offset, encoding most vertices, which are of 2-degree nodes, use just

1 bit. However, the size of paths are coded using Unary Coding so, for each edge offset,
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there is a bit indicating whether it is the last one or not. This makes 9 bits per edge offset

against 2 bits, approximately a gain of 4.5, matching what has been found. This reduction

in size is consistent with the reduction in times of both Serialization and Deserialization.

This is probably because the main component of this time are not the operations involved,

but the time to write/read the data to/from disk, which is orders of magnitude slower

than doing the same in memory. Regarding memory usage of the Deserialization stage, we

also see a consistent improvement for higher overlaps for the CT formats. Asymptotically,

the CT is, as expected better. Finally, the Compressed Trie format out bests all of them

in time and size, as expected. It ranges from the limit with θ→ 0, in which this format

is approximately, a Path List to θ→ 1, with no gain, in which the representation of paths

reaches up to a gain of 50. Two aspects are the most important ones. First, CT is always

more efficient in time and size for serialization than PL SORTED AEO. Second, if when

increasing the number of paths, the overlap also increases, the size of the CT scales at a

mitigated rate, probably logarithmic, compared to any Path List format.

3. DEFLATE & INFLATE

Figure 7.10: Deflate (left) and Inflate (right) comparison against the total overlap, i.e. number
of paths in the Path Dataset. In both cases the PL SORTED AEO and PL UNSORTED AEO
overlap, because they are in the same range of durations. However, in the Inflate case the variability
in the measurements is significant.
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Figure 7.11: Deflate size (left) and size gain with respect to serialization size (right) comparison
against the total overlap, i.e. number of paths in the Path Dataset. In both cases the PL SORTED
AEO and PL UNSORTED AEO overlap, because they are in the same range of sizes and gains.

The general trends identified are similar to the Serialization & Deserialization steps. We

see the Adaptive Edge Offset compression leads to a significant reduction in size and that

CT format overpasses the rest, specially for higher values of the overlap.

Understanding data compression as an optimization problem, the Adaptive Edge Offset

and CT give a more clever step towards the minimum than DEFLATE. In the first case,

because the FEO representation has many unused bits. For instance, representing an edge

offset of a vertex with out-degree 3 requires only 2 bits, but 8 are used, 6 of them as 0.

Even DEFLATE can exploit this type of redundancies, it cannot do it as effectively as we

can do, because it has less context than we do. It occurs similarly with CT. By storing

shared parts deduplicated, we are reducing the amount of redundant data DEFLATE

needs to compress and identifying more easily frequent patterns, such as frequently use

sub-paths.

This also explains why the use of DEFLATE is less effective in the Adaptive Edge Offset

cases. Therefore, even though, it always reduces the size of the Path Dataset in disk,

using those formats may make DEFLATE redundant for Path Datasets. Actually, for CT

we see the gain is up to a factor 2.

Finally, a last result is the fact that storing path lists lexicographically sorted does not

produce any neat gain in size. However, we observe is a clear increase in the variability

of the INFLATE (decode) duration. This could be explained because DEFLATE needs to

do more work (keeping a larger dictionary) to achieve the same compression level. But,

to the best of our knowledge, this should be reflected in both DEFLATE and INFLATE
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steps. In conclusion, there is no suitable explanation for this behavior.

4. Process

Figure 7.12: Performance plots for Process. The left plot represents the evolution of the duration
of the Process with the overlap, for different Path Dataset formats. The right plot represents the
same evoluation but for memory instead. In this second case, the plot shows a high variability in
the results for low overlaps (and number of paths).

The duration of the Process step clearly shows the CT format is the fastest θ→ 1. This

would, a priory, be expected for any value of θ given the discussion in Process. Regarding

memory, CT consumes more memory for any overlap.

The explanation for both behaviors is that CT uses a stack to run the iteratePaths, unlike

Path Lists, which does not require of auxiliary data structures such. The stack implemen-

tation and hyperedge label cache lead to some time overhead and certainly to memory

overhead. While the stack is needed to run the algorithm, the hyperedge label sequence

cache is used to keep the extracted edge offset (labels) from the CRS data structure

inside the Compressed Trie to an independent data structure (std::vector). This makes

the implementation easier, but maybe a more efficient version could be provided.

Fortunately, this extra memory consumption is around of below 106 but which is negligible

if we compare the Deserialization consumption in CT and PL formats, which is around

107 bytes (see 7.9).

https://en.cppreference.com/w/cpp/container/stack
https://en.cppreference.com/w/cpp/container/stack
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7.2 Case Study: Valles Region

The Vallès region is contained in the BCN Metropolitan Area. Its population is dense but

concentrated in separated cities connected among them and with Barcelona by highways (AP-7,

C-33, C-17 and A-2). This results in a region with an intense interurban traffic, which causes

recurrent congestion. A scenario in which efficient management of Path Datasets is desirable.

The purpose of this case study is assessing the orders of magnitude of the performance mea-

surements for the formats discussed in this thesis in a heterogeneous region. We expect being

able to provide an estimation of the efficiency of our approach in practice.

7.2.1 Graph Description

Figure 7.13: Bounding box of the Vallès region road network under study.

The graph it comprises (after simplification) 21,194 vertices, with 5,361 vertices as origins and

5,356 vertices as destinations, and 42,023 edges. The degree distributions before simplification

are the following ones:
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Figure 7.14: Histogram of vertices degree of the Valles road network graph prior to contraction of
redundant edges.

After contracting redundant nodes, the distributions become:

Figure 7.15: Histogram of vertices degree of the Valles road network graph after to contraction of
redundant edges.

The contraction step provides the expected results, the same results as in Case Study: Barcelona

Center Area.

7.2.2 Scale Analysis

Analogously to Parametric Analysis, out of the numerous parameters, we fix the ones to some

fixed values that produce representative results in our experience. In this way, we prevent an

excessive computational burden when carrying out the test.

We chose the Number of Path Dataset samples, number of Batches and the Deviation to

be fixed to those values because, manually testing our application, we found it induces some

variability in the paths found without incurring in an excessive computational burden. We set

the λ to 5 km in order to keep only interurban trips in the generatic Path Datasets.This leaves a

scenario in which there are at most 5,361×5,356 = 2.8 ·107 possible origin and destination paths.

In practice, this number of reduced to approx. 2.3 ·107 due to the limit in λ.
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Parameter Pre-defined value
Number of Path Dataset samples 10

Number of Batches 10
Deviation 5 %

Minimum Distance (λ) 5 km
Radius (r ) ∞

Table 7.3: Parameters set to fixed pre-defined values for Scale Analysis.

In order to assess the usability of this approx, we will consider the performance measurements

of our approach for each stage for different but large number of o-d queries: 100k, 200k, 300k,

400k, 500k, approximately below the 1% of the total possible o-d pairs. Which is the case

in which managing Path Datasets is problematic.

The obtained Path Datasets have the following characteristics:

Figure 7.16: Characterization measurements plots for a parametric analysis in the whole Valles region
but for different numbers of paths generated.

As in the previous case, it is expected that increasing the number of paths in a fixed region,

increases the Total Overlap. Regarding the Path Sizes, the paths are longer and have more

variability than in 7.4. This is because the origin-destinations can be up to approx. 20 km apart,

rather than 3 km. This motivates, even more, the search for alternatives to Unary Coding to

code the length of paths and hyperedge sequences.

After discussing the characterization, we can discuss the performance. In this case, since our

objective is evaluating the scale of the performance measurements also, we will show the char-

acteristics compared to the number of paths in the Path Dataset.
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But before starting this analysis, we comment that all plots, we represent all formats even though

the Path Lists ones (PL UNSORTED FEO, PL UNSORTED AEO, PL SORTED AEO) are

expected to have exactly the same performance for all stages not involving serialization, as

in-memory representation is the same.

1. Collection

Figure 7.17: Performance plots for Collection ( Accumulation + Consolidation ). The left plot
shows the duration in miliseconds for different number of paths. While the left one shows the
memory consumption.

Regarding duration, we see that collection increases in an approximately linear fashion but

at a faster pace for CT. While the PL formats go from 10s to 40s approximately, the CT

ranges from 10s to 70s, almost twice.

In exchange, the memory consumption is much lower and increases at a slower rate with

the number of paths. We see in the case of CT the memory consumption is of the order

of magnitude of 200 MB, while for the PL formats it is a GB (1000 MB). In all cases, it’s

almost a factor 5.
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2. Store & Restore

Figure 7.18: Deserialization performance measurements comparison to the number of paths.
In the left side, the duration and in the memory usage of this process for the deserialized Path
Dataset.

Figure 7.19: Serialization performance measurements comparison to the number of paths. In the
left side, the duration and in the right side the disk size of the serialized Path Dataset.

The results show without a doubt the CT format is superior to the other cases. The

problem size increases with the number of paths, so does the duration, memory usage and

size for all cases, but CT ones are smaller and grow at a slower pace.

In more detail, the Serialization of CT is faster. While PL SORTED FEO takes around 6s

to 20s, and PL SORTED AEO and PL UNSORTED AEO take from 3s to 10s, the CT

format takes from 0.9s to 2s : approx. an order of magnitude of difference. The same

range of values is shown for the Deserialization step, so the same conclusion is obtained:
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CT is superior.

The memory consumption for PL formats requires from 70 MB to 300 MB, approximately.

However, CT requires from 20 MB to 60 MB. Increasing the number of paths, only makes

this gain greater. Notice, however, the Collection stage for CT is around the 200 MB.

Even though collection is expected to consume more, this proves that there is a safe

margin of, between 3.333 and 10 to reduce the collection memory consumption.

Regarding the size in disk, the PL SORTED FEO requires from 60 to 300 MB, and

PL SORTED AEO and PL UNSORTED AEO require 10 MB to 60 MB, an order of

magnitude. In the case of CT even the largest size is lower than the smaller in any other

format. It requires from 2 MB to 7 MB to store the whole Path Dataset, another order

of magnitude less.

3. Process

Figure 7.20: Performance plots for Process. The left plot represents the evolution of the duration
of the Process with the number of paths, for different Path Dataset formats. The right plot
represents the same evoluation but for memory instead.

For the Process stage we see the CT format takes from below 0.5s to 1.0s approx, to

process all paths, while the PL formats take from 0.75s to approx. 3.0s. Of course, the

duration of any format increases with the number of paths, but the CT format does so

at a much slower pace.

Memory consumption is higher for CT, because of the auxiliary data structures. In partic-

ular, the explanation could be the use of the auxiliary std::vector as cache for hyperedge

edge offsets. With a higher overlap, it is likely that this cache is smaller, and its reserved
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memory is smaller also. However, tests should be carried out in order to evaluate if it

is actually the case. But, whichever the case, only a 1-2.5MB are required, while the

difference in size of the Deserialization step is at least of 70 MB in PL to 10 MB in CT.

Therefore, the overall memory consumption is favorable for CT.



Chapter 8

Conclusions & Future Work

In this thesis, we have developed a new and generic approach to represent Path Datasets

describing path data associated to Road Networks graphs. Our approach is designed to be

efficient for a use pattern with the following consecutive stages: Collection, Storage, Retrieval,

and Process. Which is a particular case of the single-collection, multiple processing approach.

The proposed representation is based on using Compressed Tries to index the data associated

to paths with a common origin vertex. While the data described is the usage count (number of

occurrences of the path), it can be customized straightforwardly.

We have provided an exhaustive theoretical description and complexity analysis of this solution

in for all the Problem Description stages. Among them, we emphasize the recurrent use of tree

traversal algorithms, CRS format, DFUDS and Adaptive Edge Offset Coding as building blocks

of this approach.

An experimental design has been developed in order to assess rigorously the strengths and

weaknesses of our approach in for realistic cases. This consisted of three main tasks. First, im-

plementing the different representations of Path Datasets and a common way to validate them.

Second, providing a meaningful characterization measurement θ (the Overlap) and performance

measurements to be assessed them qualitatively and quantitatively. And, third, providing a

method to Synthetically Generate Path Datasets which are realistic and have certain character-

ization among the myriad of possible Path Datasets for the same Road Network.

To set our proposal in practice, have chosen two Road Networks. The first one being the Case

Study: Barcelona Center Area a purely urban area. In this first road network, we analyzed the

impact of the Overlap in the performance of all stages. There are three main outcomes of
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this analysis. First, the Total Overlap measures the efficiency of the Compressed Trie format:

the higher, the more efficient. And, second, our approach clearly outperforms the rest for

Serialization & Deserialization , DEFLATE & INFLATE and Process Time. However, our is

slower than the PL format during the Dense Trie Collection step. And last, the Path Sizes

found motivate the research on compression approaches other than Unary Coding to encode

Path Sizes, because they tend to be variated but also large, which is unfit for this type of

compression.

In the Case Study: Valles Region case, we studied the scales and behavior of the different formats

considered in this dissertation to understand their efficiency and the scale of the performance

measurements in an interurban and larger network. The results show that in this scenario, the

CT format outperforms, in some cases by orders of magnitude, the PL formats for all stages

and measurements. And it shows a much slower scaling in them too.

With these two analyses, we have able to identify the strengths and weaknesses of the Com-

pressed Trie Indexation approach. Based on them, we propose the following topics as future

work to amplify those strengths and mitigate the weaknesses:

• Optimization of Compressed Trie Collection

Our collection approach has shown an excessive time (and memory, even if did not show

to be problematic) consumption because of the pre-allocation of space for the possible

child nodes of each Trie node. Additional work is needed to minimize it. A strategy which

directly generated a Compressed Trie without a Dense Trie Collection may overcome this

issue, such as the one proposed CRS-Split Collection.

• Trie Compaction

As well as paths may overlap on their prefixes (origin), they may also do so on their suffixes

(destination). In both cases, this overlap occurs because the closer to the endpoint, the

fewer possible paths to reach/leave it. The problem is essentially symmetric. From our

approach, one way to exploit both overlaps is joining origin-Trie branches which diverged

but have common suffixes (sub-paths to destination). See Trie Compaction for a more

detailed discussion on this proposal.

• Optimize Edge Offset Coding

Adaptive Edge Offset Coding has proved to be a very efficient and robust compression

method, adequate for compressing edge offsets for Road Networks. Its main strength is
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adapting the alphabet of values for each edge offset using Binary Coding. This can be

exploited further by using methods such as Huffman Coding which is always at least as

efficient as Binary Coding. In particular, using a Huffman dictionary for each origin-Trie

and outgoing-degree.

• Sophisticated compression methods for length of sequences

In section Storage, we proposed using Unary Coding to code and did not attempt to find

a more sophisticated approach for simplicity. However, results show that Compressed Trie

hyperedges are usually variated but large. Unary Coding is less efficient in that situation.

Alternative approaches exist between Unary Coding and Fixed Length Coding, such as

Variable Length Quantity coding (VLQ) which are likely more efficient than any of them.

• Clustered Compression

As discussed, DEFLATE is very effective for our use case. However, this algorithm relies

on the similarity of the processed data in order to efficiently in space and time compress

the data. The more similar, the better compression it may achieve. Thus, a potential way

to ease compression is splitting the compression in clusters or groups of tries which are

similar, for instance tries whose origins are close.

https://en.wikipedia.org/wiki/Huffman_coding
https://en.wikipedia.org/wiki/Variable-length_quantity
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Appendix A

Bit Stream Implementation

In this appendix, we provide the details of the Bit Stream used in this thesis, along with the

reasons why it is needed.

Most modern computer architectures perform operations in units of (fixed) word length; usually

an 8-bits block (byte). Therefore, even if less than those bits are needed to represent a variable,

the computer uses a whole block. The number of unused bits will range from 1 to word length-1

and can introduce severe inefficiencies when coding variables.

To overcome this limitation, we use a Bit Stream, a data stream which effectively writes and

reads individual bits. As this is impossible due to computer architecture, it is done by accumu-

lating individual Bit-wise operations on a block of a size multiple of word length and then doing

a memory transaction of the whole block.

We achieve this behavior, by combining bit manipulations at the beginning of the block and left

shift operations. This, together with a counter indicating the position at which the first bit of

the block was written, as shown in the following figure:

Figure A.1: Representation of Bit Stream block. Each of the cells represents the bits in the byte block,
enumerated from left to right. The black arrow indicates the not written or read position.
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Each time the first bit is manipulated, a left shift occurs, effectively moving the start of the

bits in one place. When it arrives to the end of block: the whole block is written or read

without the need of padding. Padding will only occur once the Binary Stream is closed, because

the last block may not be written in all bits. For that reason, it is recommended that data

is binary encoded in a single long binary stream rather than in multiple smaller ones. In our

implementation, those blocks are char (C++ Fundamental Types), because it is the smallest

variables which can be written without unused bits. To complete the explanation, we describe

the operations to write and read the first bit:

• Write. In order to write, we need to set and unset operations to encode the binary stream.

As in the main loop, we overwrite the state of the bit in the first position, and then they

are all shifted. Therefore, bits are needed to be set or unset only in the first position.

Moreover, as we write by blocks, a single unset is done once to all bits and after this only

using the set is used. The unset operations are done by setting the char block to char{0}

(which is 00000000). The set operation, is implemented as an OR operation of the

mask char{1} (00000001) on the block. This operation is exemplified in the next figure:

Figure A.2: Representation of Bit Stream write the bit at first position operation. The OR gate
applied with char1 leaves all bits unchanged except the first one which, if 0 is set to 1, otherwise
it’s set to 1.

https://en.cppreference.com/w/cpp/language/types
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• Read. Given the design of the bit stream, we only need to read the first bit. For this, we

can just use an AND gate of the mask char{1} (00000001) on the block. If the result

is char{1} (00000001), the bit is 1 if it is char{0} (which is 00000000) it is a 0. This

operation is exemplified in the next figure:

Figure A.3: Representation of Bit Stream read at the first position. The AND fate with char1
effectively sets all bits to 0 except the first one which is left unchanged.

A final comment on our implementation is the fact that hard disks usually write data in blocks

of 4 kB. That means that, as with word lengths, if the amount of data is below it, it will still

commit 4 kB. While this could seem an issue, it is not, as we expect that the total amount of

data to be written is much larger than this unit.
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Appendix B

CRS-Split Collection

In this appendix, we give an overview of the idea for solving the excessive memory consumption

in Collection of Dense Trie mentioned in Conclusions & Future Work. The idea behind it idea is

trying to build the Trie as compressed as possible and, in this way, avoid generating intermediate

nodes which would end up condensed inside Compressed Trie Hyperedges.

In order to achieve it, the logic to follow is splitting edge offset sequences as a sequence of

existing hyperedges plus a final hyperedge where the current hyperedge and the added sequence

differ. To include this last piece, the existing hyperedge will need to be split into two (adding

a new node densely in the process) at the point where both sequences diverge. The following

example illustrates this procedure:

Initial state

root

Adding {0,1,0}

root

1

- -

0,1,0

0 1
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Adding {0,2,0}

root
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- 1

- -

3

- - -

0

0 1,0
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0 1 2

Adding {1,0}

root

2

- 1

- -

3

- - -

4

- - -

0

0 1,0

0 1

2,0

0 1 2

1,0

0 1 2

Adding {0,1,0}

root

2

- 1

- -

3

- - -

4

- - -

0

0 1,0

0 1

2,0

0 1 2

1,0

0 1 2

Adding {1,0,3}

root

2

- 1

- -

3

- - -

4

- - - 5

-

0

0 1,0

0 1

2,0

0 1 2

1,0

0 1 2 3

0

Figure B.1: Exemplification of path-collection process on a Trie based on input sequences of Figure 5.1.

In this example, only two nodes are saved with respect to the twelve in Figure 5.3. We did not

provide a more adequate in order to make it familiar to the reader. Nevertheless, we see all

hyperedges are already created. In a more realistic case, hyperedges tend to be much longer

than in this one. Therefore, the reduction in memory consumption is expected to be significant.
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Trie Compaction

In our opinion, a straightforward step to improve the Compressed Trie Indexation approach is

exploiting also the overlap of paths close to the destination. This overlap occurs because, as

with origins, close to the destination there are fewer lest cost sub-paths to reach it.

An approach to capture this is compacting the Trie by attempting to join branches from the

bottom of the tree to the root. The following figure exemplifies this process.
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1

3

8

0

1
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4

0

1
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4
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1
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5

1

1

2

8

0

3

8

0

7

4

0 1

5

1

1

2 3 7

8 4 5
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Figure C.1: Example of compaction approach starting from a disjoint representation of path sets, to a
Trie one and finally a DAG obtained from compacting the Trie.

This type of compaction can be done efficiently with the algorithms described in [5] and [7] by

just identifying as equivalence classes those of the tries which have associated the same vertices

in the graph and have the same sub-tries as descendants. However, one of the problems with

this representation we lose the ability to map a sequence to a node in the Trie, because there

may be more than one path from the root to a node. This would not be a problem if our
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intention were just indexing a set of paths collectively. But we also want to store the data

associated to those paths. A possibility to overcome this, is indexing the data in the same order

as the DFS would traverse the compacted sub-Trie. Another problem, is the need of finding

a new encoding/decoding algorithms, because the DFUDS only applies to trees. A possible

solution is decomposing the DAG into a combination of tries and coding, each using DFUDS

plus additional references among them. For instance, the previous DAG could be decomposed

as:

a
α0

1

α1 α2 α3

a
α1
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α4

a
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3
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7

α5 α6

a
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α7 α8

a
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a
α7

0
a
α8

1

Figure C.2: Example of DAG decomposition in tries of DAG in Figure C.1.

However, a deeper revision is needed of this idea. Specially, regarding referencing among tries.

As a final comment, this is a similar to what is proposed in [18] but in a completely different use.

There, the authors proposed using a DAG in order to compactly code the index of a database

table over a set of categorical features to access a given data (node) in such a way that it

supports multiple ways to access it efficiently. But in this case, nodes are already identifiable,

the index just encodes all the ways to access them. Instead, we want to index the nodes

themselves uniquely.
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