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El cancer sigue siendo la segunda causa de muerte a nivel mundial. Una de las
razones es la existencia de un subconjunto de células dentro del tumor con
capacidad de autorrenovarse, migrar y resistir a la quimioterapia: las células
madre cancerosas (Cancer Stem Cells, CSCs).

El objetivo del presente trabajo es estudiar si el cancer de mama y el linfoma de
células del manto comparten mecanismos moleculares relacionados con las
CSCs para avanzar tanto en el conocimiento basico del cancer como en su
diagnéstico y tratamiento.

Los resultados obtenidos mediante Gene Set Enrichment Analysis (GSEA)
muestran que todos los datos analizados (tanto de cancer de mama como del
linfoma de células del manto) estan enriquecidos con genes relacionados con
las CSCs, especialmente en aquellos canceres con fenotipos invasivos, llevando
a la identificacion de 269 genes comunmente enriquecidos en ambos tipos de
cancer.

El andlisis de anotacion funcional de los 269 genes muestra que el 10% de los
genes son proteinas de unidon a compuestos heterociclicos, conocidos por ser




componentes clave de muchos de los medicamentos disponibles contra el
cancer.

El andlisis con la herramienta bioinformética Kaplan-Meier Plotter muestra una
correlacion significativa con parametros de supervivencia de 51 de los 53 genes
mas significativos de la firma genética. Este hecho se ha observado en varios
tipos de cancer analizados (mama, ovario, pulmén y estbmago).

Finalmente, el poder predictivo de la firma genética ha sido evaluado mediante
algoritmos de machine learning. Los resultados muestran una precision en la
prediccion del prondstico de los casos de cancer mayor que la de otras firmas
genéticas publicadas.

Abstract (in English, 250 words or less):

Cancer remains the second leading cause of death globally. One of the potential
reasons behind this is the existence of a subset of cells within the tumour with
capacity to self-renew, migrate and resist to chemotherapy: cancer stem cells
(CSCs).

The objective of the present work is to study whether Breast Cancer and Mantle
Cell Lymphoma share common molecular mechanisms related to the CSC
machinery in order not only to advance in basic cancer knowledge but also to
speed up diagnosis and provide novel and/or more effective treatment.

Results obtained using Gene Set Enrichment Analysis (GSEA) show that all BC
and MCL expression datasets analysed are enriched with CSC related genes,
especially in those datasets with invasive or early-onset phenotypes. Further
analysis has led to the identification of a 269-CSC gene signature composed by
CSC genes commonly enriched in BC and MCL.

Noticeably, functional annotation analysis of the genes included in the 269-CSC
gene signature has shown that almost 10% of the genes map to heterocyclic
compound binding proteins, known to be key structural components of many of
the available anti-cancer drugs.

Survival analysis using Kaplan-Meier Plotter confirmed a significant correlation
with survival for 51 of the genes included in the 53-CSC gene signature in various
cancer types analysed (breast, ovarian, lung and gastric cancer).

Finally, the predictive power for prognosis of the gene signature was assessed
using machine learning. Results showed better accuracy in predicting prognosis
of cancer cases than other CSC gene signatures published.
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1. Introduction

1.1. Context and rationale

Despite the decline of death rates and the improvement of 5-year survival rates over the
years due to improvements in screening, earlier detection and availability of new tailored
treatments, cancer remains the second leading cause of death globally (Lathia et al.,
2019). One of the potential reasons behind this is the existence of a subset of cells within
the tumour with capacity to self-renew, migrate and resist to chemotherapy. These cells
are called cancer stem cells (CSCs) in a clear analogy with their normal counterparts
(Batlle et al., 2017).

Breast cancer (BC) and mantle cell ymphoma (MCL) are two types of solid cancer with
high incidence and mortality rate that are suspected to share some molecular
mechanisms. Although the genetic basis of tumorigenesis may vary between different
cancer types, the molecular mechanisms required for metastasis are similar.

BC is the most common cancer diagnosed in women and the major cause of cancer-
related mortality in women worldwide, with a 12% probability of suffering from it
throughout life. The 5-year survival rate is 99% if the cancer is located only in the breast,
85% if it has spread to regional lymph nodes and only 27% if it has spread to a distant
part of the body. Unfortunately, 5% of women have metastatic breast cancer when they
are first diagnosed (Society, 2020).

On the other hand, MCL, considered an aggressive type of B-cell non-Hodgkin
lymphoma, has the worst prognosis among blood cancers with a median overall survival
of 3 to 4 years (Luanpitpong et al., 2018). First identified in 1990, MCL is difficult to
diagnose and hard to cure (Roschewski, 2015).

This is part of a real biomedical research project intended to study whether BC and MCL
share common molecular mechanisms and whether these are related to the CSC
machinery or not. The identification of a potential a stemness gene signature common
for different tumour types such as BC and MCL as well as the underlying biological
processes in which those genes are involved could provide valuable information about
the molecular mechanisms leading to malignancy in solid tumours. The progressive
digitalization of data, the use of specific software to analyse molecular data and the use
of machine learning algorithms are transforming cancer research and healthcare.



The identification of specific pathways or genes involved in the cancer stem cell
machinery could be of high importance not only to advance in basic cancer knowledge
but also to speed up diagnosis and provide novel and/or more effective treatments.

1.2. Objectives

i. ldentify common mechanisms related to cancer stem cells in two types of solid
tumours: Breast Cancer and Mantle Cell Lymphoma.

a. lIdentify genes involved in CSC machinery in BC expression datasets
through pathway enrichment analysis (GSEA).

b. Identify genes involved in CSC machinery in MCL expression datasets
through pathway enrichment analysis (GSEA).

c. Generate a common CSC-gene signature for BC and MCL.

ii. Map the molecular functions and biological processes of the genes included in the
CSC-gene signature

iii. Study the prognostic significance of the genes included in the CSC-gene signature

iv. Study the predictive power for prognosis of the CSC-gene signature using Machine
Learning.

1.3. Project planning

The roadmap of the project is depicted in Figure 1. It consists in five sequential phases:
1) Definition and planning, 2) State of the art, 3) Design and implementation, 4)
Preparation of document, and 5) preparation of presentation and defense.

19 Feb - 01 23 Mar - 09
Mar Jun 25 Jun - 08 JuL
() () () o
02 Mar - 22 10 Jun-24 Jun
Mar

2. State of the 3. Design and 4. Preparation of = Preparatpn o
. ; presentation
Elgs implementation document
and defense

Figure 1. Roadmap of the project




1.

2.

Definition and planning (10 days)

State of the art (20 days):

a.

Search of bibliography for the following topics (5 -10 days):

o Current status of Cancer Stem Cells model within cancer area (in
general, Breast Cancer and Mantle Cell Lymphoma)

o Studies comparing expression of CSCs and non-CSCs in cancer (in
general, Breast Cancer and Mantle Cell Lymphoma)

o Methodological papers: GSEA

o Studies in which machine learning is used in cancer area (in
general, Breast Cancer and Mantle Cell Lymphoma)

Learn methodology for data pre-processing and data analysis (GSEA)
(10-15 days)

Design and implementation (76 days):

a.

Data collection: search of CSC gene sets (gene pathway databases and
bibliography) (5-10 days)

Data collection: search of gene expression datasets (4 or 5): BC and
MCL. (5-10 days)

Data analysis: GSEA. Identification of common genes of both cancer
types (BC and MCL) that are present in CSC gene sets: generation of
CSC gene signatures. (10-15 days)

Functional annotation analysis: functional annotation of genes included
in CSC gene signatures: molecular function and biological process
mappings using bioinformatic tools (Panther) (5-10 days)

Correlation with prognosis: correlation analysis with prognostic
parameters using bioinformatic tools (Kaplan-Meier Plotter) of the genes
included in the CSC gene signatures. Comparison with GSEA results.
(5-10 days)

Predictive power for survival: study of the predictive power of the CSC
gene signatures generated using machine learning algorithms. (5-10
days)



4. Preparation of document (14 days)
5. Preparation of presentation and defense (13 days)

The planned tasks in phase 3 (“Design and implementation”) are summarized in

Dataset collection (NCBI GEO

browser)
Gene set generation (articles,
reviews)
Y Yy Y Y
BC BCSCs MCL BCSCs
datasets gene sets datasets gene sets
Validation of gene Which BCSC gene
sets involved in BCSC sets are enriched in
machinery MCL?

Y

Identification of
common CSC
gene signatures

Y Y v

Figure 2. Design of the planned work




2. State of the art

2.1. Clinical impact of cancer stem cells (CSCs)

Multiple studies have proved that only specific cells within a tumour could initiate tumour
growth. This has been confirmed by using xenograft transplantation in leukaemia and in
solid tumours such as breast, brain, prostate, colon, pancreatic, ovarian, lung and skin
cancer (Batlle et al., 2017) (Nassar et al., 2016).

In order to determine the clinical impact of CSCs, different approaches are being followed
in clinical research. The most common strategy consists in isolating the CSCs and
studying the expression of CSC markers (so called stemness biomarkers) to correlate it
with clinical endpoints. Also, as CSCs have the intrinsic property of being resistant to
chemotherapy, another strategy is to isolate CSCs and evaluate chemoresistance to
current treatment regimens (Batlle et al., 2017).

A recent systematic review of 234 survival analysis extracted from 164 publications
(Lathia et al., 2019) reported that high expression of CSC biomarker(s) resulted in poor
overall survival (OS) and/or disease-free survival (DFS) compared with low or absence
of expression in a wide group of cancer subtypes including breast cancer (BC). In
general, an elevated stemness biomarker expression was found to be associated with
clinicopathological parameters such as decreased tumour differentiation, increased TNM
stage, vascular invasion, depth of tumour invasion, lymph node and distant metastasis.

Regarding studies where chemoresistance has been evaluated, it has been shown that
treatment with oxaliplatin in colorectal cancer cell lines selectively favoured survival of
dormant clones that became dominant after therapy (Kreso et al., 2012). Also, resistance
to temozolomide has been detected in CSCs of mouse models of glioblastoma whereas
ablation of CSCs renders this type of tumour sensitive to chemotherapy (Chen et al.,
2012). In bladder cancer xenografts, chemotherapy (gemcitabine plus cisplatin) has
been found to reactivate quiescent CSCs, repopulating the tumour after treatment
(Kurtova et al., 2015). Resistance to chemotherapy (including cisplatin and vemurafenib)
has also been detected in slow-cycling melanoma cells (Roesch et al., 2013).

2.1.1 Breast cancer stem cells (CSCs)

Breast cancer stem cells (BCSCs) were initially discovered in 2003 (Al-Hajj et al., 2003).
In this study authors demonstrated that a few hundred cells were able to sustain growth
when injected into mammary fat pads of non-obese diabetic severe combined
immunodeficient (NOD/SCID) immunocompromised mice. Since then, many studies
have confirmed the relationship between BCSCs and poor prognosis.



Another recent study revealed an association between BCSCs and relapse-free survival
(RFS) in patients with early-stage breast invasive ductal carcinoma (BIDC) (Qiu et al.,
2019). Levels of selected BCSCs markers (ALDH1A3, CD44+/CD24-, integrin alpha 6
(ITGAB), and protein C receptor (PROCR)) were measured using immunohistochemistry
and intensity of the staining was used to determine high and low-risk groups of patients.
Results showed that the proportion of patients in the low-risk group who were free of
relapse at 5 years was significantly higher than that in the high-risk group.

Another approach to evaluate the clinical impact of CSCs is to study the association
between the presence of mutations and prognosis. For example, in a recent work four
mutations in genes known to be associated with BCSCs were studied by analysing
circulating free DNA (cfDNA) extracted from plasma or serum (Liu et al., 2019). The
results showed a statistically worse median time-to-metastasis (TTM) in patients with
any of the four BCSC mutations.

There is growing evidence of the clinical impact of BCSCs mediated by chemoresistance
mechanisms including the overexpression of ATP-binding cassette (ABC) transporters,
increased ALDH activity, enhanced DNA repair mechanisms, reinforced reactive oxygen
species (ROS) scavenging, cell death escape, induction of dormancy, autophagy, and
possibly other resistance mechanisms that are yet to be characterized (De Angelis et al.,
2019). For example, BCSCs isolated from breast cancer cell lines were found to be
resistant to mitoxantrone in a mechanism thought to be mediated by ABCG2, an ABC
transporter (Britton et al., 2012).

In more recent studies, they have described the resistance of BCSCs to the most
commonly used agents to treat triple-negative breast cancer (TNBC): paclitaxel and
doxorubicin. In one study, proliferation of BCSCs isolated from TNBC patients was
inhibited after addition of sublethal doses of doxorubicin and paclitaxel, although 20-40%
of cells survived the treatment. These cells, cultured in medium without
chemotherapeutics, recovered gradually confirming an upregulated self-renewal
capacity under chemotherapeutic stress (Li et al., 2020).

2.1.2 Mantle cell ymphoma cancer stem cells (MCL-CSCs)

In comparison to BCSCs, little is known about CSCs in MCL. In 2010, it was the first time
that clonogenic cells with self-renewal capacities from MCL were isolated (Chen et al.,
2010). The cells, called MCL-initiating cells (MCL-ICs), were obtained from stage 4 MCL
patients. The authors observed that MCL-ICs lacked expression of the prototypic B cell
surface marker CD19 and were able to recapitulate the heterogeneity of the original
patient tumour upon transplantation into immunodeficient mice.



The same research group confirmed the existence of chemoresistance happening in
MCL-ICs. In 2011, they observed that IC50 values were significantly higher in
CD45+/CD19- MCL-ICs than in CD45+/CD19+ cells for most of the chemotherapeutic
regimens tested (Jung et al., 2011). More specifically, in all patient samples, more than
double the concentration of each drug agent in R-CHOP, R-CAVD, and fludarabine-
based regimens were required to inhibit 50% growth of CD45+/CD19- MCL-ICs
compared to CD45+/CD19+ MCL cells. Authors identified that resistance was mediated
by ABCBL1 transporter whose inhibition increased the sensitivity of MCL-ICs to
vincristine.

In 2012, the same group described that MCL-ICs were also resistant to bortezomib as a
single agent or administered within a chemotherapeutic regimen (Jung et al., 2012).
Resistance to Bortezomib by MCL-ICs was again reported in 2018 by another group
(Luanpitpong et al., 2018). In this study authors observed that sensitivity to Bortezomib
was modulated by reactive oxygen species (ROS) and identified two key players in that
modulation: the anti-apoptotic Mcl-1 and the transcription factor Zeb-1.

The association of the combination of CD45+ and CD19- with prognosis was also
evaluated in another study, in which the CD45+/CD19- cell population percentage
correlated with MCL prognostic index (Kim et al., 2015).

2.2. ldentification of CSC biomarkers

There is controversy about the ideal methodology for reliable measurement of biomarker
due to the fact that CSCs are a very rare population of cells. Moreover, there is no
standardized protocols or tests for assessing presence and levels of CSC biomarkers in
tumours (Lathia et al., 2019). However, multiple pathways and markers related to CSCs
have been identified for a variety of cancer types.

Three main CSC signalling pathways related to self-renewal and differentiation have
been identified: Notch, Wnt/beta-catenin and Hedgehog (Hh). Other important signalling
pathways are the TNF-a/NF-k-B, transforming factor-B (TGF-[3), receptor tyrosine kinase
RTK and Janus kinase/signal transducer and activator of transcription (JAK-STAT)
pathways (Palomeras et. al, 2018).

A considerable number of CSCs markers have been identified up to date allowing the
development of new therapeultic strategies to target CSCs. Those targets include tumour
microenvironment, signalling pathways, stem cell differentiation, cell surface markers,
apoptotic pathways, drug resistance markers and microRNAs (Prasad et al., 2019). In
this recent review, an extensive list of CSC biomarkers is shown. Just to cite a few
examples, CD133, a cell surface molecule, is considered a CSC marker in glioblastoma
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(Chen et al., 2010) and colorectal cancer (O'Brien et al., 2007) whereas CD34 expression
has been related to increased self-renewal potential in skin squamous cell carcinoma
(Lapouge et al., 2012). In head and neck cancer (HNC) CD44, ALDH1, CD133, Oct3/4,
Nanog and Sox2 have been considered as CSC-associated molecules (Yu et al., 2020).

2.2.1. BCSC biomarkers

More than a decade has passed since the identification of the first biomarkers associated
with BCSCs, CD44+/CD24low and CD133+ (Wright et al., 2008). Along these years a
considerable number of biomarkers have been added to the list. The most recent studies
are summarised hereafter:

In the systematic review discussed earlier, CD44 appeared to be consistently associated
with poor survival in BC. The combination of CD44+/CD24- has been associated with
poor OS, DFS and/or progression-free survival (PFS) in six of the studies (Lathia et al.,
2019). In another study, levels of selected BCSCs markers (ALDH1A3, CD44+/CD24-,
integrin alpha 6 (ITGA6), and protein C receptor (PROCR) were measured using
immunohistochemistry and intensity of the staining was used to between high and low-
risk groups of patients with early-stage breast invasive ductal carcinoma (BIDC) (Qiu et
al., 2019).

Using bioinformatic tools, a recent study identified 32 key genes that modulate BC
stemness characteristics and, among them, 12 genes strongly correlated with BC
survival: TPX2, EXO1, CCNB2, CENPA, SGO1, RAD54L, SKAl, FOXM1, PLK1,
CDC20, KIF4A and SGOL1 (Pei at al., 2020). Another gene, TRIP6, has been recently
associated with CSC-like properties and poor prognosis in BC (Zhao et al., 2020) as well
as a 20-gene stem cell signature obtained from the transcriptional profile of normal
mammary stem cells (Pece et al., 2019). This gene panel was able to predict early and
late recurrence in triple negative and luminal BC.

In another study, hundreds of genes that regulate BCSC fate were identified using a
genome-wide RNAI screen in a breast cancer cell line (Arfaoui et al., 2019). Those genes
were then integrated in a functional mapping of the CSC-related processes uncovering
potential therapeutic targets. Among 15 compounds tested, mifepristone, salinomycin
and JQ1 showed the best anti-BCSC activity. Regarding chemoresistance, it has been
described that silencing SOX2, a gene related to pluripotency and stemness, lead to an
increased chemosensitivity to paclitaxel in BCSCs isolated from TNBC patients in vitro
(Mukherjee et al., 2017).



2.2.2. MCL-CSC biomarkers

Compared to BC, a small number of markers have been identified in CSCs of MCL. We
have already mentioned the identification of the combination of CD45+ and CD19-
markers in MCL-initiating cells isolated from patient blood samples. This combination of
markers was associated first with chemoresistance (Jung et al., 2011), (Jung et al., 2012)
and later with poor prognosis (Kim et al., 2015).

2.3. Data science and cancer research

In recent years, in parallel to the growing data complexity and size, the fields of
bioinformatics and machine learning have seen dramatic advances. Their application in
the biomedicine field is becoming ever more popular with the goal to support research
and healthcare by translating patient data to successful therapies.

2.3.1 Data science and cancer stem cells

One of the most important studies using data science techniques related to the topic
covered in this work is the identification of stemness features associated with oncogenic
dedifferentiation (Malta et al., 2018). One-class logistic regression algorithm (OCLR) was
used to extract transcriptomic and epigenetic feature sets derived from non-transformed
pluripotent stem cells and their differentiated progeny. Authors used publicly available
molecular profiles from normal cell types that exhibit various degrees of stemness and
developed a model using One-class logistic regression algorithm (OCLR). As a result,
two independent stemness indices were generated, one reflective of epigenetic features
(mDNAsi) and the other of gene expression (mMRNAsi). The indices were then associated
with novel oncogenic pathways, somatic alterations, and microRNA and transcriptional
regulatory networks. Results showed that higher indices were associated with biological
processes active in cancer stem cells, with greater tumour dedifferentiation and
pathology grading for the majority of the Cancer Genome Atlas (TCGA) cases.

Authors also used GSEA to compare the mRNAsi index with 16 genes sets that were
associated with stemness in cancer and healthy cells in previous studies. In all cases,
they found that the published stemness gene sets were significantly enriched in mRNAsi.
Moreover, compounds specific to selected molecular targets and mechanisms that may
eventually lead to novel treatments were identified. Using the mRNAsi index, another
group identified 32 key genes that modulate BC stemness characteristics and, among
them, 12 genes strongly correlated with BC survival (Pei at al., 2020).



2.3.2 GSEA and breast cancer

GSEA is one of the most important data science tools toward establishing a link between
molecular features and phenotypes. It has been extensively used to study differences
between tumour and normal samples or between different tumour subtypes.

In order to understand the implication of transcription factors (TFs) in breast cancer, a
study was performed using 14 breast cancer gene expression datasets from the public
functional genomic repository NCBI-GEO (Li et al., 2017). Among the 22 up-regulated
pathways identified by GSEA, the most relevant were cell cycle, DNA replication,
spliceosome, proteasomes, mismatch repair, p53 signalling pathway and nucleotide
excision repair. Among the 25 down-regulated pathways, the most relevant were fatty
acid metabolism, adipocytokine signalling and valine, leucine and isoleucine
degradation.

In a recent study, authors used differential gene expression together with context data
with the aim of identifying specific drug targets for the basal-like type BC (Parks et al.,
2019). For that, they used RNA-seq data from the Breast Invasive Carcinoma (BRCA)
dataset of the TCGA repository and generated a regulatory module enrichment score
(RMES) using algorithms specific for gene regulatory networks such as GRNBoost2, and
single sample gene set enrichment analysis (SSGSEA). Then, RMESs were used as
features for ML—{Machine Learning (ML) processing using Support Vector Machine
algorithm (SVM) in order to perform multiclass classification of samples. Results showed
an accuracy score of 99.07% in basal-like BC classification.

GSEA has been traditionally used taking into account one single molecular feature as
the score of each gene need to be a scalar. Either only one molecular feature is analysed
or information coming for multiple features (i.e. DNA sequences mutations, mMRNA
transcripts, CNVs, single nucleotide polymorphisms or DNA methylations) is synthesized
into one single score prior the enrichment analysis. In order to extend GSEA to
multiplatform data, a new method called Multivariate Gene Enrichment Analysis
(MGSEA) was recently developed (Tiong et al., 2019). Data from three molecular
features, mRNA expression, CNV and DNA methylation, were retrieved from TCGA with
the aim of finding functional categories of genes related to BC and glioblastoma
subtypes. A combined gene score integrating the three molecular features was
generated. Results showed that mMRNA expression appeared more frequently as a
dominant feature than CNV or DNA methylation in both cancer subtypes. In BC, mRNA
expression was the only dominant feature in functional categories involved in cell
proliferation such as cell cycle control, estrogenic response, DNA repair, MYC targets
and E2F targets whereas CNV was the only dominant feature in functional categories
involved in invasion and metastasis, such as cell adhesion and EMT. In glioblastoma,
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MRNA expression was the only dominant feature in diverse functional features such as
cell adhesion, inflammatory response, angiogenesis and EMT.

2.3.3 GSEA and mantle cell ymphoma

There is only one publication in which GSEA has been described for MCL, and is related
to the study of molecular subsets of MCL defined by the IGHV mutational status and
SOX11 expression (Navarro et al., 2012) . A GSEA was performed on 38 MCL patient
samples, divided in mutated (M-MCL) and unmutated (U-MCL) depending on the
presence of IGHV-IGHD-IGHJ rearrangement and SOX11 expression. Four specific
gene sets related to normal B-cell subtypes were used for the analysis. The results
showed that SOX11-positive U-MCL expressed a signature enriched in genes related to
naive B-cells whereas SOX11-negative M-MCL had a signature related to memory B-
cells.
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3. Methodology

3.1. Data collection

Data used in this project have been retrieved from scientific articles obtained through
PubMed NCBI browser (https://www.ncbi.nlm.nih.gov/pubmed/) and UOC online library
(http://biblioteca.uoc.edu/es/), from gene expression datasets obtained through Gene
Expression Omnibus repository (GEO) (https://www.ncbi.nim.nih.gov/geo/) and from
gene sets obtained from the Molecular Signatures Database (MSigDB) of the Broad
Institute (https://www.gsea-msigdb.org/gsea/msigdb/index.jsp).

3.1.1 Cancer stem cell gene sets (CSC gene sets)

Gene sets involved in CSC machinery have been generated using three different
methods:

1. Identification of CSC genes through revision of the bibliography listed in the State
of the art section of this work. Five gene sets have been generated (list of genes
can be found in section 5 of Appendix).

o “Prognosis_BC”: CSC genes related to prognosis in BC. Sources: (Lathia
et al., 2019), (Qiu et al., 2019), (Liu et al., 2019), (De Angelis et al., 2019),
(Pei at al., 2020), (Zhao et al., 2020), (Pece et al., 2019).

e “Stemness BC”: CSC genes related to stemness in BC. Sources: (De
Angelis et al., 2019), (Pei at al., 2020).

o “Stemness2_BC”. CSC genes related to stemness in BC. Sources:
(Arfaoui et al., 2019).

o “Dormancy_BC”: CSC genes related to dormancy in BC. Sources (Kim et
al., 2015), (De Angelis et al., 2019).

o “Chemorresistance_BC”: CSC genes related to chemoresistance in BC.
Sources: (De Angelis et al., 2019), (Prasad et al., 2019)

2. Identification of CSC genes through assessment of differential gene expression
in 4 datasets obtained from GEO NCBI browser. GEO datasets used were
GSE25976, GSE43730, GSE95402 and GSE132083. GSEA was performed to
identify the top 50 significantly over and under-expressed genes. The resulting 8
gene sets generated were:
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o “GSE25976_OVER”: 50 top overexpressed genes selected from GSEA
performed on metastatic and non-metastatic BCSCs.

o “GSE25976 _UNDER”: 50 top underexpressed genes selected from
GSEA performed on metastatic and non-metastatic BCSCs.

o “GSE43730_OVER”: 50 top overexpressed genes selected from GSEA
performed on malignant and non-malignant BC cells.

e “GSE43730_UNDER”: 50 top underexpressed genes selected from
GSEA performed on malignant and non-malignant BC cells.

o “GSE95042_OVER”: 50 top overexpressed genes selected from GSEA
performed on BCSCs and primary BC.

o “GSE95042 UNDER”: 50 top underexpressed genes selected from
GSEA performed on BCSCs and primary BC.

e “GSE132083_OVER”: 50 top overexpressed genes selected from GSEA
performed on BCSCs and non-BCSCs.

e “GSE132083_UNDER”: 50 top underexpressed genes selected from
GSEA performed on BCSCs and non-BCSCs.

3. Identification of CSC genes involved in pathways known to play a role in CSCs
as reviewed in bibliography and mentioned in State of the art section of the
present work. The list of genes involved in the following pathways were collected
from the MSigDB database from the Broad Institute:

e KEGG_HEDGEHOG_SIGNALING_PATHWAY (Ref.: M1053)

e REACTOME_SIGNALING_BY_HIPPO (Ref.: M591)

e KEGG_JAK_STAT_SIGNALING_PATHWAY (Ref.: M17411)

e PID_MYC_PATHWAY (Ref.: M139)

e KEGG_NOTCH_SIGNALING_PATHWAY (Ref.: M7946)

o KEGG_TGF_BETA SIGNALING_PATHWAY (Ref.: M2642)

e TNF (Ref.: M128)

e HALLMARK_WNT_BETA_CATENIN_SIGNALING (Ref.: M5895)

”

The resulting gene sets generated were: “Hedhehog”, “Hippo”, “Jak_Stat”, “Myc”,
“Notch”, “TGF_beta”, “TNF” and “Wnt_Bcatenin”.

The table 1 summarises the details of the 21 gene sets generated for the study.
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Gene__set Method Num__genes

Prognosis. BC Bibliography 62
Stemness BC Bibliography 53
Stemness2 BC Bibliography 332
Dormancy BC Bibliography al
Chemorresistance. BC' Bibliography 21
GSE25976_OVER GSEA 50
GSE25976 UNDER GSEA a0
GSE43730 OVER GSEA 50
GSE43730 UNDER GSEA 50
GSE95042 OVER GSEA 50
GSE5042 UNDER GSEA a0
GSE132083 OVER GSEA a0
GSE132083 UNDER GSEA a0
Hedgehog MSigDB a6
Hippo MSigDhB 20
Jak Stat MSighB 155
Mye MSighB 25
Notch MSighB 47
TGF__beta MSigDB "
TNF MSighB 46
Wit Beatenin MSigDhB 42

Table 1. Description of the gene sets used in the study

3.1.2 Breast cancer expression datasets (BC gene expression datasets)

Expression datasets were collected from Gene Expression Omnibus repository (GEO).
Preference was given to studies performed on clinical samples. The following GEO
datasets were used in the study:

e GSE5764: Invasive breast cancer tissue. 20 Tumoral samples (10 ductal, 10 lobular)
+ 10 Normal samples. Array: Affymetrix Human Genome U133 Plus 2.0 Array.

e GSE6883: Breast cancer tissue. 3 Tumoral samples + 3 Normal samples. Array:
Affymetrix Human Genome U133A Array.

e GSE73540: Breast cancer tissue. 3 Tumoral samples + 3 Normal samples. Array:
Affymetrix Human Genome U133A Array.

e GSE92252: Breast cancer tissue. 6 Tumoral samples + 3 Normal samples. Array:
NimbleGen Homo sapiens Expression Array.
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e GSE71862: Breast cancer cell lines. 3 Breast cancer cell line derived from
metastatic site (MCF7) + 3 Normal-like mammary epithelial cell line (MCF10A). Pre-
Ranked GSEA. Array: NimbleGen Homo sapiens Expression Array.

e GSE109169: Early-onset breast cancer tissue. 25 Tumoral samples + 25 matched
normal tissue. Array: Affymetrix Human Exon 1.0 ST Array.

The table 2 summarises the details of the 6 BC datasets collected for the study.

Dataset Type_Sample Number_  Sample Avrray

GSELTOY lissue 20 Tamoral /10 Normal Affvmetrix Homan Genome U133 Plus 2.0 Array
GSEGSS3 Tissue 4 Tmoral /3 Normal Affvmetrix Human Genome U133A Array
GSET3540 Tissue 28 Tamoral /3 Normal Affymetrix Homan Transcriptome Areay 2.0
GEES2252 Tissue fi Tumoral /3 Normal NimhleGen Homo sapiens Expression Array
GEET18G62 Cell lines 3 BOC cell line/3 Normal cell line  NimbleGen Homo sapiens Expression Array
GSE1DO16Y  Tissue 25 Tamoral /25 Normal Affymetrix Human Exon 1.0 5T Array

Table 2. Description of the BC datasets used in the study

3.1.3 Mantle cell lymphoma expression datasets (MCL gene expression
datasets)

Expression datasets were collected from Gene Expression Omnibus repository (GEO).
Preference was given to studies performed on clinical samples. The following GEO
datasets were used in the study:

e GSE30189 (classical form): MCL tumor cells. 6 MCL (classical form) + 4 normal
mantle zone B-lymphocytes. Array: Illumina HumanWG-6 v3.0 expression
beadchip.

e GSE30189 (aggressive form): MCL tumor cells. 7 MCL (aggressive form) + 4 normal
mantle zone B-lymphocytes. Array: lllumina HumanWG-6 v3.0 expression beadchip.

e GSE45717: MCL tumor cells. 5 MCL + 8 healthy B-lymphocytes. Array: Affymetrix
Human Exon 1.0 ST Array.

e GSE60023: MCL tumor cells. 3 MCL + 2 (CD19+) B-lymphocytes from healthy
donor. Array: Arraystar Human LncRNA microarray V2.1.

e GSE95291: MCL tumor cells.2 MCL + 2 B-lymphocytes from healthy donor. Array:
[llumina HumanHT-12 V4.0 expression beadchip.

e GSE21452: MCL tumor cells. 64 MCL with external control. Array: Affymetrix Human
Genome U133 Plus 2.0 Array
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The table 3 summarises the details of the 6 MCL datasets collected for the study.

Dataset Type_ Sample Number Sample  Array

GREE30180 classical Cells G Twmoral/4 Normal — Iumina HomanWG-6 3,0 expression beadchip
GEEINLED  ageresive  Cells 7 Twmoral /4 Normal  Hluminag HomanWG-6 v3.0 expression beadehip
GEEASTLY Calls 5 Twmoral /8 Normal  Affvipetrix Human Exon 1.0 5T Array
GSEGDN23 Cells 3 Tumoral /2 Normal  Arraystar Human LuneBENA microarray V2.1
GEENG291 Cells 2 Twmoral /2 Normal  Hlumina HumanHT-12 V4.0 expression beadehip

GEE21452 Cells (4 Twmoral Affvimetrix Human Genome 17133 Plus 2.0 Areay

Table 3. Description of the MCL datasets used in the study

3.2. Data analysis

3.2.1 GSEA

To identify CSC biomarkers in BC and MCL we used GSEA computational method
(GSEA-P Software) created by the Broad Institute and described previously
(Subramanian et al 2005). GSEA 4.0.3. desktop version was installed in the computer
following instructions. We analyzed above described BC and MCL gene expression
datasets to determine whether these are significantly enriched by the genes present in
the stemness gene signatures.

The steps followed to perform GSEA are the following:
1) Loading expression dataset (.gct format)

Expression datasets were prepared using a Gene Cluster Text (GCT) format
(.gct) that describes an expression dataset. GCT is convenient for analysis of
matrix-compatible datasets as it allows metadata about an experiment to be
stored alongside the data from the experiment. GCT files enable storing both row
and column metadata. Typically, each column represents a specific experiment
and each row represents features that are measured in the assay.

2) Preparation and loading of chip annotations (.chip format)

The Chip description file (.chip) contains annotations about a microarray. The file
typically specifies which probes map to the same genomic unit of interest. While
this file is not used directly in the GSEA algorithm, it is used to annotate the output
results and may also be used to collapse each probe set in the expression dataset
to a single gene vector.

In the majority of cases, information for chip annotation was found stored in the
program. That was the case of the following chips: Affymetrix Human Genome
U133A Array, Affymetrix Human Transcriptome Array 2.0 and lllumina
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HumanHT-12 V4.0 expression beadchip. For the rest of chips, annotation with
external sources was performed. That was the case of the following chips:
Affymetrix Human Genome U133 Plus 2.0 Array, NimbleGen Homo sapiens
Expression Array, Affymetrix Human Exon 1.0 ST Array, lllumina HumanWG-6
v3.0 expression beadchip, Arraystar Human LncRNA microarray V2.1.

3) Creation and loading of phenotype labels (.cls format)

The CLS file format (.cls) defines phenotype (class or template) labels and
associates each sample in the expression data with a label. Categorical labels
define discrete phenotypes (e.g. normal vs tumor).

4) Loading of gene sets (.gmt format)

The Gene set file format (.grp) contains a single gene set in a simple newline-
delimited text format while GMT or GMX file formats are used to create multiple
gene sets in the same file. In the present study, the 21 CSC gene sets were
placed on a GMT format file to be loaded and processed.

5) Running analysis

The top (over-expressed) and bottom (under-expressed) of the listin the datasets
correspond to the largest differences in expression between tumoral and normal
tissue. GSEA calculates the enrichment score (ES) that represents the amount
to which the genes in the set are over-represented at either the top or bottom of
the list. The ES is the maximum deviation from zero encountered in the random
walk; it corresponds to a weighted Kolmogorov—Smirnov-like statistic. The
program also estimates the statistical significance (p value) of the ES by
calculating a phenotypic-based permutation test to produce a null distribution for
the ES and adjusts the estimated significance level to account for multiple
hypothesis testing. The enrichment scores for each gene signature is normalized
and a false discovery rate is calculated together with a normalized enrichment
score (NES). The proportion of false positives is checked by calculating the false
discovery rate (FDR).

3.2.2 Visualization analysis (Tableau)

Tableau software (desktop edition) has been used to summarize and enhance
interpretability of GSEA results by creating some figures (1-3) and tables (1-12) included
in this work.

17



3.2.3 Functional annotation analysis

Panther Classification System (Huaiyu et al., 2019) has been used to perform functional
annotation analysis of the genes included in the 269-CSC gene signature. Panther
combines gene function, ontology, pathways and statistical tools to enable large-scale
analysis. In this work, gene list analysis has been performed to group the genes as per
their molecular function and biological process. Grouping by molecular function consists
on classifying the genes by the function of the protein itself or the proteins that interact
directly with it at a biochemical level, whereas grouping by biological process consists
on classifying the genes by the function of the protein in the context of a larger network
of proteins that interact to accomplish a process at the level of the cell or organism.

A high-level analysis was first performed with the 269 genes for both, molecular function
and biological process analysis. Then, a deeper analysis of the major categories found
in the high-level analysis was subsequently performed.

3.2.4 Kaplan-Meier survival analysis

Correlation with prognostic parameters has been performed using a bioinformatic tool
called Kaplan-Meier Plotter (Nagy et al., 2018). This tool is capable to assess the effect
of genes on survival in multiple cancer types. Sources used include GEO and TCGA,
among others. For this analysis, the genes included in the 53-CSC gene signature were
correlated with survival in breast, ovarian, lung and gastric cancer. Only genes found to
be significant were further studied. The following parameters were used:

1) Hazard Ratio: ratio of the hazard rates corresponding to high and low expression of
an individual gene.

2) Median survival: length of time from either the date of diagnosis or the start of
treatment for a disease, that half of the patients are still alive.

3) Logrank p-value: significance given by a hypothesis test comparing the survival
distributions of high and low expression of an individual gene.

4) Expression state given by the GSEA results found for that individual gene (up:
upregulated, down: downregulated)
3.2.5 Correlation analysis

Correlation analysis of the genes of the CSC-gene signature with prognostic parameters
was performed using cor() function of Stats R package and plots of matrix correlations
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were generated using corrplot R package. Pearson coefficient was used as the test
statistic.

3.2.6 Machine learning

Random forest, a supervised classification algorithm, was built using the Caret R
package. Random forest is a learning algorithm that generates multiple decision trees
and, in case of classification, outputs the classes of the individual trees. The predicted
class of the input instance is decided upon majority vote.

Model was trained as follows: data was randomly split into training and test sets using
different ratios: 70%/30%, 65%/35% and 60%/40% (training/test). Cross-validation was
used instead of Out-Of-Bag bootstrap method. Different values for n-fold and repeats
were tested (5-fold with 3 repeats and 3-fold with no repeats). Default parameters for
ntrees (value of 500), mtry (square root of the total number of variables), maxnodes
(trees are grown to maximum possible) and nodesize (value of 1) were used. For the
evaluation in the test set, accuracy, sensitivity and specificity were measured. Variable
importance regarding the mean decrease in accuracy for each predictor was used.
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4. Results

4.1. GSEA analysis

GSEA was performed on 6 BC (see section 3.1.2 for more details) and 6 MCL (see
section 3.1.3 for more details) expression datasets.

4.1.1 Breast Cancer GSEA

Selected BC datasets were analyzed using GSEA in order to identify genes involved in
CSC machinery that are enriched in a tumoral state, especially in a context where CSCs
may have a key role such as in metastatic or invasive phenotypes, as reviewed in the
introduction of the present work.

Atotal of 6 BC datasets were tested for gene set enrichment using 21 gene sets specially
generated for being involved in CSC machinery (for more details on the gene set
generation, check Methodology section).

The results show an enrichment of CSC genes in all datasets studied (jError! No se
encuentra el origen de la referencia.). A total of 331 genes were found to be
downregulated whereas 184 genes were found to be upregulated in tumoral compared
to normal state. The dataset GSE5764, corresponding to invasive BC, was the one
showing a higher amount of upregulated CSC genes (95 genes) whereas GSE73540,
corresponding to primary BC was the dataset showing higher amount of downregulated
CSC genes (130 genes).

Dataset

Up/Downregulated GSES764 G5ERE33 GSE71362 GSE73540 G5E92252 GSE1051695
DOWN 35 29 85 130 52
up

Table 4. GSEA for BC datasets (count of up/downregulated genes)

A deeper analysis on which specific gene sets were contributing to the enrichment in
each dataset was performed (jError! No se encuentra el origen de la referencia.).
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Dataset Gene Set Up/Downregulated

GSES764 STEMMNESS_BC e 2¢ [ DOWN
PROGNOSIS_BC e 2z MUP
G5ES5042_UNDER * 25
GSESS5042_0OVER s 25
TGF_BETA = 17
MYC « 10
HIPPO « 10

G5EG883 STEMNESS_BC ® 29

G5E132083_UNDER = 9
G5E71862  GSE43730_UNDER s 23

G5E132083_0VER * 15
GSESS5042_0OVER * 16
G5E43730_0VER + 14
GSEZ55976_0OVER « 13
DORMANCY_BC « 12
GSE25976_UNDER « 10
G5E73540  STEMNESSZ_BC @ 58
GSESS5042_0OVER * 3L
STEMMNESS_BC * 27
PROGNOSIS_BC 21
GSE43730_UNDER * 16
G5E92252  GSES5042_OVER ® 32
TNF = 20
G5E109169 STEMMNESS_BC s 24
PROGNOSIS_BC = 18
DORMANCY_BC = 1%

Table 5. GSEA results for BC datasets

We observed that upregulated genes in GSE5764, which corresponds to an invasive BC,
were distributed among 5 different CSC gene sets: “PROGNOSIS BC’,
“‘STEMNESS_BC”, “GSE95042_OVER”, “MYC” and “TGF_BETA”". All of them, except
“TGF_BETA”, were found to be highly significant (p-value < 0.05) (jError! No se
encuentra el origen de la referencia.).These results pointed to the existence of an
enriched CSC phenotype in that particular dataset.

Similar results were found when analysing GSE109169 dataset, which corresponds to
samples of early-onset BC. The genes that were found to be significantly upregulated
came from 3 different CSC gene sets: “STEMNESS_BC”, “PROGNOSIS_BC” and
‘“DORMANCY_BC” (Table 5). Moreover, the analysis of the significance suggests that
samples of the dataset display important CSC features such as stemness or dormancy
(jError! No se encuentra el origen de la referencia.).
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In the opposite side, GSE71862 dataset, which corresponds to a breast cancer line
derived from a metastatic site, had its downregulated genes distributed across 6 different
CSC gene sets: “GSE43730_UNDER”, “GSE95042_OVER”, “GSE43730_OVER’,
‘“DORMANCY_BC”, “GSE25976_UNDER”, “GSE25976_OVER”. These results show
that GSE71862 doesn’'t display a clear CSC phenotype as the majority of the
downregulated genes correspond to gene sets generated from BCSCs
(GSE95042_ OVER, GSE43730_OVER) and even metastatic BCSCs
(GSE25976_OVER). It's worth mentioning that significance of 3 of the gene sets
(“DORMANCY_BC”, “GSE25976_OVER” and “GSE95042_OVER”) are among the 5
lowest found across datasets being the p-values close to 0.1 (Figure 3jError! No se
encuentra el origen de la referencia.).

Similar results of an apparent absence of a CSC phenotype was found for GSE73540
dataset, corresponding to primary BC, in which downregulated genes came from 4
distinct CSC gene sets: “STEMNESS2 BC”, “GSE95042 OVER”, “STEMNESS_ BC”
and “PROGNOSIS_BC”. Again, as mentioned for GSE71862 dataset, the significance of
2 of the 4 gene sets was among the 5 lowest, being the p-values close to 0.1 (Figure 3).

Dataset Gene Sat Up/Downregulated
GSE5764 STEMNESS_BC » 0,0350 Il cown
PROGNOSIS_BC » 0,0060 s
GSE95042_UNDER » 0,0720
GSE95042_OVER » 0,0150
TGF_BETA » 0,0880
MYC = 0,0080
HIPPO + 0,0280
GSEG883 STEMMNESS_BC ® 0,0770
GSE132083_UNDER - 0,0520
GSE71862 GSE43720_UNDER & 0,0000
GSE132083_OVER *0,0120
GSE95042_OVER * 0,0920
GSE43730_OVER + 0,0440
GSE25976_OVER 0,0960 »
DORMANCY_BC 0,1000 *
GSE25976_UNDER + 0,0470
GSE73540  STEMNESSZ_BC @ 0,0770
GSE95042_OVER 0,0990 ®
STEMNESS_BC ® 0,0340
PROGNOSIS_BC 0,0990
GSE43730_UNDER * 0,0190
GSE92252  GSE95042_OVER ® (0,0670
TNF * 0,0220
GSE109169 STEMMNESS_BC » 0,0160
PROGNOSIS_BC » 0,0860
DORMANCY_BC * 0,0410

0,01 0,02 002 o004 005 006 007 008 0,09 0,10

Prom. Significance

Figure 3. GSEA for BC datasets. Average significance of gene sets.

4.1.2 Mantle Cell Lymphoma GSEA
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A total of 6 MCL datasets were tested for gene set enrichment.

The results show an enrichment of CSC genes in all datasets studied (Table 6). A total
of 259 genes were found to be downregulated whereas 698 genes were found to be
upregulated in tumoral compared to normal state. The dataset GSE21452,
corresponding to 64 primary MCL tumors, was the one showing a higher amount of
upregulated CSC genes (418 genes) whereas GSE95291, corresponding to 2 primary
MCL cells was the dataset showing higher amount of downregulated CSC genes (165
genes). Except two datasets (“GSE30189_aggresive”, “GSE30189_classical’), the other
four displayed a higher proportion of upregulated genes compared to downregulated
ones.

Dataset

Up/Dow.. G5E21452 GSE30189_agg GSE30139_class GSE45717 GSEE0023 G5E952591
DOWMN 58 8 28 165
up 418 69 28 183

Table 6. GSEA for MCL datasets (count of up/downregulated genes)

A deeper analysis on which specific gene sets were contributing to the enrichment in
each dataset was performed (Table 7).
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Dataset Gene Set Up/Downregulated

GSE21452 STEMNESS2_BC o137/ I DOWN
NOTCH - 42 Mup
STEMNESS_BC .+ 38
GSE95042_0OVER » 38
TNF . 37
PROGNOSIS_BC . 34
WNT_BCATENIN . 32
TGF_BETA . 31
DORMANCY_BC . 31
GSE25976_UNDER . 30
GSE43730_UNDER . 29
MYC . 24
HIPPO + 18
GSE30189_agg GSE132083_OVER . 8
GSE30189_class DORMANCY_BC . 21
GSE132083_OVER |
GSEAS717 STEMNESS2_BC . 44
DORMANCY_BC . 13
GSE95042_0OVER 12
GSEG0023 STEMNESS2_BC . 13
PROGNOSIS_BC -9
JAK_STAT B
GSE95291 STEMNESS2_BC ® 81
HEDGEHOG . 44
GSE25976_UNDER . 31
GSE25976_0OVER . 31
GSE43730_OVER . 30
STEMNESS_BC . 28
PROGNOSIS_BC . 25
TNF . 23
GSE95042_0OVER - 20
GSE95042_UNDER .+ 18
DORMANCY_BC + 18
MYC c 1

Table 7. GSEA results for MCL datasets

We observed that upregulated genes in GSE21452 were distributed among 11 different
CSC gene sets that were (ordered in descendent order as per the number of genes
involved): “STEMNESS2_BC”, “NOTCH”, “STEMNESS_BC”, “GSE95042_OVER”,
“TNF”, “PROGNOSIS_BC”, “WNT_BCATENIN”, “TGF_BETA”, “DORMANCY_BC”,
“‘MYC” and “HIPPQO”,. It seems that 6 out of 8 gene sets involving CSC pathways were
significantly enriched in this particular dataset. All of the gene sets, except “TGF_BETA”
were found to be highly significant (p-value < 0.05) (Figure 4). These results pointed to
the existence of a particularly enriched CSC phenotype in that particular dataset.
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Mixed results were obtained in dataset GSE95291, in which a similar proportion of
upregulated and downregulated genes was found. Upregulated genes came from 6 gene
sets: “STEMNESS_BC”, “STEMNESS2_BC”, “PROGNOSIS_BC”, “DORMANCY_BC”,
“GSE25976_UNDER” and “MYC” whereas downregulated genes came from 6 gene
sets: “GSE95042_OVER”, “TNF”, “GSE43730_OVER", “GSE25976_OVER”,
‘“HEDGEHOG” and “GSE95042_UNDER” (Table 7). Moreover, these results appear to
be highly significant with p-values lower than 0.01. It's worth mentioning that a group of
genes found to be downregulated in the dataset were originally found to be upregulated
in the BCSCs samples used to construct the corresponding gene sets
(“GSE25976_OVER”, “GSE43730_OVER” and “GSE95042_OVER”).

Dataset Gene Set Up/Downregulated
GSE21452 STEMNESS2_BC @ 0,01800 W DownN

NOTCH « 0,00000 Wue

STEMNESS_BC «0,02400

GSE95042_OVER + 0,00000

TNF * 0,00000

PROGNOSIS_BC « 0,00100

WNT_BCATENIN + 0,00500

TGF_BETA 0,08100 »

DORMANCY_BC + 0,00800

GSE25976_UNDER | +0,00000

GSE43730_UNDER | +0,00000

MYC - 0,00000

HIPPO * 0,00700
GSE30189_agg GSE132083_OVER - 0,07300
GSE30189_class DORMANCY_BC - 0,03200

GSE132083_OVER 0,08700 -
GSEA5717 STEMNESS2_BC «0,02400

DORMANCY_BC - 0,01600

GSE95042_OVER - 0,05100
GSEE0023 STEMNESS2_BC - 0,00000

PROGNOSIS_BC +0,00000

JAK_STAT +0,00000
GSE95291 STEMNESS2_BC ® 0,00000

HEDGEHOG « 0,00000

GSE25976_UNDER | +0,00000

GSE25976_OVER + 0,00000

GSEA3730_OVER - 0,00000

STEMNESS_BC - 0,00000

PROGNOSIS_BC - 0,00000

TNF - 0,00000

GSE95042_OVER < 0,00000

GSE95042_UNDER |+ 0,00000

DORMANCY_BC + 0,00000

MYC -0,00000

0,01 002 003 004 005 008 0,07

Prom. Significance

Figure 4. GSEA for MCL datasets. Average significance of gene sets.

4.1.3 Comparison of GSEA results between cancer types

A comparative analysis was performed between cancer types. The first relevant finding
was the inverse proportion of up/downregulated genes found in both cancer types. While
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in BC almost 62,84% of significantly enriched genes were downregulated in tumoral
state, in MCL we observed the inverse: almost 74,26% of significantly enriched genes
were upregulated in tumoral state (Table 8, Table 9).

Up/Downregulated
Cancer Type DOWRN up
BC 8266 #156
MCL #252 #5135
Table 8. Number of up/downregulated genes comparing BC and MCL.

Up/Downregulated

Cancer Type DOWRN up
BC 62,84% 37,16%
MCL 25, 74% 74,26%

Table 9. Percentage of up/downregulated genes comparing BC and MCL.

More granularity was added to the analysis and the proportion of genes across the
different gene sets was compared (Figure 5). Several gene sets were identified in which
the number of upregulated genes was similar when comparing cancer types. A total
number of 66 and 50 genes from the gene set “STEMNESS_BC” were upregulated in
MCL and BC, respectively.

Similarly, 68 and 43 genes from the gene set “PROGNOSIS BC” were upregulated in
MCL and BC, respectively. Regarding genes from “DORMANCY_BC” gene set, more
than four times of genes were shown to be upregulated in MCL when compared to BC
(62 and 15 genes, respectively). Also, a double number of genes from the gene set was
found to be downregulated in MCL, as compared to BC (21 and 12 genes, respectively).
Interestingly, genes from “‘STEMNESS2_BC”, “‘STEMNESS_BC” and
“PROGNOSIS_BC” were found to be downregulated only in BC (58, 56 and 21 genes,
respectively).

Regarding the gene sets generated from BCSCs, two of the ones composed by
upregulated genes (“GSE43730_OVER”, “GSE25976_OVER”, respectively) were
enriched both in MCL and BC, but gene expression was found to be downregulated (30
and 14 genes in “GSE43730_OVER” for MCL and BC, respectively, and 31 and 13 genes
in “GSE25976_OVER” for MCL and BC, respectively). The other 2 gene sets generated
form BCSCs composed by upregulated genes (“GSE95042 OVER” and
“GSE132083_OVER”) lead to identification of both, upregulated an downregulated
genes. Whereas for “GSE95042_OVER?”, the highest proportion of downregulated genes
were found for BC (83 genes compared to 20 genes for MCL), for “GSE132083_OVER”
the downregulated genes (15 genes) corresponded exclusively to MCL. In the contrary,
for “GSE95042_OVER” the upregulated genes were found mostly in MCL (50 genes
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compared to 25 genes for BC), and for “GSE132083_ OVER?”, the upregulated genes
were exclusive from BC (19 genes).

Regarding the gene sets composed by the downregulated counterparts, for
“GSE95042 UNDER” only downregulated genes were found in both cancer types (18
and 25 genes for MCL and BC, respectively). For “GSE43730_UNDER” and
“GSE25976_UNDER”, both, downregulated and upregulated genes were found,
although the majority were included in the downregulated subset (30 and 10 genes in
“GSE25976_UNDER” for MCL and BC, respectively; 29 and 23 genes in
“GSE43730_UNDER” for MCL and BC, respectively). Regarding the upregulated genes,
whereas in “GSE25976 _UNDER” upregulated genes were only found for MCL (31
genes), in “GSE43730_UNDER” upregulated genes were only found in BC (16 genes).
Last, in “GSE132083_UNDER”, only 9 genes were found to be enriched and
corresponded to upregulated genes in BC.

All of the gene sets related to pathways involved in CSCs machinery contributed to the
identification of deregulated genes in both cancer types. Among the other pathways, the
ones with the highest impact in the study was “TNF”. A total number of 37 genes from
the “TNF” gene set were found to be upregulated in MCL, whereas 23 and 20 genes
were found to be downregulated in MCL and BC, respectively. Interestingly there were
5 of the pathways that contributed exclusively with upregulated genes: “TGF_BETA” (31
and 17 genes for MCL and BC, respectively), “MYC” (35 and 10 genes for MCL and BC,
respectively), ““NOTCH” (42 genes for MCL), “WNT_BCATENIN” (32 genes for MCL) ,
“JAK_STAT” (6 genes for MCL). “HIPPQO” contributed to both, downregulated and
upregulated genes (10 genes were found to be downregulated in BC and 18 upregulated
in MCL). Finally, “‘HEDGEHOG” was the only pathway contributing exclusively with
downregulated genes (44 genes for MCL). contributing with 3, 3 and 1 upregulated
genes, respectively.
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Up/Downregulated Cancer Type

Gene Set DOWN up M &c
stemnessz_eC A
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Figure 5. Number of up/downregulated genes across gene sets, comparing BC and MCL

4.1.4 Identification of common CSC gene signatures

A list of 269 common genes between cancer types has been identified (full list available
in section 9.2 of Appendix).

First, the list of genes was ordered by the number of total datasets in which they have
been found enriched. FOXM1, forkhead box M1, a transcriptional activator involved in
cell proliferation was the gene found enriched in the highest number of datasets: 8 up to
12 datasets (66,7%), 4 corresponding to BC and another 4 corresponding to MCL.
Another 5 genes were found enriched in 7 datasets (4 BC and 3 MCL): SPARC, LYZ,
COL1A1, BUB1B and BUB1.The top 20 are shown in Table 10.
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Cancer Type
MCL

m
(il
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o

Gene
FOXM1
SPARC
LYZ
COL1AL
EUB1E
EUB1
TPX2
RACGAPL
NCAPG
MMP1
MELK
KIF23
KIF204
KIF3A
KIF2C
HLA-DPAL
HJURP
FCER1G
EXO1
COLBA3

oo
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Table 10. Top 20 common genes found enriched in GSEA

The number of datasets in which the genes were found up or downregulated comparing
BC and MCL was also analyzed.

The results revealed that FOXM1 was found upregulated in 5 up to 8 datasets (2 BC and
3 MCL) and downregulated in 3 (2 BC and 1 MCL). While SPARC and LYZ were found
downregulated in higher proportion (4 up to 7 datasets), COL1A1, BUB1B and BUB1
were found upregulated (4 up to 7 datasets). Comparing BC and MCL, SPARC and LYZ
were mainly found downregulated in BC (3 up to 4 datasets) whereas in MCL they were
found mainly upregulated (2 up to 3 datasets). The rest among the top 20 enriched genes
were found more upregulated than downregulated except KIF20A and FCER1G that
showed the opposite results.
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Cancer Type Up/Downregulated

Gene BC MCL Totalge. [ DOWN
—— o0 e o0 M ur
2 2 13 35
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o 22222
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Table 11. Top 20 common genes found enriched in GSEA, distributed by up or downregulation.

The genes were also ordered by their significance. If the same gene was found enriched
in several datasets and/or was present in different CSC gene sets, the average of the p-
values was calculated and taken into account to build an “Average p-value”. Genes were
sorted in descendent order. The top 20 are shown in Table 12.
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Gene
EPBA1L4A
IL1B
IRF&
MFAPS
P13
PLD5
RNF152
SCEL
SERPINEZ
SPINKY
SPRR1A
SPRR1BE
TLL1
ZBED2
CDK4
EX0SC4
ACTLGA
CDKN2A
PML
RUVBL1

Most of the genes with lower significance are present in 2 datasets (one per cancer type).
CDK4 is the gene with lowest significance (average p-value of 0.001750) found enriched
in more than 2 datasets (3 MCL and 1 BC).

BC

0,000000
0,000000
0,000000
0,000000
0,000000
0,000000
0,000000
0,000000
0,000000
0,000000
0,000000
0,000000
0,000000
0,000000
0,006000
0,006000
0,005000
0,008000
0,005000
0,008000

Cancer Type
MCL
0,000000
0,000000
0,000000
0,000000
0,000000
0,000000
0,000000
0,000000
0,000000
0,000000
0,000000
0,000000
0,000000
0,000000
M 0.000333
B 0,000500
M 0,000000
M o0,000000
M 0,000000
M o0,000000

Average p-value
0,000000
0000000
0,000000
0000000
0,000000
0,000000
0,000000
0,000000
0,000000
0,000000
0,000000
0,000000
0,000000
0,000000
0,001750
0,002333
0,002667
0,002667
0,002667
0,002667

Recuento definido de Dataset

4

Count datasets

3

Table 12. Top 20 genes sorted by significance (average p-value)

Several gene signatures were generated depending on the average p-value:

1. Gene signature with genes with average p-value lower than 0.01: composed by

53 genes (53-CSC gene signature).

2. Gene signature with genes with average p-value lower than 0.05: composed by

242 genes (242-CSC gene signature).

3. Gene signature with genes with average p-value lower than 0.1: composed by

269 genes (269-CSC gene signature).

Gene signatures can be found in section 9.3 of Appendix.

4.2. Functional annotation analysis

In order to further understand the biological context of the CSC genes identified in both
cancer types (MCL and BC), a bioinformatic tool for functional annotation was used
(Panther Classification System). The full list of 269 genes was selected for the analysis.
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4.2.1 Molecular function

A first analysis regarding the molecular function was performed (Figure 6). The most
relevant molecular functions retrieved were “binding” (73 genes) and “catalytic activity”
(63 genes).

PANTHER GO-Slim Molecular Function
Total # Genes: 275 Total # function hits: 131

80 B binding (GO:0005488)
75 catalytic activity (G0:0003824)
70

W molecular function regulater (GO:0098772)
molecular transducer activity (G0: 0060083

- B structural molecule activity (GO:0005198)

=0 B trenscription regulator activity (GO:0140110)

a5 transporter activity (GO:0005215)

40

63

&0

Genes

25
20
25
20
15

E l

Category

L

o

Figure 6. Functional annotation of genes in 269-CSC gene signature: molecular functions (1)

More than half of the genes that mapped to “binding” function were subgrouped into
“protein binding” category (44 up to 73 genes), “heterocyclic compound binding” (23
genes) and “organic cyclic compound binding” (23 genes). These two groups contained
the same genes. (Figure 7).

PANTHER GO-5lim Molecular Function
Level 1: binding (G0:0005488)
Total # Genes: 73 Taotal # function hits: 135

50
W amide binding (G0:0033218)

45 B carbohydrate derivative binding (G0:0097367)
B chromatin binding_(G0:0003682)

*° M cofactor binding (GO:0048037)
35 drug_binding {G0:0005144)
W extracellular matrix binding_(GO:0050840)
20 heterocyclic compeund binding (G0:1901363)
§ - B hormone binding (G0:0042562)
& ion binding (G0:0043167)

20 M lipid binding (GO:0008285)
maolecular adaptor activity (GO:0060090)
B neurotransmitter binding_{G0:0042165)
10 organic cyclic compound binding (G0:0097159)
protein binding_(G0:0005515)

E protein-containing_complex binding {GO:0044877)
o I . I | - | O | I B small molecule binding (GD:0036094)

Category

15

Figure 7. Functional annotation of the 73 “binding” genes.
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Among the “protein binding”, the most relevant categories were “enzyme binding” (12 up

to 44 genes), “cytoskeletal protein binding” (11 genes) and “signalling receptor binding”

(10 genes) (Figure 8), whereas among the “heterocyclic compound binding” and

“organic cyclic compound binding” genes, the most relevant category was “nucleic acid

binding” (20 up to 23 genes) (
PANTHER GO-Slim Molecular Function

Lewvel 1: binding (G 0:0005488)
Lewvel 2: organic cyclic compound binding (G0:0097159)

Total # Genes: 23 Total # function hits: 22 nucleic acid bind I'CI_:GOI:‘:’:'ES,-S
22 W nucleoside phosphate binding (G0:1901265)
20
18
16
14
@
@ 12
T
o1
8
6
4
2 e
[}
Category
Figure 9).
PANTHER GO-Slim Molecular Function
Lewel 1: binding {G0:0005488)
Lewvel 2: protein binding (G 0:0005515)
Total # Genes: 44 Total # function hits: 49
13 )
SMAD binding (G0:0046332)
12 N .
l complement binding {GO:0001848)
11 . . .
cytokine binding (GO:0019955)
10 Hl cvtoskeletal protein binding_{G0:00080592)
s enzyme binding_(G0:0019859)
@ 8 histone binding (GO:0042393)
g 7 modification-dependent protein binding {G0:0140030)
“ s protein binding, bridging (G0:0030674)
5 signaling_receptor binding (G0:0005102)
4 transcription factor binding_{(G0:0008134)
3 ubiguitin binding_{G0:0043130)
2
i O
0

Category

Figure 8. Functional annotation of 44 "binding protein" genes
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PANTHER GO-5lim Molecular Function
Level 1: binding {5 0:0005488)
Lewvel 2: organic cyclic compound binding (G0:0097159)

Total # Genes: 23 Total # function hits: 22 nucleic acid bind I'CI_:GOI:]:]:'ES,_S

22 W nucleoside phosphate binding (G0:1901265)
20

1z

16

14

1z

Genes

10

. -
]

Category

Figure 9. Functional annotation of 20 "heterocyclic compound binding" genes

4.2.2 Biological process

A second analysis focused on annotating the list of 269 genes regarding the biological
processes in which they are involved was performed.

Major categories identified were “cellular process” (132 up to 269 genes), “biological
regulation” (84 genes) and “metabolic process” (83 genes) (Figure 10).

PANTHER GO-Slim Biological Process

Total # Genes: 275 Total # process hits: 593
150
biological adhesion (GO:0022610)

M biologjcal phase (50:0044548)
130 M biologjcal regulation (G0:0065007)

140

M cell population proliferation (G0:0008283)

120 cellular component organization or biogenesis (G0:0071340)
110 B cellular process (G0:0009987)

developmental process (G0:0032502)
100

growth {G0:0040007)
o0 B immune system process (G0:0002376)
M localization {G0:005117%)

o oap . .
g MW locomotion (G0:0040011)
g 70 B metabolic process (G0:0008152)
B multi-organism process (G0:0051704)
0 multicellular organismal process (G0:0032501)
50 M reproduction (G0:0000003)
B reproductive process (G0:0022414)
40 response to stimulus (G0:0050836)
30 M rhythmic process (GO:0048511)
M signaling (G0:0023052)
20
10
0 4

Category

Figure 10. Functional annotation of genes in 269-CSC gene signature: biological processes
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Narrowing down “cellular process” category, major subcategories found were: “cellular
metabolic process” (75 up to 132 genes), “cellular component organization” (49 genes),
“cellular response to stimulus” (42 genes), “cell communication” (39 genes) and “signal
transduction” (38 genes) (Figure 11).

85
80
75
70
65
&0
55
S0
45
40

Genes

k=
20
23
20
15
10

PANTHER GO-Slim Biological Process
Lewel 1: cellular process | GO:0009987)
Total # Genes: 132  Total # process hits: 384

mBES Hn.

Category

M cell activation (GO:0001775)
cell communication (GO:0007154)
M cell cycle checkpoint {GO:0000075)
cell cycle process (GO:0023402)
cell cycle (GO:0007049)

M cell death {GO:0008219)

M cell growth (G0:0016049)
cellular component organization (G0:0016043)
cellular developmental process (GO:0048869)
M cellular homeostasis (G0:0015725)

M cellular metabolic process (GO:0044237)

B cellular response to stimulus (G0O:0051716)
M chromosome segregation (G0:0007059)
establishment or maintenance of cell polarity (GO:0007163)
B export from cell (GO:0140352)
B gene silencing (GO:0016458)

B movement of cell or subcellular component (G0:0006323)
B process utilizing_autophagic mechanism (G0:0061515)
M =ignal transduction (GO:0007165)

Figure 11. Functional annotation of the 132 "cellular process" genes.

Narrowing down several levels within “biological regulation” category, the major
subcategories found were: “regulation of biological process” (80 up to 84 genes) -
“regulation of cellular process” (78 up to 80 genes) - “regulation of cellular metabolic
process” (41 up to 78 genes) and “signal transduction” (38 genes) (Figure 12).
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PANTHER GO-5lim Biological Process

Lewvel 1: bislogical regulation (G0:0085007)

Lewvel 2: regulation of bislogical process (G0:0050723)

Total # Genes: 78 Total # process hits: 206

Category

M negative regulation of cellular process (G0O:0048523)

positive regulation of cellular process (G0:0048522)
B regulation of cell activation (G0:0050865)
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s}

regulation of cell cycle {G0:0051728)
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M regulation of cellular component movement (G0:0051270)
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M regulation of cellular component organization (G0:0051128)
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M regulation of cellular metabolic process (G0:0031323)

o

regulation of

o

ellular response to growth factor stimulus (GO:0090287)

o

B regulation of cellular response to stress (GO:0080135)

M regulation of chromosome segregation (GO:0051983)

regulation of gene silencing_{G0:0060968)
M regulation of microtubule-based process (G0:0032836)
M regulation of secretion by cell (G0:1903530)

regulation of sequestering_of calcium ion (G0:0051282)
M signal transduction {GD:0007165)




Figure 12. Functional annotation of 78 “regulation of cellular metabolic process” genes.

Last, narrowing down “metabolic process” category, major subcategories found were:
“organic substance metabolic process” (79 up to 83 genes), “primary metabolic process”
(77 genes), “cellular metabolic process” (75 genes) and “nitrogen compound metabolic
process” (73 genes) (Figure 13).

PANTHER GO-Slim Biological Process
Lewvel 1. metabelic process (G0:0008152)
Total # Genes: 83  Total # process hits: 369

20
a5
80
75
T0
&5
&0
55
S0
45
40
35
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15
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biosynthetic process (G0:0003056)
catabolic process (G0:0009056)
B cellular metabolic process (G0:0044237)
B demethylation (G0:0070938)
alycosylation (G0:0070085)
B nitrogen compound metabolic process (GO:0006807)

Genes

W organic substance metahalic process (G0:0071704)

primary metabolic process (50:0044233)

small molecule metabolic process (G0:0044281)

(V)

Category

Figure 13. Functional annotation of 83 “metabolic process” genes

4.3. Correlation with prognostic parameters: Kaplan-Meier
survival analysis

In order to study the prognostic significance of the CSC-gene signatures generated in
cancer we followed the following approach: In silico analysis using the bioinformatic tool
Kaplan-Meier Plotter. Survival analysis of the genes present in the 53-CSC gene
signature has been performed using data from breast, ovarian, lung and gastric cancer
studies.

|. Breast cancer cohort

Analysis has been run in data from 1764 patients. From the list of 53 genes, a total of 35
have been found significantly correlated with poor survival whereas no differences have
been found for 16 of the genes. Only results for the significant genes are displayed
(Table 13).
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High expression of 13 of the genes (genes in red colour in the table) and low expression
of 22 of the genes (genes in blue colour in the table) have been correlated with poor

survival.
Gene Hazard-Ratio logrank P Median survival Median survival Expression state
(HR) in low in high found in our study
expression expression (BC + MCL)
cohort (months) cohort (months)
IL1B 0.69 (0.61-0.76) 1.4e-11%** 171.43 216.66 Down (1+1)
PI3 1.12 (1.01-1.25) 0.039* 216.66 191.21 Down (1+1)
PLD5 0.82 (0.8-0.95) 0.01* 33 40 Down (1+1)
SERPINB3 0.8 (0.71-0.89) 4.6e-05*** 40.53 60 Down (1+1)
SPRR1B 0.81 (0.73-0.9) 0.00016*** 42.51 57.6 Down (1+1)
TLL1 0.8 (0.69-0.94) 0.0052** 32 39.95 Down (1+1)
ZBED2 0.72 (0.65-0.8) 3.9e-09*** 38.4 64 Down (1+1)
CCDC80 0.81 (0.69-0.94) 0.0072** 31 40.56 Up (1+0), Down
(1+1)
DENND2C 0.69 (0.59-0.8) 1.9e-06*** 29 43 Down (0+1)
FAT2 0.89 (0.8-1) 0.043* 44.1 53.1 Up (1+0), Down
(1+1)
FOLH1 1.21 (1.09-1.35) 0.00053*** 216.66 191.21 Up (1+0), Down
(0+1)
GCNT4 0.74 (0.66-0.82) 4.3e-08*** 228.85 216.66 Up (1+0), Down
(0+1)
NRG1 0.88 (0.79-0.98) 0.018* 43 55.2 Up (1+0), Down
(0+1)
PDGFD 0.65 (0.58-0.73) 1.7e-14*** 216.66 191.21 Up (1+0), Down
(0+1)
PHLDA2 1.42 (1.27-1.58) 4e-10%** 228.85 173.2 Up (1+1)
PPP2R5A 0.88 (0.79-0.98) 0.023* 228.85 216.66 Up (1+1)
TP63 0.67 (0.6-0.75) le-12%** 37.2 72.2 Up (1+0), Down
(0+1)
ACTL6A 1.55 (1.39-1.73) 2.3e-15%** 216.66 185.16 Up (1+2)
FADD 1.55 (1.39-1.73) 3.6e-15*** 228.85 184.04 Up (0+1), Down
(1+1)
MAP3K7 0.75 (0.67-0.84) 3.5e-07*** 40.44 60 Up (0+1), Down
(1+1)
MAP4K4 1.36 (1.22-1.52) 2.4e-08*** 65 36.96 Up (0+1), Down
(1+1)
NFKB1 0.63 (0.57-0.71) 3.3e-16*** 191.21 216.66 Up (0+1), Down
(1+1)
PML 0.83 (0.75-0.93) 0.001** 44 57 Up (1+2)
PRKCZ 0.82 (0.74-0.92) 0.00052*** 228.85 216.66 Up (0+1), Down
(1+1)
RELA 0.83 (0.75-0.93) 0.00088*** 228.85 216.66 Up (0+1), Down
(1+1)
RIPK1 0.72 (0.62-0.85) 4.4e-05*** 29 43 Up (0+1), Down
(1+1)
RUVBL1 1.39 (1.24-1.55) 3.8e-09*** 228.85 185.16 Up (1+2)
SERPINB2 0.83 (0.75-0.93) 0.0011** 43 57.3 Up (0+1), Down
(2+2)
SQSTM1 1.35 (1.21-1.5) 8.7e-08*** 216.66 228.85 Up (0+1), Down
(1+1)
TNFAIP3 0.85 (0.77-0.95) 0.0047** 45 55 Up (0+1), Down
(1+1)
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CDK4 1.53 (1.37-1.71) 1.7e-14*** 216.66 171.43 Up (1+3)

EXOSC4 1.39 (1.25-1.55) 3e-09%** 216.66 171.43 Up (1+2)
MIEN1 1.4 (1.2-1.64) 2.20-05%* 43 30 Up (1+1)
NDUFB10 1.31 (1.12-1.53) 0.00067+* 171.43 148 Up (1+1)
SKP2 1.75 (1.57-1.96) <le-16%* 216.66 163.46 Up (1+2)

Table 13. List of 35 genes significantly correlated with poor survival (***p-value<0.001, **p-
value<0.01, *p-value<0.05). In red colour, genes whose survival decrease with high expression
of the gene and in blue colour, genes whose survival decreases with low expression of the
gene.

The genes most significantly correlated with poor prognosis are SKP2, NFKB1,
ACTL6A, FADD, CDK4 and PDGFD. For SKP2, ACTL6A, FADD and CDK4 it's the
high gene expression which correlates with a lower median survival whereas for NFKB1
and PDGFD, it's the low expression of the genes which is related to a poorer median
survival.

These results are consistent with the findings obtained in the GSEA analysis (see section
4.1) for 4 up to 6 of these genes. GSEA analysis showed that SKP2 was upregulated
both in BC (1 dataset) and MCL (2 datasets), CDK4 was upregulated both in BC (1
dataset) and MCL (3 datasets), ACTL6A was upregulated both in BC (1 dataset) and
MCL (2 datasets) and NFKB1 was downregulated in both, BC (1 dataset) and MCL (1
dataset). However, for FADD and PDGFD, results showed partial consistency. FADD
was only found upregulated in 1 MCL dataset whereas it was found downregulated in 1
BC and 1 MCL datasets. PDGFD was found downregulated in 1 MCL dataset but
upregulated in 1 BC dataset.

[I.  Ovarian cancer cohort

Analysis has been run in data from 614 patients. From the list of 53 genes, a total of 31
have been found significantly correlated with poor survival whereas no differences have
been found for 22 of the genes. Only results for the significant genes are displayed
(Table 14).

High expression of 23 of the genes (genes in red colour in the table) and low expression
of 8 of the genes (genes in blue colour in the table) have been correlated with poor
survival.

Gene Hazard-Ratio logrank P Median survival Median Expression state
(HR) in low survival in found in our study
expression high (BC + MCL)

cohort (months) expression
cohort
(months)
IL1B 1.18 (1.03-1.37) 0.02* 21.43 19.27 Down (1+1)
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MFAP5 1.32 (1.16-1.5) 2.2e-05%** 23.82 18.23 Down (1+1)
PI3 1.18 (1.04-1.34) 0.013* 20.6 19 Down (1+1)
RNF152 1.46 (1.21-1.77) 7.9e-05%** 19 15.13 Down (1+1)
SPRR1A 0.78 (0.68-0.9) 0.00045** 18.4 27 Down (1+1)
SPRR1B 0.79 (0.68-0.9) 0.00057*** 17 21.6 Down (1+1)
TLLL 1.39 (1.15-1.68) 5e-04*+* 19.55 14 Down (1+1)
ZBED2 1.18 (1.03-1.36) 0.015* 21 19.23 Down (1+1)
CCDC80 1.90 (1.64-2.41) 6.4e-13*** 23 11 Up (1+0), Down
(1+1)
CLCA2 0.86 (0.74-0.99) 0.041* 18.79 20.56 Up (1+0), Down
(1+1)
DENND2C 1.37 (1.13-1.67) 0.0017** 18.87 14 Down (0+1)
LUM 1.68 (1.46-1.94) 4.8e-13*** 23 13.73 Up (1+1)
PAK2 1.19 (1.04-1.37) 0.011* 20.2 19 Up (1+1)
PDGFD 1.35(1.19-1.53) 2.9e-06*** 22.5 17.4 Up (1+0), Down
(0+1)
PHLDA2 1.16 (1.01-1.32) 0.038* 22 19.23 Up (1+1)
POF1B 0.68 (0.56-0.82) 5.4e-05*** 14.37 19.98 Up (1+0), Down
(0+1)
TAF12 1.32 (1.16-1.52) 4.3e-05*** 25 18.23 Up (1+1)
TP63 0.87 (0.76-0.99) 0.038* 18.3 23.73 Up (1+0), Down
(0+1)
ACTL6A 1.34 (1.17-1.54) 3.2e-05%** 23.56 18.93 Up (1+2)
CASP8 1.15 (1.01-1.3) 0.039* 22.13 19 Up (0+1), Down
(1+1)
MTS1 1.25 (1.09-1.42) 0.00093*** 21 19.35 Up (1+2)
MAP4K4 1.16 (1.02-1.31) 0.024* 21.43 18.86 Up (0+1), Down
(1+1)
NFKB1 1.21 (1.06-1.38) 0.005** 21.13 17.9 Up (0+1), Down
(1+1)
PML 1.2 (1.04-1.38) 0.013* 23.1 18.98 Up (1+2)
RIPK1 1.26 (1.04-1.53) 0.019* 19 14.53 Up (0+1), Down
(1+1)
RUVBL1 1.3(1.14-1.47) 6.5e-05*** 22.24 18 Up (1+2)
SERPINB2 1.3(1.12-1.51) 0.00049*** 22 19 Up (0+1), Down
(2+2)
BMI1 1.38 (1.2-1.59) 9.4e-06*** 28 18.43 Up (1+1)
MIEN1 0.75 (0.62-0.91) 0.0029** 15.13 19.02 Up (1+1)
NDUFB10 0.74 (0.61-0.89) 0.0014** 15 20 Up (1+1)
SKP2 1.16 (1-1.33) 0.042* 20.56 19.8 Up (1+2)

Table 14. List of 31 genes significantly correlated with poor survival (***p-value<0.001, **p-
value<0.01, *p-value<0.05). In red colour, genes whose survival decrease with high expression
of the gene and in blue colour, genes whose survival decreases with low expression of the
gene.

The genes most significantly correlated with poor prognosis are CCDC80 and LUM. In
both cases it’s the high gene expression which correlates with a lower median survival.

These results are consistent with the findings obtained in the GSEA analysis (see section

4.1) for LUM. GSEA analysis showed that LUM was upregulated both in BC (1 dataset)
and MCL (1 dataset), However, for CCDCB80, results showed partial consistency. The
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gene was only found upregulated in 1 BC dataset whereas it was found downregulated
in 1 BC and 1 MCL datasets.

[ll.  Lung cancer cohort

Analysis has been run in data from 1144 patients. From the list of 53 genes, a total of 34
have been found significantly correlated with poor survival whereas no differences have
been found for 19 of the genes. Only results for the significant genes are displayed
(Table 15).

High expression of 20 of the genes (genes in red colour in the table) and low expression
of 14 of the genes (genes in blue colour in the table) have been correlated with poor
survival.

Gene Hazard-Ratio logrank P Median survival Median Expression state
(HR) in low survival in high | found in our study
expression expression (BC + MCL)
cohort (months) cohort
(months)
PI3 1.33 (1.17-1.51) 1.1e-05% 79.5 54.57 Down (1+1)
PLD5 0.83 (0.7-0.98) 0.027* 69.93 88 Down (1+1)
RNF152 1.19 (1.01-1.4) 0.039* 85 71 Down (1+1)
SCEL 0.67 (0.57-0.79) 2.1e-06*** 55.37 103 Down (1+1)
SERPINB3 1.23 (1.08-1.39) 0.0013** 78 63 Down (1+1)
SPRR1A 1.24 (1.09-1.41) 0.00074*** 78.5 62 Down (1+1)
SPRR1B 1.42 (1.25-1.62) 4.1e-08*** 86.27 53 Down (1+1)
CCDC80 0.8 (0.68-0.95) 0.0095** 65.57 88.7 Up (1+0), Down
(1+1
FAT2 1.32 (1.16-1.5) 1.6e-05%+* 85 57 Up (1+0), Down
(1+1)
GCNT4 1.17 (1.03-1.33) 0.014* 74 64.1 Up (1+0), Down
(0+1)
LUM 0.77 (0.68-0.97) 3.8e-05%** 59.11 80.03 Up (1+1)
PDGFD 0.76 (0.67-0.86) 1.8e-05*** 52 80.9 Up (1+0), Down
(0+1)
PPP2R5A 0.69 (0.61-0.79) 1.1e-08* 50 85 Up (1+1)
TAF9 1.38 (1.21-1.57) 1.1e-06%** 89 54.2 Up (1+1)
TP63 1.14 (1-1.29) 0.044* 74 65.57 Up (1+0), Down
(0+1)
XDH 0.71 (0.6-0.84) 5e-05*** 63 93 Up (1+0), Down
(1+1)
ACTL6A 1.15 (1.01-1.31) 0.03* 74 62.47 Up (1+2)
CASPS8 0.74 (0.65-0.84) 3.6e-06*** 57 78.5 Up (0+1), Down
(1+1)
CDKN2A 1.28 (1.13-1.46) 0.00011*** 84.1 57 Up (1+2)
MAP3K7 0.72 (0.64-0.82) 6.6e-07*** 55 79.54 Up (0+1), Down
(1+1)
MAP4K4 1.25(1.1-1.41) 0.00062*** 78.9 61.2 Up (0+1), Down
(1+1)
PML 1.17 (1.03-1.33) 0.014* 77.77 63.03 Up (1+2)
PRKCZ 0.82 (0.72-0.93) 0.0023** 62.2 78 Up (0+1), Down
(1+1)
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RELA 0.86 (0.76-0.98) 0.024* 63 74 Up (0+1), Down
(1+1)
RIPK1 0.66 (0.46-0.79) 1.5e-06*** 57 104 Up (0+1), Down
(1+1)
RUVBL1 1.61 (1.42-1.83) 1.9e-13*** 95.5 48.8 Up (1+2)
SERPINB2 1.23 (1.08-1.4) 0.0013** 79.27 62 Up (0+1), Down
(2+2)
SQSTM1 0.86 (0.76-0.98) 0.019* 63 77.6 Up (0+1), Down
(1+1)
CDK4 1.51 (1.33-1.71) 2.1e-10%** 85 49 Up (1+3)
EXOSC4 1.24 (1.1-1.41) 0.00073*** 79.27 59 Up (1+2)
BMI1 0.72 (0.64-0.82) 4.2e-07** 59 89 Up (1+1)
MIEN1 1.24 (1.05-1.46) 0.011* 84 65.57 Up (1+1)
NDUFB10 1.2 (1.02-1.42) 0.031* 88.7 68 Up (1+1)
SKP2 1.24 (1.09-1.4) 0.00093*** 78 59.53 Up (1+2)

Table 15. List of 34 genes significantly correlated with poor survival (***p-value<0.001, **p-
value<0.01, *p-value<0.05). In red colour, genes whose survival decrease with high expression
of the gene and in blue colour, genes whose survival decreases with low expression of the
gene.

The genes most significantly correlated with poor prognosis are RUVBL1 and CDKA4. In
both cases it’s the high gene expression which correlates with a lower median survival.

These results are consistent with the findings obtained in the GSEA analysis (see section
4.1). GSEA analysis showed that RUVBL1 was upregulated both in BC (1 dataset) and
MCL (2 datasets) and that CDK4 was upregulated both in BC (1 dataset) and MCL (3
datasets).

V. Gastric cancer cohort

Analysis has been run in data from 631 patients. From the list of 53 genes, a total of 43
have been found significantly correlated with poor survival whereas no differences have
been found for 10 of the genes. Only results for the significant genes are displayed
(Table 16).

High expression of 26 of the genes (genes in red colour in the table) and low expression
of 17 of the genes (genes in blue colour in the table) have been correlated with poor
survival.

Gene Hazard-Ratio (HR) logrank P | Median survival Median Expression state found in our
in low survival in study (BC + MCL)
expression high
cohort (months) | expression
cohort
(months)
IRF6 0.79 (0.65-0.96) 0.019* 27.6 36.4 Down (1+1)
IL1B 0.73 (0.62-0.87) 0.00045*** 23.6 31.2 Down (1+1)
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MFAP5 1.3 (1.1-1.54) 0.0026** 32.1 26.8 Down (1+1)
PLD5 1.81 (1.41-2.32) 2.3e-06 1132 33.27 Down (1+1)
RNF152 1.35(1.05-1.72) 0.017* 93.2 42 Down (1+1)
SERPINB3 1.31 (1.1-1.56) 0.0021** 35.4 24.03 Down (1+1)
SPRR1A 1.45 (1.18-1.77) | 0.00032%* 42.07 26.5 Down (1+1)
SPRR1B 1.46 (1.21-1.76) | 5.5e-05** 50.8 248 Down (1+1)
TLLL 1.73 (1.32-2.27) | 5.8e-05*** 1238 37.93 Down (1+1)
CCDC80 1.78 (1.43-2-22) | 1.9e-07*** 100.8 313 Up (1+0), Down (1+1)
CLCA2 1.35 (1.12-1.63) 0.0018** 39.8 27 Up (1+0), Down (1+1)
DENND2C | 1.76 (1.35-2-29) | 2.2e-05*** 107.7 36.4 Down (0+1)
FAT2 1.64 (1.37-1.97) | 5.8e-08*** 35.9 21.23 Up (1+0), Down (1+1)
FOLH1 0.73 (0.61-0.86) | 0.00022** 216 35.1 Up (1+0), Down (0+1)
GCNT4 1.23 (1.04-1.46) 0.015* 33.2 26.7 Up (1+0), Down (0+1)
LUM 0.83 (0.7-0.98) 0.031* 25 34.1 Up (1+1)
NRG1 0.79 (0.67-0.94) 0.0063** 24.4 33.27 Up (1+0), Down (0+1)
PAK2 0.68 (0.57-0.82) | 4.5e-05** 26.6 42 Up (1+1)
PDGFD 1.45 (1.18-1.78) | 0.00033** 62 278 Up (1+0), Down (0+1)
PHLDA2 0.74 (0.62-0.87) | 0.00038** 25.9 34.1 Up (1+1)
PPP2R5A 0.81 (0.68-0.96) 0.014* 26.7 30 Up (1+1)
TAF9 0.68 (0.58-0.81) | 9.9e-06** 25.2 36.17 Up (1+1)
TAF12 0.65 (0.55-0.77) | 4.3e-07** 216 42.07 Up (1+1)
TP63 1.46 (1.23-1.72) 1.3e-05%* 39.53 234 Up (1+0), Down (0+1)
XDH 0.7 (0.57-0.88) 0.0015** 31.33 70.4 Up (1+0), Down (1+1)
ACTL6A 0.58 (0.47-0.7) 2.36-08%** 25.2 772 Up (1+2)
CASP8 0.63 (0.53-0.75) 7e-08** 24.4 39.53 Up (0+1), Down (1+1)
CDKN2A 1.73 (1.4-2.14) 2.76-07** 70.4 25.9 Up (1+2)
FADD | 0.79 ((0.66-0.93) 0.0057* 27.8 30.9 Up (0+1), Down (1+1)
MAP3K7 1.3 (1.08-1.57) 0.0056** 32.1 255 Up (0+1), Down (1+1)
MAP4K4 1.68 (1.4-2.01) 9.1e-09** 38.2 18.6 Up (0+1), Dow n(1+1)
PML 1.7 (1.41-2.03) 7.5e-09%* 53.43 236 Up (1+2)
PRKCZ 1.42 (1.16-1.72) | 0.00048** 451 26.5 Up (0+1), Down (1+1)
RELA 1.58 (1.29-1.93) 6.1e-06 57.13 26 Up (0+1), Down (1+1)
RUVBL1 0.74 (0.62-0.87) | 0.00038*** 26.6 35.4 Up (1+2)
SERPINB2 | 1.21 (1.02-1.44) 0.029* 34.1 255 Up (0+1), Down (2+2)
SQSTM1 1.56 (1.32-1.85) | 2.3e-07*** 36.4 21 Up (0+1), Down (1+1)
CDK4 1.31 (1.09-1.58) 0.0044** 31.33 222 Up (1+3)
EXOSC4 0.75 (0.63-0.89) | 0.00098*** 255 34.1 Up (1+2)
BMI1 0.69 (0.58-0.82) 1.8e-05%* 23.6 36.4 Up (1+1)
MIEN1L 1.34 (1.07-1.68) 0.011* 65 34.37 Up (1+1)
NDUFB10 0.78 (0.62-0.97) 0.026* 40.2 772 Up (1+1)
SKP2 0.73 (0.61-0.87) | 0.00051** 274 39.8 Up (1+2)

Table 16. List of 43 genes significantly correlated with poor survival (***p-value<0.001, **p-
value<0.01, *p-value<0.05). In red colour, genes whose survival decrease with high expression
of the gene and in blue colour, genes whose survival decreases with low expression of the
gene.

The genes most significantly correlated with poor prognosis in gastric cancer are
MAP4K4 and PML. In both cases it’'s the high gene expression which correlates with a
lower median survival.

These results are consistent with the findings obtained in the GSEA analysis (see section
4.1) for PML. GSEA analysis showed that this gene was upregulated both in BC (1
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dataset) and MCL (2 datasets). However, results are partially consistent with what was
found for MAP4K4. This gene was found upregulated only in 1 MCL dataset and
downregulated in 1 BC and 1 MCL datasets.

In order to analyse which genes are commonly found related to survival in all cancer
types studied, a Venn’s diagram was performed (Figure 14).

Figure 14. Analysis of genes significantly correlated with survival in 4 cancer types (Breast,
Ovarian, Lung and Gastric cancer) using Venn's diagram
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Names |tctal |elements

Breast_cancer 12 TPG3 ACTLGEA PML PDGFD MAP4K4 NDUFE10 CCDCE0 SPRR1B SKP2 SERFIMNE2
Gastric_cancer RUVEL1 MIEN1

Lung_cancer
Owvarian_cancer

Breast_cancer 2 PI3 RIPK1
Lung_cancer
Cwvarian_cancer

Breast_cancer 4 PHLDAZ IL1B TLL1 DENND2C
Gastric_cancer
Ovarian_cancer

Breast_cancer 1" EXCSC4 COK4 SERPINB3 PLDS PPP2ZR2A MAP3KT PRKCZ FATZ RELA SQSTMA
Gastric_cancer GCMNT4
Lung_cancer

Gasfric_cancer 3 EMI1 SPRR1A RNF152 LUM CASPS
Lung_cancer
Owarian_cancer

Breast_cancer 2 NFKB1 ZBED2
Ovarian_cancer
Breast_cancer 3 FOLH1 NRG1 FADD
Gastric_cancer
Gastric_cancer 4 PAK2 MFAPS CLCA2 TAF12
Ovarian_cancer
Gastric_cancer 3 COKN2A XDH TAF9
Lung_cancer

| Breast_cancer 1| THFaRs

| Ovarian_cancer |2 MTS1POF1B

| Lung_cancer | 1 | SCEL

| Gasfric_cancer | 1 | IRF&

Table 17. Number and name of genes found significantly correlated with survival across cancer
types.

A total number of 12 genes have been found significantly correlated with survival in all 4
cancer types: TP63, ACTL6A, PML, PDGFD, MAP4K4, NDUFB10, CCDC80, SPRR1B,
SKP2, SERPINB2, RUVBL1 and MIEN1. An additional number of 22 genes have been
found significantly correlated with survival in at least 3 cancer types, 12 genes in at least
2 cancer types and 5 genes in specific cancer types (Table 17).

4.4. Evaluation of a predictive model for prognosis using
machine learning

The assessment of the predictive power of the gene signature by ML required certain
data specifications: 1) Cancer expression data for a high number of genes, 2) Availability
of prognostic parameters, 3) Sufficient number of samples to run a ML algorithm. Data
fulfilling these criteria were selected from cBioPortal, a public repository for Cancer
Genomics.

The details of the data taken into account for the present work are listed here:
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o Cancer type: Colorectal adenocarcinoma (TCGA, PanCancer Atlas)

e Samples: 594

e Genes: 20502

e Prognostic parameters: OS status (living/deceased), DSS status (alive or dead
tumor free/dead with tumor), DFS status (disease free/recurred or progressed),
PFS status (censored/progression), OS (months), PFS (months), DFS (months)

e Demographic parameters: age, sex

e Clinical parameters: stage

4.4.1 Model selection

The algorithm to assess the predictive power of the 53-CSC gene signature falls into the
category of the supervised algorithms. The availability of both, numeric and categorical
data, for the prognostic parameters allowed to use different ML strategies such as
building a multiple linear regression model by using a numeric class parameter such as
OS (months), or building a classification model by using a categorical class parameter
such as OS status.

The following steps were conducted in order to take the most appropriate decision:

1. Analysis of the missing values

The results of the analysis (Figure 15) showed a high number of missing values (n=370)
for the following prognostic parameters: DFS status, DFS (months). DSS status

accounted for 24 missing values. These three parameters were discarded for further
analysis.

21

j 222
-

Patron

_STATUS
_STATUS

DSS_STATUS

OFS_MONTHS
O5_MONTHS
DSS_MOMNTHS
PFS_MONTHS
O5_STATUS

DFS,
PFS.

O5_S5TATUS OS5_MONTHS DS5_STATUS DSS_MONTHS DFS_STATUS DFS_MONTHS PFS_STATUS PFS_MONTHS
2 7 7 3 4

Figure 15. Analysis of missing values in prognostic variables
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2. Correlation analysis (Pearson coefficient)

Next step was to perform a correlation analysis between the genes included in the 53-
CSC gene signature and the following (numeric) prognostic parameters: OS (months)
and PFS (months). This analysis allowed not only to select the suitable prognostic
parameter for the study but also to select those genes with higher correlations for the
model.

A first correlation analysis was performed to decide whether to use only the subset of
“Deceased” patients (defined by the variable “OS status”) or the entire dataset (20% of
the dataset). In one hand, the use of the entire dataset increases the number of samples
to generate the model, but in the other, a higher degree of correlation of the genes with
the prognostic parameters leads to a more powerful model.

The proportion of “Deceased” and “Living” patients is the following:

0:LIVING 1:DECEASED
470 119

The correlation analysis showed that correlations were higher when using the subset of
“Deceased” patients compared to the entire dataset (results for a sample of 10 genes is
shown in Figure 16). Moreover, results showed that the degree of correlations was
higher with OS than with PFS (only results for 10 genes is shown in Figure 16).

Full dataset (592) Only deceased (119)

T A R

ACTLEA 03 o006 02 043 007 006 002 043 005 002 0

BAiIt 025 047 001 D01 001 006 O3 04 008 008

Figure 16. Correlation analysis with prognostic parameters comparing subset of "Deceased"”
patients with the entire dataset.

Taking into account these results, a classification algorithm (Random forest) was
selected to generate a predictive model. For that, the 119 “Deceased” cases were split
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into two classes by taking into account the median of “OS (months)”, that is 14.53
months.

e “Early death” 59 cases which died before 14.53 months from diagnosis (Class
0)

o “Late death”: 60 cases which died after 14.53 months from diagnosis (Class 1)

4.4.2 Feature selection

The candidate genes to be included in the model resulted from the list of genes from the
53-CSC gene signature. In order to select which genes to include in the model several
steps were performed:

1. Analysis of the missing values

The count of missing values for each of the 53 genes is listed below (Table 18):

ACTLEA BMIL1 CASPE CCDC80 COK4 CDKNZA CLCAZ DENND2C EXOsC4 FADD FAT2 FOLHL GCNT4 IL1B

4] 4] 0 0 4] 0 0 4] 4] 0 0 4] 4] 0

IRFG Lum MAP3K7 MAP4K4 MFAPS C17orf37 NDUFBLO NFKBL NRGL PAKZ PDGFD PHLDAZ PI3 PLDS

] [} 0 0 ] 0 0 ] [} 0 0 ] [} 39

PML POF1E PPP2R5A PRKCZ RELA RFFL RIPKL RNF152 RUVBL1 SCEL SERPINBE2 SERPINE3 SKP2 SPINK?

0 4] 0 0 0 0 0 0 4] 0 0 0 4] 38
SPRR1A SPRR1BE 5QSTML TAF12 TAF9 TLL1 TNFAIP3 TPG3 XDH ZBEDZ
0 0 0 0 0 4] 0

Table 18. Count of missing values for the 53 genes of the 53-CSC gene signature

Results showed that two of the genes, SPINK7 and PLDS5, accounted for 39 missing
values each. As the number of cases for the analysis is small (119), these 2 genes were
excluded for further analysis. Also, another gene “MIEN1” was found missing, and that
was due that another name of the gene, c170rf37, was used in the original study. No
missing values was found when using this other gene name.

2. Correlation analysis (Pearson coefficient)

The 51 genes (excluding SPINK7 and PLD5) were divided in 5 groups for the purpose
of visualization. Results are shown in the Appendix 9.4. Results of the correlation
analysis showed a diverse range of correlations between the 51 genes and Overall
Survival ((Supplementary Figures S1-S5).

A cut-off of 15% correlation was used to select the genes for the model. Using this cut-

off, a total number of 18 genes were selected: CLCA2, IL1B, MFAP5, NRG1, PDGFD,
PHLDA2, RUVBL1, SERPINB2, SERPINB3, SPRR1A, SPRR1B, SQSTM1, TAF9,
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TLL1, TP63, ZBED2, CDKN2A and SCEL. Gene signature can be found in section 9.3
of Appendix.

Another correlation matrix was extracted with the selected 18 genes to discard high
correlations among the genes (>90%) (Figure 17).

o Py o & @@'9 @&‘? &5 4T 5 & \z\o‘i\@
& e & & P © e o & & &
o & Qqﬁ &S E LS E L ’\Qﬁéb € & & & 1
CLCA2 032 014 019 036 -0.06 -0.14 002 014 007 0.06 -0.18 -0.04 027 042 0.16 0 0.16 -0.18

0.2 035 029 026 -0.25 045 015 047 0419 046 -0.04 046 018 024 0.02 014 -045

0.8
047 017 0.2 031 0098 005 0.02 0.02 -0.09 . 04 051 015 028 -015

NRG1 049 001 045 006 005 0.03 003 -0.07 047 032 021 041 011 0.04 045 06
-0.39 0.06 006 -0.04 -041 0 -016 . 027 005 0 007 045
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Figure 17. Correlation matrix of the 18 genes selected for the model.

The highest correlation found among the genes was 79% correlation between SPRR1A
and SPRR1B, so no gene was excluded for further analysis.

Regarding the correlation with OS, 15 of the 18 genes were found negatively correlated
with OS, which means that the higher the expression of those genes, the lower the overall
survival. Interestingly, the other 3 genes (RUVBL1, SQSTM1 and TAF9) were found
positively correlated, which means that the higher the expression of these genes, the
higher the overall survival.

The highest correlations with OS were found for CDKN2A (-30%) followed by TAF9
(29%), SPRR1A (-27%) and SQSTM1 (22%).
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4.4.3 Evaluation of the Random forest model

The following set of parameters were tested (data not shown):

Cross-validation with 5 folds and 3 repeats
Cross-validation with 3 folds and O repeats
Split into train/test following a proportion of 70%/30%
Split into train/test following a proportion of 65%/35%
Split into train/test following a proportion of 60%/40%

SANEE A

Best metrics were obtained using a cross-validation with 3 folds and O repeats, and
splitting the data into 60% for the training set and 40% for the testing set. This is probably
due to the small size of the dataset. A total number of 10 iterations was performed. The
following metrics have been used to evaluate the model: accuracy, sensitivity and
specificity.

1 65.96% 62.50% 69.57%
2 51.06% 54.17% 47.83%
3 53.19% 33.33% 73.91%
4 51.06% 41.67% 60.87%
5 51.06% 66.67% 34.78%
6 55.32% 50% 60.87%
7 51.06% 41.67% 60.87%
8 46.81% 45.83% 47.83%
9 57.45% 62.50% 52.17%
10 65.96% 62.50% 69.57%
Average 54.89%% 52.08%% 57.83%

Table 19. Metrics corresponding to the 10 iterations of RF and their average

Results showed a low performance of the model, although surpassing 50% in all of the
three metrics evaluated. Average specificity almost reached 60% (57.83%), however
average sensitivity remained close to 50% (52.08%). Overall, the average accuracy of
the 10 iterations was 54.89%. The variability of the metrics observed across the iterations
could be due to the small size of the sample used to generate the model (119 cases).
Confusion matrix of the last iteration is shown below (Figure 18).
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Figure 18. Confusion matrix of the 10th iteration of RF.

The relative importance of the genes was also retrieved (Figure 19). The genes with
major impact in the model were TAF9 and SPRR1A, which is consistent with findings
obtained in the correlation analysis (TAF9 was the second and SPRR1A was the third
gene with highest correlation with 29% and -27%, respectively).
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cLcaz

SPRR1B
Range_Age_50-64"
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RUVBL1 +
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e | E—
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Figure 19. List of variables ranked by their relative importance in the model

4.4.4 Inclusion of demographic and clinical variables

In order to increase the performance of the model, three additional variables were
included:
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1. Age of the patient (discretized in ranges: 30-49, 50-64, 65-74, 75-89, 80-
100). Ranges were selected taking into account the distribution of the Age

Min. 1st qu. Median Mean 3Ird Qu. Max.
34.0 65.5 74.0 0.7 79.0 Q0.0

The frequency table of the variable “Range Age” is the following:

30-49 50-64 65-74 75-79 80-100
12 18 41 23 25

The exploratory analysis (Figure 20) is shown below:

Age Vs Outcome

Outcome: Early_death Outcome: Late_death
40.0% -

38.3%

30.0% -

23.7%

Age

[ E
20.3% I s084

B 5574

| E£ES)

0 s0-100

Figure 20. Exploratory analysis of variable "Range age" in early/late death groups

20.0% -

Porcentaje

16.9%

13.3%

15 0%
11.7%
10.0% -
8.6%

0.0%

There are some ranges of Age (65-74 and 75-79) with noticeable differences of
frequency among the groups. While it seems that there is a higher frequency of
patients between 65 and 74 years that die earlier, the opposite is found for the
range between 75-79 years. However, if comparing all the ranges, these
differences are not statistically significant as per the results of the Chi-squared
test (p-value = 0.6837).

2. Sex of the patient (Female, Male). The frequency table of the variable is
the following:

Female Male
55 o
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The exploratory analysis (Figure 20) is shown below:

Sex Vs Outcome

Outcome: Early_death Outcome: Late_death

54 2%

Sex

B =040
B sosa

Porcentaje

63.3%
46.7% 15.8%
40% -
20%-
0%-

Figure 21. Exploratory analysis of variable "Sex" in early/late death groups

The analysis showed no differences of frequency among the groups. This is
confirmed by the Chi-squared test (p-value = 1).

3. Stage of the tumour: Stage I-ll, Stage IlI-IV. The frequency table of the
variable is the following:

stage_I_II Stage_III_IV
40 74

The exploratory analysis (Figure 22) is shown below:

Stage Vs Outcome

‘Outcome: Early_death ‘Quicome: Late_deatn

66 7%

40% -

57 6%
28.3%

39.0%

Stage
I stage_m_wv
B stage_Lun
B e

20%-

5.0%
- o
. |

Figure 22. Exploratory analysis of variable "Stage" in early/late death groups

Porcentaje
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The analysis showed the presence of 5 missing values (3 in “Early_death” and 2
in “Late_death”. It seems there are differences between groups, as expected
proportionally later stages are found in the “Early_death” group. However, no
statistically significative differences were found as per the results obtained by the
Chi-squared test (p-value = 0.3265).

These results of not finding any statistically significant differences in “Range age”
and “Stage” might be due to the size of the sample analyzed. Despite not finding
statistically significant differences in these two variables, they were included in
the model to check whether they could improve the model.

4.4.5 Evaluation of the Random forest model including demographical and
clinical data

Results of the 10 iterations and the computed average are shown below (Table
20).

1 61.36% 54.55% 68.18%
2 54.55% 72.73% 36.36%
3 59.09% 59.09% 59.09%
4 50% 40.91% 59.09%
5 59.09% 72.73% 45.45%
6 61.36% 68.18% 54.55%
7 65.91% 68.18% 63.64%
8 50% 45.45% 54.55%
9 59.09% 68.18% 50%
10 63.64% 59.09% 68.18%
GEEE 58.41% 60.91% 55.91%

Table 20. Metrics corresponding to the 10 iterations of RF and their average (including
demographical and clinical variables)

Results including the demographical (“Range age”, “Sex”) and clinical data
(“Stage”) showed an improvement in the performance of the model: a 8%
increase in sensitivity surpassing the 60% (60.91%) which made the accuracy
increase 4% until reaching almost 60% (58.41%) despite a slight decrease in
specificity by 2% (55.91%). Confusion matrix of the last iteration is shown below
(Figure 18).
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Figure 23. Confusion matrix of the 10th iteration of RF (adding demographical and clinical
variables).

The relative importance of the variables was also retrieved (Figure 24). The
variables with major impact in the model were the genes TAF9 and CDKN2A,
which is again consistent with findings obtained in the correlation analysis (TAF9
was the second and CDKNZ2A the first gene with highest correlation with 29% and
-30%, respectively). Variable “Stage” had also a significant impact on the model
as it was shown to be ranked the 4™ variable in order of importance.

1 1 1
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CDKN2A *
CLCA2 +
STAGE *
SCEL *
SPRR1A
TP63
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—
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_
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e
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PDGFD
RUVBL1
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PHLDA2
NRG1
MFAP3

T T \ \ T
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Importance

Figure 24. List of variables ranked by their relative importance in the model

4.4.6 Comparison with other CSC-gene signatures
Last, the results obtained by the “18-CSC gene signature” together with the three
demographical and clinical variables were compared to other two published CSC-gene

signatures (already reviewed in section 2.2.1):

1. 12-CSC gene signature related to stemness (Pei at al., 2020)
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Genes are: CCNB2, CDC20, CENPA, EXO1, FOXM1, KIF4A, PLK1, RAD54L,
SGOL1, SKA1, TPX2 and TTK

2. 20-CSC gene signature related to prognosis (Pece et al., 2019)
Genes are: THOC4, APOBEC3B, CDK1, CENPW, EIF4EBP1, EPB41L5,
EXOSC4, H2AFJ, H2AFZ, LY6E, C170rf37, MMP1, MRPS23, NDUFB10, NOL3,
PHB, PHLDA2, RACGAP1, SFN and TOP2A.

A. Correlation with OS (Pearson coefficient)

Correlation analysis of the genes included in both signatures are presented below
(Figure 25, iError! No se encuentra el origen de la referencia.).

12-gene signature (Pei, 2020)

d-‘é A R A

conBz

08

06

ro04

rooz

Figure 25. Correlation analysis of genes from the 12-CSC gene signature (Pei et al., 2020).
Correlation with OS (in months)
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Figure 26. Correlation analysis of genes from the 20-CSC gene signature (Pece et al., 2019).

Correlation with OS (in months)

The results of the analysis showed a maximum degree of correlation of -13% (gene
CENPA) among all the genes included in the 12-CSC gene signature while the maximum
degree of correlation among the genes included in the 20-CSC gene signature was of -
17% (gene PHLDAZ2). These results are lower than what has been observed with the
genes of the 18-CSC gene signature developed in the present work, with correlations
reaching -30% (gene CDKNZ2A) plus 4 other genes reaching correlations over £20%
(TAF9, SPRR1A, SQSTM1 and SCEL with 29%, -27%, 22% and -20%, respectively).

B. Evaluation of the models

The three demographical and clinical variables were included in the models and 10

iterations were performed in both cases.

Results are displayed below (Table 21, jError! No se encuentra el origen de la

referencia.):

56




(Pei, 2020)

lteration
1 54.55% 50% 59.09%
2 50% 59.09% 40.91%
3 61.36% 54.55% 68.18%
4 59.09% 36.36% 81.82%
5 59.09% 59.09% 59.09%
6 50% 59.09% 40.91%
7 63.64% 54.55% 72.73%
8 54.55% 54.55% 54.55%
9 40.91% 27.27% 54.55%
10 52.27% 50% 54.55%

il 54.55% 50.46% 58.64%

Table 21. Metrics corresponding to the 10 iterations of RF and their average (including
demographical and clinical variables)

Specificity
1 45.45% 54.55% 36.36%%
2 52.27% 45.45% 59.09%
3 52.27% 63.64% 40.91%
4 43.18% 40.91% 45.45%
5 59.09% 54.55% 63.64%
6 59.09% 59.09% 59.09%
7 45.45% 54.55% 36.36%
8 59.09% 54.55% 63.64%
9 45.45% 36.36% 54.55%
10 54.55% 59.09% 50%
Sl 51.59% 52.27% 52.53%

Table 22. Metrics corresponding to the 10 iterations of RF and their average (including
demographical and clinical variables)

The relative importance of the variables was also retrieved for both models- Figures can
be found in Appendix 9.4 (Supplementary Figures S6, S7).

In summary, results showed that the 18-CSC gene signature identified in the present
work had the best predictive power for OS among the 3 CSC gene signatures tested.
The accuracy obtained (58.41%) was 4% and 7% higher than the obtained by the 12-
CSC gene signature (54.55%) and the 20-CSC gene signature (51.59%), respectively.
Sensitivity was also the highest among the 3 gene signatures (60.91%), being 10% and
8% higher that the obtained by the 12-CSC gene signature (50.46%) and the 20-CSC
gene signature (52.27%), respectively. However, specificity (55.91%) was 3% lower than
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the one obtained by the 12-CSC gene signature (58.64%) but 3% higher than the one
obtained by the 20-CSC gene signature (52.53%).

_ Sensitivity Specificity

18-gene signature (this work) 58.41% 60.91% 55.91%
12-gene signature (Pei, 2020) 54.55% 50.46% 58.64%
20-gene signature (Pece, 2019) 51.59% 52.27% 52.53%

Table 23. Comparison of the metrics obtained by the 3 gene signatures tested.
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5. Conclusions

The main conclusions of the present work are:

1)

2)

3)

4)

5)

6)

7)

8)

An enrichment in selected CSC genes has been confirmed in all 6 BC and 6 MCL
gene datasets studied. The highest proportion of upregulated CSC genes in BC has
been found in datasets with invasive or early onset phenotypes.

Differences have been found in the proportion of upregulated respect to
downregulated genes in both cancer types. Whereas in MCL a 74.26% of enriched
CSC genes have been found upregulated, in BC a 62.84% has been found
downregulated.

The CSC gene sets with higher proportion of upregulated genes found enriched in
both cancer types are the ones related to prognosis (PROGNOSIS BC) and
stemness (STEMNESS_BC).

All 8 gene sets related to CSC pathways have been found enriched at least in one of
the cancer types. TGF-beta (TGF_BETA) and Myc (MYC) resulted with the highest
proportion of upregulated genes found in both cancer types.

A total number of 269 CSC genes have been found commonly enriched in both
cancer types, 53 of them with a high significance (p-value<0.01). Several CSC-gene
signatures have been generated: 269-CSC gene signature (with all commonly
enriched genes), 242-CSC gene signature (with genes commonly enriched with a
significance <0.05) and 53-CSC gene signature (with genes commonly enriched with
a significance <0.01).

Functional annotation analysis regarding molecular function mapped almost 10% of
the 269 identified genes to heterocyclic compound binding proteins. This is important
as heterocycles are key structural components of many of the anti-cancer drugs
available.

Functional annotation analysis regarding biological processes mapped almost 30%
of the 269 identified genes to nitrogen compound metabolic process. This is
important as nitrogen acquisition and utilization are fundamental for cell growth and
proliferation.

Up to 51 of the 53 genes included in the 53-CSC gene signature showed a significant
correlation with survival in different cancer types using Kaplan-Meier estimator. 12 of
those genes were found significantly correlated with survival in all 4 cancer types
analyzed (breast, ovarian, lung and gastric cancer).
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9) Upto 18 of the 53 genes included in the 53-CSC gene signature showed a correlation
of more than 15% with overall survival in colorectal adenocarcinoma using Pearson
coefficient, being CDKN2A, TAF9 and SPRR1A the 3 genes that showed the highest
correlations (-30%, 29% and -27%, respectively).

10) The 18-CSC gene signature generated in the present work achieved 55% accuracy
in predicting prognosis in colorectal adenocarcinoma. Accuracy increased to 58.41%
when combined with “Age”, “Sex” and “Stage. Although far from being considered
as a valid clinical classifier, the predictive power of the 18-CSC gene signature is

higher than the ones displayed by other CSC-gene signatures already published.

All the objectives of the present work have been fulfilled. A common gene signature
related to CSC has been identified as enriched in both, BC and MCL (with various
degrees of significance). A deeper analysis of the molecular and the biological
significance of those genes showed some common patterns related to cancer biology
and therapeutics, such as the fact that 10% of the genes mapped to heterocyclic
compound binding proteins which could be targeted by many anti-cancer drugs
available. The 96% of the genes included in the 53-CSC-gene signature proved to
be significantly correlated to prognosis in at least one of the cancer types studied
(breast, ovarian, lung and gastric cancer) while a subset of selected 18 genes
exhibited a predictive power for prognosis in cancer that was higher than other CSC
gene signatures published.

The main difficulty found in the project has been the search and retrieval of valid data
for accomplishing the objectives, especially for the generation of the predictive
model. Many scientific articles related to cancer are published every day but few are
found in which both, expression and clinical data, are available for each of the cases
studied. There are public repositories in which authors of experimental and clinical
studies can load their data but the majority relate to mutation and not so much to
expression studies. This fact has constrained the extension of the present work as
the predictive power of the gene signature has been evaluated only in a single
dataset with limited size.
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6. Future work

In the future it would be interesting to continue with the following research:

1.

Include more BC and MCL expression datasets and repeat GSEA analysis to
refine the CSC-gene signature.

Evaluate a second CSC-gene signature not composed by those genes with the
highest significance but by those genes found enriched in the highest number of
datasets (both, BC and MCL).

Evaluate the predictive power for prognosis of the gene signatures in a variety
of cancer types.

Study the prognostic significance of TAF9, especially in colorectal carcinoma.
This has been an unexpected finding of the present work. TAF9 (TATA-Box
Binding Protein Associated Factor 9), a gene involved in transcriptional
activation, has been the second gene found in the present work with the highest
correlation with prognosis (29%), with a higher expression conferring longer
overall survival. Whereas for CDKN2A, the gene found with the highest
correlation with OS (-30%), it has already been studied its role as diagnostic (
(Oh et al., 2020) and prognostic biomarker for colorectal cancer (Marcuello et
al., 2019), nothing has been published concerning the potential role of TAF9 as
a prognostic biomarker in colorectal cancer (no results found when searching for
“prognosis biomarker colorectal cancer TAF9” in PubMed.gov). Only one article
from 2009 (Krasnov et al., 2009) has discovered the overexpression of the gene
at a protein level in colon cancer tissue but no relation to prognosis has been
established so far.
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7. Glossary

BC: Breast Cancer, 1

BIDC: Breast Invasive Ductal Carcinoma, 7

BRCA: Breast Invasive Carcinoma, 9

Circulating Free DNA, 5

CNVs: Copy Number Variants, 9

CSCs: Cancer Stem Cells, 1

DFS: Disease Free Survival, 7

EMT: Epithelial Mesenchymal Transition, 9

ES: Enrichment Score, 15

FDR: False Discovery Rate, 16

GCT: Gene Cluster Text, 15

IC50: Inhibiting Concentrarion 50, 6

MCL: Mantle Cell Lymphoma, 1

MCL-ICs: Mantle Cell Lymphoma - Initiating Cells, 5
MGSEA: Multivariate Gene Enrichment Analysis, 9
ML: Machine Learning, 9

NES: Normalized Enrichment Score, 16
NOD/SCID: Non-Obese Diabetic/Severe Combined Immunodeficient immunocompromised mice, 5
OCLR: One-Class Logistic Regression algorithm, 8
OS: Overall Survival, 7

RFS: Relapse-Free-Survival, 5

RMES: Regulatory Module Enrichment Score, 9
ROS: Reactive Oxygen Species, 5

SVM: Support Vector Machine, 9

TCGA: The Cancer Genome Atlas, 8

TNBC: Triple Negative Breast Cancer, 5

TTM: Time To Metastasis, 5
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9. Appendix

9.1 Listof genesincluded in the gene sets

e “Prognosis_BC”

EIFAEBP1, LY6E, NOL3, EXOSC4, ALYREF, PHB, NDUFB10, MRPS23, CDK1, TOP2A,
CENPW, APOBEC3B, H2AFJ, H2AFZ, RACGAP1, EPB41L5, PHLDA2, MIEN1, SNF, MMP1,
TRIP6, SGO1, KIF4A, CDC20, PLK1, FOXM1, SKA1, RAD45L, SGO1, CENPA, CCNB2, EXO1,
TPX2, MSK1, GPR77, CD10, TAZ, MLF2, RPL39, HN1L, HGA6, STMN1, PROCR, PLAG2G16,
OCT4, CTNNB1, LGRS, H19, MYC, HER2, CLI1, CGI99, CDK4, CD133, MKI67, CD24, BMI1,
CD44, ALDH1A3, ALDH1A1, ALDH1, ACBD3

e “Stemness BC™

BUB1B, CDCA3, DLGAP5, SGO1, FOXM1, SKA1, AURKB, BUB1, CDC20, KIF23, CDC45,
ORC1, KIF18B, KIF20A, RAD54L, NCAPH, CEP55, NCAPG, NDC80, MELK, CDC25A,
KIF4A, TTK, EXO1, KIF2C, CCNB2, CENPA, KIFC1, PLK1, CDCAS, HJURP, TPX2, GLI1,
Adipsin, SMAD, TGF-beta, STAT3, TWIST1, SOX2, ABCG2, OTUB2, NOTCH2, SHIP,
PCGF4/BMI1, SNAIL, SOX9, SOX2, INTEGRIN_BETA4, ANTXR1, CXCR4, CD49f, CD61,
CD133

e “Stemness2 BC”™:

ERCC6, RAD23B, SLC4A3, CA6, DDX59, NTHL1, GNAS, SLC6A8, EIF2B4, RBL1, PRTFDC1,
RARA, DDX41, STAMBPL1, GUSB, SLC37A3, CRMP1, TMX1, NAIP, AFP, MRC1, MTA1,
SLC25A18, HLA-DRB1, CNTN1, ALDH1A1, TIPARP, POMT2, RIT2, MLL, MED1, GYS2,
RCAN1, FAAH, HMG20A, PPAT, HSPA14, KIF2A, APBA3, PRDX1, SCAMP3, IL36B, NPTXR,
CLCF1, PTDSS2, IL6, UBN1, VARS, AARSD1, PDE6G, NFRKB, CSGALNACT2, SLC1A1,
SLC9A5, MSH5, NAA15, SLC40A1, DNASE2B, SEC24A, NCOR1, NR3C1, RNASE3, HOXC4,
ETV5, ACADS, PLA2G2E, STX1A, ASAH2, FKBP2, NATSL, DPF1, MDM4, RNF146, BAZ1B,
LOC729974, PCGF6, RNF43, RNF213, MEFV, FBXO31, GALK1, GLP2R, G6PC2, HACE1,
BIRC7, KCNJ10, PKD1L2, KCNK12, SLC9A3, PTPLB, ITPR3, GRIN3B, GRIA3, ADORA2B,
GPR152, SORCS1, LTB4R2, ICK, PACSIN1, ADCK4, PKN2, PIM1, PI4KB, C190rf34, ZNF721,
C180rf51, NPVF, C110rf38, CBLN4, ANKRD39, CLEC4A, CCPG1, PSAP, C3orf37, L1TD1,
CCDC56, TTC31, GLT25D1, CTDSPL2, ARD1B, SAMDOL, BFSP1, STARD3, STXBP4,
DMRTC1B, KLHDC3, C160rf62, NME1-NME2, PCP2, TIMM17B, HNRNPH1, C70rf50,
DOCK2, GTF2H5, ZNF543, TNNT3, ZNF135, CD52, C90rf139, GSX2, ADNP2, TMEM106C,
SMAP2, C1QL4, ITFG2, MUPCDH, TMEM128, RBM4B, FAM83H, HNRPLL, BATF2, KLHDCS,
C3orf44, DTD1, IGFL1, ZBTB6, ZNF706, TSHZ3, MSLNL, SAMD13, FASLG, YRDC, CEP6S,
C90rf164, CD70, PNO1, CLRN3, TMSL8, PLEKHA9, PRAM1, C50rf34, ZNF675, OVOS2,
CCDC51, LILRAS, RIC8B, CCDC94, NENF, TSC22D2, DMKN, SHISA4, DAGLA, Clorf84,
FAM23B, PELI3, ESF1, ZNF746, CIAPIN1, KIAA1755, C170rf59, C160rf58, BET1L, ZNF446,
PAQR5, ZNF513, DEFA3, LASS2, SYS1, DNAIJC7, OR9Q2, RPL7A, PEX16, FAM13Al,
KIAAO391, DEFA4, OR8B12, ECHDC1, MARVELD2, UNC84B, CORO1B, FAM168B, LENGS,
OR51G2, NMB, HPS1, SLC39A11, RPRD1A, STX11, MAD1L1, PION, SNIP1, RPL38, PSAPL1,
HLA-DRB5, LOC57228, SCAP, LRRC27, LRRN4, A26B1, FBLN2, SNX32, CYGB, AP1S2,
C140RF48, MPZL1, CAV2, LRRTM1, ITM2C, HMGA2, PCDHA13, ZSCAN1, COL27A1,
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C120rf67, TMEMS57, IGFBP1, FAM24A, SNRNP70, USHBP1, ADCYAP1, CEP97, OR6B2,
CCDC7, POUSF2, FEV, C7ORF26, CLTCL1, MAPK8IP1, LG4, RPLPO, CSPG4, RPL3, IRX2,
ZNF202, JMID1B, TIMMS8B, GPSM1, ZFP82, MRPS17, FAM36A, NCSTN, ZNF385A, FZR1,
OR10Z1, OR1K1, LRBA, TBC1D16, SFTPB, NKAP, IQCA1, C100rf54, MMP23B, NECAP1,
TNFRSF6B, H1FOO, FCGR1B, MFAP4, OR56B4, SYCN, CO9ORF16, LRFN3, PECAM1,
OR52M1, LOC100129550, RALGPS1, GGCT, ARL4C, RUNDC3A, INSL5, OMD, PSMF1,
KRTAP19-4, LSM6, FSTL4, NDUFV3, SS18L2, TARP, SNX20, BCLIL, API5, TOB2, YDIC,
RHOT2, ADRM1, STAP1, ZNF324, OR5D13, OR11G2, MAGEE2, FAR2, MED30, COL6A3,
PCDHS, PDLIM3, TREML1, RPL18, GSTT2B, OLFM2, OR1B1, FAM180A, UNC5D, GLTSCR2,
ZNF600.

“Dormancy_BC’:

DYRK1A, MAPK, TK1, TIMP3, PLAT, PIK3CB, ODC1, NT5E, MMP1, JUN, IL8, IGF1R,
FOXM1, FOXD1, FOSL1, ESM1, EGR1, EGFR, DTYMK, DNMT1, CKS2, CEBPG, CDKN3,
BUB1B, BUB1, ATF4, ATF3, ASNS, APEX1, TPM1, TP53, THBS1, TGFB2, STATS3,
SREBF1, SOX9, P4HA1l, NR2F1, MMP2, IGFBP5, HIST1H2BK, GATA6, EPHAS, DDR1,
CTSD, COL4A5, COL1Al, BHLHE41, AMOT, ADAM10, ACVR1.

“Chemorresistance_BC”:

ABCBS5, ABCG2, ABCB1, STAT3, GPR77, CD10, BRD4, GPX4, CD133, ATG7, TRAIL, NRF2,
PERK, CD44, ALDH family, TWIST1, SOX2, ABCG2, NOTCH1, TSPANS, FGF5.

“GSE25976_OVER’:

CSF2RA, HOOK1, CYP1B1, MFHAS1, RNA5SP449, LCN2, KIF16B, CCL20, NAP1L2,
OTULINL, OLR1, SNORD116-15, TLCD4, PLCB4, TAGLN, SLC7A7, HSPA6, PAPPA, ZNF204P,
SLAMF7, PTGFRN, IL13RA2, KLF8, GALNTS, TENM2, GPR65, L3MBTL4, CTSV, CRISPLD2,
SLCO1B7, DCLK1, F2RL2, MCTP2, SNORD116-20, ARHGAP28, ALPK2, OLFML1,
SNORD116-19, OR2A20P, CYP24A1, UCA1, SPARC, GNGT2, MAMDC2, SNORD116-13,
MPZL2, MATN2, TNFSF10, LCP1, MYO1D.

“GSE25976 _UNDER’:

TNFSF18, GABRA3, HSD17B2, SPANXA1, CCBE1, HHIP, ITGA10, SPANXB1, AADAC, HAS2,
PPIAP47, XAGE2, RGCC, RNU6-256P, SERPINB2, RNASSP180, TLR2, SPANXD, CHRDL1,
AZGP1, MMP1, COL6A3, TIE1, COX7B2, OTOGL, PCDHB15, MRGPRX3, SEMA3A, RNU6-
729P, TMPRSS15, SSX1, LAMA4, AC002316.1, MAGEA1, EHF, RNASSP366, SIDT1,
RNA5SP183, ZNF521, CDH11, PRSS2, RNA5SP30, TGIF2LX, RNU6-888P, TMEM163,
NCKAP1L, JPH1, RNA5SP55, H2BC1, DSCRS.

“GSE43730_OVER’:

ATP8A1, DOCK10, ABCA6, RNU6-893P, RNY1P14, RNA5SP330, RNA5SP110, SCARNAL1O,
LAMP3, PDE7B, RNU6-23P, RN7SL153P, IFI44L, LPL, RNA5SP484, SMOX, STC1,
TMEM156, PPEF1, RNA55P219, OR5M6P, SULF1, SLC27A2, ADAM12, ANGPT1, ADGRL3,
MMP16, MACC1, SNAP25, PPP1R9A, SRGN, SNORD63, SLIT2, CDH2, RNA5SP242,
MSL3P1, DCLK1, TBL1X, DCN, RNA55P494, RN7SKP35, SELENOP, SNORD13P1, CHGB,
SNORD1C, CCDC102B, LINGO2, FPR1, EYA1, ERBB2.
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“GSE43730_UNDER’:

RNA5SP247, SERPINB13, SERPINB2, MFAPS, SERPINB3, NRG1, SPRR1B, RNU6-1263P,
RNU5A-1, MIR205, RNU6-1208P, RNU6-155P, FAT2, IRF6, RNAS5SP354, CYP4F11,
RNF144B, TP63, RNA5SP191, PI3, SPRR2A, PDSS1P1, PLD5, RN7SL378P, RNU6-674P,
CLCA2, RNF152, EPB41L4A, ZBED2, RNY3P13, RN7SL452P, GCNT4, SCEL, OR10T1P, TLL1,
TRAF3IP3, CCDC80, RNU6-597P, XDH, FOLH1, DENND2C, POF1B, RGS2, ANK3, PDGFD,
RNU6-577P, RPSAP52, SPINK7, SPRR1A, IL1B, CD24P4, RNASSP374.

“GSEY95042_OVER’:

GBP2, PLAAT4, HLA-DMA, MMP9, CD163, BGN, CXCL9, SPARC, AIF1, SPP1, SFRP2, HLA-
DRB4, PDGFRB, LAPTMS, GIMAP4, RNASE1, MS4A6A, LYZ, CTSK, SPARCL1, CD14,
FCER1G, HLA-DQA1, THY1, POSTN, CSF1R, CD74, VWF, AEBP1, ALOX5AP, DCN, HLA-
DRB6, RGS1, HLA-DRB1, COL5A2, HLA-DPA1, TAGLN, HAVCR2, HLA-DRA, IGLL1, COL6A3,
TYROBP, CCL8, COL1A2, C1QC, LUM, HLA-DMB, COL1A1, C1QB, COL3A1.

“GSEY95042_UNDER’:

LCN2, GDF15, CXCL1, TRIB3, ERRFI1, PSAT1, BCAR3, PSAT1P3, GOLGASS, TFPI12, GNE, MT-
ND6, LRATD2, CXCL8, HNRNPKP4, ASNS, CAV2, TCEA1, NT5E, MAL2, ADM2, FADS1,
COCH, STC2, TF, SPRY2, KCNG1, LARP6, ASS1P11, ELOVLS6, IRS2, VGF, OSGIN2, CXCLS5,
KRT18, IL6, TMEM38B, GNG12, HES1, NAMPT, LAMP3, CDK6, OPRK1, SYBU, PLSCR1,
BCAT1, TPBG, TVP23C, ACSS2, FOXAL.

“GSE132083_OVER’:

ZNF883, MTAP, BSN-AS2, THRB, ESCO2, CCNE2, KANSL1, CASS4, LINCO0886, ZNF544,
TXNDC9, AGMAT, SMIM17, ZNF382, RARA-AS1, SMGS8, DNAJC3-AS1, LINCO0654, DMC1,
ZNF514, HEYL, GPR19, IFIT2, Clorfl45, LONRF3, EIF3EP1, TAF1C, HIST1H2BG, TEFM,
ARHGDIG, HIST1H2BD, FAM13A-AS1, PLA2G4C, GLDC, ACTN2, PPP1R26-AS1, TIGDS,
NES, ADHFE1, RRN3P3, EOMES, KLHL7-AS1, LGALS8-AS1, GTF2H2C, RP11-227H15.4,
ZNF253, LRGUK, KIAAO0825, INTS4L1.

“GSE132083_UNDER’:

CBLN3, ZMYND10, SLC30A3, MRAP2, RPL17-C180rf32, GABRB3, ST3GAL6, Cé6orfl,
FITM2, PARD6G, LINC0O0623, FAM171A2, LTBP4, LENG1, WBSCR27, SOCS1, Clorf21,
ZBTB7C, ABCG1, PDZD7, SKI, FAM120C, RBPMS, FHOD1, DEXI, NOP14, KRT80, NPAS1,
FAM78B, NELFA, LINCO0869, RPL17P6, CALCB, ARFIP2, CCDC92, LINC0O0958, GOLGA2P7,
COL16A1, PDE4A, DCHS1, LEPREL2, BACE1, HECW1, COL8A1, EMR1, BATF3, RNF130,
EBF4, DPY19L2P2, CPQ.

“Hedgehog”:

WNT8B, WNT8A, WNT7B, WNT7A, WNT6, WNT5B, WNT5A, WNT4, WNT3A, WNT3,
WNT2B, WNT2, WNT16, WNT11, WNT10B, WNT10A, WNT1, SUFU, STK36, SMO, SHH,
RAB23, PTCH2, PTCH1, PRKX, PRKACG, PRKACB, PRKACA, LRP2, IHH, HHIP, GSK3B, GLI3,

GLI2, GLI1, GAS1, FBXW11, DHH, CSNK1G3, CSNK1G2, CSNK1G1, CSNK1E, CSNK1D,
CSNK1A1L, CSNK1A1, BTRC, BMP8B, BMP8A, BMP7, BMP6, BMP5, BMP4, BMP2.

“Hippo™:
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YWHAE, YWHAB, YAP1, WWTR1, WWC1, TIP2, TIP1, STK4, STK3, SAV1, NPHP4, MOB1B,
MOB1A, LATS2, LATS1, DVL2, CASP3, AMOTL2, AMOTL1, AMOT.

“Jak_Stat”

TYK2, TSLP, TPO, STAT6, STATSB, STATSA, STAT4, STAT3, STAT2, STAT1, STAM2, STAM,
SPRY4, SPRY3, SPRY2, SPRY1, SPRED2, SPRED1, SOS2, SOS1, SOCS7, SOCS5, SOCS4,
SOCS3, SOCS2, SOCS1, PTPN6, PTPN11, PRLR, PRL, PIM1, PIK3R5, PIK3R3, PIK3R2,
PIK3R1, PIK3CG, PIK3CD, PIK3CB, PIK3CA, PIAS4, PIAS3, PIAS2, PIAS1, OSMR, OSM, MYC,
MPL, LIFR, LIF, LEPR, LEP, JAK3, JAK2, JAK1, IRF9, ILOR, IL9, IL7R, IL7, IL6ST, IL6R, IL6,
IL5RA, IL5, IL4R, IL4, IL3RA, IL3, IL2RG, IL2RB, IL2RA, IL26, IL24, IL23R, IL23A, IL22RA2,
IL22RA1, 1122, IL21R, IL21, IL20RB, IL20RA, 1120, IL2, IL19, IL15RA, IL15, IL13RA2,
IL13RA1, IL13, IL12RB2, IL12RB1, IL12B, IL12A, IL11RA, IL11, IL1ORB, IL10RA, IL10,
IFNW1, IFNLR1, IFNL3, IFNL2, IFNL1, IFNK, IFNGR2, IFNGR1, IFNG, IFNE, IFNB1, IFNAR2,
IFNAR1, IFNAS, IFNA7, IFNA6, IFNAS, IFNA4, IFNA21, IFNA2, IFNA17, IFNA16, IFNA14,
IFNA13, IFNA10, IFNA1, GRB2, GHR, GH2, GH1, EPOR, EPO, EP300, CTF1, CSH1, CSF3R,
CSF3, CSF2RB, CSF2RA, CSF2, CRLF2, CREBBP, CNTFR, CNTF, CLCF1, CISH, CCND3, CCND2,
CCND1, CBLC, CBLB, CBL, BCL2L1, AKT3, AKT2, AKT1.

“M yC ”..

ZBTB17, TRRAP, TAF9, TAF12, TAF10, SUPT7L, SUPT3H, SKP2, RUVBL2, RUVBLI,
PPP2RSA, PPP2CA, PML, PIN1, PAK2, MYC, MAX, KAT5, KAT2A, HBP1, GSK3B, FBXW?7,
CDKN2A, AXIN1, ACTL6A.

“‘Notch”:

SNW1, RFNG, RBPJL, RBPJ, PTCRA, PSENEN, PSEN2, PSEN1, NUMBL, NUMB, NOTCH4,
NOTCH3, NOTCH2, NOTCH1, NCSTN, NCOR2, MFNG, MAML3, MAML2, MAML1, LFNG,
KAT2B, KAT2A, JAG2, JAG1, HESS, HES1, HDAC2, HDAC1, EP300, DVL3, DVL2, DVL1,
DTX4, DTX3L, DTX3, DTX2, DTX1, DLL4, DLL3, DLL1, CTBP2, CTBP1, CREBBP, CIR1, APH1A,
ADAM17.

“TGF_beta’:

ZFYVE9, ZFYVE16, TNF, THBS4, THBS3, THBS2, THBS1, TGFBR2, TGFBR1, TGFB3, TGFB2,
TGFB1, TFDP1, SP1, SMURF2, SMURF1, SMAD9, SMAD7, SMAD6, SMADS, SMAD4,
SMAD3, SMAD2, SMAD1, SKP1, RPS6KB2, RPS6KB1, ROCK2, ROCK1, RHOA, RBX1, RBL2,
RBL1, PPP2R1B, PPP2R1A, PPP2CB, PPP2CA, PITX2, NOG, NODAL, MYC, MAPK3, MAPK1,
LTBP1, LEFTY2, LEFTY1, INHBE, INHBC, INHBB, INHBA, IFNG, 1D4, ID3, ID2, ID1, GDF7,
GDF6, GDF5, FST, EP300, E2F5, E2F4, DCN, CUL1, CREBBP, COMP, CHRD, CDKN2B,
BMPR2, BMPR1B, BMPR1A, BMP8B, BMPSA, BMP7, BMP6, BMPS, BMP4, BMP2,
AMHR2, AMH, ACVRL1, ACVR2B, ACVR2A, ACVR1C, ACVR1.

“TNF”:

TXN, TRAF2, TRAF1, TRADD, TNIK, TNFRSF1B, TNFRSF1A, TNFAIP3, TNF, TAB2, TAB1,
STAT1,SQSTM1, SMPD2, SMPD1, RIPK1, RFFL, RELA, RACK1, PRKCZ, PRKCI, NSMAF, NRK,
NFKB1, MAP4K5, MAP4K4, MAP4K3, MAP4K2, MAP3K7, MAP3KS5, MAP3K3, MAP3K1,
MAP2K7, MAP2K3, MADD, IKBKG, IKBKB, FADD, CYLD, CHUK, CAV1, CASPS8, BIRC3,
BIRC2, BAG4, ADAM17.
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“Wnt_Bcatenin”:

WNT6, WNT5B, WNT1, TP53, TCF7, SKP2, RBPJ, PTCH1, PSEN2, PPARD, NUMB, NOTCH4,
NOTCH1, NKD1, NCSTN, NCOR2, MYC, MAML1, LEF1, KAT2A, JAG2, JAG1, HEY2, HEY1,
HDAC5, HDAC2, HDAC11, GNAI1, FZD8, FZD1, FRAT1, DVL2, DLL1, DKK4, DKK1, CUL1,

CTNNB1, CSNK1E, CCND2, AXIN2, AXIN1, ADAM17.
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9.2 List of common genes (BC and MCL)

GENE EntrezIl) Gene_Name

ACBDS (4746 acyl-Cod binding domain containing 3

ACS52 a2 acyl-CoA synthetase short chain family member 2
ACTLGA i actin like GA

ADAMIZ BI3A ADAM metallopeptidase domain 12

ADHFE1 13TET2 aleohol debydrogenase iron containing 1

ADNP2 2ARG ADNE homeobox 2

ADRM1 1147 adhesion regulating molecale 1

AEEF1 165 AE binding protein 1

ALOXSAP 241 arachidonate b-lipmoyvgenase activating protein
ALYREF 1O1ES Aly/REF export factor

AMOT 1547096 angiomotin

AMOTLY 154810 angiomotin like 1

AMOTL2 31421 angiomotin like 2

ANGPTI 254 angiopoietin 1

AP152 BO0S adaptor related protein complex 1 subunit sigma 2
APBAZ D546 amyloid beta precursor protein binding family A member 3
APOBECSE 9582 apolipoprotein B mBENA editing enzyime catalyvtic subunit 3B
ASNS 4400 asparagine synthetase (glutamine-hydrolyzing)
ATF3 467 activating transcription factor 3

AURKEB 9212 aurora kinase B

AZGP1 ik alpha-2-glycoprotein 1, zinc-binding

BAG4 D530 BCL2 associated athanogene 4

BAZIB G031 hromodomain adjacent to zine finger domain 1B
BCAR3 B412 BCARS adaptor protein, NSP family member
BHLHE41 TUA65 basic helix-loop-helix family member e41

BNMI1 i) BMI1 proto-oneogens, polvecmb ring finger
BUB1 GO BUBL mitotic checkpoint serine/threonine kinase
BUBLIB Tl BUBL mitotic checkpoint serine/threonine kinase B
Cliorfhs B4THE chromosome 16 open reading frame 58

oo T14 complement Clg C chain

CASPE #41 caspase

CAV] BaT caveolin 1

CAVZ Eas caveolin 2

CCBEL 147372 collagen and caleinm binding EGF domains 1
CODCED 151887 coiled-coil domain containing 30

COL20 G364 C-C motif chemokine ligand 20

CONB2 0133 cvelin B2

CCNE2 0134 cvelin E2

D14 0249 CD14 molecule

CD1G3 0332 CD1G3 molecule

CD24 100133941 CD24 molecule

Chad i CD44 molecule (Indian blood group)

ChDs2 1043 CD52 molecule

CDTd nv2 CD74 molecule

CC20 a1 cell division evele 20

CDC25A 093 cell division cvele 254

CDeas 8318 cell division evele 45

CDOCAR E3461 cell divizion evele associated 3
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GENE EntrezlD Gene  Name

CDCASR 55143 cell division eyele associated 8
CIHZ 10100 cadherin 2

K] 03 cyclin dependent kinase 1

CIEA 10149 evelin dependent kinase 4

CDRENZA 1024 evelin dependent kinase inhibitor 24
CDENG 1033 evelin dependent kinase inhibitor 3
CEMPA 1058 centromere protein &

CEP:A Ha165 centrosomal protein 55

CEPOT TOLOE centrosomal protein 97

RS2 1164 CDOC2E protein kinase regulatory subunit 2
CLCA2 Diiah chloride channel accessory 2
COLIAL 1277 collagen type 1 alpha 1 chain
COLIA2 1278 :,!{J"H.BL*II type 1 a||1n|u;1 2 ¢hain
COL3AL 1281 eollagen type 1T alpha 1 chain
COLGAS 12493 collagen type V1 alpha 3 chain
COROIE Y i) coronin 1B

CSF1R 1436 colony stimmlating factor 1 receptor
CTsD 150 cathepsin D

CTSK 1513 cathepsin K

CXCLY 4283 CX-C motif chemokine ligand 9
CXORA TRA2 C-X-C motif chemokine receptor 4
DCN 1654 decorin

DDRL TH0 dizcoidin domain receptor tyrosine kinase 1
AL 31428 DEAD-box helicase 41

DENMND2C 163250 DENN domain containing 20
DLGAPS OTAT DLG associated protein 5

DA 11144 DNA meiotic recombinase 1

DMNMTI 178 DNA methyltransferase 1

DiOCK2 1794 dedicator of cytokinesis 2

DVL2 1556 dizhevelled segment polarity protein 2
EGFR 1956 epidermal growth factor receptor
EGR1 1958 early growth response 1

EHF 26208 ETS homologous factor

EOMES =320 eomesndermin

EPBA1L4A GANOT ervthrocyte membrane protein band 4.1 like 44
ESM1 110182 endothelial cell specific molecule 1
EX01 01506 exonnclease 1

EXO504 n4512 eroEcie component 4

FAAH 216G fatty acid amide hyvdrolase

FADD HTT2 Faz aszociated via death domain
FATZ2 2196 FAT atypical cadherin 2

FCER1G 2207 Fe fragment of IgE receptor Ig
FOLH1 2346 folate hyvdrolase 1

FOXMI 2305 forkhead box M1

FPIL1 IIRT Ft_:r:luyl puptiqlﬂ receptor |

GBEP2 2634 guanylate binding protein 2

GONTA 1301 glucosaminyl (N-acety]) transferase 4
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GENE EntrezlD Gene_ Name

GGOT TA0LT amma-glutamylevelotransferase

GIMAPA Foaald GTPase, IMAFP family member 4

GLDC 2731 glveine decarboxylase

GLI 2735 GLI Family zine Anger |

GNE L0020 glucosamine (TDP-N-acetyl)-2-epimerase /MN-acetylmannosamine kinase
GUSE 2000} glucuronidaze beta

HAS2 3057 hyaluronan synthaze 2

HAVCR2 FAAGH hepatitis A virus cellular receptor 2

HES1 3280 hes family bHLH transcription factor 1

HEYL 2GA08 hes related family BHLH transeription factor with YREPW motif like
HISTIH2BK NA NA

HIURF 33355 Holliday junction recognition protein

HLA-DMA 305 major ]li?jt.ul!UTl1E}.l-1t-i.]Ji|i‘t."l.-' qsmupkr:t, class 11, DM al|r|u-1
HLA-DMB F104 major histocompatibility complex, class 11 DM beta
HLA-DPAI 113 major histocompatibility complex, class 11 DI alpha 1
HLA-DOAL 3117 major histocompatibility complex, class 11 DO alpha 1
HLA-DEA 3122 major histocompatibility complex, elass 11 DR alpha
HLA-DRB1 3123 major histocompatibility eomplex, elass 11 DR beta 1
HLA-DRB4 3126 major histocompatibility complex, class 11, DR beta 4
HLA-DRB5 3127 major histocompatibility complex, class 11, DR beta 5
HLA-DRBG 3128 major histocompatibility complex, class 11, DR beta 6 (pseudogene)
HSDTB2 3294 hydroxysteroid 17-heta dehydrogenase 2

D2 Fi0s inhibitor of DNA binding 2

IFI44L 10964 interferon induced protein 44 like

IFNG 3158 interferon gamima

1GLLL Fad3 immnnoglobulin lambda like polypeptide 1

IL1B 4553 interlenkin 1 beta

IRFG 604 interferon regulatory factor G

IR52 BGG0 insulin receptor aubstrate 2

ITPRS 3710 inositol 1,4, 3-trisphosphate receptor type 3

JUN 3725 Jun protoconcogens, AP-1 transcription factor subunit
KIF1:B 1469405 kinesin family member 185

KIF20A o2 kinesin family member 204

KIF23 0493 kinesin family member 23

KIF2A 3706 kinesin family member 24

KIF2C 11004 kinesin family member 20

KIF4A 24137 kinesin family member 44

KIF( 3853 kinesin family member €1

KLF= 112749 Kruppel like factor 8

LAMA4 3910 laminin subunit alpha 4

LAPTMAS THlb Ivzosomal protein transmembrane 5

LATS2 2624 large tumor suppreszor kinase 2

LCN2 3054 lipocalin 2

LCP1 3956 lvmphocyte cytosolic protein 1

LINGO2 1558058 lencine rich repeat and Ig domain containing 2

LPL 4023 lipoprotein lipase
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LEBA 087 LES responsive beige-like anchor protein
LREFN3 79414 leucine rich repeat and fbronectin type T domain containing 3
LTEP1 4052 latent transforming growth factor beta binding protein 1
LU 40000 Iumican

LYGE 4061 Lrmphaocyte antigen 6 family member E

LYZ 4064 Ivsozyvine

MACCI 346350 MET transcriptional regulator MACC]

MADD HolT MAP kinase activating death domain

MAPIKY GEE5 mitogen-activated protein kinase kinase kinase 7
MAPAKA4 0448 mitogen-activated protein kinase kinase kinase kinase 4
MED1 360 mediator complex subunit 1

MELK OE33 maternal embryonic lencine sipper kinase
MEAPS =0T micrafibril associated protein 5

MIEN1 B4200 migration and invasion enhancer 1

MEKIGT 4284 marker of proliferation Ki-G7

MLF2 =T myeloid leukemia factor 2

MMFP1 4312 matrix metallopeptidase 1

MMP2 4313 matrix metallopeptidase 2

MMFPD 4318 matrix metallopeptidase 9

MOB1B 25497 MOB kinase activator 1B

MRPS1T 31ATA mitochondrial ribosomal protein 517

MRPS23 1649 mitochondrial ribosomal protein 523

MSAAGA G231 memnbrane spanning J-ilonmnains AGA

NCAPG B4151 oSO condensin I complex subunit G
NCAPH 23397 oSO condensin [ comples subunit H
MNCSTN 23385 nicastrin

ND{CE 104053 NDCED kinetochore complex component
NDUFB10 4716 MNADH:ubiguinome oxidoreductase subunit B10
NECAF1 25977 NECAF endocytosis associated 1

MNES 10763 nesEtin

NFEEB] 4790 mnelear factor kappa B subunit 1

NR2F1 T025 muclear receptor subfamily 2 group F member 1
NRGIL 084 nenregulin

PAHA] B33 prolvl d-hydroxylase subunit alpha 1

PARZ G2 P21 (RACL) activated kinase 2

PDETE 27115 phosphodiesteraze 7B

PDGFD BOE10 platelet devived growth factor D

FHLDAZ 7262 pleckstrin homology like domain family A member 2
FlIa 266 peptidase inhibitor 3

PInI1 52092 Fim-1 proto-oncogene, serine/threcnine kinase
FLAATAY LO20 phospholipase A and acyltransferase 4

FPLI¥ 200150 phospholipase D family member 5

PLEKI1 34T polo like kinase 1

PLSCRI 3359 phospholipid seramblase |

PMIL 3371 promyelocytic leukemia

POFIE 70983 POFIB actin binding protein

POMT2 20954 protein O-mannosylteansferase 2
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PPAT 2471 phosphoribosy| pyrophosphate amidotransferase
PPPIROA aa607 protein phosphatase 1 regulatory subunit 94
PPP2CA 5515 protein phosphatase 2 eatalyvtic subuanit alpha
PPP2IGA 2925 protein phosphatase 2 regulatory subunit Blalpha
PRECI HoA4 protein kinase O lota

PRECZ Ga protein kinase O zeta

PSAP ol Prosaposin

FsMF1L 0491 proteaseme inhibitor subunit 1

RACGAF] 209127 Rac GTPase activating protein 1

RARA 2914 retinoic acid receptor alpha

RELA 2970 RELA proto-oncogene, NF-EB subunit

RFFL 117584 ring finger and FYVE like domain containing ES ubiguitin protein ligase
RGOC 2R084 regulator of cell cyele

R;51 5996 TL"EIZ]I.H_-Lt.I;JT of G proftein 5ig:mliug 1

RIPK1 BTAT receptor interacting serine/threonine kinase 1
EMNF152 22(1441 ring finger protein 152

RMNF213 OTGT4 ring finger protein 213

RUVEL1 BGOT BuvB like AAA ATPasze 1

SAMDAL 219285 sterile alpha motif domain containing 9 like

S5AV1 GO4R5 salvador family WW domain containing protein 1
SCAMPS 10067 secretory carrier membrane protein 3

SCEL BTG seiellin

SECHA 1002 SECH homolog A, COPII coat complex component
SEMAZA 10371 semaphorin 3A

SERPINEZ 5055 serpin family B member 2

SERPINB3 6317 serpin family B member 3

SG01 151648 shugoshin 1

SKAL 22{1134 spindle and kinetochore associated complex subunit 1
SkP2 Galk S-phase kinase associated protein 2

SLAMFT OTHZG SLAM family member T

SLC39A11 2002606 solute carrier family 3% member 11

SLOC40A1 J0061 solute carrier family 40 member 1

SMAP2 (4744 small ArfGAP2

ShPD G sphingomyelin phosphodiesterase 1

SMPD2 G I sphingmnyelin phosphodiesterase 2

SMURE2 BT SMAD specific EX ubignitin protein ligase 2
SNX20 124460 sorting nexin 20

S0XD G2 SBY-box transcription factor 9

SPARC GGTH secreted protein acidic and evsteine rich

SPINKT H4651 serine peptidase inhibitor, Kazal type 7 {putative)
SPRR1A GHOE small proline rich protein 1A

SPRRELEB GG small proline rich protein 1B

S0OETMI HETH sequestosome 1

SREDBF1 G720 sterol regulatory element binding transcription factor 1
SRGN 5552 serglyein

STAP] 26228 signal transducing adaptor family member 1
STARD3 L4 StAR related lipid transfer domain containing 3
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STAT1 G772 gignal transdncer and activator of transcription 1
STATA G774 gignal transducer and activator of transcription 3
STMMNI F925 stathimin 1

SYRU mafias syutabulin

SYS1 QLN SYS1 golgi trafficking protein

TAF12 EA3 TATA-box hinding protein associated factor 12
TAFY GEAD TATA-box binding protein associated factor O
TAGLN G T transgelin

THY1 TUT0 Thy-1 cell surface antigen

TIMMLTE 10245 translocase of inner mitochondrial membrane 175
TINMFP3 TUTH TIMFP metallopeptidaze inhibitor 3

TIP2 G414 tight junction protein 2

TKI TSR3 thymidine kinase 1

TLIL1 TO92 tolloid like 1

TMEWM3:E 5151 transmembrane protein 358

TNFAIF3 7128 THEF alpha induced proteim 3

TNFRSF1A  T132 TNF veceptor snperfamily member 14
TNFSF10 BT43 TNF superfamily member 10

TOP2A T1h3 DM A topoisomerase 1T alpha

TFP63 HE26 tumor protein phd

TPX2 22974 TPXZ2 microtubule nucleation factor

TTK 7372 TTK protein kinase

TVP23C 201158 trans-golgi network vesicle protein 23 homolog
TXM 7295 thioredoxin

TYROBP 7305 TY RO protein tyrosine kinase binding protein
UBN1 20855 nhinuelein 1

UCAl GHIOG urothelial cancer associated 1

WWol 232846 WW and €2 domain containing 1

XDH T498 xanthine dehydrogenase

YAP1 10413 Yes associated protein 1

YTuc 150223 Y¥ijC' chitooligosaccharide deacetvlaze homolog
FBEDZ Ta413 zine finger BED-type containing 2

ENF204P TTh4 zine finger protein 204, psendogens

ENF385A 250406 zine finger protein 3854
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9.3 CSC gene signatures

e 53-CSC gene signature:

IRF6, IL1B, IRF6, MFAPS, PI3, PLD5, RNF152, SCEL, SERPINB3, SPINK7, SPRR1A, SPRR1B,
TLL1, ZBED2, CCDC80, CLCA2, DENND2C, FAT2, FOLH1, GCNT4, LUM, NRG1, PAK2,
PDGFD, PHLDA2, POF1B, PPP2RSA, TAF9, TAF12, TP63, XDH, ACTL6A, CASPS, CDKN2A,
FADD, MAP3K7, MAP4K4, NFKB1, PML, PRKCZ, RELA, RFFL, RIPK1, RUVBL1, SERPINB2,
SQSTM1, TNFAIP3, CDK4, EXOSC4, BMI1, MIEN1, NDUFB10, SKP2

e 242-CSC gene signature:

EPB41L4A, IL1B, IRF6, MFAP5, PI3, PLD5, RNF152, SCEL, SERPINB3, SPINK7, SPRR1A,
SPRR1B, TLL1, ZBED2, ACSS2, ADAM12, AEBP1, AMOT, ANGPT1, BAG4, BCAR3, CAV1,
CCDC80, CCL20, CDH2, CLCA2, COL3A1, CTSK, CXCL9, DENND2C, FAAH, FAT2, FOLH1,
FPR1, GCNT4, GNE, HES1, IFI44L, IFNG, IGLL1, IRS2, KLF8, LCP1, LINGO2, LPL, LRFN3,
LUM, MACC1, MADD, MMP9, NRG1, PAK2, PDE7B, PDGFD, PHLDA2, PLSCR1, POF1B,
POMT2, PPP1R9A, PPP2R5A, PRKCI, RGCC, RGS1, SLAMF7, SLC39A11, SMPD1, SMPD2,
SRGN, STAT1, SYBU, TAF9, TAF12, TAGLN, THY1, TMEM38B, TNFRSF1A, TNFSF10, TP63,
TVP23C, TXN, UCA1, XDH, ZNF204P, ACTL6A, AZGP1, CASP8, CCBE1, CD74, CDKN2A, EHF,
FADD, GBP2, HAS2, HLA-DMA, HLA-DPA1, HLA-DQA1, HLA-DRB4, HLA-DRB6, HSD17B2,
LAMA4, LAPTM5, MAP3K7, MAP4K4, NFKB1, PLAAT4, PML, PRKCZ, RELA, RFFL, RIPK1,
RUVBL1, SEMA3A, SERPINB2, SQSTM1, TNFAIP3, CDK4, RACGAP1, ALYREF, CD24, CDK1,
EXOSC4, LY6E, MKI67, MLF2, MRPS23, STMN1, TOP2A, APOBEC3B, BMI1, CD44, MIEN1,
NDUFB10, ASNS, DDR1, PAHA1, SKP2, DVL2, MMP1, CCNB2, CDC20, CENPA, KIF4A, TPX2,
NCSTN, AMOTL1, AMOTL2, LATS2, MOB1B, SAV1, TIP2, WWC1, YAP1, PPP2CA, EXO1,
SKA1, FOXM1, ADNP2, ADRM1, BAZ1B, C160rf58, CORO1B, DDX41, GUSB, ITPR3, MED1,
MRPS17, NECAP1, PIM1, PPAT, PSAP, RNF213, SCAMP3, STARD3, TIMM17B, UBN1,
COL1A1, COL6A3, HLA-DRB1, ADHFE1, CCNE2, AURKB, CDC25A, CDC45, CDCA3, CDCAS,
CEP55, DLGAPS, GLI1, HJURP, KIF2C, KIF20A, KIF23, KIFC1, MELK, NCAPG, TTK, PLK1,
BUB1, BUB1B, CDKN3, CKS2, TK1, DNMT1, HIST1H2BK, CD14, CSF1R, GIMAP4, LYZ,
MS4A6A, CD52, CEP97, DOCK2, GGCT, LRBA, PSMF1, RARA, SAMDIL, SEC24A, SMAP2,
STAP1, SYS1, YDJC, CTSD, EGR1, CD163, JUN, SREBF1, AP1S2, APBA3, HLA-DRBS5, KIF2A,
SLC40A1, SNX20, ZNF385A, STAT3, CAV2, CXCR4, KIF18B, NCAPH, NDC80, DCN, ESM1

e 269-CSC gene signature:

EPB41L4A, IL1B, IRF6, MFAPS5, P13, PLD5, RNF152, SCEL, SERPINB3, SPINK7, SPRR1A,
SPRR1B, TLL1, ZBED2, ACSS2, ADAM12, AEBP1, ALOX5AP, AMOT, ANGPT1, BAG4,
BCAR3, C1QC, CAV1, CCDC80, CCL20, CDH2, CLCA2, COL1A2, COL3A1, CTSK, CXCLS,
DENND2C, FAAH, FAT2, FOLH1, FPR1, GCNT4, GNE, HES1, IFI44L, IFNG, IGLL1, IRS2, KLFS8,
LCN2, LCP1, LINGO2, LPL, LRFN3, LUM, MACC1, MADD, MMP9, NRG1, PAK2, PDE7B,
PDGFD, PHLDA2, PLSCR1, POF1B, POMT2, PPP1R9A, PPP2R5A, PRKCI, RGCC, RGS1,
SLAMF7, SLC39A11, SMPD1, SMPD2, SRGN, STAT1, SYBU, TAF9, TAF12, TAGLN, THY1,
TMEM38B, TNFRSF1A, TNFSF10, TP63, TVP23C, TXN, UCA1, XDH, ZNF204P, ACTL6A,
AZGP1, CASP8, CCBE1, CD74, CDKN2A, EHF, FADD, GBP2, HAS2, HLA-DMA, HLA-DMB,
HLA-DPA1, HLA-DQA1, HLA-DRA, HLA-DRB4, HLA-DRB6, HSD17B2, LAMA4, LAPTMS,
MAP3K7, MAP4K4, NFKB1, PLAAT4, PML, PRKCZ, RELA, RFFL, RIPK1, RUVBL1, SEMA3A,
SERPINB2, SQSTM1, TNFAIP3, CDK4, RACGAP1, ALYREF, CD24, CDK1, EXOSC4, LY6E,
MKI67, MLF2, MRPS23, STMN1, TOP2A, ACBD3, APOBEC3B, BMI1, CD44, MIEN1,
NDUFB10, ASNS, DDR1, P4HA1, SKP2, DVL2, MMP1, CCNB2, CDC20, CENPA, KIF4A, TPX2,
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NCSTN, AMOTL1, AMOTL2, LATS2, MOB1B, SAV1, TJP2, WWC1, YAP1, PPP2CA,
BHLHE41, MMP2, TIMP3, EXO1, SKA1, FOXM1, ADNP2, ADRM1, BAZ1B, Cl160rf58,
CORO1B, DDX41, GUSB, ITPR3, MED1, MRPS17, NECAP1, PIM1, PPAT, PSAP, RNF213,
SCAMP3, STARD3, TIMM17B, UBN1, COL1A1, COL6A3, HLA-DRB1, ADHFE1, CCNE2,
DMC1, EOMES, GLDC, HEYL, NES, AURKB, CDC25A, CDC45, CDCA3, CDCAS, CEP55,
DLGAPS, GLI1, HJURP, KIF2C, KIF20A, KIF23, KIFC1, MELK, NCAPG, TTK, PLK1, BUB1,
BUB1B, CDKN3, CKS2, TK1, DNMT1, HIST1IH2BK, CD14, CSF1R, FCER1G, GIMAP4, LYZ,
MS4A6A, SPARC, CD52, CEP97, DOCK2, GGCT, LRBA, PSMF1, RARA, SAMDIL, SEC24A,
SMAP2, STAP1, SYS1, YDIC, CTSD, EGR1, CD163, JUN, SREBF1, AP1S2, APBA3, HLA-DRBS,
KIF2A, SLC40A1, SNX20, ZNF385A, STAT3, CAV2, CXCR4, KIF18B, NCAPH, NDC80, SGO1,
SOX9, TYROBP, DCN, ATF3, EGFR, ESM1, NR2F1, HAVCR2, ID2, LTBP1, SMURF2

e 18-CSC gene signature:

CLCA2, IL1B, MFAP5, NRG1, PDGFD, PHLDA2, RUVBL1, SERPINB2, SERPINB3, SPRR1A,
SPRR1B, SQSTM1, TAF9, TLL1, TP63, ZBED2, CDKN2A and SCEL

9.4 Supplementary figures
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Figure S1. Correlation analysis of genes from the 53-CSC gene signature (subset 1). Correlation
with OS (in months)
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Figure S3. Correlation analysis of genes from the 53-CSC gene signature (subset 3). Correlation
with OS, DSS and PFS (in months)

78



& & &
¥ v - = = S
o m & & o & & o+
& 2 < a & &

<& © & & & & N B E e‘é\’ &7 ]

PRKCZ 046 025 006 041 005
0.8

0.09 044 0.09 0 0.04
0.6

003 001 0.16 02 0.09
r 04

024 043 007 043 009
0.31 032 043 007 007 r 02
RUVEL1 0 0.24 0.15 r o
019 045 02 L g9

SERPINEZ 0.15 -0.19
r-04

SERPINB2

0.6
0.8

05_MONTHS
-1

Figure S4. Correlation analysis of genes from the 53-CSC gene signature (subset 4). Correlation
with OS, DSS and PFS (in months)
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Figure S5. Correlation analysis of genes from the 53-CSC gene signature (subset 5). Correlation
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Figure S6. List of variables ranked by their relative importance in the model
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Figure S7. List of variables ranked by their relative importance in the model
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9.5 Code
Code used in the project is available in the following github link:

https://github.com/jonortizabalia/Final-Master-s-thesis-UOC-2020.qgit
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