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  Resumen del Trabajo (máximo 250 palabras): Con la finalidad, contexto de 
aplicación, metodología, resultados i conclusiones del trabajo. 

El cáncer sigue siendo la segunda causa de muerte a nivel mundial. Una de las 

razones es la existencia de un subconjunto de células dentro del tumor con 

capacidad de autorrenovarse, migrar y resistir a la quimioterapia: las células 

madre cancerosas (Cancer Stem Cells, CSCs). 

El objetivo del presente trabajo es estudiar si el cáncer de mama y el linfoma de 

células del manto comparten mecanismos moleculares relacionados con las 

CSCs para avanzar tanto en el conocimiento básico del cáncer como en su 

diagnóstico y tratamiento. 

Los resultados obtenidos mediante Gene Set Enrichment Analysis (GSEA) 

muestran que todos los datos analizados (tanto de cáncer de mama como del 

linfoma de células del manto) están enriquecidos con genes relacionados con 

las CSCs, especialmente en aquellos cánceres con fenotipos invasivos, llevando 

a la identificación de 269 genes comúnmente enriquecidos en ambos tipos de 

cáncer. 

El análisis de anotación funcional de los 269 genes muestra que el 10% de los 

genes son proteínas de unión a compuestos heterocíclicos, conocidos por ser 



   

componentes clave de muchos de los medicamentos disponibles contra el 

cáncer. 

El análisis con la herramienta bioinformática Kaplan-Meier Plotter muestra una 

correlación significativa con parámetros de supervivencia de 51 de los 53 genes 

más significativos de la firma genética. Este hecho se ha observado en varios 

tipos de cáncer analizados (mama, ovario, pulmón y estómago). 

Finalmente, el poder predictivo de la firma genética ha sido evaluado mediante 

algoritmos de machine learning. Los resultados muestran una precisión en la 

predicción del pronóstico de los casos de cáncer mayor que la de otras firmas 

genéticas publicadas. 

  Abstract (in English, 250 words or less): 

Cancer remains the second leading cause of death globally. One of the potential 

reasons behind this is the existence of a subset of cells within the tumour with 

capacity to self-renew, migrate and resist to chemotherapy: cancer stem cells 

(CSCs).  

The objective of the present work is to study whether Breast Cancer and Mantle 

Cell Lymphoma share common molecular mechanisms related to the CSC 

machinery in order not only to advance in basic cancer knowledge but also to 

speed up diagnosis and provide novel and/or more effective treatment.  

Results obtained using Gene Set Enrichment Analysis (GSEA) show that all BC 

and MCL expression datasets analysed are enriched with CSC related genes, 

especially in those datasets with invasive or early-onset phenotypes. Further 

analysis has led to the identification of a 269-CSC gene signature composed by 

CSC genes commonly enriched in BC and MCL.  

Noticeably, functional annotation analysis of the genes included in the 269-CSC 

gene signature has shown that almost 10% of the genes map to heterocyclic 

compound binding proteins, known to be key structural components of many of 

the available anti-cancer drugs.  

Survival analysis using Kaplan-Meier Plotter confirmed a significant correlation 

with survival for 51 of the genes included in the 53-CSC gene signature in various 

cancer types analysed (breast, ovarian, lung and gastric cancer).  

Finally, the predictive power for prognosis of the gene signature was assessed 

using machine learning. Results showed better accuracy in predicting prognosis 

of cancer cases than other CSC gene signatures published. 
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1. Introduction 
 
 

1.1. Context and rationale 
 
 

Despite the decline of death rates and the improvement of 5-year survival rates over the 

years due to improvements in screening, earlier detection and availability of new tailored 

treatments, cancer remains the second leading cause of death globally (Lathia et al., 

2019). One of the potential reasons behind this is the existence of a subset of cells within 

the tumour with capacity to self-renew, migrate and resist to chemotherapy. These cells 

are called cancer stem cells (CSCs) in a clear analogy with their normal counterparts 

(Batlle et al., 2017). 

 

Breast cancer (BC) and mantle cell lymphoma (MCL) are two types of solid cancer with 

high incidence and mortality rate that are suspected to share some molecular 

mechanisms. Although the genetic basis of tumorigenesis may vary between different 

cancer types, the molecular mechanisms required for metastasis are similar.  

 

BC is the most common cancer diagnosed in women and the major cause of cancer-

related mortality in women worldwide, with a 12% probability of suffering from it 

throughout life. The 5-year survival rate is 99% if the cancer is located only in the breast, 

85% if it has spread to regional lymph nodes and only 27% if it has spread to a distant 

part of the body. Unfortunately, 5% of women have metastatic breast cancer when they 

are first diagnosed (Society, 2020).  

 

On the other hand, MCL, considered an aggressive type of B-cell non-Hodgkin 

lymphoma, has the worst prognosis among blood cancers with a median overall survival 

of 3 to 4 years (Luanpitpong et al., 2018). First identified in 1990, MCL is difficult to 

diagnose and hard to cure (Roschewski, 2015). 

 

This is part of a real biomedical research project intended to study whether BC and MCL 

share common molecular mechanisms and whether these are related to the CSC 

machinery or not. The identification of a potential a stemness gene signature common 

for different tumour types such as BC and MCL as well as the underlying biological 

processes in which those genes are involved could provide valuable information about 

the molecular mechanisms leading to malignancy in solid tumours. The progressive 

digitalization of data, the use of specific software to analyse molecular data and the use 

of machine learning algorithms are transforming cancer research and healthcare. 
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The identification of specific pathways or genes involved in the cancer stem cell 

machinery could be of high importance not only to advance in basic cancer knowledge 

but also to speed up diagnosis and provide novel and/or more effective treatments.  

 
 

1.2. Objectives 
 
 
i. Identify common mechanisms related to cancer stem cells in two types of solid 

tumours: Breast Cancer and Mantle Cell Lymphoma. 

 

a. Identify genes involved in CSC machinery in BC expression datasets 

through pathway enrichment analysis (GSEA). 

 

b. Identify genes involved in CSC machinery in MCL expression datasets 

through pathway enrichment analysis (GSEA). 

 

c. Generate a common CSC-gene signature for BC and MCL. 

 

ii. Map the molecular functions and biological processes of the genes included in the 

CSC-gene signature 

 

iii. Study the prognostic significance of the genes included in the CSC-gene signature  

 

iv. Study the predictive power for prognosis of the CSC-gene signature using Machine 

Learning. 

 

1.3. Project planning 
 
The roadmap of the project is depicted in Figure 1. It consists in five sequential phases: 

1) Definition and planning, 2) State of the art, 3) Design and implementation, 4) 

Preparation of document, and 5) preparation of presentation and defense. 

 
 

 

 
Figure 1. Roadmap of the project 
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1. Definition and planning (10 days) 
 
2. State of the art (20 days): 
 

a. Search of bibliography for the following topics (5 -10 days): 
 

o Current status of Cancer Stem Cells model within cancer area (in 

general, Breast Cancer and Mantle Cell Lymphoma) 

 

o Studies comparing expression of CSCs and non-CSCs in cancer (in 

general, Breast Cancer and Mantle Cell Lymphoma) 

 

o Methodological papers: GSEA 

 

o Studies in which machine learning is used in cancer area (in 

general, Breast Cancer and Mantle Cell Lymphoma) 

 

b. Learn methodology for data pre-processing and data analysis (GSEA) 

(10-15 days) 

 

3. Design and implementation (76 days): 
 

a. Data collection: search of CSC gene sets (gene pathway databases and 

bibliography) (5-10 days)  

 

b. Data collection: search of gene expression datasets (4 or 5): BC and 

MCL. (5-10 days) 

 

c. Data analysis: GSEA. Identification of common genes of both cancer 

types (BC and MCL) that are present in CSC gene sets: generation of 

CSC gene signatures. (10-15 days) 

 

d. Functional annotation analysis: functional annotation of genes included 

in CSC gene signatures: molecular function and biological process 

mappings using bioinformatic tools (Panther) (5-10 days) 

 

e. Correlation with prognosis: correlation analysis with prognostic 

parameters using bioinformatic tools (Kaplan-Meier Plotter) of the genes 

included in the CSC gene signatures. Comparison with GSEA results. 

(5-10 days) 

 

f. Predictive power for survival: study of the predictive power of the CSC 

gene signatures generated using machine learning algorithms. (5-10 

days) 
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4. Preparation of document (14 days) 
 
5. Preparation of presentation and defense (13 days) 

 
The planned tasks in phase 3 (“Design and implementation”) are summarized in  

 

  
 
Figure 2. Design of the planned work 
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2. State of the art 
 
 

2.1. Clinical impact of cancer stem cells (CSCs) 
 
Multiple studies have proved that only specific cells within a tumour could initiate tumour 

growth. This has been confirmed by using xenograft transplantation in leukaemia and in 

solid tumours such as breast, brain, prostate, colon, pancreatic, ovarian, lung and skin 

cancer (Batlle et al., 2017) (Nassar et al., 2016). 

 

In order to determine the clinical impact of CSCs, different approaches are being followed 

in clinical research. The most common strategy consists in isolating the CSCs and 

studying the expression of CSC markers (so called stemness biomarkers) to correlate it 

with clinical endpoints. Also, as CSCs have the intrinsic property of being resistant to 

chemotherapy, another strategy is to isolate CSCs and evaluate chemoresistance to 

current treatment regimens (Batlle et al., 2017). 

 

A recent systematic review of 234 survival analysis extracted from 164 publications 

(Lathia et al., 2019) reported that high expression of CSC biomarker(s) resulted in poor 

overall survival (OS) and/or disease-free survival (DFS) compared with low or absence 

of expression in a wide group of cancer subtypes including breast cancer (BC). In 

general, an elevated stemness biomarker expression was found to be associated with 

clinicopathological parameters such as decreased tumour differentiation, increased TNM 

stage, vascular invasion, depth of tumour invasion, lymph node and distant metastasis. 

 

Regarding studies where chemoresistance has been evaluated, it has been shown that 

treatment with oxaliplatin in colorectal cancer cell lines selectively favoured survival of 

dormant clones that became dominant after therapy (Kreso et al., 2012). Also, resistance 

to temozolomide has been detected in CSCs of mouse models of glioblastoma whereas 

ablation of CSCs renders this type of tumour sensitive to chemotherapy (Chen et al., 

2012). In bladder cancer xenografts, chemotherapy (gemcitabine plus cisplatin) has 

been found to reactivate quiescent CSCs, repopulating the tumour after treatment 

(Kurtova et al., 2015). Resistance to chemotherapy (including cisplatin and vemurafenib) 

has also been detected in slow-cycling melanoma cells (Roesch et al., 2013). 

 

2.1.1 Breast cancer stem cells (CSCs) 

 
Breast cancer stem cells (BCSCs) were initially discovered in 2003 (Al-Hajj et al., 2003). 

In this study authors demonstrated that a few hundred cells were able to sustain growth 

when injected into mammary fat pads of non-obese diabetic severe combined 

immunodeficient (NOD/SCID) immunocompromised mice. Since then, many studies 

have confirmed the relationship between BCSCs and poor prognosis.  



6 
 

Another recent study revealed an association between BCSCs and relapse-free survival 

(RFS) in patients with early-stage breast invasive ductal carcinoma (BIDC) (Qiu et al., 

2019). Levels of selected BCSCs markers (ALDH1A3, CD44+/CD24−, integrin alpha 6 

(ITGA6), and protein C receptor (PROCR)) were measured using immunohistochemistry 

and intensity of the staining was used to determine high and low-risk groups of patients. 

Results showed that the proportion of patients in the low-risk group who were free of 

relapse at 5 years was significantly higher than that in the high-risk group. 

 

Another approach to evaluate the clinical impact of CSCs is to study the association 

between the presence of mutations and prognosis. For example, in a recent work four 

mutations in genes known to be associated with BCSCs were studied by analysing 

circulating free DNA (cfDNA) extracted from plasma or serum (Liu et al., 2019). The 

results showed a statistically worse median time-to-metastasis (TTM) in patients with 

any of the four BCSC mutations. 

 

There is growing evidence of the clinical impact of BCSCs mediated by chemoresistance 

mechanisms including the overexpression of ATP-binding cassette (ABC) transporters, 

increased ALDH activity, enhanced DNA repair mechanisms, reinforced reactive oxygen 

species (ROS) scavenging, cell death escape, induction of dormancy, autophagy, and 

possibly other resistance mechanisms that are yet to be characterized (De Angelis et al., 

2019). For example, BCSCs isolated from breast cancer cell lines were found to be 

resistant to mitoxantrone in a mechanism thought to be mediated by ABCG2, an ABC 

transporter (Britton et al., 2012).  

 

In more recent studies, they have described the resistance of BCSCs to the most 

commonly used agents to treat triple-negative breast cancer (TNBC): paclitaxel and 

doxorubicin. In one study, proliferation of BCSCs isolated from TNBC patients was 

inhibited after addition of sublethal doses of doxorubicin and paclitaxel, although 20-40% 

of cells survived the treatment. These cells, cultured in medium without 

chemotherapeutics, recovered gradually confirming an upregulated self-renewal 

capacity under chemotherapeutic stress (Li et al., 2020). 

 

2.1.2 Mantle cell lymphoma cancer stem cells (MCL-CSCs) 

 
In comparison to BCSCs, little is known about CSCs in MCL. In 2010, it was the first time 

that clonogenic cells with self-renewal capacities from MCL were isolated (Chen et al., 

2010). The cells, called MCL-initiating cells (MCL-ICs), were obtained from stage 4 MCL 

patients. The authors observed that MCL-ICs lacked expression of the prototypic B cell 

surface marker CD19 and were able to recapitulate the heterogeneity of the original 

patient tumour upon transplantation into immunodeficient mice.  
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The same research group confirmed the existence of chemoresistance happening in 

MCL-ICs. In 2011, they observed that IC50 values were significantly higher in 

CD45+/CD19- MCL-ICs than in CD45+/CD19+ cells for most of the chemotherapeutic 

regimens tested (Jung et al., 2011). More specifically, in all patient samples, more than 

double the concentration of each drug agent in R-CHOP, R-CAVD, and fludarabine-

based regimens were required to inhibit 50% growth of CD45+/CD19- MCL-ICs 

compared to CD45+/CD19+ MCL cells. Authors identified that resistance was mediated 

by ABCB1 transporter whose inhibition increased the sensitivity of MCL-ICs to 

vincristine.  

 

In 2012, the same group described that MCL-ICs were also resistant to bortezomib as a 

single agent or administered within a chemotherapeutic regimen (Jung et al., 2012). 

Resistance to Bortezomib by MCL-ICs was again reported in 2018 by another group 

(Luanpitpong et al., 2018). In this study authors observed that sensitivity to Bortezomib 

was modulated by reactive oxygen species (ROS) and identified two key players in that 

modulation: the anti-apoptotic Mcl-1 and the transcription factor Zeb-1.  

 

The association of the combination of CD45+ and CD19- with prognosis was also 

evaluated in another study, in which the CD45+/CD19- cell population percentage 

correlated with MCL prognostic index (Kim et al., 2015). 

 

 

2.2. Identification of CSC biomarkers 
 
 
There is controversy about the ideal methodology for reliable measurement of biomarker 

due to the fact that CSCs are a very rare population of cells. Moreover, there is no 

standardized protocols or tests for assessing presence and levels of CSC biomarkers in 

tumours (Lathia et al., 2019). However, multiple pathways and markers related to CSCs 

have been identified for a variety of cancer types. 

 

Three main CSC signalling pathways related to self-renewal and differentiation have 

been identified: Notch, Wnt/beta-catenin and Hedgehog (Hh). Other important signalling 

pathways are the TNF-α/NF-κ-β, transforming factor-β (TGF-β), receptor tyrosine kinase 

RTK and Janus kinase/signal transducer and activator of transcription (JAK-STAT) 

pathways (Palomeras et. al, 2018). 

 

A considerable number of CSCs markers have been identified up to date allowing the 

development of new therapeutic strategies to target CSCs. Those targets include tumour 

microenvironment, signalling pathways, stem cell differentiation, cell surface markers, 

apoptotic pathways, drug resistance markers and microRNAs (Prasad et al., 2019). In 

this recent review, an extensive list of CSC biomarkers is shown. Just to cite a few 

examples, CD133, a cell surface molecule, is considered a CSC marker in glioblastoma 
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(Chen et al., 2010) and colorectal cancer (O'Brien et al., 2007) whereas CD34 expression 

has been related to increased self-renewal potential in skin squamous cell carcinoma 

(Lapouge et al., 2012). In head and neck cancer (HNC) CD44, ALDH1, CD133, Oct3/4, 

Nanog and Sox2 have been considered as CSC-associated molecules (Yu et al., 2020). 

 
 
2.2.1. BCSC biomarkers 
 
More than a decade has passed since the identification of the first biomarkers associated 

with BCSCs, CD44+/CD24low and CD133+ (Wright et al., 2008). Along these years a 

considerable number of biomarkers have been added to the list. The most recent studies 

are summarised hereafter: 

 

In the systematic review discussed earlier, CD44 appeared to be consistently associated 

with poor survival in BC. The combination of CD44+/CD24- has been associated with 

poor OS, DFS and/or progression-free survival (PFS) in six of the studies (Lathia et al., 

2019). In another study, levels of selected BCSCs markers (ALDH1A3, CD44+/CD24−, 

integrin alpha 6 (ITGA6), and protein C receptor (PROCR) were measured using 

immunohistochemistry and intensity of the staining was used to between high and low-

risk groups of patients with early-stage breast invasive ductal carcinoma (BIDC) (Qiu et 

al., 2019). 

 

Using bioinformatic tools, a recent study identified 32 key genes that modulate BC 

stemness characteristics and, among them, 12 genes strongly correlated with BC 

survival: TPX2, EXO1, CCNB2, CENPA, SGO1, RAD54L, SKA1, FOXM1, PLK1, 

CDC20, KIF4A and SGO1 (Pei at al., 2020). Another gene, TRIP6, has been recently 

associated with CSC-like properties and poor prognosis in BC (Zhao et al., 2020) as well 

as a 20-gene stem cell signature obtained from the transcriptional profile of normal 

mammary stem cells (Pece et al., 2019). This gene panel was able to predict early and 

late recurrence in triple negative and luminal BC. 

 

In another study, hundreds of genes that regulate BCSC fate were identified using a 

genome-wide RNAi screen in a breast cancer cell line (Arfaoui et al., 2019). Those genes 

were then integrated in a functional mapping of the CSC-related processes uncovering 

potential therapeutic targets. Among 15 compounds tested, mifepristone, salinomycin 

and JQ1 showed the best anti-BCSC activity. Regarding chemoresistance, it has been 

described that silencing SOX2, a gene related to pluripotency and stemness, lead to an 

increased chemosensitivity to paclitaxel in BCSCs isolated from TNBC patients in vitro 

(Mukherjee et al., 2017). 
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2.2.2. MCL-CSC biomarkers 
 
Compared to BC, a small number of markers have been identified in CSCs of MCL. We 

have already mentioned the identification of the combination of CD45+ and CD19- 

markers in MCL-initiating cells isolated from patient blood samples. This combination of 

markers was associated first with chemoresistance (Jung et al., 2011), (Jung et al., 2012) 

and later with poor prognosis (Kim et al., 2015). 

 

 
2.3. Data science and cancer research 
 
 
In recent years, in parallel to the growing data complexity and size, the fields of 

bioinformatics and machine learning have seen dramatic advances. Their application in 

the biomedicine field is becoming ever more popular with the goal to support research 

and healthcare by translating patient data to successful therapies.  

 

2.3.1 Data science and cancer stem cells 

 
One of the most important studies using data science techniques related to the topic 

covered in this work is the identification of stemness features associated with oncogenic 

dedifferentiation (Malta et al., 2018). One-class logistic regression algorithm (OCLR) was 

used to extract transcriptomic and epigenetic feature sets derived from non-transformed 

pluripotent stem cells and their differentiated progeny. Authors used publicly available 

molecular profiles from normal cell types that exhibit various degrees of stemness and 

developed a model using One-class logistic regression algorithm (OCLR). As a result, 

two independent stemness indices were generated, one reflective of epigenetic features 

(mDNAsi) and the other of gene expression (mRNAsi). The indices were then associated 

with novel oncogenic pathways, somatic alterations, and microRNA and transcriptional 

regulatory networks. Results showed that higher indices were associated with biological 

processes active in cancer stem cells, with greater tumour dedifferentiation and 

pathology grading for the majority of the Cancer Genome Atlas (TCGA) cases.  

 

Authors also used GSEA to compare the mRNAsi index with 16 genes sets that were 

associated with stemness in cancer and healthy cells in previous studies. In all cases, 

they found that the published stemness gene sets were significantly enriched in mRNAsi. 

Moreover, compounds specific to selected molecular targets and mechanisms that may 

eventually lead to novel treatments were identified. Using the mRNAsi index, another 

group identified 32 key genes that modulate BC stemness characteristics and, among 

them, 12 genes strongly correlated with BC survival (Pei at al., 2020).  
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2.3.2 GSEA and breast cancer 

 
GSEA is one of the most important data science tools toward establishing a link between 

molecular features and phenotypes. It has been extensively used to study differences 

between tumour and normal samples or between different tumour subtypes. 

 

In order to understand the implication of transcription factors (TFs) in breast cancer, a 

study was performed using 14 breast cancer gene expression datasets from the public 

functional genomic repository NCBI-GEO (Li et al., 2017). Among the 22 up-regulated 

pathways identified by GSEA, the most relevant were cell cycle, DNA replication, 

spliceosome, proteasomes, mismatch repair, p53 signalling pathway and nucleotide 

excision repair. Among the 25 down-regulated pathways, the most relevant were fatty 

acid metabolism, adipocytokine signalling and valine, leucine and isoleucine 

degradation.  

 

In a recent study, authors used differential gene expression together with context data 

with the aim of identifying specific drug targets for the basal-like type BC (Parks et al., 

2019). For that, they used RNA-seq data from the Breast Invasive Carcinoma (BRCA) 

dataset of the TCGA repository and generated a regulatory module enrichment score 

(RMES) using algorithms specific for gene regulatory networks such as GRNBoost2, and 

single sample gene set enrichment analysis (ssGSEA).  Then, RMESs were used as 

features for ML (Machine Learning (ML) processing using Support Vector Machine 

algorithm (SVM) in order to perform multiclass classification of samples. Results showed 

an accuracy score of 99.07% in basal-like BC classification. 

 

GSEA has been traditionally used taking into account one single molecular feature as 

the score of each gene need to be a scalar. Either only one molecular feature is analysed 

or information coming for multiple features (i.e. DNA sequences mutations, mRNA 

transcripts, CNVs, single nucleotide polymorphisms or DNA methylations) is synthesized 

into one single score prior the enrichment analysis. In order to extend GSEA to 

multiplatform data, a new method called Multivariate Gene Enrichment Analysis 

(MGSEA) was recently developed (Tiong et al., 2019). Data from three molecular 

features, mRNA expression, CNV and DNA methylation, were retrieved from TCGA with 

the aim of finding functional categories of genes related to BC and glioblastoma 

subtypes. A combined gene score integrating the three molecular features was 

generated. Results showed that mRNA expression appeared more frequently as a 

dominant feature than CNV or DNA methylation in both cancer subtypes. In BC, mRNA 

expression was the only dominant feature in functional categories involved in cell 

proliferation such as cell cycle control, estrogenic response, DNA repair, MYC targets 

and E2F targets whereas CNV was the only dominant feature in functional categories 

involved in invasion and metastasis, such as cell adhesion and EMT. In glioblastoma, 
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mRNA expression was the only dominant feature in diverse functional features such as 

cell adhesion, inflammatory response, angiogenesis and EMT. 

 

2.3.3 GSEA and mantle cell lymphoma 

 
There is only one publication in which GSEA has been described for MCL, and is related 

to the study of molecular subsets of MCL defined by the IGHV mutational status and 

SOX11 expression (Navarro et al., 2012) . A GSEA was performed on 38 MCL patient 

samples, divided in mutated (M-MCL) and unmutated (U-MCL) depending on the 

presence of IGHV-IGHD-IGHJ rearrangement and SOX11 expression. Four specific 

gene sets related to normal B-cell subtypes were used for the analysis. The results 

showed that SOX11-positive U-MCL expressed a signature enriched in genes related to 

naïve B-cells whereas SOX11-negative M-MCL had a signature related to memory B-

cells. 
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3. Methodology 
 
 

3.1. Data collection 
 
 
Data used in this project have been retrieved from scientific articles obtained through 

PubMed NCBI browser (https://www.ncbi.nlm.nih.gov/pubmed/) and UOC online library 

(http://biblioteca.uoc.edu/es/), from gene expression datasets obtained through Gene 

Expression Omnibus repository (GEO) (https://www.ncbi.nlm.nih.gov/geo/) and from 

gene sets obtained from the Molecular Signatures Database (MSigDB) of the Broad 

Institute (https://www.gsea-msigdb.org/gsea/msigdb/index.jsp). 

3.1.1 Cancer stem cell gene sets (CSC gene sets) 

 

Gene sets involved in CSC machinery have been generated using three different 

methods: 

 

1. Identification of CSC genes through revision of the bibliography listed in the State 

of the art section of this work. Five gene sets have been generated (list of genes 

can be found in section 5 of Appendix). 

 

• “Prognosis_BC”: CSC genes related to prognosis in BC. Sources: (Lathia 

et al., 2019), (Qiu et al., 2019), (Liu et al., 2019), (De Angelis et al., 2019), 

(Pei at al., 2020), (Zhao et al., 2020), (Pece et al., 2019). 

 

• “Stemness_BC”: CSC genes related to stemness in BC. Sources: (De 

Angelis et al., 2019), (Pei at al., 2020). 

 

• “Stemness2_BC”: CSC genes related to stemness in BC. Sources: 

(Arfaoui et al., 2019). 

 

• “Dormancy_BC”: CSC genes related to dormancy in BC. Sources (Kim et 

al., 2015), (De Angelis et al., 2019). 

 

• “Chemorresistance_BC”: CSC genes related to chemoresistance in BC. 

Sources: (De Angelis et al., 2019), (Prasad et al., 2019) 

 

2. Identification of CSC genes through assessment of differential gene expression 

in 4 datasets obtained from GEO NCBI browser. GEO datasets used were 

GSE25976, GSE43730, GSE95402 and GSE132083. GSEA was performed to 

identify the top 50 significantly over and under-expressed genes. The resulting 8 

gene sets generated were: 

https://www.ncbi.nlm.nih.gov/pubmed/
http://biblioteca.uoc.edu/es/
https://www.ncbi.nlm.nih.gov/geo/
https://www.gsea-msigdb.org/gsea/msigdb/index.jsp
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• “GSE25976_OVER”: 50 top overexpressed genes selected from GSEA 

performed on metastatic and non-metastatic BCSCs. 

 

• “GSE25976_UNDER”: 50 top underexpressed genes selected from 

GSEA performed on metastatic and non-metastatic BCSCs. 

 

• “GSE43730_OVER”: 50 top overexpressed genes selected from GSEA 

performed on malignant and non-malignant BC cells. 

 

• “GSE43730_UNDER”: 50 top underexpressed genes selected from 

GSEA performed on malignant and non-malignant BC cells. 

• “GSE95042_OVER”: 50 top overexpressed genes selected from GSEA 

performed on BCSCs and primary BC. 

 

• “GSE95042_UNDER”: 50 top underexpressed genes selected from 

GSEA performed on BCSCs and primary BC. 

 

• “GSE132083_OVER”: 50 top overexpressed genes selected from GSEA 

performed on BCSCs and non-BCSCs. 

 

• “GSE132083_UNDER”: 50 top underexpressed genes selected from 

GSEA performed on BCSCs and non-BCSCs. 

 

3. Identification of CSC genes involved in pathways known to play a role in CSCs 

as reviewed in bibliography and mentioned in State of the art section of the 

present work. The list of genes involved in the following pathways were collected 

from the MSigDB database from the Broad Institute: 

 

• KEGG_HEDGEHOG_SIGNALING_PATHWAY (Ref.: M1053) 

• REACTOME_SIGNALING_BY_HIPPO (Ref.: M591) 

• KEGG_JAK_STAT_SIGNALING_PATHWAY (Ref.: M17411) 

• PID_MYC_PATHWAY (Ref.: M139) 

• KEGG_NOTCH_SIGNALING_PATHWAY (Ref.: M7946) 

• KEGG_TGF_BETA_SIGNALING_PATHWAY (Ref.: M2642) 

• TNF (Ref.: M128) 

• HALLMARK_WNT_BETA_CATENIN_SIGNALING (Ref.: M5895) 

 

The resulting gene sets generated were: “Hedhehog”, “Hippo”, “Jak_Stat”, “Myc”, 

“Notch”, “TGF_beta”, “TNF” and “Wnt_Bcatenin”. 

 

The table 1 summarises the details of the 21 gene sets generated for the study. 
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Table 1. Description of the gene sets used in the study 

 

3.1.2 Breast cancer expression datasets (BC gene expression datasets) 

 
Expression datasets were collected from Gene Expression Omnibus repository (GEO). 

Preference was given to studies performed on clinical samples. The following GEO 

datasets were used in the study: 

 

• GSE5764: Invasive breast cancer tissue. 20 Tumoral samples (10 ductal, 10 lobular) 

+ 10 Normal samples. Array: Affymetrix Human Genome U133 Plus 2.0 Array. 

 

• GSE6883: Breast cancer tissue. 3 Tumoral samples + 3 Normal samples. Array: 

Affymetrix Human Genome U133A Array.  

 

• GSE73540: Breast cancer tissue. 3 Tumoral samples + 3 Normal samples. Array: 

Affymetrix Human Genome U133A Array.  

 

• GSE92252: Breast cancer tissue. 6 Tumoral samples + 3 Normal samples. Array: 

NimbleGen Homo sapiens Expression Array. 
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• GSE71862: Breast cancer cell lines. 3 Breast cancer cell line derived from 

metastatic site (MCF7) + 3 Normal-like mammary epithelial cell line (MCF10A). Pre-

Ranked GSEA. Array: NimbleGen Homo sapiens Expression Array. 

 

• GSE109169: Early-onset breast cancer tissue. 25 Tumoral samples + 25 matched 

normal tissue. Array: Affymetrix Human Exon 1.0 ST Array. 

 

The table 2 summarises the details of the 6 BC datasets collected for the study. 

 

 
Table 2. Description of the BC datasets used in the study 

 

3.1.3 Mantle cell lymphoma expression datasets (MCL gene expression 
datasets) 

 
Expression datasets were collected from Gene Expression Omnibus repository (GEO). 

Preference was given to studies performed on clinical samples. The following GEO 

datasets were used in the study: 

 

• GSE30189 (classical form): MCL tumor cells. 6 MCL (classical form) + 4 normal 

mantle zone B-lymphocytes. Array: Illumina HumanWG-6 v3.0 expression 

beadchip. 

 

• GSE30189 (aggressive form): MCL tumor cells. 7 MCL (aggressive form) + 4 normal 

mantle zone B-lymphocytes. Array: Illumina HumanWG-6 v3.0 expression beadchip. 

 

• GSE45717: MCL tumor cells. 5 MCL + 8 healthy B-lymphocytes. Array: Affymetrix 

Human Exon 1.0 ST Array. 

 

• GSE60023: MCL tumor cells. 3 MCL + 2 (CD19+) B-lymphocytes from healthy 

donor. Array: Arraystar Human LncRNA microarray V2.1. 

 

• GSE95291: MCL tumor cells.2 MCL + 2 B-lymphocytes from healthy donor. Array: 

Illumina HumanHT-12 V4.0 expression beadchip. 

 

• GSE21452: MCL tumor cells. 64 MCL with external control. Array: Affymetrix Human 

Genome U133 Plus 2.0 Array 



16 
 

 

The table 3 summarises the details of the 6 MCL datasets collected for the study. 

 

 
Table 3. Description of the MCL datasets used in the study 

 
 

3.2. Data analysis 

3.2.1 GSEA 

 
To identify CSC biomarkers in BC and MCL we used GSEA computational method 

(GSEA-P Software) created by the Broad Institute and described previously 

(Subramanian et al 2005). GSEA 4.0.3. desktop version was installed in the computer 

following instructions. We analyzed above described BC and MCL gene expression 

datasets to determine whether these are significantly enriched by the genes present in 

the stemness gene signatures. 

 
The steps followed to perform GSEA are the following: 
 

1) Loading expression dataset (.gct format) 
 

Expression datasets were prepared using a Gene Cluster Text (GCT) format 

(.gct) that describes an expression dataset. GCT is convenient for analysis of 

matrix-compatible datasets as it allows metadata about an experiment to be 

stored alongside the data from the experiment. GCT files enable storing both row 

and column metadata. Typically, each column represents a specific experiment 

and each row represents features that are measured in the assay. 

 
2) Preparation and loading of chip annotations (.chip format) 

 

The Chip description file (.chip) contains annotations about a microarray. The file 

typically specifies which probes map to the same genomic unit of interest. While 

this file is not used directly in the GSEA algorithm, it is used to annotate the output 

results and may also be used to collapse each probe set in the expression dataset 

to a single gene vector. 

 
In the majority of cases, information for chip annotation was found stored in the 

program. That was the case of the following chips: Affymetrix Human Genome 

U133A Array, Affymetrix Human Transcriptome Array 2.0 and Illumina 
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HumanHT-12 V4.0 expression beadchip. For the rest of chips, annotation with 

external sources was performed. That was the case of the following chips: 

Affymetrix Human Genome U133 Plus 2.0 Array, NimbleGen Homo sapiens 

Expression Array, Affymetrix Human Exon 1.0 ST Array, Illumina HumanWG-6 

v3.0 expression beadchip, Arraystar Human LncRNA microarray V2.1. 

 
3) Creation and loading of phenotype labels (.cls format) 

 
The CLS file format (.cls) defines phenotype (class or template) labels and 

associates each sample in the expression data with a label. Categorical labels 

define discrete phenotypes (e.g. normal vs tumor). 

 
4) Loading of gene sets (.gmt format) 

 
The Gene set file format (.grp) contains a single gene set in a simple newline- 

delimited text format while GMT or GMX file formats are used to create multiple 

gene sets in the same file. In the present study, the 21 CSC gene sets were 

placed on a GMT format file to be loaded and processed. 

 
5) Running analysis 

 
The top (over-expressed) and bottom (under-expressed) of the list in the datasets 

correspond to the largest differences in expression between tumoral and normal 

tissue. GSEA calculates the enrichment score (ES) that represents the amount 

to which the genes in the set are over-represented at either the top or bottom of 

the list. The ES is the maximum deviation from zero encountered in the random 

walk; it corresponds to a weighted Kolmogorov–Smirnov-like statistic. The 

program also estimates the statistical significance (p value) of the ES by 

calculating a phenotypic-based permutation test to produce a null distribution for 

the ES and adjusts the estimated significance level to account for multiple 

hypothesis testing. The enrichment scores for each gene signature is normalized 

and a false discovery rate is calculated together with a normalized enrichment 

score (NES). The proportion of false positives is checked by calculating the false 

discovery rate (FDR). 

 

3.2.2 Visualization analysis (Tableau) 

 
Tableau software (desktop edition) has been used to summarize and enhance 

interpretability of GSEA results by creating some figures (1-3) and tables (1-12) included 

in this work. 
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3.2.3 Functional annotation analysis  

 
Panther Classification System (Huaiyu et al., 2019) has been used to perform functional 

annotation analysis of the genes included in the 269-CSC gene signature. Panther 

combines gene function, ontology, pathways and statistical tools to enable large-scale 

analysis. In this work, gene list analysis has been performed to group the genes as per 

their molecular function and biological process. Grouping by molecular function consists 

on classifying the genes by the function of the protein itself or the proteins that interact 

directly with it at a biochemical level, whereas grouping by biological process consists 

on classifying the genes by the function of the protein  in the context of a larger network 

of proteins that interact to accomplish a process at the level of the cell or organism. 

 

A high-level analysis was first performed with the 269 genes for both, molecular function 

and biological process analysis. Then, a deeper analysis of the major categories found 

in the high-level analysis was subsequently performed. 

 

3.2.4 Kaplan-Meier survival analysis 

 

Correlation with prognostic parameters has been performed using a bioinformatic tool 

called Kaplan-Meier Plotter (Nagy et al., 2018). This tool is capable to assess the effect 

of genes on survival in multiple cancer types. Sources used include GEO and TCGA, 

among others. For this analysis, the genes included in the 53-CSC gene signature were 

correlated with survival in breast, ovarian, lung and gastric cancer. Only genes found to 

be significant were further studied. The following parameters were used: 

 

1) Hazard Ratio: ratio of the hazard rates corresponding to high and low expression of 

an individual gene. 

 

2) Median survival: length of time from either the date of diagnosis or the start of 

treatment for a disease, that half of the patients are still alive. 

 

3) Logrank p-value: significance given by a hypothesis test comparing the survival 

distributions of high and low expression of an individual gene. 

 

4) Expression state given by the GSEA results found for that individual gene (up: 

upregulated, down: downregulated) 

 

3.2.5 Correlation analysis 

 

Correlation analysis of the genes of the CSC-gene signature with prognostic parameters 

was performed using cor() function of Stats R package and plots of matrix correlations 
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were generated using corrplot R package. Pearson coefficient was used as the test 

statistic. 

3.2.6 Machine learning 

 
 
Random forest, a supervised classification algorithm, was built using the Caret R 

package. Random forest is a learning algorithm that generates multiple decision trees 

and, in case of classification, outputs the classes of the individual trees.  The predicted 

class of the input instance is decided upon majority vote.  

 

Model was trained as follows: data was randomly split into training and test sets using 

different ratios: 70%/30%, 65%/35% and 60%/40% (training/test). Cross-validation was 

used instead of Out-Of-Bag bootstrap method. Different values for n-fold and repeats 

were tested (5-fold with 3 repeats and 3-fold with no repeats). Default parameters for 

ntrees (value of 500), mtry (square root of the total number of variables), maxnodes 

(trees are grown to maximum possible) and nodesize (value of 1) were used. For the 

evaluation in the test set, accuracy, sensitivity and specificity were measured. Variable 

importance regarding the mean decrease in accuracy for each predictor was used. 
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4. Results 
 
 

4.1. GSEA analysis 
 
GSEA was performed on 6 BC (see section 3.1.2 for more details) and 6 MCL (see 

section 3.1.3 for more details) expression datasets. 

 

4.1.1 Breast Cancer GSEA 

 
Selected BC datasets were analyzed using GSEA in order to identify genes involved in 

CSC machinery that are enriched in a tumoral state, especially in a context where CSCs 

may have a key role such as in metastatic or invasive phenotypes, as reviewed in the 

introduction of the present work. 

 

A total of 6 BC datasets were tested for gene set enrichment using 21 gene sets specially 

generated for being involved in CSC machinery (for more details on the gene set 

generation, check Methodology section). 

 

The results show an enrichment of CSC genes in all datasets studied (¡Error! No se 

encuentra el origen de la referencia.). A total of 331 genes were found to be 

downregulated whereas 184 genes were found to be upregulated in tumoral compared 

to normal state. The dataset GSE5764, corresponding to invasive BC, was the one 

showing a higher amount of upregulated CSC genes (95 genes) whereas GSE73540, 

corresponding to primary BC was the dataset showing higher amount of downregulated 

CSC genes (130 genes). 

 

 
Table 4. GSEA for BC datasets (count of up/downregulated genes) 

 
A deeper analysis on which specific gene sets were contributing to the enrichment in 

each dataset was performed (¡Error! No se encuentra el origen de la referencia.).  
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Table 5. GSEA results for BC datasets 

 

We observed that upregulated genes in GSE5764, which corresponds to an invasive BC, 

were distributed among 5 different CSC gene sets: “PROGNOSIS_BC”, 

“STEMNESS_BC”, “GSE95042_OVER”, “MYC” and “TGF_BETA”. All of them, except 

“TGF_BETA”, were found to be highly significant (p-value < 0.05) (¡Error! No se 

encuentra el origen de la referencia.).These results pointed to the existence of an 

enriched CSC phenotype in that particular dataset.  

 

Similar results were found when analysing GSE109169 dataset, which corresponds to 

samples of early-onset BC. The genes that were found to be significantly upregulated 

came from 3 different CSC gene sets: “STEMNESS_BC”, “PROGNOSIS_BC” and 

“DORMANCY_BC” (Table 5). Moreover, the analysis of the significance suggests that 

samples of the dataset display important CSC features such as stemness or dormancy 

(¡Error! No se encuentra el origen de la referencia.). 
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In the opposite side, GSE71862 dataset, which corresponds to a breast cancer line 

derived from a metastatic site, had its downregulated genes distributed across 6 different 

CSC gene sets: “GSE43730_UNDER”, “GSE95042_OVER”, “GSE43730_OVER”, 

“DORMANCY_BC”, “GSE25976_UNDER”, “GSE25976_OVER”. These results show 

that GSE71862 doesn’t display a clear CSC phenotype as the majority of the 

downregulated genes correspond to gene sets generated from BCSCs 

(GSE95042_OVER, GSE43730_OVER) and even metastatic BCSCs 

(GSE25976_OVER). It’s worth mentioning that significance of 3 of the gene sets 

(“DORMANCY_BC”, “GSE25976_OVER” and “GSE95042_OVER”) are among the 5 

lowest found across datasets being the p-values close to 0.1 (Figure 3¡Error! No se 

encuentra el origen de la referencia.).  

 

Similar results of an apparent absence of a CSC phenotype was found for GSE73540 

dataset, corresponding to primary BC, in which downregulated genes came from 4 

distinct CSC gene sets: “STEMNESS2_BC”, “GSE95042_OVER”, “STEMNESS_BC” 

and “PROGNOSIS_BC”. Again, as mentioned for GSE71862 dataset, the significance of 

2 of the 4 gene sets was among the 5 lowest, being the p-values close to 0.1 (Figure 3). 

 

 
Figure 3. GSEA for BC datasets. Average significance of gene sets. 

 

4.1.2 Mantle Cell Lymphoma GSEA 
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A total of 6 MCL datasets were tested for gene set enrichment.  

 
The results show an enrichment of CSC genes in all datasets studied (Table 6). A total 

of 259 genes were found to be downregulated whereas 698 genes were found to be 

upregulated in tumoral compared to normal state. The dataset GSE21452, 

corresponding to 64 primary MCL tumors, was the one showing a higher amount of 

upregulated CSC genes (418 genes) whereas GSE95291, corresponding to 2 primary 

MCL cells was the dataset showing higher amount of downregulated CSC genes (165 

genes). Except two datasets (“GSE30189_aggresive”, “GSE30189_classical”), the other 

four displayed a higher proportion of upregulated genes compared to downregulated 

ones. 

 

 
Table 6. GSEA for MCL datasets (count of up/downregulated genes) 

 
A deeper analysis on which specific gene sets were contributing to the enrichment in 

each dataset was performed (Table 7).  
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Table 7. GSEA results for MCL datasets 

 
We observed that upregulated genes in GSE21452 were distributed among 11 different 

CSC gene sets that were (ordered in descendent order as per the number of genes 

involved): “STEMNESS2_BC”, “NOTCH”,  “STEMNESS_BC”, “GSE95042_OVER”, 

“TNF”, “PROGNOSIS_BC”, “WNT_BCATENIN”,  “TGF_BETA”, “DORMANCY_BC”, 

“MYC” and “HIPPO”,. It seems that 6 out of 8 gene sets involving CSC pathways were 

significantly enriched in this particular dataset. All of the gene sets, except “TGF_BETA” 

were found to be highly significant (p-value < 0.05) (Figure 4). These results pointed to 

the existence of a particularly enriched CSC phenotype in that particular dataset.  



25 
 

Mixed results were obtained in dataset GSE95291, in which a similar proportion of 

upregulated and downregulated genes was found. Upregulated genes came from 6 gene 

sets: “STEMNESS_BC”, “STEMNESS2_BC”, “PROGNOSIS_BC”, “DORMANCY_BC”, 

“GSE25976_UNDER” and “MYC” whereas downregulated genes came from 6 gene 

sets: “GSE95042_OVER”, “TNF”, “GSE43730_OVER”, “GSE25976_OVER”, 

“HEDGEHOG” and “GSE95042_UNDER” (Table 7). Moreover, these results appear to 

be highly significant with p-values lower than 0.01. It’s worth mentioning that a group of 

genes found to be downregulated in the dataset were originally found to be upregulated 

in the BCSCs samples used to construct the corresponding gene sets 

(“GSE25976_OVER”, “GSE43730_OVER” and “GSE95042_OVER”). 

 

 

 
Figure 4. GSEA for MCL datasets. Average significance of gene sets. 

 

4.1.3 Comparison of GSEA results between cancer types 

 
A comparative analysis was performed between cancer types. The first relevant finding 

was the inverse proportion of up/downregulated genes found in both cancer types. While 
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in BC almost 62,84% of significantly enriched genes were downregulated in tumoral 

state, in MCL we observed the inverse: almost 74,26% of significantly enriched genes 

were upregulated in tumoral state (Table 8, Table 9). 

 

 
Table 8. Number of up/downregulated genes comparing BC and MCL. 

. 
 

 
Table 9. Percentage of up/downregulated genes comparing BC and MCL. 

 
More granularity was added to the analysis and the proportion of genes across the 

different gene sets was compared (Figure 5). Several gene sets were identified in which 

the number of upregulated genes was similar when comparing cancer types. A total 

number of 66 and 50 genes from the gene set “STEMNESS_BC” were upregulated in 

MCL and BC, respectively.  

 

Similarly, 68 and 43 genes from the gene set “PROGNOSIS_BC” were upregulated in 

MCL and BC, respectively. Regarding genes from “DORMANCY_BC” gene set, more 

than four times of genes were shown to be upregulated in MCL when compared to BC 

(62 and 15 genes, respectively). Also, a double number of genes from the gene set was 

found to be downregulated in MCL, as compared to BC (21 and 12 genes, respectively). 

Interestingly, genes from “STEMNESS2_BC”, “STEMNESS_BC” and 

“PROGNOSIS_BC” were found to be downregulated only in BC (58, 56 and 21 genes, 

respectively). 

 

Regarding the gene sets generated from BCSCs, two of the ones composed by 

upregulated genes (“GSE43730_OVER”, “GSE25976_OVER”, respectively) were 

enriched both in MCL and BC, but gene expression was found to be downregulated (30 

and 14 genes in “GSE43730_OVER” for MCL and BC, respectively, and 31 and 13 genes 

in “GSE25976_OVER” for MCL and BC, respectively). The other 2 gene sets generated 

form BCSCs composed by upregulated genes (“GSE95042_OVER” and 

“GSE132083_OVER”) lead to identification of both, upregulated an downregulated 

genes. Whereas for “GSE95042_OVER”, the highest proportion of downregulated genes 

were found for BC (83 genes compared to 20 genes for MCL), for “GSE132083_OVER” 

the downregulated genes (15 genes) corresponded exclusively to MCL. In the contrary, 

for “GSE95042_OVER” the upregulated genes were found mostly in MCL (50 genes 
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compared to 25 genes for BC), and for “GSE132083_OVER”, the upregulated genes 

were exclusive from BC (19 genes). 

 

Regarding the gene sets composed by the downregulated counterparts, for 

“GSE95042_UNDER” only downregulated genes were found in both cancer types (18 

and 25 genes for MCL and BC, respectively). For “GSE43730_UNDER” and 

“GSE25976_UNDER”, both, downregulated and upregulated genes were found, 

although the majority were included in the downregulated subset (30 and 10 genes in 

“GSE25976_UNDER” for MCL and BC, respectively; 29 and 23 genes in 

“GSE43730_UNDER” for MCL and BC, respectively). Regarding the upregulated genes, 

whereas in “GSE25976_UNDER” upregulated genes were only found for MCL (31 

genes), in “GSE43730_UNDER” upregulated genes were only found in BC (16 genes). 

Last, in “GSE132083_UNDER”, only 9 genes were found to be enriched and 

corresponded to upregulated genes in BC. 

 

All of the gene sets related to pathways involved in CSCs machinery contributed to the 

identification of deregulated genes in both cancer types. Among the other pathways, the 

ones with the highest impact in the study was “TNF”. A total number of 37 genes from 

the “TNF” gene set were found to be upregulated in MCL, whereas 23 and 20 genes 

were found to be downregulated in MCL and BC, respectively. Interestingly there were 

5 of the pathways that contributed exclusively with upregulated genes: “TGF_BETA” (31 

and 17 genes for MCL and BC, respectively), “MYC” (35 and 10 genes for MCL and BC, 

respectively), “”NOTCH” (42 genes for MCL), “WNT_BCATENIN” (32 genes for MCL) , 

“JAK_STAT” (6 genes for MCL). “HIPPO” contributed to both, downregulated and 

upregulated genes (10 genes were found to be downregulated in BC and 18 upregulated 

in MCL). Finally, “HEDGEHOG” was the only pathway contributing exclusively with 

downregulated genes (44 genes for MCL). contributing with 3, 3 and 1 upregulated 

genes, respectively.  
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Figure 5. Number of up/downregulated genes across gene sets, comparing BC and MCL 

 

4.1.4 Identification of common CSC gene signatures 

 
 

A list of 269 common genes between cancer types has been identified (full list available 

in section 9.2 of Appendix). 

 

First, the list of genes was ordered by the number of total datasets in which they have 

been found enriched. FOXM1, forkhead box M1, a transcriptional activator involved in 

cell proliferation was the gene found enriched in the highest number of datasets: 8 up to 

12 datasets (66,7%), 4 corresponding to BC and another 4 corresponding to MCL. 

Another 5 genes were found enriched in 7 datasets (4 BC and 3 MCL): SPARC, LYZ, 

COL1A1, BUB1B and BUB1.The top 20 are shown in Table 10. 
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Table 10. Top 20 common genes found enriched in GSEA 

 
The number of datasets in which the genes were found up or downregulated comparing 

BC and MCL was also analyzed.  

 

The results revealed that FOXM1 was found upregulated in 5 up to 8 datasets (2 BC and 

3 MCL) and downregulated in 3 (2 BC and 1 MCL). While SPARC and LYZ were found 

downregulated in higher proportion (4 up to 7 datasets), COL1A1, BUB1B and BUB1 

were found upregulated (4 up to 7 datasets). Comparing BC and MCL, SPARC and LYZ 

were mainly found downregulated in BC (3 up to 4 datasets) whereas in MCL they were 

found mainly upregulated (2 up to 3 datasets). The rest among the top 20 enriched genes 

were found more upregulated than downregulated except KIF20A and FCER1G that 

showed the opposite results. 
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Table 11. Top 20 common genes found enriched in GSEA, distributed by up or downregulation. 

 
The genes were also ordered by their significance. If the same gene was found enriched 

in several datasets and/or was present in different CSC gene sets, the average of the p-

values was calculated and taken into account to build an “Average p-value”. Genes were 

sorted in descendent order. The top 20 are shown in Table 12. 



31 
 

 

 
Table 12. Top 20 genes sorted by significance (average p-value) 

 
Most of the genes with lower significance are present in 2 datasets (one per cancer type). 

CDK4 is the gene with lowest significance (average p-value of 0.001750) found enriched 

in more than 2 datasets (3 MCL and 1 BC).  

 

Several gene signatures were generated depending on the average p-value: 

 

1. Gene signature with genes with average p-value lower than 0.01: composed by 

53 genes (53-CSC gene signature). 

 

2. Gene signature with genes with average p-value lower than 0.05: composed by 

242 genes (242-CSC gene signature). 

 

3. Gene signature with genes with average p-value lower than 0.1: composed by 

269 genes (269-CSC gene signature). 

 

Gene signatures can be found in section 9.3 of Appendix. 
 
 

4.2. Functional annotation analysis 
 
 
In order to further understand the biological context of the CSC genes identified in both 

cancer types (MCL and BC), a bioinformatic tool for functional annotation was used 

(Panther Classification System). The full list of 269 genes was selected for the analysis. 
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4.2.1 Molecular function 

 
A first analysis regarding the molecular function was performed (Figure 6). The most 

relevant molecular functions retrieved were “binding” (73 genes) and “catalytic activity” 

(63 genes). 

 

 

Figure 6. Functional annotation of genes in 269-CSC gene signature: molecular functions (1) 

 
More than half of the genes that mapped to “binding” function were subgrouped into 

“protein binding” category (44 up to 73 genes), “heterocyclic compound binding” (23 

genes) and “organic cyclic compound binding” (23 genes). These two groups contained 

the same genes. (Figure 7).  

 
Figure 7. Functional annotation of the 73 “binding” genes. 
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Among the “protein binding”, the most relevant categories were “enzyme binding” (12 up 

to 44 genes), “cytoskeletal protein binding” (11 genes) and “signalling receptor binding” 

(10 genes) (Figure 8), whereas among the “heterocyclic compound binding” and 

“organic cyclic compound binding” genes, the most relevant category was “nucleic acid 

binding” (20 up to 23 genes) (

 

Figure 9). 

 

 

Figure 8. Functional annotation of 44 "binding protein" genes 
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Figure 9. Functional annotation of 20 "heterocyclic compound binding" genes 

 

4.2.2 Biological process 

 
A second analysis focused on annotating the list of 269 genes regarding the biological 

processes in which they are involved was performed. 

 

Major categories identified were “cellular process” (132 up to 269 genes), “biological 

regulation” (84 genes) and “metabolic process” (83 genes) (Figure 10). 

  

 

Figure 10. Functional annotation of genes in 269-CSC gene signature: biological processes 
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Narrowing down “cellular process” category, major subcategories found were: “cellular 

metabolic process” (75 up to 132 genes), “cellular component organization” (49 genes), 

“cellular response to stimulus” (42 genes), “cell communication” (39 genes) and “signal 

transduction” (38 genes) (Figure 11).  

 

 

Figure 11. Functional annotation of the 132 "cellular process" genes. 

Narrowing down several levels within “biological regulation” category, the major 

subcategories found were: “regulation of biological process” (80 up to 84 genes) → 

“regulation of cellular process” (78 up to 80 genes) → “regulation of cellular metabolic 

process” (41 up to 78 genes) and “signal transduction” (38 genes) (Figure 12). 
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Figure 12. Functional annotation of 78 “regulation of cellular metabolic process” genes. 

 
Last, narrowing down “metabolic process” category, major subcategories found were: 

“organic substance metabolic process” (79 up to 83 genes), “primary metabolic process” 

(77 genes), “cellular metabolic process” (75 genes) and “nitrogen compound metabolic 

process” (73 genes) (Figure 13). 

 

 

 

Figure 13. Functional annotation of 83 “metabolic process” genes 

4.3. Correlation with prognostic parameters: Kaplan-Meier 
survival analysis 

 
 
In order to study the prognostic significance of the CSC-gene signatures generated in 

cancer we followed the following approach: In silico analysis using the bioinformatic tool 

Kaplan-Meier Plotter. Survival analysis of the genes present in the 53-CSC gene 

signature has been performed using data from breast, ovarian, lung and gastric cancer 

studies. 

 

I. Breast cancer cohort 
 

Analysis has been run in data from 1764 patients. From the list of 53 genes, a total of 35 

have been found significantly correlated with poor survival whereas no differences have 

been found for 16 of the genes. Only results for the significant genes are displayed 

(Table 13). 
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High expression of 13 of the genes (genes in red colour in the table) and low expression 

of 22 of the genes (genes in blue colour in the table) have been correlated with poor 

survival. 

 
Gene Hazard-Ratio 

(HR) 

logrank P Median survival 

in low 

expression 

cohort (months) 

Median survival 

in high 

expression 

cohort (months) 

Expression state 

found in our study 

(BC + MCL) 

IL1B 0.69 (0.61-0.76) 1.4e-11*** 171.43 216.66 Down (1+1) 

PI3 1.12 (1.01-1.25) 0.039* 216.66 191.21 Down (1+1) 

PLD5 0.82 (0.8-0.95) 0.01* 33 40 Down (1+1) 

SERPINB3 0.8 (0.71-0.89) 4.6e-05*** 40.53 60 Down (1+1) 

SPRR1B 0.81 (0.73-0.9) 0.00016*** 42.51 57.6 Down (1+1) 

TLL1 0.8 (0.69-0.94) 0.0052** 32 39.95 Down (1+1) 

ZBED2 0.72 (0.65-0.8) 3.9e-09*** 38.4 64 Down (1+1) 

CCDC80 0.81 (0.69-0.94) 0.0072** 31 40.56 Up (1+0), Down 

(1+1) 

DENND2C 0.69 (0.59-0.8) 1.9e-06*** 29 43 Down (0+1) 

FAT2 0.89 (0.8-1) 0.043* 44.1 53.1 Up (1+0), Down 

(1+1) 

FOLH1 1.21 (1.09-1.35) 0.00053*** 216.66 191.21 Up (1+0), Down 

(0+1) 

GCNT4 0.74 (0.66-0.82) 4.3e-08*** 228.85 216.66 Up (1+0), Down 

(0+1) 

NRG1 0.88 (0.79-0.98) 0.018* 43 55.2 Up (1+0), Down 

(0+1) 

PDGFD 0.65 (0.58-0.73) 1.7e-14*** 216.66 191.21 Up (1+0), Down 

(0+1) 

PHLDA2 1.42 (1.27-1.58) 4e-10*** 228.85 173.2 Up (1+1) 

PPP2R5A 0.88 (0.79-0.98) 0.023* 228.85 216.66 Up (1+1) 

TP63 0.67 (0.6-0.75) 1e-12*** 37.2 72.2 Up (1+0), Down 

(0+1) 

ACTL6A 1.55 (1.39-1.73) 2.3e-15*** 216.66 185.16 Up (1+2) 

FADD 1.55 (1.39-1.73) 3.6e-15*** 228.85 184.04 Up (0+1), Down 

(1+1) 

MAP3K7 0.75 (0.67-0.84) 3.5e-07*** 40.44 60 Up (0+1), Down 

(1+1) 

MAP4K4 1.36 (1.22-1.52) 2.4e-08*** 65 36.96 Up (0+1), Down 

(1+1) 

NFKB1 0.63 (0.57-0.71) 3.3e-16*** 191.21 216.66 Up (0+1), Down 

(1+1) 

PML 0.83 (0.75-0.93) 0.001** 44 57 Up (1+2) 

PRKCZ 0.82 (0.74-0.92) 0.00052*** 228.85 216.66 Up (0+1), Down 

(1+1) 

RELA 0.83 (0.75-0.93) 0.00088*** 228.85 216.66 Up (0+1), Down 

(1+1) 

RIPK1 0.72 (0.62-0.85) 4.4e-05*** 29 43 Up (0+1), Down 

(1+1) 

RUVBL1 1.39 (1.24-1.55) 3.8e-09*** 228.85 185.16 Up (1+2) 

SERPINB2 0.83 (0.75-0.93) 0.0011** 43 57.3 Up (0+1), Down 

(2+2) 

SQSTM1 1.35 (1.21-1.5) 8.7e-08*** 216.66 228.85 Up (0+1), Down 

(1+1) 

TNFAIP3 0.85 (0.77-0.95) 0.0047** 45 55 Up (0+1), Down 

(1+1) 
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CDK4 1.53 (1.37-1.71) 1.7e-14*** 216.66 171.43 Up (1+3) 

EXOSC4 1.39 (1.25-1.55) 3e-09*** 216.66 171.43 Up (1+2) 

MIEN1 1.4 (1.2-1.64) 2.2e-05*** 43 30 Up (1+1) 

NDUFB10 1.31 (1.12-1.53) 0.00067*** 171.43 148 Up (1+1) 

SKP2 1.75 (1.57-1.96) <1e-16*** 216.66 163.46 Up (1+2) 

 

Table 13. List of 35 genes significantly correlated with poor survival (***p-value<0.001, **p-
value<0.01, *p-value<0.05). In red colour, genes whose survival decrease with high expression 

of the gene and in blue colour, genes whose survival decreases with low expression of the 
gene. 

 
The genes most significantly correlated with poor prognosis are SKP2, NFKB1, 

ACTL6A, FADD, CDK4 and PDGFD. For SKP2, ACTL6A, FADD and CDK4 it’s the 

high gene expression which correlates with a lower median survival whereas for NFKB1 

and PDGFD, it’s the low expression of the genes which is related to a poorer median 

survival.  

 

These results are consistent with the findings obtained in the GSEA analysis (see section 

4.1) for 4 up to 6 of these genes. GSEA analysis showed that SKP2 was upregulated 

both in BC (1 dataset) and MCL (2 datasets), CDK4 was upregulated both in BC (1 

dataset) and MCL (3 datasets), ACTL6A was upregulated both in BC (1 dataset) and 

MCL (2 datasets) and NFKB1 was downregulated in both, BC (1 dataset) and MCL (1 

dataset). However, for FADD and PDGFD, results showed partial consistency. FADD 

was only found upregulated in 1 MCL dataset whereas it was found downregulated in 1 

BC and 1 MCL datasets. PDGFD was found downregulated in 1 MCL dataset but 

upregulated in 1 BC dataset. 

 

 

II. Ovarian cancer cohort 
 

Analysis has been run in data from 614 patients. From the list of 53 genes, a total of 31 

have been found significantly correlated with poor survival whereas no differences have 

been found for 22 of the genes. Only results for the significant genes are displayed 

(Table 14). 

 

High expression of 23 of the genes (genes in red colour in the table) and low expression 

of 8 of the genes (genes in blue colour in the table) have been correlated with poor 

survival. 

 

Gene Hazard-Ratio 

(HR) 

logrank P Median survival 

in low 

expression 

cohort (months) 

Median 

survival in 

high 

expression 

cohort 

(months) 

Expression state 

found in our study 

(BC + MCL) 

IL1B 1.18 (1.03-1.37) 0.02* 21.43 19.27 Down (1+1) 
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MFAP5 1.32 (1.16-1.5) 2.2e-05*** 23.82 18.23 Down (1+1) 

PI3 1.18 (1.04-1.34) 0.013* 20.6 19 Down (1+1) 

RNF152 1.46 (1.21-1.77) 7.9e-05*** 19 15.13 Down (1+1) 

SPRR1A 0.78 (0.68-0.9) 0.00045*** 18.4 27 Down (1+1) 

SPRR1B 0.79 (0.68-0.9) 0.00057*** 17 21.6 Down (1+1) 

TLL1 1.39 (1.15-1.68) 5e-04*** 19.55 14 Down (1+1) 

ZBED2 1.18 (1.03-1.36) 0.015* 21 19.23 Down (1+1) 

CCDC80 1.90 (1.64-2.41) 6.4e-13*** 23 11 Up (1+0), Down 

(1+1) 

CLCA2 0.86 (0.74-0.99) 0.041* 18.79 20.56 Up (1+0), Down 

(1+1) 

DENND2C 1.37 (1.13-1.67) 0.0017** 18.87 14 Down (0+1) 

LUM 1.68 (1.46-1.94) 4.8e-13*** 23 13.73 Up (1+1) 

PAK2 1.19 (1.04-1.37) 0.011* 20.2 19 Up (1+1) 

PDGFD 1.35 (1.19-1.53) 2.9e-06*** 22.5 17.4 Up (1+0), Down 

(0+1) 

PHLDA2 1.16 (1.01-1.32) 0.038* 22 19.23 Up (1+1) 

POF1B 0.68 (0.56-0.82) 5.4e-05*** 14.37 19.98 Up (1+0), Down 

(0+1) 

TAF12 1.32 (1.16-1.52) 4.3e-05*** 25 18.23 Up (1+1) 

TP63 0.87 (0.76-0.99) 0.038* 18.3 23.73 Up (1+0), Down 

(0+1) 

ACTL6A 1.34 (1.17-1.54) 3.2e-05*** 23.56 18.93 Up (1+2) 

CASP8 1.15 (1.01-1.3) 0.039* 22.13 19 Up (0+1), Down 

(1+1) 

MTS1 1.25 (1.09-1.42) 0.00093*** 21 19.35 Up (1+2) 

MAP4K4 1.16 (1.02-1.31) 0.024* 21.43 18.86 Up (0+1), Down 

(1+1) 

NFKB1 1.21 (1.06-1.38) 0.005** 21.13 17.9 Up (0+1), Down 

(1+1) 

PML 1.2 (1.04-1.38) 0.013* 23.1 18.98 Up (1+2) 

RIPK1 1.26 (1.04-1.53) 0.019* 19 14.53 Up (0+1), Down 

(1+1) 

RUVBL1 1.3 (1.14-1.47) 6.5e-05*** 22.24 18 Up (1+2) 

SERPINB2 1.3 (1.12-1.51) 0.00049*** 22 19 Up (0+1), Down 

(2+2) 

BMI1 1.38 (1.2-1.59) 9.4e-06*** 28 18.43 Up (1+1) 

MIEN1 0.75 (0.62-0.91) 0.0029** 15.13 19.02 Up (1+1) 

NDUFB10 0.74 (0.61-0.89) 0.0014** 15 20 Up (1+1) 

SKP2 1.16 (1-1.33) 0.042* 20.56 19.8 Up (1+2) 

 

Table 14. List of 31 genes significantly correlated with poor survival (***p-value<0.001, **p-
value<0.01, *p-value<0.05). In red colour, genes whose survival decrease with high expression 

of the gene and in blue colour, genes whose survival decreases with low expression of the 
gene. 

 

The genes most significantly correlated with poor prognosis are CCDC80 and LUM. In 

both cases it’s the high gene expression which correlates with a lower median survival. 

 

These results are consistent with the findings obtained in the GSEA analysis (see section 

4.1) for LUM. GSEA analysis showed that LUM was upregulated both in BC (1 dataset) 

and MCL (1 dataset), However, for CCDC80, results showed partial consistency. The 
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gene was only found upregulated in 1 BC dataset whereas it was found downregulated 

in 1 BC and 1 MCL datasets.  

 

III. Lung cancer cohort 
 

Analysis has been run in data from 1144 patients. From the list of 53 genes, a total of 34 

have been found significantly correlated with poor survival whereas no differences have 

been found for 19 of the genes. Only results for the significant genes are displayed 

(Table 15). 

 

High expression of 20 of the genes (genes in red colour in the table) and low expression 

of 14 of the genes (genes in blue colour in the table) have been correlated with poor 

survival. 

 

Gene Hazard-Ratio 

(HR) 

logrank P Median survival 

in low 

expression 

cohort (months) 

Median 

survival in high 

expression 

cohort 

(months) 

Expression state 

found in our study 

(BC + MCL) 

PI3 1.33 (1.17-1.51) 1.1e-05*** 79.5 54.57 Down (1+1) 

PLD5 0.83 (0.7-0.98) 0.027* 69.93 88 Down (1+1) 

RNF152 1.19 (1.01-1.4) 0.039* 85 71 Down (1+1) 

SCEL 0.67 (0.57-0.79) 2.1e-06*** 55.37 103 Down (1+1) 

SERPINB3 1.23 (1.08-1.39) 0.0013** 78 63 Down (1+1) 

SPRR1A 1.24 (1.09-1.41) 0.00074*** 78.5 62 Down (1+1) 

SPRR1B 1.42 (1.25-1.62) 4.1e-08*** 86.27 53 Down (1+1) 

CCDC80 0.8 (0.68-0.95) 0.0095** 65.57 88.7 Up (1+0), Down 

(1+1 

FAT2 1.32 (1.16-1.5) 1.6e-05*** 85 57 Up (1+0), Down 

(1+1) 

GCNT4 1.17 (1.03-1.33) 0.014* 74 64.1 Up (1+0), Down 

(0+1) 

LUM 0.77 (0.68-0.97) 3.8e-05*** 59.11 80.03 Up (1+1) 

PDGFD 0.76 (0.67-0.86) 1.8e-05*** 52 80.9 Up (1+0), Down 

(0+1) 

PPP2R5A 0.69 (0.61-0.79) 1.1e-08*** 50 85 Up (1+1) 

TAF9 1.38 (1.21-1.57) 1.1e-06*** 89 54.2 Up (1+1) 

TP63 1.14 (1-1.29) 0.044* 74 65.57 Up (1+0), Down 

(0+1) 

XDH 0.71 (0.6-0.84) 5e-05*** 63 93 Up (1+0), Down 

(1+1) 

ACTL6A 1.15 (1.01-1.31) 0.03* 74 62.47 Up (1+2) 

CASP8 0.74 (0.65-0.84) 3.6e-06*** 57 78.5 Up (0+1), Down 

(1+1) 

CDKN2A 1.28 (1.13-1.46) 0.00011*** 84.1 57 Up (1+2) 

MAP3K7 0.72 (0.64-0.82) 6.6e-07*** 55 79.54 Up (0+1), Down 

(1+1) 

MAP4K4 1.25 (1.1-1.41) 0.00062*** 78.9 61.2 Up (0+1), Down 

(1+1) 

PML 1.17 (1.03-1.33) 0.014* 77.77 63.03 Up (1+2) 

PRKCZ 0.82 (0.72-0.93) 0.0023** 62.2 78 Up (0+1), Down 

(1+1) 
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RELA 0.86 (0.76-0.98) 0.024* 63 74 Up (0+1), Down 

(1+1) 

RIPK1 0.66 (0.46-0.79) 1.5e-06*** 57 104 Up (0+1), Down 

(1+1) 

RUVBL1 1.61 (1.42-1.83) 1.9e-13*** 95.5 48.8 Up (1+2) 

SERPINB2 1.23 (1.08-1.4) 0.0013** 79.27 62 Up (0+1), Down 

(2+2) 

SQSTM1 0.86 (0.76-0.98) 0.019* 63 77.6 Up (0+1), Down 

(1+1) 

CDK4 1.51 (1.33-1.71) 2.1e-10*** 85 49 Up (1+3) 

EXOSC4 1.24 (1.1-1.41) 0.00073*** 79.27 59 Up (1+2) 

BMI1 0.72 (0.64-0.82) 4.2e-07*** 59 89 Up (1+1) 

MIEN1 1.24 (1.05-1.46) 0.011* 84 65.57 Up (1+1) 

NDUFB10 1.2 (1.02-1.42) 0.031* 88.7 68 Up (1+1) 

SKP2 1.24 (1.09-1.4) 0.00093*** 78 59.53 Up (1+2) 

 
Table 15. List of 34 genes significantly correlated with poor survival (***p-value<0.001, **p-

value<0.01, *p-value<0.05). In red colour, genes whose survival decrease with high expression 
of the gene and in blue colour, genes whose survival decreases with low expression of the 

gene. 

 
The genes most significantly correlated with poor prognosis are RUVBL1 and CDK4. In 

both cases it’s the high gene expression which correlates with a lower median survival. 

 

These results are consistent with the findings obtained in the GSEA analysis (see section 

4.1). GSEA analysis showed that RUVBL1 was upregulated both in BC (1 dataset) and 

MCL (2 datasets) and that CDK4 was upregulated both in BC (1 dataset) and MCL (3 

datasets). 

 

 

 
IV. Gastric cancer cohort 

 
Analysis has been run in data from 631 patients. From the list of 53 genes, a total of 43 

have been found significantly correlated with poor survival whereas no differences have 

been found for 10 of the genes. Only results for the significant genes are displayed 

(Table 16). 

 

High expression of 26 of the genes (genes in red colour in the table) and low expression 

of 17 of the genes (genes in blue colour in the table) have been correlated with poor 

survival. 

 
Gene Hazard-Ratio (HR) logrank P Median survival 

in low 

expression 

cohort (months) 

Median 

survival in 

high 

expression 

cohort 

(months) 

Expression state found in our 

study (BC + MCL) 

IRF6 0.79 (0.65-0.96) 0.019* 27.6 36.4 Down (1+1) 

IL1B 0.73 (0.62-0.87) 0.00045*** 23.6 31.2 Down (1+1) 
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MFAP5 1.3 (1.1-1.54) 0.0026** 32.1 26.8 Down (1+1) 

PLD5 1.81 (1.41-2.32) 2.3e-06 113.2 33.27 Down (1+1) 

RNF152 1.35(1.05-1.72) 0.017* 93.2 42 Down (1+1) 

SERPINB3 1.31 (1.1-1.56) 0.0021** 35.4 24.03 Down (1+1) 

SPRR1A 1.45 (1.18-1.77) 0.00032*** 42.07 26.5 Down (1+1) 

SPRR1B 1.46 (1.21-1.76) 5.5e-05*** 50.8 24.8 Down (1+1) 

TLL1 1.73 (1.32-2.27) 5.8e-05*** 123.8 37.93 Down (1+1) 

CCDC80 1.78 (1.43-2-22) 1.9e-07*** 100.8 31.3 Up (1+0), Down (1+1) 

CLCA2 1.35 (1.12-1.63) 0.0018** 39.8 27 Up (1+0), Down (1+1) 

DENND2C 1.76 (1.35-2-29) 2.2e-05*** 107.7 36.4 Down (0+1) 

FAT2 1.64 (1.37-1.97) 5.8e-08*** 35.9 21.23 Up (1+0), Down (1+1) 

FOLH1 0.73 (0.61-0.86) 0.00022*** 21.6 35.1 Up (1+0), Down (0+1) 

GCNT4 1.23 (1.04-1.46) 0.015* 33.2 26.7 Up (1+0), Down (0+1) 

LUM 0.83 (0.7-0.98) 0.031* 25 34.1 Up (1+1) 

NRG1 0.79 (0.67-0.94) 0.0063** 24.4 33.27 Up (1+0), Down (0+1) 

PAK2  0.68 (0.57-0.82) 4.5e-05*** 26.6 42 Up (1+1) 

PDGFD 1.45 (1.18-1.78) 0.00033*** 62 27.8 Up (1+0), Down (0+1) 

PHLDA2 0.74 (0.62-0.87) 0.00038*** 25.9 34.1 Up (1+1) 

PPP2R5A 0.81 (0.68-0.96) 0.014* 26.7 30 Up (1+1) 

TAF9 0.68 (0.58-0.81) 9.9e-06*** 25.2 36.17 Up (1+1) 

TAF12 0.65 (0.55-0.77) 4.3e-07*** 21.6 42.07 Up (1+1) 

TP63 1.46 (1.23-1.72) 1.3e-05*** 39.53 23.4 Up (1+0), Down (0+1) 

XDH 0.7 (0.57-0.88) 0.0015** 31.33 70.4 Up (1+0), Down (1+1) 

ACTL6A 0.58 (0.47-0.7) 2.3e-08*** 25.2 77.2 Up (1+2) 

CASP8 0.63 (0.53-0.75) 7e-08*** 24.4 39.53 Up (0+1), Down (1+1) 

CDKN2A 1.73 (1.4-2.14) 2.7e-07*** 70.4 25.9 Up (1+2) 

FADD 0.79 ((0.66-0.93) 0.0057** 27.8 30.9 Up (0+1), Down (1+1) 

MAP3K7 1.3 (1.08-1.57) 0.0056** 32.1 25.5 Up (0+1), Down (1+1) 

MAP4K4 1.68 (1.4-2.01) 9.1e-09*** 38.2 18.6 Up (0+1), Dow n(1+1) 

PML 1.7 (1.41-2.03) 7.5e-09*** 53.43 23.6 Up (1+2) 

PRKCZ 1.42 (1.16-1.72) 0.00048*** 45.1 26.5 Up (0+1), Down (1+1) 

RELA 1.58 (1.29-1.93) 6.1e-06 57.13 26 Up (0+1), Down (1+1) 

RUVBL1 0.74 (0.62-0.87) 0.00038*** 26.6 35.4 Up (1+2) 

SERPINB2 1.21 (1.02-1.44) 0.029* 34.1 25.5 Up (0+1), Down (2+2) 

SQSTM1 1.56 (1.32-1.85) 2.3e-07*** 36.4 21 Up (0+1), Down (1+1) 

CDK4 1.31 (1.09-1.58) 0.0044** 31.33 22.2 Up (1+3) 

EXOSC4 0.75 (0.63-0.89) 0.00098*** 25.5 34.1 Up (1+2) 

BMI1 0.69 (0.58-0.82) 1.8e-05*** 23.6 36.4 Up (1+1) 

MIEN1 1.34 (1.07-1.68) 0.011* 65 34.37 Up (1+1) 

NDUFB10 0.78 (0.62-0.97) 0.026* 40.2 77.2 Up (1+1) 

SKP2 0.73 (0.61-0.87) 0.00051*** 27.4 39.8 Up (1+2) 

 
Table 16. List of 43 genes significantly correlated with poor survival (***p-value<0.001, **p-

value<0.01, *p-value<0.05). In red colour, genes whose survival decrease with high expression 
of the gene and in blue colour, genes whose survival decreases with low expression of the 

gene. 

 

The genes most significantly correlated with poor prognosis in gastric cancer are 

MAP4K4 and PML. In both cases it’s the high gene expression which correlates with a 

lower median survival. 

 

These results are consistent with the findings obtained in the GSEA analysis (see section 

4.1) for PML. GSEA analysis showed that this gene was upregulated both in BC (1 
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dataset) and MCL (2 datasets). However, results are partially consistent with what was 

found for MAP4K4. This gene was found upregulated only in 1 MCL dataset and 

downregulated in 1 BC and 1 MCL datasets. 

 
In order to analyse which genes are commonly found related to survival in all cancer 

types studied, a Venn’s diagram was performed (Figure 14). 

 

 

 
Figure 14. Analysis of genes significantly correlated with survival in 4 cancer types (Breast, 
Ovarian, Lung and Gastric cancer) using Venn's diagram 



44 
 

 
 
Table 17. Number and name of genes found significantly correlated with survival across cancer 

types. 

 
A total number of 12 genes have been found significantly correlated with survival in all 4 

cancer types: TP63, ACTL6A, PML, PDGFD, MAP4K4, NDUFB10, CCDC80, SPRR1B, 

SKP2, SERPINB2, RUVBL1 and MIEN1. An additional number of 22 genes have been 

found significantly correlated with survival in at least 3 cancer types, 12 genes in at least 

2 cancer types and 5 genes in specific cancer types (Table 17). 

 

 

4.4. Evaluation of a predictive model for prognosis using 
machine learning 

 
The assessment of the predictive power of the gene signature by ML required certain 

data specifications: 1) Cancer expression data for a high number of genes, 2) Availability 

of prognostic parameters, 3) Sufficient number of samples to run a ML algorithm. Data 

fulfilling these criteria were selected from cBioPortal, a public repository for Cancer 

Genomics. 

 

The details of the data taken into account for the present work are listed here: 
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• Cancer type: Colorectal adenocarcinoma (TCGA, PanCancer Atlas) 

• Samples: 594  

• Genes: 20502 

• Prognostic parameters: OS status (living/deceased), DSS status (alive or dead 

tumor free/dead with tumor), DFS status (disease free/recurred or progressed), 

PFS status (censored/progression), OS (months), PFS (months), DFS (months) 

• Demographic parameters: age, sex 

• Clinical parameters: stage 

 

4.4.1 Model selection 

 
The algorithm to assess the predictive power of the 53-CSC gene signature falls into the 

category of the supervised algorithms. The availability of both, numeric and categorical 

data, for the prognostic parameters allowed to use different ML strategies such as 

building a multiple linear regression model by using a numeric class parameter such as 

OS (months), or building a classification model by using a categorical class parameter 

such as OS status.  

 

The following steps were conducted in order to take the most appropriate decision: 

 

1. Analysis of the missing values 

 

The results of the analysis (Figure 15) showed a high number of missing values (n=370) 

for the following prognostic parameters: DFS status, DFS (months). DSS status 

accounted for 24 missing values. These three parameters were discarded for further 

analysis. 

 

 
Figure 15. Analysis of missing values in prognostic variables 
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2. Correlation analysis (Pearson coefficient) 

 

Next step was to perform a correlation analysis between the genes included in the 53-

CSC gene signature and the following (numeric) prognostic parameters: OS (months) 

and PFS (months). This analysis allowed not only to select the suitable prognostic 

parameter for the study but also to select those genes with higher correlations for the 

model. 

 

A first correlation analysis was performed to decide whether to use only the subset of 

“Deceased” patients (defined by the variable “OS status”) or the entire dataset (20% of 

the dataset). In one hand, the use of the entire dataset increases the number of samples 

to generate the model, but in the other, a higher degree of correlation of the genes with 

the prognostic parameters leads to a more powerful model. 

 

The proportion of “Deceased” and “Living” patients is the following: 

 

 

The correlation analysis showed that correlations were higher when using the subset of 

“Deceased” patients compared to the entire dataset (results for a sample of 10 genes is 

shown in Figure 16). Moreover, results showed that the degree of correlations was 

higher with OS than with PFS (only results for 10 genes is shown in Figure 16). 

 

 

Figure 16. Correlation analysis with prognostic parameters comparing subset of "Deceased" 
patients with the entire dataset. 

 

Taking into account these results, a classification algorithm (Random forest) was 

selected to generate a predictive model. For that, the 119 “Deceased” cases were split 
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into two classes by taking into account the median of “OS (months)”, that is 14.53 

months. 

 

• “Early death”: 59 cases which died before 14.53 months from diagnosis (Class 

0) 

 

• “Late death”: 60 cases which died after 14.53 months from diagnosis (Class 1) 

 

4.4.2 Feature selection  

 
The candidate genes to be included in the model resulted from the list of genes from the 

53-CSC gene signature. In order to select which genes to include in the model several 

steps were performed: 

 
1. Analysis of the missing values 

 

The count of missing values for each of the 53 genes is listed below (Table 18): 

 

 

Table 18. Count of missing values for the 53 genes of the 53-CSC gene signature 

 

Results showed that two of the genes, SPINK7 and PLD5, accounted for 39 missing 

values each. As the number of cases for the analysis is small (119), these 2 genes were 

excluded for further analysis. Also, another gene “MIEN1” was found missing, and that 

was due that another name of the gene, c17orf37, was used in the original study. No 

missing values was found when using this other gene name. 

 

2. Correlation analysis (Pearson coefficient) 

 

The 51 genes (excluding SPINK7 and PLD5) were divided in 5 groups for the purpose 

of visualization. Results are shown in the Appendix 9.4. Results of the correlation 

analysis showed a diverse range of correlations between the 51 genes and Overall 

Survival ((Supplementary Figures S1-S5). 

 

A cut-off of 15% correlation was used to select the genes for the model. Using this cut-

off, a total number of 18 genes were selected: CLCA2, IL1B, MFAP5, NRG1, PDGFD, 

PHLDA2, RUVBL1, SERPINB2, SERPINB3, SPRR1A, SPRR1B, SQSTM1, TAF9, 
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TLL1, TP63, ZBED2, CDKN2A and SCEL. Gene signature can be found in section 9.3 

of Appendix. 

 

Another correlation matrix was extracted with the selected 18 genes to discard high 

correlations among the genes (>90%) (Figure 17). 

 

 

 

Figure 17. Correlation matrix of the 18 genes selected for the model. 

 

The highest correlation found among the genes was 79% correlation between SPRR1A 

and SPRR1B, so no gene was excluded for further analysis. 

 

Regarding the correlation with OS, 15 of the 18 genes were found negatively correlated 

with OS, which means that the higher the expression of those genes, the lower the overall 

survival. Interestingly, the other 3 genes (RUVBL1, SQSTM1 and TAF9) were found 

positively correlated, which means that the higher the expression of these genes, the 

higher the overall survival. 

The highest correlations with OS were found for CDKN2A (-30%) followed by TAF9 

(29%), SPRR1A (-27%) and SQSTM1 (22%). 
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4.4.3 Evaluation of the Random forest model 

 
The following set of parameters were tested (data not shown): 

 

1. Cross-validation with 5 folds and 3 repeats 

2. Cross-validation with 3 folds and 0 repeats 

3. Split into train/test following a proportion of 70%/30% 

4. Split into train/test following a proportion of 65%/35% 

5. Split into train/test following a proportion of 60%/40% 

 

Best metrics were obtained using a cross-validation with 3 folds and 0 repeats, and 

splitting the data into 60% for the training set and 40% for the testing set. This is probably 

due to the small size of the dataset. A total number of 10 iterations was performed. The 

following metrics have been used to evaluate the model: accuracy, sensitivity and 

specificity. 

 

 

Table 19. Metrics corresponding to the 10 iterations of RF and their average 

 

Results showed a low performance of the model, although surpassing 50% in all of the 

three metrics evaluated. Average specificity almost reached 60% (57.83%), however 

average sensitivity remained close to 50% (52.08%). Overall, the average accuracy of 

the 10 iterations was 54.89%. The variability of the metrics observed across the iterations 

could be due to the small size of the sample used to generate the model (119 cases). 

Confusion matrix of the last iteration is shown below (Figure 18). 
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Figure 18. Confusion matrix of the 10th iteration of RF. 

 

The relative importance of the genes was also retrieved (Figure 19). The genes with 

major impact in the model were TAF9 and SPRR1A, which is consistent with findings 

obtained in the correlation analysis (TAF9 was the second and SPRR1A was the third 

gene with highest correlation with 29% and -27%, respectively). 

 

Figure 19. List of variables ranked by their relative importance in the model 

 

4.4.4 Inclusion of demographic and clinical variables 
 

In order to increase the performance of the model, three additional variables were 

included: 
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1. Age of the patient (discretized in ranges: 30-49, 50-64, 65-74, 75-89, 80-

100). Ranges were selected taking into account the distribution of the Age 

 

 

 

The frequency table of the variable “Range Age” is the following: 

 

 

The exploratory analysis (Figure 20) is shown below: 

 

 
Figure 20. Exploratory analysis of variable "Range age" in early/late death groups 

 

There are some ranges of Age (65-74 and 75-79) with noticeable differences of 

frequency among the groups. While it seems that there is a higher frequency of 

patients between 65 and 74 years that die earlier, the opposite is found for the 

range between 75-79 years. However, if comparing all the ranges, these 

differences are not statistically significant as per the results of the Chi-squared 

test (p-value = 0.6837).  

 

2. Sex of the patient (Female, Male). The frequency table of the variable is 

the following: 
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The exploratory analysis (Figure 20) is shown below: 

 

 
Figure 21. Exploratory analysis of variable "Sex" in early/late death groups 

 

The analysis showed no differences of frequency among the groups. This is 

confirmed by the Chi-squared test (p-value = 1). 

 

3. Stage of the tumour: Stage I-II, Stage III-IV. The frequency table of the 

variable is the following: 

 

 

 

The exploratory analysis (Figure 22) is shown below: 

 
Figure 22. Exploratory analysis of variable "Stage" in early/late death groups 
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The analysis showed the presence of 5 missing values (3 in “Early_death” and 2 

in “Late_death”. It seems there are differences between groups, as expected 

proportionally later stages are found in the “Early_death” group. However, no 

statistically significative differences were found as per the results obtained by the 

Chi-squared test (p-value = 0.3265). 

 

These results of not finding any statistically significant differences in “Range age” 

and “Stage” might be due to the size of the sample analyzed. Despite not finding 

statistically significant differences in these two variables, they were included in 

the model to check whether they could improve the model. 

 

4.4.5 Evaluation of the Random forest model including demographical and 
clinical data 

 
Results of the 10 iterations and the computed average are shown below (Table 

20). 

 

 
Table 20. Metrics corresponding to the 10 iterations of RF and their average (including 

demographical and clinical variables) 

 

Results including the demographical (“Range age”, “Sex”) and clinical data 

(“Stage”) showed an improvement in the performance of the model: a 8% 

increase in sensitivity surpassing the 60% (60.91%) which made the accuracy 

increase 4% until reaching almost 60% (58.41%) despite a slight decrease in 

specificity by 2% (55.91%). Confusion matrix of the last iteration is shown below 

(Figure 18). 
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Figure 23. Confusion matrix of the 10th iteration of RF (adding demographical and clinical 
variables). 

The relative importance of the variables was also retrieved (Figure 24). The 

variables with major impact in the model were the genes TAF9 and CDKN2A, 

which is again consistent with findings obtained in the correlation analysis (TAF9 

was the second and CDKN2A the first gene with highest correlation with 29% and 

-30%, respectively). Variable “Stage” had also a significant impact on the model 

as it was shown to be ranked the 4th variable in order of importance. 

 
Figure 24. List of variables ranked by their relative importance in the model 

4.4.6 Comparison with other CSC-gene signatures 

 
Last, the results obtained by the “18-CSC gene signature” together with the three 

demographical and clinical variables were compared to other two published CSC-gene 

signatures (already reviewed in section 2.2.1): 

 

1. 12-CSC gene signature related to stemness (Pei at al., 2020) 
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Genes are: CCNB2, CDC20, CENPA, EXO1, FOXM1, KIF4A, PLK1, RAD54L, 

SGOL1, SKA1, TPX2 and TTK 

 

2. 20-CSC gene signature related to prognosis (Pece et al., 2019) 

 

Genes are: THOC4, APOBEC3B, CDK1, CENPW, EIF4EBP1, EPB41L5, 

EXOSC4, H2AFJ, H2AFZ, LY6E, C17orf37, MMP1, MRPS23, NDUFB10, NOL3, 

PHB, PHLDA2, RACGAP1, SFN and TOP2A. 

 

A. Correlation with OS (Pearson coefficient) 

 

Correlation analysis of the genes included in both signatures are presented below 

(Figure 25, ¡Error! No se encuentra el origen de la referencia.). 

 

 

Figure 25. Correlation analysis of genes from the 12-CSC gene signature (Pei et al., 2020). 
Correlation with OS (in months) 
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Figure 26. Correlation analysis of genes from the 20-CSC gene signature (Pece et al., 2019). 
Correlation with OS (in months) 

 

The results of the analysis showed a maximum degree of correlation of -13% (gene 

CENPA) among all the genes included in the 12-CSC gene signature while the maximum 

degree of correlation among the genes included in the 20-CSC gene signature was of -

17% (gene PHLDA2). These results are lower than what has been observed with the 

genes of the 18-CSC gene signature developed in the present work, with correlations 

reaching -30% (gene CDKN2A) plus 4 other genes reaching correlations over ±20% 

(TAF9, SPRR1A, SQSTM1 and SCEL with 29%, -27%, 22% and -20%, respectively). 

 

B. Evaluation of the models 

 

The three demographical and clinical variables were included in the models and 10 

iterations were performed in both cases. 

 

Results are displayed below (Table 21, ¡Error! No se encuentra el origen de la 

referencia.): 
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Table 21. Metrics corresponding to the 10 iterations of RF and their average (including 
demographical and clinical variables) 

 

 

Table 22. Metrics corresponding to the 10 iterations of RF and their average (including 
demographical and clinical variables) 

 

The relative importance of the variables was also retrieved for both models- Figures can 

be found in Appendix 9.4 (Supplementary Figures S6, S7). 

 

In summary, results showed that the 18-CSC gene signature identified in the present 

work had the best predictive power for OS among the 3 CSC gene signatures tested. 

The accuracy obtained (58.41%) was 4% and 7% higher than the obtained by the 12-

CSC gene signature (54.55%) and the 20-CSC gene signature (51.59%), respectively. 

Sensitivity was also the highest among the 3 gene signatures (60.91%), being 10% and 

8% higher that the obtained by the 12-CSC gene signature (50.46%) and the 20-CSC 

gene signature (52.27%), respectively. However, specificity (55.91%) was 3% lower than 
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the one obtained by the 12-CSC gene signature (58.64%) but 3% higher than the one 

obtained by the 20-CSC gene signature (52.53%). 

 

 
Table 23. Comparison of the metrics obtained by the 3 gene signatures tested. 
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5. Conclusions 
 
The main conclusions of the present work are: 
 
 
1) An enrichment in selected CSC genes has been confirmed in all 6 BC and 6 MCL 

gene datasets studied. The highest proportion of upregulated CSC genes in BC has 

been found in datasets with invasive or early onset phenotypes. 

 

2) Differences have been found in the proportion of upregulated respect to 

downregulated genes in both cancer types. Whereas in MCL a 74.26% of enriched 

CSC genes have been found upregulated, in BC a 62.84% has been found 

downregulated. 

 

3) The CSC gene sets with higher proportion of upregulated genes found enriched in 

both cancer types are the ones related to prognosis (PROGNOSIS_BC) and 

stemness (STEMNESS_BC). 

 

4) All 8 gene sets related to CSC pathways have been found enriched at least in one of 

the cancer types. TGF-beta (TGF_BETA) and Myc (MYC) resulted with the highest 

proportion of upregulated genes found in both cancer types. 

 

5) A total number of 269 CSC genes have been found commonly enriched in both 

cancer types, 53 of them with a high significance (p-value<0.01). Several CSC-gene 

signatures have been generated: 269-CSC gene signature (with all commonly 

enriched genes), 242-CSC gene signature (with genes commonly enriched with a 

significance <0.05) and 53-CSC gene signature (with genes commonly enriched with 

a significance <0.01). 

 

6) Functional annotation analysis regarding molecular function mapped almost 10% of 

the 269 identified genes to heterocyclic compound binding proteins. This is important 

as heterocycles are key structural components of many of the anti-cancer drugs 

available. 

 

7) Functional annotation analysis regarding biological processes mapped almost 30% 

of the 269 identified genes to nitrogen compound metabolic process. This is 

important as nitrogen acquisition and utilization are fundamental for cell growth and 

proliferation. 

 

8) Up to 51 of the 53 genes included in the 53-CSC gene signature showed a significant 

correlation with survival in different cancer types using Kaplan-Meier estimator. 12 of 

those genes were found significantly correlated with survival in all 4 cancer types 

analyzed (breast, ovarian, lung and gastric cancer). 
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9) Up to 18 of the 53 genes included in the 53-CSC gene signature showed a correlation 

of more than 15% with overall survival in colorectal adenocarcinoma using Pearson 

coefficient, being CDKN2A, TAF9 and SPRR1A the 3 genes that showed the highest 

correlations (-30%, 29% and -27%, respectively). 

 

10) The 18-CSC gene signature generated in the present work achieved 55% accuracy 

in predicting prognosis in colorectal adenocarcinoma. Accuracy increased to 58.41% 

when combined with “Age”, “Sex” and “Stage.  Although far from being considered 

as a valid clinical classifier, the predictive power of the 18-CSC gene signature is 

higher than the ones displayed by other CSC-gene signatures already published. 

 
All the objectives of the present work have been fulfilled. A common gene signature 

related to CSC has been identified as enriched in both, BC and MCL (with various 

degrees of significance). A deeper analysis of the molecular and the biological 

significance of those genes showed some common patterns related to cancer biology 

and therapeutics, such as the fact that 10% of the genes mapped to heterocyclic 

compound binding proteins which could be targeted by many anti-cancer drugs 

available. The 96% of the genes included in the 53-CSC-gene signature proved to 

be significantly correlated to prognosis in at least one of the cancer types studied 

(breast, ovarian, lung and gastric cancer) while a subset of selected 18 genes 

exhibited a predictive power for prognosis in cancer that was higher than other CSC 

gene signatures published. 

 

The main difficulty found in the project has been the search and retrieval of valid data 

for accomplishing the objectives, especially for the generation of the predictive 

model. Many scientific articles related to cancer are published every day but few are 

found in which both, expression and clinical data, are available for each of the cases 

studied. There are public repositories in which authors of experimental and clinical 

studies can load their data but the majority relate to mutation and not so much to 

expression studies. This fact has constrained the extension of the present work as 

the predictive power of the gene signature has been evaluated only in a single 

dataset with limited size.  
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6. Future work 
 

 

In the future it would be interesting to continue with the following research: 

 

1. Include more BC and MCL expression datasets and repeat GSEA analysis to 

refine the CSC-gene signature. 

 

2. Evaluate a second CSC-gene signature not composed by those genes with the 

highest significance but by those genes found enriched in the highest number of 

datasets (both, BC and MCL). 

 

3. Evaluate the predictive power for prognosis of the gene signatures in a variety 

of cancer types.  

 

4. Study the prognostic significance of TAF9, especially in colorectal carcinoma. 

This has been an unexpected finding of the present work. TAF9 (TATA-Box 

Binding Protein Associated Factor 9), a gene involved in transcriptional 

activation, has been the second gene found in the present work with the highest 

correlation with prognosis (29%), with a higher expression conferring longer 

overall survival. Whereas for CDKN2A, the gene found with the highest 

correlation with OS (-30%), it has already been studied its role as diagnostic ( 

(Oh et al., 2020) and prognostic biomarker for colorectal cancer (Marcuello et 

al., 2019), nothing has been published concerning the potential role of TAF9 as 

a prognostic biomarker in colorectal cancer (no results found when searching for 

“prognosis biomarker colorectal cancer TAF9” in PubMed.gov). Only one article 

from 2009 (Krasnov et al., 2009) has discovered the overexpression of the gene 

at a protein level in colon cancer tissue but no relation to prognosis has been 

established so far. 
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7. Glossary 
 

BC: Breast Cancer, 1 

BIDC: Breast Invasive Ductal Carcinoma, 7 

BRCA: Breast Invasive Carcinoma, 9 

Circulating Free DNA, 5 

CNVs: Copy Number Variants, 9 

CSCs: Cancer Stem Cells, 1 

DFS: Disease Free Survival, 7 

EMT: Epithelial Mesenchymal Transition, 9 

ES: Enrichment Score, 15 

FDR: False Discovery Rate, 16 

GCT: Gene Cluster Text, 15 

IC50: Inhibiting Concentrarion 50, 6 

MCL: Mantle Cell Lymphoma, 1 

MCL-ICs: Mantle Cell Lymphoma - Initiating Cells, 5 

MGSEA: Multivariate Gene Enrichment Analysis, 9 

ML: Machine Learning, 9 

NES: Normalized Enrichment Score, 16 

NOD/SCID: Non-Obese Diabetic/Severe Combined Immunodeficient immunocompromised mice, 5 

OCLR: One-Class Logistic Regression algorithm, 8 

OS: Overall Survival, 7 

RFS: Relapse-Free-Survival, 5 

RMES: Regulatory Module Enrichment Score, 9 

ROS: Reactive Oxygen Species, 5 

SVM: Support Vector Machine, 9 

TCGA: The Cancer Genome Atlas, 8 

TNBC: Triple Negative Breast Cancer, 5 

TTM: Time To Metastasis, 5 
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9. Appendix 
 
 
9.1 List of genes included in the gene sets 
 
 

• “Prognosis_BC”:  
 

EIF4EBP1, LY6E, NOL3, EXOSC4, ALYREF, PHB, NDUFB10, MRPS23, CDK1, TOP2A, 
CENPW, APOBEC3B, H2AFJ, H2AFZ, RACGAP1, EPB41L5, PHLDA2, MIEN1, SNF, MMP1, 
TRIP6, SGO1, KIF4A, CDC20, PLK1, FOXM1, SKA1, RAD45L, SGO1, CENPA, CCNB2, EXO1, 
TPX2, MSK1, GPR77, CD10, TAZ, MLF2, RPL39, HN1L, HGA6, STMN1, PROCR, PLAG2G16, 
OCT4, CTNNB1, LGR5, H19, MYC, HER2, CLI1, CGI99, CDK4, CD133, MKI67, CD24, BMI1, 
CD44, ALDH1A3, ALDH1A1, ALDH1, ACBD3 

 

• “Stemness_BC”:  
 

BUB1B,  CDCA3,  DLGAP5,  SGO1,  FOXM1,  SKA1,  AURKB,  BUB1,  CDC20,  KIF23,  CDC45,  
ORC1,  KIF18B,  KIF20A,  RAD54L,  NCAPH,  CEP55,  NCAPG,  NDC80,  MELK,  CDC25A,  
KIF4A,  TTK,  EXO1,  KIF2C,  CCNB2,  CENPA,  KIFC1,  PLK1, CDCA8, HJURP, TPX2, GLI1, 
Adipsin, SMAD, TGF-beta, STAT3, TWIST1, SOX2, ABCG2, OTUB2, NOTCH2, SHIP, 
PCGF4/BMI1, SNAIL, SOX9, SOX2, INTEGRIN_BETA4, ANTXR1, CXCR4, CD49f, CD61, 
CD133 

 

• “Stemness2_BC”: 
 
ERCC6, RAD23B, SLC4A3, CA6, DDX59, NTHL1, GNAS, SLC6A8, EIF2B4, RBL1, PRTFDC1, 
RARA, DDX41, STAMBPL1, GUSB, SLC37A3, CRMP1, TMX1, NAIP, AFP, MRC1, MTA1, 
SLC25A18, HLA-DRB1, CNTN1, ALDH1A1, TIPARP, POMT2, RIT2, MLL, MED1, GYS2, 
RCAN1, FAAH, HMG20A, PPAT, HSPA14, KIF2A, APBA3, PRDX1, SCAMP3, IL36B, NPTXR, 
CLCF1, PTDSS2, IL6, UBN1, VARS, AARSD1, PDE6G, NFRKB, CSGALNACT2, SLC1A1, 
SLC9A5, MSH5, NAA15, SLC40A1, DNASE2B, SEC24A, NCOR1, NR3C1, RNASE3, HOXC4, 
ETV5, ACADS, PLA2G2E, STX1A, ASAH2, FKBP2, NAT8L, DPF1, MDM4, RNF146, BAZ1B, 
LOC729974, PCGF6, RNF43, RNF213, MEFV, FBXO31, GALK1, GLP2R, G6PC2, HACE1, 
BIRC7, KCNJ10, PKD1L2, KCNK12, SLC9A3, PTPLB, ITPR3, GRIN3B, GRIA3, ADORA2B, 
GPR152, SORCS1, LTB4R2, ICK, PACSIN1, ADCK4, PKN2, PIM1, PI4KB, C19orf34, ZNF721, 
C18orf51, NPVF, C11orf38, CBLN4, ANKRD39, CLEC4A, CCPG1, PSAP, C3orf37, L1TD1, 
CCDC56, TTC31, GLT25D1, CTDSPL2, ARD1B, SAMD9L, BFSP1, STARD3, STXBP4, 
DMRTC1B, KLHDC3, C16orf62, NME1-NME2, PCP2, TIMM17B, HNRNPH1, C7orf50, 
DOCK2, GTF2H5, ZNF543, TNNT3, ZNF135, CD52, C9orf139, GSX2, ADNP2, TMEM106C, 
SMAP2, C1QL4, ITFG2, MUPCDH, TMEM128, RBM4B, FAM83H, HNRPLL, BATF2, KLHDC6, 
C3orf44, DTD1, IGFL1, ZBTB6, ZNF706, TSHZ3, MSLNL, SAMD13, FASLG, YRDC, CEP68, 
C9orf164, CD70, PNO1, CLRN3, TMSL8, PLEKHA9, PRAM1, C5orf34, ZNF675, OVOS2, 
CCDC51, LILRA5, RIC8B, CCDC94, NENF, TSC22D2, DMKN, SHISA4, DAGLA, C1orf84, 
FAM23B, PELI3, ESF1, ZNF746, CIAPIN1, KIAA1755, C17orf59, C16orf58, BET1L, ZNF446, 
PAQR5, ZNF513, DEFA3, LASS2, SYS1, DNAJC7, OR9Q2, RPL7A, PEX16, FAM13A1, 
KIAA0391, DEFA4, OR8B12, ECHDC1, MARVELD2, UNC84B, CORO1B, FAM168B, LENG8, 
OR51G2, NMB, HPS1, SLC39A11, RPRD1A, STX11, MAD1L1, PION, SNIP1, RPL38, PSAPL1, 
HLA-DRB5, LOC57228, SCAP, LRRC27, LRRN4, A26B1, FBLN2, SNX32, CYGB, AP1S2, 
C14ORF48, MPZL1, CAV2, LRRTM1, ITM2C, HMGA2, PCDHA13, ZSCAN1, COL27A1, 
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C12orf67, TMEM57, IGFBP1, FAM24A, SNRNP70, USHBP1, ADCYAP1, CEP97, OR6B2, 
CCDC7, POU5F2, FEV, C7ORF26, CLTCL1, MAPK8IP1, LGI4, RPLP0, CSPG4, RPL3, IRX2, 
ZNF202, JMJD1B, TIMM8B, GPSM1, ZFP82, MRPS17, FAM36A, NCSTN, ZNF385A, FZR1, 
OR10Z1, OR1K1, LRBA, TBC1D16, SFTPB, NKAP, IQCA1, C10orf54, MMP23B, NECAP1, 
TNFRSF6B, H1FOO, FCGR1B, MFAP4, OR56B4, SYCN, C9ORF16, LRFN3, PECAM1, 
OR52M1, LOC100129550, RALGPS1, GGCT, ARL4C, RUNDC3A, INSL5, OMD, PSMF1, 
KRTAP19-4, LSM6, FSTL4, NDUFV3, SS18L2, TARP, SNX20, BCL9L, API5, TOB2, YDJC, 
RHOT2, ADRM1, STAP1, ZNF324, OR5D13, OR11G2, MAGEE2, FAR2, MED30, COL6A3, 
PCDH8, PDLIM3, TREML1, RPL18, GSTT2B, OLFM2, OR1B1, FAM180A, UNC5D, GLTSCR2, 
ZNF600. 
 

• “Dormancy_BC”: 
 

DYRK1A, MAPK,  TK1,  TIMP3,  PLAT,  PIK3CB,  ODC1,  NT5E,  MMP1,  JUN,  IL8,  IGF1R,  
FOXM1,  FOXD1,  FOSL1,  ESM1,  EGR1,  EGFR,  DTYMK,  DNMT1,  CKS2,  CEBPG,  CDKN3,  
BUB1B,  BUB1,  ATF4,  ATF3,  ASNS, APEX1,  TPM1,  TP53,  THBS1,  TGFB2,  STAT3,  
SREBF1,  SOX9,  P4HA1,  NR2F1,  MMP2,  IGFBP5,  HIST1H2BK,  GATA6,  EPHA5,  DDR1,  
CTSD,  COL4A5,  COL1A1,  BHLHE41,  AMOT,  ADAM10, ACVR1. 
 

• “Chemorresistance_BC”: 
 

ABCB5, ABCG2, ABCB1, STAT3, GPR77, CD10, BRD4, GPX4, CD133, ATG7, TRAIL, NRF2, 
PERK, CD44, ALDH family, TWIST1, SOX2, ABCG2, NOTCH1, TSPAN8, FGF5. 
 

• “GSE25976_OVER”: 
 

CSF2RA, HOOK1, CYP1B1, MFHAS1, RNA5SP449, LCN2, KIF16B, CCL20, NAP1L2, 
OTULINL, OLR1, SNORD116-15, TLCD4, PLCB4, TAGLN, SLC7A7, HSPA6, PAPPA, ZNF204P, 
SLAMF7, PTGFRN, IL13RA2, KLF8, GALNT5, TENM2, GPR65, L3MBTL4, CTSV, CRISPLD2, 
SLCO1B7, DCLK1, F2RL2, MCTP2, SNORD116-20, ARHGAP28, ALPK2, OLFML1, 
SNORD116-19, OR2A20P, CYP24A1, UCA1, SPARC, GNGT2, MAMDC2, SNORD116-13, 
MPZL2, MATN2, TNFSF10, LCP1, MYO1D. 
 

• “GSE25976_UNDER”: 
TNFSF18, GABRA3, HSD17B2, SPANXA1, CCBE1, HHIP, ITGA10, SPANXB1, AADAC, HAS2, 
PPIAP47, XAGE2, RGCC, RNU6-256P, SERPINB2, RNA5SP180, TLR2, SPANXD, CHRDL1, 
AZGP1, MMP1, COL6A3, TIE1, COX7B2, OTOGL, PCDHB15, MRGPRX3, SEMA3A, RNU6-
729P, TMPRSS15, SSX1, LAMA4, AC002316.1, MAGEA1, EHF, RNA5SP366, SIDT1, 
RNA5SP183, ZNF521, CDH11, PRSS2, RNA5SP30, TGIF2LX, RNU6-888P, TMEM163, 
NCKAP1L, JPH1, RNA5SP55, H2BC1, DSCR8. 
 

• “GSE43730_OVER”: 
 

ATP8A1, DOCK10, ABCA6, RNU6-893P, RNY1P14, RNA5SP330, RNA5SP110, SCARNA10, 
LAMP3, PDE7B, RNU6-23P, RN7SL153P, IFI44L, LPL, RNA5SP484, SMOX, STC1, 
TMEM156, PPEF1, RNA5SP219, OR5M6P, SULF1, SLC27A2, ADAM12, ANGPT1, ADGRL3, 
MMP16, MACC1, SNAP25, PPP1R9A, SRGN, SNORD63, SLIT2, CDH2, RNA5SP242, 
MSL3P1, DCLK1, TBL1X, DCN, RNA5SP494, RN7SKP35, SELENOP, SNORD13P1, CHGB, 
SNORD1C, CCDC102B, LINGO2, FPR1, EYA1, ERBB2. 
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• “GSE43730_UNDER”: 
 

RNA5SP247, SERPINB13, SERPINB2, MFAP5, SERPINB3, NRG1, SPRR1B, RNU6-1263P, 
RNU5A-1, MIR205, RNU6-1208P, RNU6-155P, FAT2, IRF6, RNA5SP354, CYP4F11, 
RNF144B, TP63, RNA5SP191, PI3, SPRR2A, PDSS1P1, PLD5, RN7SL378P, RNU6-674P, 
CLCA2, RNF152, EPB41L4A, ZBED2, RNY3P13, RN7SL452P, GCNT4, SCEL, OR10T1P, TLL1, 
TRAF3IP3, CCDC80, RNU6-597P, XDH, FOLH1, DENND2C, POF1B, RGS2, ANK3, PDGFD, 
RNU6-577P, RPSAP52, SPINK7, SPRR1A, IL1B, CD24P4, RNA5SP374. 
 

• “GSE95042_OVER”: 
 

GBP2, PLAAT4, HLA-DMA, MMP9, CD163, BGN, CXCL9, SPARC, AIF1, SPP1, SFRP2, HLA-
DRB4, PDGFRB, LAPTM5, GIMAP4, RNASE1, MS4A6A, LYZ, CTSK, SPARCL1, CD14, 
FCER1G, HLA-DQA1, THY1, POSTN, CSF1R, CD74, VWF, AEBP1, ALOX5AP, DCN, HLA-
DRB6, RGS1, HLA-DRB1, COL5A2, HLA-DPA1, TAGLN, HAVCR2, HLA-DRA, IGLL1, COL6A3, 
TYROBP, CCL8, COL1A2, C1QC, LUM, HLA-DMB, COL1A1, C1QB, COL3A1. 
 

• “GSE95042_UNDER”: 
 

LCN2, GDF15, CXCL1, TRIB3, ERRFI1, PSAT1, BCAR3, PSAT1P3, GOLGA8S, TFPI2, GNE, MT-
ND6, LRATD2, CXCL8, HNRNPKP4, ASNS, CAV2, TCEA1, NT5E, MAL2, ADM2, FADS1, 
COCH, STC2, TF, SPRY2, KCNG1, LARP6, ASS1P11, ELOVL6, IRS2, VGF, OSGIN2, CXCL5, 
KRT18, IL6, TMEM38B, GNG12, HES1, NAMPT, LAMP3, CDK6, OPRK1, SYBU, PLSCR1, 
BCAT1, TPBG, TVP23C, ACSS2, FOXA1. 
 

• “GSE132083_OVER”: 
 

ZNF883, MTAP, BSN-AS2, THRB, ESCO2, CCNE2, KANSL1, CASS4, LINC00886, ZNF544, 
TXNDC9, AGMAT, SMIM17, ZNF382, RARA-AS1, SMG8, DNAJC3-AS1, LINC00654, DMC1, 
ZNF514, HEYL, GPR19, IFIT2, C1orf145, LONRF3, EIF3EP1, TAF1C, HIST1H2BG, TEFM, 
ARHGDIG, HIST1H2BD, FAM13A-AS1, PLA2G4C, GLDC, ACTN2, PPP1R26-AS1, TIGD6, 
NES, ADHFE1, RRN3P3, EOMES, KLHL7-AS1, LGALS8-AS1, GTF2H2C, RP11-227H15.4, 
ZNF253, LRGUK, KIAA0825, INTS4L1. 
 

• “GSE132083_UNDER”: 
CBLN3, ZMYND10, SLC30A3, MRAP2, RPL17-C18orf32, GABRB3, ST3GAL6, C6orf1, 
FITM2, PARD6G, LINC00623, FAM171A2, LTBP4, LENG1, WBSCR27, SOCS1, C1orf21, 
ZBTB7C, ABCG1, PDZD7, SKI, FAM120C, RBPMS, FHOD1, DEXI, NOP14, KRT80, NPAS1, 
FAM78B, NELFA, LINC00869, RPL17P6, CALCB, ARFIP2, CCDC92, LINC00958, GOLGA2P7, 
COL16A1, PDE4A, DCHS1, LEPREL2, BACE1, HECW1, COL8A1, EMR1, BATF3, RNF130, 
EBF4, DPY19L2P2, CPQ. 
 

• “Hedgehog”: 
 

WNT8B, WNT8A, WNT7B, WNT7A, WNT6, WNT5B, WNT5A, WNT4, WNT3A, WNT3, 
WNT2B, WNT2, WNT16, WNT11, WNT10B, WNT10A, WNT1, SUFU, STK36, SMO, SHH, 
RAB23, PTCH2, PTCH1, PRKX, PRKACG, PRKACB, PRKACA, LRP2, IHH, HHIP, GSK3B, GLI3, 
GLI2, GLI1, GAS1, FBXW11, DHH, CSNK1G3, CSNK1G2, CSNK1G1, CSNK1E, CSNK1D, 
CSNK1A1L, CSNK1A1, BTRC, BMP8B, BMP8A, BMP7, BMP6, BMP5, BMP4, BMP2. 
 

• “Hippo”: 



68 
 

 
YWHAE, YWHAB, YAP1, WWTR1, WWC1, TJP2, TJP1, STK4, STK3, SAV1, NPHP4, MOB1B, 
MOB1A, LATS2, LATS1, DVL2, CASP3, AMOTL2, AMOTL1, AMOT. 
 

• “Jak_Stat”: 
 

TYK2, TSLP, TPO, STAT6, STAT5B, STAT5A, STAT4, STAT3, STAT2, STAT1, STAM2, STAM, 
SPRY4, SPRY3, SPRY2, SPRY1, SPRED2, SPRED1, SOS2, SOS1, SOCS7, SOCS5, SOCS4, 
SOCS3, SOCS2, SOCS1, PTPN6, PTPN11, PRLR, PRL, PIM1, PIK3R5, PIK3R3, PIK3R2, 
PIK3R1, PIK3CG, PIK3CD, PIK3CB, PIK3CA, PIAS4, PIAS3, PIAS2, PIAS1, OSMR, OSM, MYC, 
MPL, LIFR, LIF, LEPR, LEP, JAK3, JAK2, JAK1, IRF9, IL9R, IL9, IL7R, IL7, IL6ST, IL6R, IL6, 
IL5RA, IL5, IL4R, IL4, IL3RA, IL3, IL2RG, IL2RB, IL2RA, IL26, IL24, IL23R, IL23A, IL22RA2, 
IL22RA1, IL22, IL21R, IL21, IL20RB, IL20RA, IL20, IL2, IL19, IL15RA, IL15, IL13RA2, 
IL13RA1, IL13, IL12RB2, IL12RB1, IL12B, IL12A, IL11RA, IL11, IL10RB, IL10RA, IL10, 
IFNW1, IFNLR1, IFNL3, IFNL2, IFNL1, IFNK, IFNGR2, IFNGR1, IFNG, IFNE, IFNB1, IFNAR2, 
IFNAR1, IFNA8, IFNA7, IFNA6, IFNA5, IFNA4, IFNA21, IFNA2, IFNA17, IFNA16, IFNA14, 
IFNA13, IFNA10, IFNA1, GRB2, GHR, GH2, GH1, EPOR, EPO, EP300, CTF1, CSH1, CSF3R, 
CSF3, CSF2RB, CSF2RA, CSF2, CRLF2, CREBBP, CNTFR, CNTF, CLCF1, CISH, CCND3, CCND2, 
CCND1, CBLC, CBLB, CBL, BCL2L1, AKT3, AKT2, AKT1. 
 

• “Myc”: 
 

ZBTB17, TRRAP, TAF9, TAF12, TAF10, SUPT7L, SUPT3H, SKP2, RUVBL2, RUVBL1, 
PPP2R5A, PPP2CA, PML, PIN1, PAK2, MYC, MAX, KAT5, KAT2A, HBP1, GSK3B, FBXW7, 
CDKN2A, AXIN1, ACTL6A. 
 

• “Notch”: 
 

SNW1, RFNG, RBPJL, RBPJ, PTCRA, PSENEN, PSEN2, PSEN1, NUMBL, NUMB, NOTCH4, 
NOTCH3, NOTCH2, NOTCH1, NCSTN, NCOR2, MFNG, MAML3, MAML2, MAML1, LFNG, 
KAT2B, KAT2A, JAG2, JAG1, HES5, HES1, HDAC2, HDAC1, EP300, DVL3, DVL2, DVL1, 
DTX4, DTX3L, DTX3, DTX2, DTX1, DLL4, DLL3, DLL1, CTBP2, CTBP1, CREBBP, CIR1, APH1A, 
ADAM17. 
 

• “TGF_beta”: 
 

ZFYVE9, ZFYVE16, TNF, THBS4, THBS3, THBS2, THBS1, TGFBR2, TGFBR1, TGFB3, TGFB2, 
TGFB1, TFDP1, SP1, SMURF2, SMURF1, SMAD9, SMAD7, SMAD6, SMAD5, SMAD4, 
SMAD3, SMAD2, SMAD1, SKP1, RPS6KB2, RPS6KB1, ROCK2, ROCK1, RHOA, RBX1, RBL2, 
RBL1, PPP2R1B, PPP2R1A, PPP2CB, PPP2CA, PITX2, NOG, NODAL, MYC, MAPK3, MAPK1, 
LTBP1, LEFTY2, LEFTY1, INHBE, INHBC, INHBB, INHBA, IFNG, ID4, ID3, ID2, ID1, GDF7, 
GDF6, GDF5, FST, EP300, E2F5, E2F4, DCN, CUL1, CREBBP, COMP, CHRD, CDKN2B, 
BMPR2, BMPR1B, BMPR1A, BMP8B, BMP8A, BMP7, BMP6, BMP5, BMP4, BMP2, 
AMHR2, AMH, ACVRL1, ACVR2B, ACVR2A, ACVR1C, ACVR1. 
 

• “TNF”: 
 

TXN, TRAF2, TRAF1, TRADD, TNIK, TNFRSF1B, TNFRSF1A, TNFAIP3, TNF, TAB2, TAB1, 
STAT1, SQSTM1, SMPD2, SMPD1, RIPK1, RFFL, RELA, RACK1, PRKCZ, PRKCI, NSMAF, NRK, 
NFKB1, MAP4K5, MAP4K4, MAP4K3, MAP4K2, MAP3K7, MAP3K5, MAP3K3, MAP3K1, 
MAP2K7, MAP2K3, MADD, IKBKG, IKBKB, FADD, CYLD, CHUK, CAV1, CASP8, BIRC3, 
BIRC2, BAG4, ADAM17. 
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• “Wnt_Bcatenin”: 
 

WNT6, WNT5B, WNT1, TP53, TCF7, SKP2, RBPJ, PTCH1, PSEN2, PPARD, NUMB, NOTCH4, 
NOTCH1, NKD1, NCSTN, NCOR2, MYC, MAML1, LEF1, KAT2A, JAG2, JAG1, HEY2, HEY1, 
HDAC5, HDAC2, HDAC11, GNAI1, FZD8, FZD1, FRAT1, DVL2, DLL1, DKK4, DKK1, CUL1, 
CTNNB1, CSNK1E, CCND2, AXIN2, AXIN1, ADAM17. 
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9.2 List of common genes (BC and MCL) 
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9.3 CSC gene signatures 
 

• 53-CSC gene signature: 
 

IRF6, IL1B, IRF6, MFAP5, PI3, PLD5, RNF152, SCEL, SERPINB3, SPINK7, SPRR1A, SPRR1B, 
TLL1, ZBED2, CCDC80, CLCA2, DENND2C, FAT2, FOLH1, GCNT4, LUM, NRG1, PAK2, 
PDGFD, PHLDA2, POF1B, PPP2R5A, TAF9, TAF12, TP63, XDH, ACTL6A, CASP8, CDKN2A, 
FADD, MAP3K7, MAP4K4, NFKB1, PML, PRKCZ, RELA, RFFL, RIPK1, RUVBL1, SERPINB2, 
SQSTM1, TNFAIP3, CDK4, EXOSC4, BMI1, MIEN1, NDUFB10, SKP2 

 

• 242-CSC gene signature: 
 
EPB41L4A, IL1B, IRF6, MFAP5, PI3, PLD5, RNF152, SCEL, SERPINB3, SPINK7, SPRR1A, 
SPRR1B, TLL1, ZBED2, ACSS2, ADAM12, AEBP1, AMOT, ANGPT1, BAG4, BCAR3, CAV1, 
CCDC80, CCL20, CDH2, CLCA2, COL3A1, CTSK, CXCL9, DENND2C, FAAH, FAT2, FOLH1, 
FPR1, GCNT4, GNE, HES1, IFI44L, IFNG, IGLL1, IRS2, KLF8, LCP1, LINGO2, LPL, LRFN3, 
LUM, MACC1, MADD, MMP9, NRG1, PAK2, PDE7B, PDGFD, PHLDA2, PLSCR1, POF1B, 
POMT2, PPP1R9A, PPP2R5A, PRKCI, RGCC, RGS1, SLAMF7, SLC39A11, SMPD1, SMPD2, 
SRGN, STAT1, SYBU, TAF9, TAF12, TAGLN, THY1, TMEM38B, TNFRSF1A, TNFSF10, TP63, 
TVP23C, TXN, UCA1, XDH, ZNF204P, ACTL6A, AZGP1, CASP8, CCBE1, CD74, CDKN2A, EHF, 
FADD, GBP2, HAS2, HLA-DMA, HLA-DPA1, HLA-DQA1, HLA-DRB4, HLA-DRB6, HSD17B2, 
LAMA4, LAPTM5, MAP3K7, MAP4K4, NFKB1, PLAAT4, PML, PRKCZ, RELA, RFFL, RIPK1, 
RUVBL1, SEMA3A, SERPINB2, SQSTM1, TNFAIP3, CDK4, RACGAP1, ALYREF, CD24, CDK1, 
EXOSC4, LY6E, MKI67, MLF2, MRPS23, STMN1, TOP2A, APOBEC3B, BMI1, CD44, MIEN1, 
NDUFB10, ASNS, DDR1, P4HA1, SKP2, DVL2, MMP1, CCNB2, CDC20, CENPA, KIF4A, TPX2, 
NCSTN, AMOTL1, AMOTL2, LATS2, MOB1B, SAV1, TJP2, WWC1, YAP1, PPP2CA, EXO1, 
SKA1, FOXM1, ADNP2, ADRM1, BAZ1B, C16orf58, CORO1B, DDX41, GUSB, ITPR3, MED1, 
MRPS17, NECAP1, PIM1, PPAT, PSAP, RNF213, SCAMP3, STARD3, TIMM17B, UBN1, 
COL1A1, COL6A3, HLA-DRB1, ADHFE1, CCNE2, AURKB, CDC25A, CDC45, CDCA3, CDCA8, 
CEP55, DLGAP5, GLI1, HJURP, KIF2C, KIF20A, KIF23, KIFC1, MELK, NCAPG, TTK, PLK1, 
BUB1, BUB1B, CDKN3, CKS2, TK1, DNMT1, HIST1H2BK, CD14, CSF1R, GIMAP4, LYZ, 
MS4A6A, CD52, CEP97, DOCK2, GGCT, LRBA, PSMF1, RARA, SAMD9L, SEC24A, SMAP2, 
STAP1, SYS1, YDJC, CTSD, EGR1, CD163, JUN, SREBF1, AP1S2, APBA3, HLA-DRB5, KIF2A, 
SLC40A1, SNX20, ZNF385A, STAT3, CAV2, CXCR4, KIF18B, NCAPH, NDC80, DCN, ESM1 

 

• 269-CSC gene signature: 
 

EPB41L4A, IL1B, IRF6, MFAP5, PI3, PLD5, RNF152, SCEL, SERPINB3, SPINK7, SPRR1A, 
SPRR1B, TLL1, ZBED2, ACSS2, ADAM12, AEBP1, ALOX5AP, AMOT, ANGPT1, BAG4, 
BCAR3, C1QC, CAV1, CCDC80, CCL20, CDH2, CLCA2, COL1A2, COL3A1, CTSK, CXCL9, 
DENND2C, FAAH, FAT2, FOLH1, FPR1, GCNT4, GNE, HES1, IFI44L, IFNG, IGLL1, IRS2, KLF8, 
LCN2, LCP1, LINGO2, LPL, LRFN3, LUM, MACC1, MADD, MMP9, NRG1, PAK2, PDE7B, 
PDGFD, PHLDA2, PLSCR1, POF1B, POMT2, PPP1R9A, PPP2R5A, PRKCI, RGCC, RGS1, 
SLAMF7, SLC39A11, SMPD1, SMPD2, SRGN, STAT1, SYBU, TAF9, TAF12, TAGLN, THY1, 
TMEM38B, TNFRSF1A, TNFSF10, TP63, TVP23C, TXN, UCA1, XDH, ZNF204P, ACTL6A, 
AZGP1, CASP8, CCBE1, CD74, CDKN2A, EHF, FADD, GBP2, HAS2, HLA-DMA, HLA-DMB, 
HLA-DPA1, HLA-DQA1, HLA-DRA, HLA-DRB4, HLA-DRB6, HSD17B2, LAMA4, LAPTM5, 
MAP3K7, MAP4K4, NFKB1, PLAAT4, PML, PRKCZ, RELA, RFFL, RIPK1, RUVBL1, SEMA3A, 
SERPINB2, SQSTM1, TNFAIP3, CDK4, RACGAP1, ALYREF, CD24, CDK1, EXOSC4, LY6E, 
MKI67, MLF2, MRPS23, STMN1, TOP2A, ACBD3, APOBEC3B, BMI1, CD44, MIEN1, 
NDUFB10, ASNS, DDR1, P4HA1, SKP2, DVL2, MMP1, CCNB2, CDC20, CENPA, KIF4A, TPX2, 
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NCSTN, AMOTL1, AMOTL2, LATS2, MOB1B, SAV1, TJP2, WWC1, YAP1, PPP2CA, 
BHLHE41, MMP2, TIMP3, EXO1, SKA1, FOXM1, ADNP2, ADRM1, BAZ1B, C16orf58, 
CORO1B, DDX41, GUSB, ITPR3, MED1, MRPS17, NECAP1, PIM1, PPAT, PSAP, RNF213, 
SCAMP3, STARD3, TIMM17B, UBN1, COL1A1, COL6A3, HLA-DRB1, ADHFE1, CCNE2, 
DMC1, EOMES, GLDC, HEYL, NES, AURKB, CDC25A, CDC45, CDCA3, CDCA8, CEP55, 
DLGAP5, GLI1, HJURP, KIF2C, KIF20A, KIF23, KIFC1, MELK, NCAPG, TTK, PLK1, BUB1, 
BUB1B, CDKN3, CKS2, TK1, DNMT1, HIST1H2BK, CD14, CSF1R, FCER1G, GIMAP4, LYZ, 
MS4A6A, SPARC, CD52, CEP97, DOCK2, GGCT, LRBA, PSMF1, RARA, SAMD9L, SEC24A, 
SMAP2, STAP1, SYS1, YDJC, CTSD, EGR1, CD163, JUN, SREBF1, AP1S2, APBA3, HLA-DRB5, 
KIF2A, SLC40A1, SNX20, ZNF385A, STAT3, CAV2, CXCR4, KIF18B, NCAPH, NDC80, SGO1, 
SOX9, TYROBP, DCN, ATF3, EGFR, ESM1, NR2F1, HAVCR2, ID2, LTBP1, SMURF2 

 

• 18-CSC gene signature: 
 
CLCA2, IL1B, MFAP5, NRG1, PDGFD, PHLDA2, RUVBL1, SERPINB2, SERPINB3, SPRR1A, 
SPRR1B, SQSTM1, TAF9, TLL1, TP63, ZBED2, CDKN2A and SCEL 
 

9.4 Supplementary figures 
 
 

 

Figure S1. Correlation analysis of genes from the 53-CSC gene signature (subset 1). Correlation 
with OS (in months) 
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Figure S2. Correlation analysis of genes from the 53-CSC gene signature (subset 2). Correlation 
with OS, DSS and PFS (in months) 

 
Figure S3. Correlation analysis of genes from the 53-CSC gene signature (subset 3). Correlation 
with OS, DSS and PFS (in months) 
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Figure S4. Correlation analysis of genes from the 53-CSC gene signature (subset 4). Correlation 
with OS, DSS and PFS (in months) 

 
Figure S5. Correlation analysis of genes from the 53-CSC gene signature (subset 5). Correlation 
with OS, DSS and PFS (in months) 
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Figure S6. List of variables ranked by their relative importance in the model 

 

 
 

Figure S7. List of variables ranked by their relative importance in the model 
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9.5 Code 
 
Code used in the project is available in the following github link: 
 
https://github.com/jonortizabalia/Final-Master-s-thesis-UOC-2020.git 
 
 

 
 

https://github.com/jonortizabalia/Final-Master-s-thesis-UOC-2020.git

