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Resumen del Trabajo 

Tradicionalmente, la gestión pesquera se ha basado en el establecimiento de 
cuotas y la recolección manual de datos. Sin embargo, el constante deterioro 
de las poblaciones pesqueras ha requerido la adopción de sistemas de control 
electrónicos como el Sistema de Monitoreo de Embarcaciones (VMS) y el 
Sistema de Identificación Automática (AIS), cuyas limitaciones, sin embargo, 
siguen sin prevenir la sobreexplotación pesquera. Debido a esto, en los 
últimos años, varios avances en el análisis de imágenes satelitales de Radar 
de Apertura Sintética (SAR) con técnicas de Aprendizaje Automático (ML) han 
destacado como prometedoras herramientas para gestionar las actividades 
pesqueras. 
Estos avances están revolucionando el control de la industria marina, 
reduciendo las limitaciones de las técnicas tradicionales. Este trabajo se centra 
en la detección de embarcaciones, utilizando métodos de "computer vision", 
específicamente Redes Neuronales Convolucionales (CNN) del tipo Faster 
Region-Based (Faster-RCNN). En este proyecto, hemos evaluado el 
rendimiento de estos modelos, incluyendo la implementación de diversas 
técnicas de preprocesamiento de imágenes. Además, para demostrar el 
potencial de este enfoque en la gestión pesquera, hemos aplicado el modelo 
en imágenes del satélite Sentinel-1 a través de un caso de estudio sobre las 
pesquerías chilenas y desarrollado un informe interactivo para presentar los 
resultados. 
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La integración del análisis de imágenes SAR y las técnicas de ML tiene un 
gran potencial para mejorar la gestión de pesquerías. La evaluación de Faster-
RCNN para la detección de embarcaciones, junto con el análisis comparativo 
de las técnicas de preprocesamiento, ha proporcionado información valiosa 
sobre la efectividad de estos métodos. Además, también ha revelado algunas 
de las limitaciones que estas técnicas presentan, subrayando la necesidad de 
avances adicionales y enfatizando en la integración de los distintos enfoques, 
tanto tradicionales como modernos, para una gestión efectiva de las 
pesquerías. 

Abstract 

Fisheries management has traditionally relied on catch quotas and manual 
reporting methods. However, the depletion of fish stocks has required the 
adoption of electronic reporting systems such as the Vessel Monitoring System 
(VMS) and Automatic Identification System (AIS), with its own limitations in 
preventing overexploitation. To address this, advancements in Synthetic 
Aperture Radar (SAR) satellite imagery analysis, coupled with Machine 
Learning (ML) techniques, have emerged as promising tools for monitoring 
fishing activities. 
These advancements are revolutionizing marine industry monitoring, closing 
the data gaps from traditional techniques, and enhancing transparency. This 
project focuses on vessel detection, employing computer vision methods. 
Convolutional Neural Networks (CNN), specifically Faster Region-Based CNN 
(Faster-RCNN), exhibit promising results with reduced detection time and 
computational costs. We evaluated the model's performance of these models 
and implemented various image pre-processing techniques to improve them. 
Furthermore, to demonstrate the potential of this approach in fisheries 
management, we tested the model using real-world Sentinel-1 images in a 
case study on Chilean fisheries and developed an interactive report presenting 
the results. 
The integration of SAR-based satellite imagery analysis and ML techniques 
holds significant promise for enhancing fisheries management. The evaluation 
of Faster-RCNN for vessel detection, along with the comparative analysis of 
pre-processing techniques, provides valuable insights into the effectiveness of 
this method. Furthermore, it also revealed some limitations of these 
techniques, underscoring the need for further advancements and emphasizing 
the reliance on combined approaches for effective fisheries management. 
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1. Introduction 
 
1.1. Context and justification 
 
Traditionally, fisheries management has focused on setting catch quotas for 
specific species and areas. These quotas are monitored using landing reports 
and skipper's logbooks. However, new electronic reporting requirements have 
been introduced due to the long-term depletion of fishing stocks. These 
requirements enable authorities to track the movements of individual fishing 
vessels and their fishing activities (Lemoine et al. 2004). The most crucial of 
these technologies are the Vessel Monitoring System (VMS) and the Automatic 
Identification System (AIS), which analysis allows identifying fishing vessels and 
fishing hours to extrapolate the fishing effort (David A. Kroodsma et al. 2018). 
Despite their utility, these systems have significant limitations. For instance, 
some fishing vessels are not required to have them, and transceivers can be 
disconnected anytime. Additionally, unregistered fishing vessels can operate 
undetected worldwide. These factors make it difficult to monitor illegal and 
unreported fishing practices, which contribute to the overexploitation of fish 
stocks and hinder the recovery of fish populations and ecosystems 
(Shepperson et al. 2018a). To address these limitations, recent advancements 
in satellite imagery analysis have allowed the monitoring of fishing activities 
under those circumstances where VMS and AIS data fail. Synthetic Aperture 
Radar (SAR) has outstood other types of spaceborne imagery because it 
operates effectively under all weather conditions. The potential of SAR images 
for fishing monitoring was already highlighted by Lemoine et al. in 2004. 
However, only a decade later, with the development and improvement of 
Machine Learning (ML) techniques, the use of SAR images for vessel detection 
has reached its higher potential.  

The availability of satellite imagery and advancements in ML have paved the 
way for a new era in monitoring marine industries. This is closing the VMS and 
AIS data gaps, enabling increased transparency in ocean activities. The use of 
these technologies in fishing monitoring has progressed through various stages, 
starting with the development of accurate models to detect marine structures 
and vessels, followed by the discrimination of fishing vessels, and ultimately, 
with the integration of SAR-derived information with VMS and AIS data outputs 
to provide a more comprehensive and accurate picture of fishing activities 
(Galdelli et al. 2021). 

This project will focus on the initial stage, vessel detection. Various methods 
have been proposed for detecting vessels, primarily relying on computer vision 
techniques. The state-of-the-art and existing modeling approaches will be 
discussed, including the pros and cons of the existing modeling frameworks. 
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One of the more popular methods is the Convolutional Neural Networks (CNN), 
showing lower detection time and computational costs with minimal 
performance loss. As such, this project will implement a model based on the 
object detection architecture Faster Region-Based Convolutional Neural 
Networks (Faster-RCNN), which has already been used for vessel detection, 
enabling us to explore this field further. Finally, integrating the model into an 
interactive report and testing it with real-world Sentinel-1 data will allow us to 
evaluate the potential of these tools and the data outputs derived from SAR 
images in a practical setting. 
 
While these techniques have already been tested over the past few years, there 
is a lack of available projects with sufficient documentation to learn from scratch 
about these methods applied to fisheries. This project stands out from others as 
it aims to create accessible methods with well-documented scripts, notebooks, 
and reports that can serve as resources for anyone interested in learning about 
this field and these techniques. The project's ultimate goal is not only to develop 
and test the model on real data but also to create comprehensive 
documentation that facilitates the learning curve for others, including myself, 
who found it challenging to get started with these techniques. 
 
1.2. General description 
 
We developed an accurate and reliable model using the Faster-RCNN object 
detection architecture for detecting vessels from SAR images. Furthermore, the 
project compared the model's performance by implementing various image pre-
processing techniques. The project's final phase involved integrating the model 
into an interactive report and testing it with real-world Sentinel-1 data from the 
Copernicus Program. By achieving these goals, we aim to gain hands-on 
experience with modeling techniques used in the existing literature for vessel 
detection while reviewing the current state-of-the-art in this field. 

1.3. Project goal 

1.3.1. Overall objective  

Develop a model to detect vessels from SAR images and evaluate them using 
Copernicus Program data. 

1.3.2. Detailed objectives 

2. Conduct a comprehensive review of the current state-of-the-art methods for 
vessel detection using SAR images in fisheries monitoring. 

3. Develop a Faster-RCNN model to detect ships in SAR images. 
4. Evaluate the performance of the Faster-RCNN model by implementing 

different image pre-processing techniques. 
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5. Create an interactive report showcasing the model potential on real-world 
Sentinel-1 for a fisheries-related case study. 
 

1.4. Impact on sustainability, ethical-social, and diversity 
 
This project focuses on enhancing fisheries management, which plays an 
important role in environmental and social aspects. From an environmental 
perspective, effective fisheries management is crucial for ensuring the 
sustainability and preservation of marine ecosystems by preventing overfishing, 
protecting endangered species, and maintaining the overall health of our 
oceans. On a social level, fisheries provide livelihoods for millions worldwide, 
especially in developing nations where communities often depend on fishing for 
subsistence and economic stability. Implementing sound management 
strategies can lead to sustainable fisheries, ensuring food security and stable 
incomes for these communities. Furthermore, effective management strategies 
incorporate ethical factors such as fair labor practices and involving 
communities in decision-making processes. Lastly, fisheries management also 
plays a crucial role in promoting socio-cultural diversity by recognizing the value 
of traditional knowledge and supporting artisanal and indigenous fishing 
practices, which are essential for the sustainable stewardship of our marine 
resources. 
 
In this regard, this project is clearly framed under the Sustainable Development 
Goal (SDG) target 14—Life Below Water—as the main objective of the methods 
applied is to “conserve and sustainably use the oceans, seas, and marine 
resources for sustainable development.” Furthermore, considering the socio-
economic implications of fisheries and any technological advancements aimed 
at improving them, the project is tangentially related to SDG 8 in "Decent Work 
and Economic Growth." 
 
1.5. Approach and methods 

 
Although SAR images, in combination with ML techniques, have proven their 
great potential to assess fishing activities, the progress of these techniques has 
been hindered by the scarcity of labeled images. Despite the widespread 
availability of satellite images from open sources like the Sentinel 1 imagery 
from the Copernicus Project, the development of vessel detectors using SAR 
has been slow due to the lack of a large volume of annotated datasets (Wang et 
al. 2019). Labeling images is a significant undertaking involving manually 
annotating detections or using spatially extrapolated information from VMS and 
AIS data. While the former method is very time-consuming, the latter is not 
feasible, given our project constraints. Therefore, we have decided to use pre-
annotated datasets available online. Among the existing options, we have 
chosen the dataset created by Zhang et al. (2020) as it has a sufficient number 
of images to train our model and achieve appropriate performance while still 
being small enough to be processed within our computational resource 
constraints. This dataset consists of 15 large-scale VV polarization SAR images 
obtained from the Sentinel-1 satellite, with sizes of 24000 × 16000 pixels. The 
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large-scale images were cut into 9000 sub-images for training and evaluation 
purposes with dimensions of 800 × 800 pixels. 
 
With the availability of an annotated dataset, we can apply the supervised 
learning algorithm Faster-RCNN, a two-stage object detection algorithm 
introduced by Ren et al. (2017). The steps to implement Faster R-CNN are as 
follows: 
 

• Prepare the training dataset: Select a suitable dataset and annotate the 
images with bounding boxes around the objects of interest. Since 
annotated datasets are already available online, our task is to identify an 
appropriate dataset for our specific needs and consider alternative 
datasets as backups. Potential alternative datasets were the SAR-Ship-
Dataset from Wang et al. (2019) and the HRSID by Wei et al. (2020). 

• Image preprocessing: To enhance the model's performance, appropriate 
image preprocessing techniques such as data augmentation and image 
denoising can be applied. Several studies have shown that image 
preprocessing techniques can significantly improve the performance of 
Faster R-CNN on object detection tasks (Yang et al. 2021; Zhao et al. 
2022). 

• Train the model: Train the Faster R-CNN model, which generates 
candidate regions for objects in an image using a Region Proposal 
Network (RPN). The model then performs posterior classification and 
refinement of those candidate regions to identify the areas where ships 
are located using a Fast R-CNN. 

• Improve the model: improve the model's performance by implementing 
various image pre-processing techniques, such as data augmentation.  

• Test the model: evaluating the performance of the trained model on 
unseen data. 

 
This workflow is based on the approaches presented in previous works (Wei et 
al. 2020; Wang et al. 2019a; J. Li, Qu, and Shao 2017; Zhang et al. 2020). 
Although there are other methods available for ship detection, such as those 
based on the multilayer Constant False Alarm Rate (CFAR) (Hou, Chen, and 
Jiao 2015), YOLO (Ting et al. 2021), or RetinaNet (Wang et al. 2019b), among 
others, our focus will be on the Faster R-CNN approach due to its widespread 
use and high performance in object detection tasks. 
 
Finally, to illustrate the implementation of the Faster R-CNN approach in vessel 
detection using SAR images, we will create an interactive report where the 
model will be tested against real-world Sentinel-1 data from the Copernicus 
Open Access Hub. This report, produced with Quarto, will clearly and concisely 
demonstrate the capabilities of SAR imagery and the benefits of using deep 
learning models for vessel detection tasks. By presenting our findings in an 
accessible and interactive format, we hope to create a science outreach 
document to increase awareness and understanding of the potential 
applications of SAR imagery in maritime surveillance and other related fields. 
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1.6. Project planning 
 

1.6.1. Tasks 
 
Table 1. Project task details. 

Description Start End 

Work Plan. PEC1. 1/3/23 20/3/23 

Search a collection of labeled vessel SAR images. 1/3/23 7/3/23 

Evaluation and selection of the models to be applied. 7/3/23 14/3/23 

Designing and writing the work plan. 14/3/23 20/3/23 

Submission of the work plan and incorporation of 
feedback. 

20/3/23 27/3/23 

Development of the project. Phase 1. PEC2. 21/3/23 24/4/23 

Evaluation of the required methods, framework, and 
tools. 

21/3/23 26/3/23 

Assessing model input format and pre-process data. 26/3/23 3/4/23 

Designing and testing the workflow to implement the 
model. 

3/4/23 10/4/23 

Model training. 10/4/23 17/4/23 

Evaluation of the model's performance. 16/4/23 20/4/23 

Documenting and submitting the report. 17/4/23 24/4/23 

Development of the project. Phase 2. PEC3. 25/4/23 29/5/23 

Model improvement. 25/4/23 15/5/23 

Design and creation of the interactive report 11/5/23 10/6/23 

Documenting and submitting the report. 22/5/23 29/5/23 

Finalize report. PEC4. 30/5/23 20/6/23 

Finalize report. 22/5/23 20/6/23 

Preparing the presentation. 12/6/23 20/6/23 

Thesis defense. PEC5. 3/7/23 14/7/23 
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1.6.2. Calendar 
 

 
Figure 1. Gantt diagram with the project tasks. 

 
1.6.3. Milestones 

 
Table 2. Milestones details. 

Description Deadline 

Work plan submission. 20/3/23 

Project development submission. Phase 1. 24/4/23 

Project development submission. Phase 2. 29/5/23 

Final report submission. 20/6/23 

Presentation submission. 20/6/23 

Thesis defense. 3/7/23 

 
1.6.4. Risk assessment 

 
Table 3. Risk assessment details. 

Risk description Severity Probability Mitigation 
Issues with the functioning 
of Python packages. High Low Researching potential alternative 

packages. 

Not being able to apply the 
model to the data. High Low 

Verify the necessary data input 
characteristics for the chosen 
framework. Source alternative 
datasets. 
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Not achieving optimal 
model performance. High Moderate Evaluate all factors to optimize the 

models. 

Unable to develop the 
interactive report Moderate Low Research extensively about Jupiter 

and Quarto notebooks. 

Unable to meet the 
proposed deadlines for 
developing the tasks of 
each phase. 

Moderate Moderate 
Tasks could be completed in later 
stages. Additionally, more time could 
be allocated to each task. 

 
1.7. Deliverables summary 
 

• Work plan: Initial document in pdf format containing the guidelines and the 
timeline of all the tasks necessary for the project's development and 
achievement of goals. 

• Final report: PDF document detailing all the research, methods, results, and 
conclusions obtained throughout the master's thesis work. 

• Deliverables: Scripts, datasets, and the final trained model archived on an 
accessible public repository. Jupyter notebooks describing each step of the 
process and providing code examples. An interactive report displaying real-
world examples of vessel identification using SAR images from the Copernicus 
Program. 

• Presentation: Slide presentation to summarize the project and present the 
outputs. 

 
Such deliverables are available on the following GitHub repository, along with a 
description of their contents and usage. Additionally, they will be attached to the final 
report submission.  
 

https://github.com/pcarbomestre/SAR-VesselDetection-FisheriesMonitoring 
 
 
1.8. Brief description of the other chapters of the thesis  
 

• State of the art. A brief exposition is presented on the theoretical 
concepts and key elements for understanding the project. The chapter 
contents effectively justify the project's context and goals while 
highlighting its relevance, emphasizing the biological applications of the 
technology in fishery science. 

• Methodology. The development of this project is explained in detail in 
this chapter.  

• Results. The obtained results are presented in terms of the model’s 
performance.  

• Discussion. The combined results from the previous two sections are 
discussed and related to the theoretical framework.  

• Case Study. This chapter demonstrates this approach's potential in 
fisheries management by testing the model in a case study on Chilean 
fisheries. 

• Conclusions. The project's conclusions are presented, and future lines 
of work are proposed. 

 

https://github.com/pcarbomestre/SAR-VesselDetection-FisheriesMonitoring
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2. State of the art 
 
2.1. Introducing the importance of fisheries 
 
The fishing and aquaculture industries play a crucial role in providing food 
security and nutrition globally and are an essential economic driver in many 
countries and communities. In 2020, the global capture fisheries production was 
90.3 million tonnes—60% of it corresponding to large-scale fisheries—and has 
remained relatively stable over the past few decades, fluctuating between 86 
million tonnes and 93 million tonnes per year since the late 1980s. Half a billion 
people depend on fisheries for their livelihood, including 38 million direct 
workers, their household members, and others who engage in subsistence 
fishing. Additionally, fish is a significant part of the diet of over 3 billion people 
worldwide, providing at least 20% of the average per capita intake of animal 
protein (FAO 2022). 
 
Given the economic importance of fisheries and the changing landscape of 
population growth, market access, technological progress, and economic 
development of several nations, there has been a dramatic increase in the 
environmental pressures stemming from fisheries, particularly from industrial 
fishing, over the last decades. 
 
2.2. Environmental impacts of fisheries 
 
Regardless of a decrease in fishing vessels in the past two decades due to fleet 
reduction programs in Europe and China, there are still an estimated 4.1 million 
operative fishing vessels worldwide. The continued decrease in effective catch 
per unit of effort (CPUE) indicates that the world's fisheries are placing immense 
pressure on ocean resources (Rousseau et al., 2019). CPUE is an indirect 
measure of the abundance of a target species, and it responds to the logic of 
how much effort is invested in catching a fish and how much fish you get in 
return. Therefore, a decrease in CPUE means that, since 1950—when 
technological advancements allowed for the creation of modern industrial 
fishing—the number of fishing hours, distance to fishing grounds, and resources 
spent have increased for the same amount of fish caught, which translates into 
more pressure on fishing resources. 
 
According to FAO's assessment, this has resulted in a decrease in biologically 
sustainable fishery stocks. While in 1974, 90% of fishery stocks were 
biologically sustainable (i.e., yield does not impair the stock reproductivity, 
reaching a good balance between human use and ecological conservation), the 
percentage of stocks fished at biologically unsustainable levels has increased 
reaching 35.4% in 2019. In the meantime, the underfished stocks have followed 
a decreasing trend, and today only a tiny percentage of global fish stocks 
(7.2%) are not fished at their maximum sustainable capacity or are overfished. 
 
Overall, this trend poses a significant threat to marine fish populations 
worldwide, as approximately 90% of them are fully exploited (i.e., maximally 
sustainably fished) or overfished. As a result, over the past 50 years, more than 
366 fisheries, equivalent to a quarter of all fisheries, have experienced a 
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collapse (Mullon, Fréon, and Cury 2005). Notable examples include the 
Peruvian anchoveta and the cod fisheries in the North Atlantic waters of the 
USA and Canada in the 1990s, which have yet to recover. 
 
Despite the abundance of available data and methods used to assess fishing 
stocks and sustainable catch rates, reliance is placed on the information 
provided by the fishing industry and the national authorities. Unfortunately, the 
existing assessments account for great uncertainty due to illegal, unregulated, 
and unreported (IUU) fishing activities, which hide the actual impacts of global 
fishing. 
 
2.3. IUU fishing challenges 
 
Fisheries management faces a significant challenge from IUU fishing. This 
involves a wide range of activities, such as fishing without proper licenses or 
quotas for specific species, transferring catch to cargo vessels without 
authorization, falsifying catch reports, keeping undersized or protected fish, 
exceeding permit limits for catch quantities, fishing in restricted areas or during 
prohibited seasons, and using prohibited fishing gear. These practices 
contribute to the widespread issue of IUU fishing, which threatens world fish 
populations and marine ecosystems. Despite its difficulty to estimate, experts 
suggest that IUU fishing accounts for 14-33% of the global catch and up to 50% 
in some areas, with a total value of approximately $10-23 billion annually 
(Agnew et al. 2009). 
 
Therefore, IUU Fishing represents a significant global problem with economic, 
social, and environmental impacts. In socio-economic terms, IUU fishing can 
directly affect the income of fishermen and others in the seafood supply chain 
and harm nations' economic, income, and tax revenues (Sumaila et al. 2020). 
Besides the destructive fishing practices involved in IUU, the unreported catch 
can compromise the status of fish stocks by exceeding capture limits and 
undermining the accuracy of fisheries data and assessment models, ultimately 
leading to overfishing. Inaccurate models derived from poor-quality or 
uncompleted data make it difficult to set effective policies and hinder efforts to 
achieve proper fisheries management (Pitcher et al. 2002). Ultimately, the 
decline in fish stocks can have far-reaching effects on habitats and ecosystems, 
which in turn would negatively impact the long-term sustainability of 
economically important fisheries and communities that rely on fishing for food 
and economic security (Temple et al. 2022). 
 
To combat IUU fishing, traceability and catch documentation are essential. The 
UN Food and Agriculture Organization (FAO) has identified a lack of 
transparency in fishing vessel activities and registries as a critical factor 
contributing to ongoing challenges in the industry. In consonance, the EU and 
the USA have established fisheries policies prioritizing traceability, which 
involves monitoring the entire seafood supply chain. However, supply chain 
traceability is limited to shore-side landing sites or storage and processing 
facilities, which limits the effectiveness of this monitoring approach. To address 
this, new initiatives are being developed to enhance fisheries transparency by 
tracking vessel movements (Chuaysi and Kiattisin 2020).  
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2.4. Existing monitoring tools 
 
Traditionally, fisheries management has centered on setting catch quotas and 
other restrictions for specific species and areas. These quotas are monitored 
using landing reports and skipper's logbooks. However, new electronic reporting 
requirements have been introduced due to the long-term depletion of fishing 
stocks and the uncertainty associated with IUU fishing. These requirements 
enable authorities to track the movements of individual fishing vessels and their 
fishing activities (Lemoine et al. 2004). The most important of these 
technologies are the Vessel Monitoring System (VMS) and the Automatic 
Identification System (AIS), which data analysis allows identifying fishing 
vessels and calculate fishing hours to extrapolate the fishing effort (David A. 
Kroodsma et al. 2018). Despite their utility, these systems have significant 
limitations. For instance, some fishing vessels are not required to have them, 
and transceivers can be disconnected anytime. Additionally, unregistered 
fishing vessels can operate undetected worldwide. These factors make it 
difficult to monitor IUU, which contributes to the overexploitation of fish stocks 
and hinders the recovery of fish populations and ecosystems (Shepperson et al. 
2018). To address these limitations, recent advancements in satellite imagery 
analysis have allowed the monitoring of fishing activities under those 
circumstances where VMS and AIS data fail.  
 
2.5. Vessel detection using SAR images 
 
Synthetic Aperture Radar (SAR) has outstood other types of spaceborne 
imagery because it operates effectively under all weather conditions. The 
potential of SAR images for fishing monitoring was already highlighted by 
Lemoine et al. in 2004. However, only a decade later, with the development and 
improvement of Machine Learning (ML) techniques, the use of SAR images for 
vessel detection has reached its higher potential.  

 
2.5.1. Synthetic Aperture Radar (SAR) 

 
SAR is a remote sensing technology that uses RADAR systems to capture high-
resolution images of the Earth's surface. Unlike traditional passive satellite 
imaging techniques, which measure the energy naturally available on Earth's 
Surface (i.e., visible light, IR, and other electromagnetic waves), SAR operates 
by emitting microwaves and measuring the return signals that bounce back after 
interacting with the surface. This active radar imaging technique enables SAR 
to acquire data regardless of daylight, cloud cover, or atmospheric conditions 
(Moreira et al. 2013). 
 
The synthetic aperture concept arises from its operational procedure to obtain 
images. RADAR imagery largely depends on the antenna size. For high-
resolution images such as the ones related to landscape imagery, the 
necessary antenna dimensions would not be feasible to install on any aircraft or 
spacecraft. Therefore, unlike conventional radars, SAR systems generate 
images by combining the echoes received from multiple positions along the 
flight path, simulating a large antenna and allowing for high-resolution imagery 
(Jansing 2021). 
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One of the primary advantages of SAR is its ability to penetrate through clouds,  
providing higher spatial and temporal Earth image accessibility (i.e., all-weather 
and day-night imaging), allowing the monitoring of remote and inaccessible 
regions while offering data consistency among the generated products. 
Moreover, SAR systems provide a variety of imaging modes/bands—which 
collect signals in different polarizations and scattering mechanisms—with 
different resolutions and extensions covered. Fine-resolution SAR modes 
deliver highly detailed images over narrow areas, while wide-swath modes 
cover larger regions at slightly reduced resolution. Further, some bands can 
penetrate certain media, such as vegetation, or interact with the surface in 
different ways providing information about the topography, land cover, surface 
deformation, and texture. This flexibility makes SAR well-suited for applications 
like land use and land cover mapping, environmental monitoring, and maritime 
surveillance (Moreira et al. 2013). 
 

2.5.2. Vessel detection 
 
The aforementioned unique capabilities make SAR a highly effective sensor for 
ship detection. Several key factors explain the widespread use of these images 
in vessel detection. First, SAR can achieve resolutions that match the size of 
ships—except for small vessels. Second, SAR images cover relatively wide 
areas while maintaining a constant resolution, enabling efficient coverage of 
large maritime regions. Third, SAR is not reliant on daylight or cloud cover, 
making it operational regardless of environmental conditions (Kanjir, Greidanus, 
and Oštir 2018). Fourth, ships, especially larger ones, are predominantly 
constructed with metallic materials that exhibit strong radar signal reflections. 
As a result, ships appear as bright objects in SAR images, facilitating their 
detection on open waters. 
 
Moreover, the accessibility of SAR images has significantly contributed to its 
widespread utilization. Since the early 1990s, many SAR systems have been 
deployed in orbit around the Earth. Notable examples include ESA's Sentinel 1 
and COSMO-SkyMed, JAXA's PALSAR, and the latest commercial SAR 
sensors developed by Capella Space. 
  
However, SAR ship detection has certain limitations. Radar images inherently 
suffer from noise which can impact the accuracy of ship detection. High wind 
and sea state conditions also compromise ship detection, limiting its 
effectiveness. Additionally, detecting small targets, false positives identification, 
and ship classification remain difficult using SAR imagery. 
 
Despite the mentioned drawbacks, the main reason ship detection from satellite 
SAR is inadequate is its limited spatiotemporal coverage. Even though the 
amount of available SAR images has risen in recent years, the current number 
still needs to meet the requirements for sufficient coverage, as a single medium-
resolution SAR scene covers less than 0.1% of the ocean. To achieve 
comprehensive coverage—at a similar level to the one provided by AIS and 
VMS—a significantly larger fleet of SAR satellites, potentially numbering in the 
hundreds, would be necessary, but this is unlikely in the short term due to the 
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high cost associated with SAR products. Another major challenge lies in linking 
SAR detections to specific broadcasting vessels, making it difficult to distinguish 
between detections corresponding to broadcasting and non-broadcasting 
vessels. Consequently, this poses challenges in creating labeled datasets for 
training machine learning algorithms and validating models. (David Allen 
Kroodsma et al. 2022). 
 

2.5.3. Machine Learning approaches 
 
While vessels can be discerned on SAR images with the naked eye, it is not 
feasible to assess vast global areas continuously over time solely relying on 
human observation. Therefore, several automated approaches have been 
developed to detect ships, encompassing both traditional-based and ML 
methods, accounting for 59 different techniques (Yasir et al., 2023). While the 
Constant False Alarm Rate (CFAR) method stands out among the traditional-
based approaches (Hou, Chen, and Jiao 2015; Marzuki et al. 2021), ML has 
emerged as the predominant choice in ship detection. 
 
Among ML approaches, shallow architectures such as Support Vector 
Machines (SVM) have been proposed for vessel detection using satellite 
images (Hwang and Jung 2018; H. Li and Wang 2008). However, while these 
techniques offer low computational costs and timely results, they are often 
associated with lower accuracy rates and require larger amounts of data for 
effective training and testing. On the other hand, despite the higher 
computational times required, Deep Learning (DL) architectures have 
demonstrated superior performance in achieving high recognition rates even 
with relatively small amounts of data. 
 
DL techniques, specifically Convolutional Neural Networks (CNN), have been 
extensively used in computer vision tasks. Many articles have been published 
on SAR images DL-based object detection, categorizing the techniques into 
one-stage and two-stage methods. One-stage methods treat object detection as 
a regression problem, directly generating bounding box coordinates and class 
probabilities from image pixels. Prominent examples of one-stage methods for 
vessel detection include YOLO (Ting et al. 2021), SSD (Liu et al. 2016), and 
RetinaNet (Wang et al. 2019a). In contrast, two-stage methods generate region 
proposals as potential bounding boxes and then employ a classifier to 
categorize them. Popular two-stage methods include Fast R-CNN, Faster R-
CNN, Mask R-CNN, (J. Li, Qu, and Shao 2017; Lin et al. 2019; Ren et al. 2017; 
Zhang et al. 2020). While single-stage algorithms are simpler and faster to train, 
they may exhibit lower accuracy compared to two-stage techniques (Yasir et al. 
2023).  

 
2.5.4. Fishing monitoring 

 
Although AIS and VMS have significantly enhanced the monitoring of industrial 
fishing vessels, we only have reliable estimates of stock status for fish 
populations accounting for approximately half of the global catch, and our 
knowledge of the state of the majority of the world's “unassessed” fish stocks 
remains highly uncertain (Ovando et al. 2021). The inconsistent implementation 
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of AIS and VMS across regions and fleets, with larger and wealthier nations 
more likely to adopt these technologies, contributes to this uncertainty. 
Additionally, the ability of captains to deactivate these systems and operate 
undetected poses a significant challenge in accurately estimating fishing activity 
in specific areas, as it fails to consider non-broadcasting vessels. This is where 
SAR images can play a crucial role in addressing this issue. 
 
The availability of satellite imagery and the advancements in ML have paved 
the way for a new era in monitoring marine industries, closing the VMS and AIS 
data gaps and enabling increased transparency in ocean activities. The use of 
these technologies in fishing monitoring has progressed through various stages, 
starting with the development of accurate models to detect marine structures 
and vessels, followed by the discrimination of fishing vessels, and ultimately, 
with the integration of SAR-derived information with VMS and AIS data outputs 
to provide a more comprehensive and accurate picture of fishing activities 
(Galdelli et al. 2021).  
 
As discussed in the preceding section, extensive research has been conducted 
on vessel detection. However, when explicitly assessing fisheries, the detection 
results are further analyzed to classify the identified vessels into different fishing 
categories. Several methods have been proposed for vessel classification to 
discriminate fishing vessels, such as K-Nearest Neighbour (KNN) (Young 2019; 
Sasamal and Mallenahalli 2019), Random Forest (RF) (Snapir, Waine, and 
Biermann 2019), Support Vector Machines (SVM), and C4.5 classifiers 
(Sasamal and Mallenahalli 2019). 
 
Once fishing vessels have been distinguished from other types of vessels, it is 
crucial to assess whether certain ships are involved in illegal fishing activities. 
This evaluation involves comparing AIS data with SAR detections. By 
establishing associations between both data sources, we can identify ships that 
are not transmitting their positions, whether intentionally or unintentionally, and 
detect potential suspicious behaviors (Galdelli et al. 2021; Park et al. 2020; 
David Allen Kroodsma et al. 2022; Young 2019; Paolo et al. 2022). This aspect 
is essential for evaluating the impact of unreported fishing on fisheries 
assessments. 
 
These approaches are revolutionizing fisheries monitoring and have provided 
significant advancements to accurately estimate fishing stocks, species 
populations, and the status of fisheries based on gear types. Existing research 
has demonstrated its effectiveness in various aspects, such as estimating the 
actual size of fleets that cannot be identified exclusively through AIS, monitoring 
fleets at a global resolution (David Allen Kroodsma et al. 2022), estimating 
captures of target species, tracking changes in fleet size over time, and 
addressing data gaps associated with nearby fisheries targeting the same 
species (Park et al. 2020). These advancements provide evidence of the 
transformative impact of these approaches, enabling more accurate 
assessments and insights into fishery science. 
 
Nonetheless, there are limitations associated with SAR technology. For 
instance, the low revisit rate hampers the reconstruction of continuous vessel 
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tracks necessary for detecting fishing behavior over time. Additionally, SAR 
detections of dark ships—non-broadcasting vessels—can only be classified as 
potential fishing vessels, lacking the named identity required to compare them 
with known illegal, unreported, and unregulated (IUU) fishing lists (Young 2019). 
To tackle these challenges, existing research combines AIS, SAR, and other 
complementary methodologies, to overcome the limitations of individual 
approaches and enhance the accuracy and effectiveness of detecting and 
monitoring fishing vessels. 
 

2.5.5. Relevant research examples 
 
Kroodsma et al. (2022): made several significant findings regarding fisheries 
monitoring using AIS and medium-resolution SAR. Firstly, they discovered that 
by combining these two data sources, they could estimate the total number of 
vessels operating, including those not detected by AIS or SAR alone (i.e., real 
fleet size). Secondly, the study enabled them to determine the actual footprint of 
longline activity in the Pacific and Indian Oceans, where non-broadcasting and 
broadcasting vessels showed similar spatial distributions. Specifically, in the 
Pacific, most vessel activity occurred in the high seas, with minimal activity in 
the French Polynesian waters or Kiribati. This suggests that no significant "dark 
fleets” operates inside Economic Exclusive Zones (EEZ). Similar findings were 
observed in the Indian Ocean. Additionally, the authors' methodology allowed to 
determine the lengths of non-broadcasting vessels. This information is valuable 
as vessel size correlates with fishing effort, with larger vessels typically catching 
more fish. Establishing proxies for fishing efforts using SAR images and 
correlating them with actual measurements of fishing effort, such as those 
derived from AIS or landings, poses an ongoing research challenge. Finally, the 
study identified non-compliant vessels regarding AIS regulations with important 
policy enforcement implications. Surprisingly, the study revealed that the 
lengths of non-broadcasting ships were higher than anticipated. Notably, a 
significant number of vessels over 40 meters in length were not broadcasting 
AIS signals. Previous research had suggested that nearly all fishing vessels of 
this size globally were equipped with AIS devices. These findings suggest that 
either these larger vessels are intentionally disabling their AIS or that there are 
more non-compliant vessels without AIS than previously acknowledged. 
 
Park et al. (2020): used four satellite technologies—AIS, SAR, the Visible 
Infrared Imaging Radiometer Suite (VIIRS) sensor, and high-resolution optical 
imagery—to monitor fishing activity and quantify changes over time. The 
researchers leveraged the strengths of each technology to mitigate their 
respective limitations. AIS provides detailed movement and identity information 
but is utilized by only a fraction of vessels. SAR can identify large metal vessels 
and penetrate clouds but lacks global coverage. VIIRS sensor has a higher 
daily global revisit time and can detect ships with bright lights but can only 
operate at night. High-resolution optical imagery provides the best visual 
confirmation of vessel activity but is limited by clouds. First, the authors 
established the actual fleet size and observed its evolution over time, identifying 
seasonality in fishing activities. Additionally, they estimated an increase in 
fishing days over the past four years. Moreover, they could differentiate flag 
vessels based on their distinctive signals. They found that the significant growth 
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in the fleet was primarily attributed to Chinese vessels, which used brighter 
lighting power, and engaged in pair trawling. Secondly, they estimated the 
captures for Chinese dark vessels by assuming a catch per unit effort (CPUE) 
similar to those in nearby waters. The analysis revealed that the squid fisheries 
under surveillance amounted to approximately 101,300 metric tons of squid 
worth $275 million in 2017 and 62,800 metric tons of squid worth $171 million in 
2018. Furthermore, the researchers were able to establish a correlation 
between the previously unseen fishing efforts by Chinese vessels and the 
declining CPUE of South Korean and Japanese fisheries that also target the 
same stock in nearby waters—for which there is enough data for traditional fish 
stock and ecology assessments. Lastly, the study was able to map a shift in 
fishing efforts towards neighboring Russian waters due to the Chinese fleet 
operating in North Korean waters, where larger trawlers displaced local small-
scale fishing boats. Overall, the study underscored the significant challenge 
presented by the existence of unmonitored vessels, which not only affects stock 
management but also contributes to escalating tensions surrounding resource 
sovereignty conflicts. 
 
 

3. Methods 
 
3.1. Data 
 
The data set selected for training and testing the model is the Large-Scale SAR 
Ship Detection Dataset v1.0 (LS-SSDD-v1.0) created by Zhang et al. (2020). 
We selected this dataset due to its exclusive reliance on Sentinel-1 images, 
encompassing entire regional images featuring multiple annotated vessels, 
rather than individual offshore vessel chips as in other available datasets (Wang 
et al. 2019; Wei et al. 2020). This property likely enhanced the model's 
suitability for detecting vessels on actual Sentinel-1 data for the case study.  
 

 
Figure 2. Example of a large-scale image in LS-SSDD-v1.0, extracted from Zhang et al. (2020). 
Large-scale image (left) and 800x800 sub-images (right). Bounding boxes from annotations are 

in green. 
 



16   

The LS-SSDD-v1.0 dataset consists of 15 large-scale SAR images from the 
Sentinel-1. These images have dimensions of 24000 × 16000 pixels. The 
authors divided the large-scale images into smaller sub-images for training and 
evaluation. VV polarization band sub-images were downloaded, each 
measuring 800 × 800 pixels. The vessel annotations in this dataset were 
available in .xml format, containing the bounding boxes of the vessels. We 
excluded sub-images without annotated vessels to optimize the training 
process, resulting in a remaining set of 1859 images for training and testing. 
The total size of the dataset was 536.4 MB. 
 
3.2. Data environment  
 
Python was the coding language chosen for this project. We decided to run our 
training and analysis in Google Colab to simplify the setup process and avoid 
potential environment issues. This workspace offers a pre-configured Python 
environment, seamlessly integrating with Google Drive. Additionally, it provides 
access to free computational resources, including GPUs. These factors made 
Colab a convenient choice for our implementation, ensuring a smooth workflow 
throughout the project. 
 
We conducted a comprehensive review of different techniques used in 
constructing Faster RCNN models to determine the most suitable platform for 
object detection and segmentation. After careful consideration, we chose 
Detectron2, developed by Facebook AI Research. This library, implemented in 
PyTorch, stands out for its extensive tutorials, and other resources 
demonstrating its successful application to satellite imagery. Furthermore, 
Detectron2 offers state-of-the-art algorithms for object detection and provides a 
diverse collection of pre-trained baseline models. These pre-trained models 
served as a baseline for training our own model, enabling us to save 
computational time while potentially enhancing overall performance. 
 
Additional libraries were used for the training and model evaluation and for the 
data transformation and representation in the case study. The details of these 
libraries are included in the Jupyter notebooks associated with this project. 
Some notable libraries used include torch, torchvision, rasterio, pyproj, 
geopandas, and matplotlib. 
 
3.3. Data pre-processing 
 
Data preprocessing involved several tasks. As mentioned earlier, we initially 
removed images without annotated vessels from the original dataset to optimize 
computational resources. Following the criteria outlined by Zhang et al. (2020), 
the dataset was split into training and testing sets, resulting in 1395 images for 
training and 464 for model evaluation. Lastly, the datasets were registered 
within Detectron2, specifying the metadata such as annotation locations, class 
names, and annotation formats for the images. These steps ensured that the 
dataset was appropriately prepared and organized for subsequent model 
training and evaluation. 
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3.4. Model training 
 
The Faster R-CNN object detection model was built using the Detectron2 
library. For our model, we adopted the architecture and pre-trained baseline 
model, namely "faster_rcnn_R_101_FPN_3x". Based on the literature review, 
we selected this configuration from the Detectron2 Model Zoo, which indicates 
that Faster R-CNN with Feature Pyramid Network (FPN) architecture achieves 
superior performance for object detection tasks involving SAR images. Multiple 
training attempts were made, each testing different numbers of iterations. 
Ultimately, the base model was constructed using 26000 iterations, approaching 
the limit of the GPU free computational resources available in Colab. 
 
Due to computational constraints, we could not allocate a separate validation 
dataset for assessing our model's performance during training. Consequently, 
the learning curves generated from our model object were derived from metrics 
obtained from the training dataset (Figure 3). While these learning curves 
provide useful insights into the model's learning and adaptation over iterations, 
it is important to acknowledge that they do not fully reflect the model's ability to 
generalize to unseen data. Hence, the initial testing phase was carried out 
through a trial and error approach to determine the optimal number of iterations 
and model configuration. The resulting testing models were evaluated on the 
test dataset described in the next section. 
 

 
Figure 3. Learning curve depicting the loss over time for the base model, as measured from the 
training dataset. Additional learning curves can be found in the respective Jupyter notebooks. 

 
3.5. Model evaluation 
 
In this analysis, we evaluated the performance on the entire testing dataset, as 
well as on two subsets. One subset contained only offshore images—with no 
coastline, showcasing areas located in the open ocean— and the other 
consisted exclusively of inshore images, which included land areas. 
 
To assess the performance of the object detection model, we used the 
Common Objects in Context (COCO) Evaluator, a tool available in Detectron2 
that calculates standard metrics. The default metrics provided by this evaluation 
function include Average Precision (AP), representing the mean precision of the 
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detector at various recall levels, and object size-based metrics like APs, APm, 
and APl. These measure the Average Precision for small, medium, and large 
objects, respectively. However, since vessels are exclusively represented as 
small objects in SAR images, we have omitted them in our results and 
discussion section. Additionally, the evaluator provides average precision 
metrics based on different Intersection over Union (IoU) values, such as AP50 
and AP75, for 50% and 75% IoU respectively. These metrics were valuable to 
our analysis, as the performance evaluation criteria proposed by Zhang et al. 
(2020) chose a score threshold of 0.5 and an IoU threshold of 0.5. This means 
that for a detection to be considered successful, the overlapping area of a 
predicted box and a ground truth box must be greater than or equal to 50%. 
Furthermore, we created a custom model evaluator to extract the number of 
true and false positives to calculate recall and precision metrics. 
 
3.6. Model improvement 
 
Various image preprocessing techniques were explored to improve the model's 
performance. Overall, a series of transformations were designed to augment the 
input data with multiple changes to the image, including resizing, flipping, and 
adjusting brightness, contrast, and saturation. Augmentation techniques help 
improve the performance of computer vision models by exposing them to a 
wider variety of training data so they can generalize better on new images and 
prevent overfitting. 
 
The following transformations were applied: 
 

• Image flipping: Images were subject to random horizontal and vertical 
flipping during augmentation. The probability of flipping occurrence was 
set to 0.5—not all images were transformed due to computational 
constraints. It is important to note that these transformations can 
potentially result in the loss of certain image portions. Resizing the image 
to a larger size helped to recover those portions. 

• Image resizing: images were resized from their original size of 800x800 
pixels to 1400x1400 pixels. By resizing the image, the model can see 
more details and finer-grained features that might not have been seen 
before. This can help the model recognize objects and patterns more 
accurately and robustly, improving its performance on new, unseen 
images. 

• Image tone: Image tone adjustments, including brightness, contrast, and 
saturation properties, were randomly applied. Each adjustment was 
performed with a probability of 0.3 by a factor ranging between 0.7 and 
1.2. 

 
The specific values used for the sequence of transformations were incorporated 
into a mapper function, which was subsequently integrated into the Detectron2 
training process. The other parameters and training procedures for the 
improved model were the same as those used for our base model. We chose 
not to adjust the hyperparameters due to the limited computational resources 
and time constraints imposed by the available free GPU resources in Colab. 
Given these constraints, we prioritized data augmentation over hyperparameter 
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tuning, as the former was more likely to yield a comparable or greater 
improvement in performance, considering our limited computational resources. 
Finally, the performance assessment followed the same procedure as the one 
for the baseline model. 
 
3.7. Case study and interactive report 
 
The project's final step involved the creation of an interactive report to 
showcase the potential use of the model with real-world Sentinel-1 data. To do 
so, a study location was defined, and yearly imagery was processed.  
 
In order to assess vessel location and generate density maps of vessel 
presence, the bounding boxes resulting from the model's predictions were 
transformed into point coordinates. A code pipeline was created to facilitate this 
process and transform the model's outputs into meaningful spatial data. This 
encompassed the extraction of Sentinel-1 data from the Copernicus ESA 
Program, the reprojection of the data, the application of the detection model, 
and the subsequent transformation of the model's outputs. We used the Google 
Earth Engine (GEE) Python API to access the data from the Copernicus ESA 
Program. GEE offered a convenient platform for accessing geospatial data, 
providing increased access and automation capabilities. Its integration with 
existing Google tools used in this project, such as Drive and Colab, further 
streamlined the workflow and enhanced efficiency. 
 
The following summarizes the steps taken: 

 
• Extracting real-world Sentinel-1 data: Access Sentinel-1 band VV data 

and automate the download process using the GEE API. The automation 
of data downloads was done using Drive and Colab. 

• Validating image shape and metadata: Evaluate the extracted Sentinel-1 
images to ensure that their shape and contents were valid. This step 
allowed us to verify the integrity of the data before further processing. 

• Reprojecting the data: Some images had different Coordinate Reference 
Systems (CRS). Therefore, it was necessary to reproject the extracted 
data to a desired CRS. This ensured consistency and compatibility 
among spatial layers. 

• Applying the detection model: Once the images were ready, we run the 
detection model to generate the predictions. 

• Transforming model outputs into geographic data: A code was developed 
to convert the model outputs, specifically the bounding boxes, into 
geographic data. This transformation process entailed the transformation 
of the bounding boxes into point coordinates by calculating the centroids. 

• Data visualization: We used the generated data to create different visual 
outputs, including visualizing the bounding boxes on original images, 
vessel location coordinates, density maps of vessel presence, and plots 
of vessel detections over time. These outputs provided valuable insights 
into vessel activity in the study area, supporting the interactive report on 
the fisheries case study. 
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The resulting spatial data was used to describe the fishing status of the study 
area and demonstrate the contributions of technologies like SAR to its 
assessment. Finally, the information was gathered and included in an HTML 
interactive report—separate from the final report—using Quarto. Quarto 
functionalities allow the reader to interact with some of the outputs, enhancing 
the understanding of the study case and the data displayed. 
 

4. Results 
 
4.1. Base model 
 
The results from our object detection model, using the Detectron2 framework, 
reveal mixed performance across different categories (Table 4). Overall, for the 
entire testing set, the model achieved a recall of 79.77% and a precision of 
57.69%, indicating that it correctly identified approximately 80% of the 
annotated vessels, but only approximately 58% of the vessels identified were 
actually so. This suggests a relatively high rate of false positives in the model's 
predictions, with 1391 false positive instances against 1897 true positives. The 
AP50 and AP75 scores, measuring the average precision at different IoU 
thresholds, were 73.67% and 10.72% respectively. These metrics show that 
while the model has good precision at a 50% IoU, its precision drops 
significantly when the threshold is increased to 75%. 
 
Table 4. Base model performance metrics for the entire test dataset and the subsets. 

 TP FP Recall Precision AP50 AP75 
all 1897 1391 79.77% 57.69% 73.67% 10.72% 

offshore 1371 445 91.77% 75.49% 87.34% 14.22% 
inshore 525 946 59.46% 35.69% 46.39% 4.08% 

 
When evaluating performance on the offshore subset, the model displayed 
substantially improved results, with a recall of 91.77% and a precision of 
75.49%. This means it was able to correctly identify about 92% of vessels in this 
subset, with about 75% correct identifications. The model exhibited fewer false 
positives (445) in the offshore environment compared to the inshore, while 
detecting more true positives (1371). The AP50 and AP75 values for this subset 
are also significantly better than the overall scores, standing at 87.34% and 
14.22%, respectively. 
 
For the inshore subset, however, the model showed lower performance. The 
recall fell to 59.46%, meaning the model correctly identified just under 60% 
existing vessels. Precision dropped even more drastically to 35.69%, indicating 
that most of the vessels detected where false positives—946 false positives and 
only 525 true positives. The AP50 (46.39%) and AP75 (4.08%) values for this 
subset were considerably lower than the overall and offshore subsets. 
 
Overall, the base model showed a remarkable performance in the offshore 
category but needs to be improved in precision and inshore category 
detections.  
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Figure 4. Detections made by the base model (left) and the corresponding original annotations 
(right) for an offshore image. 

 

Figure 5. Detections made by the base model (left) and the corresponding original annotations 
(right) for an inshore image. 

 
4.2. Improved model 
 
After applying image augmentation to train our model, we observed some 
noticeable shifts in the model's performance. For the entire testing set, the 
model's recall increased to 84.99% from 79.77%, suggesting an improvement in 
its ability to identify vessels correctly—the number of true positives increased to 
2021 from 1897. However, the model's precision decreased from 57.69% to 
46.69%, showing a higher proportion of false positives (2308) among the 
objects identified as vessels. This suggests that while the model has become 
more capable of identifying vessels, it has also misclassified a larger number of 
objects as ships. Relative to the average precisions, the AP50 increased slightly 
to 76.92%, improving at a 50% IoU threshold. The AP75, however, decreased to 
8.32%. 
 
Table 5. Improved model performance metrics for the entire test data and the subsets. 

 TP FP recall precision AP50 AP75 
all 2021 2308 84.99% 46.69% 76.92% 8.32% 

offshore 1392 633 93.17% 68.74% 88.61% 9.79% 
inshore 628 1675 71.12% 27.27% 53.81% 5.72% 
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For the offshore subset, both recall and the number of true positives slightly 
increased, while precision slightly dropped. This suggests a similar trend to the 
overall set, where the model has improved in identifying vessels (with 1392 true 
positives up from 1371) but also falsely identified more irrelevant objects (633 
false positives up from 445). The AP50 and AP75 scores also mirrored the overall 
set with an increase in AP50 (88.61% up from 87.37%) and a decrease in AP75 
(9.79%, down from 14.22%). 
 
In the inshore subset, the model's recall improved significantly to 71.12% from 
59.46%, with an increase in true positives from 525 to 628. However, precision 
decreased drastically to 27.27%. As with the overall set and offshore subset, 
the AP50 for the inshore subset increased from 46.39% to 53.81%, while the 
AP75 dropped to 5.72% from 4.08%. 
 

 

Figure 6. Detections made by the improved model (left) and the corresponding original 
annotations (right) for an offshore image. 

 

 

Figure 7. Detections made by the improved model (left) and the corresponding original 
annotations (right) for an inshore image. 

 
Overall, applying image augmentation techniques has led to trade-offs between 
different performance metrics. While recall and AP50 improved, precision and 
AP75 decreased. Therefore, further refinement of the augmentation strategy 
might be required. This might include fine-tuning the augmentation parameters 
or employing selective augmentation to balance the improvement in recall with 
the preservation of precision and accurate bounding box delineation. 
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4.3. Interactive report 
 
To illustrate the application of our model on real-world Sentinel-1 data, we have 
developed an HTML interactive report that showcases the use of these methods 
in a fisheries-related case study. While section 6 of the report provides 
comprehensive details on the case study, this section will highlight key 
elements incorporated in the interactive report. 
 
The HTML allows readers to explore the case study while engaging with the 
displayed data. Several maps and plots featured in the case study section are 
accessible in an interactive way within the report. Furthermore, readers can 
unfold the code that transforms the model outputs into visual representations. 
 
 

 

Figure 8. Screenshot of a section of the interactive report, displaying an unfolded code chunk 
and a map showcasing the vessels detected in the case study. 

 
Among other features, the HTML report allows the reader to zoom in and out of 
maps and select specific spatial layers of interest (Figure 8). Furthermore, it 
enables the evaluation of spatial data over time, providing the ability to analyze 
temporal patterns and changes (Figure 9 and Figure 10). Additionally, the report 
allows for selecting specific data from the plots, facilitating a detailed 
representation of the desired information (Figure 11). 
 



24   

 
Figure 9. Screenshot of a section of the interactive report, displaying a time-series heatmap of 

vessel presence. 
 

 
Figure 10. Screenshot of a section of the interactive report, showcasing vessel presence per 

cell grid, with the option to select the date of interest. 
 

 
Figure 11. Screenshot of a section of the interactive report, presenting a plot depicting the 
number of vessels detected over time. The plot lets users zoom in and out on specific date 

ranges and select the desired data. 
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Overall, the presentation of our findings in an accessible and interactive format 
allowed us to create a science outreach document that effectively enhances 
awareness and understanding of the application of SAR imagery in maritime 
surveillance and related fields. 
 

5. Discussion 
 
The application of image augmentation techniques to our object detection 
model, based on the Detectron2 framework, resulted in significant trade-offs 
across various performance metrics. The most notable improvement was the 
increased recall across all categories, particularly inshore. This suggests that 
the augmentation has helped the model generalize better and capture more true 
positives. However, the precision dropped in all categories, indicating increased 
false positives. This might be due to the model overgeneralizing from the 
diversified training data after augmentation. Further, while the model 
demonstrated better object presence detection, as indicated by the increased 
AP50, it showed reduced accuracy in bounding box delineation, reflected in the 
decreased AP75. However, given the goal of the model, the low AP75 values are 
not a concern. Reduced accuracy in the bounding box delineation would only 
translate into a small change in the vessel coordinate position once the 
centroids are calculated to establish their location. Hence, low values of AP75 do 
not necessarily mean that the model is performing poorly for our purposes. 
 
Despite some of these trade-offs, our performance values are similar to those of 
Zhang et al. (2020) for the same dataset and training-testing split (Table 6). In 
terms of recall, both our base and improved models demonstrate superior 
performance compared to Zhang et al. Our improved model, in particular, 
significantly outperforms on offshore and inshore images, suggesting that it 
identifies vessels in the dataset better. However, regarding precision, our 
models show a different trend. While Zhang et al.'s model demonstrated a 
balance between recall and precision, our models struggled with precision. Both 
the base and improved models showed lower precision across all scenarios 
compared to Zhang et al., with the drop in precision being especially significant 
in the improved model. This implies that while our models are better at 
identifying vessels, they also tend to incorrectly classify non-vessel objects as 
vessels, which could be challenging in practical applications. In fact, this 
motivated the use of the base model for the case study instead of the improved 
one. 
 
As for the mAP/AP50 values, the models show a mixed pattern. For the entire 
dataset and offshore images, our improved model slightly outperforms Zhang et 
al. However, in the more challenging inshore images where the smoothness of 
the ocean signal is mixed with the changes in SAR reflectance of the land, both 
our base and improved models fall behind Zhang et al.'s model. It is important 
to note that the mAP values from Zhang et al. should not be confused with the 
Coco Evaluator's APm, which is not included in this analysis. As mentioned in 
the methods section, the mAP values represent the mean Average Precision, 
as Zhang et al (2020) defined for a 50% IoU—equivalent to our AP50. On the 
other hand, the APm metric represents the Average Precision for medium-sized 
objects. 
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Table 6. Comparison of our results and those from Zhang et al. (2020). 

  Recall Precision mAP/AP50 

All 
Zhang et al. (2020) 77.71% 73.74% 74.80% 

Base model 79.77% 57.69% 73.67% 
Improved model 84.99% 46.69% 76.92% 

offshore 
Zhang et al. (2020) 91.91% 82.82% 89.99% 

Base model 91.77% 75.49% 87.34% 
Improved model 93.17% 68.74% 88.61% 

inshore 
Zhang et al. (2020) 53.68% 55.96% 46.76% 

Base model 59.46% 35.69% 46.39% 
Improved model 71.12% 27.27% 53.81% 

 
In summary, while our models demonstrate an improved ability to detect 
vessels (as evidenced by higher recall values), they fail in precision, leading to 
more false positives. Our improved model does show an increase in mAP/AP50 
in the overall and offshore categories and improved recall in the inshore 
environment compared to our base model, which suggests that image 
augmentation has had a positive effect. However, these improvements are at 
the expense of precision, especially in the challenging inshore images, which is 
a clear area for further improvement. Comparison with Zhang et al.'s results 
highlights the importance of achieving a balance between recall and precision. 
 
Moving forward, our focus should be on refining our augmentation strategy. 
However, it is important to acknowledge that data augmentation alone cannot 
fully address the model's ability to learn ship features based on limited datasets. 
Hence, expanding the number of labeled datasets should be a priority, as 
Zhang et al. (2020) indicated. Additionally, exploring other approaches, such as 
hyperparameter tuning—excluded in this study due to limited computational 
resources—is crucial to improve model performance. 
 

6. Case Study 
 
This section focuses on implementing our trained model on Sentinel 1 images 
from the ESA Copernicus program to test its usage on real-world SAR images. 
The specific marine region under examination is the Corcovado Gulf, located in 
southern Chile. We chose this area as a case study based on three criteria. 
Firstly, the Corcovado Gulf is known for active fishing activities, including 
artisanal and industrial fisheries. The commercial fishing of hake and spider 
crab is carried out using large fishing vessels with metallic superstructures and 
hulls, making their signature on SAR images easily distinguishable compared to 
smaller or wooden boats. Secondly, considering the limited maritime traffic in 
the area, except for the passenger lanes connecting Quellón to Guaitecas and 
Port Raul Marin Balmaceda, we can reasonably assume that the model's 
detections are primarily associated with fishing activity, eliminating the need for 
an additional classification model to differentiate between fishing and non-
fishing vessels—which development was beyond the scope of this project. This 
allows us to extrapolate the detections to fishing vessels and qualitatively 
showcase the application of the model through a case study focused on 
fisheries. Lastly, the Corcovado region benefits from wide Sentinel 1 coverage, 
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providing multiple complete and partial images of the study area on a monthly 
basis. 
 
6.1. Corcovado Gulf 
 
The area of interest (AOI) encompasses 6615.83 km2 of sea and coastline at 
the Corcovado Gulf's entrance. The area is situated between two administrative 
fishing regions, the X Region of Los Lagos and the XI Region of Aysén, as 
designated by the Chilean National Service for Fishing and Aquaculture. It also 
includes a 1019 km2 protected area, the Tictoc-Golfo Corcovado Marine Park, 
established in 2022 and located northeast of our AOI. 

 

Figure 12. Study area. 
 
Most of the fishing efforts in the AOI are directed towards nine benthic species, 
including clams, mussels, sea urchins, seaweeds, and crabs from the genus 
Cancer (Molinet et al. 2011). This activity is primarily carried out by boats 
ranging from 7 to 15 meters in length, with most of them exceeding the 
resolution requirements for their detection. However, the area also involves the 
fisheries of the southern hake (Merluccius australis), and southern king crab 
(Lithodes santolla), both from artisanal fishing boats with lengths up to 18 m 
(Molinet et al. 2020)— above SAR’s resolution—, and industrial fishing vessels 
(Kitts et al. 2020; Molinet et al. 2019). These vessels, and the fishing carriers 
assisting artisanal vessels in transhipping operations, are the potential targets 
of the detection model. 
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Figure 13. Fishing vessel “Seines” (left) and fish carrier “Patagon 7” (right). Picture by Diego 
Muñoz and Max Peter Schlicher from MarineTraffic.com. 

 
6.2. Vessel detections 
 
A total of 348 Sentinel 1 images, amounting to 93GB of data, were extracted 
from the Google Earth Engine (GEE) and processed to evaluate a period from 
January 2018 to December 2022, covering 1024011 km2. As mentioned in the 
methods section, the model outputs' bounding boxes were transformed into 
coordinate points representing the locations of the detected vessels. Each 
detection was assigned its detection score from the model and recorded with 
the corresponding date and time of the associated SAR image. Detections with 
scores below 0.6 were removed from the dataset to exclude potential false 
positives. Additionally, objects erroneously detected near the shoreline were 
excluded by clipping them out of a coast shapefile layer obtained from 
earthworks.stanford.edu. Furthermore, an exclusion buffer of 2km from the 
coastline was applied to include only vessels operating in open waters, where 
the fishing activities of interest concentrate. After that preprocessing, a total of 
365 vessels were identified and selected for the analysis, with most detections 
occurring during the initial years of the specified timeframe (Table 7). 
 

   

Figure 14. Total vessels detected, including false positives (left). Filtered detections (right). 
Colors representing different years from 2018 to 2022 (from lighter to darker). 

 
Table 7. Number of vessels detected and selected for the analysis. 

Year 2018 2019 2020 2021 2022 Total 
Count 103 82 66 59 55 365 
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To assess the spatial distribution of the vessels, we generated a heatmap and a 
density map using a 5x5km grid. Attending to Figure 15, we can see that all 
fishing-related activities, including navigation, fishing, and transhipping, are 
predominantly concentrated in the southern region of our AOI, particularly in the 
adjacent waters of Guaitecas. Additionally, there is a noticeable absence of any 
activity on the east-northeast side, precisely where the Tictoc-Golfo Corcovado 
Marine Park is located.  
 

   

Figure 15. Heatmap and density grid of vessels detected. 
 
Regarding the temporal distribution of the detections, Figure 16 illustrates the 
number of selected vessels per month. Consistent with the values in Table 7, 
the graph shows an overall downward trend in the number of detected vessels 
over the years. However, the variations in vessel counts can be explained by 
the changes in SAR image availability and area covered rather than actual 
changes in vessel presence. To address this and to derive meaningful 
conclusions from the temporal series, we can normalize the number of vessels 
based on the corresponding area covered in the images processed for each 
month (Figure 17).  

 

Figure 16. Time series of the number of vessels detected. 
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Figure 17. Normalized time series representing the number of vessels by total km2 covered by 
Sentinel 1. 

 
6.3. Fisheries implications 
 
Despite the limited scope of this analysis, some of its findings could potentially 
be used for describing the local fisheries. For instance, the spatial pattern 
detected could be attributed to the location of the primary fishing grounds, which 
would be situated north of Guaitecas and east of the Queitao islands in the 
central region of the AOI. This distribution at least highlights areas where fishing 
activity is not predominant and from which fishery enforcement efforts could be 
redirected towards higher vessel density areas. 
 
Additionally, the absence of vessel presence within the waters inside the Marine 
Park is noteworthy. This observation sheds light on the rationale behind 
designating that specific area as protected in 2022. It is possible that the area's 
lower interest and reduced conflict among stakeholders facilitated or influenced 
its selection for protection. 
 
Regarding the temporal distribution, a closer look at Figure 17, which 
represents the normalized time series, reveals that the previous downward 
trend is no longer evident. In this case, there isn't a noticeable pattern across 
the years. However, there are some anomalies in the number of detections, 
such as a significant increase at the end of 2019. It would be worthwhile to 
investigate whether this could be linked to a specific event related to fishing 
activities in the region, such as changes in fishing regulations like quota 
increases or an abnormality in the stock's growth due to ecological processes. 
 
To further explore the temporal dimension of the data, we can examine if there 
is a seasonal factor. Referring to Figure 18, it is evident that most detections 
occurred at the years' ends, particularly in October, November, and December. 
Additionally, when evaluated by season (Figure 19), fall and winter accounted 
for the highest number of detections. This pattern could respond to the start of 
the fishing season.  
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Figure 18. Data grouped on a monthly basis across all years. 
 

 

Figure 19. Data grouped on a seasonal basis across all years. Winter: December, January, 
February; Spring: March, April, May; Summer: June, July, August; Autumn: September, 

October, November. 
 
 
6.4. Analysis limitations 

 
It is important to emphasize that this case study does not attempt to analyze a 
fishery science case thoroughly. Instead, it aims to showcase the practical 
application of vessel detection models in fisheries management. Its main 
objective is to comment on the derived data outputs from these detections and 
establish correlations with existing scientific work that has successfully 
implemented this technology for fisheries management.  
 
In this particular case, it is important to point out that the data cannot be directly 
extrapolated for fishing purposes. To achieve this, a classification model is 
necessary to accurately distinguish between fishing vessels and other types of 
boats. This differentiation is crucial as it enables the correlation of detections 
with actual fishing activity. Furthermore, a more comprehensive evaluation of 
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the specific AOI and its fisheries should be conducted. This would allow for the 
formulation of hypotheses regarding the detections and their potential linkage to 
regional fishing trends. Additionally, it is essential to incorporate data from other 
sources to support the observations derived from the detection model. A more 
robust and comprehensive analysis could be achieved by combining traditional 
observations that define the regional fisheries with our detections. 
 
While the analysis in this case study had a limited extent, focusing on data 
extraction, transformation, and representation, it has also served to reveal 
certain limitations of this technology, including the temporal resolution of SAR 
images, its constraint for detecting small vessels, and the need of a reliable 
classification model. 
 

7. Conclusion 
 
This study underscores the potential of machine learning models in detecting 
vessels within SAR images, offering a promising tool for enhanced fisheries 
management. We have successfully developed a robust DL model specifically 
designed for vessel detection, exhibiting outstanding performance on offshore 
images. Nevertheless, we have also identified several challenges and 
limitations associated with model training, particularly when it comes to 
recognizing vessels within inshore images, a common issue encountered in 
previous studies. While our case study demonstrates the effectiveness of 
techniques like land masking in improving the application of models to real SAR 
images, continuous efforts are crucial to refine these models further and bridge 
the performance gap between inshore and offshore images. 
 
Furthermore, our accomplishments go beyond the development of the model 
itself, as we have successfully converted the model outputs into meaningful 
data with potential applications in fisheries management. In the case study, we 
have identified spatial and temporal patterns that may exhibit correlations with 
fisheries activity. Importantly, we have also highlighted the constraints of SAR-
derived information for that purpose, particularly its limited temporal and spatial 
resolution. However, the capability of these models to detect vessels in 
situations where other methods fail is significant and emphasizes the 
importance of integrating this technology with existing fishing control and 
enforcement mechanisms. 
 
Considering these findings, we argue that while machine learning models for 
SAR image analysis cannot replace traditional maritime surveillance 
techniques, they can enhance and complement existing methods for monitoring 
fishing activities. This integration has the potential to provide a more 
comprehensive, precise, and timely understanding of marine activities, thereby 
contributing to the achievement of SDGs 8 and 14. 
 
7.1. Future research 
 
The current project marks the initial stage of a broader approach to using SAR 
images in conjunction with machine learning methods to improve fisheries 



33   

management. Based on the findings presented in this report, several promising 
steps must be pursued in this line of research. 
 

• Improvement of the detection model, particularly focusing on detecting 
vessels in inshore images. 

• Deriving vessel characteristics from the vessel image chips produced 
from the model's bounding box outputs, including vessel dimensions and 
course. 

• Development of a classification model to distinguish between fishing and 
non-fishing vessels. 

• Creating a workflow to integrate the SAR-derived information with VMS 
and AIS data outputs, thereby providing a more comprehensive and 
accurate picture of fishing activities. 

• Exploring potential applications of the outputs for global and regional 
fishing assessments. 

 
7.2. Project planning assessment 
 
The goals set in the work plan were successfully achieved, with only minor 
deviations in terms of timing and content adjustments. Completing certain tasks, 
such as developing and running the code to execute the model on new images, 
transforming vessel detections into meaningful data, and showcasing its 
application in fisheries, took longer than expected and extended into project 
phase 3. 
 
Regarding content, the LS-SSDD-v1.0 dataset (Zhang et al., 2020) was used 
instead of the initially proposed Wei et al. (2020) dataset. The former was 
selected since it relies exclusively on Sentinel-1 images and includes entire 
regional images with multiple annotated vessels, enhancing the model's 
suitability for detecting vessels on actual Sentinel-1 data. In Phase 2, GEE was 
used to access data instead of the Copernicus Open Access Hub as initially 
planned. GEE provided a more convenient platform with increased access and 
automation capabilities, making integrating with other tools such as Drive and 
Colab easier. 
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8. Glossary 
 
Automatic Identification System (AIS): A tracking system that uses transponders 
on ships to track and monitor vessel movements. The AIS collects data, 
including the vessel's identity, type, position, course, speed, navigational status, 
and other safety-related information. 
 
Catch per unit effort (CPUE): A measure of the success rate of catching fish per 
unit of fishing effort. 
 
Catch quotas: Restrictions set by fisheries management on the amount of a 
specific species that can be caught within a certain timeframe. 
 
CFAR (Constant False Alarm Rate): A traditional-based technique used in 
signal processing to detect target signals within background noise, commonly 
used in radar systems for ship detection. 
 
CNNs (Convolutional Neural Networks): A class of deep learning models most 
commonly applied to analyzing visual imagery. 
 
Deep Learning (DL): A subset of machine learning techniques that utilizes 
artificial neural networks with multiple layers between the input and output layer 
to model and understand complex patterns in datasets. 
 
Economic Exclusive Zones (EEZ): Sea zones over which a state has special 
rights regarding the exploration and use of marine resources. They extend 200 
nautical miles from the coast of the country. 
 
Fast R-CNN: A two-stage deep learning model used for object detection, which 
improves on R-CNN by only requiring a single pass through the network, 
making it more efficient. 
 
Faster R-CNN: A model that introduces a Region Proposal Network (RPN) that 
shares full-image convolutional features with the detection network, thus 
enabling nearly cost-free region proposals. 
 
Fish stock overexploitation: The unsustainable fishing practice where the fish 
population is reduced to a level where it is not productive anymore. This is a 
significant contributor to the degradation of marine ecosystems. 
 
Fishing effort: An estimation of the total amount of fishing activities, often 
determined by the number of hours a vessel spends fishing, the type of gear 
used, and the amount of gear deployed. 
 
Flag vessels: Ships that are registered under a particular country's flag. The 
country under which a ship is registered is responsible for enforcing regulations 
on the ship, no matter where it operates. 
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Illegal, Unreported, and Unregulated (IUU) fishing: Unlawful practices in the 
fishing industry that include fishing without permission, not reporting catches, 
using illegal methods, and fishing in protected areas. 
 
Mask R-CNN: An extension of Faster R-CNN that adds a branch for predicting 
an object mask in parallel with the existing branch for bounding box recognition, 
which allows for pixel-level segmentation in addition to object detection. 
 
Machine Learning (ML): A field of artificial intelligence that uses statistical 
techniques to give computer systems the ability to learn from data, identifying 
patterns and making decisions with minimal human intervention. 
 
RetinaNet: A one-stage object detection model that addresses the problem of 
class imbalance by introducing a loss function that focuses on training samples 
that are hard to classify. 
 
Synthetic Aperture Radar (SAR): A type of imaging radar used to create two-
dimensional images of landscapes that can be used to detect and monitor 
vessels. 
 
Single Shot MultiBox Detector (SSD): A one-stage object detection algorithm 
that encodes object location and class probabilities directly in a single shot, 
making it faster than two-stage detectors. 
 
Support Vector Machines (SVM): A shallow machine learning model that uses 
supervised learning algorithms for classification and regression analysis. 
 
Vessel Monitoring System (VMS): A type of surveillance system that uses 
satellite-based tracking devices installed on fishing vessels. The system 
provides data on a vessel's position, course, and speed, helping authorities to 
monitor fishing activities. 
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