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Abstract. Combinatorial optimization has been a workhorse of financial and 

risk management, and it has spawned a large number of real-life applications. 

Prominent in this body of research is the mean-variance efficient frontier 

(MVEF) that emanates from the portfolio optimization problem (POP), 

pioneered by Harry Markowitz. A textbook version of POP minimizes risk for a 

given expected return on a portfolio of assets by setting the proportions of those 

assets. Most authors deal with the variability of returns by employing expected 

values. In contrast, we propose a simILS-based methodology (i.e., one 

extending the Iterated Local Search metaheuristic by integrating simulation), in 

which returns are modeled as random variables following specific probability 

distributions. Underlying simILS is the notion that the best solution for a 

scenario with expected values may have poor performance in a dynamic world.  

Keywords: Portfolio Optimization · SimILS · Metaheuristics · Simulation. 

1   Introduction 

Investments play an essential role in our society through wealth creation, sustainable 

economic growth and ultimately improvements in welfare standards. They provide 

companies with the necessary funds to transform ideas and resources into profitable 

projects, social benefits and jobs. From the point of view of a portfolio investor, POP 

is a strategy of a) selection of financial assets and b) determination the optimal 

weights allocated to those assets  that results in a desired portfolio return and an 

associated minimum level of risk. This combinatorial optimization problem (COP) is 

known as the portfolio optimization problem (POP), a milestone of modern portfolio 

theory, founded by Harry Markowitz [1]. Key to POP is a quadratic objective function 

that is a) computed by aggregating over the covariances of the constituent asset 

returns, and b) minimized subject to a desired rate of return. It is worth noting that 

other risk measures have been applied in the literature such as value-at-risk. 

Additionally, portfolio weights must add up to one and, in most cases, take on non-

negative values. A realistic POP introduces further constraints. In particular, pre-

assignment, quantity and cardinality constraints have received overwhelming 

attention in extant literature. The pre-assignment constraint allows the investor to pre-



select some assets, irrespective of their risk-return characteristics. The quantity 

constraint confines the weight allocated to an asset in the portfolio within a desired 

range of values. One the one hand, the upper limit (the ceiling) of the range attempts 

to reduce the exposure to each asset. On the other hand, the lower limit (the floor) 

rules out investments in negligible quantities, which may be prohibitively costly, 

since the transaction costs may reduce or erase the benefit. While recognising that this 

constraint arises as a result of the investor’s discretionary decisions, it has received 

growing interest. For instance, [2] argue that its inclusion can lead to improved out-

of-sample performance of optimization performance, can help contain portfolio 

volatility, boost realized portfolio performance, as well as decrease downside risk and 

shortfall probability. Finally, the cardinality constraint sets a minimum and maximum 

value for the number of assets in the portfolio. The lower bound aims to diversify the 

investment, i.e., allocate resources to a set of imperfectly correlated assets. Such 

strategy seeks to minimize the overall risk of portfolio investment. The upper bound 

is dictated by the evidence that marginal benefits of portfolio diversification starts to 

decrease after the number of assets already selected in the portfolio hits a certain 

threshold [3]. In addition, portfolios with a large number of assets are more costly in 

terms of complexity, managerial effort and the ensuing increased transaction costs. 

These constraints make the problem NP-hard [4].   

Optimization methods may be classified into exact methods and 

heuristics/metaheuristics [5]. The first group includes procedures that guarantee the 

optimality of a solution. However, exact methods may require making strong 

assumptions or large amounts of time, especially when they are used to solve real-life 

complex problems. Within the second group, heuristics are experience-based 

procedures, which usually provide near-optimal solutions in considerably less time. 

By contrast, metaheuristics [6] are general templates, which may solve a broad range 

of problems without having to be tailor-made to a particular problem and often in real 

time. In the literature on the portfolio optimization, linear [7] and quadratic [8] 

programming methods have been predominant exact methods. However, due to the 

complexity of these problems, metaheuristics are increasingly more employed at 

present [9].   

Despite the non-exhaustive nature of applications of realistic POP, they have not 

been extensively studied. As aforementioned, a textbook version of POP underlies the 

empirically unsupported assumption of constant expected rate of return, a key 

limitation in a large and growing body of research. The main contribution of this 

research is to address this limitation. Indeed, since asset return is a random variable 

that obeys a certain probability density function, and future returns are unpredictable, 

the minimum desired rate of return may not be attained with certainty. More 

concretely, we relax the above simplifying assumption and randomize the minimum 

desired rate of return. The resulting problem is referred to as the Stochastic POP 

(SPOP). The solver that is constructed to solve SPOP is relatively new and is called 

SimILS [10]. It envisages an extension of the Iterated Local Search (ILS) 

metaheuristic [11] that integrates simulation techniques to address sources of 

uncertainty embedded in a randomized objective function or/and budget constraint. In 

short, while a metaheuristic searches for high-quality solutions for a deterministic 

version of the problem, which employs expected values of random variables, 

simulation techniques are applied to test them in a stochastic environment. In fact, this 



approach – coined simheuristics [12] – suggests combining metaheuristics and 

simulation techniques. In this context, our research aims to: (i) derive a mathematical 

formulation for the Stochastic POP, (ii) develop a solving methodology based on an 

existing algorithm for the POP [13]; and (iii) illustrate its use by solving a benchmark 

instance.  

This paper is organized as follows. Section 2 provides a formal description of the 

problem. Section 3 proposes a methodology. A computational experiment is carried 

out in Section 4, while the results are analyzed in Section 5. Finally, Section 6 gathers 

the main conclusions. 

2   Description of the Problem 

Let there be a set 𝐴 = {𝑎1, 𝑎2, … , 𝑎𝑛} of 𝑛 assets, where each asset 𝑎𝑖 (∀𝑖 ∈
{1,2, … , 𝑛}) is characterized by an expected return 𝑟𝑖. The covariance between two 

assets 𝑎𝑖  and 𝑎𝑗  (∀𝑖, 𝑗 ∈ {1,2, … , 𝑛}) is denoted by 𝜎𝑖𝑗. A solution for the POP (see 

Fig. 1), is a vector 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑛), where each element 𝑥𝑖 (0 ≤ 𝑥𝑖 ≤ 1) 

represents the weight of the asset 𝑎𝑖 in the portfolio. The aim of the POP is to 

minimize the risk of the investment and obtain an expected return greater than a 

specific threshold 𝑅.  A realistic version includes also the pre-selection, quantity and 

cardinality constraints. The pre-selection constraint dictates whether an asset 𝑎𝑖 must 

be in the solution (i.e., 𝑥𝑖 > 0) by means of the parameter 𝑝𝑖: 𝑝𝑖 = 1 if 𝑎𝑖 is pre-

selected, and 𝑝𝑖 = 0 otherwise. The quantity constraint specifies for each asset 𝑎𝑖 a 

lower and an upper bound, 휀𝑖 and 𝛿𝑖 (0 ≤ 휀𝑖 ≤ 𝛿𝑖 ≤ 1), respectively. The cardinality 

constraint sets the lower and upper limits on the number of assets included in the 

portfolio, 𝑘𝑚𝑖𝑛 and 𝑘𝑚𝑎𝑥 (1 ≤ 𝑘𝑚𝑖𝑛  ≤ 𝑘𝑚𝑎𝑥  ≤ 𝑛), respectively. One key difference 

between the stochastic and classical versions of POP is that the former assumes 

uncertain future returns on a portfolio of assets, with a certain probability of not 

attaining the threshold value.  

 

 
Fig. 1. Example of a solution representation 
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min 𝑓(𝑋) =  ∑  𝑛
𝑖=1 ∑ 𝜎𝑖𝑗𝑥𝑖𝑥𝑗

𝑛
𝑗=1  

Subject to: 

 𝑃(∑ 𝑅𝑖𝑥𝑖 ≥ 𝑅) ≥ 𝑃0
𝑛
𝑖=1                                                   (1) 

 ∑ 𝑥𝑖 = 1𝑛
𝑖=1                                                                      (2) 

 휀𝑖𝑧𝑖 ≤ 𝑥𝑖 ≤ 𝛿𝑖𝑧𝑖,                    ∀𝑖 ∈ {1,2, … , 𝑛}              (3) 

 0 ≤ 휀𝑖 ≤ 𝛿𝑖 ≤ 1,                    ∀𝑖 ∈ {1,2, … , 𝑛}              (4) 

 𝑧𝑖 ≤ 𝑀𝑥𝑖,                                ∀𝑖 ∈ {1,2, … , 𝑛}             (5) 

 𝑝𝑖 ≤ 𝑧𝑖 ,                                   ∀𝑖 ∈ {1,2, … , 𝑛}             (6) 

𝑘𝑚𝑖𝑛 ≤ ∑ 𝑧𝑖
𝑛
𝑖=1 ≤ 𝑘𝑚𝑎𝑥                                                   (7) 

𝑧𝑖 ∈ {0,1},                              ∀𝑖 ∈ {1,2, … , 𝑛}              (8) 

The objective function minimizes the risk of the investment. Equation (1) 

guarantees that the return on investment will be no smaller than the threshold 𝑅 with a 

probability of at least 𝑃0. Equation (2) restrains portfolio investment to the existing 

resources. An auxiliary variable is introduced to indicate whether the asset 𝑎𝑖 is in the 

solution (𝑧𝑖 = 1 in this case, 𝑧𝑖 = 0 otherwise). For each asset 𝑎𝑖, Equation (3) sets a 

lower and an upper bound (휀𝑖 and 𝛿𝑖, respectively) for 𝑥𝑖, in case the asset is selected 

(i.e., 𝑧𝑖 = 1). The two bounds range from 0 and 1 (Equation 4). In Equation (5) 𝑀 is a 

very large positive value such that 𝑀𝑥𝑖 ≥ 1 for all 𝑖 if 𝑥𝑖 > 0. Equation (6) defines 

the pre-assignment constraint, where 𝑧𝑖 depends on the parameter 𝑝𝑖 . If the asset 𝑎𝑖 is 

pre-selected (i.e., 𝑝𝑖 = 1), then it also appears in the solution (i.e., 𝑧𝑖 = 1). Equation 

(7) describes the cardinality constraint. Finally, Equation (8) defines 𝑧𝑖 as a binary 

variable.              

3   Our Methodology 

The proposed methodology follows a simILS approach. It is demonstrated to be 

successful for solving realistic COPs with sources of uncertainty [14]. It is a natural 

extension of ILS-based algorithms to address stochastic COPs. Specifically, we 

combine a solving methodology for the POP [13] with Monte Carlo simulation 

(MCS) techniques. The referred work describes a powerful yet simple algorithm, 

which includes heuristics for the selection of assets and a quadratic programming 

solver that allocates weights to POP. It uses memory caches to enhance the 

algorithm’s performance. In fact, it provides high-quality solutions in real time, only 

within a few seconds. 

Our methodology is summarized in Fig. 2 and described next.  

First, the stochastic instance is transformed into deterministic by replacing random 

variables by their means. Second, an initial solution by means of the algorithm 

described in [13]. It constructs a solution by combining the pre-selected assets with 

high-return assets. The solution has to be feasible in the stochastic environment, i.e., 



the required return (𝑅) has to be reached with a probability no smaller than 𝑃0. MCS 

is employed to estimate this probability by means of the proportion of cases in a 

sample of generated scenarios where the return obtained is at least as high as 𝑅. Each 

scenario is created by randomly drawing a value for each return in the original 

instance. Third, copies of the initial solution are stored as base and best solutions. 

Fourth, of the above specified steps are repeated until a stopping criterion based on 

the elapsed time is met. First, a new solution is created by ‘perturbing’ the base 

solution. This perturbation, defined in the original algorithm, randomly erases some 

assets from the portfolio and introduces others. An acceptance criterion is introduced 

to determine whether the new solution is promising and should replace the base 

solution or should be discarded. It is a Demon-like acceptance criterion [15], which 

accepts the solutions that improve the objective function value (i.e., the risk) and 

those that worsen it but satisfy the following conditions; (i) no consecutive 

deteriorations take place, and (ii) the degradation does not exceed the value of the last 

improvement. The next step consists of checking the feasibility of the new solution as 

before, using MCS. Only if it is feasible, the new solution is copied into the base 

solution, and the best solution is updated (if improved). Finally, the best solution is 

returned.  

Note that this approach presents relevant advantages: (i) its modularity, which 

enables the reuse of problem-specific procedures from the original algorithm, (ii) it is 

relatively simple to understand and implement, and (iii) it does not add too much 

time, since MCS is only used to check the feasibility of promising solutions.  

4   Computational Experiments 

Our methodology has been implemented as a Java application. A standard personal 

computer, Intel Core i5 CPU at 3.2 GHz and 4 GB RAM with Windows 7 has been 

employed. We have experimented with a stock market database from the repository 

ORlib (http://people.brunel.ac.uk/~mastjjb/jeb/orlib/portinfo.html), which was 

proposed in [16]. It represents the market index Hang Seng (Hong Kong) measured at 

weekly frequency spanning the period from March 1992 to September 1997. This 

benchmark instance gathers expected returns 𝑟𝑖  and standard deviations 𝜎𝑖. In order to 

assess our simheuristic methodology, expected returns have been replaced with  

random variables 𝑅𝑖 that distribute normally with mean 𝑟𝑖 and standard deviation 𝜎𝑖 . 
The instance contains 31 assets. The expected returns average is 0.0035 (95% IC: 

0.0027-0.0043) and the standard deviation is 0.002. The return standard deviations 

average 0.0457 (95% IC: 0.0430-0.0484) and deviate from the mean on average by 

0.0073. Fig. 3 displays the probability density functions for some selected assets. 

Table 1 proves that there is a positive association between expected returns and 

standard deviation (Pearson product-moment correlation coefficient: 0.4973). In other 

words, investors expect a higher return for assets characterized by a higher risk. Return 

correlations among different assets average 0.5266 (95% IC: 0.5137-0.5395), which 

suggests the presence of gains from portfolio diversification.  

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/portinfo.html


 

Fig. 2. Flowchart of our approach 

 

 

 

Fig. 3. Returns of selected assets following Normal distributions 



Table 1. Correlation analysis between expected returns and standard deviation 

Correlation coefficient P-value IC (95%) 

0.4973 0.0044 0.1736-0.7241 

 

Our algorithm is executed 10 times using different seeds; only the best results are 

shown.  To minimize the computational time, the number of runs for assessing 

promising solutions has been set to 2000. The other parameters, including the time of 

the iterative procedure, have been set to the values suggested in [13].       

100 equidistant values for the required rate of return have been selected. Table 2 

shows the first and the last 5 observations on the required return, risk and reliability 

(or probability of the return being no smaller than the required return) associated to the 

solution obtained by the original algorithm (i.e., considering expected values), the risk 

found with our methodology considering the probabilities of 0.48 and 0.52, and the 

gap between them. The solutions of our methodology were obtained in 4.783 seconds 

on average. 

Table 2. Table of results 

 Expected values 𝑃0: 0.48 𝑃0: 0.52 

Required 

return 
Risk 

Reliab. 

(%) 
Risk (1) Risk (2) 

Gap (2)-(1) 

(%) 

0.002861  0.000642  50.07 0.000642 0.000645 0.00024 

0.002942  0.000643  50.28 0.000643 0.000645 0.00023 

0.003023  0.000644  49.22 0.000644 0.000648 0.00047 

0.003104  0.000644  49.55 0.000644 0.000646 0.00019 

0.003185  0.000645  50.12 0.000645 0.000647 0.00011 

0.010542  0.004194  49.02 0.004194 0.004194 0.00000 

0.010622  0.004332  50.64 0.004332 0.004475 0.00014 

0.010703  0.004475  49.90 0.004475 0.004475 0.00000 

0.010784  0.004623  50.12 0.004623 0.004623 0.00000 

0.010865  0.004776  49.67 0.004776 N/A N/A 

 

 

 

5   Analysis of Results 

The computational results suggest that requiring returns above a given threshold with a 

higher probability leads to the same or higher portfolio variance. Moreover, the 

instance may become unsolvable.  



Fig. 4 shows the differences in terms of risk between the 0.48 and 0.52 probability 

solutions for each of the 100 equidistant values. Solutions associated to higher 

probability in general have greater risk. Fig. 5 displays a multiple boxplot which 

depicts the distribution of returns obtained using MCS for a set of promising solutions 

when solving the instance for a specific required return. They are sorted according to 

the portfolio variance. Although no obvious differences can be identified, eyeballing 

suggests that the second solution have the smallest range. This case shows that it can 

be useful to provide a set of solutions to the decision-maker. Here, he would choose 

the first (risk: 0.0006444), which minimizes the risk, or the second (risk: 0.0006449), 

which has a slightly higher risk but with a lower return variability.     

 

Fig. 4. Risk gaps considering two probabilities and 100 returns thresholds 

 

Fig. 5. Multiple Boxplot with returns distributions for several solutions 
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6   Conclusions 

This work has addressed the Portfolio Optimization Problem (POP), which is a classic 

NP-hard Combinatorial Optimization Problem with plenty of applications. It consists 

in creating a portfolio selecting a subset of assets and setting their weights. Typically, 

authors solve this problem working with expected returns. 

We have presented a mathematical formulation for the realistic POP, which 

considers the following constraints, commonly faced in real life: pre-assignment 

constraint (based on investor’s preference), quantity constraint (which keeps each 

weight within user-specified floor and ceiling values) and cardinality constraint 

(providing a minimum and maximum value for the number of assets to include in the 

portfolio). Being a NP-hard problem, we require an approximate methodology for 

solving medium/high-sized instances in real time. Accordingly, we have proposed a 

simple methodology relying on the simILS approach. It combines an existing 

algorithm based on the Iterated Local Search metaheuristic for the classical version of 

the problem, which guides the search, with Monte Carlo simulation techniques, which 

checks the feasibility of promising solutions. A computational experiment employing 

an adapted benchmark instance is performed to illustrate its use and to analyze how 

the solutions change in terms of risk when varying the minimum required return and 

the probability of satisfying the constraint associated to this return. 

Due to the stochasticity characterizing financial markets, the number of 

challenging versions of the POP, and their relevant applications, we plan to explore 

new methodologies or variants of the one presented to address problems in this field. 

For instance, an interesting line of research would be to consider more sources of 

stochasticity. Additionally, our methodology could be tested on instances describing 

different periods, countries, regions, sectors and asset classes.   
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