
Master’s Thesis

Securing Kubernetes in
Public Cloud Environments

Author: Vı́ctor Mart́ınez Bevià
Master’s Degree: Cybersecurity and Privacy
Tutor: Manuel Jesús Mendoza Flores

Securing Kubernetes
in Public Cloud Environments

To Encarna Maria, whose support knows no end.

This work is licensed under Creative Commons Attribution-NonCommercial-
ShareAlike 3.0 Spain (CC BY-NC-SA 3.0 ES)

Vı́ctor Mart́ınez Bevià 1

https://creativecommons.org/licenses/by-nc-sa/3.0/es/deed.en

Securing Kubernetes
in Public Cloud Environments

Abstract

With the rise of cloud providers, it is now easier than ever to create a startup and
pay for infrastructure “as you go” instead of having to invest in physical servers
and storage. At the same time, Kubernetes provides a scalable platform that
meshes perfectly with the elasticity of the cloud environment. The low entry fee
coupled with the conveniences of the providers shouldering infrastructure costs
due to the shared responsibility model makes companies jump at the opportunity
and run their code with a sometimes questionable security posture.

In this work, we take a look at the current landscape of cybersecurity threats
for Kubernetes clusters in a cloud environment, reviewing existing recommen-
dations, best practices, and threat models in order to provide a structured guide
on how to improve the security of the infrastructure against known attack vec-
tors. Finally, we offer actionable implementations of each of the chosen security
mitigations.

Vı́ctor Mart́ınez Bevià 2

Securing Kubernetes
in Public Cloud Environments

Contents

Abstract 2

1 Introduction 6
1.1 Motivation . 6
1.2 Goals . 7
1.3 Planning . 7
1.4 Risks . 7

2 State of the Art 8
2.1 Anatomy of current Kubernetes Cybersecurity Attacks 8
2.2 Kubernetes Security Standards 11
2.3 Threat Models . 12

2.3.1 Sig-Security K8s Threat Model 12
2.3.2 Microsoft Threat Matrix for Kubernetes 12
2.3.3 Expanded Microsoft Threat Matrix for Kubernetes 13

2.4 Conclussions . 15

3 Preventive Controls 16
3.1 Mitigations . 16

3.1.1 Mapping tactics to mitigations 16
Initial Access . 16
Execution . 17
Persistence . 18
Privilege Escalation . 20
Defense Evasion . 20
Credential Access . 21
Discovery . 22
Lateral Movement . 23
Collection . 24
Impact . 25

3.1.2 List of mitigations . 25
Multi-factor authentication 26
Restrict access to the API server using IP firewall 26
Adhere to least-privilege principle 27

Vı́ctor Mart́ınez Bevià 3

Securing Kubernetes
in Public Cloud Environments

Secure CI/CD environment 28
Image assurance policy . 28
Gate generated images in CI/CD pipeline 28
Gate images pushed to registries 28
Gate images deployed to Kubernetes cluster 29
Enable Just In Time access to API server 29
Network intrusion prevention 29
Limit access to services over network 30
Require strong authentication to services 30
Restrict exec commands on pods 31
Restrict container runtime using LSM 31
Remove tools from container images 31
Restrict over permissive containers 32
Network segmentation . 32
Avoid running management interface on containers 32
Restrict file and directory permissions 32
Ensure that pods meet defined Pod Security Standards . 33
Restricting cloud metadata API access 33
Allocate specific identities to pods 33
Collect logs to remote data storage 34
Restrict the usage of unauthenticated APIs in the cluster 34
Use managed secret store 34
Remove unused secrets from the cluster 34
Restrict access to etcd . 34
Disable service account auto mount 35
Avoid using plain text credentials 35
Use NodeRestriction admission controller 35
Use CNIs that are not prone to ARP poisoning 36
Set requests and limits for containers 36
Use cloud storage provider 36
Implement data backup strategy 36
Avoid using web-hosted manifest for Kubelet 36

4 Implementation 38
4.1 Case Study . 38

4.1.1 Establishing Priorities . 39
When is it not possible to mitigate? 39

4.2 Domains of application . 40
4.2.1 Kubernetes configuration 43

Adhere to least-privilege principle 43
Restrict exec commands on pods 43
Use NodeRestriction admission controller 43
Avoid using web-hosted manifest for Kubelet 43

4.2.2 Cloud Provider configuration 44
Multi-factor authentication 44
Restrict access to the API server using IP firewall 44

Vı́ctor Mart́ınez Bevià 4

Securing Kubernetes
in Public Cloud Environments

Enable Just In Time access to API server 45
Limit access to services over network 46
Restricting cloud metadata API access 47
Allocate specific identities to pods 48
Restrict access to etcd . 48
Restrict the usage of unauthenticated APIs in the cluster 48
Use cloud storage provider and Implement data backup

strategy . 48
Collect logs to remote data storage 49
Use managed secret store 50

4.2.3 Third-party software . 50
Trivy . 50
Open Policy Agent Gatekeeper 54
Cilium and Tetragon . 59
Custom solutions . 67

5 Conclussions and further work 69
5.1 Plan of action . 69
5.2 Next steps . 70

List of Figures 71

List of Tables 72

List of Listings 74

Bibliography 75

A Open Policy Agent Gatekeeper Constraint Templates 81
A.1 Gate images deployed to Kubernetes cluster 81
A.2 Restrict exec commands . 82
A.3 Restrict over permissive containers 83
A.4 Restrict file and directory permissions 86
A.5 Ensure that pods meet defined Pod Security Standard 89
A.6 Disable service account auto mount 90
A.7 Set requests and limits for containers 92

B Cilium event logging 103

C Tetragon Tracing Policies examples 118

Vı́ctor Mart́ınez Bevià 5

Securing Kubernetes
in Public Cloud Environments

Chapter 1

Introduction

1.1 Motivation

Cybersecurity attacks, such as ransomware, data breaches, or phishing, are part
of our daily lives as “cyber-crime is growing exponentially [and] the cost of
cybercrime is predicted to hit $8 trillion in 2023 and will grow to $10.5 trillion
by 2025”[1]. But even though “businesses [...] operate in a world in which 95% of
cybersecurity issues can be traced to human error”[2], nowadays, “the primary
hurdle companies have recently cited is a belief that the current cybersecurity
posture is ’good enough’.[...] the notion of ’good enough’ indicates a lack of
specific metrics around measuring cybersecurity efforts.”[3].

To shed light on cybersecurity attacks, many security-related companies con-
duct yearly surveys to gauge the state of the Cloud Native Security field. Ac-
cording to these surveys, as of 2022, “93% of respondents experienced at least
one security incident in their Kubernetes environments in the last 12 months,
sometimes leading to revenue or customer loss”[4] (The State of Cloud Security
Report 2022 by Snyk points to an 80%[5]). Additionally, “90 % of organizations
cannot detect, contain, and resolve cyber threats within an hour”[6] (with Snyk
reporting 89% of organizations[5]). A common struggle seems to be that “77%
of organizations cite problems with poor training and collaboration as a major
challenge”[5], while “only 10% consider their developers and security teams to
be experts”[7].

Many people turn to existing Best Practices documents and CIS benchmarks
due to a lack of expertise. However, these resources often present a list of generic
mitigations that may not be useful for specific use cases. Every environment
has unique requirements, and a one-size-fits-all checklist is unlikely to address
all scenarios effectively. Instead, it is crucial to adopt a threat-model-based
approach that tailors mitigations and best practices to the current situation.
By defining the domain for each mitigation, we can select an implementation
that suits our current environment. This approach will ensure that our security
measures are effective and aligned with the specific risks and challenges we face.

Vı́ctor Mart́ınez Bevià 6

Securing Kubernetes
in Public Cloud Environments

1.2 Goals

This work aims to provide a set of functional security implementations following
a threat-model-based approach which, if put in place and maintained, should
mitigate the most common attacks for a Kubernetes cluster in a Cloud environ-
ment.

1.3 Planning

In order to achieve the objective of this thesis, it is necessary to undertake the
following tasks.

� Provide an attacks landscape for Kubernetes clusters. The goal
is to gather a list of agnostic attacks and tactics, so we can systematically
identify vulnerable points. In order to help with the following chapters we
also will:

– Gather statistics of Kubernetes cyberattacks to later help with pri-
oritization

– Review existing Kubernetes security guides and benchmarks

– Review existing Kubernetes threat models

� Map attacks to mitigations. Identify what we want to work on and
why. To that end, we will:

– Present a list of mitigations that counter our chosen attack vectors

– Research possible solutions for the chosen mitigations

� Implement mitigations. Once the solutions have been chosen, provide
an example of how to implement them in a Kubernetes cluster residing in
the Cloud.

– Decide which attack vectors apply to our current domain and which
are out of scope

– Categorize mitigations based on their domain of application

– Key aspects to adopting a solution will be how cost-effective it is in
terms of work, money, and frequency of attack

1.4 Risks

As there is no such thing as perfect security, so we must try to avoid unnecessary
efforts due to wrong prioritization. It is necessary to follow a structured guide
to apply mitigations because time and effort are limited and need to be taken
into account. In Chapter 4, the study case will be presented, and the goal is
to analyze the scenario and systematically apply only the necessary mitigations
for our current environment.

Vı́ctor Mart́ınez Bevià 7

Securing Kubernetes
in Public Cloud Environments

Chapter 2

State of the Art

2.1 Anatomy of current Kubernetes Cybersecu-
rity Attacks

It is a common practice for security providers to gather data by means of an
annual survey. These surveys do not focus solely on Kubernetes, but on a wide
range of topics, and the annual frequency allows them to keep up with the latest
security trends. Nonetheless, they should be taken with a grain of salt, because
they represent a relatively low sample, mostly from already knowledgeable com-
panies.

In this work though, we will focus on the parts of those surveys that deal
with Kubernetes security incidents. We have some surveys, like the ones from
RedHat and PaloAlto, that focus on attack vectors:

Vı́ctor Mart́ınez Bevià 8

Securing Kubernetes
in Public Cloud Environments

0 10 20 30 40 50

Detected misconfiguration

Major vulnerability to remediate

Security incident during runtime

Failed audit

None

53

38

30

22

7

Percentage %

Figure 2.1: RedHat: “In the past 12 months, what security incidents or issues
related to containers and/or Kubernetes have you experienced? (pick as many
as apply)[4]”

Top 5 Security Incidents

1. Risk introduced early in application development

2. Workload images with vulnerabilities or malware

3. Vulnerable web applications and APIs

4. Unrestricted network access between workloads

5. Downtime due to misconfiguration

Figure 2.2: Palo Alto: “Top 5 Security Incidents [6]”

Others focus on the attack goal :

Vı́ctor Mart́ınez Bevià 9

Securing Kubernetes
in Public Cloud Environments

0 5 10 15 20 25 30 35

Failed audit

No major cloud security incidents

Cryptomining

Serious compliance violation

Cloud data leak

Environment intrusion

Cloud data breach

System downtime due to misconfiguration

15

20

23

25

26

27

33

34

Percentage %

Figure 2.3: Snyk: “Serious cloud security incidents experienced[5]”

0 10 20 30 40

Customer records stolen

Distributed denial of service (DDoS) attack

Ransomware attack

Unauthorized access to backend infrastructure

Malware infection in backend infrastructure

Lost/stolen employee device

Malware infection on employee device

20

23

27

29

31

37

42

Percentage %

Figure 2.4: CompTIA: “Cybersecurity Incidents from Past Year[3]”

As these surveys do not follow a common template, the non-standard types
of attacks make it challenging to collate data. Furthermore, the attack vector
versus goal focus complicates the extraction of insights.

Vı́ctor Mart́ınez Bevià 10

Securing Kubernetes
in Public Cloud Environments

2.2 Kubernetes Security Standards

To help with security compliance, one can refer to the available benchmarks,
hardening guides or best practices references. These come in the form of check-
lists or a group of more general actions to improve the security of the Kubernetes
environments, and can help from the inexperienced operator deploying its initial
cluster to the auditor assessing the security of an environment.

Several benchmark and hardening guides exist, with some of the most renowned
being:

� The Center for Internet Security (CIS) Kubernetes Benchmark “is the
product of a community consensus process and consists of secure config-
uration guidelines developed for Kubernetes”[9]. The Center for Internet
Security is a nonprofit that provides a plethora of benchmarks, controls,
and hardened images to help IT professionals safeguard against threats.

� The National Security Agency (NSA) and the Cyber Security and Infras-
tructure Security Agency (CISA) provide a Cybersecurity Technical Report
called Kubernetes Hardening guide, developed “in furtherance of their re-
spective cybersecurity missions, including their responsibilities to develop
and issue cybersecurity specifications and mitigations.”[10]

� Defense Information Systems Agency (DISA), part of the United States of
America Department of Defense, has their own Kubernetes Security Tech-
nical Implementation Guides (DISA STIGs). Reportedly it “is published
as a tool to improve the security of Department of Defense (DoD) infor-
mation systems. The requirements are derived from the National Institute
of Standards and Technology (NIST) 800-53 and related documents”[11].

� The major Cloud providers also have their own hardening guides with
specifics for their managed Kubernetes services:

– Best Practices Guide for Security (Amazon Web Services Elastic Ku-
bernetes Service)[12]

– Harden your cluster’s security (Google Kubernetes Engine) [13]

– Best practices for cluster security and upgrades in Azure Kubernetes
Service (AKS) [14]

It’s important to note that being compliant does not mean being secure.
Though these guides contain good information and generally provide accurate,
actionable advice to improve your security, the problem comes when one of these
guides is used as a one-and-only stop for achieving a secure environment. More
often than not, they are incomplete, meaning they cannot cover your whole
environment (nor is their purpose), so if you follow just one of them you could
end up with a very secure Kubernetes deployment, but a cloud environment
full of vulnerabilities. Or vice-versa. As Anais Ulrichs and Rory McCune from
Aqua Security point out, “security Standards are helpful but they should be
taken as something you use as a starting point”[15].

Vı́ctor Mart́ınez Bevià 11

Securing Kubernetes
in Public Cloud Environments

2.3 Threat Models

2.3.1 Sig-Security K8s Threat Model

In January 2020, the CNCF Financial User Group released a Kubernetes Threat
Model[16]. This was an analysis of threats and mitigations following the STRIDE
methodology. As it happens with the Benchmarks, the work “only focused on
the Kubernetes platform itself, not on the full end-to-end container solution that
would include the SDLC or additional applications used to monitor Kubernetes.
These components and the wider environment are likely to be individual to a
specific end-user”. The threat model follows two approaches:

� The Bottom-up Approach, which “shows entry points throughout the Ku-
bernetes platform with the aim of satisfying the stated goal.” Among
the goals are: Denial of Service, Malicious Code Execution and Establish
Persistence.

� The Scenario Approach, “identifying attack vectors open to an attacker in
certain scenarios”. The two scenarios are: Compromised application leads
to foothold in container and Attacker on the network.

These approaches’ analysis highlights the following Main Attack Vectors:

� Service Token

� Compromised container

� Network endpoints

� Denial of Service

� RBAC Issues

Since 2020 there has not been another release of the threat model by the
CNCF.

2.3.2 Microsoft Threat Matrix for Kubernetes

In April 2020, Microsoft published a post in their Security blog proposing a
Threat matrix for Kubernetes. In that post, Microsoft “created the first Kuber-
netes attack matrix: an ATT&CK-like matrix comprising the major techniques
that are relevant to container orchestration security, with focus on Kubernetes”[17].
A new version of the matrix was published a year later[18], which included new
techniques and discontinued the outdated ones.

The Microsoft Threat Matrix for Kubernetes[19] classify different techniques
utilized to target a Kubernetes cluster. These groups are referred to by tactics,
and are essentially a subset of those listed in the MITRE ATT&CK Matrix for
Enterprise[20]. The following tactics are included:

� Initial Access

Vı́ctor Mart́ınez Bevià 12

Securing Kubernetes
in Public Cloud Environments

� Execution

� Persistence

� Privilege Escalation

� Defense Evasion

� Credential Access

� Discovery

� Lateral Movement

� Collection

� Impact

Each of these tactics is comprised of several techniques which are not mutu-
ally exclusive. For example, exploiting Exposed sensitive interfaces serves both
the Initial Access and Discovery tactics. It’s worth mentioning that while Mi-
crosoft associates their techniques with those in the ATT&CK Matrix, they may
not necessarily match up with the same tactics. Using the previous example, in
MITRE the technique is called External Remote Services, but in this case, it is
classified under Initial Access and Persistence.

2.3.3 Expanded Microsoft Threat Matrix for Kubernetes

TheHacking Kubernetes book by O’Reilly[21] introduces a community-expanded
version of Microsoft’s Threat Matrix. Additionally to adding techniques, it also
replaces the tactic Collection for Command & Control. The expanded threat
matrix look like this:

Vı́ctor Mart́ınez Bevià 13

S
ecu

rin
g
K
u
b
ern

etes
in

P
u
b
lic

C
lou

d
E
n
v
iron

m
en
ts

Initial Ac-
cess

Execution Persistence Privilege
Escalation

Defense
Evasion

Credential
Access

Discovery Lateral
Movement

Collection Impact

Using cloud
credentials

Exec into
container

Backdoor
container

Privileged
container

Clear con-
tainer logs

List K8S se-
crets

Access Ku-
bernetes
API server

Access
cloud re-
sources

Images from
a private
registry

Data de-
struction

Compromised
image in
registry

bash/cmd
inside con-
tainer

Writable
hostPath
mount

Cluster-
admin
binding

Delete K8S
events

Mount ser-
vice princi-
pal

Access
Kubelet
API

Container
service ac-
count

Collecting
data from
pod

Resource hi-
jacking

Kubeconfig
file

New con-
tainer

Kubernetes
CronJob

hostPath
mount

Pod / con-
tainer name
similarity

Container
service ac-
count

Network
mapping

Cluster in-
ternal net-
working

Denial of
service

Application
vulnerabil-
ity

Application
exploit
(RCE)

Malicious
admission
controller

Access
cloud re-
sources

Connect
from proxy
server

Application
credentials
in configu-
ration files

Exposed
sensitive
interfaces

Application
credentials
in configu-
ration files

Node
schedul-
ing DoS1

Exposed
sensitive
interfaces

SSH server
running
inside con-
tainer

Container
service ac-
count

Node to
cluster
escalation1

DNS tun-
neling/
exfiltration1

Access
managed
identity
credentials

Instance
Metadata
API

Writable
hostPath
mount

Service Dis-
covery DoS1

Compromise
user
endpoint1

Sidecar in-
jection

Static pods Control
plane
to cloud
escalation1

Shadow ad-
mission con-
trol or API
server1

Malicious
admission
controller

Compromise
K8s
Operator1

CoreDNS
poisoning

PII or IP
exfiltration1

Compromised
host1

Container
lifecycle
hooks1

Sidecar
injection1

Compromise
admission
controller1

Access host
filesystem1

ARP poi-
soning and
IP spoofing

Container
pull rate
limit DoS1

Compromised
etcd1

Rewrite
container
lifecycle
hooks,
liveness1

Compromise
K8s
Operator1

Access K8s
Operator1

SOC/SIEM
DoS1

K3d
botnet1

Container
breakout1

1 Community-expanded

Table 2.1: Microsoft Threat Matrix for Kubernetes (expanded)

V
ı́ctor

M
art́ın

ez
B
ev
ià

14

Securing Kubernetes
in Public Cloud Environments

2.4 Conclussions

We’ve seen that Benchmarks and Hardening guides are not sufficient by them-
selves as they lack the context of the current environment. Instead, they should
be used as a reference to implement mitigations that apply to each case. By
combining the use of a threat model with the information the current guides
offer we can get a more structured security plan, as we will know why are we
applying each mitigation.

In Chapter 3 we’ll analyze an existing threat model, and review possible
mitigations by using the mentioned guides in section 2.2 as well as other solutions
where Kubernetes configurations are not enough.

Vı́ctor Mart́ınez Bevià 15

Securing Kubernetes
in Public Cloud Environments

Chapter 3

Preventive Controls

3.1 Mitigations

In the previous chapter, we took a look at the Kubernetes threat models avail-
able and as the focus of this thesis is to provide an entry point to secure a
Kubernetes cluster, we will be following the Microsoft Threat Matrix for Ku-
bernetes. The reason for the choice is that the model is widely available, it has
an established reputation that makes the community build upon it, and it is
presented in a structured manner that links each mitigation to existing MITRE
mitigations.

As the mitigations can block more than one technique, we’ll begin by gath-
ering the common mitigations and reviewing possible solutions to implement in
Chapter 4.

3.1.1 Mapping tactics to mitigations

Initial Access

The initial phase or step in a cyber attack is where an attacker gains unautho-
rized access to a target system or network. The initial foothold can be achieved
via the cluster management layer or by finding and exploiting vulnerabilities in
a Kubernetes container, enabling first access to the cluster.

Vı́ctor Mart́ınez Bevià 16

Securing Kubernetes
in Public Cloud Environments

Techniques Mitigations

Using cloud credentials
MS-M9001: Multi-factor Authenti-
cation
MS-M9002: Restrict access to the
API server using IP firewall
MS-M9003: Adhere to least-
privilege principle

Compromised credentials
MS-M9004: Secure CI&CD envi-
ronment
MS-M9005: Image Assurance Pol-
icy

Kubeconfig file
MS-M9003: Adhere to least-
privilege principle
MS-M9002: Restrict access to the
API server using IP firewall
MS-M9006: Enable JIT elevated
access to API server to limit attack
surface or impact

Application vulnerability
MS-M9005: Image Assurance Pol-
icy
MS-M9007: Network Intrusion
Prevention

Exposed sensitive interfaces
MS-M9008: Limit Access to Ser-
vices Over Network
MS-M9009: Require Strong Au-
thentication to Services
MS-M9014: Network Segmentation

Compromise user endpoint MS-M9001: Multi-factor Authenti-
cation

Table 3.1: Initial Access Tactic

Execution

Upon gaining access, the attackers employ different techniques to run their code
inside a cluster.

Vı́ctor Mart́ınez Bevià 17

Securing Kubernetes
in Public Cloud Environments

Techniques Mitigations

Exec into container
MS-M9003: Adhere to least-
privilege principle
MS-M9010: Restrict Exec Com-
mands on Pods
MS-M9011: Restrict Container
runtime using LSM

Bash or cmd inside container
MS-M9011: Restrict Container
runtime using LSM
MS-M9012: Remove Tools from
Container Images

New container
MS-M9003: Adhere to least-
privilege principle
MS-M9013: Restrict over permis-
sive containers
MS-M9005.003: Gate images de-
ployed to Kubernetes cluster

Application exploit (RCE)
MS-M9005: Image Assurance Pol-
icy
MS-M9014: Network Segmentation
MS-M9011: Restrict Container
runtime using LSM

SSH server running inside container
MS-M9015: Avoid Running Man-
agement interface on Containers
MS-M9014: Network Segmentation
MS-M9011 Restrict Container run-
time using LSM

Sidecar injection
MS-M9003: Adhere to least-
privilege principle
MS-M9013: Restrict over permis-
sive containers
MS-M9005.003: Gate images de-
ployed to Kubernetes cluster

Container lifecycle hooks MS-M9003: Adhere to least-
privilege principle

Table 3.2: Execution Tactic

Persistence

One option for the attacker is to find a way to keep access to the cluster in case
their initial foothold is lost.

Vı́ctor Mart́ınez Bevià 18

Securing Kubernetes
in Public Cloud Environments

Techniques Mitigations

Backdoor container
MS-M9003: Adhere to least-
privilege principle
MS-M9013: Restrict over permis-
sive containers
MS-M9005.003: Gate images de-
ployed to Kubernetes cluster

Writable hostPath mount

MS-M9013: Restrict over permis-
sive containers
MS-M9016: Restrict File and Di-
rectory Permissions
MS-M9011: Restrict Container
runtime using LSM
MS-M9017: Ensure that pods meet
defined Pod Security Standards

Kubernetes CronJob
MS-M9005.003: Gate images de-
ployed to Kubernetes cluster
MS-M9003: Adhere to least-
privilege principle
MS-M9013: Restrict over permis-
sive containers

Malicious admission controller MS-M9003: Adhere to least-
privilege principle

Container service account
MS-M9025: Disable Service Ac-
count Auto Mount
MS-M9003: Adhere to least-
privilege principle

Static pods
MS-M9016: Restrict File and Di-
rectory Permissions
MS-M9032: Avoid using web-
hosted manifest for Kubelet

Sidecar injection
MS-M9003: Adhere to least-
privilege principle
MS-M9013: Restrict over permis-
sive containers
MS-M9005.003: Gate images de-
ployed to Kubernetes cluster

Rewrite container lifecycle hooks,
liveness

MS-M9003: Adhere to least-
privilege principle

Table 3.3: Persistence Tactic

Vı́ctor Mart́ınez Bevià 19

Securing Kubernetes
in Public Cloud Environments

Privilege Escalation

The privilege escalation tactic consists of techniques that are used by attackers
to get higher privileges in the environment than those they currently have. In
containerized environments, this can include getting access to the node from a
container, gaining higher privileges in the cluster, and even getting access to
the cloud resources.

Techniques Mitigations

Privileged container
MS-M9013: Restrict over permis-
sive containers
MS-M9017: Ensure that pods meet
defined Pod Security Standards
MS-M9005.003: Gate images de-
ployed to Kubernetes cluster

Cluster-admin binding MS-M9003: Adhere to least-
privilege principle

Writable hostPath mount

MS-M9013: Restrict over permis-
sive containers
MS-M9016: Restrict File and Di-
rectory Permissions
MS-M9011: Restrict Container
runtime using LSM
MS-M9017: Ensure that pods meet
defined Pod Security Standards

Access cloud resources

MS-M9003: Adhere to least-
privilege principle
MS-M9018: Restrict the access of
pods to IMDS
MS-M9019: Allocate specific iden-
tities to pods
MS-M9013: Restrict over permis-
sive containers

Table 3.4: Privilege Escalation Tactic

Defense Evasion

A set of techniques employed by attackers to elude detection and conceal their
actions.

Vı́ctor Mart́ınez Bevià 20

Securing Kubernetes
in Public Cloud Environments

Techniques Mitigations

Clear container logs
MS-M9020: Collect Logs to Re-
mote Data Storage
MS-M9016: Restrict File and Di-
rectory Permissions

Delete Kubernetes events
MS-M9020: Collect Logs to Re-
mote Data Storage
MS-M9003: Adhere to least-
privilege principle

Pod or container name similarity MS-M9005.003: Gate images de-
ployed to Kubernetes cluster

Connect from proxy server

MS-M9002: Restrict access to the
API server using IP firewall
MS-M9014: Network Segmentation
MS-M9021: Restrict the usage of
unauthenticated APIs in the cluster
MS-M9009: Require Strong Au-
thentication to Services

Table 3.5: Defense Evasion Tactic

Credential Access

The credential access tactic consists of techniques that are used by attackers to
steal credentials.

In containerized environments, this includes credentials of the running ap-
plication, identities, secrets stored in the cluster, or cloud credentials.

Vı́ctor Mart́ınez Bevià 21

Securing Kubernetes
in Public Cloud Environments

Techniques Mitigations

List Kubernetes secrets

MS-M9003: Adhere to least-
privilege principle
MS-M9022: Use Managed Secret
Store
MS-M9023: Remove unused secrets
objects from the cluster
MS-M9024: Restrict access to etcd

Mount service principal
MS-M9013: Restrict over permis-
sive containers
MS-M9003: Adhere to least-
privilege principle

Container service account
MS-M9025: Disable Service Ac-
count Auto Mount
MS-M9003: Adhere to least-
privilege principle

Credentials in configuration files
MS-M9026: Avoid using plain text
credentials
MS-M9022: Use Managed Secret
Store

Malicious admission controller MS-M9003: Adhere to least-
privilege principle

Table 3.6: Credential Access Tactic

Discovery

The discovery tactic consists of techniques that are used by attackers to ex-
plore the environment to which they gained access. This exploration helps the
attackers to perform lateral movement and gain access to additional resources.

Vı́ctor Mart́ınez Bevià 22

Securing Kubernetes
in Public Cloud Environments

Techniques Mitigations

Access Kubernetes API server
MS-M9003: Adhere to least-
privilege principle
MS-M9002: Restrict access to the
API server using IP firewall

Access Kubelet API

MS-M9009: Require Strong Au-
thentication to Services
MS-M9014: Network Segmentation
MS-M9003: Adhere to least-
privilege principle
MS-M9027: Use NodeRestriction
Admission Controller

Network mapping MS-M9014: Network Segmentation

Exposed sensitive interfaces
MS-M9008: Limit Access to Ser-
vices Over Network
MS-M9009: Require Strong Au-
thentication to Services
MS-M9014: Network Segmentation

Instance Metadata API MS-M9018: Restricting cloud
metadata API access

Access host filesystem

MS-M9013: Restrict over permis-
sive containers
MS-M9016: Restrict File and Di-
rectory Permissions
MS-M9011: Restrict Container
runtime using LSM
MS-M9017: Ensure that pods meet
defined Pod Security Standards

Table 3.7: Discovery Tactic

Lateral Movement

The lateral movement tactic consists of techniques that are used by attackers
to move through the victim’s environment. In containerized environments, this
includes gaining access to various resources in the cluster from a given access
to one container, gaining access to the underlying node from a container, or
gaining access to the cloud environment.

Vı́ctor Mart́ınez Bevià 23

Securing Kubernetes
in Public Cloud Environments

Techniques Mitigations

Access cloud resources

MS-M9003: Adhere to least-
privilege principle
MS-M9018: Restrict the access of
pods to IMDS
MS-M9019: Allocate specific iden-
tities to pods
MS-M9013: Restrict over permis-
sive containers

Container service account
MS-M9025: Disable Service Ac-
count Auto Mount
MS-M9003: Adhere to least-
privilege principle

Cluster internal networking
MS-M9014: Network Segmentation
MS-M9005: Image Assurance Pol-
icy

Credentials in configuration files
MS-M9026: Avoid using plain text
credentials
MS-M9022: Use Managed Secret
Store

Writable hostPath mount

MS-M9013: Restrict over permis-
sive containers
MS-M9016: Restrict File and Di-
rectory Permissions
MS-M9011: Restrict Container
runtime using LSM
MS-M9017: Ensure that pods meet
defined Pod Security Standards

CoreDNS poisoning MS-M9003: Adhere to least-
privilege principle

Access host filesystem
MS-M9013: Restrict over permis-
sive containers
MS-M9028: Use CNIs that are not
prone to ARP poisoning

Table 3.8: Lateral Movement Tactic

Collection

Collection in Kubernetes consists of techniques that are used by attackers to
collect data from the cluster or through using the cluster.

Vı́ctor Mart́ınez Bevià 24

Securing Kubernetes
in Public Cloud Environments

Techniques Mitigations

Images from a private registry
MS-M9018: Restricting cloud
metadata API access
MS-M9003: Adhere to least-
privilege principle

Collecting data from pod
MS-M9003: Adhere to least-
privilege principle
MS-M9010: Restrict Exec Com-
mands on Pods

Table 3.9: Collection Tactic

Impact

The Impact tactic consists of techniques that are used by attackers to destroy,
abuse, or disrupt the normal behavior of the environment.

Techniques Mitigations

Data destruction
MS-M9030: Use Cloud Storage
Provider
MS-M9031: Implement Data
Backup Strategy

Resource hijacking
MS-M9011: Restrict Container
Runtime using LSM
MS-M9012: Remove Tools from
Container Images

Denial of service
MS-M9011: Restrict Container
Runtime using LSM
MS-M9002: Restrict access to the
API server using IP firewall
MS-M9029: Set requests and limits
for containers

Table 3.10: Impact Tactic

3.1.2 List of mitigations

As each mitigation can be applied to one or more tactics, the chosen approach
will be to review existing solutions for each mitigation regardless of the tactic
associated.

Vı́ctor Mart́ınez Bevià 25

Securing Kubernetes
in Public Cloud Environments

Multi-factor authentication

ID MITRE mitigation Description
MS-M9001 M1032 Using multi-factor authentication for ac-

counts can prevent unauthorized access
in case an adversary achieves access to
the account credentials. This can reduce
the risk in case an adversary achieved
valid credentials to an account that has
permissions to the Kubernetes cluster.

Multi-factor authentication is not possible only with plain Kubernetes, but
it can be accomplished by the use of a third-party element:

� Dex is “an identity service that uses OpenID Connect to drive authentica-
tion for other apps”[23]. It defers authentication via connectors to LDAP
servers, SAML providers, or established identity providers like GitHub,
Google, and Active Directory.

� Pinniped is VMware solution for providing identity services to Kubernetes([24])
as part of their VMware Tanzu project[25].

� When deploying in a cloud provider environment you can make use of
their existing authentication service, for example:

– Elastic Kubernetes Service (EKS) can make use of Amazon Web
Services (AWS) IAM[26]

– Google Kubernetes Engine (GKE) can make use of Google Cloud
Provider (GCP) Google OAuth[27]

– Azure Kubernetes Service (AKS) can make use of Azure Active Di-
rectory [28]

Restrict access to the API server using IP firewall

ID MITRE mitigation Description
MS-M9002 M1035 Restricting access to the API server can

prevent unwanted access to the clus-
ters management, even if the adversary
achieved valid credentials to the cluster.
In managed clusters, cloud providers of-
ten support native built-in firewall which
can restrict the IP addresses that are al-
lowed to access the API server.

Restricting access to the API server using IP firewall serves multiple scenar-
ios:

� The attacker can interact with the API server through a vulnerability

Vı́ctor Mart́ınez Bevià 26

Securing Kubernetes
in Public Cloud Environments

� The attacker has valid credentials

� The API server allows anonymous access

If the company manages its own networks, it can use its own firewalls. In
our case, as we work in a Cloud environment, the options are to firewall the
API via EC2 Security Groups or setting the cluster endpoint to private in the
case of AWS EKS.

Adhere to least-privilege principle

ID MITRE mitigation Description
MS-M9003 M1018 Configure the Kubernetes role-based ac-

cess controls (RBAC) for each user and
service accounts to have only necessary
permissions.

In order to reduce the impact of an attack, users should be given only the
necessary permissions. CIS Controls[9] section 5.1 RBAC and Service Accounts.
The controls are:

� 5.1.1: Ensure that the cluster-admin role is only used where required

� 5.1.2: Minimize access to secrets

� 5.1.3: Minimize wildcard use in Roles and ClusterRoles

� 5.1.4: Minimize access to create pods

� 5.1.5: Ensure that default service accounts are not actively used

� 5.1.6: Ensure that Service Account Tokens are only mounted where nec-
essary

The qualitative nature of some of these controls makes them difficult to
enforce beyond compliance reports. However, in situations where it is known
that certain scenarios will never happen, a third-party software like OPA Gate-
keeper can prevent the creation or modification of suspicious Role-Based Access
Control (RBAC) objects through the use of an appropriate Rego rule.

Vı́ctor Mart́ınez Bevià 27

Securing Kubernetes
in Public Cloud Environments

Secure CI/CD environment

ID MITRE mitigation Description
MS-M9004 - Security code repositories and CI/CD en-

vironment by placing gates to restrict
unauthorized access and modification of
content. This can include enforcing
RBAC permissions to access and make
changes to code, artifacts and build
pipelines, ensure governed process for
pull-request approval, apply branch poli-
cies and others.

Image assurance policy

ID MITRE mitigation Description
MS-M9005 M1016, M1045 Apply image assurance policy to evaluate

container images against vulnerabilities,
malware, exposed secrets or other poli-
cies.

There are several products on the market that scans your container images
(manually or automatically) but an open-source project like Trivy[29] can also
be used.

Gate generated images in CI/CD pipeline

ID MITRE mitigation Description
MS-M9005.001 M1016, M1045 Placing gates in the CI/CD pipeline

that can cancel or fail pipeline exe-
cution to block container images not
meeting content trust requirements.

Gate images pushed to registries

ID MITRE mitigation Description
MS-M9005.002 M1016, M1045 Placing gates in the container reg-

istry to prevent pushing or quaran-
tine images that does not meet the
content trust requirement.

Some container registries can support gates that will prevent pushing im-
ages, while others might quarantine images after they were already push to the
registry. Ensuring that gates exists at the registry level can help preventing
bypass of gates at the CI/CD pipelines level.

Vı́ctor Mart́ınez Bevià 28

Securing Kubernetes
in Public Cloud Environments

Gate images deployed to Kubernetes cluster

ID MITRE mitigation Description
MS-M9005.003 M1016, M1045 Gate deployment of images to Kuber-

netes cluster to prevent deploying im-
ages that does not meet the content
trust requirements.

This can include limiting images to be deployed only from trusted registries,
to have digital signature or pass vulnerability scanning and other checks. This
can prevent potential adversaries from using their own malicious images in the
cluster. Also, this ensures that only images that passed the security compliance
policies of the organization are deployed in the cluster. Kubernetes admission
controller mechanism is one of the commonly used tools for implementing such
policy, for example with OPA Gatekeeper[30].

Enable Just In Time access to API server

ID MITRE mitigation Description
MS-M9006 - Employing Just In Time (JIT) elevated

access to Kubernetes API server helps re-
duce the attack surface to the API server
by compromised accounts by allowing ac-
cess only at specific times, and through a
governed escalation process.

Enabling JIT access in Kubernetes is often done together with OpenID au-
thentication which includes processes and tools to manage JIT access. One ex-
ample of such OpenID authentication is Azure Active Directory authentication
to Kubernetes clusters. The JIT approval is performed in the cloud control-
plane level. Therefore, even if attackers have access to an account credentials,
their access to the cluster is limited.

Network intrusion prevention

ID MITRE mitigation Description
MS-M9007 M1031 Use intrusion detection signatures and

web application firewall to block traffic
at network boundaries to pods and ser-
vices in a Kubernetes cluster.

Adapting the network intrusion prevention solution to Kubernetes environ-
ment might be needed to route network traffic destined to services through it.
In some cases, this will be done by deploying a containerized version of a net-
work intrusion prevention solution to the Kubernetes cluster and be part of the
cluster network, and in some cases, routing ingress traffic to Kubernetes services
through an external appliance, requiring that all ingress traffic will only come
from such an appliance.

Vı́ctor Mart́ınez Bevià 29

Securing Kubernetes
in Public Cloud Environments

Two products that cover this mitigation, both based on the Extended Berke-
ley Packet Filter technology (eBPF[31]) observability, are:

� Falco[32] (detection only, automated response through Sysdig Secure)

� Tetragon[33] (detection and reaction to events such as process execution
events, system call activity and I/O activity)

Limit access to services over network

ID MITRE mitigation Description
MS-M9008 M1035 Avoid exposing sensitive interfaces inse-

curely to the Internet or limit access to it.
Sensitive interfaces includes management
tools and applications that allow creation
of new containers in the cluster.

Some of those services does not use authentication by default and are not
intended to be exposed. Examples of services that were exploited: Weave Scope,
Apache NiFi and more.

If services need to be exposed to the internet and are exposed using Load-
Balancer service, use IP restriction (loadBalancerSourceRanges) when possible.
This reduces the attack surface of the application and can prevent attackers
from being able to reach the sensitive interfaces.

Require strong authentication to services

ID MITRE mitigation Description
MS-M9009 - Use strong authentication when exposing

sensitive interfaces to the Internet.

For example, attacks were observed against exposed Kubeflow and Argo
workloads that were not configured to use OpenID Connect or other authenti-
cation methods.

Use strong authentication methods to the Kubernetes API that will prevent
attackers from gaining access to the cluster even if valid credentials such as
kubeconfig were achieved. For example, in AKS use AAD authentication instead
of basic authentication. By using AAD authentication, a short-lived credential
of the cluster is retrieved after authenticating to AAD.

Avoid using the read-only endpoint of Kubelet in port 10255, which doesn’t
require authentication. In newer version of managed clusters, this port is dis-
abled.

Vı́ctor Mart́ınez Bevià 30

Securing Kubernetes
in Public Cloud Environments

Restrict exec commands on pods

ID MITRE mitigation Description
MS-M9010 - Restrict running Kubenetes exec com-

mand on sensitive/production contain-
ers using admission controller. This can
prevent attackers from running malicious
code on containers in cases when he pod-
s/exec permission was obtained.

This can be controlled via RBAC and eBPF products like Tetragon.

Restrict container runtime using LSM

ID MITRE mitigation Description
MS-M9011 M1038, M1040 Restrict the running environment of the

containers using Linux security modules,
such as AppArmor, SELinux, Seccomp
and others. Linux security modules can
restrict access to files, running processes,
certain system calls and others. Also,
dropping unnecessary Linux capabilities
from the container runtime environment
helps reduce the attack surface of such
container.

An implementation for this mitigation would imply hardening the Kuber-
netes nodes, using a solution like Tetragon (LSM) and/or OPA Gatekeeper (pod
capabilities enforcing).

Remove tools from container images

ID MITRE mitigation Description
MS-M9012 M1042 Attackers often use built-in executables

to run their malicious code. Remov-
ing unused executables from the image
filesystem can prevent such activity.

Examples of executables that are commonly used in malicious activity in-
clude: sh, bash, curl, wget, chmod and more.

Vı́ctor Mart́ınez Bevià 31

Securing Kubernetes
in Public Cloud Environments

Restrict over permissive containers

ID MITRE mitigation Description
MS-M9013 M1038 Use admission controller to prevent de-

ploying containers with over-permissive
capabilities or configuration in the clus-
ter. This can include restricting privi-
leged containers, containers with sensi-
tive volumes, containers with excessive
capabilities, and other signs of over per-
missive containers.

Outside of promoting best practices within the organization, Kubernetes
admission controllers (for example OPA Gatekeeper) can be used to make sure
pods don’t run with excessive capabilities.

Network segmentation

ID MITRE mitigation Description
MS-M9014 M1030 Restrict inbound and outbound network

traffic of the pods in the cluster. This
includes inner-cluster communication as
well as ingress/egress traffic to/from the
cluster. Network Policies are a native
K8s solution for networking restrictions
in the cluster.

Service meshes and CNI plugins can help if there is a need for fine-grained
controls

Avoid running management interface on containers

ID MITRE mitigation Description
MS-M9015 M1042 Avoid running SSH daemon, as well

as other management interfaces, if they
aren’t necessary for the application’s
functionality.

Restrict file and directory permissions

ID MITRE mitigation Description
MS-M9016 M1022 When using hostPath volumes, set it to

“read-only” mode if possible. This pre-
vents the container from writing to files
in the underlying node and will harden an
escape from the container to the node.

Vı́ctor Mart́ınez Bevià 32

Securing Kubernetes
in Public Cloud Environments

Outside of promoting best practices within the organization, Kubernetes
admission controllers (for example OPA Gatekeeper) can be used to make sure
pods don’t run with excessive capabilities.

Ensure that pods meet defined Pod Security Standards

ID MITRE mitigation Description
MS-M9017 - The Pod Security Standards define

three different policies to broadly cover
the security spectrum. These policies
are cumulative and range from highly-
permissive to highly-restrictive.

Decoupling policy definition from policy instantiation allows for a common
understanding and consistent language of policies across clusters, independent
of the underlying enforcement mechanism. At the same time, Kubernetes offers
a built-in Pod Security admission controller to enforce the Pod Security Stan-
dards. Pod security restrictions are applied at the namespace level when pods
are created.

Restricting cloud metadata API access

ID MITRE mitigation Description
MS-M9018 M1035 Many cluster-to-cloud authentication

methods involve access to the node’s
metadata server. Restrict access to the
metadata server if it’s not necessary.

This can be done at the pod level by using networking restriction tools such
as network policies. Alternatively, cloud providers allow this functionality in
the node/cluster level.

Allocate specific identities to pods

ID MITRE mitigation Description
MS-M9019 - When needed, allocate dedicated cloud

identity per pod with minimal permis-
sions, instead of inheriting the node’s
cloud identity. This prevents other pods
from accessing cloud identities that are
not necessary for their operation.

The features that implement this separation are: Azure AD Pod Identity
(AKS), Azure AD Workload identity (AKS), IRSA (EKS) and GCP Workload
Identity (GCP).

Vı́ctor Mart́ınez Bevià 33

Securing Kubernetes
in Public Cloud Environments

Collect logs to remote data storage

ID MITRE mitigation Description
MS-M9020 M1029 Collect the Kubernetes and application

logs of pods to external data storage to
avoid tampering or deletion.

This can be achieved by various open-source tools such as Fluentd. Also,
built-in cloud solutions are available for managed clusters, such as Container
Insights and Log Analytics in AKS and Cloud Logging in GKE

Restrict the usage of unauthenticated APIs in the cluster

ID MITRE mitigation Description
MS-M9021 - Some unmanaged clusters are misconfig-

ured such as anonymous access is ac-
cepted by the Kubernetes API server.
Make sure that the Kubernetes API is
configured properly, and authentication
and authorization mechanisms are set.

This is managed by CIS control 4.2.1. Also mitigated by using a cloud
provider managed cluster.

Use managed secret store

ID MITRE mitigation Description
MS-M9022 M1029 Use cloud secret store, such as Azure Key

Vault, to securely store secrets that are
used by the workloads in the cluster.

This allows cloud-level management of the secret which includes permission
management, expiration management, secret rotation, auditing, etc. The inte-
gration of cloud secret stores with Kubernetes is done by using Secrets Store
CSI Driver, which is implemented by all major cloud providers.

Remove unused secrets from the cluster

ID MITRE mitigation Description
MS-M9023 - Remove unused secrets objects from the

cluster.

Restrict access to etcd

ID MITRE mitigation Description
MS-M9024 M1035 Access to etcd should be limited to the

Kubernetes control plane only.

Vı́ctor Mart́ınez Bevià 34

Securing Kubernetes
in Public Cloud Environments

Depending on your configuration, you should attempt to use etcd over TLS.
This mitigation is relevant only to non-managed Kubernetes environment, as
access to etcd in cloud managed clusters is already restricted.

Disable service account auto mount

ID MITRE mitigation Description
MS-M9025 - By default, a service account is mounted

to every pod. If the application doesn’t
require access to the Kubernetes API,
disable the service account auto-mount
by specifying automountServiceAccount-
Token: false in the pod configuration.

Outside of promoting best practices within the organization, Kubernetes
admission controllers (for example OPA Gatekeeper) can be used to make sure
pods don’t auto-mount a service account.

Avoid using plain text credentials

ID MITRE mitigation Description
MS-M9026 - Avoid using plain text credentials in con-

figuration files. Use Kubernetes secrets
or cloud secret store instead. This pre-
vents unwanted access to plaintext cre-
dentials in source code, configuration files
and Kubernetes objects.

There are several products on the market that scan your configuration files
(manually or automatically) but you can also use an open-source project like
Trivy[29].

Use NodeRestriction admission controller

ID MITRE mitigation Description
MS-M9027 - NodeRestriction admission controller

limits the permissions of kubelet and
allows it to modify only its own Node
object and only the pods that are
running on its own node.

This may limit attackers who have access to the Kubelet API from gaining
full control over the cluster.

Vı́ctor Mart́ınez Bevià 35

Securing Kubernetes
in Public Cloud Environments

Use CNIs that are not prone to ARP poisoning

ID MITRE mitigation Description
MS-M9028 - Kubernetes default CNI (Kubenet) is

prone to ARP poisoning. This allows
pods to impersonate other pods in the
cluster. Use alternative CNIs that are
not prone to ARP poisoning in the clus-
ter.

Use alternative CNIs that are not prone to ARP poisoning in the cluster.

Set requests and limits for containers

ID MITRE mitigation Description
MS-M9029 - Set requests and limits for each container

to avoid resource contention and DoS at-
tacks.

Outside of promoting best practices within the organization, Kubernetes
admission controllers (for example OPA Gatekeeper) can be used to make sure
requests and limits are defined.

Use cloud storage provider

ID MITRE mitigation Description
MS-M9030 - Use cloud storage services, such as Azure

Files, for storing the application’s data.

Kubernetes integrates with all main cloud provider storage services as stor-
age providers for pod volumes. This allows leveraging cloud storage capabilities
such as backup and snapshots.

Implement data backup strategy

ID MITRE mitigation Description
MS-M9031 - Take and store data backups from pod

mounted volumes for critical workloads.

Ensure backup and storage systems are hardened and kept separate from
the Kubernetes environment to prevent compromise.

Avoid using web-hosted manifest for Kubelet

ID MITRE mitigation Description
MS-M9032 - Kubelet can deploy static pods by using

manifests that are stored in web accessi-
ble locations.

Vı́ctor Mart́ınez Bevià 36

Securing Kubernetes
in Public Cloud Environments

If web-hosted manifest are not required, make sure that Kubelet does not
run with –manifest-url argument.

Vı́ctor Mart́ınez Bevià 37

Securing Kubernetes
in Public Cloud Environments

Chapter 4

Implementation

The focus of this thesis is on securing a deployed Kubernetes cluster in a public
cloud environment. As such, the study case will involve the security status
of a v1.24 Kubernetes cluster in the AWS cloud provider. Setting a specific
Kubernetes version enables us to align with existing benchmarks. The selection
of AWS as the cloud provider is driven by the same rationale and serves only
to provide specific implementations.

4.1 Case Study

The company we are going to establish as our starting point is a small company
of about thirty employees. The product they develop is a social marketplace
in which train-modeling enthusiasts buy and sell models and tools of the craft.
The software is only available in web form, with no mobile applications. Lately,
they have been having good reception and they are looking to expand, wich will
imply growing the number of developers working in the company, and for sure
atracting more attention as the popularity grows. Management, which until
now did not pay too much attention to their security posture, is beginning to
worry about security and regulations and have asked the team about possible
avenues to improve cybersecurity.

The Kubernetes cluster is deployed in AWS on top of EC2 virtual machines,
and its API is accessible to the internet. Developers interact directly from their
computers with their tools of choice (kubectl, k9s, OpenLens), and they are given
the option of working in the office or remotely. Developers are still handed the
admin credentials to the cluster, a practice put in place when the company was
small and everyone knew each other well. The end users only access a webpage
which is the frontend for the whole system, comprised of tens of microservices.
They host their code in Github and build and push their software via a Jenkins
instance deployed outside the Kubernetes cluster.

Vı́ctor Mart́ınez Bevià 38

Securing Kubernetes
in Public Cloud Environments

4.1.1 Establishing Priorities

Our attack vectors are defined by our attack surface, which means that our
priority will always be to reduce the surface rather than react to potential
attacks. Once we can’t reduce the attack surface anymore, we will then focus
on mitigating the remaining threat vectors.

To this end, we can follow the next flowchart:

Evaluate threats

Can we reduce
attack surface?

Mitigate
Can we still
mitigate?

no

yes

yes

no

Figure 4.1: Priority evaluation

When is it not possible to mitigate?

Every action has a cost, whether it is a direct expense such as the price of a
tool, or an indirect one such as the time spent by an employee, so ultimately
it is up to the company’s discretion to decide which mitigations to implement.
In the context of this work, we will consider the proposed implementations as
recommendations, since it is beyond the scope to economically compare their
cost against a budget.

Vı́ctor Mart́ınez Bevià 39

Securing Kubernetes
in Public Cloud Environments

4.2 Domains of application

To be able to prioritize the work to be done, we have to know the level of
expertise they require and the effort they need. To this end the goal of this
section is to go over implementations to give coverage to the Microsoft Threat
Matrix for Kubernetes. Once we have the information about the tasks to be
done, we will be able to prioritize.

We identify three actionable domains at which to implement mitigations:

� Kubernetes configurations: This cover all configurations available for
a vanilla Kubernetes cluster.

� Cloud Provider configuration: Configurations made at the cloud provider
level. This includes installing software in the cluster that integrates with
the provider services

� Third-party software: External software which when installed in the
cluster, provides functionality

The following table shows the domains in which they can be applied:

Vı́ctor Mart́ınez Bevià 40

Securing Kubernetes
in Public Cloud Environments

Mitigation Domain
Multi-factor authentication Cloud Provider
Restrict access to the API server us-
ing IP firewall

Cloud Provider

Adhere to least-privilege principle Kubernetes configuration
Image assurance policy Third-party software
Gate images deployed to Kubernetes
cluster

Third-party software

Enable Just In Time access to API
server

Cloud Provider, Third-party soft-
ware

Network intrusion prevention Third-party software
Limit access to services over network Cloud Provider
Restrict exec commands on pods Kubernetes configuration, Third-

party software
Restrict container runtime using
LSM

Third-party software

Restrict over permissive containers Third-party software
Network segmentation Cloud Provider
Restrict file and directory permis-
sions

Third-party software

Ensure that pods meet defined Pod
Security Standard

Third-party software

Restricting cloud metadata API ac-
cess

Cloud Provider

Allocate specific identities to pods Cloud Provider
Collect logs to remote data storage Cloud Provider
Restrict the usage of unauthenti-
cated APIs in the cluster

Cloud Provider

Vı́ctor Mart́ınez Bevià 41

Securing Kubernetes
in Public Cloud Environments

Mitigation Domain
Use managed secret store Cloud Provider
Remove unused secrets from the clus-
ter

Third-party software

Restrict access to etcd Cloud Provider, Kubernetes configu-
ration

Disable service account auto mount Third-party software
Use NodeRestriction admission con-
troller

Kubernetes configuration

Use CNIs that are not prone to ARP
poisoning

Third-party software

Set requests and limits for containers Third-Party software
Use cloud storage provider Cloud provider
Implement data backup strategy Cloud provider
Avoid using web-hosted manifest for
Kubelet

Kubernetes configuration

It is worth noting that certain measures to secure a Kubernetes cluster in a
cloud environment are beyond the scope of this thesis fall out of scope due to
being part of the development process or CI/CD. These mitigations are:

� Secure CI/CD environment

� Gate generated images in CI/CD pipeline

� Gate images pushed to registries

� Remove tools from container images

� Avoid running management interface on containers

� Avoid using plain text credentials

� Require strong authentication to services

The following sections are the mitigations implementation for each domain.
Please note that they are not the only way to be implemented. Instead, each
mitigation has been chosen with the following goals in mind:

� Open source availability

� The value they bring in a effort/benefit scale

� Extendibility of the implementations

Vı́ctor Mart́ınez Bevià 42

Securing Kubernetes
in Public Cloud Environments

4.2.1 Kubernetes configuration

Adhere to least-privilege principle

“The RBAC API declares four kinds of Kubernetes object: Role, Cluster-
Role, RoleBinding and ClusterRoleBinding”[34]. By creating Roles or Clus-
terRoleswith only the necessary permissions and binding them to accounts,
least-privileged access can be provided.

Restrict exec commands on pods

The Kubernetes resource that controls if exec commands on pods are allowed is
“pods/exec”. Following the least-privilege principle, make sure that permissions
to this resource are not granted if is not necessary.

Use NodeRestriction admission controller

“The NodeRestriction admission plugin prevents kubelets from deleting their
Node API object, and enforces kubelet modification of labels under the kuber-
netes.io/ or k8s.io/ ”[35].

Avoid using web-hosted manifest for Kubelet

EKS provides a way to configure the Kubernetes Kubelet[36] via the config file
Custom Resource Definition (CRD)[37]. When deploying this CRD, make sure
that in the nodeGroups.kubeletExtraConfig key there is no manifestUrl key set
up. An example of a configuration could be as follows:

apiVersion: eksctl.io/v1alpha5
kind: ClusterConfig

metadata:
name: dev−cluster−1
region: eu−north−1

nodeGroups:
- name: ng−1
instanceType: m5a.xlarge
desiredCapacity: 1
kubeletExtraConfig:

kubeReserved:
cpu: "300m"
memory: "300Mi"
ephemeral−storage: "1Gi"

kubeReservedCgroup: "/kube−reserved"
systemReserved:

cpu: "300m"
memory: "300Mi"
ephemeral−storage: "1Gi"

evictionHard:
memory.available: "200Mi"
nodefs.available: "10%"

Vı́ctor Mart́ınez Bevià 43

Securing Kubernetes
in Public Cloud Environments

featureGates:
RotateKubeletServerCertificate: true # has to be enabled,

otherwise it will be disabled

Listing 4.1: EKS Kubelet configuration

4.2.2 Cloud Provider configuration

Multi-factor authentication

In order to prevent unauthorized access in case an adversary achieves access
to account credentials, one option is to use Multi-factor authentication. As
in our case we are running inside Amazon Web Services, we can make use of
Multi-Factor Authentication (MFA) for IAM [38]. The users that connect to the
cluster should have the option enabled and use the supported mechanisms:

� FIDO security key[39]

� Virtual MFA devices[40]

� Hardware TOTP tokens[41]

Note that the mechanisms are not exclusive and it is recommended to enable
multiple MFA devices. Once the users have the necessary authentication settings
enabled, we can then apply the IAM roles that will let them connect to the
Kubernetes cluster.

Restrict access to the API server using IP firewall

Amazon EKS cluster endpoint access control lets you enable private access and
limit, or completely disable, public access from the internet[42]. Effectively, this
lets you choose from the following possibilities:

� Public access enabled, Private access disabled

– This is the default behavior for new Amazon EKS clusters

– Kubernetes API requests that originate from within your cluster’s
VPC (such as node to control plane communication) leave the VPC
but not Amazon’s network.

– Your cluster API server is accessible from the internet. You can,
optionally, limit the CIDR blocks that can access the public endpoint.
If you limit access to specific CIDR blocks, then it is recommended
that you also enable the private endpoint, or ensure that the CIDR
blocks that you specify include the addresses that nodes and Fargate
Pods (if you use them) access the public endpoint from.

� Public access enabled, Private access enabled

Vı́ctor Mart́ınez Bevià 44

Securing Kubernetes
in Public Cloud Environments

– Kubernetes API requests within your cluster’s VPC (such as node to
control plane communication) use the private VPC endpoint.

– Your cluster API server is accessible from the internet. You can,
optionally, limit the CIDR blocks that can access the public endpoint.

� Public access disabled, Private access enabled

– All traffic to your cluster API server must come from within your
cluster’s VPC or a connected network.

– There is no public access to your API server from the internet. Any
kubectl commands must come from within the VPC or a connected
network.

– The cluster’s API server endpoint is resolved by public DNS servers
to a private IP address from the VPC.

While it is true that with public access enabled we can limit the CIDR
blocks that can access the public endpoint, ideally the cluster endpoint should
be private, and the users that need access should be accessing the cluster via a
bastion host inside the VPC or via a network that is connected with an AWS
transit gateway or other connectivity option. With this in mind, the endpoint
can be configured with the following command:

aws eks update−cluster−config \
−−region region−code \
−−name my−cluster \
−−resources−vpc−config endpointPublicAccess=false,

endpointPrivateAccess=true

Listing 4.2: Amazon EKS cluster endpoint access control

Enable Just In Time access to API server

Adhering to the least-privilege principle, users should not have more permis-
sions that they wouldn’t need in their day-to-day work. There are cases though
where a user needs elevated permissions, for example during an incident where
no administrators are present or available. In this case, a break-glass mech-
anism can be set up that grants elevated permissions temporarily. Amazon
Web Services provides a sample architecture for this case in a GitHub repos-
itory called aws-iam-temporary-elevated-access-broker [43] in their aws-samples
organization. The solution consists of:

� A web application (“app UI”) that runs in the browser, known as a Single
Page Application (SPA)

� A CloudFront distribution to serve static content

� Server-side APIs hosted by Amazon API Gateway and AWS Lambda

Vı́ctor Mart́ınez Bevià 45

Securing Kubernetes
in Public Cloud Environments

� A DynamoDB table to track the status of temporary elevated access re-
quests

The architecture is as follows:

Figure 4.2: A minimal reference implementation for temporary elevated access

Limit access to services over network

In an unexposed Kubernetes cluster running in AWS you can expose your ser-
vices via an AWS Network Load Balancer[44]. For this you have to create a
Kubernetes Service of type LoadBalancer and specify the appropriate annota-
tions to configure it. An example for an internet facing service is as follows:

apiVersion: v1
kind: Service
metadata:
name: nlb−sample−service
namespace: nlb−sample−app
annotations:
service.beta.kubernetes.io/aws−load−balancer−type: external
service.beta.kubernetes.io/aws−load−balancer−nlb−target−type: ip
service.beta.kubernetes.io/aws−load−balancer−scheme: internet−facing

spec:

Vı́ctor Mart́ınez Bevià 46

Securing Kubernetes
in Public Cloud Environments

ports:
- port: 80
targetPort: 80
protocol: TCP

type: LoadBalancer
selector:
app: nginx

Listing 4.3: Internet facing service via Network Load Balancer

The annotations you can specify cover multiple areas, among them:

� Traffic Routing

� Traffic Listening

� Resource attributes

� Access control

The Kubernetes SIGS group maintains extensive documentation about these
annotations[45].

Restricting cloud metadata API access

The EC2 Instance Metadata Service (IMDS) is accessible to all EC2 instances by
default. This service provides useful introspection facilities, such as determining
a node’s availability zone, instance ID, and so forth. In addition, IMDS provides
access to IAM credentials that allow applications to assume the instance’s IAM
role.

One way to block pod IMDS access is to require IMDS version 2 (IMDSv2)
to be used, and to set the maximum hop count to 1. Configuring IMDS this
way will cause requests to IMDS from pods to be rejected, provided those pods
do not use host networking.[46]

Another way to block pod IMDS is through the use of network policies to
ensure pods are unable to reach the Instance Metadata Service. To do this,
configure your network policy to block egress traffic to 169.254.0.0/16. As
per the Kubernetes Network Policy model, Cilium policies follow the whitelist
model[47]. When a policy is enabled for a pod, all ingress and egress traffic
are denied by default unless the policy specification allows specific traffic. As a
result, inter-namespace communication will be denied by default and we need
policy specifications to whitelist traffic within a namespace and legitimate traffic
in and out of a namespace. To avoid accessing IMDS, leave out 169.254.0.0/16
in the egress whitelist:

apiVersion: "cilium.io/v2"
kind: CiliumNetworkPolicy
metadata:
name: "cidr−rule"

spec:
endpointSelector:

Vı́ctor Mart́ınez Bevià 47

Securing Kubernetes
in Public Cloud Environments

matchLabels:
app: myService

egress:
- toCIDR:
- 20.1.1.1/32

- toCIDRSet:
- cidr: 10.0.0.0/8
except:
- 10.96.0.0/12

Listing 4.4: Cilium Network Policy

Allocate specific identities to pods

With IAM Roles for Service Accounts (IRSA) allows you to assign an IAM Role
to a Kubernetes service account[48]. It works by leveraging a Kubernetes feature
known as Service Account Token Volume Projection. When Pods are configured
with a Service Account that references an IAM Role, the Kubernetes API server
will call the public OIDC discovery endpoint for the cluster on startup. The
endpoint cryptographically signs the OIDC token issued by Kubernetes and the
resulting token mounted as a volume. This signed token allows the Pod to
call the AWS APIs associated IAM role. When an AWS API is invoked, the
AWS SDKs calls sts:AssumeRoleWithWebIdentity. After validating the token’s
signature, IAM exchanges the Kubernetes issued token for a temporary AWS
role credential.

To associate an existing IAM role to a Kubernetes Service Account, annotate
the object with the eks.amazonaws.com/role-arn key[49]:

kubectl annotate serviceaccount −n $namespace $service account eks.
amazonaws.com/role−arn=arn:aws:iam::$account id:role/my−role

Listing 4.5: Assign IAM role to service account

Restrict access to etcd

This mitigation is relevant only to non-managed Kubernetes environment, as
access to etcd in cloud managed clusters is already restricted.

Restrict the usage of unauthenticated APIs in the cluster

By using AWS EKS this mitigation is already implemented as EKS requires all
API requests to be authenticated[42].

Use cloud storage provider and Implement data backup
strategy

“The Amazon Elastic Block Store (Amazon EBS) Container Storage Interface
(CSI) driver allows Amazon Elastic Kubernetes Service (Amazon EKS) clusters

Vı́ctor Mart́ınez Bevià 48

Securing Kubernetes
in Public Cloud Environments

to manage the lifecycle of Amazon EBS volumes for persistent volumes”[52].
The EBS CSI driver requires an IAM role with a special policy to function. To
create the role:

eksctl create iamserviceaccount \
−−name ebs−csi−controller−sa \
−−namespace kube−system \
−−cluster my−cluster \
−−attach−policy−arn arn:aws:iam::aws:policy/service−role/

AmazonEBSCSIDriverPolicy \
−−approve \
−−role−only \
−−role−name AmazonEKS EBS CSI DriverRole

Listing 4.6: IAM role creation

After that create the policy and attach it to the role:

aws iam create−policy \
−−policy−name KMS Key For Encryption On EBS Policy \
−−policy−document file://kms−key−for−encryption−on−ebs.json

Listing 4.7: IAM policy creation

aws iam attach−role−policy \
−−policy−arn arn:aws:iam::111122223333:policy/

KMS Key For Encryption On EBS Policy \
−−role−name AmazonEKS EBS CSI DriverRole

Listing 4.8: IAM policy attachment

Then the CSI driver can be installed via eksctl by executing:

eksctl create addon \
−−name aws−ebs−csi−driver \
−−cluster mycluster \
−−service−account−role−arn arn:aws:iam::[ID]:role/

AmazonEKS EBS CSI DriverRole \
−−force

Listing 4.9: EBS CSI driver addon installation

While it is ideal that every application manage their backup procedures, once
we are using the AWS EBS CSI, snapshots of the mounted volumes for critical
workloads can be scheduled. If the volume wasn’t encrypted, the snapshot
process can encrypt it on the fly, increasing its protection[53].

Collect logs to remote data storage

Control plane logging can be enabled by executing[54]:

aws eks update−cluster−config \
−−region region−code \
−−name my−cluster \
−−logging ’{"clusterLogging":[{"types":["api","audit","authenticator

","controllerManager","scheduler"],"enabled":true}]}’

Vı́ctor Mart́ınez Bevià 49

Securing Kubernetes
in Public Cloud Environments

Listing 4.10: Amazon EKS control plane logging

AWS also provides a solution that sends workload logs to CloudWatch[55]
via Fluent Bit[56].

Use managed secret store

Despite their name, secrets in a vanilla Kubernetes cluster are just base64-
encoded strings. To improve the security of our secrets, which can hold sensitive
data, we can integrate the AWS Secret Manager to show secrets and parameters
from Parameter Store as files mounted in the Amazon EKS Pods. For this, we
can use the AWS Secrets and Configuration Provider (ASCP) for the Kubernetes
Secrets Store Container Storage Interface (CSI) Driver[50].

To describe which files to create in the Amazon EKS pod and which secrets to
put in them, you create a SecretProviderClass YAML file. The SecretProvider-
Class must be in the same namespace as the Amazon EKS pod it references.
If you use Secrets Manager automatic rotation for your secrets, you can also
use the Secrets Store CSI Driver rotation reconciler feature to ensure you are
retrieving the latest secret from Secrets Manager. Once the ASCP is installed
and configured[51] you can mount key/values from a secret like so:

apiVersion: secrets−store.csi.x−k8s.io/v1
kind: SecretProviderClass
metadata:
name: aws−secrets

spec:
provider: aws
parameters:
objects: |
- objectName: "arn:aws:secretsmanager:us−east−2:111122223333:secret

:MySecret−a1b2c3"
jmesPath:

- path: username
objectAlias: dbusername

- path: password
objectAlias: dbpassword

Listing 4.11: Mount a secret from Secret Manager store

4.2.3 Third-party software

Trivy

Image assurance policy

Trivy[57] is a well-established security scanner that can be used to scan:

� Container Images

� Filesystems

Vı́ctor Mart́ınez Bevià 50

Securing Kubernetes
in Public Cloud Environments

� Git Repositories (remote)

� Virtual Machine Images

� Kubernetes

� AWS

It is an open-source project maintained by AquaSecurity that is usually executed
proactively be it manually or as part of a CI/CD pipeline. Its scanners modules
can find:

� OS packages and software dependencies in use (SBOM)

� Known vulnerabilities (CVEs)

� IaC issues and misconfigurations

� Sensitive information and secrets

� Software licenses

In May 2022, Aqua announced the Trivy Kubernetes operator[59]. Following
the Kubernetes controller [58] pattern, it automatically supdates security reports
in response to workload and other changes on a Kubernetes cluster, generating
the following reports:

� Vulnerability Scans: Automated vulnerability scanning for Kubernetes
workloads

� ConfigAudit Scans: Automated configuration audits for Kubernetes re-
sources with predefined rules or custom Open Policy Agent (OPA) policies

� Exposed Secret Scans: Automated secret scans which find and detail the
location of exposed Secrets within your cluster

� RBAC scans: Role Based Access Control scans provide detailed informa-
tion on the access rights of the different resources installed

� K8s core component infra assessment scan Kubernetes infra core com-
ponents (etcd,apiserver,scheduler,controller-manager and etc) setting and
configuration

� Compliance reports

Vı́ctor Mart́ınez Bevià 51

Securing Kubernetes
in Public Cloud Environments

Figure 4.3: Trivy operator overview

Aqua posits that the Trivy Kubernetes operator, coupled with the Trivy cli
tool lets them give full coverage on the development lifecycle.

Figure 4.4: Trivy security scanning at different phases of your development
lifecycle

Vı́ctor Mart́ınez Bevià 52

Securing Kubernetes
in Public Cloud Environments

While the development and test stages of the lifecycle are out of scope in this
thesis, the fact that there is an operator tailored for Kubernetes clusters helps
us to continuously assure the vulnerabilities of the images actually running in
the cluster. The reports are stored as CRDs, but also have integrations with
Prometheus metrics, OpenLens, webhooks, or Policy Reporter[60]. A report
CRD looks as the following:

apiVersion: aquasecurity.github.io/v1alpha1
kind: VulnerabilityReport
metadata:
name: replicaset−nginx−6d4cf56db6−nginx
namespace: default
labels:
trivy−operator.container.name: nginx
trivy−operator.resource.kind: ReplicaSet
trivy−operator.resource.name: nginx−6d4cf56db6
trivy−operator.resource.namespace: default
resource−spec−hash: 7cb64cb677

uid: 8aa1a7cb−a319−4b93−850d−5a67827dfbbf
ownerReferences:
- apiVersion: apps/v1
blockOwnerDeletion: false
controller: true
kind: ReplicaSet
name: nginx−6d4cf56db6
uid: aa345200−cf24−443a−8f11−ddb438ff8659

report:
artifact:
repository: library/nginx
tag: ’1.16’

registry:
server: index.docker.io

scanner:
name: Trivy
vendor: Aqua Security
version: 0.30.0

summary:
criticalCount: 2
highCount: 0
lowCount: 0
mediumCount: 0
unknownCount: 0

vulnerabilities:
- fixedVersion: 0.9.1−2+deb10u1
installedVersion: 0.9.1−2
links: []
primaryLink: ’https://avd.aquasec.com/nvd/cve−2019−20367’
resource: libbsd0
score: 9.1
severity: CRITICAL
target: library/nginx:1.21.6
title: ’’
vulnerabilityID: CVE−2019−20367

- fixedVersion: ’’
installedVersion: 0.6.1−2
links: []

Vı́ctor Mart́ınez Bevià 53

Securing Kubernetes
in Public Cloud Environments

primaryLink: ’https://avd.aquasec.com/nvd/cve−2018−25009’
resource: libwebp6
score: 9.1
severity: CRITICAL
target: library/nginx:1.16
title: ’libwebp: out−of−bounds read in WebPMuxCreateInternal’
vulnerabilityID: CVE−2018−25009

Listing 4.12: Trivy Operator Report

Open Policy Agent Gatekeeper

Figure 4.5: Open Policy Agent

Open Policy Agent (OPA) was created by Styra and a graduated project in the
Cloud Native Computing Foundation (CNCF). It provides a high-level declar-
ative language that lets you specify policy as code and simple PIS to offload
policy decision-making from your software[61]. The language used to define
the policies is called Rego[63] which extends Datalog[64] to support structured
document models such as JSON. Rego queries are assertions on data stored in
OPA. These queries can be used to define policies that enumerate instances of
data that violate the expected state of the system.

OPA Gatekeeper is a Kubernetes Open Policy Agent implementation. Ku-
bernetes allows decoupling policy decisions from the inner workings of the API
Server by means of admission controller webhooks, which are executed whenever
a resource is created, updated or deleted.

Vı́ctor Mart́ınez Bevià 54

Securing Kubernetes
in Public Cloud Environments

Figure 4.6: Kubernetes Admission Controller Phases[65]

Due to its integration with the Kubernetes admission controller webhooks,
meaning it can interrupt and action before it is executed, Gatekeeper introduces
the following functionality:

� An extensible, parameterized policy library

� Native Kubernetes CRDs for instantiating the policy library (aka ”con-
straints”)

� Native Kubernetes CRDs for extending the policy library (aka ”constraint
templates”)

� Native Kubernetes CRDs for mutation support

� Audit functionality

� External data support

The way to enforce policies with OPA Gatekeeper is via two objects: Con-
straint Templates and Constraints. ConstraintTemplate objects describe the
Rego that enforces the constraint and the schema of the constraint. The Con

straint objects are used to inform Gatekeeper that the admin wants a Con

straintTemplate to be enforced and how[66]. As an example, this is how a
constraint to enforce that objects have the “gatekeeper” Kubernetes label:

apiVersion: templates.gatekeeper.sh/v1
kind: ConstraintTemplate
metadata:
name: k8srequiredlabels

spec:
crd:
spec:
names:
kind: K8sRequiredLabels

validation:
Schema for the ‘parameters‘ field

Vı́ctor Mart́ınez Bevià 55

Securing Kubernetes
in Public Cloud Environments

openAPIV3Schema:
type: object
properties:
labels:
type: array
items:
type: string

targets:
- target: admission.k8s.gatekeeper.sh
rego: |
package k8srequiredlabels

violation[{"msg": msg, "details": {"missing labels": missing}}] {
provided := {label |input.review.object.metadata.labels[label]}
required := {label |label := input.parameters.labels[]}
missing := required - provided
count(missing) >0
msg := sprintf("you must provide labels: %v", [missing])

}

Listing 4.13: K8s Required Labels Constraint Template

apiVersion: constraints.gatekeeper.sh/v1beta1
kind: K8sRequiredLabels
metadata:
name: ns−must−have−gk

spec:
match:
kinds:
- apiGroups: [""]
kinds: ["Namespace"]

parameters:
labels: ["gatekeeper"]

Listing 4.14: K8s Required Labels Constraint

To find more examples of constraints the project maintains a Gatekeeper
Library with use cases[67]. For the sake of clarity, only the Constraint objects
will be specified for the following cases to show how and where should be applied.
The ConstraintTemplate objects can be consulted in Annex A.

Gate images deployed to Kubernetes cluster

To accept only container images that begin with a string from a specified list:

apiVersion: constraints.gatekeeper.sh/v1beta1
kind: K8sAllowedRepos
metadata:
name: repo−is−openpolicyagent

spec:
match:
kinds:
- apiGroups: [""]
kinds: ["Pod"]

namespaces:
- "default"

Vı́ctor Mart́ınez Bevià 56

Securing Kubernetes
in Public Cloud Environments

parameters:
repos:
- "openpolicyagent/"

Listing 4.15: Repository constraints

Restrict exec commands on pods

To restrict exec commands from an interactive session, the operation to listen
to is CONNECT for the resources pods/exec and pods/attach:

apiVersion: constraints.gatekeeper.sh/v1beta1
kind: K8sDenyPodConnect
metadata:
name: k8sdenypodconnect

spec:
match:
kinds:
- apiGroups: [""]
kinds: ["pods/exec","pods/attach"]

rules:
- operations: ["CONNECT"]

EOF

Listing 4.16: Restrict exec commands constraint

Restrict over permissive containers

To control over permissive containers, we have to look to the allowedCapabili

ties and requiredDropCapabilities fields:

apiVersion: constraints.gatekeeper.sh/v1beta1
kind: K8sPSPCapabilities
metadata:
name: capabilities−demo

spec:
match:
kinds:
- apiGroups: [""]
kinds: ["Pod"]

namespaces:
- "default"

parameters:
allowedCapabilities: ["something"]
requiredDropCapabilities: ["must drop"]

Listing 4.17: Over permissive containers constraint

Restrict file and directory permissions

To control the usage of the host filesystem, the field to look at is allowedHost

Paths:

Vı́ctor Mart́ınez Bevià 57

Securing Kubernetes
in Public Cloud Environments

apiVersion: constraints.gatekeeper.sh/v1beta1
kind: K8sPSPHostFilesystem
metadata:
name: psp−host−filesystem

spec:
match:
kinds:
- apiGroups: [""]
kinds: ["Pod"]

parameters:
allowedHostPaths:
- readOnly: true
pathPrefix: "/foo"

Listing 4.18: File and directory permissions constraint

Ensure that pods meet defined Pod Security Standard

This constraint will specify to the ConstraintTemplate in which namespace to
block containers with the privileged field:

apiVersion: constraints.gatekeeper.sh/v1beta1
kind: K8sPSPPrivilegedContainer
metadata:
name: psp−privileged−container

spec:
match:
kinds:
- apiGroups: [""]
kinds: ["Pod"]

excludedNamespaces: ["kube−system"]

Listing 4.19: Pod Security Standard constraint

Disable service account auto mount

Controls in which namespace to block pods with automountServiceAccountToken

Pod enabled:

apiVersion: constraints.gatekeeper.sh/v1beta1
kind: K8sPSPAutomountServiceAccountTokenPod
metadata:
name: psp−automount−serviceaccount−token−pod

spec:
match:
kinds:
- apiGroups: [""]
kinds: ["Pod"]

excluded namespaces: ["kube−system"]

Listing 4.20: Automount constraint

Vı́ctor Mart́ınez Bevià 58

Securing Kubernetes
in Public Cloud Environments

Set requests and limits for containers

The following constraint specifies that all pods need to have defined requests

and limits for CPU and memory resources:

apiVersion: constraints.gatekeeper.sh/v1beta1
kind: K8sRequiredResources
metadata:
name: container−must−have−limits−and−requests

spec:
match:
kinds:
- apiGroups: [""]
kinds: ["Pod"]

parameters:
limits:
- cpu
- memory

requests:
- cpu
- memory

Listing 4.21: Container Resources constraint

Cilium and Tetragon

Figure 4.7: Cilium

Cilium provides network connectivity between applications deployed using Linux
container management platforms like Docker and Kubernetes. At its core is
the Linux kernel technology called eBPF, or extended Berkely Packet Filter,
which enables the dynamic insertion of programming logic into the Linux kernel.
Cilium is available as a commercially supported Kubernetes CNI plugin that
can be used as an alternative to the AWS VPC CNI plugin on an Amazon EKS
cluster.

Cilium functionality include[68]:

� Protect and secure APIs transparently: Traditional Kubernetes con-
tainer network interfaces’ firewall operate at Layer 3 and 4 of the Open
Systesm Interconnection (OSI) model, but Cilium can also work at Layer
7 thus being able to filter network traffic at the application level

Vı́ctor Mart́ınez Bevià 59

Securing Kubernetes
in Public Cloud Environments

� Secure service to service communication based on identities: Cil-
ium assigns a security identity to groups of application containers which
share identical security policies. The identity is then associated with all
network packets emitted by the application containers, allowing to vali-
date the identity at the receiving node. Security identity management is
performed using a key-value store

� Secure access to and from external services: Label based security
is the tool of choice for cluster internal access control. In order to secure
access to and from external services, traditional CIDR based security poli-
cies for both ingress and egress are supported. This allows to limit access
to and from application containers to particular IP ranges

� Simple Networking: A simple flat Layer 3 network with the ability to
span multiple clusters connects all application containers. IP allocation
is kept simple by using host scope allocators. This means that each host
can allocate IPs without any coordination between hosts.

� Load Balancing: Cilium implements distributed load balancing for traf-
fic between application containers and to external services and is able to
fully replace components such as kube-proxy. The load balancing is imple-
mented in eBPF using efficient hashtables allowing for almost unlimited
scale.

� Bandwith Management: Cilium implements bandwidth management
through efficient EDT-based (Earliest Departure Time) rate-limiting with
eBPF for container traffic that is egressing a node. This allows to sig-
nificantly reduce transmission tail latencies for applications and to avoid
locking under multi-queue NICs compared to traditional approaches such
as HTB (Hierarchy Token Bucket) or TBF (Token Bucket Filter) as used
in the bandwidth CNI plugin, for example.

Working with Cilium enables covering the following mitigations:

Use CNIs that are not prone to ARP poisoning

LB IPAM is a feature that allows Cilium to assign IP addresses to Services of
type LoadBalancer. This functionality is usually left up to a cloud provider,
however, when deploying in a private cloud environment, these facilities are not
always available.

LB IPAM works in conjunction with features like the Cilium BGP Control
Plane. Where LB IPAM is responsible for the allocation and assigning of IPs
to Service objects and other features are responsible for load balancing and/or
advertisement of these IPs.

How does Cilium help with ARP poisoning? If the source IP wasn’t pro-
vided by Cilium’s IPAM subsystem, we know it’s a spoofed IP address and
Cilium automatically blocks the traffic. Built-in Layer 3 Protection and IP
Spoof Prevention are just some of the ways that Cilium automatically protects
against common network attacks.

Vı́ctor Mart́ınez Bevià 60

Securing Kubernetes
in Public Cloud Environments

Network intrusion prevention

Cilium is both able to observe and enforce what behaviour happened inside of a
Linux system. It can collect and filter out Security Observability data directly
in the kernel and export it to user space as JSON events and / or store them in
a specific log file via a Daemonset called hubble-enterprise. These JSON events
are enriched with Kubernetes Identity Aware Information including services,
labels, namespaces, pods and containers and with OS Level Process Visibility
data including process binaries, pids, uids, parent binaries with the full Process
Ancestry Tree. These events can then be exported in a variety of formats and
sent to external systems such as a SIEM, e.g: Elasticsearch, Splunk or stored in
an S3 bucket. For simplicity, in this blog post they will be directly consumed
from the log file.

In the Isovalent blog the following use case is provided[69], where an at-
tacker plans to use a privileged pod to try an reach the host namespace via a
container escape. For this case we are not concerned right know how the break-
out is performed, as there are multiple ways, but we want to detect that it has
happened.

Figure 4.8: Container breakout

Cilium is capable to export the process exec events in a JSON format, to be
able to parse them easily. In the case of a breakout to the host from a privileged
container called privileged-the-pod, we could see the following log where we

Vı́ctor Mart́ınez Bevià 61

Securing Kubernetes
in Public Cloud Environments

can detect a container running in privileged mode(full logs can be inspected in
Annex B) :

"process exec":{
"process":{

"exec id":"bWluaWt1YmU6MTEzNzkyNjAzMjk3MjoxNzk3OA==",
"pid":17978,
"uid":0,
"cwd":"/",
"binary":"/docker−entrypoint.sh",
"arguments":"/docker−entrypoint.sh nginx −g \"daemon off;\"",
"flags":"execve rootcwd clone",
"start time":"2021−10−13T12:58:31.794Z",
"auid":4294967295,
"pod":{

"namespace":"default",
"name":"privileged−the−pod",
"container":{

"id":"docker://32865
cff8fef4a9274e9fa1d80bf48eb80d28b94e273d6d1670a6f721a9a1158
",

"name":"privileged−the−pod",
"image":{

"id":"docker−pullable://nginxsha256:644
a70516a26004c97d0d85c7fe1d0c3a67ea8ab7ddf4aff193d9f301670cf36
",

"name":"nginx:latest"
},
"start time":"2021−10−13T12:58:31Z"

}
},
[...]
"cap":{

"permitted":[
"CAP CHOWN",
"DAC OVERRIDE",
"CAP DAC READ SEARCH",
"CAP FOWNER",
"CAP FSETID",
"CAP KILL",
"CAP SETGID",
"CAP SETUID",
"CAP SETPCAP",
"CAP LINUX IMMUTABLE",
"CAP NET BIND SERVICE",
"CAP NET BROADCAST",
"CAP NET ADMIN",
"CAP NET RAW",
"CAP IPC LOCK",
"CAP IPC OWNER",
"CAP SYS MODULE",
"CAP SYS RAWIO",
"CAP SYS CHROOT",
"CAP SYS PTRACE",
"CAP SYS PACCT",
"CAP SYS ADMIN",
"CAP SYS BOOT",

Vı́ctor Mart́ınez Bevià 62

Securing Kubernetes
in Public Cloud Environments

"CAP SYS NICE",
"CAP SYS RESOURCE",
"CAP SYS TIME",
"CAP SYS TTY CONFIG",
"CAP MKNOD",
"CAP LEASE",
"CAP AUDIT WRITE",
"CAP AUDIT CONTROL",
"CAP SETFCAP",
"CAP MAC OVERRIDE",
"CAP MAC ADMIN",
"CAP SYSLOG",
"CAP WAKE ALARM",
"CAP BLOCK SUSPEND",
"CAP AUDIT READ"

],

Listing 4.22: Privileged container running

As a second step, the attacker can use kubectl exec to get shell access to
privileged-the-pod:

"process exec":{
"process":{

"exec id":"bWluaWt1YmU6MTI5NDM3OTU0NzQ3ODoxOTU5NA==",
"pid":19594,
"uid":0,
"cwd":"/",
"binary":"/bin/bash",
"flags":"execve rootcwd clone",
"start time":"2021−10−13T13:01:08.248Z",
"auid":4294967295,
"pod":{

"namespace":"default",
"name":"privileged−the−pod",
"container":{

"id":"docker://32865
cff8fef4a9274e9fa1d80bf48eb80d28b94e273d6d1670a6f721a9a1158
",

"name":"privileged−the−pod",
"image":{

"id":"docker−pullable://nginxsha256:644
a70516a26004c97d0d85c7fe1d0c3a67ea8ab7ddf4aff193d9f301670cf36
",

"name":"nginx:latest"
},
"start time":"2021−10−13T12:58:31Z"

}
},

Listing 4.23: Container executing a shell

Finally the attacker enters the host via nsenter command:

"process exec":{
"process":{

"exec id":"bWluaWt1YmU6MTYyNzIwMjkzMjkyMToyMzc0Ng==",
"pid":23746,

Vı́ctor Mart́ınez Bevià 63

Securing Kubernetes
in Public Cloud Environments

"uid":0,
"cwd":"/",
"binary":"/usr/bin/nsenter",
"arguments":"−t 1 −a bash",
"flags":"execve rootcwd clone",
"start time":"2021−10−13T13:06:41.071Z",
"auid":4294967295,
"pod":{

"namespace":"default",
"name":"privileged−the−pod",
"container":{

"id":"docker://32865
cff8fef4a9274e9fa1d80bf48eb80d28b94e273d6d1670a6f721a9a1158
",

"name":"privileged−the−pod",
"image":{

"id":"docker−pullable://nginxsha256:644
a70516a26004c97d0d85c7fe1d0c3a67ea8ab7ddf4aff193d9f301670cf36
",

"name":"nginx:latest"
},
"start time":"2021−10−13T12:58:31Z"

}
},

Listing 4.24: Container entering host via nsenter command

The above example shows that with Cilium we can export the necessary
events to be aware of attacker intrussions and act accordingly.

Restrict container runtime using LSM

While the mitigation specifically calls out for LSM, in reality there are several
options to restrict container runtime[70]:

� Application/system level

– App Instrumentation

– LD PRELOAD

– ptrace(2)

� Kernel level

– Secure computing mode (seccomp)

– SELinux/LSM

– Kernel Module

– Tetragon + eBPF

This is a complex subject that merits its own chapter but unfortunately it
falls out of scope of this Thesis, so in reality the choice of using Tetragon and
eBPF answers to three key benefits:

Vı́ctor Mart́ınez Bevià 64

Securing Kubernetes
in Public Cloud Environments

� Application transparency: the developers do not have to worry about
including any type of instrumentation

� Extendibility: while having the benefits of working at a kernel level,
custom modules can be developed without the security and availability
risks

� Synchronous enforcement: via Cilium tracing policies, actions can be
defined to react to events

The first step to react to an event is to be aware of it via a Cilium Tracing
Policy. A policy allows users to trace arbitrary events in the kernel and option-
ally define actions to take on a match for enforcement. At the moment of this
writing, the actions available for Tetragon are:

� Sigkill action

� Signal action

� Override action

� FollowFD action

� UnfollowFD action

� CopyFD action

� GetUrl action

� DnsLookup action

� Post action

� NoPost action

In the following example, we can see how we can prevent writing to /etc/

passwd with a Sigkill action:

apiVersion: cilium.io/v1alpha1
kind: TracingPolicy
metadata:
name: "syswritefollowfdpsswd"

spec:
kprobes:
- call: "fd install"
syscall: false
args:
- index: 0
type: int

- index: 1
type: "file"

selectors:
- matchPIDs:
- operator: NotIn
followForks: true

Vı́ctor Mart́ınez Bevià 65

Securing Kubernetes
in Public Cloud Environments

isNamespacePID: true
values:
- 0
- 1

matchArgs:
- index: 1
operator: "Equal"
values:
- "/etc/passwd"

matchActions:
- action: FollowFD
argFd: 0
argName: 1

- call: "sys close"
syscall: true
args:
- index: 0
type: "int"

selectors:
- matchPIDs:
- operator: NotIn
followForks: true
isNamespacePID: true
values:
- 0
- 1

matchActions:
- action: UnfollowFD
argFd: 0
argName: 0

- call: "sys write"
syscall: true
args:
- index: 0
type: "fd"

- index: 1
type: "char buf"
sizeArgIndex: 3

- index: 2
type: "size t"

selectors:
- matchPIDs:
- operator: NotIn
followForks: true
isNamespacePID: true
values:
- 0
- 1

matchArgs:
- index: 0
operator: "Prefix"
values:
- "/etc/passwd"

matchActions:
- action: Sigkill

Listing 4.25: Prevent writing to /etc/passwd

Vı́ctor Mart́ınez Bevià 66

Securing Kubernetes
in Public Cloud Environments

As there is no “one fits all” solution in terms of defending assets. Each case
should be studied, prioritized, and then protected via a tracing policy with an
action attached. Annex C contains a few Cilium Tracing Policies that can be
found in the Tetragon repository[71].

Custom solutions

Remove unused secrets from the cluster

There are few solutions that offer an approach to this problem, and fewer are
open-source. Identifying unused secrets within a cluster can be challenging since
Kubernetes secrets do not retain information about their usage. This means that
to get the list of secrets we have to rely on comparing the list of existing secrets
with references in Kubernetes objects. Secrets can be referenced in:

� Ingresses TLS secrets

� Pods spec:

– Environment secrets

– Volumes secrets

– ImagePullSecrets

� Custom Resource definitions

We could generate the list of secrets in these resources and compare it with
the list of existing secrets:

envSecrets=$(kubectl get pods −o jsonpath=’{.items[*].spec.containers
[*].env[*].valueFrom.secretKeyRef.name}’ | xargs −n1)

envSecrets2=$(kubectl get pods −o jsonpath=’{.items[*].spec.containers
[*].envFrom[*].secretRef.name}’ | xargs −n1)

volumeSecrets=$(kubectl get pods −o jsonpath=’{.items[*].spec.volumes
[*].secret.secretName}’ | xargs −n1)

pullSecrets=$(kubectl get pods −o jsonpath=’{.items[*].spec.
imagePullSecrets[*].name}’ | xargs −n1)

tlsSecrets=$(kubectl get ingress −o jsonpath=’{.items[*].spec.tls[*].
secretName}’ | xargs −n1)

diff \
<(echo "$envSecrets\n$envSecrets2\n$volumeSecrets\n$pullSecrets\

n$tlsSecrets" | sort | uniq) \
<(kubectl get secrets −o jsonpath=’{.items[*].metadata.name}’ | xargs −

n1 | sort | uniq)

Listing 4.26: Getting and Deleting Orphaned Secrets with Kubectl[72]

There are other implementations out there (for example in Go[73], without
taking into account the TLS certificates in the ingresses), but this approach
leaves out the CRD objects, as their structure is not standard, so depending
on the CRDs deployed in the cluster the script should be modified to take into
account possible secret references, as we could potentially delete a secret in use

Vı́ctor Mart́ınez Bevià 67

Securing Kubernetes
in Public Cloud Environments

otherwise. This means that at the moment, the way Kubernetes Secrets work,
the only way to detect unused secrets is to parse every object in the cluster for
secret references. And again, this would mean having prior knowledge of every
custom object deployed in our cluster.

Vı́ctor Mart́ınez Bevià 68

Securing Kubernetes
in Public Cloud Environments

Chapter 5

Conclussions and further
work

5.1 Plan of action

As stated in the previous chapter the first priority should be to reduce the
attack surface and for that the first step would be to Limit access to services
over network so that the only point exposed to the internet is the webpage that
the users interact with. After that, the Kubernetes API should be firewalled.
For this the recomendation is to migrate to EKS with the cluster endpoint set
to private access instead of using a manually deployed Kubernetes cluster in
EC2 virtual machines. The change to EKS will also automatically cover the
following mitigations:

� Restrict access to etcd

� Restrict the usage of unauthenticated APIs in the cluster

� Collect logs to remote data storage

When creating the new cluster, Cilium should be configured as the CNI to use,
which will open the door to other mitigations later on. But while the change is
being made, AWS provides a way to limit access to the Kubernetes API residing
in the EC2 virtual machines via Security Groups.

Following that, the recommendation would be to work on user permissions
and implement mitigations as Adhere to least-privilege principle, Restrict exec
commands on pods (via RBAC permissions) and Multi-factor authentication.

The next step should be improving the observability of our cluster, and for
that the Trivy Operator will give reports of vulnerabilities of the images con-
tainers running in the cluster as well as potential Kubernetes misconfigurations.

After that, it depends on the technical level of the cluster administrators,
as using OPA and Tetragon without technical know-how would be the same as
applying best practices from a Hardening Guide or Kubernetes benchmark. It

Vı́ctor Mart́ınez Bevià 69

Securing Kubernetes
in Public Cloud Environments

won’t hurt to have some controls in place, but they could not really make sense
for the current scenario and result in time badly spent. Kubernetes training
for the employees administrating the cluster is highly recommended as an in-
vestment to be able to apply the controls that make sense. Once the desired
technical level is achieved, OPA Gatekeeper can help enforce policies, and Cil-
ium and Tetragon can help with Network intrusion prevention and real-time
reaction via eBPF hooks.

Once all those mitigations are implemented, the team can focus on other
fields like defense in depth with protections such as Use NodeRestriction admis-
sion controller, Allocate specific identities to pods and Use managed secret store.
Also, quality of life features like Enable Just In Time access to API server, Use
cloud storage provider and Implement data backup strategy and Remove unused
secrets from the cluster.

5.2 Next steps

By no means this Master’s Thesis goal was to provide an exhaustive, definitive,
one-shot protection guide. The main objective has been to create a stepping
stone for each attack vector on which to begin to protect a Kubernetes cluster
in a Cloud environment. The solutions here presented are to be considered as a
work-in-progress from which to iterate, giving value from the first moment, and
growing from there as the technical know-how of the employees improves.

There are entire fields that have not been broached for not aligning exactly
with one of the mitigations defined by Microsoft in its threat matrix, but that
does not mean they are not important. From separating workloads with network
policies, to being able to handle denial of service attacks, to legal requirements,
to supply chain concerns or more in-depth protection against insider threats,
there is always a way to improve your security posture. Moreover, as technology
advances new threats arise, so it is equally important to keep track of the current
cybersecurity threats. Ultimately, cybersecurity boils down to a constant race
against the ever-evolving advancements made by threat actors, given the rapidly
changing nature of the field.

Vı́ctor Mart́ınez Bevià 70

Securing Kubernetes
in Public Cloud Environments

List of Figures

2.1 RedHat: “In the past 12 months, what security incidents or issues
related to containers and/or Kubernetes have you experienced?
(pick as many as apply)[4]” . 9

2.2 Palo Alto: “Top 5 Security Incidents [6]” 9
2.3 Snyk: “Serious cloud security incidents experienced[5]” 10
2.4 CompTIA: “Cybersecurity Incidents from Past Year[3]” 10

4.1 Priority evaluation . 39
4.2 A minimal reference implementation for temporary elevated access 46
4.3 Trivy operator overview . 52
4.4 Trivy security scanning at different phases of your development

lifecycle . 52
4.5 Open Policy Agent . 54
4.6 Kubernetes Admission Controller Phases[65] 55
4.7 Cilium . 59
4.8 Container breakout . 61

Vı́ctor Mart́ınez Bevià 71

Securing Kubernetes
in Public Cloud Environments

List of Tables

2.1 Microsoft Threat Matrix for Kubernetes (expanded) 14

3.1 Initial Access Tactic . 17
3.2 Execution Tactic . 18
3.3 Persistence Tactic . 19
3.4 Privilege Escalation Tactic . 20
3.5 Defense Evasion Tactic . 21
3.6 Credential Access Tactic . 22
3.7 Discovery Tactic . 23
3.8 Lateral Movement Tactic . 24
3.9 Collection Tactic . 25
3.10 Impact Tactic . 25

Vı́ctor Mart́ınez Bevià 72

Securing Kubernetes
in Public Cloud Environments

Listings

4.1 EKS Kubelet configuration . 43
4.2 Amazon EKS cluster endpoint access control 45
4.3 Internet facing service via Network Load Balancer 46
4.4 Cilium Network Policy . 47
4.5 Assign IAM role to service account 48
4.6 IAM role creation . 49
4.7 IAM policy creation . 49
4.8 IAM policy attachment . 49
4.9 EBS CSI driver addon installation 49
4.10 Amazon EKS control plane logging 49
4.11 Mount a secret from Secret Manager store 50
4.12 Trivy Operator Report . 53
4.13 K8s Required Labels Constraint Template 55
4.14 K8s Required Labels Constraint 56
4.15 Repository constraints . 56
4.16 Restrict exec commands constraint 57
4.17 Over permissive containers constraint 57
4.18 File and directory permissions constraint 58
4.19 Pod Security Standard constraint 58
4.20 Automount constraint . 58
4.21 Container Resources constraint 59
4.22 Privileged container running . 62
4.23 Container executing a shell . 63
4.24 Container entering host via nsenter command 63
4.25 Prevent writing to /etc/passwd 65
4.26 Getting and Deleting Orphaned Secrets with Kubectl[72] 67
A.1 Gate images deployed to Kubernetes cluster 81
A.2 Restrict exec command constraint template 82
A.3 Restrict over permissive containers constraint template 83
A.4 Restrict file and directory permissions Constraint Template . . . 86
A.5 Pods meet defined Pod Security Standard Constraint Template . 89
A.6 Disable automount Service Account Token 90
A.7 Requests constraint template . 92
A.8 Limits constraint template . 97
B.1 Detect privileged container . 103

Vı́ctor Mart́ınez Bevià 73

Securing Kubernetes
in Public Cloud Environments

B.2 Container executing a shell . 107
B.3 Container entering host via nsenter command 111
C.1 Trigger Canary via DnsLookup action 118
C.2 Override return value of command via Override action 119
C.3 Trace TCP calls for specific CIDR blocks 119

Vı́ctor Mart́ınez Bevià 74

Securing Kubernetes
in Public Cloud Environments

Bibliography

[1] 2022 Official Cybercrime Report. eSentire. Retrieved on the 11th
of March, 2023. https://www.esentire.com/resources/library/

2022-official-cybercrime-report#:~:text=According%20to%

20Cybersecurity%20Ventures%2C%20the%20global%20annual%20cost,

is%20expected%20to%20reach%20%2410.5%20trillion%20by%202025.

[2] The Global Risks Report 2022. World Economic Forum. Retrieved on the
10th of March, 2023 https://www3.weforum.org/docs/WEF_The_Global_
Risks_Report_2022.pdf

[3] State of cybersecurity 2022. CompTIA. Retrieved on the 9th
of March, 2023 https://www.comptia.org/content/research/

cybersecurity-trends-research

[4] 2022 state of Kubernetes security report. RedHat. Retrieved on
the 9th of March, 2023. https://www.redhat.com/en/resources/

state-kubernetes-security-report

[5] The State of Cloud Security Report 2022. Snyk. Retrieved on the 13th of
March, 2023. https://snyk.io/reports/state-of-cloud-security/

[6] The State of Cloud-Native Security 2023 Report. Palo Alto Networks. Re-
trieved on the 13th of March, 2023. https://www.paloaltonetworks.com/
state-of-cloud-native-security

[7] The state of Kubernetes {Open-Source} Security. Armo. Re-
trieved on the 12th of March, 2023. https://landing.armosec.io/

state-of-kubernetes-open-source-security-2022

[8] Gartner® Report: Top Trends in Cybersecurity 2022. Retrieved on
the 10th of March, 2023 https://www.gartner.com/doc/reprints?id=

1-29OTFFPI&ct=220411&st=sb

[9] Center for Internet Security. Kubernetes Benchmark https://www.

cisecurity.org/benchmark/kubernetes

[10] National Security Agency. Kubernetes Hardening Guide https:

//media.defense.gov/2022/Aug/29/2003066362/-1/-1/0/CTR_

KUBERNETES_HARDENING_GUIDANCE_1.2_20220829.PDF

Vı́ctor Mart́ınez Bevià 75

https://www.esentire.com/resources/library/2022-official-cybercrime-report#:~:text=According%20to%20Cybersecurity%20Ventures%2C%20the%20global%20annual%20cost,is%20expected%20to%20reach%20%2410.5%20trillion%20by%202025.
https://www.esentire.com/resources/library/2022-official-cybercrime-report#:~:text=According%20to%20Cybersecurity%20Ventures%2C%20the%20global%20annual%20cost,is%20expected%20to%20reach%20%2410.5%20trillion%20by%202025.
https://www.esentire.com/resources/library/2022-official-cybercrime-report#:~:text=According%20to%20Cybersecurity%20Ventures%2C%20the%20global%20annual%20cost,is%20expected%20to%20reach%20%2410.5%20trillion%20by%202025.
https://www.esentire.com/resources/library/2022-official-cybercrime-report#:~:text=According%20to%20Cybersecurity%20Ventures%2C%20the%20global%20annual%20cost,is%20expected%20to%20reach%20%2410.5%20trillion%20by%202025.
https://www3.weforum.org/docs/WEF_The_Global_Risks_Report_2022.pdf
https://www3.weforum.org/docs/WEF_The_Global_Risks_Report_2022.pdf
https://www.comptia.org/content/research/cybersecurity-trends-research
https://www.comptia.org/content/research/cybersecurity-trends-research
https://www.redhat.com/en/resources/state-kubernetes-security-report
https://www.redhat.com/en/resources/state-kubernetes-security-report
https://snyk.io/reports/state-of-cloud-security/
https://www.paloaltonetworks.com/state-of-cloud-native-security
https://www.paloaltonetworks.com/state-of-cloud-native-security
https://landing.armosec.io/state-of-kubernetes-open-source-security-2022
https://landing.armosec.io/state-of-kubernetes-open-source-security-2022
https://www.gartner.com/doc/reprints?id=1-29OTFFPI&ct=220411&st=sb
https://www.gartner.com/doc/reprints?id=1-29OTFFPI&ct=220411&st=sb
https://www.cisecurity.org/benchmark/kubernetes
https://www.cisecurity.org/benchmark/kubernetes
https://media.defense.gov/2022/Aug/29/2003066362/-1/-1/0/CTR_KUBERNETES_HARDENING_GUIDANCE_1.2_20220829.PDF
https://media.defense.gov/2022/Aug/29/2003066362/-1/-1/0/CTR_KUBERNETES_HARDENING_GUIDANCE_1.2_20220829.PDF
https://media.defense.gov/2022/Aug/29/2003066362/-1/-1/0/CTR_KUBERNETES_HARDENING_GUIDANCE_1.2_20220829.PDF

Securing Kubernetes
in Public Cloud Environments

[11] Defense Information Systems Agency. Kubernetes Security Implementation
Guide https://public.cyber.mil/stigs/downloads/

[12] Amazon Web Services: EKS Best Practices Guide for Security.
Retrieved on the 21st of March, 2023 https://aws.github.io/

aws-eks-best-practices/security/docs/

[13] Google Cloud Platform: Harden your cluster’s security. Retrieved on the
27th of March, 2023 https://cloud.google.com/kubernetes-engine/

docs/how-to/hardening-your-cluster

[14] Azure Cloud: Best practices for cluster security and upgrades
in Azure Kubernetes Service (AKS). Retrieved on the 27th of
March, 2023 https://learn.microsoft.com/en-us/azure/aks/

operator-best-practices-cluster-security?tabs=azure-cli

[15] Too much to Choose - Making Sense of a Smorgasboard of Security Stan-
dard. Anais Urlichs & Rory McCune. https://www.youtube.com/watch?
v=yKqqCxvlDeE

[16] Sig-Security K8s Threat Model. Retrieved on the 12th of March,
2023. https://github.com/cncf/financial-user-group/tree/main/

projects/k8s-threat-model

[17] Threat matrix for Kubernetes. Retrieved on the 13th of March,
2023 https://www.microsoft.com/en-us/security/blog/2020/04/02/

attack-matrix-kubernetes/

[18] Secure containerized environments with updated threat ma-
trix for Kubernetes. Retrieved on the 13th of March, 2023
https://www.microsoft.com/en-us/security/blog/2021/03/23/

secure-containerized-environments-with-updated-threat-matrix-for-kubernetes/

[19] Microsoft Threat Matrix for Kubernetes. Retrieved on
the 12th of March, 2023. https://microsoft.github.io/

Threat-Matrix-for-Kubernetes/

[20] MITRE ATT&CK Matrix for Entreprise. Retrieved on the 22nd of March,
2023. https://attack.mitre.org/

[21] Martin, Andrew. Hausenblas, Michael. Hacking Kubernetes. O’Reilly Me-
dia, Inc. October 2021.

[22] Salazar, Jed. Reka Ivanko, Natalia. Security Observability with eBPF.
O’Reilly Media, Inc. 2022

[23] DEX. Retrieved on the 4th of April, 2023 https://dexidp.io/

[24] Pinniped. Retrieved on the 4th of April, 2023 https://pinniped.dev/

Vı́ctor Mart́ınez Bevià 76

https://public.cyber.mil/stigs/downloads/
https://aws.github.io/aws-eks-best-practices/security/docs/
https://aws.github.io/aws-eks-best-practices/security/docs/
https://cloud.google.com/kubernetes-engine/docs/how-to/hardening-your-cluster
https://cloud.google.com/kubernetes-engine/docs/how-to/hardening-your-cluster
https://learn.microsoft.com/en-us/azure/aks/operator-best-practices-cluster-security?tabs=azure-cli
https://learn.microsoft.com/en-us/azure/aks/operator-best-practices-cluster-security?tabs=azure-cli
https://www.youtube.com/watch?v=yKqqCxvlDeE
https://www.youtube.com/watch?v=yKqqCxvlDeE
https://github.com/cncf/financial-user-group/tree/main/projects/k8s-threat-model
https://github.com/cncf/financial-user-group/tree/main/projects/k8s-threat-model
https://www.microsoft.com/en-us/security/blog/2020/04/02/attack-matrix-kubernetes/
https://www.microsoft.com/en-us/security/blog/2020/04/02/attack-matrix-kubernetes/
https://www.microsoft.com/en-us/security/blog/2021/03/23/secure-containerized-environments-with-updated-threat-matrix-for-kubernetes/
https://www.microsoft.com/en-us/security/blog/2021/03/23/secure-containerized-environments-with-updated-threat-matrix-for-kubernetes/
https://microsoft.github.io/Threat-Matrix-for-Kubernetes/
https://microsoft.github.io/Threat-Matrix-for-Kubernetes/
https://attack.mitre.org/
https://dexidp.io/
https://pinniped.dev/

Securing Kubernetes
in Public Cloud Environments

[25] VMware Tanzu. Retrieved on the 4th of April, 2023 https://tanzu.

vmware.com/tanzu

[26] Cluster authentication. Amazon Elastic Kubernetes Services. Retrieved
on the 4th of April, 2023 https://docs.aws.amazon.com/eks/latest/

userguide/cluster-auth.html

[27] Authenticating to the Kubernetes API server. Google Kubernetes En-
gine. Retrieved on the 4th of April, 2023 https://cloud.google.com/

kubernetes-engine/docs/how-to/api-server-authentication

[28] Access and identity options for Azure Kubernetes Service. Retrieved
on the 4th of April, 2023 https://learn.microsoft.com/en-us/azure/

aks/concepts-identity

[29] The all-in-one open source security scanner. Retrieved on the 5th of April,
2023 https://trivy.dev/

[30] Open Policy Agent Gatekeeper. Retrieved on the 5th of April, 2023 https:
//github.com/open-policy-agent/gatekeeper

[31] eBPF Foundation. Retrieved on the 20th of May, 2023 https://ebpf.

foundation/

[32] Falco, open source standard for runtime security for hosts, containers,
Kubernetes and the cloud. Retrieved on the 5th of April, 2023 https:

//falco.org/

[33] Tetragon, eBPF-based Security and Runtime Enforcement. Retrieved on
the 5th of April, 2023 https://github.com/cilium/tetragon

[34] Using RBAC Authorization. Retrieved on the 17th of April, 2023 https:

//kubernetes.io/docs/reference/access-authn-authz/rbac/

[35] NodeRestriction Admission Controller. Retrieved on the 17th of April,
2023 https://kubernetes.io/docs/reference/access-authn-authz/

admission-controllers/#noderestriction

[36] Customizing kubelet configuration. Retrieved on the 10th of May, 2023
https://eksctl.io/usage/customizing-the-kubelet/

[37] Eksctl Config file schema. Retrieved on the 10th of May, 2023 https:

//eksctl.io/usage/schema/

[38] Multi-Factor Authentication (MFA) for IAM. Retrieved on the 12th of
May, 2023 https://aws.amazon.com/es/iam/features/mfa/

[39] Enabling a FIDO security key (console). Retrieved on the 12th of
May, 2023 https://docs.aws.amazon.com/IAM/latest/UserGuide/id_

credentials_mfa_enable_fido.html

Vı́ctor Mart́ınez Bevià 77

https://tanzu.vmware.com/tanzu
https://tanzu.vmware.com/tanzu
https://docs.aws.amazon.com/eks/latest/userguide/cluster-auth.html
https://docs.aws.amazon.com/eks/latest/userguide/cluster-auth.html
https://cloud.google.com/kubernetes-engine/docs/how-to/api-server-authentication
https://cloud.google.com/kubernetes-engine/docs/how-to/api-server-authentication
https://learn.microsoft.com/en-us/azure/aks/concepts-identity
https://learn.microsoft.com/en-us/azure/aks/concepts-identity
https://trivy.dev/
https://github.com/open-policy-agent/gatekeeper
https://github.com/open-policy-agent/gatekeeper
https://ebpf.foundation/
https://ebpf.foundation/
https://falco.org/
https://falco.org/
https://github.com/cilium/tetragon
https://kubernetes.io/docs/reference/access-authn-authz/rbac/
https://kubernetes.io/docs/reference/access-authn-authz/rbac/
https://kubernetes.io/docs/reference/access-authn-authz/admission-controllers/#noderestriction
https://kubernetes.io/docs/reference/access-authn-authz/admission-controllers/#noderestriction
https://eksctl.io/usage/customizing-the-kubelet/
https://eksctl.io/usage/schema/
https://eksctl.io/usage/schema/
https://aws.amazon.com/es/iam/features/mfa/
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_enable_fido.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_enable_fido.html

Securing Kubernetes
in Public Cloud Environments

[40] Enabling a virtual multi-factor authentication (MFA) device (console). Re-
trieved on the 12th of May, 2023 https://docs.aws.amazon.com/IAM/

latest/UserGuide/id_credentials_mfa_enable_virtual.html

[41] Enabling a hardware TOTP token (console). Retrieved on the 12th of
May, 2023 https://docs.aws.amazon.com/IAM/latest/UserGuide/id_

credentials_mfa_enable_physical.html

[42] Amazon EKS cluster endpoint access control. Retrieved on the 25th
of April, 2023 https://docs.aws.amazon.com/eks/latest/userguide/

cluster-endpoint.html

[43] A minimal reference implementation for temporary elevated access. Re-
trieved on the 12th of May, 2023 https://github.com/aws-samples/

aws-iam-temporary-elevated-access-broker

[44] Network load balancing on Amazon EKS. Retrieved on the 14th
of May, 2023 https://docs.aws.amazon.com/eks/latest/userguide/

network-load-balancing.html

[45] AWS Network Load Balancer annotations. Retrieved on the
14th of May, 2023 https://kubernetes-sigs.github.io/

aws-load-balancer-controller/v2.2/guide/service/annotations

[46] Restrict the use of host networking and block access to in-
stance metadata service. Retrieved on the 15th of May,
2023 https://docs.aws.amazon.com/whitepapers/latest/

security-practices-multi-tenant-saas-applications-eks/

restrict-the-use-of-host-networking-and-block-access-to-instance-metadata-service.

html

[47] Cilium Layer 3 Network Policies. Retrieved on the 15th of May, 2023
https://docs.cilium.io/en/latest/security/policy/language/

[48] IAM Roles for Service Accounts (IRSA). Retrieved on the
18th of May, 2023 https://aws.github.io/aws-eks-best-practices/

security/docs/iam/#iam-roles-for-service-accounts-irsa

[49] Configuring a Kubernetes service account to assume an IAM role. Retrieved
on the 18th of May, 2023 https://docs.aws.amazon.com/eks/latest/

userguide/associate-service-account-role.html

[50] Using AWS Secrets Manager secrets with Kubernetes. Retrieved on
the 18th of May, 2023 https://docs.aws.amazon.com/eks/latest/

userguide/manage-secrets.html

[51] Use AWS Secrets Manager secrets in Amazon Elastic Kubernetes Ser-
vice. Retrieved on the 18th of May, 2023 https://docs.aws.amazon.com/
secretsmanager/latest/userguide/integrating_csi_driver.html

Vı́ctor Mart́ınez Bevià 78

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_enable_virtual.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_enable_virtual.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_enable_physical.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_enable_physical.html
https://docs.aws.amazon.com/eks/latest/userguide/cluster-endpoint.html
https://docs.aws.amazon.com/eks/latest/userguide/cluster-endpoint.html
https://github.com/aws-samples/aws-iam-temporary-elevated-access-broker
https://github.com/aws-samples/aws-iam-temporary-elevated-access-broker
https://docs.aws.amazon.com/eks/latest/userguide/network-load-balancing.html
https://docs.aws.amazon.com/eks/latest/userguide/network-load-balancing.html
https://kubernetes-sigs.github.io/aws-load-balancer-controller/v2.2/guide/service/annotations
https://kubernetes-sigs.github.io/aws-load-balancer-controller/v2.2/guide/service/annotations
https://docs.aws.amazon.com/whitepapers/latest/security-practices-multi-tenant-saas-applications-eks/restrict-the-use-of-host-networking-and-block-access-to-instance-metadata-service.html
https://docs.aws.amazon.com/whitepapers/latest/security-practices-multi-tenant-saas-applications-eks/restrict-the-use-of-host-networking-and-block-access-to-instance-metadata-service.html
https://docs.aws.amazon.com/whitepapers/latest/security-practices-multi-tenant-saas-applications-eks/restrict-the-use-of-host-networking-and-block-access-to-instance-metadata-service.html
https://docs.aws.amazon.com/whitepapers/latest/security-practices-multi-tenant-saas-applications-eks/restrict-the-use-of-host-networking-and-block-access-to-instance-metadata-service.html
https://docs.cilium.io/en/latest/security/policy/language/
https://aws.github.io/aws-eks-best-practices/security/docs/iam/#iam-roles-for-service-accounts-irsa
https://aws.github.io/aws-eks-best-practices/security/docs/iam/#iam-roles-for-service-accounts-irsa
https://docs.aws.amazon.com/eks/latest/userguide/associate-service-account-role.html
https://docs.aws.amazon.com/eks/latest/userguide/associate-service-account-role.html
https://docs.aws.amazon.com/eks/latest/userguide/manage-secrets.html
https://docs.aws.amazon.com/eks/latest/userguide/manage-secrets.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/integrating_csi_driver.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/integrating_csi_driver.html

Securing Kubernetes
in Public Cloud Environments

[52] Amazon EBS CSI driver. Retrieved on the 2nd of May, 2023 https://

docs.aws.amazon.com/eks/latest/userguide/ebs-csi.html

[53] Amazon EBS snapshots. Retrieved on the 2nd of May, 2023 https://

docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSSnapshots.html

[54] Amazon EKS control plane logging. Retrieved on the 3rd of
May, 2023 https://docs.aws.amazon.com/eks/latest/userguide/

control-plane-logs.html

[55] What is Amazon CloudWatch?. Retrieved on the 3rd of May,
2023 https://docs.aws.amazon.com/AmazonCloudWatch/latest/

monitoring/WhatIsCloudWatch.html

[56] Quick Start setup for Container Insights on Amazon EKS
and Kubernetes. Retrieved on the 3rd of May, 2023 https:

//docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/

Container-Insights-setup-EKS-quickstart.html

[57] Trivy GitHub repository. Retrieved on the 5th of May, 2023 https://

github.com/aquasecurity/trivy

[58] Kubernetes controllers. Retrieved on the 5th of May, 2023 https://

kubernetes.io/docs/concepts/architecture/controller/

[59] Trivy Operator GitHub repository. Retrieved on the 5th of May, 2023
https://github.com/aquasecurity/trivy-operator

[60] Trivy Policy Reporter integration. Retrieved on the 5th of
May, 2023 https://aquasecurity.github.io/trivy-operator/v0.14.

0/tutorials/integrations/policy-reporter/

[61] Open Policy Agent. Retrieved on the 8th of May, 2023 https://www.

openpolicyagent.org/docs/latest/

[62] Open Policy Agent Gatekeeper. Retrieved on the 8th of May, 2023 https:

//open-policy-agent.github.io/gatekeeper/website/docs/

[63] Rego language. Retrieved on the 8th of May, 2023 https://www.

openpolicyagent.org/docs/latest/policy-language/

[64] Datalog language. Retrieved on the 8th of May, 2023 https://en.

wikipedia.org/wiki/Datalog

[65] A Guide to Kubernetes Admission Controllers. Retrieved on
the 12th of May, 2023 https://kubernetes.io/blog/2019/03/21/

a-guide-to-kubernetes-admission-controllers/

[66] How to use Gatekeeper. Retrieved on the 16th of May, 2023 https://

open-policy-agent.github.io/gatekeeper/website/docs/howto

Vı́ctor Mart́ınez Bevià 79

https://docs.aws.amazon.com/eks/latest/userguide/ebs-csi.html
https://docs.aws.amazon.com/eks/latest/userguide/ebs-csi.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSSnapshots.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSSnapshots.html
https://docs.aws.amazon.com/eks/latest/userguide/control-plane-logs.html
https://docs.aws.amazon.com/eks/latest/userguide/control-plane-logs.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/WhatIsCloudWatch.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/WhatIsCloudWatch.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Container-Insights-setup-EKS-quickstart.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Container-Insights-setup-EKS-quickstart.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Container-Insights-setup-EKS-quickstart.html
https://github.com/aquasecurity/trivy
https://github.com/aquasecurity/trivy
https://kubernetes.io/docs/concepts/architecture/controller/
https://kubernetes.io/docs/concepts/architecture/controller/
https://github.com/aquasecurity/trivy-operator
https://aquasecurity.github.io/trivy-operator/v0.14.0/tutorials/integrations/policy-reporter/
https://aquasecurity.github.io/trivy-operator/v0.14.0/tutorials/integrations/policy-reporter/
https://www.openpolicyagent.org/docs/latest/
https://www.openpolicyagent.org/docs/latest/
https://open-policy-agent.github.io/gatekeeper/website/docs/
https://open-policy-agent.github.io/gatekeeper/website/docs/
https://www.openpolicyagent.org/docs/latest/policy-language/
https://www.openpolicyagent.org/docs/latest/policy-language/
https://en.wikipedia.org/wiki/Datalog
https://en.wikipedia.org/wiki/Datalog
https://kubernetes.io/blog/2019/03/21/a-guide-to-kubernetes-admission-controllers/
https://kubernetes.io/blog/2019/03/21/a-guide-to-kubernetes-admission-controllers/
https://open-policy-agent.github.io/gatekeeper/website/docs/howto
https://open-policy-agent.github.io/gatekeeper/website/docs/howto

Securing Kubernetes
in Public Cloud Environments

[67] OPA Gatekeeper Library. Retrieved on the 16th of May, 2023 https:

//open-policy-agent.github.io/gatekeeper-library/

[68] Cilium functionality overview Retrieved on the 8th of May,
2023 https://docs.cilium.io/en/stable/overview/intro/

#functionality-overview

[69] Detecting a Container Escape with Cilium and eBPF Retrieved
on the 10th of May, 2023 https://isovalent.com/blog/post/

2021-11-container-escape/

[70] Tetragon – eBPF-based Security Observability & Runtime Enforcement.
Retrieved on the 7th of May, 2023 https://isovalent.com/blog/post/

2022-05-16-tetragon/

[71] Tetragon tracing policies. Retrieved on the 7th of May. 2023
https://github.com/cilium/tetragon/blob/main/docs/content/

en/docs/reference/tracing-policy.md

[72] Getting and Deleting Orphaned Secrets with Kubectl. Retrieved
on the 7th of May, 2023 https://www.blinkops.com/blog/

getting-and-deleting-orphaned-secrets-with-kubectl

[73] k8s-unused-secret-detector. Retrieved on the 10th of May, 2023 https:

//github.com/dtan4/k8s-unused-secret-detector

Vı́ctor Mart́ınez Bevià 80

https://open-policy-agent.github.io/gatekeeper-library/
https://open-policy-agent.github.io/gatekeeper-library/
https://docs.cilium.io/en/stable/overview/intro/#functionality-overview
https://docs.cilium.io/en/stable/overview/intro/#functionality-overview
https://isovalent.com/blog/post/2021-11-container-escape/
https://isovalent.com/blog/post/2021-11-container-escape/
https://isovalent.com/blog/post/2022-05-16-tetragon/
https://isovalent.com/blog/post/2022-05-16-tetragon/
https://github.com/cilium/tetragon/blob/main/docs/content/en/docs/reference/tracing-policy.md
https://github.com/cilium/tetragon/blob/main/docs/content/en/docs/reference/tracing-policy.md
https://www.blinkops.com/blog/getting-and-deleting-orphaned-secrets-with-kubectl
https://www.blinkops.com/blog/getting-and-deleting-orphaned-secrets-with-kubectl
https://github.com/dtan4/k8s-unused-secret-detector
https://github.com/dtan4/k8s-unused-secret-detector

Securing Kubernetes
in Public Cloud Environments

Appendix A

Open Policy Agent
Gatekeeper Constraint
Templates

Constraint Templates for the Constraints defined in section 4.2.3.

A.1 Gate images deployed to Kubernetes clus-
ter

apiVersion: templates.gatekeeper.sh/v1
kind: ConstraintTemplate
metadata:
name: k8sallowedrepos
annotations:
metadata.gatekeeper.sh/title: "Allowed Repositories"
metadata.gatekeeper.sh/version: 1.0.0
description: >−
Requires container images to begin with a string from the specified

list.
spec:
crd:
spec:
names:
kind: K8sAllowedRepos

validation:
Schema for the ‘parameters‘ field

openAPIV3Schema:
type: object
properties:
repos:
description: The list of prefixes a container image is

allowed to have.
type: array

Vı́ctor Mart́ınez Bevià 81

Securing Kubernetes
in Public Cloud Environments

items:
type: string

targets:
- target: admission.k8s.gatekeeper.sh
rego: |
package k8sallowedrepos

violation[{"msg": msg}] {
container := input.review.object.spec.containers[]
satisfied := [good |repo = input.parameters.repos[] ; good =

startswith(container.image, repo)]
not any(satisfied)
msg := sprintf("container <%v> has an invalid image repo <%v>,

allowed repos are %v", [container.name, container.image,
input.parameters.repos])

}

violation[{"msg": msg}] {
container := input.review.object.spec.initContainers[]
satisfied := [good |repo = input.parameters.repos[] ; good =

startswith(container.image, repo)]
not any(satisfied)
msg := sprintf("initContainer <%v> has an invalid image repo <%

v>, allowed repos are %v", [container.name, container.image
, input.parameters.repos])

}

violation[{"msg": msg}] {
container := input.review.object.spec.ephemeralContainers[]
satisfied := [good |repo = input.parameters.repos[] ; good =

startswith(container.image, repo)]
not any(satisfied)
msg := sprintf("ephemeralContainer <%v> has an invalid image

repo <%v>, allowed repos are %v", [container.name,
container.image, input.parameters.repos])

}

Listing A.1: Gate images deployed to Kubernetes cluster

A.2 Restrict exec commands

apiVersion: templates.gatekeeper.sh/v1beta1
kind: ConstraintTemplate
metadata:
name: k8sdenypodconnect

spec:
crd:
spec:
names:
kind: K8sDenyPodConnect

targets:
- target: admission.k8s.gatekeeper.sh
rego: |
package k8sdenypodconnect
violation[{"msg": msg}] {

Vı́ctor Mart́ınez Bevià 82

Securing Kubernetes
in Public Cloud Environments

msg := sprintf("REVIEW OBJECT: %v", [input.review])
}

EOF

Listing A.2: Restrict exec command constraint template

A.3 Restrict over permissive containers

apiVersion: templates.gatekeeper.sh/v1
kind: ConstraintTemplate
metadata:
name: k8spspcapabilities
annotations:
metadata.gatekeeper.sh/title: "Capabilities"
metadata.gatekeeper.sh/version: 1.0.0
description: >−
Controls Linux capabilities on containers. Corresponds to the
‘allowedCapabilities‘ and ‘requiredDropCapabilities‘ fields in a
PodSecurityPolicy. For more information, see
https://kubernetes.io/docs/concepts/policy/pod−security−policy/#

capabilities

spec:
crd:
spec:
names:
kind: K8sPSPCapabilities

validation:
Schema for the ‘parameters‘ field

openAPIV3Schema:
type: object
description: >−
Controls Linux capabilities on containers. Corresponds to the
‘allowedCapabilities‘ and ‘requiredDropCapabilities‘ fields in

a
PodSecurityPolicy. For more information, see
https://kubernetes.io/docs/concepts/policy/pod−security−policy

/#capabilities
properties:
exemptImages:
description: >−
Any container that uses an image that matches an entry in

this list will be excluded
from enforcement. Prefix−matching can be signified with ‘*

‘. For example: ‘my−image−*‘.

It is recommended that users use the fully−qualified Docker
image name (e.g. start with a domain name)

in order to avoid unexpectedly exempting images from an
untrusted repository.

type: array
items:
type: string

allowedCapabilities:
type: array

Vı́ctor Mart́ınez Bevià 83

Securing Kubernetes
in Public Cloud Environments

description: "A list of Linux capabilities that can be added
to a container."

items:
type: string

requiredDropCapabilities:
type: array
description: "A list of Linux capabilities that are required

to be dropped from a container."
items:
type: string

targets:
- target: admission.k8s.gatekeeper.sh
rego: |
package capabilities

import data.lib.exempt container.is exempt

violation[{"msg": msg}] {
container := input.review.object.spec.containers[]
not is exempt(container)
has disallowed capabilities(container)
msg := sprintf("container <%v> has a disallowed capability.

Allowed capabilities are %v", [container.name, get default(
input.parameters, "allowedCapabilities", "NONE")])

}

violation[{"msg": msg}] {
container := input.review.object.spec.containers[]
not is exempt(container)
missing drop capabilities(container)
msg := sprintf("container <%v> is not dropping all required

capabilities. Container must drop all of %v or \"ALL\"", [
container.name, input.parameters.requiredDropCapabilities])

}

violation[{"msg": msg}] {
container := input.review.object.spec.initContainers[]
not is exempt(container)
has disallowed capabilities(container)
msg := sprintf("init container <%v> has a disallowed capability

. Allowed capabilities are %v", [container.name, get default
(input.parameters, "allowedCapabilities", "NONE")])

}

violation[{"msg": msg}] {
container := input.review.object.spec.initContainers[]
not is exempt(container)
missing drop capabilities(container)
msg := sprintf("init container <%v> is not dropping all

required capabilities. Container must drop all of %v or \"
ALL\"", [container.name, input.parameters.
requiredDropCapabilities])

}

Vı́ctor Mart́ınez Bevià 84

Securing Kubernetes
in Public Cloud Environments

violation[{"msg": msg}] {
container := input.review.object.spec.ephemeralContainers[]
not is exempt(container)
has disallowed capabilities(container)
msg := sprintf("ephemeral container <%v> has a disallowed

capability. Allowed capabilities are %v", [container.name,
get default(input.parameters, "allowedCapabilities", "NONE")
])

}

violation[{"msg": msg}] {
container := input.review.object.spec.ephemeralContainers[]
not is exempt(container)
missing drop capabilities(container)
msg := sprintf("ephemeral container <%v> is not dropping all

required capabilities. Container must drop all of %v or \"
ALL\"", [container.name, input.parameters.
requiredDropCapabilities])

}

has disallowed capabilities(container) {
allowed := {c |c := lower(input.parameters.allowedCapabilities[

])}
not allowed["*"]
capabilities := {c |c := lower(container.securityContext.

capabilities.add[])}

count(capabilities - allowed) >0
}

missing drop capabilities(container) {
must drop := {c |c := lower(input.parameters.

requiredDropCapabilities[])}
all := {"all"}
dropped := {c |c := lower(container.securityContext.capabilities

.drop[])}

count(must drop - dropped) >0
count(all - dropped) >0

}

get default(obj, param, default) = out {
out = obj[param]

}

get default(obj, param, default) = out {
not obj[param]
not obj[param] == false
out = default

}
libs:
- |
package lib.exempt container

is exempt(container) {

Vı́ctor Mart́ınez Bevià 85

Securing Kubernetes
in Public Cloud Environments

exempt images := object.get(object.get(input, "parameters",
{}), "exemptImages", [])

img := container.image
exemption := exempt images[]
matches exemption(img, exemption)

}

matches exemption(img, exemption) {
not endswith(exemption, "*")
exemption == img

}

matches exemption(img, exemption) {
endswith(exemption, "*")
prefix := trim suffix(exemption, "*")
startswith(img, prefix)

}

Listing A.3: Restrict over permissive containers constraint template

A.4 Restrict file and directory permissions

apiVersion: templates.gatekeeper.sh/v1
kind: ConstraintTemplate
metadata:
name: k8spsphostfilesystem
annotations:
metadata.gatekeeper.sh/title: "Host Filesystem"
metadata.gatekeeper.sh/version: 1.0.0
description: >−
Controls usage of the host filesystem. Corresponds to the
‘allowedHostPaths‘ field in a PodSecurityPolicy. For more

information,
see
https://kubernetes.io/docs/concepts/policy/pod−security−policy/#

volumes-and-file-systems

spec:
crd:
spec:
names:
kind: K8sPSPHostFilesystem

validation:
Schema for the ‘parameters‘ field

openAPIV3Schema:
type: object
description: >−
Controls usage of the host filesystem. Corresponds to the
‘allowedHostPaths‘ field in a PodSecurityPolicy. For more

information,
see
https://kubernetes.io/docs/concepts/policy/pod−security−policy

/#volumes-and-file-systems
properties:
allowedHostPaths:
type: array

Vı́ctor Mart́ınez Bevià 86

Securing Kubernetes
in Public Cloud Environments

description: "An array of hostpath objects, representing
paths and read/write configuration."

items:
type: object
properties:
pathPrefix:
type: string
description: "The path prefix that the host volume must

match."
readOnly:
type: boolean
description: "when set to true, any container

volumeMounts matching the pathPrefix must include ‘
readOnly: true‘."

targets:
- target: admission.k8s.gatekeeper.sh
rego: |
package k8spsphostfilesystem

violation[{"msg": msg, "details": {}}] {
volume := input hostpath volumes[]
allowedPaths := get allowed paths(input)
input hostpath violation(allowedPaths, volume)
msg := sprintf("HostPath volume %v is not allowed, pod: %v.

Allowed path: %v", [volume, input.review.object.metadata.
name, allowedPaths])

}

input hostpath violation(allowedPaths, volume) {
An empty list means all host paths are blocked

allowedPaths == []
}
input hostpath violation(allowedPaths, volume) {

not input hostpath allowed(allowedPaths, volume)
}

get allowed paths(arg) = out {
not arg.parameters
out = []

}
get allowed paths(arg) = out {

not arg.parameters.allowedHostPaths
out = []

}
get allowed paths(arg) = out {

out = arg.parameters.allowedHostPaths
}

input hostpath allowed(allowedPaths, volume) {
allowedHostPath := allowedPaths[]
path matches(allowedHostPath.pathPrefix, volume.hostPath.path)
not allowedHostPath.readOnly == true

}

input hostpath allowed(allowedPaths, volume) {
allowedHostPath := allowedPaths[]
path matches(allowedHostPath.pathPrefix, volume.hostPath.path)

Vı́ctor Mart́ınez Bevià 87

Securing Kubernetes
in Public Cloud Environments

allowedHostPath.readOnly
not writeable input volume mounts(volume.name)

}

writeable input volume mounts(volume name) {
container := input containers[]
mount := container.volumeMounts[]
mount.name == volume name
not mount.readOnly

}

This allows "/foo", "/foo/", "/foo/bar" etc., but

disallows "/fool", "/etc/foo" etc.

path matches(prefix, path) {
a := path array(prefix)
b := path array(path)
prefix matches(a, b)

}
path array(p) = out {

p != "/"
out := split(trim(p, "/"), "/")

}
This handles the special case for "/", since

split(trim("/", "/"), "/") == [""]

path array("/") = []

prefix matches(a, b) {
count(a) <= count(b)
not any not equal upto(a, b, count(a))

}

any not equal upto(a, b, n) {
a[i] != b[i]
i < n

}

input hostpath volumes[v] {
v := input.review.object.spec.volumes[]
has field(v, "hostPath")

}

has_field returns whether an object has a field

has field(object, field) = true {
object[field]

}
input containers[c] {

c := input.review.object.spec.containers[]
}

input containers[c] {
c := input.review.object.spec.initContainers[]

}

input containers[c] {
c := input.review.object.spec.ephemeralContainers[]

}

Vı́ctor Mart́ınez Bevià 88

Securing Kubernetes
in Public Cloud Environments

Listing A.4: Restrict file and directory permissions Constraint Template

A.5 Ensure that pods meet defined Pod Secu-
rity Standard

apiVersion: templates.gatekeeper.sh/v1
kind: ConstraintTemplate
metadata:
name: k8spspprivilegedcontainer
annotations:
metadata.gatekeeper.sh/title: "Privileged Container"
metadata.gatekeeper.sh/version: 1.0.0
description: >−
Controls the ability of any container to enable privileged mode.
Corresponds to the ‘privileged‘ field in a PodSecurityPolicy. For

more
information, see
https://kubernetes.io/docs/concepts/policy/pod−security−policy/#

privileged

spec:
crd:
spec:
names:
kind: K8sPSPPrivilegedContainer

validation:
openAPIV3Schema:
type: object
description: >−
Controls the ability of any container to enable privileged

mode.
Corresponds to the ‘privileged‘ field in a PodSecurityPolicy.

For more
information, see
https://kubernetes.io/docs/concepts/policy/pod−security−policy

/#privileged
properties:
exemptImages:
description: >−
Any container that uses an image that matches an entry in

this list will be excluded
from enforcement. Prefix−matching can be signified with ‘*

‘. For example: ‘my−image−*‘.

It is recommended that users use the fully−qualified Docker
image name (e.g. start with a domain name)

in order to avoid unexpectedly exempting images from an
untrusted repository.

type: array
items:
type: string

targets:
- target: admission.k8s.gatekeeper.sh

Vı́ctor Mart́ınez Bevià 89

Securing Kubernetes
in Public Cloud Environments

rego: |
package k8spspprivileged

import data.lib.exempt container.is exempt

violation[{"msg": msg, "details": {}}] {
c := input containers[]
not is exempt(c)
c.securityContext.privileged
msg := sprintf("Privileged container is not allowed: %v,

securityContext: %v", [c.name, c.securityContext])
}

input containers[c] {
c := input.review.object.spec.containers[]

}

input containers[c] {
c := input.review.object.spec.initContainers[]

}

input containers[c] {
c := input.review.object.spec.ephemeralContainers[]

}
libs:
- |
package lib.exempt container

is exempt(container) {
exempt images := object.get(object.get(input, "parameters",

{}), "exemptImages", [])
img := container.image
exemption := exempt images[]
matches exemption(img, exemption)

}

matches exemption(img, exemption) {
not endswith(exemption, "*")
exemption == img

}

matches exemption(img, exemption) {
endswith(exemption, "*")
prefix := trim suffix(exemption, "*")
startswith(img, prefix)

}

Listing A.5: Pods meet defined Pod Security Standard Constraint Template

A.6 Disable service account auto mount

apiVersion: templates.gatekeeper.sh/v1
kind: ConstraintTemplate
metadata:
name: k8spspautomountserviceaccounttokenpod

Vı́ctor Mart́ınez Bevià 90

Securing Kubernetes
in Public Cloud Environments

annotations:
metadata.gatekeeper.sh/title: "Automount Service Account Token for

Pod"
metadata.gatekeeper.sh/version: 1.0.0
description: >−
Controls the ability of any Pod to enable

automountServiceAccountToken.
spec:
crd:
spec:
names:
kind: K8sPSPAutomountServiceAccountTokenPod

validation:
openAPIV3Schema:
type: object
description: >−
Controls the ability of any Pod to enable

automountServiceAccountToken.
targets:
- target: admission.k8s.gatekeeper.sh
rego: |
package k8sautomountserviceaccounttoken

violation[{"msg": msg}] {
obj := input.review.object
mountServiceAccountToken(obj.spec)
msg := sprintf("Automounting service account token is

disallowed, pod: %v", [obj.metadata.name])
}

mountServiceAccountToken(spec) {
spec.automountServiceAccountToken == true

}

if there is no automountServiceAccountToken spec, check on volumeMount

in containers. Service Account token is mounted on /var/run/secrets/

kubernetes.io/serviceaccount

https://kubernetes.io/docs/reference/access-authn-authz/service-accounts

-admin/#serviceaccount-admission-controller

mountServiceAccountToken(spec) {
not has key(spec, "automountServiceAccountToken")
"/var/run/secrets/kubernetes.io/serviceaccount" ==

input containers[].volumeMounts[].mountPath
}

input containers[c] {
c := input.review.object.spec.containers[]

}

input containers[c] {
c := input.review.object.spec.initContainers[]

}

Ephemeral containers not checked as it is not possible to set field.

has key(x, k) {
= x[k]

Vı́ctor Mart́ınez Bevià 91

Securing Kubernetes
in Public Cloud Environments

}

Listing A.6: Disable automount Service Account Token

A.7 Set requests and limits for containers

apiVersion: templates.gatekeeper.sh/v1
kind: ConstraintTemplate
metadata:
name: k8scontainerrequests
annotations:
metadata.gatekeeper.sh/title: "Container Requests"
metadata.gatekeeper.sh/version: 1.0.0
description: >−
Requires containers to have memory and CPU requests set and

constrains
requests to be within the specified maximum values.

https://kubernetes.io/docs/concepts/configuration/manage−resources−
containers/

spec:
crd:
spec:
names:
kind: K8sContainerRequests

validation:
Schema for the ‘parameters‘ field

openAPIV3Schema:
type: object
properties:
exemptImages:
description: >−
Any container that uses an image that matches an entry in

this list will be excluded
from enforcement. Prefix−matching can be signified with ‘*

‘. For example: ‘my−image−*‘.

It is recommended that users use the fully−qualified Docker
image name (e.g. start with a domain name)

in order to avoid unexpectedly exempting images from an
untrusted repository.

type: array
items:
type: string

cpu:
description: "The maximum allowed cpu request on a Pod,

exclusive."
type: string

memory:
description: "The maximum allowed memory request on a Pod,

exclusive."
type: string

targets:
- target: admission.k8s.gatekeeper.sh
rego: |

Vı́ctor Mart́ınez Bevià 92

Securing Kubernetes
in Public Cloud Environments

package k8scontainerrequests

import data.lib.exempt container.is exempt

missing(obj, field) = true {
not obj[field]

}

missing(obj, field) = true {
obj[field] == ""

}

canonify cpu(orig) = new {
is number(orig)
new := orig * 1000

}

canonify cpu(orig) = new {
not is number(orig)
endswith(orig, "m")
new := to number(replace(orig, "m", ""))

}

canonify cpu(orig) = new {
not is number(orig)
not endswith(orig, "m")
re match("ˆ[0−9]+(\\.[0−9]+)?$", orig)
new := to number(orig) * 1000

}

10 ** 21

mem multiple("E") = 1000000000000000000000 { true }

10 ** 18

mem multiple("P") = 1000000000000000000 { true }

10 ** 15

mem multiple("T") = 1000000000000000 { true }

10 ** 12

mem multiple("G") = 1000000000000 { true }

10 ** 9

mem multiple("M") = 1000000000 { true }

10 ** 6

mem multiple("k") = 1000000 { true }

10 ** 3

mem multiple("") = 1000 { true }

Kubernetes accepts millibyte precision when it probably shouldn’t.

https://github.com/kubernetes/kubernetes/issues/28741

10 ** 0

mem multiple("m") = 1 { true }

1000 * 2 ** 10

Vı́ctor Mart́ınez Bevià 93

Securing Kubernetes
in Public Cloud Environments

mem multiple("Ki") = 1024000 { true }

1000 * 2 ** 20

mem multiple("Mi") = 1048576000 { true }

1000 * 2 ** 30

mem multiple("Gi") = 1073741824000 { true }

1000 * 2 ** 40

mem multiple("Ti") = 1099511627776000 { true }

1000 * 2 ** 50

mem multiple("Pi") = 1125899906842624000 { true }

1000 * 2 ** 60

mem multiple("Ei") = 1152921504606846976000 { true }

get suffix(mem) = suffix {
not is string(mem)
suffix := ""

}

get suffix(mem) = suffix {
is string(mem)
count(mem) >0
suffix := substring(mem, count(mem) - 1, −1)
mem multiple(suffix)

}

get suffix(mem) = suffix {
is string(mem)
count(mem) >1
suffix := substring(mem, count(mem) - 2, −1)
mem multiple(suffix)

}

get suffix(mem) = suffix {
is string(mem)
count(mem) >1
not mem multiple(substring(mem, count(mem) - 1, −1))
not mem multiple(substring(mem, count(mem) - 2, −1))
suffix := ""

}

get suffix(mem) = suffix {
is string(mem)
count(mem) == 1
not mem multiple(substring(mem, count(mem) - 1, −1))
suffix := ""

}

get suffix(mem) = suffix {
is string(mem)
count(mem) == 0
suffix := ""

}

Vı́ctor Mart́ınez Bevià 94

Securing Kubernetes
in Public Cloud Environments

canonify mem(orig) = new {
is number(orig)
new := orig * 1000

}

canonify mem(orig) = new {
not is number(orig)
suffix := get suffix(orig)
raw := replace(orig, suffix, "")
re match("ˆ[0−9]+(\\.[0−9]+)?$", raw)
new := to number(raw) * mem multiple(suffix)

}

violation[{"msg": msg}] {
general violation[{"msg": msg, "field": "containers"}]

}

violation[{"msg": msg}] {
general violation[{"msg": msg, "field": "initContainers"}]

}

Ephemeral containers not checked as it is not possible to set field.

general violation[{"msg": msg, "field": field}] {
container := input.review.object.spec[field][]
not is exempt(container)
cpu orig := container.resources.requests.cpu
not canonify cpu(cpu orig)
msg := sprintf("container <%v> cpu request <%v> could not be

parsed", [container.name, cpu orig])
}

general violation[{"msg": msg, "field": field}] {
container := input.review.object.spec[field][]
not is exempt(container)
mem orig := container.resources.requests.memory
not canonify mem(mem orig)
msg := sprintf("container <%v> memory request <%v> could not

be parsed", [container.name, mem orig])
}

general violation[{"msg": msg, "field": field}] {
container := input.review.object.spec[field][]
not is exempt(container)
not container.resources
msg := sprintf("container <%v> has no resource requests", [

container.name])
}

general violation[{"msg": msg, "field": field}] {
container := input.review.object.spec[field][]
not is exempt(container)
not container.resources.requests
msg := sprintf("container <%v> has no resource requests", [

container.name])
}

Vı́ctor Mart́ınez Bevià 95

Securing Kubernetes
in Public Cloud Environments

general violation[{"msg": msg, "field": field}] {
container := input.review.object.spec[field][]
not is exempt(container)
missing(container.resources.requests, "cpu")
msg := sprintf("container <%v> has no cpu request", [container.

name])
}

general violation[{"msg": msg, "field": field}] {
container := input.review.object.spec[field][]
not is exempt(container)
missing(container.resources.requests, "memory")
msg := sprintf("container <%v> has no memory request", [

container.name])
}

general violation[{"msg": msg, "field": field}] {
container := input.review.object.spec[field][]
not is exempt(container)
cpu orig := container.resources.requests.cpu
cpu := canonify cpu(cpu orig)
max cpu orig := input.parameters.cpu
max cpu := canonify cpu(max cpu orig)
cpu >max cpu
msg := sprintf("container <%v> cpu request <%v> is higher than

the maximum allowed of <%v>", [container.name, cpu orig,
max cpu orig])

}

general violation[{"msg": msg, "field": field}] {
container := input.review.object.spec[field][]
not is exempt(container)
mem orig := container.resources.requests.memory
mem := canonify mem(mem orig)
max mem orig := input.parameters.memory
max mem := canonify mem(max mem orig)
mem >max mem
msg := sprintf("container <%v> memory request <%v> is higher

than the maximum allowed of <%v>", [container.name,
mem orig, max mem orig])

}
libs:
- |
package lib.exempt container

is exempt(container) {
exempt images := object.get(object.get(input, "parameters",

{}), "exemptImages", [])
img := container.image
exemption := exempt images[]
matches exemption(img, exemption)

}

matches exemption(img, exemption) {
not endswith(exemption, "*")
exemption == img

}

Vı́ctor Mart́ınez Bevià 96

Securing Kubernetes
in Public Cloud Environments

matches exemption(img, exemption) {
endswith(exemption, "*")
prefix := trim suffix(exemption, "*")
startswith(img, prefix)

}

Listing A.7: Requests constraint template

apiVersion: templates.gatekeeper.sh/v1
kind: ConstraintTemplate
metadata:
name: k8scontainerlimits
annotations:
metadata.gatekeeper.sh/title: "Container Limits"
metadata.gatekeeper.sh/version: 1.0.0
description: >−
Requires containers to have memory and CPU limits set and

constrains
limits to be within the specified maximum values.

https://kubernetes.io/docs/concepts/configuration/manage−resources−
containers/

spec:
crd:
spec:
names:
kind: K8sContainerLimits

validation:
Schema for the ‘parameters‘ field

openAPIV3Schema:
type: object
properties:
exemptImages:
description: >−
Any container that uses an image that matches an entry in

this list will be excluded
from enforcement. Prefix−matching can be signified with ‘*

‘. For example: ‘my−image−*‘.

It is recommended that users use the fully−qualified Docker
image name (e.g. start with a domain name)

in order to avoid unexpectedly exempting images from an
untrusted repository.

type: array
items:
type: string

cpu:
description: "The maximum allowed cpu limit on a Pod,

exclusive."
type: string

memory:
description: "The maximum allowed memory limit on a Pod,

exclusive."
type: string

targets:
- target: admission.k8s.gatekeeper.sh

Vı́ctor Mart́ınez Bevià 97

Securing Kubernetes
in Public Cloud Environments

rego: |
package k8scontainerlimits

import data.lib.exempt container.is exempt

missing(obj, field) = true {
not obj[field]

}

missing(obj, field) = true {
obj[field] == ""

}

canonify cpu(orig) = new {
is number(orig)
new := orig * 1000

}

canonify cpu(orig) = new {
not is number(orig)
endswith(orig, "m")
new := to number(replace(orig, "m", ""))

}

canonify cpu(orig) = new {
not is number(orig)
not endswith(orig, "m")
re match("ˆ[0−9]+(\\.[0−9]+)?$", orig)
new := to number(orig) * 1000

}

10 ** 21

mem multiple("E") = 1000000000000000000000 { true }

10 ** 18

mem multiple("P") = 1000000000000000000 { true }

10 ** 15

mem multiple("T") = 1000000000000000 { true }

10 ** 12

mem multiple("G") = 1000000000000 { true }

10 ** 9

mem multiple("M") = 1000000000 { true }

10 ** 6

mem multiple("k") = 1000000 { true }

10 ** 3

mem multiple("") = 1000 { true }

Kubernetes accepts millibyte precision when it probably shouldn’t.

https://github.com/kubernetes/kubernetes/issues/28741

10 ** 0

mem multiple("m") = 1 { true }

Vı́ctor Mart́ınez Bevià 98

Securing Kubernetes
in Public Cloud Environments

1000 * 2 ** 10

mem multiple("Ki") = 1024000 { true }

1000 * 2 ** 20

mem multiple("Mi") = 1048576000 { true }

1000 * 2 ** 30

mem multiple("Gi") = 1073741824000 { true }

1000 * 2 ** 40

mem multiple("Ti") = 1099511627776000 { true }

1000 * 2 ** 50

mem multiple("Pi") = 1125899906842624000 { true }

1000 * 2 ** 60

mem multiple("Ei") = 1152921504606846976000 { true }

get suffix(mem) = suffix {
not is string(mem)
suffix := ""

}

get suffix(mem) = suffix {
is string(mem)
count(mem) >0
suffix := substring(mem, count(mem) - 1, −1)
mem multiple(suffix)

}

get suffix(mem) = suffix {
is string(mem)
count(mem) >1
suffix := substring(mem, count(mem) - 2, −1)
mem multiple(suffix)

}

get suffix(mem) = suffix {
is string(mem)
count(mem) >1
not mem multiple(substring(mem, count(mem) - 1, −1))
not mem multiple(substring(mem, count(mem) - 2, −1))
suffix := ""

}

get suffix(mem) = suffix {
is string(mem)
count(mem) == 1
not mem multiple(substring(mem, count(mem) - 1, −1))
suffix := ""

}

get suffix(mem) = suffix {
is string(mem)
count(mem) == 0
suffix := ""

}

Vı́ctor Mart́ınez Bevià 99

Securing Kubernetes
in Public Cloud Environments

canonify mem(orig) = new {
is number(orig)
new := orig * 1000

}

canonify mem(orig) = new {
not is number(orig)
suffix := get suffix(orig)
raw := replace(orig, suffix, "")
re match("ˆ[0−9]+(\\.[0−9]+)?$", raw)
new := to number(raw) * mem multiple(suffix)

}

violation[{"msg": msg}] {
general violation[{"msg": msg, "field": "containers"}]

}

violation[{"msg": msg}] {
general violation[{"msg": msg, "field": "initContainers"}]

}

Ephemeral containers not checked as it is not possible to set field.

general violation[{"msg": msg, "field": field}] {
container := input.review.object.spec[field][]
not is exempt(container)
cpu orig := container.resources.limits.cpu
not canonify cpu(cpu orig)
msg := sprintf("container <%v> cpu limit <%v> could not be

parsed", [container.name, cpu orig])
}

general violation[{"msg": msg, "field": field}] {
container := input.review.object.spec[field][]
not is exempt(container)
mem orig := container.resources.limits.memory
not canonify mem(mem orig)
msg := sprintf("container <%v> memory limit <%v> could not be

parsed", [container.name, mem orig])
}

general violation[{"msg": msg, "field": field}] {
container := input.review.object.spec[field][]
not is exempt(container)
not container.resources
msg := sprintf("container <%v> has no resource limits", [

container.name])
}

general violation[{"msg": msg, "field": field}] {
container := input.review.object.spec[field][]
not is exempt(container)
not container.resources.limits
msg := sprintf("container <%v> has no resource limits", [

container.name])
}

Vı́ctor Mart́ınez Bevià 100

Securing Kubernetes
in Public Cloud Environments

general violation[{"msg": msg, "field": field}] {
container := input.review.object.spec[field][]
not is exempt(container)
missing(container.resources.limits, "cpu")
msg := sprintf("container <%v> has no cpu limit", [container.

name])
}

general violation[{"msg": msg, "field": field}] {
container := input.review.object.spec[field][]
not is exempt(container)
missing(container.resources.limits, "memory")
msg := sprintf("container <%v> has no memory limit", [container

.name])
}

general violation[{"msg": msg, "field": field}] {
container := input.review.object.spec[field][]
not is exempt(container)
cpu orig := container.resources.limits.cpu
cpu := canonify cpu(cpu orig)
max cpu orig := input.parameters.cpu
max cpu := canonify cpu(max cpu orig)
cpu >max cpu
msg := sprintf("container <%v> cpu limit <%v> is higher than

the maximum allowed of <%v>", [container.name, cpu orig,
max cpu orig])

}

general violation[{"msg": msg, "field": field}] {
container := input.review.object.spec[field][]
not is exempt(container)
mem orig := container.resources.limits.memory
mem := canonify mem(mem orig)
max mem orig := input.parameters.memory
max mem := canonify mem(max mem orig)
mem >max mem
msg := sprintf("container <%v> memory limit <%v> is higher

than the maximum allowed of <%v>", [container.name,
mem orig, max mem orig])

}
libs:
- |
package lib.exempt container

is exempt(container) {
exempt images := object.get(object.get(input, "parameters",

{}), "exemptImages", [])
img := container.image
exemption := exempt images[]
matches exemption(img, exemption)

}

matches exemption(img, exemption) {
not endswith(exemption, "*")
exemption == img

Vı́ctor Mart́ınez Bevià 101

Securing Kubernetes
in Public Cloud Environments

}

matches exemption(img, exemption) {
endswith(exemption, "*")
prefix := trim suffix(exemption, "*")
startswith(img, prefix)

}

Listing A.8: Limits constraint template

Vı́ctor Mart́ınez Bevià 102

Securing Kubernetes
in Public Cloud Environments

Appendix B

Cilium event logging

Detect a container running in privileged mode:

{
"process exec":{

"process":{
"exec id":"bWluaWt1YmU6MTEzNzkyNjAzMjk3MjoxNzk3OA==",
"pid":17978,
"uid":0,
"cwd":"/",
"binary":"/docker−entrypoint.sh",
"arguments":"/docker−entrypoint.sh nginx −g \"daemon off;\"",
"flags":"execve rootcwd clone",
"start time":"2021−10−13T12:58:31.794Z",
"auid":4294967295,
"pod":{

"namespace":"default",
"name":"privileged−the−pod",
"container":{

"id":"docker://32865
cff8fef4a9274e9fa1d80bf48eb80d28b94e273d6d1670a6f721a9a1158
",

"name":"privileged−the−pod",
"image":{

"id":"docker−pullable://nginxsha256:644
a70516a26004c97d0d85c7fe1d0c3a67ea8ab7ddf4aff193d9f301670cf36
",

"name":"nginx:latest"
},
"start time":"2021−10−13T12:58:31Z"

}
},
"docker":"32865cff8fef4a9274e9fa1d",
"parent exec id":"bWluaWt1YmU6MTEzNzgyOTM1MzU5NzoxNzk1OA==",
"refcnt":1,
"cap":{

"permitted":[
"CAP CHOWN",
"DAC OVERRIDE",
"CAP DAC READ SEARCH",

Vı́ctor Mart́ınez Bevià 103

Securing Kubernetes
in Public Cloud Environments

"CAP FOWNER",
"CAP FSETID",
"CAP KILL",
"CAP SETGID",
"CAP SETUID",
"CAP SETPCAP",
"CAP LINUX IMMUTABLE",
"CAP NET BIND SERVICE",
"CAP NET BROADCAST",
"CAP NET ADMIN",
"CAP NET RAW",
"CAP IPC LOCK",
"CAP IPC OWNER",
"CAP SYS MODULE",
"CAP SYS RAWIO",
"CAP SYS CHROOT",
"CAP SYS PTRACE",
"CAP SYS PACCT",
"CAP SYS ADMIN",
"CAP SYS BOOT",
"CAP SYS NICE",
"CAP SYS RESOURCE",
"CAP SYS TIME",
"CAP SYS TTY CONFIG",
"CAP MKNOD",
"CAP LEASE",
"CAP AUDIT WRITE",
"CAP AUDIT CONTROL",
"CAP SETFCAP",
"CAP MAC OVERRIDE",
"CAP MAC ADMIN",
"CAP SYSLOG",
"CAP WAKE ALARM",
"CAP BLOCK SUSPEND",
"CAP AUDIT READ"

],
"effective":[

"CAP CHOWN",
"DAC OVERRIDE",
"CAP DAC READ SEARCH",
"CAP FOWNER",
"CAP FSETID",
"CAP KILL",
"CAP SETGID",
"CAP SETUID",
"CAP SETPCAP",
"CAP LINUX IMMUTABLE",
"CAP NET BIND SERVICE",
"CAP NET BROADCAST",
"CAP NET ADMIN",
"CAP NET RAW",
"CAP IPC LOCK",
"CAP IPC OWNER",
"CAP SYS MODULE",
"CAP SYS RAWIO",
"CAP SYS CHROOT",
"CAP SYS PTRACE",

Vı́ctor Mart́ınez Bevià 104

Securing Kubernetes
in Public Cloud Environments

"CAP SYS PACCT",
"CAP SYS ADMIN",
"CAP SYS BOOT",
"CAP SYS NICE",
"CAP SYS RESOURCE",
"CAP SYS TIME",
"CAP SYS TTY CONFIG",
"CAP MKNOD",
"CAP LEASE",
"CAP AUDIT WRITE",
"CAP AUDIT CONTROL",
"CAP SETFCAP",
"CAP MAC OVERRIDE",
"CAP MAC ADMIN",
"CAP SYSLOG",
"CAP WAKE ALARM",
"CAP BLOCK SUSPEND",
"CAP AUDIT READ"

],
"inheritable":[

"CAP CHOWN",
"DAC OVERRIDE",
"CAP DAC READ SEARCH",
"CAP FOWNER",
"CAP FSETID",
"CAP KILL",
"CAP SETGID",
"CAP SETUID",
"CAP SETPCAP",
"CAP LINUX IMMUTABLE",
"CAP NET BIND SERVICE",
"CAP NET BROADCAST",
"CAP NET ADMIN",
"CAP NET RAW",
"CAP IPC LOCK",
"CAP IPC OWNER",
"CAP SYS MODULE",
"CAP SYS RAWIO",
"CAP SYS CHROOT",
"CAP SYS PTRACE",
"CAP SYS PACCT",
"CAP SYS ADMIN",
"CAP SYS BOOT",
"CAP SYS NICE",
"CAP SYS RESOURCE",
"CAP SYS TIME",
"CAP SYS TTY CONFIG",
"CAP MKNOD",
"CAP LEASE",
"CAP AUDIT WRITE",
"CAP AUDIT CONTROL",
"CAP SETFCAP",
"CAP MAC OVERRIDE",
"CAP MAC ADMIN",
"CAP SYSLOG",
"CAP WAKE ALARM",
"CAP BLOCK SUSPEND",

Vı́ctor Mart́ınez Bevià 105

Securing Kubernetes
in Public Cloud Environments

"CAP AUDIT READ"
]

}
},
"parent":{

"exec id":"bWluaWt1YmU6MTEzNzgyOTM1MzU5NzoxNzk1OA==",
"pid":17958,
"uid":0,
"cwd":"/docker/containerd/daemon/io.containerd.runtime.v1.linux/

moby/32865
cff8fef4a9274e9fa1d80bf48eb80d28b94e273d6d1670a6f721a9a1158
/",

"binary":"/usr/bin/containerd−shim",
"arguments":"−namespace moby −workdir /var/lib/docker/containerd/

daemon/io.containerd.runtime.v1.linux/moby/32865
cff8fef4a9274e9fa1d80bf4 eb80d28b94e273d6d1670a6f721a9a1158
−address /var/run/docker/containerd/containerd.sock −
containerd−binary /usr/bin/containerd −runtime−root /var/run
/docker/runtime−runc −systemd−cgroup",

"flags":"execve clone",
"start time":"2021−10−13T12:58:31.698Z",
"auid":4294967295,
"parent exec id":"bWluaWt1YmU6NDIwODAwMDAwMDA6MjY4MA==",
"refcnt":2

},
"ancestors":[

{
"exec id":"bWluaWt1YmU6NDIwODAwMDAwMDA6MjY4MA==",
"pid":2680,
"uid":0,
"cwd":"/",
"binary":"/usr/bin/containerd",
"arguments":"−−config /var/run/docker/containerd/containerd.

toml −−log−level info",
"flags":"procFS auid rootcwd",
"start time":"2021−10−13T12:40:15.948Z",
"auid":0,
"parent exec id":"bWluaWt1YmU6NDIwNDAwMDAwMDA6MjY3Mg==",
"refcnt":63

},
{

"exec id":"bWluaWt1YmU6NDIwNDAwMDAwMDA6MjY3Mg==",
"pid":2672,
"uid":0,
"cwd":"/",
"binary":"/usr/bin/dockerd",
"arguments":"−H tcp://0.0.0.0:2376 −H unix:///var/run/docker.

sock −−default−ulimit=nofile=1048576:1048576 −−tlsverify
−−tlscacert /etc/docker/ca.pem −−tlscert /etc/docker/
server.pem −−tlskey /etc/docker/server−key.pem −−label
provider=virtualbox −−insecure−registry 10.96.0.0/12",

"flags":"procFS auid rootcwd",
"start time":"2021−10−13T12:40:15.908Z",
"auid":0,
"parent exec id":"bWluaWt1YmU6MjEwMDAwMDAwOjE=",
"refcnt":65

},

Vı́ctor Mart́ınez Bevià 106

Securing Kubernetes
in Public Cloud Environments

{
"exec id":"bWluaWt1YmU6MjEwMDAwMDAwOjE=",
"pid":1,
"uid":0,
"cwd":"/",
"binary":"/usr/lib/systemd/systemd",
"arguments":"noembed norestore",
"flags":"procFS auid rootcwd",
"start time":"2021−10−13T12:39:34.078Z",
"auid":0,
"refcnt":101

}
]

},
"node name":"minikube",
"time":"2021−10−13T12:58:31.794Z"

}

Listing B.1: Detect privileged container

As a second step, the attacker can use kubectl exec to get shell access to
privileged-the-pod:

{
"process exec":{

"process":{
"exec id":"bWluaWt1YmU6MTI5NDM3OTU0NzQ3ODoxOTU5NA==",
"pid":19594,
"uid":0,
"cwd":"/",
"binary":"/bin/bash",
"flags":"execve rootcwd clone",
"start time":"2021−10−13T13:01:08.248Z",
"auid":4294967295,
"pod":{

"namespace":"default",
"name":"privileged−the−pod",
"container":{

"id":"docker://32865
cff8fef4a9274e9fa1d80bf48eb80d28b94e273d6d1670a6f721a9a1158
",

"name":"privileged−the−pod",
"image":{

"id":"docker−pullable://nginxsha256:644
a70516a26004c97d0d85c7fe1d0c3a67ea8ab7ddf4aff193d9f301670cf36
",

"name":"nginx:latest"
},
"start time":"2021−10−13T12:58:31Z"

}
},
"docker":"32865cff8fef4a9274e9fa1d",
"parent exec id":"bWluaWt1YmU6MTI5NDMzMzczMTY4NToxOTU4NA==",
"refcnt":1,
"cap":{

"permitted":[
"CAP CHOWN",
"DAC OVERRIDE",

Vı́ctor Mart́ınez Bevià 107

Securing Kubernetes
in Public Cloud Environments

"CAP DAC READ SEARCH",
"CAP FOWNER",
"CAP FSETID",
"CAP KILL",
"CAP SETGID",
"CAP SETUID",
"CAP SETPCAP",
"CAP LINUX IMMUTABLE",
"CAP NET BIND SERVICE",
"CAP NET BROADCAST",
"CAP NET ADMIN",
"CAP NET RAW",
"CAP IPC LOCK",
"CAP IPC OWNER",
"CAP SYS MODULE",
"CAP SYS RAWIO",
"CAP SYS CHROOT",
"CAP SYS PTRACE",
"CAP SYS PACCT",
"CAP SYS ADMIN",
"CAP SYS BOOT",
"CAP SYS NICE",
"CAP SYS RESOURCE",
"CAP SYS TIME",
"CAP SYS TTY CONFIG",
"CAP MKNOD",
"CAP LEASE",
"CAP AUDIT WRITE",
"CAP AUDIT CONTROL",
"CAP SETFCAP",
"CAP MAC OVERRIDE",
"CAP MAC ADMIN",
"CAP SYSLOG",
"CAP WAKE ALARM",
"CAP BLOCK SUSPEND",
"CAP AUDIT READ"

],
"effective":[

"CAP CHOWN",
"DAC OVERRIDE",
"CAP DAC READ SEARCH",
"CAP FOWNER",
"CAP FSETID",
"CAP KILL",
"CAP SETGID",
"CAP SETUID",
"CAP SETPCAP",
"CAP LINUX IMMUTABLE",
"CAP NET BIND SERVICE",
"CAP NET BROADCAST",
"CAP NET ADMIN",
"CAP NET RAW",
"CAP IPC LOCK",
"CAP IPC OWNER",
"CAP SYS MODULE",
"CAP SYS RAWIO",
"CAP SYS CHROOT",

Vı́ctor Mart́ınez Bevià 108

Securing Kubernetes
in Public Cloud Environments

"CAP SYS PTRACE",
"CAP SYS PACCT",
"CAP SYS ADMIN",
"CAP SYS BOOT",
"CAP SYS NICE",
"CAP SYS RESOURCE",
"CAP SYS TIME",
"CAP SYS TTY CONFIG",
"CAP MKNOD",
"CAP LEASE",
"CAP AUDIT WRITE",
"CAP AUDIT CONTROL",
"CAP SETFCAP",
"CAP MAC OVERRIDE",
"CAP MAC ADMIN",
"CAP SYSLOG",
"CAP WAKE ALARM",
"CAP BLOCK SUSPEND",
"CAP AUDIT READ"

],
"inheritable":[

"CAP CHOWN",
"DAC OVERRIDE",
"CAP DAC READ SEARCH",
"CAP FOWNER",
"CAP FSETID",
"CAP KILL",
"CAP SETGID",
"CAP SETUID",
"CAP SETPCAP",
"CAP LINUX IMMUTABLE",
"CAP NET BIND SERVICE",
"CAP NET BROADCAST",
"CAP NET ADMIN",
"CAP NET RAW",
"CAP IPC LOCK",
"CAP IPC OWNER",
"CAP SYS MODULE",
"CAP SYS RAWIO",
"CAP SYS CHROOT",
"CAP SYS PTRACE",
"CAP SYS PACCT",
"CAP SYS ADMIN",
"CAP SYS BOOT",
"CAP SYS NICE",
"CAP SYS RESOURCE",
"CAP SYS TIME",
"CAP SYS TTY CONFIG",
"CAP MKNOD",
"CAP LEASE",
"CAP AUDIT WRITE",
"CAP AUDIT CONTROL",
"CAP SETFCAP",
"CAP MAC OVERRIDE",
"CAP MAC ADMIN",
"CAP SYSLOG",
"CAP WAKE ALARM",

Vı́ctor Mart́ınez Bevià 109

Securing Kubernetes
in Public Cloud Environments

"CAP BLOCK SUSPEND",
"CAP AUDIT READ"

]
}

},
"parent":{

"exec id":"bWluaWt1YmU6MTI5NDMzMzczMTY4NToxOTU4NA==",
"pid":19584,
"uid":0,
"cwd":"/docker/containerd/daemon/io.containerd.runtime.v1.linux/

moby/32865
cff8fef4a9274e9fa1d80bf48eb80d28b94e273d6d1670a6f721a9a1158
/",

"binary":"/usr/bin/runc",
"arguments":"−−root /var/run/docker/runtime−runc/moby −−log /run/

docker/containerd/daemon/io.containerd.runtime.v1.linux/moby
/32865cff8fef4a9274e9fa1d80bf48eb8
d28b94e273d6d1670a6f721a9a1158/log.json −−log−format json −−
systemd−cgroup exec −−process /tmp/runc−process133903661 −−
console−socket /tmp/pty028492678/pty.sock −−detach −−pid−
file /run/docker/containerd/daemon/io.containerd.runtime.v1.
linux/moby/32865cff8fef4a9274e9fa1d80bf48eb8
d28b94e273d6d1670a6f721a9a1158/
a5579f11fb7d75d66213f488bf44e9c37b92c196dee5e94647e6f60c59cf6693
.pid 32865
cff8fef4a9274e9fa1d80bf48eb80d28b94e273d6d1670a6f721a9a1158
",

"flags":"execve clone",
"start time":"2021−10−13T13:01:08.202Z",
"auid":4294967295,
"parent exec id":"bWluaWt1YmU6MTEzNzgyOTM1MzU5NzoxNzk1OA==",
"refcnt":2

},
"ancestors":[

{
"exec id":"bWluaWt1YmU6MTEzNzgyOTM1MzU5NzoxNzk1OA==",
"pid":17958,
"uid":0,
"cwd":"/docker/containerd/daemon/io.containerd.runtime.v1.

linux/moby/32865
cff8fef4a9274e9fa1d80bf48eb80d28b94e273d6d1670a6f721a9a1158
/",

"binary":"/usr/bin/containerd−shim",
"arguments":"−namespace moby −workdir /var/lib/docker/

containerd/daemon/io.containerd.runtime.v1.linux/moby
/32865cff8fef4a9274e9fa1d80bf4
eb80d28b94e273d6d1670a6f721a9a1158 −address /var/run/
docker/containerd/containerd.sock −containerd−binary /usr/
bin/containerd −runtime−root /var/run/docker/runtime−runc
−systemd−cgroup",

"flags":"execve clone",
"start time":"2021−10−13T12:58:31.698Z",
"auid":4294967295,
"parent exec id":"bWluaWt1YmU6NDIwODAwMDAwMDA6MjY4MA==",
"refcnt":4

},
{

Vı́ctor Mart́ınez Bevià 110

Securing Kubernetes
in Public Cloud Environments

"exec id":"bWluaWt1YmU6NDIwODAwMDAwMDA6MjY4MA==",
"pid":2680,
"uid":0,
"cwd":"/",
"binary":"/usr/bin/containerd",
"arguments":"−−config /var/run/docker/containerd/containerd.

toml −−log−level info",
"flags":"procFS auid rootcwd",
"start time":"2021−10−13T12:40:15.948Z",
"auid":0,
"parent exec id":"bWluaWt1YmU6NDIwNDAwMDAwMDA6MjY3Mg==",
"refcnt":65

},
{

"exec id":"bWluaWt1YmU6NDIwNDAwMDAwMDA6MjY3Mg==",
"pid":2672,
"uid":0,
"cwd":"/",
"binary":"/usr/bin/dockerd",
"arguments":"−H tcp://0.0.0.0:2376 −H unix:///var/run/docker.

sock −−default−ulimit=nofile=1048576:1048576 −−tlsverify
−−tlscacert /etc/docker/ca.pem −−tlscert /etc/docker/
server.pem −−tlskey /etc/docker/server−key.pem −−label
provider=virtualbox −−insecure−registry 10.96.0.0/12",

"flags":"procFS auid rootcwd",
"start time":"2021−10−13T12:40:15.908Z",
"auid":0,
"parent exec id":"bWluaWt1YmU6MjEwMDAwMDAwOjE=",
"refcnt":67

},
{

"exec id":"bWluaWt1YmU6MjEwMDAwMDAwOjE=",
"pid":1,
"uid":0,
"cwd":"/",
"binary":"/usr/lib/systemd/systemd",
"arguments":"noembed norestore",
"flags":"procFS auid rootcwd",
"start time":"2021−10−13T12:39:34.078Z",
"auid":0,
"refcnt":106

}
]

},
"node name":"minikube",
"time":"2021−10−13T13:01:08.248Z"

}

Listing B.2: Container executing a shell

Finally the attacker enters the host via nsenter command:

{
"process exec":{

"process":{
"exec id":"bWluaWt1YmU6MTYyNzIwNjE3NjIzMjoyMzc0Nw==",
"pid":23747,
"uid":0,

Vı́ctor Mart́ınez Bevià 111

Securing Kubernetes
in Public Cloud Environments

"cwd":"/",
"binary":"/usr/bin/bash",
"flags":"execve rootcwd clone",
"start time":"2021−10−13T13:06:41.074Z",
"auid":4294967295,
"pod":{

"namespace":"default",
"name":"privileged−the−pod",
"container":{

"id":"docker://32865
cff8fef4a9274e9fa1d80bf48eb80d28b94e273d6d1670a6f721a9a1158
",

"name":"privileged−the−pod",
"image":{

"id":"docker−pullable://nginxsha256:644
a70516a26004c97d0d85c7fe1d0c3a67ea8ab7ddf4aff193d9f301670cf36
",

"name":"nginx:latest"
},
"start time":"2021−10−13T12:58:31Z"

}
},
"docker":"32865cff8fef4a9274e9fa1d",
"parent exec id":"bWluaWt1YmU6MTYyNzIwMjkzMjkyMToyMzc0Ng==",
"refcnt":1,
"cap":{

"permitted":[
"CAP CHOWN",
"DAC OVERRIDE",
"CAP DAC READ SEARCH",
"CAP FOWNER",
"CAP FSETID",
"CAP KILL",
"CAP SETGID",
"CAP SETUID",
"CAP SETPCAP",
"CAP LINUX IMMUTABLE",
"CAP NET BIND SERVICE",
"CAP NET BROADCAST",
"CAP NET ADMIN",
"CAP NET RAW",
"CAP IPC LOCK",
"CAP IPC OWNER",
"CAP SYS MODULE",
"CAP SYS RAWIO",
"CAP SYS CHROOT",
"CAP SYS PTRACE",
"CAP SYS PACCT",
"CAP SYS ADMIN",
"CAP SYS BOOT",
"CAP SYS NICE",
"CAP SYS RESOURCE",
"CAP SYS TIME",
"CAP SYS TTY CONFIG",
"CAP MKNOD",
"CAP LEASE",
"CAP AUDIT WRITE",

Vı́ctor Mart́ınez Bevià 112

Securing Kubernetes
in Public Cloud Environments

"CAP AUDIT CONTROL",
"CAP SETFCAP",
"CAP MAC OVERRIDE",
"CAP MAC ADMIN",
"CAP SYSLOG",
"CAP WAKE ALARM",
"CAP BLOCK SUSPEND",
"CAP AUDIT READ"

],
"effective":[

"CAP CHOWN",
"DAC OVERRIDE",
"CAP DAC READ SEARCH",
"CAP FOWNER",
"CAP FSETID",
"CAP KILL",
"CAP SETGID",
"CAP SETUID",
"CAP SETPCAP",
"CAP LINUX IMMUTABLE",
"CAP NET BIND SERVICE",
"CAP NET BROADCAST",
"CAP NET ADMIN",
"CAP NET RAW",
"CAP IPC LOCK",
"CAP IPC OWNER",
"CAP SYS MODULE",
"CAP SYS RAWIO",
"CAP SYS CHROOT",
"CAP SYS PTRACE",
"CAP SYS PACCT",
"CAP SYS ADMIN",
"CAP SYS BOOT",
"CAP SYS NICE",
"CAP SYS RESOURCE",
"CAP SYS TIME",
"CAP SYS TTY CONFIG",
"CAP MKNOD",
"CAP LEASE",
"CAP AUDIT WRITE",
"CAP AUDIT CONTROL",
"CAP SETFCAP",
"CAP MAC OVERRIDE",
"CAP MAC ADMIN",
"CAP SYSLOG",
"CAP WAKE ALARM",
"CAP BLOCK SUSPEND",
"CAP AUDIT READ"

],
"inheritable":[

"CAP CHOWN",
"DAC OVERRIDE",
"CAP DAC READ SEARCH",
"CAP FOWNER",
"CAP FSETID",
"CAP KILL",
"CAP SETGID",

Vı́ctor Mart́ınez Bevià 113

Securing Kubernetes
in Public Cloud Environments

"CAP SETUID",
"CAP SETPCAP",
"CAP LINUX IMMUTABLE",
"CAP NET BIND SERVICE",
"CAP NET BROADCAST",
"CAP NET ADMIN",
"CAP NET RAW",
"CAP IPC LOCK",
"CAP IPC OWNER",
"CAP SYS MODULE",
"CAP SYS RAWIO",
"CAP SYS CHROOT",
"CAP SYS PTRACE",
"CAP SYS PACCT",
"CAP SYS ADMIN",
"CAP SYS BOOT",
"CAP SYS NICE",
"CAP SYS RESOURCE",
"CAP SYS TIME",
"CAP SYS TTY CONFIG",
"CAP MKNOD",
"CAP LEASE",
"CAP AUDIT WRITE",
"CAP AUDIT CONTROL",
"CAP SETFCAP",
"CAP MAC OVERRIDE",
"CAP MAC ADMIN",
"CAP SYSLOG",
"CAP WAKE ALARM",
"CAP BLOCK SUSPEND",
"CAP AUDIT READ"

]
}

},
"parent":{

"exec id":"bWluaWt1YmU6MTYyNzIwMjkzMjkyMToyMzc0Ng==",
"pid":23746,
"uid":0,
"cwd":"/",
"binary":"/usr/bin/nsenter",
"arguments":"−t 1 −a bash",
"flags":"execve rootcwd clone",
"start time":"2021−10−13T13:06:41.071Z",
"auid":4294967295,
"pod":{

"namespace":"default",
"name":"privileged−the−pod",
"container":{

"id":"docker://32865
cff8fef4a9274e9fa1d80bf48eb80d28b94e273d6d1670a6f721a9a1158
",

"name":"privileged−the−pod",
"image":{

"id":"docker−pullable://nginxsha256:644
a70516a26004c97d0d85c7fe1d0c3a67ea8ab7ddf4aff193d9f301670cf36
",

"name":"nginx:latest"

Vı́ctor Mart́ınez Bevià 114

Securing Kubernetes
in Public Cloud Environments

},
"start time":"2021−10−13T12:58:31Z"

}
},
"docker":"32865cff8fef4a9274e9fa1d",
"parent exec id":"bWluaWt1YmU6MTI5NDM3OTU0NzQ3ODoxOTU5NA==",
"refcnt":2

},
"ancestors":[

{
"exec id":"bWluaWt1YmU6MTI5NDM3OTU0NzQ3ODoxOTU5NA==",
"pid":19594,
"uid":0,
"cwd":"/",
"binary":"/bin/bash",
"flags":"execve rootcwd clone",
"start time":"2021−10−13T13:01:08.248Z",
"auid":4294967295,
"pod":{

"namespace":"default",
"name":"privileged−the−pod",
"container":{

"id":"docker://32865
cff8fef4a9274e9fa1d80bf48eb80d28b94e273d6d1670a6f721a9a1158
",

"name":"privileged−the−pod",
"image":{

"id":"docker−pullable://nginxsha256:644
a70516a26004c97d0d85c7fe1d0c3a67ea8ab7ddf4aff193d9f301670cf36
",

"name":"nginx:latest"
},
"start time":"2021−10−13T12:58:31Z"

}
},
"docker":"32865cff8fef4a9274e9fa1d",
"parent exec id":"bWluaWt1YmU6MTI5NDMzMzczMTY4NToxOTU4NA==",
"refcnt":3

},
{

"exec id":"bWluaWt1YmU6MTI5NDMzMzczMTY4NToxOTU4NA==",
"pid":19584,
"uid":0,
"cwd":"/docker/containerd/daemon/io.containerd.runtime.v1.

linux/moby/32865
cff8fef4a9274e9fa1d80bf48eb80d28b94e273d6d1670a6f721a9a1158
/",

"binary":"/usr/bin/runc",
"arguments":"−−root /var/run/docker/runtime−runc/moby −−log /

run/docker/containerd/daemon/io.containerd.runtime.v1.
linux/moby/32865cff8fef4a9274e9fa1d80bf48eb8
d28b94e273d6d1670a6f721a9a1158/log.json −−log−format json
−−systemd−cgroup exec −−process /tmp/runc−process133903661
−−console−socket /tmp/pty028492678/pty.sock −−detach −−
pid−file /run/docker/containerd/daemon/io.containerd.
runtime.v1.linux/moby/32865cff8fef4a9274e9fa1d80bf48eb8
d28b94e273d6d1670a6f721a9a1158/

Vı́ctor Mart́ınez Bevià 115

Securing Kubernetes
in Public Cloud Environments

a5579f11fb7d75d66213f488bf44e9c37b92c196dee5e94647e6f60c59cf6693
.pid 32865
cff8fef4a9274e9fa1d80bf48eb80d28b94e273d6d1670a6f721a9a1158
",

"flags":"execve clone",
"start time":"2021−10−13T13:01:08.202Z",
"auid":4294967295,
"parent exec id":"bWluaWt1YmU6MTEzNzgyOTM1MzU5NzoxNzk1OA==",
"refcnt":3

},
{

"exec id":"bWluaWt1YmU6MTEzNzgyOTM1MzU5NzoxNzk1OA==",
"pid":17958,
"uid":0,
"cwd":"/docker/containerd/daemon/io.containerd.runtime.v1.

linux/moby/32865
cff8fef4a9274e9fa1d80bf48eb80d28b94e273d6d1670a6f721a9a1158
/",

"binary":"/usr/bin/containerd−shim",
"arguments":"−namespace moby −workdir /var/lib/docker/

containerd/daemon/io.containerd.runtime.v1.linux/moby
/32865cff8fef4a9274e9fa1d80bf4
eb80d28b94e273d6d1670a6f721a9a1158 −address /var/run/
docker/containerd/containerd.sock −containerd−binary /usr/
bin/containerd −runtime−root /var/run/docker/runtime−runc
−systemd−cgroup",

"flags":"execve clone",
"start time":"2021−10−13T12:58:31.698Z",
"auid":4294967295,
"parent exec id":"bWluaWt1YmU6NDIwODAwMDAwMDA6MjY4MA==",
"refcnt":5

},
{

"exec id":"bWluaWt1YmU6NDIwODAwMDAwMDA6MjY4MA==",
"pid":2680,
"uid":0,
"cwd":"/",
"binary":"/usr/bin/containerd",
"arguments":"−−config /var/run/docker/containerd/containerd.

toml −−log−level info",
"flags":"procFS auid rootcwd",
"start time":"2021−10−13T12:40:15.948Z",
"auid":0,
"parent exec id":"bWluaWt1YmU6NDIwNDAwMDAwMDA6MjY3Mg==",
"refcnt":87

},
{

"exec id":"bWluaWt1YmU6NDIwNDAwMDAwMDA6MjY3Mg==",
"pid":2672,
"uid":0,
"cwd":"/",
"binary":"/usr/bin/dockerd",
"arguments":"−H tcp://0.0.0.0:2376 −H unix:///var/run/docker.

sock −−default−ulimit=nofile=1048576:1048576 −−tlsverify
−−tlscacert /etc/docker/ca.pem −−tlscert /etc/docker/
server.pem −−tlskey /etc/docker/server−key.pem −−label
provider=virtualbox −−insecure−registry 10.96.0.0/12",

Vı́ctor Mart́ınez Bevià 116

Securing Kubernetes
in Public Cloud Environments

"flags":"procFS auid rootcwd",
"start time":"2021−10−13T12:40:15.908Z",
"auid":0,
"parent exec id":"bWluaWt1YmU6MjEwMDAwMDAwOjE=",
"refcnt":89

},
{

"exec id":"bWluaWt1YmU6MjEwMDAwMDAwOjE=",
"pid":1,
"uid":0,
"cwd":"/",
"binary":"/usr/lib/systemd/systemd",
"arguments":"noembed norestore",
"flags":"procFS auid rootcwd",
"start time":"2021−10−13T12:39:34.078Z",
"auid":0,
"refcnt":128

}
]

},
"node name":"minikube",
"time":"2021−10−13T13:06:41.074Z"

}

Listing B.3: Container entering host via nsenter command

Vı́ctor Mart́ınez Bevià 117

Securing Kubernetes
in Public Cloud Environments

Appendix C

Tetragon Tracing Policies
examples

The DnsLookup action can be used to perform a remote interaction such as trig-
gering Thinkst canaries or any system that can be triggered via an DNS entry
request. It uses the argFqdn field to specify the domain to lookup.

apiVersion: cilium.io/v1alpha1
kind: TracingPolicy
metadata:
name: "dns"

spec:
kprobes:
- call: "fd install"
syscall: false
args:
- index: 0
type: int

- index: 1
type: "file"

selectors:
- matchArgs:
- index: 1
operator: "Equal"
values:
- "/etc/passwd"

matchActions:
- action: DnsLookup
argFqdn: ebpf.io

Listing C.1: Trigger Canary via DnsLookup action

Override action allows to modify the return value of call. While Sigkill

will terminate the entire process responsible for making the call, Override will
override the return value that was supposed to be returned with the value given
in the argError field. It’s then up to the process handling of the return value of
the function to stop or continue the execution.

Vı́ctor Mart́ınez Bevià 118

Securing Kubernetes
in Public Cloud Environments

apiVersion: cilium.io/v1alpha1
kind: TracingPolicy
metadata:
name: "sys−linkat−passwd"

spec:
kprobes:
- call: "sys linkat"
syscall: true
args:
- index: 0
type: "int"

- index: 1
type: "string"

- index: 2
type: "int"

- index: 3
type: "string"

- index: 4
type: "int"

selectors:
- matchArgs:
- index: 1
operator: "Equal"
values:
- "/etc/passwd\0"

matchActions:
- action: Override
argError: −1

Listing C.2: Override return value of command via Override action

Trace tcp connect, tcp close and tcp sendmsg for CIDR blocks 127.0.0.1/8
and 192.168.0.0/16.

apiVersion: cilium.io/v1alpha1
kind: TracingPolicy
metadata:
name: "connect"

spec:
kprobes:
- call: "tcp connect"
syscall: false
args:
- index: 0
type: "sock"

selectors:
- matchArgs:
- index: 0
operator: "DAddr"
values:
- "127.0.0.1/8"
- "192.168.0.0/16"

- call: "tcp close"
syscall: false
args:
- index: 0
type: "sock"

Vı́ctor Mart́ınez Bevià 119

Securing Kubernetes
in Public Cloud Environments

selectors:
- matchArgs:
- index: 0
operator: "DAddr"
values:
- "127.0.0.1/8"
- "192.168.0.0/16"

- call: "tcp sendmsg"
syscall: false
args:
- index: 0
type: "sock"

- index: 2
type: int

selectors:
- matchArgs:
- index: 0
operator: "DAddr"
values:
- "127.0.0.1/8"
- "192.168.0.0/16’’

Listing C.3: Trace TCP calls for specific CIDR blocks

Vı́ctor Mart́ınez Bevià 120

	Abstract
	Introduction
	Motivation
	Goals
	Planning
	Risks

	State of the Art
	Anatomy of current Kubernetes Cybersecurity Attacks
	Kubernetes Security Standards
	Threat Models
	Sig-Security K8s Threat Model
	Microsoft Threat Matrix for Kubernetes
	Expanded Microsoft Threat Matrix for Kubernetes

	Conclussions

	Preventive Controls
	Mitigations
	Mapping tactics to mitigations
	Initial Access
	Execution
	Persistence
	Privilege Escalation
	Defense Evasion
	Credential Access
	Discovery
	Lateral Movement
	Collection
	Impact

	List of mitigations
	Multi-factor authentication
	Restrict access to the API server using IP firewall
	Adhere to least-privilege principle
	Secure CI/CD environment
	Image assurance policy
	Gate generated images in CI/CD pipeline
	Gate images pushed to registries
	Gate images deployed to Kubernetes cluster
	Enable Just In Time access to API server
	Network intrusion prevention
	Limit access to services over network
	Require strong authentication to services
	Restrict exec commands on pods
	Restrict container runtime using LSM
	Remove tools from container images
	Restrict over permissive containers
	Network segmentation
	Avoid running management interface on containers
	Restrict file and directory permissions
	Ensure that pods meet defined Pod Security Standards
	Restricting cloud metadata API access
	Allocate specific identities to pods
	Collect logs to remote data storage
	Restrict the usage of unauthenticated APIs in the cluster
	Use managed secret store
	Remove unused secrets from the cluster
	Restrict access to etcd
	Disable service account auto mount
	Avoid using plain text credentials
	Use NodeRestriction admission controller
	Use CNIs that are not prone to ARP poisoning
	Set requests and limits for containers
	Use cloud storage provider
	Implement data backup strategy
	Avoid using web-hosted manifest for Kubelet

	Implementation
	Case Study
	Establishing Priorities
	When is it not possible to mitigate?

	Domains of application
	Kubernetes configuration
	Adhere to least-privilege principle
	Restrict exec commands on pods
	Use NodeRestriction admission controller
	Avoid using web-hosted manifest for Kubelet

	Cloud Provider configuration
	Multi-factor authentication
	Restrict access to the API server using IP firewall
	Enable Just In Time access to API server
	Limit access to services over network
	Restricting cloud metadata API access
	Allocate specific identities to pods
	Restrict access to etcd
	Restrict the usage of unauthenticated APIs in the cluster
	Use cloud storage provider and Implement data backup strategy
	Collect logs to remote data storage
	Use managed secret store

	Third-party software
	Trivy
	Open Policy Agent Gatekeeper
	Cilium and Tetragon
	Custom solutions

	Conclussions and further work
	Plan of action
	Next steps

	List of Figures
	List of Tables
	List of Listings
	Bibliography
	Open Policy Agent Gatekeeper Constraint Templates
	Gate images deployed to Kubernetes cluster
	Restrict exec commands
	Restrict over permissive containers
	Restrict file and directory permissions
	Ensure that pods meet defined Pod Security Standard
	Disable service account auto mount
	Set requests and limits for containers

	Cilium event logging
	Tetragon Tracing Policies examples

